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ABSTRACT o
\ Opeo web steel joists are often used as sinply supported '
' flexural menbers in order to support roofs and lightly 10aded floors

. The arrangenentﬂof web meubers ‘permits easy passage of heating ducts

) and other services thrOugh the Joist ‘Joists also of*feW saving in |
- weight over cowarable mabers having solid webs . A_ common chord

N .

- member is a hat shaped section. |

This work fis an attempt to pnedict by nunerical analysis, '
the failure of hat section top chord menbers of open web steel joists;
A finite elenent formulation has been applied to study the behavior of
these. top chord ‘members including non linear geometric and uhterial
effects. Critical newbers which failed during an experilnental in-

. vestigation are modelled and predicted failure loads coupared with the :

experivnental results

The interaction curves predicted by Galanbos and Ketter |

for symmetrical I-Sections and hat shaped sections are used to verify _ “

the finite element programs.
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CHAPTER 1
INTRODUCTION N

1.1 Introductory Remarks

'fOpen web'saeel joists are often used as simply-.
supported flexural'members.' A common type of joist is shown in
,FiQure l,l{ Details of a typical top chord section are shown in

- Figure l.2. The principal axes, x and 'y, pass through the centroid

G. The section is symmetrical about the y axis.

_ Matiisen (14) has recently-carried out a.test program. in
‘nhich;the top chord members of joists failed due to the secondary J
moment resulting’from joint eccentricity. The top chord members of

these joists were - type C sections (26) as shown in Figure l 2.

) The purpose of this work is to attempt to evaluate the :

. »maximum load carrying capacity of the chord members of these Joists N
by modelling the critical mémbers as inelastic beam-columns The
technique employed consists of isolating the critical top chord member,

o attempting to impose realistic boundary conditions upon it, and detennining :

"the peak load from a load deformation finite element analysis.- Epstein
"_and Murray (4) developed three different finite element computer

‘ programs for the analySis of. large deformations of beams on the basis

"': of an objective non linear formulation analogous to Budiansky S non- linear '

shell theory The formulation results in a set of equilibrium equations o
"which are solved by the Newton-Raphson procedure conbined with an .

»



incremental‘loading tethnique. The virtual work form of these
equations has been used to derive a finite element. representation

of the problem, in which cubic polynomials form the basis functions

for both axial and transverse displacements. It has been demonstrated
‘through numerical exanples (4) that-the resolting equations yield
computationally efficient solutions to bean.problems invoiving very
larqg - displacements and rotations The-theory is based on an objective

¢

measure of strains. o g _

, The three different programs, known as ELAST, PLAST and
- PLAST1  deal w1th ]inearly e]astic. elasto -plastic (unsymmetricai I

section).,and tri linear stress strain re]ations respectively The

g PLAST] program (4) which deals with the tri- linear stress-strain .case,

includes 1nitia1 residual stresses for a symmetrica] I shape

The‘author has modified program PLASTI such than. an
dhalgsis can be- carried out. for an unsymmetrical 1 shape including the
-veffect of reSIduaI stresses with 2 tri linear ftress-strain curve..

This program w111 be referred -to as NLHAT

. : The hat shaped sections have been converted to equivalent
| 'iunsymmetrica] I sections, as. indicated in Figure 1.3 in order to app]y e
the program. \ | s
e - \V
1.2 -Scope . ‘
Chapter 2 of this thesis deals with a review of various

techniques available for analysing and computing the capacity of beam-f.r.

et K



columns. Chapter 3 describes in detail the theor} for the programs of
Epstein and Nurray, and the author S modifications to include the effect
of re51dual stresses for an unsymmet;ical I section The curves of
Galambos and Ketter (6) are used to verify the vaiidity of the programs
PLAST] and NLHAT. Interaction curves ‘for different sienderness ratios
having sywmetric I shape are predicted by the programs and compared
with those in Reference 6 Hat shaped sections are examined in

| Chapter 4. Chapter 5 consists of a study to simulate the failure of
the criticai top chord member of each of three Joists in Matiisen s
test series (14), under different boundary conditions A summary of
the complete work aiong with conclusions is the sUbJect matter of

Chapter 6



CHAPTER 2 o ¥
LITERATURE REVIEW -

2.1 Elastic Beam-Columns

Beam-columns are those members in.a structure which are
subjected to combined axial loads and bending moments Bending may
be caused by moments applied to the ends of the member, as. shown inf'
Figure 2. l b;'transverse loads acting directly as shown in Figure

2.2, or by a combination of these effects

The follcwing general baSic assumptions are made to solve
the beam—column problems which involve inelastic bending ’
.'>-,'_ 1. ‘The cross section of the beam remains plane during
bending, and hence longitudinal strains are proportional to their
~ distances from the neutral surface | |
_ The relationship between stress and strain in any i':
:longitudinal fiber is given by the uniaxial stress strain diagram b
| the material. ‘."'. | '
3; Curvature can be approximated by the second derivative

-of the transverse deflection. neglecting certain higher order terms and =

' assuning deflectiom abe small. . .

To obtain“tne exact solution to a small deflection beam- m_' 3

\'Tcolumn problem it is n ,"#ary to solve the basit differential equation

of equilibriun The basie'fferential equation ?ar the elastic bean -
column problem shown in Fﬁg‘le 2.1 is given as (Zl) ‘



1L apy =M 0 +iﬁll—)i) (2.1)
dx- : :

- whevre EI represents the flexural rigidity; P,ie’axial load, Mo denotes
~ the bending moment at the left support, y is the'def1eetion at any

sect1on x, B is rat1o of end moments and L 1s the length Using'tne

"following notation for s1mp11f1cation S
N e
~ equation 2.1 becomes T
Y sy =- g+ 23
L C . A
f‘The’genere] so]Ution'pf:thistequatiOn (2]).is
Sy = Acos kx + B sin kx -p- [1 + B -l x] } (2;4) * ;

:_The constants of 1ntegrat1on A and B are now determined from the

h :f'conditions at the ends of beam-co]umn S1nce the def]ecthons at the

'f;,ends of the behm_column are zero, we conclude that -

P » N _ S _
; A = oo B- m (B ‘ COS .kL) - 4(.2.5)5 o



’SubStituting these values iniEqnation 2.4 we get

o
y ’rg‘[s"'ikﬁnxﬁf Bsinke g, (X) (- s)]

(2.6)

~ Now from Equatwn 2 2 I | ' -
kL ,[ L= /”L ’ o - (27)
’ EI , S I
-The moment at the corresponding section is. then. ' ' ‘
sin a(l - f—)v+'e sin a (f‘)
- M=M[— : ‘

L T a—

-

- (2.8)
~ Since -_thie max imum stress w“in.: be reacnéd at the section of max imum o
_ moment, it is necessarysto define thé_'lbca'_tion of the critical section.

' j.'T‘hi"s bccu’rs{}when_‘. 3

} | %:q? _a [sm u(] - f) + B sin a’ (-L-)] (29) B

. _iﬁ'i;hjgi\igs

;:os a(l -4—-)

= - L (2a0)
: cosu() -Q_,
- Solving thgt._io,n 2.10..fqr_ X anq-'sub_s'titu_ting'Equation 2’-510 into ‘Equa't‘ion

2.8 gives



me .Ho(SecaL) R . (2.11)

£ . - : ‘ ,
The interaction relationship to determine-theuconditions_ for first

yield (for the case where no residual stress is preseht) is therefore

g-'-,+ _n___max; 1.0 L '_ - (2.12)
y y .
P +2 secal =10 | L (2.13)
;__+ ﬂe r =1 . , (2.14) -
y Y - o
~ where T = Sec u% ' : - _ S (2.05)

| Th‘is‘ is ‘also known as_the_'secant_fonnule fb_r beam-col_mns.. |
It is an elastic Hmit' solution to a problem where the failure load of
the column is defmed as the 1o,a.'wh1ch produces the beginmng of

'y1e1d1ng 1n the f1bers subJect to maxmum compression.

2.2 Ea'rl'g Mork in -‘Ihel'a'st"ic. ée‘hmfof =

. _ The use of open web steel Joists has mcreased greatly in
the receht past However, very Httle research has been conducted mto o
beam-colum problems ansmg specificany in the top chords of. JO‘IStS.
"V'This chapter is. concerned uith a review of current techmques for sb'lving
'beam colum problem and some of the 1nvestigations into the compression :

4_-.chords‘_,.o_f_, joists The foHomng smmary of ear]y work ‘ln 1ne]ast1c



.

beam- column behaVior is -taken. from Bleich (2).

Ostenfeld (2) first derived deSign formulas for axially

and eccentrically loaded columns. His method was- based upon the

concept that the critical load be defined as'the loading which first

- produces extreme fiber: stresses equal to the yield strength, in a

manner similar to that of Section 2.3. ‘Karman (15) was among the first
to consider the buckling of eccentrically loaded columnsvas a stability _
problem He called5attention to the high sensitivity of intermediate

and short columns to eccentricity of the superimposed load, which reduces

o f

the-carrying capaCity of straight columns considerably

“Ros -and Bruner (2) assumed the elastic curve of the column

- as a half sine wave and based the computation of the critical load on

the~actual'stress-strain’diagramﬁ,fHestergaard'and Osgood (18) assumed

a cosine curveias the deflected‘center line of an'ecCentrically“loaded

o column. thus 5implifying Karman s method (see Section 2 3) Without »

| impairing the practical accuracy of results Starting from Karman 's exact

concept Chwalla (15) based all his computatiOns on. one stress strain

_ diagram, adopted as typical for structunal steel His laborious work .

brought insight into the behavior of eccentrically loaded columns and |
his exactvresults served as a baSis for the approximate methods._ Jezek '

(24) gave an analytical solution for steel columns based upon a Simplified

E sfress strain curve consisting of tuo straight lines and showed that the
' results agree rather uell with the values obtained from the real stress-

| 7 strain relation Shanley (2) showed in l946 that the double modulus

theory represented a paradox and this led to the wide acceTtance of the



reduced (tangent) modulus concept. He said that the column begins to

. bend with increasing axial load and while this load is more than the
tangent modulus load, i.é.,»the maximum load for which the'coiunn_can

remain straight, it is considerably less than the double modulus load.
8 '

T
Ka }K7s~?é3hgique ‘\
RN :

of the éssential ideas for the computation of in-

elastic buckling loads are contained in the technique of analySis'

developed by Von-Karman (2)

_ Considering the rectangu]ar section shown in Figure 2 3,

D et € and 52 be the strains in the extreme fibers on ‘the convex and
‘concave sides of the beam, and h], h2 be the distances from- the neutf/a
axis to the convex and concave surfaces of the beam, reSpectively '
;Also let 4 be the sum. of the abso]ute values of the maximum e]ongation

fand maximum contraction as shown in Figure 2 4, that is.
: : .1 2 _h - : .
= - E e — T — Lo . ) . .
R Yot - o (2,16) |

where p 1s the radius of curvature which may be detennined by this

'equation,bif A is known The position of the neutral axis 1s determined
d by the values of e1 and 52 and is. in general, shifted from its pOS1t10n .3'2
of pure bending by an amount defined by the strain e at the centroid

'caused by the centra]]y appiied load P as shown in Figure 2 4. »

-

The force acting at any cross section of the beam can be

'""breduced to a compre551ve force P applied at the centroid of the cross - o
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section>and~akbending couple M. The value of P and M can be Caleulated
in éach“particular case from statics by using the stress-strain diagramA
‘(Figure 2. 4) 1f y represents the distance from the centro1d to any

flber of the beam (F1gure 2. 3) the strain at any point is

= Y :
=€+ R R (2..1?)
® . .
Rearranging Equation (2.17)‘y-= b(e-eo) 15.3btained and’nenEe dy=pde.
Then the magnitude of the compressive force P is gjven'by"
P=-bf]ody=‘-bpf]ode=~-gb_—'f]c;ds

-h . £ € , . ,
2 e 2 2 (2.18)

Dividing P by cross sectional-area bh, average compressive stress o is

obtained as
o g o (@ae)

The 1ntegra1 in th1s expression represents the area under

.,’the stress straln d1agram, that is, the shaded area of F}gure 2. 4 The

- area correspondlng to compre551on is. taken~negative and the area

- represent1ng tens1on 1s pos1t1ve From Equation 2 19 the va]ue of EZ

is calcu]ated correspond1ng to any assumed va]ue of e], prov1ded the _,"

fax1a1 Toad P is knoun.v Alternatively. botb a] and 52 may be a35umed so;'iv'

’that the corresponding va]ue of P can be ca1Cu1ated

The bend1ng moment is 91ven by the expresswon



]1 ,a"

L
)

v _ .
M=0b/ 1, y dy = bp2 J ! g (\c-'eo)de C(2.20)
-h, "€, , , ‘
2 2
- si 5=""and 1= bn
or since ° @ o
>
m=12 1o (ewcy) e .2

The‘integrai in this‘expression represents the static
moment of the shaded area of the stressfstra{n diaéram (Figufe"z}A),

~ with respect to vertical axis A-A.  Thus the value of M can be
~calculated for any assumed values of'e] and €) “Equation 2.2 can:be,"

represented in the form

LR . “ o (2.22)
""’,,.‘
S PR | | S |
where - E"=%5 [0 (e-g,) de . : (2.23)
' A 52 ' ’ I

By vary1ngue] and ez in such a manner that G, rema1ns
_constant, E" 1s obtaIned as a function of A= e]-ez = h—for any given
‘value of 9 The resu]ting relat1on 15 expressed graphically in Figure N
2.6 which was p]otted for a strnctural steel having the stwess~str@1n
'_diagram of Flgure 2. 5 (21). “When these curves dre used with EQuation -
- 2.22, the bending. moment M can be represented as.a function of & for each
‘valye of e as shown 1n Figure 2 7. ~ The: shape of the def1ection curve .f
for an eccentrically loaded bar can be obta1ned by us1hg the curves of

'F1gure 2. 7 and applying either an approximate graph1ca1 method of
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integration as'developed by Karman, or a numerical method..
O o . .

Con51der the steel bar (Figure 2. 8) with rectangular cross-

- section. as shown in Figure 2.3, synmetrical about the point 0, _and
having the. stress- strain curve shown in Figure 2.5, Karman S graphica]
integration technique (15) is described as fo]]ows Assuming definite

' value of c] and € for the cross section corresponding va]ues of P |

] and o are calculated from Equations 2. 18 and 2 19.Using the curves of |
Figure 2.7, the moment. M corresponding to this vaiue of o is obtained
Thus the bending moment and the compreskive force for the Cross section
at the center of the beam~are\determined and the distance 8y %

locates the line of action of the compressive force (Figure 2 8(b))

Next construct an eiement 0 1 (Figure 2. 8(c)) of the deflection curve

aof a sma]l 1éngth a, by u51ng the radius p ' ﬁ-calculated for. the middie
of the bar. The deflection at. the cross section 1 is approximateiy the
.7‘. same as for a flat circu]ar arc. Thus d] E;-, and the bending moment he
M, P(6 6 ) For the resu]ting M] we find the correSponding va]ue |
of 8, . denoted by 8y, from Figure 2. 7, and a]so ca]culate p] “'b;- .
'Jbetter approximation “is obtained if we repeat the calculation for the

p¥
) before gOIng to second interval

first interval by taking the radius (

Using the new'radius, construct the second portion 1-2 of the curve and

s

calculate the d:flection 62. continuing these caicu]ations to the end

A of the compressed bar C _t,t ; . .
' The def1ection S at the end and the etcentricity e of the

load P corresponding tofthe assumed values of c1 and 62 are determined

i

f
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Carrying out ca]culations for several Va]uesvof € ano €95 andu
selecting thgse values in each caseiso”as to make P always the same;
the deflection & is obtained'as a function of the eccentricity e.
Repeating this process for a range of ax1a1 loads P and bending
moments M, Karman constructed equ11ibrium diagrams such as in Figure
*2.8(d).This method forms the basis for Karman' sfinvestigation of-beamfni.

column compression members.

2.4 Momént Curvature'Reiations

Ketter, Kaminsky and Beedie (11) developed a point by-
point" method for. computing the moment curvature relationship for wide
: f]ange co]umns bent- about either axis and in the presence of axial
thrust The neceSSity of. computing M-¢ curves arose because it was very

'difficu]t to obtain strains from the given P and M as indicated by

- N

'5,i Equatigns,z;ls and 2,20: These equations require an iterative solution

- to obtawn valueg;of'strain,ebut.it is easier to find P and M if strains
”'are‘assumed;f.‘- | |

‘,_ Since strains are smai] in comparison to. the depth h of
the section, the curvature within the elastic range as-shown in Figure ;.”

2. 9(a) is given as

—'ez -].-02 o A o
L A R L (2.8
4For'an elastic perfectiy plastic¢ member loaded beyond;the

eiastic,linit;'as_shown in Figure 2.9(b),.we"have
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" {2.25)

g, =~ 0

) 2 ., | o ‘
¢ = _{-_T}E h‘- ‘ | | (2.26) |

-It is thus posSible'to compute’ P, M and ¢ for any given stress
' distribution by u51ng equations similar to Equations 2 18 and 2.20.
As moment is ‘increased under a constant axiai force. succeSSive stress
distributions.will be similar to-those shown in Figure 2.]0. Yielding
”firSt occurs at.the extreme fioer on the compression side of the
’\“\specimen. Asvthe'loading is increased, yielding penetrates through
the web on the conpression side. Eventuaily yieiding penetrates through
the tension sides and the fu]iy plastic condition, typified in Figure ‘

2.10 (d), may be approached

L 4

.tFor'eaSy‘computation of the M-¢ curve certain Flexure
conditions are assumed; a typical set of these is il]uStrated in _
Figure 2.11. Va]ues~of'P'and'M arefdetermined from the stress distribution

' for a number offassumed values of ¢ for each of a set‘of_assumed'values':
of }ield penetration'as'shown in Figure 2.11. These values of P and M
'are Plotted’infnonidimensionai form as a—-vs %;—and ;—-vs %;—curves
as Shown in Figure 2.12.-.The‘M—¢ curVe for a partj‘ular value of %—
| can be" determined with the help, of. Figure 2. 12. Asuan example, theyvalue
‘Pv='0.2 Py is chosen A.horizontal iine is drawn for-this ;e s cuttingj
the various auxi]iary'P-¢.CUrVes’ At these points of intersection;
vertica]s are projected until they intersect’ the corresponding M-¢ curves
, in the same figure Connecting these points give the desired M-¢ curve

for ;— = 0.2 . This is indicated separately in Figure 2. ]3 _Simiiar
y ' . _ .
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curves may be obtained when the influence of residua] stresses

’ 'shown jn Figure A.l are considered The infTuence of varying the

4

axial Toad over a range of p—-on the M-¢ curve 1s shown in Figure 2.14.
~ y

The dotted curves “in Figure 2 14 are comparabie functions considering -
‘ the infTuence of residual stress. '

5"
¥

2.5 Iterative NumericaT Integration Technique N

Ketter (10) presents the resu]t of a continuing 1nvestigation
“of the ultimate carrying capacity of beam-coTumns._ He examined two
different types of Toading conditions for wide f]ange beams and the
'resuTts are presented in the form of interaction curves The foTTowing
’,»steps werg, ¢ adopted for solvmg any probTems by thTS technique | |
' : T; _Select a particu]ar value of and P for investigation ':;
2.' The moment thrust curvature curve is estab]ished for |
| '~the given type of material. cross~section ‘and re51dua1 stress distribution,e‘“'
for the assumed value. of P. as explained in Section 2. 4. f
3. An end moment M] greater than the 1nitial yier :

moment is assumed B M‘”' | S |
: . A reasonab]e defTected shape is assumed as a first.
‘%-trial The defiections defined by Equation 2 6 are assumed ' :
o , 5. Using P from Step T H1 from Step 3 and y from Step
“i7f 4, the bending mqment [M —-M] 2 24 P ] is computed at a number of equaTTy
spaced intennediate points on the span . B '

‘ '"__6,5‘ For the vaTue of P se]ected in Step T and the bending :fa'
7,‘nbn§ﬁ£s”éan§uted in Step 5, corresponding curvatures are read. using either J{:

£
A

el
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'solid or dashed lines from Figure 2 14 depending upon. whether or not

'one wants to include residual stress effects, at the points along the '

:

span. - o
//

7. Newmark s method of numerical integration (ll) is
.then used to determine deflections.. Assuming curvatures to .be . constant
--over a: half interval ( ) on either side of each intermediate point i |
and considering all slope changes to be concentrated at these intermediateﬂi'
.points, the angle changes are added to obtain the slope between each
of. the intenmediate p01nts The deflection of each point is then-; .
'_estimated by a 51milar process of adding the slope times “the distance

- :between intermediate pS&nts Then these deflections are corrected to f'

| - satisfy the boundary conditions as explained in Step i of Figure 2. l5

| :The final deflection is obtained as the sum of_the. original estimate ,-TT’_
- and the correction If there is yielding. the deflection will not

:agree with the elastic ones computed 1n Step 4

‘8 USing the new deflections as a second approximation,r_-'

Steps 5, 6 and 7 are repeated and this set of deflectibns is comparedir’

'-..Wlth ‘the second one This process of . successive approximation is

T;_ repeated until convergence to the derived degree of accuracy is obtained o

"'91’ End slope 8, is. computed from the deflection of. points '

' i'f near “the support If the deflection curve of the member within the

"<;three end intervals is assumed to be represented by a parabola, the -‘l-‘-T”
end slope can be expressed in terms of known deflections by o
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“where Si.and Gé areuthe.deflections’at theffirst‘and secdndistations, .
.and A is the spaCing of the stations | | |

| " -lO. For the same values of- —-and P, assume a series of -
| greater values of H] and repeat Step 4 through 9 for each af these

- ' ‘ll.{, From the results of the above plot the. nl-vs e
One such plot for a particular case. of a bean column ‘(when" B 0) lS‘

IVShown in Figﬂre 2. 16 This curve is non- linear and eventually reaches

a maximum. after which lt starts to descend The member would become

;unstable and collapse under the combination of the assigned axial force_
B P and M at the peak of the curve This gives one particular pOint

!on an interaction curve. ' ‘ ' o :
RO 1*712, Step l through ll yield ‘one critica}\combination ’

o of M and. P for one. particular slenderness ratio. (. —-) Many such p01nts.”

,;need to be determined for a- given slenderness ratioﬁfo define an inter-

"_action curve

s , '1 A series of 1nteraction curves may. then be plotted for ,'f'

o different —-values and axial force Galambos and Ketter (6) plotted

‘.f}these curves in non dinensional form, so as to be suitable for any HF

- ;'section, as shown dn’ Figure 2 l7 The effect of residual stress is e l:ff

'iincluded Figure 2 17 has been obtained by - solving an 8HF3l section
’twith the numerical integration technique described above o _f:u«-;
| i Mason, Fisher and Winter. (13) reportedian experimental | |
E ;investigation of eccentrically loaded.hinged steel columns Twenty four"”
4,beccentrically loaded and six axially loaded columns were tested These R

 test, results were compared with the predicted failure loads of salambos

'v'f Aand Ketter. and correlation was shown to be very good
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2.6 lnteraction Equations
Mason, Fisher and Winter (13) compared failure Toads for

,,eccentrically loaded columns to two types of interaction formulas

: first was :

e
= ;-;':

'(égza)

=X

_where P s the axial load at failure under concentric compre551on, .
M is the bending moment at failure’under bending only,

'ﬁP_ is the actual load at failure under combined action, ;."

- and fM is the bending moment at failure under combined action

'iThe second was

4. ;_?;!L;j;_;;jzgxl o T (2.29)
MO -5 e

L . e | | |
_;where PE 1s the Euler elastic buckling load and all other terms are

"identical to. those of Equation 2 28 Equation 2 28 overestimated “the
fnftest reSult by l5 to 20% and more and hence it lS very unconservative
'ejion the other hand Equation 2 29 was safe in all cases in comparison to |
“‘“test results Results obtained from Equation 2 l4.which is a secant |

;'formula,gives very satisfactory correlation Nlth experimental values

flf'for ultimate loads for all slenderness ratios This formula is accurate

_;only for bending about an axis parallel to. the flanges and provided that

"»'jsuch bending‘is not accompanied by torsion Equation 2. 29 is accurate

a fffor bending about either axis when torsion is prevented The ampliftcationgip |

t
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factor (1 - FrQIS 1ncluded ln Equat1on 2 29 to account for 1nitial

o

\1mperfect1ons

Ga]ambos and Ketter (6)present dtmens1on1ess 1nteractwon f',.tvj‘e

:b'equatlons to approxvmate curves simi]ar to. those of Flgure 2. 17 1n the

fo]low1ng form

'wnere A B and C are emp1r1ca] coeffic1ents that are funct1ons of L
"and‘the 10ad1ng cond1t1on, Py is the co]umn axlal 1oad at the fu]l
-'y1e1d cond1t10n, ”d is. u]timate bend1ng moment in the absence of
"max1a1 load and P- is u]t1mate Ioad fo? a centra]]y loaded co]unn w1th

| buck]ing in the p]ane of the applied moment

Hi]l and C]ark (7) suggested fo]]ow1ng mod1fied fonnu]a,‘ !

for both elast1c and 1ne1ast1c range a

= 1 v T %}
F‘+“]_v__) <  (_)

S

';'fwhere M is the maxlmum app]1ed moment, not 1nc1ud1ng the contr1but1on :

. of the axtal ]oad 1nteract1ng wlth defTections The possibilltwes of

‘h[“fbuckl1ng in the weak plane and of lateral torsiona1 buck1ing are also

~-considered 1n propos1ng Equatlon 2 31 Consider1ng unequal end moments L
- ﬁithe following 1nteraction equat1on is used in modified form in place of

:Equatlon 2.31 for ca]culat1ng the cr1tica1 load _;'\\\;'j‘

' c(%—)2= 1 (2.3)
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o’'cr
"'~';uhereiP_rfis’the‘smallest buckling load uhich'the member‘can7sustain"

'3ifibending‘is“absent,(M ) lS the critical moment in the absence of
axial load and C s a factor used for adJusting for the different

’ énd nnment ratios B The.value.of C is reconmended in CSA. Standard »

k ySlG-IQGQ,efSteel.Structures for'Buildings"-(ZS) for'different conditions. .

’."'-2.7..4' 'Inves'tigati'on_of Compression Chords of'J'o_ists o o ’

B

.Z.l;l;;p'“::Toronto Test'Serieseil , ‘h;i ».‘ﬁ
S ; Kennedy'and“Rowan'(é):carried-out'their work to'reSOlve-'
conflicts existing in deSign requirements for the continuous compreSSIon:f_
chords .of open web steeﬂ JOlStS their goal being to establish the “
proper effective length for the compreSSion chord which is a critical
factor in their de51gn Thus the testing was aimed at establishing
fif'i the behaVior of the compreSSion chord A total of 8 JOlStS were tested e
6 of these were loaded at panel points of which 3 failed by'in plane :
buckling of the compreSSion chord 2 by strong axis buckling of the .
compression chord due to 1nadequate lateral support and. one double R
angle JOlSt failed by individual buckling of the angles of the | L
| compreSSion chord Two JOlStS were loaded at mid pOints and they failed_“
by 1n-plane buckling Deflections. Joint rotations and member curvatures ‘
- were recorded to find the inflection points for calculating effective

length factors Stub column tests were perfbrmed an- top chord sections only

IR
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bFrom these tests the authors arr1ved at the fo]]ow1ng conc]uswonrr

L
v

o 1. -i Top chords must be adequately braced
| 2. Doub]e ang]es must be suitab]y Jo1ned to ensure
_'compos1te action. - - . , '._:; ;g@yj
*,3,;' The co]umn strength curve can be closeTy‘%epresented

. A‘”.

"by a stra1ght line.

4 The deflect1on of a Joist can be caTcuTated by. s1mp1e
”truss theory and can be approx1mated by a’ 10% 1ncrease in s1mple beam
def]ect1ons _ , . | o
. | N rTSLI% The effect1ve Tength of a chord member dea?ﬁ’s upon
: 1ts or1g1na1 shape If all 1n1t1a1 deflect1ons are 1n the same dlrection,”:

~then the effect1ve Tength factor K 0. 65, 1f the def]ect1ons are. not jc

R ;1n the same d1rectlon, then K= 0 9

or Tess

v6t7 Hhen the top chord 1s uniformly ]oaded the drop 1n '__.»

';JOTSt capacwty shou]d not be more thdn ]0% Tf the panel ]ength 1s 24"' '

"-7;' ~~Ult1mate strength.when bending 1s present can be

o conservattve]y predvcted by ;T— fﬁ g-- 1. o
P e U]

| r‘2;7.21"1 - kansas Test'Series
HcDonald (TS) stud1ed ana]ytically and exper1menta11y the ,5'r..

T top chords of v open web stee] Jo1sts as beam«co]umns 10aded un1form1y

| .~along the1r Tength He d1d a Karman type numer1cal analysis, but

' 1terated hvs 1ntegrat10n to find the coTTapse Toad wh1ch fit h1s boundary‘ui
»_:'conditlons. Subsequent]y, he compared his resuTts w1th a dlfferent inter- .

'-.actuon equation A computer program based on the'Karman techn1que (Sec
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2. 3) was fonmulated ‘and used to eva]uate the. buck]ing strength of 51
JOists Twenty four of these Joists were tested with one point mid
‘span Toad 19 were tested wlth uniform load applied by Ohmart s air bag_
‘ emethod and 8 were tested in pairs by uniform dead ioad The ana]ytica]b
fstudy was carried out so that resu]ts of testing and anaiyticai work o
coqu be compared This study yas mainTy directed towards 1n p]ane

’buckTing of the compreSSion chord on the baSis of fo]iowing assumptions;

T;‘. The mechanism of faiiure TS primary instability
| ?. : TheNavierassumption of linear strain under bending
s va]id | | | | | |
3,3 -The. material possesses equa] stress strain properties. |

j‘in tension and compreSSIon o : , o
_ 'A:4;l The disp]acement boundary condition for the critical
__i'top .chord member. can be determined from the defiected shape of the : J‘
| JOTSt by conSidering 1ne]ast1c effects from a modified beam anaTy51s .
J'IneTastic effects were inciuded by assuming a variabie bending stiffness
. (EI) for the 301st along its length
| ConSidering the parabolic moment distribution that resuits

U from a- unlfonm Toading of the JOist, Tt was concluded that 301sts shouid'~,

.possess their elastic EI 1n the outer third of their length and the EI. .

) '-_over the middTe third shoqu be that necessary to match the measured o

mid- point deflection Thus “he. determined joint rotation from the ; l';.
'“gross shape of the loaded Joist assuminq that the: rotation of Joints would
- not be affected by the/uniform Toad between pane] points The. analytical

f,’hmodei of a top chord member which has been investigated exhibits. o
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-1.  End cond1t1ons wh‘ch change when the Jo1st 1oad s
» changed and are. cons1stent w1th the assumed shape wh1ch the Jo1st takes _
~ under load‘ : . _ : , |
_ ;2;7A An app11ed ]oad/P wh1ch rotates to rema1n tangent to yf
the curved form of the joist under 1oad ' | -
A,Qn the. basxs of h1s 1nvestlgat1ons McDona]d conc]uded the fol]owxng

-l. : The ana]yt1ca1 study agreed wel] w1th the test ser1es

| “and both 1nd1cated that the des1gn formulas of the Amer1can Iron and

"_Steel Inst1tute (AiSI) Stee] Jo1st Inst1tute (SJI), and the Amer1can

: Inst1tute of Stee] Construction (AISC) w11] g1ve adequate factors of v
'safety However. the ana]yt1ca1 study 1nd1cated that the factor of
.safety might be reduced 1f the rat1o of unifonm ]oad to ax1a1 des1gn

~ load in- the top chord was 1ncreased o _ C | |

| 2; Des1gn techntques wh1ch USe only the s]enderness

"ratlo and ax1a1 ]oad to proportton compre5310n members are not rat1onal '

. >
3. The 1nteract1on formu]a he proposed is .

" Axial Stress *”""-;fBend1n _Stress N 0 92 "7; e
~-TangentjModu1usttress ~Yield gtress

» 4ﬁ'_ Von Karman s method of analysis for beam columns

frmay be app]aed to the compression chord of open web stee1 301sts but
‘1n ana]ytaca] stud1es an 1terat1ve process shou]d be used to determ1ne
| the indeterm1nate end moments wh1ch produce a deflected shape cons1stent~{x;

'jWith the boundary cond1t1ons.
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I

;2.8 ‘Large Deformation Finite Element Solution

"Epstein and MUrray'(B).presented an.objeCtive:nOn»linearﬂ'

"fonnu]ation‘of elastie in;plane beamAcolumn,problemswand a corresponding
-__set of finite e]enent equat1ons A large deformatxon theory for in- plane
"beam prob]ems was fonmulated on the basws of the Bud1ansky S non- 1inear
heshell theory Cub1c 1nterpolat1ng funct1ons were used to represent |

ff1n1te element dlsplacements _ These d1sp1acements were 1ntroduced

;.1nto a v1rtual work fonm of - the equations to y1e1d numerical so1ut10ns.,

A computer program was deve]oped to show the appl1cab111ty f

. of the theory | Programs have also been developed to so]ve the post

buck11ng behav1or of beam co]umns The solut1ons for ‘beam-column

' prob]ems carrled out here1n have - been obta!ned by this technique and, '
‘ therefore a detalled discuss1on of these programs is" g1ven in Chapter} C

3

e



2 CHAPTER 3
| 3
. AN INELASTIC LARGE- DEFLECTION FINITE ELEMENT TECHNIQUE
FOR BEAM COLUMN TYPE PROBLEMS

\

3.1, Background to Finite Element Fonmulation

Epstein and Murray (3) have developed a finite eJement, k
fonmulation in order to obtain numerical solutions for non- linear
_ inelastic 1n plane beam column problems Reference (4) contains three .

programs and the theory ‘on which these programs are based

| ' The. methods of Chapter’Z are based upon the approximations

required.to derive'a'second order-differential eauation However,
i.Reference (4)uses an’ exact expre551on for the curvature This theory |
has been developed td’solVe problems of very large deflections in

rthe post buckling region and 1n thlS sense 1s more elaborate than

'required to determine maximum load carrying capacity Use is made of a i
- Newton Raphson procedure combined with an 1ncremental loading technique |
‘on a set of total Lagrangian equations 1n solv1ng the problems Since )
a large deformat1on theory should include large r1gid‘body motions

as a special case, products of- small-é?rms have been retalned 50 that o

.» i an ObJeCthE set of equations is: obtained ThlS chapter contains a

"~,summary of Epstein s formulation (3) and the resulting programs 'The -

R ( h

.1basic assumptions made are.ff- - _J ;": fu Jj 'f_f" o L_' a bu/7
o The X,z plane (Figure 3. l) 1s a plane of symmetry .

of the beam and of the external loang (The z axis :gr

@

o contains the axis pf the beam before defmnation )
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2%

~§s~‘2.l Nonnaivsettions remain-plane,'undistofted,and
- normal fp the axis. of the beam after deformation.
Refefriﬁg to Figure 3.1, the position vector‘bf~a point on
the'axis of the beam before deformation is given by '

r= zk ' . | )

. and for the same point after defohmation -
‘ e

YE=rev. o S (3.2)

: o \
‘in»which displacement vector V can be written in component form asJ_

voEuG bwk . O (3.3)

p | ' o , o
where i and k represent unit vectors in the coordinate directions.
The natuf}l . base vector along the deformed-axis is given by -

i I R

g 9= gp s (P +wik +uhi . | - (3.4)

B - . ) f;.}'}.v'i,"i : ‘ o
where symbolz()" and (") are used to denote z-derivatives and =
magnitude after deformation, respectively. The unit normal vector . -

~after de?bnmation'is~“' . | L o
N Wk (Ot w) N €71 I

N (1+')2 +u'2
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The Green strain measur- of the axis is given by
R AV R T

s

Substituting Equation 3.6 into Equétion‘3.5, N is expressed as

& . .
.N - eu'k + (1 + w')i 3 ' (3.7)

iConsiderihg displacementé of points not originally on the axis of

beam in order to construct the two dimensioné] strain tensor (the
third diménsion, y being‘irfe]evant),‘and using N to denote the unit
“normal véctor before deformation (N=i), the position vectof of a point

in,the plaﬁe of symmetry x,z is'given before defprmation by
CR=r+x N (3.8)

“In. the vfew of assumption 2, the same point is identified after

AN

defdnnation by the position vector
R=r+x N o . (3:9)

:uThé components of Green's strain tensor are given by the matrix eqhafiqn
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R dR dRdR

: ‘ dZ. " .dZ dZ = dx

[a = -;_ ~ AA ~ ~ -
dR _ dR dR  dR
dx dZ dx dx_

The vector derivatives appearing in Equétion 3.70 are

evaluated as

}

dR 2 .
a_;_N . (3&]])
dR_dr, dN_o, di

| dz dz a9t X4q; - (3.12)

L]

A

where g is given by Equation 3.4 and g% is a . vector tangent to .

the axis after déformation and expressible, thereforé, as

dN T

_d__z_= _¢g -]3)

_ The scalar ¢ is a measure of fhe'cqfvature of the defofﬁedJ
axis and it 1dent1fiés"with the "physical” curvature (i.e. [¢] = Igg{, |
where s measures length along the curve). '

Substituting-Equation 3.13 into Equation 3.12

R o o o
@14 o e
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‘ Us1nngquatjons‘3.11 and 3.14 yields Green's strain tensor as -

j;defihed-in_quation_3.TO i

| T

‘ 2,—.1 _ 1 _
{(1-¢x).(e + 2) ;2}.,‘ 0

[e] = (3.15)

0 = 0

L : ]

. since all but the first component of the strain tensor

vanish, as a direct consequence of the above hypothese®, € is used to

- denote non vanishing component of [€].

3.2 Variational Equilibrium Equations
The internal virtﬁal.york (IVW) is obtained by integrating
.the f011ow1ng-integral-extendeﬁ over the"vb]ume of the beam.after

deformation. N » ' k\
' o | L,
e N
“INW =S [o 6 edAde
. ; A

(3.16) .
~ Here g is the stresS'cpmponeht,cprresponding to ¢, L is
" the lengtnh of the axis after defpfmation and A is the ;rea‘of the cross
section of the beam. | | | n

Since  and ¢ are independent, the variation 8t is pbtaihed'._

"~

from Equation 3.15 as

20 (EF P s (D)




'Def?ning,;'mbdifiéq,¢urgatﬁré“a§.: o
xEé@éfﬁf‘i”: t,‘_-  f  i' Qﬂm 
:‘;it cén bé:séeh:thatlfof:$ﬁa11uétféins.$;fgﬁﬁcés tbf¢.i §Ubs£ffutfh§
' the;yaria;ign &6 fh§m.Edg§tjoq.3;]§. iﬁtQiéﬁuéfion 3}1?;

) Ei= ((1-¢x) + ¢X(]r¢x)) ) Eﬁ- x(1-¢x) 66' (3.19) -

Substituting Equation 3.19 into Equation 3.16 and defining stress

resultants as
N eAJ o(1-¢x)dA | o o (3.20)

M* = - f o(1-¢x) xdA - (3.21)
- A '

.’Equatioh 3.16 can bé written as

:

IVW = S {N%GE + MA(sF - 6@} b (3.22)
2 . . . . .

Introduce modified viriables;hefined as -

F , ,
N= 2N . (3.23)

o= §, - (3.24)

e .

intanQuation 3.22 to avoid the‘fdllowingttwo incdnveniencgs.'



3
1. Integration extends over the defonmed axis, and

: ZQ.f ¢ and ¢ are not rationa] functions of* displacements

'\a '\a ‘ ’
Again. for smal] strains N and ¢ reduce to N* and 'y

respectiveiy Define another variable
N | RS
N=N-2 o* Me (3.25)

‘ where . o : v *\)f ’
. ) s . ‘ o :
=& - foen o .  (3.26)

2et] IR : : _ ‘

Introducing these-modi fied variables expressed by Equation 3. 23 to .
Equation 3. 25. Equation 3.22 can be written as |

IR T VR -
IVW = J (N ée + M* §¢)dz" “(3.27)

" We can note the fallowing about Equation 3.27:

1. It is-exaet, in the sense that it contains no -
approximations whatsoever concerning the magnitude

_ of dispiacements or strains. It is equiva]ent to |
the exact three dimen51onal interna] virtual work

‘ expreSsion. provided the two basic assumptions of

the beam theory are valid.
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N . Integration extends _over the origina] configuration

‘ ' iof the beam axis.
‘;3;_; ,A]] the strain variables appearing explicit]y in ‘
Equation 3.26 are rational expressions in the dis-

placements u and w and their derivatives

Two types of loads are considered:

1. A force per unit undeformed iengtn of axis.
feafoksf i . - (3.28)

2. A force per unit deformed ]ength and acting

' normally to the axis after deformation

p=pN (3.29)
. where P is an externai force and pis its magnitude The total
| force per unit undeformed iength is then ' '

o.=‘J(2e+l) PN+ fsk.+ fnit‘. :' L (3.3Q)

o
q= .(fs-pu"b).k«'-'n (f;.*p(:].ﬁ,")')_i. _' o _(3.31.)'

or,AaccOILing to Equations 3.5 and 3.7, Equation 3.30 can.be written;as

«
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.The external virtualiwork (EVH)E_gorrasponding to the_two-type§ of

extennal.]oadS'discusséd above, is given by
EVW =/ q § vdz
L
= J {(f -pu')om +(f +p(1+w'))éuldz (3.32)

The totai variational equilibrium equation is obtained upon excluding
the end forces, by equating the right hand sides of Equations 3.27 and
3 32, so that '
& S
n _ N . ' ' ' : :
SN Se + M*8p - (f -pu')ow-(f -p(1+w'))6u}dz=0

o (3.33) -
*«, S
. Substituting
(3.8
.. and - ‘
- $muw) - (33

into Equation 3.33 and integrating by parts, we obtain



the Euler equétions~correspondin§ to Eqdetion 3.33 as well as the
naturalfboundary,conditions. The resuiting differehtia] equations of
‘equilibrium are - | -
) o
'\‘ . .. . . -
IV (1)t + [MRtDY 4 [MRu]Y o+ foput = 0 (3.36)
N S o - o
[N Dt M ()] 2 [t - L eR(TY) = 0

»:’ (3f37)

| §33 'Discretiiation

- A set of a]gebraic equat1ons is obta1ned by d1v1d1ng

- the beam a»is into elements and allowing the d1sp1acements in each

‘element to belong to a finite parameter family of funct1ons

_ Third: degree oolynomia]s are used~%d define the d1sp1acement
functions for the given degrees of freedom a§ shoun in Figure 3. 2. The

basis functions are express@d.as

f].=-2c B . | | - (3.38)
R R S T S N R £ X )
"f§.="-_2g3i# 3¢8 e R . - (3.40)
fe@-dmg o Ga
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in which ¢ is a non-dimensfona] coor#inate which varies from zero
at the left end to 1 at the right end;of each_e]ement,_énd whefe

_hy is the length of the element number I. The coefficieﬁt§ of thése'
fuqctions in the iinea; combinaffbn are the disp]acemehts and their
first derivatives at the ends of the element. The'hodal.digpiacementg

U; and W' and their derivatives U'; and H‘I are shown in Figure 3.3.

There are four degrees of freedom At‘each node.in-the
elemeni'dénotéd by U, W, U' and W'. "Makihg.usevof‘Equations 3.38
“to 3.41, ghe'fo}lowing expressidns are obtained for the displacements |
within thethh'élement 5nd~for their first and seﬁond deriVatiQes in =
terms of the notation shown in Figure 3.3

u= UZ(I-I) +j fj w = H2(141)_+ j,fj

 "v u' =3U2(I-])+ j f]j- yI;‘ yz(l-])* Jvflj (3.,2)

uu UZ(I_])+ J f”j w“'g u2(1-1)+ j,f"j

Here jisa sumhationxindexvhaving thg range 1 to 4. The strain;

- N o
variation e and ¢ and their first variations then become

Tty ] (M (121)+5%2(1-1) 4k

* Ua(1-1)+j "2(191)+k)ff';f'k © (3.43)
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e | 1o gn : o
6= Uprranng ! M0 T Vet e

g pm - o Gy

3k

68 = My(p)egt 5 Ma(1-1)05%¥2(1-1)0c ¥ Y2(1-1) 4
T fl fl » | bkv k *
. 5”2(;a1)tk) e . \,(3.45)
8¢ = + N ' . en
AL TO R DIV IR 5“2(1-1)+j‘f j

+ Uy 11)e5 S¥a(1- 1)+kf"jf K

" Wa(1-1)+y SR(1-1)4k 502(1_1)73)’ " _(3'-.45)  |

and the internal virtual work is evaluated as

R . N R
VW =/ (N 68 +Ms¥)dz =% h, £ (N&e
A | O
o N
+ u*§¢)1-dc‘- g“l.h {n** '”"2(1 l)+j

W (1 )eg Sa(r-)ek * Y2(1-1)+g S2(1-1))
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+ 011k Va1-1)eg * V(ron)eg Mot
A i _.gmkj)} R (3.47)

in which the following notation is introduced,

N | | -
’N**j =of N f'_:;,.d; | ‘ . A (3.48)
Nt** = f ?{?,f' f' . dc (3.49)
[ itk '
Mrxs = £ Mefgdg o o (3:50)
.0 ' . - ’
B PR R R N < N DR

'_dependence on I being understood

_ The external v1rtual work (assum1ng dead load forces and moments are

- concgntrated at the nodes on]y), is given by
S - ‘ o
- |

EVH.— :E)'O{ZJGNzJﬂ*P xJGUZJﬂ + MJ[('I + H2J+2) <SU J+2, ,

- “2J+2“"za‘+2]} - (3.82)
in which XJ. Z; and ﬁJ are transverse force, axial force and'mbhenﬁ;

“at node J..

lThe”equilibrium.eQuations'associatéd‘with'Equationstq;AB to
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'3.52 are obtained by assuning .seQuentiaiTy that all but one of the
var’iati‘o'ns‘.vanish. Thus, for- instance. assume that the only non- .
vanishing variation s 6 = & SUp 4p+ In.Equation 3.47 all the indices

affecting GU are of the form Z(I 1)+j the only. possibility for a term _

containing 6“2(1 1)+ not to vanish is. that
2L = 2L+ 1 AR (3.53)

Aor, solving for I,

t “
!

1=1 -3 o j»;:--‘ N i . (3.58)

Since j is a positive integer not greater ‘than 4, it must necessari'ly
be either 1 or 3. resulting respectively inlI=1L +1 and I There-v‘
fore, for each non vanishing variation considered. there are in ge:”
only two surviving contributors to the overall sumnation of Equation
3. 47. name‘ly those corresponding to the e'lements adjacent to the node

' con_s.i.dered On'ly one element contributes to the sunmation when first

. and]ast nodes 3"?1 conSidered. The equilibrium equations are

hy. K+z["**zx i* N g 2K-1) “z(a x+1)+3 + I"zr(a Ke1 )+ (22

Y
0 .

S

K]

- "***j(zx-i))l'i X (3'55)
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2

%ﬂemﬂmﬁx J@n”ﬁdmnﬂ*”ﬂrwﬂﬂm (I
) o
ﬁei“j-x+zL"'*2k-i’ (2K~l)“2(0 K+1)+J + U0 K+l)*J(" J(2K~l)
- M***(éK 1).))] (357)
-

KIJKJMQKW*i&ﬂ“ﬂdmﬂ+uﬁdmﬂﬁm Hdm*"”ﬁun”-
ﬁ 0, | — ’} ! \
Moz o [ (3:58)
'~‘~where J - 0,1.2,.. |
A boundary ccmdition of displacement results in the
'_ impossibility of assuming a non-vanishing variation for tﬂe particular

. LdiSplacement prescribed The corresponding equi'libriun equation must '

S therepfﬁre be dropped and substituted. by the spedfled Y‘“‘" of the -

unknown These conditions do not necessarily have to be ;mposed at

tne'ends They can be specified at any nodal point, - allming the

e

olution of a continuous beam ‘ o - o

| Due to the particular choice of stress and esiein ‘measures

| ~in the analytital fonnulation, the resulting discrete eqéilibrimi

- ,equations (for the case of a linearly elastic material) pre cublic. poly- :
nomials in the nodal displacements and their first z-deriVatiVes |
JhewNewton-Raphson procedure is adopﬁed to solve the set of equati:ms ‘,
..(Equati-ons,,a._ss to 3.58). The Jacobian matrix is calcul:nted in uhich

: . . .
T A ~ -



"the elements are derivatives of ‘the equilibrium equations with respect
tq the unknowns. This matrix results in a band matrix of width 12.

It is partitioned into submatrices of 4x4 which are arranged:, in a tri-
idiagonal manner. Potter s technique (20) is used at each step to solve

the set of linear equations

3.4 Computer Programs

Three different computer programs have been dﬁveloped on
the basis of the theory explained’ aboye. They are referred”to as ELAST;
PLAST and PLAST1 and their scope is as follows:
v (al ' ELASTVdeals with the linearly elastic case.
(b)  PLAST deals with an ideally elasto-plastic-material.
| : Plasticity effects as such :hoWever. are not '
o jaccounted for' The cross sectional shape may be
_ “§ : :fi;": ; - a combination of three arbitrary rectangles, that -
o l-' | is. an>unsymmetrical . S ’_ A
' :ic)} PLASTl deals with a. tri-linear"elastic"material
: iInitial (residual) stresses are included but the shape;':
A-fhas to be & symmetric .
. Double precision Js used and all the programs include an'
automatic recording of the present step and the last converged solution “*
for added flexibility in. restarting the iterative process A more -

%

detailed description follows
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w%.l .. Program ELAST
" The program ELAST has the following limitations.
~_l,v‘. A constant~element.length is assumed.
.72. . Constraints on degrees ot'freedom may be imposed
at any node, but elastic supports‘are ruled. out.
3. ”'Loads (forces and moments) are,assumed concentrated
,;at thé nodes. a
; ;For'details'of'data preparation, Reference (4) should be
consulted ’ Two types of output are generated by the program, viz.,
printed and permanent disk files The printed output consists of -
1ntennediate results (with no explanatory headings) and final results
'.(displacements,_forces-and co ordinates). The output on disk is
intended to allow for the restarting of the iteration process. The
‘~laStytrial’vector.isvaluays stored in file l5-(erasing the previous
'A.veCtor),'iIt is also\convenienthto have at hand_the last conveérged
' soluti:h"'lhis may bezaccomplished by'specifying NFlslv(see a descrip-_
_tion of data preparation in Appendix D) which will cause the program

‘to write the solutfon on file 16 only if convergence is achieved

- 3.4.2 f Pr;gram PLAST

The equations -of - equilibrium are the same as for ELAST,

.but yielding effects imply the existence of an upper bound For the

 external load, an lugmented ‘structure technique (23) on this load _“
. carrying capacity is used.’ For post-buckling behavior, the augmentatiqn
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has been realized. only by means of linear horizontal. vertical and
angular springs at the Tast node (right end) of the beam. The
limitations on other procedures, including output aré the same as
for ELAST except that only the degree of freedom associated with

the last node can be elastically supported

3.4.3 Program PLAST1

PLASIl is a generalisation of PLAST in two respects: -
(a) . It considers a trilinear constitutive equation,
} .and ) . . .
‘;(h)’” It allous forémhe inclusionfof initial stresses
(linearly:distributed along the flanges and .
lcOnstant on the ueb):' ‘ | '
SURIY assumed that the walls ‘are thin enough so that '

[stresses can. be conSidered constant through the thickness and’ the

integration of stresses over the cross section is not complicated.~

' AnalySis of swnmetric 1 sections only is allowed The limitations are

the same as in PLAST but final results in the output Will 1ncIude 0 e

".positions where changes in modulus of elasticity occur (in several

sections along each element) _'d_V o 2»

_ The integrals appearing 1n the equilibrium equations are
evaluated numerically with the use of Simpson s rule over the length o
of element Elements of the Jacobian matrix are evaluated by numerical

differentiation L

’ . Moo '



. 43

3.5 Modifications touPrograms

To achieve a generalisation to other shapes with ‘

consideration. of a trilinear constitutive equation and inclusion of

initial stresses, the program PLAST1 has been modified by the author.

The flow chart is essentially the same as that in_ Epstein and Murray S

report (4)

3.5.1

‘~(b)lt

i I section has been calculated from the equilibrium SR

>Modification h?ﬁibeenrmade.to the

1. MAIN -

2.

3.

FoRMOM T,

ing subroutines.

ABCG

| Modification to muu
:.MAIN has been modified such that:. ":
)

”'angular springs can be used at any node in the ‘

Combinations of linear horizontal.,vertical and

'r'entire beam

A residual (initial) stress pattegp for unsymmetric

'considerations The stress on the top and bottom

e fof the web and in the narrow flange are detenmiHEd

v“ffrom the given initial compressive stress at-the top

o _lfof the wide flange Initial stresses are assumed '
';':constant on the narrow flange and linearly varying .:f
f'along web and the wide flange as shown 4n Figure 4'2..
'Tﬂe detailed calculation of the stress distribution .
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is indicated in Appendix A. This pattern of
. - . iy . :
residual stresses is intended to simulate those

arising in a hat section.

\The centre of -gravity of an equivalent unsymmetrical I-
section used t0"simu1ate'a hat'shaped section, is‘aiso ca]culated by _
the program ~the program reads all data; including the initial trial
'vector of dispiacement which is given’ either on file 15 or file 16.
“Qutput has been modified so that the program prints all initial and
final yielding values for both of the flanges and the web.

3.5.2  Modifications to ABCG

. . Subroutine ABCG evaiuates the non;vanishing band (width =
'12) of the Jacobian matrix by means of DNMP, as well as the right
fhand Side, by means of NMP for use. in the Newton -Raphson procedure
Thus subroutine ABCG formuiates equilibrium equations and its -
" derivatives It has been modified such that augmenting springs can
‘-fbe appiied at any nodes to get the descending part of load- deflection‘.'
, curve wi thout a]tering the band character of Jacobian matrix. The
' '!band of the Jacobian matrix is subdivided into a tridiagona] partiticn 21‘_
“.of 4x4 submatrices for use in POTRS - Force and moment vectors are |

‘haiso modified since spring stiffnesses have been app]ied

‘53 Modifications to FORH)M

Subroutine FORMOM has the function of ca]culating the axial

‘force and bending moment stress resultants from the given two measures o

-
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of Strain ( e and ¢ ) for the giuen symmetric I-section and for a
given trilinear constitutive equation. It is modified such that it
calculates the axial force and bending moment stress resuitants for

a given equivalent unsymmetric I-section. | R o ' y

The stress and strain diagram and the system of co-
.ordinates are eXact]y the same as indicated .in Reference,4; ‘The
technique of computing distances_to the initiation of yielding in

the web (y.values) hasteen changed because the residual stress is no
longer constant in the web but varies from compression'at the too

to tension at bottom‘ Derivetions are shown'in Appendix’B With

these modified va]ues of v, values .of axial force and moment stress

. resultant are computed Once this subroutine was tested and modified ..
it was attached to the nain program MAIN with al] its subroutines S
is stored in object form in a. permanent fi]e calied NLHAT The functioni.

of -each subroutine is described in Reference 4



CHAPTER 4

-

ILLUSTRATIVE APPLICATIONS OF PROGRAMS

4.1 Testing of Program ELAST

“In order to verify the-capabi]ftfes of the programs
developed by Epstein and Murray (4) to-predict the behavior of beam-
columns, the programs have been used to solve problems whose solutions

are a]ready known.

The first prob]em chosen to ver1fy the programs is

.the elastica (21), shown in Figure 3.1, wh1ch 1nvo]ves the elast1c
- post buckling behavior of a simply supported beam-column. A sma]]
»transverse load was added 1n add!tion to ‘the axial compress1ve force
er to act as an initia] 1mperfection | Resu]ts s0 obtained are tabu]ated

in Tab]e 4 1 where they are compared with the e]astica solution (22)

"*'The p]ot of Figure 4. 1 shows good agreement between these two sets 'f* o

"method of data preparation is descr1bed in Reference 4. |

1;7estab1ished j}, '.f{ o R

, -of results 1n the post buck]ing region The number of elements used

 was four for one half of the co]umn tak!ng account of syﬂmetry ”Theh o

b
..-‘

The solut1on to this probIem by program ELAST was obtatned

| by Epstein and Murray 1n Reference 4 It 15 repeated here to demonstrateip':
'-the capabi]ity of the program to hand]e very large geometric non- 3 -
r‘;]inearities., ance the geometric fonmu]ation is identical for al]
_:programs contained in Reference 4, the capabilitfes of the programs

- PLAST and PLASTI to represent simt}ar types of deformatiqn have-been A-;:.
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4.2 Testing of Program PLAST

Use of program PLAST is made herein to analyse for plastic |
post buckling behaVior The solution for'a W 8x3l simply supported
beam of 210" span, subJected to theaaction of a constant transverse' v
load Q at mid span,iand“to a:varying uniform compressive force_P; is
shown in Figure 4. 2 A sketch of-the’model; taking account of
symmetry, is also shown in this figure. The.points:plotted'are
t;bulated in Table 4.2. The transverse load Q was. taken as 34l3-lbs, .
S0 as’ to simulate an initial 1mperfectionaof 0.2". The boundary S
conditions at the left end are’ u=w=o, and at the right end u'=0. u

and w are the vertical and horizontal deflections in the beam, respectively

- and u' s the slope at. the end of - the beam

N

--The half beam waS'divided»into four'finite elements ‘
:The yield strain was assumed to. be 0 lZ% and ;he modulus of elasticity |
‘._to be 30 x10 | pSl.-. o C ‘ o

For the first trial an initial vector of zero is assumed
w1th a compressive load of\200 000 lbs It can be seen frun Figure ;'
i4 2 that this load s qu1te close ta the carrying capacity of the member
. Since no plastic penetration 1is present, convergence was achieved very .
:rapidly Since yielding effects imply the existence of an upper bound i
- for the. exteroal load an. augmented structure technique (23) is used:
Augmentation is realized by means of an application of springs in- the

Abeam column Hence for the second load step a horizontal spring with

~.‘4a stiffness of 5 X l0 lb/in was added .which corresponds to roughly

jdouble the stiffness of the beam in that direction . The spring stiffness

~
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is doubled to achieve more rapid convergence and a smooth load

deflection curve. This means that jthe tota]sstiffness is approx-

imately three times the stiffness of the member-and a force of 600, 000 1bs
shou]d be applied to maintain the augmented structure in its equilibrium
configuration As the load is increased more and more of the |
increment goes into ‘the spring until net force in the original structure
diminishes The tota] load and net Toad are shown in Table 4.2 as

~well as in Figure 4.2. If a very high load is adopted,.the computer"”t
time 1imit may be exceeded, with the intermediate reSu]ts'showing'a_.

divergent behavior. This indicates that the Toad step is too large,

and a sma]ler step has to be’ adopted

Since the contents of fiTe‘TS represent'the Tast trial S
ii Vector, NF = 2 TS’SPECTfled for the subsequent run. This wiiiicause i
\73the program to take the last converged so]ution as the—first trial . |
'-vector Convergence may then be aohievéd at a smal]er load step The-»
. diogical thing in uSing this program is'to give a very sma]] increase |

in load steps when plastic effects are about to begin in the section .

_ : The computer time for convergence is reiative]y high when
:-the Toad is either at the maximum of the ]oad deflection curve or

when the structure has pafsed its maximum carrying capacity This occurs'

~.'because it requires a greater number of cyc]es for convergence. The .

fp]astic penetration is very deep and is a maximum at the Tast equilibrium 'f

POSitiOﬂ of this example,affecting more than 70% of the beam depth as

Yoo

»ShQEE)in Tab]e 4. 2
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This example problem for program PLAST .is that used
by Epstein in Reference 4. It i]lustrates the technique of applying
springs to augment the stiffness of the structure in the descending
region of the load deflection curve, in order to maintain a positive
stiffness of the augmented structure. The presence of initial
: stresses smoothes the peak of the moment rotation curve. Also,
the strain-hardening phenomenon has its effect on slowing down deform-

ations past, the maximum load.

4.3 Testing.of Program PLAST]
The end rotation for the solution of a beam co1umn problem
-'w1th constant ax1a1 load and increas1ng end moment is tabulated in
Tab]e 4 3 and plotted in Figure 4 3. The residual stress patterns

that of Figure A. 1 w1th o of 9900 psf ( 3oy ) " The geometr1c ‘and.

- re

’r }loading condltIOns are i]lustrated in the sketch 1n Figure 4 3. In

.'this problem 9, = 33 kst and it is assumed that at a strain of 0.24%

".'the strain hardening process beg1ns with a modu]us of 6 x 106 psi.
0rd1nates of po1nts where changes 1n e]asticity occur are also
‘obtained in the computer output The maximum point on this curve
corresponds to the highest end moment which this co]unm can support,v

| athus givtng the point on the 1nteraction curve, of Figure 4 4 w1th
:p- 0.8 and .[- 40 Twelve such points, that define the maxwmum _

| .strength for var1ous ‘values of -and p-have been obtained and are |

y ,
. plotted in Figure 4.4. Points so obtained have been compared with the
\\tu:ves of Galambos and Ketter (6}, shown by the so]id ]ines in Figure ‘

-
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4.4, which include the effect of residual stresses. The points

used for Galambos and Ketter's curves are tabulated in Table 4.4 and
é numericai comparison is given'in Table 4.5. These results differ by
from 0 to.8%’from those of Galambos and Ketter.and indicate that

PLASTi gives re]iabie_results'for.beam columns.

.......

.‘-.,

| obtain the program Nlﬂﬁ‘ﬂ It is difficu]t to obtain soiutions in
the literature for the verificatéon of NLHAT since little attention
has been devoted to the ine]astic instabiiity anaiys1s of unsymmetric
sections However. the modifications are- essentially concerned with Y
the pattérn of}residual;stress_and the support conditions:and therefore
~ -the fundamentalicapabiiities of PLASii have been retained The abi]ity
'of NLHAT to predict the behavior of an unsynmetric section can be ‘
,._verified.by~testing forlthe p]astification of'thevcrossfsection under -
the action.of:combined axial load and moment,»since;the.conditions for
complete‘p]aStification can be predicted:bv hand c%mputation " Therefore,
"~ moment. curvature curves were obtained from the program for a very short

‘segment of the section and the fui]y plastic conditions from these e

o resuits were compared with those obtained by hand computation

The moment curvature response for a segment of a C type
chord section. with F 33000,psi and’ o 9900 psi is shown in-

_Figure 4,5 for.various ratios of %—,.:tln'order to simulate this section, .
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~the unsymmetric I - section shown in Figure 1. 3 was used Section
properties of the simulated section and the chord section are given

in Table 1.1.  1In deriving the dimen51ons of the simulated section
" the objective was to approximate the area and the moment of inertia
as closely as possible The length of the segnent used in the
""computer analysis was: 2 inches and therefore the plots in Figure 4 5
a.tually apply to a hat section column w1th L—= 4 8 Note that two
- moment curvature curves are obtained for each fixed value of P one f
E for moment subjecting the wide flange to compressive stress (Table .
.4 6) and the other for moment subJecting the narrow flange to

| compressive stress (Table_4.7) The fully plastic moments, for the |
various values of %e-; obtained from the max imui moments on the - =«

Yy
- noment-curvature curves of Figure 4 5 are tabulated (for = 0) in.

. ,Table 4. 8 and plotted as the two solid interaction curves in Figure

3. 6 (Moments producing compreSSion on the narrow flange are conSidered

'Tfp051tive ahd those producing compreSSion on the wide flange are

g con51dered negative ) Hand computations for the fully plastic inter-"t‘
action curVes of this Section are carried out in Appendix C and plotted
g:as the two dashed interaction curves in Figure 4 6 A comparison of .

| these curves indicates that the finite element program underestimates
the'stress\resultants required to produte fully plastic conditions for T_
| lboth signs of moment the maximum error in s—-being about 10%. This
t'_-'_-indicates that - instability loads predicted b; the: finite element |

'iftechnique may be conSidered conservative e -

‘ .-For‘another comparison of the fully plastic interaction .
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curves, the curve for a symmetric 8WF3! section, as ~p1otted by o
" Galambos' and Ketter (6) is also shown in'Figure'4 6. It shoold'be
noted that both the fﬁnwte e]ement and hand computed 1nteraction
curves for the hat section straddle that for the synmetric section.
S1nce‘Ga1ambos and Ketter' s curves (6) are based on. the behavior
;‘of an 8WF31, h1s 1nd1cates that their curves are not conservative '
- foreunsymmetric sect1onsg if the app!ied 1oadsxproduce compression
odonvthe narroh flange. Thfslis'demonstrated below for tno different
%_ ra‘tjos' : : | | | .
| Sta5111ty analySIS, as described in Section 4 3, were ':'
Acarried out fdr the swmulated hat sect1on for F—ratios of 40 and 120.
.3The results of these ana1yses are tabu]ated in Table 4.8 and p1otted

'””as the solid lines in Figure 4. 7. f,ﬂ"A”"Q L

Galambos and Ketter s curves (6) are - a]so plotted in .;’7' .
Figure 4.7 for the same slenderness ratios These resu1ts 1ndicate
that the moment capacwty of th1s hat section mey be over estimated i

by as much as 35%, for»—-= 40. byuthe curves based on;symmetriC'sections{“i

-

Interaction curves for unsymmetric sections mey be
conveniently displayed as shown 1n Figure 4 8 where the lack of
| snmnetry due to the sign of the momegiigs apparent “The va]ues plotted
in Figure 4 8 come from a series of analyses which are tabu]ated 1n‘-

Tables 4.9 and 4. 10,

1



CHAPTER 5

A STUDY OF TOP CHORD BUCKLING OF JOISTS

5.1 Description of Experimental Project =~ .
: - : o T

i

Matiisen (14) has inveS%igated the effect of joist
_eccentricity on the behavior of joints by performing tests on a
series of joists.. He derived the following conclusions:

e~ . The primary effect of joint eccentricity is to

o
)

induce momént in the chord.
2. 'Thésa_mpménts;.in iﬁ; elastic rangé, can'Se
predictedeifhfgood‘aééuf;cy~by-mode11fh§ tﬁg
‘ [fleﬁﬁoiSt as a'fraﬁe... ‘ | L
. ‘fﬁinihiSvtest‘sefiég fivg;of the seven 56ists failed Hﬁé
‘! to. top chord.jnsyab?jity, Tholqﬁ?thgse‘ffve”hgq é'iypé of‘jo{nt}
.ﬂlaﬁiCh'transfe;fed 1fttieﬂmpﬁeht ;ﬁfofﬁhé éhﬁhd.;;Thé Ebhafhiﬁd‘tﬁrée”"d” o
- had Sttjhe‘pfrigid,weidéd'&pﬁne;tion thgﬁﬁﬁég.éaﬁéb}e‘ofﬁtfahsfé}ring“,.3_
éubgiénii;ifmo@ehtsQin£o~ih§§chq}ﬂsf:,ihfﬁhééé thfée[jﬁiﬁ;;;Jdégigﬁa;éq' g
as:AXOI,-AXOZfand”AX055 f§i1qfe»Q§$ indqéed;in-p tdp_chg%d mémber‘lr L
"Whichfdid;nptihaVe tﬁ¢ maximMm a;iai_?orcg, Tﬁus,¥3f71;'apﬁafeht.that'f
. the mqments?in‘thélbfitit?l.hemﬁérslhad:§~§ignﬁfﬁc$hft 1hﬁ1uehc€;bnf f” B
"fthéfgehaﬁior'ijfhESe,maMbérs‘zh&*£Ontffﬁpfad ioftbeirf"rjapée}:'ihig RN
" chapter iéicohcérned ﬁjthfgh attgmptxfg*mod€T £hé:érjﬁfésl»ﬁé@béf‘iﬁ‘~':. 
| .5}thes€ jdisfs;as a baamfcqlﬁ@ﬁ;}tb_bhedit}’?he'fﬁiiureﬂliﬁqd'bf thjé_i '
" member 'oh‘fhe:basis,&f:&n analysis of‘i%e-moqei.;qﬁd f8‘@Jbéifé-the-; 1
‘-pfeqfcted chabit} wifh.thé'faiIQré_joadIObserVe!?ih;tﬂéiféifsé'i“' B

83
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‘The top chord momber’of<joists AXO1, AX02 and AX0S, which

-
failed due to inelastic 1nstabi]1ty,.1s shown’ as member 3T in Figure

- 54. The measured dimensions of these JO'IStS are shown in Figures 5.2

: R
and 5.3. Concentrated loads were placed between. top chord pa.nei ‘ k3

.
_points to simulate uniform ioading in JO’iStS AXO] and AX02, whereas _ “

..

in joist AXOS loads werefappiied at the centre of each of the top chord

joints. In addition to testing the :joists material testing and e]astic
L+ 8

p}ane frame stress analyses, which computed joint rotations, disp]ace—

ments, axiai forces and mﬁhnts at the ends of each member, were :
>

'carried out by Matiise‘h- ‘(14) The pertinent results which effect membenu
;3T are tabulated in Tab]es 5 1 and 5.2. The member and ,joint. numbering' . ’

corresponds to that"in Figure 5. 1 S
In JO'IStS AXO1 and AXOZ there are large moments genxated o
in member 3T ‘due to top c'hord loading, chord continuity and joint ‘ ' .
) eccentricity However, the moments in member 3T of joist AXOS are due ' 8,;~
_ primarily to jomt eccentﬂcit_y and continuity effects A sutmiary SR

of the faiiure conditions for these jmsts i\e’ given in Table 5. 3 A.;:l."i;_ :

| Jmsts had C-section” top chords
' The present study attempts to prediet the load at which

B . instabihty failure,occurs by model]ing the critical memberjs as.,

,a? m-columns with approximate boundary conditions, and comparres
o '

£, 1*"iir‘!“iedicteci failure loads wfth those shown in Table SM S L

b ‘5 2 %sg;ption of Modeis, and Boundar_y Conditiﬁ@

i ‘J

s’w" : Menber 37 was at various times. aﬁ'a'lysed vnth thrbe
A 4
differeqt 'kinds of boundary conditions. riame'ly,.force. spring and

diSpl,acement boundary conditions AXOB was ana]ysed under an tfgr*ee ,: N

N . - . L™ L)
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boundary conditions, wnile AXO1l was analysed under spring and force

boundary conditions, and AXO?Hwas analysed under only the force boundary

v

. \"_‘ - N
oA

condition. Force boundary conditions'were'alSo'applied to models
tnat 1ncluded the JOint as 2 part of the member, for all :.he joists
The program used‘fpr the“analysis‘was NLHAT, described in Chapter 3.
The ‘method otdgffa prepaﬂision«and a listing oﬁ‘the program are given '

~ . . 3
.o “ . . . : {

4 o~ 1

,‘“ﬁ-tyyical finite element model of a top chord member

1"'-./(-.

. withfhiel ts. as idealized herein, is shown in Figure 5.4.

C -

length of, Qhe member between panel point joints is denoted by . :{f

RV .pul .

: P
‘a Joint is included in the model ”fhe lengthaof this JOlnt is denoted

by EJ . Loads on the model may conSist of the axial force (shown as P),

“loads applied at the panel point Joint (shown as: XJ, Zj and MJ). and‘.

sets of interior loads (shown as Xl, Zi and Mi)

[

| ‘f A sunmary of the geometric dimensions. the Joint loads.

~ and the interior loads which are applicable to the six models used

herein. is given in Table 5. 4 Unfortunately. the program required a

L

model with elements of equal length The number of elements was chosen o

to obtain the jOint loads as. close as !hssible to a nbdal point For o

B
those models whichbinclude the joist joint, ald has been appended to
the Joist designation§_ For interior loadsr the loads were replaced

by statically equivi*!ht forces at the two joints which straddled the

actual pOlnt of application of g%e load on the 101st These statically }

equivalent loads: are also shown in Table 5 4 The technique of obtaining

joint loads will be nnge fully discussed in subsequent sections L

< 1
»“ . . . .1‘\". _4'_.‘“
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. The joint boundary condition may.'in general be'
represented by a combination/of an external nmment an angular spring
and an imposed angular rotatiOn, as shown at ond A of Figure 5 4 A

'_f ce boundary condition may be represented by kA =0 and specifying(§

‘a non zero value for MA A disp-acement boundary condition may bees
}represented by setting kA = o and specifying aA A spring boundary,avi £[
condition may be represented by setting eA =0, and speCifying the
appropriate values of kA and MA The bounéary conditions at end B
are similar, except that,displacement in the axial direction is not
: restrained and the axial load P is applied at this Joint. Nhen
'necessary for numerical purposes -a linear horizontal spring is | ;f,
_attached to’ JOlnt g’pnd the. ‘et axial force applied to the member is ’“

5then P minus the spring force as explained in Section 4.2. h L j 'f : ?9:
. L e

<A

A sunmary of the boundary conditions for the. analySes
to be presented subsequently is contained in Table 5. 5 "The symbol
F, S or D has been appended to the model desi tion of Table 5 4 to N

1nd1cate force. spring or diSplacement boundary conditions.resqectively

. The material f%r all models is assumed to, be elastiCxperfeEtly1plastic -:‘~"

C s A S
5.3 An,]ysis of Member 3T for Joist AXDS - L

»

-

| The center line geometry of. this joist is shown inffigure -
',5 3 The length of member 3T is seen to be 22. 96 inches and the length

o of the joint member (between Joints 4 and 5) is seen to be 2 36 inches

i‘;The axial force and joint displacements arisdng from a plane frame - »
' fv_analysis of this Joist. subjected to design loads. are shown n Table 5 l ;

A':_The load displacement plots for the analysis which were run on this |

R :
SR T ,l'
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" member are shown in Figure 5.6. Each of these is described below.

‘A

5.3.1 'Force'Bo'undary‘Condition Analysis'forlAXOS“
| The model of Axos is detailed in Table 5. a. 'A't"d'ésign? - "
" Toad the axial force in the megber is 14730 bs (Table 5.1). Tate 7
5.2 indicates that under design conditions the moments MA and MB" ) ‘
| acting on the member are -2.56 and - llG in kips " The boundary f‘
4 conditions for the_menber are then those sumnarised in Table 5»5 for : i :
‘model AX05 F and-a sketch of the loading condition is shown in Fi*“,‘,
s, 5a). Applying these boundary forces in direct proportion to Ma}
'load. a non- linear load deformation analysis may be carried out. Thé’t. i - ‘
' | result is shown as curve AXOS F in Figure 5. 6 The maximum carry‘ing n“e?‘g

capacity of the member s l 75 times the design load The test value -
-'._-.‘for this. men'ber. indicated in Table 5.3 and Figure 5 6, s - 1.7 Thus,
L good correlation exists between the analysis with force Wary

' conditions and the test value for this- Joist '

A

5.3.2 S . isglacement Bodﬁdary ConditiLn Analysis for AXOS
It can be argued that a force boundary condition on an

- isolated member will underestimate the collapse co«dition for the
",.~-member as’ a part of a frame The bases for this argunent are (a) the

'assumption that the qoments applied to the menber increpse in proportion :

- __,:to the load overestimates these moments 13 yiemng occurs around

~the ends of the menber, and (b) uhen the . initi al menber becomes -

‘ unstable. the end conditions tend to restrain deformations rather than

e
L - E - Lo .



allow free. rotat’ion To, determine the influence of these effects. |
the menber ma_y be analysed by assuming the rotations at the ends of

] the membe'.r increase proportionately with Toad This may be expected,
: “'to produce an upper bound on the capaé’ity of a menber.'whemas the

force boundary Condltl on may be considered to produce a lower bound

' The member end displacement; may be computed from the
‘_'.output of the elastic frame analng&?ble 5 l and a sketch of , |
' defonnations shown in Figure 5. S(b) -The, rotation of the member from-
the chord is obtained by substracting the chord rotation obtained by
v-_dividing the relative vertical displacement of joints 6 and 5 by the
: member length from the absolute rotations of Table 5.1. Detailed
| calculations are contained An Appendix . The resulting rotations, at':i
A _design load are shown as the displacement boundary conditions for o
| 'T'".,model AXD; D in Table 5.5 These rotations may now be increased. in
" y proportion to the axial load. and the resulting behavior of the -
‘member is- shown as curve AXOS D in Figure 5. 6 The meuber has a .:"*-

o considerably higher failure load under these conditions

‘:5_43".3 ' | Ering Boundarz Condition Ana]ysis for AXOS
LRl - v R
T ' It can also be argued thit the web menbers framing into ‘ \

. ‘rf . -
; *‘gg‘ﬁ\t act as restraining angular Springs on the rotation of the !

-chory Ma bet p&del would be yained by consi»dering the top

o choi‘d r to ei"&titally restrained at the ends Analysis of this L

.‘?';b“' ; »k : Sk
tﬁfvas carried out by Qtainim;t!ve stiffness of the angular spring
in the fgllpwing manner_. b -;,( ‘\

3- . "\ ¥
!

_»&;

‘ Bl . .
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~ The elastic moments in. members 4, A4 and 5 framing into I
joint 5 are shown in Table 5.2. If member 34 is considered to act as' 'ﬁﬁ?
‘";”an anguiar spring restraining Joint rotation the spring stiffness
may be obtained by dividing the moment of 2. 205 in-kips in this
i Amember by the net rotation at the end of member 3T (6 058 radians
as shown in Tabie b 5), resulting in a spring stiffness of 367900 in-‘- f
: kips/radian The externai ‘moment to be appiied to this joint is then

~ the moment arising in member 4, nameiy 4.789 in kips These values -

o are shown as the spring boundary condition for AX05:S tn Tabie 5.5.

'-[The conditions at end B are determined in a simi]ar manner A shetch B

'of the modei is shown’ in- Figure 5. 5(c) _
' Increasing the forces in a proportionai manner on the 2

e spring boundary condition modei of member 3T of AXOS resu]ts in the
"‘;"ioad deflection curve denoted as AX0S:S i%igure 5.6. The behavior

1. faTis between that for force and displac . boundary.conditions. 5.

oy v

A S
Py .

5.3 Anal.vsis ofLAXOS !nc]uding Joint Length
- Y S ,
A‘#ina] modei of member 3T in joist AXOS was deveioped by .
| including the ]ength of the Jotnt with the menber 'End A of the member
,fwas considered to. be Joint 4 of Figure 5. 1 and was subJected to the ’
"force boundary condition arising from the sum of the moments in ﬂ' '

- members.S»and'33‘ The boundanvrconditions are shown as those for »\:f

";_AXOSJ in Febie S,ﬁ Jointgs then became node 2 of the finite eiement

'-model and the ioads applied’at this point, shown in Tabie 5.4, represent

i the summation of the components of forces in member 34 and one-half
. ) T L L .
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_ | -the external ,panel point load. A sketch of the model is. shown '
Figure 5.5(d). The load deflection analysis for this model 1 |
‘Shown as - line AXOSJ F in Figure 5. 6 The critical load obtained lilm

this model is at a load factor of l 63 which is 7.9% less than the -

' ~test value of 1.77.

;ome difficulty was. encountered in this model ih obtaining
the unloading part of the load deflection curve The curve is plotted
in more detail in Figure 7. The reason for this behavior is shown
in Figure S. 8 where it s apparent that once the critical Jload has i ‘

* been reached the deflections at the centre.of the member begin to _.,__'.'

'.::decrease,@ecause of large curvatures.developed insthe joint region

| The. 10ad- deflection curve f ff:brizontal‘displacement 6% end B is also

‘ ¥y
-Ishown in Figure 5.6 which indicates an increasing displacement as

: the {bad decreases in the post-buckling region

' B . ' . T
5.3.5 . ‘~Review of'Analysis'for AXOS

RN The numerical values from which Figures 5 6 and §. 7 have
been plotted are given in Tables 5.6, 5.7 and 5.8. The maximum load
factors for each of the four analyses are underlined: in Table 5.8. It

is apparent that analysis AXOS F gives the best results for this memberi

5,4 Analysis of Member 3T for Joist AXOl

The primanr difference in lbading conditions between
jélszihxos and joist AXOl is that the external loads wpre applied ;
directly tb,the top chord in Joist AXOl rather than’ at the joints The:_-.'
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joist geometry is detailed inuFigune's.Z‘and the e]astic resuits ofi
_ the plane frame stress analysis, for loads applied 2.915 and,4:inches
from the centers of joints 5 and 6, respectiyely; are summarized in

Tables 5.1 and 5.2.
»

Thewioadg acting on the modei are shown in Table 5.4.
Since the load adjacent to enﬂ B did not fai] on a nodal point the .
_actuai design. load of 843 1bs was rep]aced by two staticaliy equivalent
nodai ioads determined ‘by the inverse lever ruie as ingisated in Tabie
’5 4. Boundary conditions were hand]ed in\tﬁ'\same way as for. member -
o AXOS as described in Section 5.3, However," sihce~the disp]acement |
boundary conditions give an unreaiisticaiiy high coiiapse load, only

force and spring boundary conditions have been considered

. W . . . .
e - PR
)

v SR Force Boundary C00d1t10" Ana]ysis of AX0

. | The modei of AXO] is detai]ed in Tabie 5 4. A- esign ‘
load the axial force . in the nenber is 14660 lbs (Tabie 5. i) Tab]e

5.2 indicates that under design conditions the moments , "A and. MB acting_'}i

| ‘on the member aqe -.400 and -2. 79 in- kips The design ioad-boundary
'conditions for Yﬁe member- are then- those summartsed in Table 5.5 for
modei AXOI F and a sketch of the ioading condition is shown in Figureli
‘-5 9(a) itipiying these-by a. common load factor a non-iinear load
defonmntion anaiysis may be carried out - The result is shown as curve
' iAXOI :F in Figure ‘5. 10 This result predicts about lix higher capacity
f_than the test resuit indicated in Tabie 5. 3 and Figure 5. 6.».li' '

'\-.
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5.4.2 " Spring Boundary Condition Analygis of AXQ]
The. sprino-stiffness at joints'S_and.G are}obtained in
~i:a similar manner to. those far AXOS Thedexternal moments to be = - -
VVapplied to these Joints are then the moments arising in members 4 and
' 6, namely 2. 604 and 2.973 in- kips These va]ues are shown as the_'
";spr1ng boundary cond1t10ns for AX01: S in Tab]e 5. 5 A sheteh'of

, .the mode] is shown in Figure 5. 9(b)

| Increasing the forces in a proportional manner on the
' -spring boundary condition model results i the load - deflect1on curve‘

: denoted as AXO] S in~Figure 5 10.. As expected this behavior predicts ,5
f: a higher capac1ty than the force boun 'ry ct dition. | |

- 5.4.3 Analysis of AXO] incIuddngggotnt Lenhth

A S1nce both of the above mode]s overestimate the strength

‘ of the member. a model 1nclud1ng ‘the length of joint with the nember,
simi]ar to Qégid. was ana]yzed The boundary conditions are shown asm@-
those for AX01J in Table 5.5. Joint 5 became node 2 of the finite |
element model and the loads app]ied at this point, shown in Tab]e 5.4, ,'
represent the summation of the components of forces 1n member 34 and- one
half. the external pane] point load A sketch of the mode1 1s shown 1n _
:_Figure 5. 9(c) - The IOad deflection analysis for this mode] 1s shown |
.;as curve AXOIJ F in Figure 5.10. Thelmngnmm carrying capacity of the
. member is” l 76 times the design load The test value ‘for this member.

E 1nd1cd§ed in Tab]e 5 3 and Figure 5.10, was 1. 64 Thys. this model over-.
"estimates the capacity of the member to be 7. 3% e

et

- .
" PR C . <
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5.4.4 © Review of Analysis for AXO1"

| The nunerical values’ from which Figure 5.10 have been
plotted are given in Table 5.9. The maximum }oad factors from the
three analyses'are underiined.in Teble‘sié. It is apparentithat none
of’these ana]yses give very good results. All analyses predict'e
higher capac1ty than the test value However. in'contrast to AX0S,

| the ana]ysis including the Joint yiers a better value than that

- excluding the Joint
o

) -

'5,5’_ AnaTy51s of Member 3T for Joist AX02 |

e _ There is practically no difference between Joist AXOT |

n_and Ax02 except that Joist AX02 was fabricated with Targer Joint ‘li,'
eccentricities Externa] Toads were direct]y appTied on the top chord.
The JOist geometry is detailed in Figure 5. 2 and the eTastic results -Q.f
iof the plane frame stress anaTySis, for loads applied 2. 515 and 4 1nches f
- from ‘the’ centres of joints' § and 6 on member 3T, are summarised in
Tab'les 5. T and 5.2, f 33» S

_ ‘ | The ]oads acting on the modeT are shown in Table 5.4. Since

the interior Toads did not fall .on nodal points. the actual design Toad
of 843 Ibs was replaced by two statically equivaTent nodaT loads as
indicated in Table 5 4. Boundary conditions were handTed in the same
way as described in Section 5 f’ However, since dispTacement and
.spring boundary conditionsloverestimate the coTTapse Toad, onTy

“anaTyses for force boundary conditions with and without the inclusion

. 'of the Join‘

. :h, have been considered
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5.5.1 Force Boundary Conditidh'Ana'Iysis‘ of AX02

. The modei of AX02 1is detaiied in Table 5. 4. At design f i“~
ioad the axial force in the member is 14670 1b(Tab1e 5. 1) ‘Table 5. 2 ‘
indicates that under design conditions the moments MA and MB acting
on the member are ~1 784 and -2.969 in- kips The boundary conditions
for the member are then those summarized in Table 5.5 as mode] AX02 F,
and a sketch of the ioading condition, at design ioad is shown in
Figure 5. li(a) Muitiplying these by a common ioad factor a non-_

inear load deformation analyses may be carried out. The result is .
" shown as curve AX02:F in Figure 5 12. The maximum carrying capacity

'of member is 1.69 times the design ioad°' The test vaiue fog

member. was@. 55 Thus, this anaiysis overestimates the me‘h :

capacity

5.5.2 Anaiysis of AX02 Inc'ludi J Joint’ Length 4
L N hd ;’_,

_ _ . The Joint mode] was deveiopedhsimilar to Joist ‘AX01. The
‘boundary cdnditions are shoan as those f0r AXOZJ qn Tab}e 5.5. The
- Joint 1ength is 2.97 inches and the iength of each eiement is assumed.
as 1.5 inches Hence the joint.iength is approximateiy two eiement
elengths, s0, joint 5 becomes node 3 of finite eiement model. The ioads
appiied at this point, shown in Tabie 5. 4. represent the summation of -
| f the components of forces in member 34 and one haif the externai paneii_
f-point load A sketch of the model ‘{s shwn in Figure 5. 11 (b) The.
- load defiection analysis for this mode] is shown as’ cnrve AX02J F in |
'Figgf! 5 iZ &l The maximum carrying capacity of the member is 1 56 3
7.times the design load The test value for this member, indicated in cf‘;,
ca e -.n“'N."f"; LR -

--o.agw

-



65

Table'5'3'and"Figure 5.12 'was 1,86, Thus, very. good correlatiow

| _exists between this analysis with the effect of Joint length and

'the test value for this joist

Bre

;5.5;3".'. Review of Analysis of AX02 L

The numerical values from which Figure 5. lZ has been

plotted. and the load faetors for these analyses, are given in Table ,

+.5.10, It is apparent that analysis AX02J F gives the best result f0r '

.this member.

P

AN

5.6 Effect of Transverse Load Position and Yield Stress Y'V

The influence of the location of the transverse loads -

u.on the member is illustrated for Joist AXOl in Figure 5, l3 fTonAV

2

. l

solutions were obtained . .
(a) With the transverse loads placed & from either end
(b) With the transverSe loads placed 3" from either end.

Force boundary conditions were used (AXOl F of Table 5. 5)

numerical values for the analyses are shown in Table 5.11 and the _ -

ultimate Toad factors are 1. 84 and l 35 for cases (a) and (b),

respectively

o . ' '
o lt is apparent that the positioning of the transverse

: loads on the span has a dramatic effect on the carrying capacity of- the'

' member.

8

The influence of yield stress on the ultimate load factor '

“is illustrated for Joist Ax0l in Fig@re 5. l4 The numerical values

v'O

-



for the anaiyses ahe_tabu]ated in Table 5.11. The analyses

~ were carried out for loads positioned as in ‘case (b) above, and result
o in u]%imate load factors of 1.35 and i~42-for'Fy = 60.3 ksi and J
Fy = 65 ksi,'respectimely. ‘This result indicates that the u]tfmete '
load is also sensitive to the yield stress.

. 5.7 Summary of Top Chord Analyses

A summary of critical load fac;ors for the different
L.

mode1s that have been aha]yzed in this chapter is given in Table §. 12'

where they are compared with the test resu]ts



GHAPTER 6
 SUMMARY, concwswns AND Rscomenmnons IR

" The- app11cation of a set comouter program for the Targe
deformation analys1s of 1nelastic beams has been 1nvestigated for a
variety of prdhlems . The- programs were used to obtain maximum loading |
'cond1tions for N8x31 sections which compare favorably with the 1nter~ ‘
action curve of Ga]ambos and Ketter The 1ne1astic program w1th
'init1a] stresses (PLASTT) has been' modified { to NLHAT). so. that it
is app]icable to unsymﬁetric I sections with a residual stress pattern :
simu]ating that which cou]d occur in a hat section Thqkhat section

has been simulated as an unsyumetric } section and 'interaction curves

| have been generated for this type of section
L

v

| The prog?am MT was then appHed to model& of the o
\ critical member in the top chord of three of the joists in Matiisen s
: ’.'test ser'ies 1n an attempt to determine 1‘f such a mdel'gah proper}y '
| oredi:t the faf]ure cond'ltions of the meuber’.ghcn it is a. part of a B
30%%‘{ framework The models considered the‘:ﬂﬁot of tdngndary condit'lons

o and’ the effect of fhclud'lng the joint length“a’s Mof the menber

. . @‘mtn
6.2 Conc]usions e T e e o
) T SRR T 7 . IR

. ﬁq(-.

. | _ The following conc]ustons ma,y be draun gom the. 1nvestigat1&
_] The finite eTement progran uSed herein can properly account for .

T e

the effect of Targe 1n-p1ane deformattons



W o o g e

, 2.. o Nhen uSed with the augnented sti ffness technique the programs
can be appiied to predict u]timate carrying capacities of menbers
v '}31 ' The programs predict uitimate stl-ength conditions for synmetric 5

sect‘ions which are in good agreement with the beam—co]uxm interaction ‘ﬁ

fae
P

o curves of Galambos and Ketter o - _,\:"‘L

A "': 4, The program NLHAT underestimates the fuily piastiénteraction

: Q-
. conditions for unsymnetric sections and is, therefore. conservative._,

5. ' The interaction curve for a beam-coiumn with an unsymetric -

section is conSiderabiy Tower. than that for a symetric section when R
g, N L .

bending produces compression on the narrow £ ange Thus. design ru]es e

formuiated for synmetric sections may be inadequate uhen Appl#ed to

unsynmetric sections R T AP ST

o 6 Models of top chord menbers which ﬂave either spring o“~..-v..--_

disp’laqgment boundary conditions consistentiy overébtimate |
of—the member in a joist framewoak T _'v-gi,-'. I . K "‘
Y :

A '.;7." The ratios of tes.t cted ioad, factons are 1 Ql° 0. 89 and .

0 91 for force boundary condition ) for‘ joists AXOS AXO] and AXOZ - '

respec‘twe]y '-" N 2 N " ‘%g* ' \3' ,

| , R ;

'8., " The ratios of test to predicted ioad factors av’i 09 0. 93 and
0 99 for force boundary condi tions app] i.ed to meubers augmented by |
the Joint iengths. for JO'lStS AXOS AXO] and AXOZ resyveiy '

- 9. ihe load . factors for the members augmented with- the Joint lengths = -
~are consistentiy lower than those without. and this- type of model gives '

the best corre]ation with the test values for the three JOiStS '“‘"i"“



_ } ST B
. e

10. The number of . jofsts for which test. va]ues were avaﬂable is.

ms:{ficia‘nt to draw anﬁirm conc]usions about the re]iabi‘lity of -

~

[

the;model-i ng tﬁhnﬂues described herein .

RARTRY ’

‘%‘* Rec‘ontuendati’ns and- Observations

2B o I

” e followi&recomndations and observdt‘}ons are’ made
for future T "'a.:q v | { S
1. dtis reconmended ;hat predﬁtiohs of top chord clbacities be "ﬁo

| carmed out for oﬁer jo'lsts assoc‘lated wi '%Cana&f% Steel“
A LA . R

ﬁ\dustries Coittruction Councﬂ Research Project s ,?(4 4‘&;
re;ults become avahab]e. l'n this way 4b re]'labﬂ

- i predictive, cap““y °f t'he P"Ogram can ae establ»'rshedﬁs R, BN
‘- | F »-Q ¢ oo
; : 2. YIn view. of ‘the sensif*lwty of. the prgdicted 'faﬂure load to-. ;. N

e
the «Iocavtion of transverse loads 'lt °§s r“ecom?ended’ that an- expérimenta]

‘.‘a.”,_e ‘4 ’;.
A A.‘:"--' # B

"; cted fai],ure load to

- study of this effect be' »carr'ied out_'"(

‘-“f :"3 mln vi,ew of the sensft1v1ty of e e T

_ ,yield stress 1t is recomnehdedethat 1mprovsd techniques b deﬂIoped

"'i‘:_g‘tmeasuring the mechanical properties of hat-shaped segons ‘ - ‘

4o It s observed “that otheomodels of the menbers with force boundary o

condit'loﬂs but w1thout doint lengths. cohsidera%]y ove!'estimated the L
’cmcity of . two of the three Joists ,avaﬂab\le for st:ucly This‘ may b'e
-a result of the ihadequacy of the boundary condftions ﬂhposed on the ,_"

- dnodel However. test obsﬁervotions 1nd1cate that there 1s considerab]e
; defomtion of the cross»section prfgr to failure. which cannot be -
] ) L ‘;?ﬁ ?“.‘ 4 . . R

mmud mh the. presea "prosmas, gfts possible, gyl




'\, \,(,u B .
Ty . Y ) . . S o
ﬁ ’ ;h . ..\.%\ . \.

tﬁﬁ discrepancy betwqu(predfcted and obserVed colTapse conditiqns L

V_ results from the - fact that distortion of’ the cross- section produces a’

B

decrease 1n carrying haoacity of’the section and 1t 1s recommended

that programs be deve]oped which can: adequately account for this ef{ect

e
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Table 1.1  Section Properties - .

| Typé-C Shatiaw hat section °
(Figure 1.2)

" Equivalent Isection
o (. (Figure 1.3)
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‘Comparison of Classical an

. for §h§&“€]$st1ca” e

%
AL

.- DEFLECTION (inches) ., -

LoAD(bs) | - ELAST | Wang's Result(22) . -
L , : B (Theoretical Solution)
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SRR S I S
 Table 4.2 Inelastic Solution for.a Beam:Coluhn by Program PLAST .

gt

e

| Total Load | Net Load |
| i TIbsy - | in 1bs.

Vertical’ Deflectipn g S
o {on at x = 1/2

in 1nch

§ Plastic Penetrat.

200,000 | 200,000

. |nan200 | 2s3s

|7 73? 500 | 253,104
‘748,000 | 253,088 |

| 749,500 | 262,811
750,500 | ;?52 48 -

S 755 0005 f.-3724s.s73f§;

e

,ftn-

749,000 | 22,920 |

~ | 750,000 . | 282,685 | .

o 760, 236, ooo »'*.

C0.2138

o 0‘3572 “ -‘ ' »

“*;'751~060';”t'jw252 1e4kr; e

0 3461 BN O
0. 3506 .-‘ :

o 31

T a plastie Penetration =

o LA 0
: by :
TR

. wooL

N
f3 '51' ,
‘ w33‘




9 )

- Jable '4';3‘-_' ;‘Moméh'.t-._E‘nﬂ.‘Ro.tz‘at.ion'"for Beam Co]lu'mnf |

Cfwabsemy [ e
20000 | o 0aes
iza_}do&f b T o.s08 ae |
s o ooz | s
203 L . )95'-ff_, o
| f ‘~134 163; ;.73-5. «';; 01706 P
a:ff 134 867 ;“‘*ff.“ 0. 665 }'”‘fAf§itl”'.
b Tu, 621 (\ | 1.ff' . 665 '__," Rt
BRI AT . KA S
SR ’134 905 ,v,-'rj),f577" 0. 657 | N
- 134 912 : S rfffff 0. 553 ;”"?ﬁ;.iilf.;a‘"
rwer ok Cows

Q- s

" "Example of- Sectlon 4.3%_42138.8" .—:-é- 40-§' = 0:8:F; - 330ksd ;-

Yy . p Fr o i



Table 4.4
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Table 4.5°  Comparison of Gempared A Values with Interaction
A - . . ?p . p: . A . PR
- - Lurve of Galambos and Ketter (6) - -t i
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Table 4.6 Moment- Curvature (M-¢) Relationship fqr Zero S]enderness
| Ratio and Bending Compression in Wide Flange
P P 0.2 'g=04 £~ < 0.6 f%=03 |
Y . Y y |y
e 00 | e ¢ Me-in Me-in - Mein
s s a4 |4 a2 |3 0952 .09
e 1| 77 |4.5 154 |4 154 f 20 1102 |
6.5 ? 197 6.5 194 |6 - 216 |45 | 2321 2.2 | .8
7.0 | .206 7 213 6.5 282 |a.8 | .361 | 2.3 | .42
7.5 % .351| 7.5 .81 |7 - 418 4.9 47 | 2.4 .189
7.7 | .aa4| 7.8 17 (7.1 | 488 [4.946 | .58 ; 2.43 | .214
7.8 | .528| 7.9 366 |20 | 510 |4.96 | 674 | 2.437 | 222
7.9 | lsss| 8 456 |7.113 | .53 |98 77 | 2.481 3
7.91 | 932 8.05 | .543[7.128 | .574 | 2.49] 383
7.915 .51.023 8.1 | .745|7.1352 f’.646 2.478 | .468
7.92 108 |8m | 852|703 | .79 |
7.95 [1.54 | 8.111 | .87 |
8.1138 974 ol
8.117 | 1.08 ;
O
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Table 4.7 Moment-Curvature (M-¢) Relationship for Zero Slenderness
_ Ratio and Bending Compression in Narrow Flange
P b2 E-04 F -0 =08 °
Py y - y y y
. L LI M M
Min K inl ¢ . k-in L k-in _ k-1n - k-in ¢
5 4 |5 . 163 | 4 156 | } 0585 | .5 .0144
AN | ] | o

6 08 | 5.5 | .226 [ 4.5 |..295| 2.5 089 | .6 174
6.5 .225 | 6.0 373 | 4.6 .365 | 2.8 239 | .7 .02
7 3 | 6.3 704 | 4.65 | .419 | 3.0 216 | .8 .023
7.5 459 | 6.35 . 924 | 4.68 | .464 | 3.1 | .312 | .9 | .02
7.7 611 | 6.353 | .964 [ 4.709 | .524%] 3.115| .338 1.0 .029
7.8 76 | 6.354 111 | 4.738 | .62 | 3.32| .376 {1.2 |'.048
7.803 | .77 | 6.333 | 1.258 | 4.753 | .7i7 | 3.5 | .43 | 1.5 | 42
7.812 | .79 | 4.756.| .816 3.162 | .533 | 1.562 .243
7.83 | .84 4.748 | .916 | 3.159 | .633 | 1.573| ..342
7.848 | .91 | | 1.565| .943
7.843 | .88 |

t
7.85 .957 | .

|
7.87 ¥ 1.645 L




* Table 4.8

Finite Element Interaction Ana1y§1s for Simulated

. -

Hat Section* (Figures 4.6 and 4.7)

0 0

+ve -ve +VE -ve +ve -ve
0 1 T .
2 .807 1.021]  .703 934 | 392 576
4 .604 .-897) .7 477 134 187
6 402 '.624| 252 | 453 | o044 .007:{
8 .200 313 oz 200 |
975 0 0
992 0 0

rc=0s o = 33 ksi .
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Inteéacfion Values for.51mu1ated Hat Seﬁtion

Table 4.9

(Wide Flange in Compression:fofz=gl
%:o L= 40 L= 80 L=120
S | S L . O I B B LN
L L LR L LT L
o | 0 1 0 | o |1 »
.09 [1.026 .05 | .965| .15 .74 |.05 7539
a8 [1.03 |15 | 927 .28 519 | .15 | .49
25|1.02 |40 | .68 | .39 | .383 |.19 | .393
36].95s |.58 | .43 .s2| .85 [.21 | .3a3
45|.86 .76 222 .60 1099 | .25 .242
|75 |.00 | .0sa| e8| .05¢ |.36 o
77| .385 “

_\i‘,H' %
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Table 4.10 Int.eracti'oﬁ values for Simulated Hat Section
-~ (Narrow Flange in Compression : °r.'c:= 0)
\ o
S
L L - 40 L= 80 =120
P M- P M_ P M i M
F): My Py, "o Py " Py\ Mo
0 1 0 v 0 1 0 1
.09 .935 | .05 89{ .025| .87 | .00 .893
‘ 15 | .7al s | .56 | . 5
295 .33 | a9 | .27
313 | .74 .4 .4
| o 39 | ..23 | .25 .16
s |o.s1 | .8 | .28 B |
52 | a2 | .325| .05
g7 | .27 | 76 | 4 36 | .01
. .7 .03 ‘
1 0 9 | “08 _
B 0
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Table 5.1 Desian Load Results from Elastic Frame Analysis
| Joist Yield Stress | Axial Force | Joint Rotation %g;{;gi}on
‘ “(ksi) in 37(1bs) * ' {inches)
5 -0.0110928 | -0.4091547
AXO1 65 14660 —r :
6 -0.0017483 | -0.5159207
5 -0.0135107 | -0.4730675
1 AX02 65 14670 —— - =
. . 6 -0.00142 -0.5840069
_ 5 - -0.0109852 | -0.4625646
AX05 57.5 14730 . :
| 6 -0.0021092 | -0.5756908

-

v
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.Table 5.2 Design Load/Bending Moments from E stic.Frame Analysis

Member |Node /] Axor | Axoz AX05
3 |3 3.356 | 3.693 - 0:754 \
4 -3.065 | -2.839 ~0.755
4 (Joint)4 8.801 [. 11.111 7.65
- |5 - | 2.604 - 4.79 4..78%_|
5 (31) |5 -0.40 -1.784 |  -2.56
6. |-2.79 22,969 | -0.116
6 16 | 2913 3.228 | ° 0.339
7 -2.459 | -2.304 -0.136
33 . |4 -5.736 -8.27 -6.903
|20 -8.348 | -12.103 | -10.322
s -2.205 | -3.006 -2.229
|aa . |-2.057 | -2.773 | -2.09
B |6 _0.185 | -0.26 -0.222
22~ |-0.418 | -0.589 | -0.482

A g

Note: .Moments are tn Kips - inch



Table 5.3 Summary of Test Results

: oist v.'

No. | Factors . ‘ AXO1 . AX02 « AX05

] Design Load (1bs) 1686 1686 1655

2 Tota? umg?_te Load 2759 .1' 2769 : 2084

3 | Load Factor ('%g‘t’—%%% .64 ].55 1.77
a4 Amount of Eccentricity Medium  Large Médium'

5 Type of Loading ' . Top Chord Top Chord Pan;i Po%nt
|6 | Mode of Failure Buckling Buckling Bucklng

R
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Table 5.5 Boundary Conditions for Top Chord Models , '
Model | B.C M+ L oe,x103 kox10°
| : O Mg B
T == o r':‘\‘:j,v
AX01:F ‘| Force -4.00 -, 55"#?6 E “‘§¥§ {%9 - 0
' R ' \ ')'. Ry )
AXol:s | spring | +2608 | 0 - L9.6 | +238 | 0 64.9
— SO TS - ‘ T
AX01J:F Y Force 8800 | = 0 -2790 | - 0
AX02:F- | Force -1784 | - 0 5 | -2969.] - 0
H ‘ L
AX02J:F | Force 11100 | - 0 | -2969 | - 0
AXO5:F | Force | -2560. | - - | s s o
AX05:S | Spring | +4789 | 0 367.9 | -339 | o - .| 78.8
AX05:0 | Disp. | O .| -6.058 | = 0 | -2.818| =
AX050:F | Force | +7658 | - |0 6| - 0

Note: Units are K-1nches’ |




© Table 5.6

Load Deflection Relationship of AX0SJ:F
. P 4_*
‘Load Factor U(]O'] inches) .w(T'O'1 inches)
] | 40 196
. ! _
1.4 { .679. . .281
|
1.6 i .86 .36
o ! :
| .
1.626 ' 872 .42
1.6 6688 .62
1.53 481

.83

92



Tablg 5.7

f

93

Load-Vertical Deflection (10']) Vé]ués at Each -Node

for AX05J:F

— - N
~~-_ Load Factor
Node Ni\‘\\\ 1.63 1.53 1..60
1 0 0 0
2 148 2267 | -.229 | -.12
3 27 .506 49 .267
A 8 .355 .767, .259 ".47.4
5 i .00 828 .403 .607
412 872 .481 .669
" 7 £ .393 | . .844 5 .666
8 .346 754 .466 ‘.605
9 .278 611 .388 .| .496
10 194 | .429 277 .351
1 .992 .22 ..143 181
0 0 0 481

2
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Table 5.9 | ‘LoadQDeflection Relationship for AXO]

. 8 ;
AXO1:S AXOVJ :F AOVF
Load v(10 "y | Load b0y L Load . | u(10T!)
Factor inches Factor 1qches . Factor inches
! 36 50 1 .42
1.4 . .5% : 1.6, 1.025 1.5 .74
| RN 1.14 1.7 91
1.5 60 | » |
| o | 1.757. 1207 1.813 1.09
1.6 .66 . |
1.8 781 1.763 1.382 1.835 1.170
1.9 8 .l 1m 1.91 1.824 .27
2 1125 |
2.03 1492 |
2.026 162 .
| 3.
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Table 5.10 .Load-Deflection Relationships for AX02

AX02J:F | AX02:F
Load Factor | u(107)) Load Factor | u(107")
in;hes : - inches
1 7439 1 | 506
1.4 -‘ 1.2037 1.4 | .801
1.483 | 1.384 1.55 ‘ 1935
©1.535 | 1.4636 . 1.695 1.6
1.559 1.5255 | |
1.568 | 1.672° o ,
1.565 1 1m
' 1.5615 1.919
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Table 5;]14 Effect of Load Position and Yield Strgss on‘Joist AX01

' Deflection at mid span for AX01:F

Load at 3" from joints| Load at 6" from Joints

F = 60.3 :

y " Fy = 60.3 . Fy = 65 ,
Load u(10™") Load u(10™") | Load u(ro™Ty
Factor inches Factor inches Factor inches
1 4165 Bl 9857 | 11 9857
1.5 g2 [ 1.3 "1.552 1.3 1.347
1.7 .9133 1.35 | 1 1.4 1.659 . |
1.813 | 1.0916 1.327 | 2289 | 1.2 2.013
1.835 1.7 1.42 © 2.078
1.824 1.277 1.4 2.6086
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of Joists

Table 5.12 Summary of Critical Load Factors

‘Jéi st . |Load Factor. Load Factor Test Factor

' -~ |From Analysis .| - From Test Predicted Factor
AX05:F - | 1.75 .77 1.0
AX05:F 1.63 1.09
AX05:S | 1.99 | o0.89
_AX05:D | 2.22 ©0.80
AX01:S | 2.03 1.64 0.81
AXO1:F | 1.84 0.89
AX01J:F | 1.76 0.93
AX02:F | 1.70 1.55 0.91
AX02J:F | 1.57 ' 0.99°
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Fig.2.1. Beam. Cokumn Model with
End Momegts.
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Fig 2.3. Bending of. Rectongulor Section.
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_ APPENDIX A
ASSUMED DISTRIBUTION OF RESIDUAL STRESSES i

The residual stress distribution for a typicat wide
flange section lS as shown in Figure A(I} The value of °rtlli" terms

Of'°rc? is given-as

© (A-1)

'E{bt }
Ort ‘bt + w(diit) Orc

where b.andld are the width and depth of the section andst}and m are
.the thickness of flange and web respectively' The distribution‘of
'_residual stresses on an unsymmetric I- section,equivalent to a hat shaped

section (Type C, manufactured by Great Hest Steel) has been assumed as
shown n Figure A.2. This figure indicates the residual stress in
terms of three controlling values (°rc]’ arc.and o t). However;‘the
two equations of equilibrium which these residual stresses must satisfy
are constraint equatipns which reduce the number of 1independent values f~
_toone. In this Appendix the values of o, and orci are evaluated as
functions of L

"Equitibrium of forces (that is, M = O_and £F=o); are

conSidered. assumingxthe forces act'at the middle of the fihre, and taking
‘the moment about the middie fibre of wide flange. Cunsidering the
stress diagram and section properties of the unsymmetric section shown

in Figure A 2 and Figure 1. 3. and writting the equilibrium equations,
one obtains.for the IF = 0,

i
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0 a.0_

“re 2°rc a,(o._,)

1 1 ‘ Irt a\0¢

o (a b ) - .( : )b + (____..__.—-—) b

rey 11 2 °rc] You 2 2 rq1 Yo, 2
a,b,o . a asb. g g

N

Frc T rt % Tt 5 -

where (b],bz;b3) and (a].az,aB) are widths and depths‘of the narrow

flange; web and wide flange respectively., Ope is the maximum compressive
1

stress at the top of the web and is considered to be uniform in the narrow

flange o, is the tensile stress at the bottom of the web and the middle
of the wide fiangt’and e is the maximum compressive stress at the tip

of the wide flange. Compression and tension are indicated as negative

‘_«and positive, respectiveiy

Simplyfying Equation A-Z, it can be written as S : )
d“‘
. ab ) l .. )
Sy 373 5 G
(a] 1)\l (°rt rc]) T"?f—' (°rt "°rc) 0 (A-3)
Considéring now ;he.equiiibrium of moments, the fo]lowing equation 1is
obtained. | | ‘ o
i s
a.+a. e 3P0 ane o a,
b](a!‘C )(a _]2_3) + _2_1,( +] ) 2 rt* 4 2_3-
SRS %y Tt %rey Ot
. Sy .
32 (qrc o)
a,b,0;, Ta i a0, o
- gg 2b2 e 2°rt . ) = 0  (A-4)

g rn —r——n—a‘)
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or
a.b a0 a, . a2‘.’rc‘
272 {02 (Zrt s+ -3, 2 ] 02a-3
2_‘%] ¥ °‘rt) 9 ],_+A°rt 2 3 %re, YOt rt ( z
- a, +a
1 Y3
+ a]b],qrc](az + 5 ) =0
or
a, +a, a,b a e’2°r'c
1 3 22 3 2 2 2 1
a,byo . (a, + ) + [+ o -0 1
1%1%rc, 22 T2 Wore 29y 2 7y rt) T35
, 1 rt’. 1
- 2 ’ C -
- aylo Mo ) 3
+l 2''rt rc1 __1_a2°rt :
3 c-’rc] * Opt | 3 "rc1 MY
or
2 .
a0
o afa;  ab,ay 0 ) grer a,
Loy (8 v =)+ 5o o) Y3 o YT Ot
IR B ‘ o 1 re, rt _
(' °rc] " Ot . : ;
“r{:] top \

. or
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Equation A-5.can also be written as ’

| 2 ‘ 2
: a, b, - ~a,bna, a,’b
3) + 2 2] - [ 223 ?6 2]

°re, [a,b,(ay+ —

Putting the valuefof'orc
: 1

Equation (A-3)

a]+a3 R azbza
7

3,
(Za b +a 2)( Tt )

3 “rttT g f

’

“in terms °f»°rt’ from quation-(A-G), into

3

ot [(agby* a3p3)- b ava, a8, 5,074 3re (A 7)
: 11 e "3y, 3,2

Substituting -

(azb + a3 3)[2__5_(2§2+ a]+ a3) +, 3_'+ —-J - (2a;b;+ 2, 2)(9 5

yields

Ga
°rt P g.rc C a;b;(2a2+ 3,

Putting the value of

?"

S oy

&’

+ °3) + 3a3+ 4a2] L*1C§  A. I(A-B)

from Equation(A-B) 1nto Equaumbn (A-G), and

simp1ify1ng, it becomes o

(3‘3‘“ 2“[2,"3 Prc

s

)

-4
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The values of orc and o, 2T expressed 1n the program in terms of

by Equations (A-8) and (A-9)
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APPENDIX B
* DETERMINATION OF CRITICAL STRAIN LOCATIONS
. The purpose of this.append1x5is to detecmine the boints
in the web of a-simnfatéa hnttséctidnlwnncré changes in the-modulus

of elasticity occur

The equation of any linear variation of strain through the

web may be written as
Ce=mx+b. (BN

where (x,e) are co-ordinat.s of -any point on the line. m is slope of ‘
the line, and b 1s the 1ntercept on the € axis. Assuuﬂng linear
distribution of residual strain, as shown in Figure B. 1, and sub-
stituting the co-ordinates of A and B into Equation B—l the constants
:‘Zm and ¢ can be obtained for: the Iine A B. Sign conventions are aTso

"shown 1n Figure B- 1 and Figure B 2.

Evaluating«Equation B-l at A yields v
ey TR )t o EEe

o and eval u.mg ‘quaﬂ_on -351::'»;._t‘_- Bylelds -
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Substracting Equation‘ﬁfza from Equation B-2b gives

'srt'f,srcra m[xb - (a] + az) - xg + a.l] .

" Hence ' R \\\"
et fre; - | - . (o) ’
ms= - . — o : . - (B-4 ‘
o+

Substituting the value of m from Equation B-4 into Equation

. B- 2, the value of b can be obtained as shown:

+
»€rt ¥ €
=

e A T AL
. . . . ; bﬂ

By algebraic manipulation

, [xg x(?ﬁ °z)] +. Ert()‘g ) A
az
.The above values of m and b “define ihe residua] strains in the web

'The criticai strain points where changes in elasticity occur are showh
"in Figure B 2 and 1f the strain from superimposed loads. may. be expressed

-as £+ cx,are located from the foliowing expressions
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. B eyZ at _‘y] : o
f+Ccx+mx+b= - eyp aty, B (B-7) |
ey at Y3 »

e aty,

o

Sojving'Equation B-7 for each cése, thé strain locations are

obtained as

T T T - ' 68
: - f+b-c¢ . : o ’ .
Y% “Cw¥m = ‘ . . C B (B-9)

Y3 == “¢%w . o . . l(qu)'v.

L febte,
Y95 "cEm = - ~ (B-11)
g Exg Ay T (Ba2)

vThe strain locations yl to, Yq ¢ define the begining of positive and -

negative strain hardening<from the centroid of the section.. The

'distance from the centroid to the top of the web is denoted by ys{‘ .
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+ ve.

Sre

_FlG.B.I.ResYduoi Stress_and Strain Distribution in_the Web.

‘Top of Flange
~€¥

Exact line Substitutes for
- Exact Quodratic Expression.

.cq.m . A +ve,

‘Fie. B.2: Critical *__Strain locations) from Centroid n_Web. |

v




APPENDIX C
HAND COMPUTATION OF INTERACTION CURVE ( —'— o)

In order to determine the fuiiy plastic stress resultants
for the given equiva]ent unsymmetricai 1= section shown in Figure 1.3,
it is first divided into small strips as shown in Figure C.1(a). The

centre of gravity Fro :teqUa] area axis of this section are -at 0.453

’ “-me fibre of the wide flange The stress
~.diagram _ for ,{-:;f Q?*ied section is.also illustrated in Figure
| C](b)TPeare " f‘the st‘ips, is calculated and the moment of
arex-of all these strip&#is evaluated about point 0 (Figure C. 1(b)),and

given‘in Table C-1. The location_of the discontinuity in the yieid
stress (point.A of Figure C.1(b) is assuuod'to move to the edqe of each
~ strip in. succession ‘and positive and negative plastic areas, the net -
area and the net moment of area are ca]culated as shown in Tabie C 2.

" The. moment of area about the center of gravity is then obtained by

., , adding the net moment of area about point 0 and the product of the area

[ times7d;4536 inches (i.e. - the distance of the center ofigravity from

the bottom ot wide tlange) These computations are shown in Table C-3.

The top of the fifth strip is the equal area axis and at this section,

it is observed that the net area.is equal to zero and the net moment of

area therefore represents the fuiiy piastic moment in pure bending |

Areas at the other penetrations are divided by this net area to obtain
M

o %;-vaiues and corresponding values of - N -are obtained by dividing the

b ,
total moment of area at every.section by this net moment of area. Detailed

ca]cuiations;to obtain these values areishown‘in Table C-3.
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Table C-1 - <Calculation of Static Moments

‘ -

section Area A - | ¥y . | AV
1 [ -.o7303 | o675 | . .o0122
2 07303 | .os28 | 00367

' 4’ o703 | .omsis | 00612
] e 07303 1725 00856 | .

5 02679 | 1925 00516 |
6 ozss | .nm1 | 00896
7 02859 |  .4m23 | .01253

.8 02859 56308 | .01610
9 _ 02850 | 68791 | 01967
10 02859 | .81274 .02324 - |
" 02859 | .93757 - 02681

2 o%8s | o6 | 037
13 03685 | vj.oSozs ' .0387"' r
14 03685 | 1.08375 03994
“iS“'~‘ .03685 | -1}11725A 04117

RN .
| o
. P -, \
5
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Table C-2  Calculation of Net Static Moments
| et ome:
i ,,
5 - | | ;
£. ' Positive | . Negative Net | |
2, Area Area - Area N 3 ‘N
& At Ny aN Ay Ay Ay
0 .0 .6378 -.63798 | 0 | .2893 | -.2893"
0] L0730 5648 -.4917 | .oon22 ..-2\‘8808- -.28686 |
T2 | .1ac0sf 4917 -.3467 | 300489 28441 | -.27952
3| 210k 4187 -.1996 001 | .27829. ""—.267‘28,‘
s | 29212 | C .57 -.053 | .01957 | .26973 _-,.é_soys
5 | .3189 .3189 o .o2473 | .26457 | -.23984
6 | .75 2903 0572 | 0339 | 25861 | -.22192
71 st .2617 aia4 | o622 | .24308 | -.19686
8 | .a047 233 AT16 | 06232 | .22699 | -.16467
o ; .4333. | 205 | .28 08198 | .20732 | -.12533
o | 10t .69 | .ame | e | .02z | .1408 | -.07886
1 | 2908 473 .32 | .13203 15728 | -.02525
12 15273 | 108 .'.}168_“' 16949 | .119808 +.04969
13| 5642 o736 .| Eos | L2082 | 0811 | +.12709
1 e | e 0368 . seaz | 20813 | 04117 | +.20696
15 | .63 o | weam | 283 |0 2893

e

ey
CR R B
Sl Q .
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Table C-3  calculgtion of Points for Interaction Curves .

t

Anet | Ay mar  |{AY n.t)t; P 1 A :'»_"
a v 06{5’6“ net) Py 'MD )

) wPengtra‘t-ion E

o bW N

w0 TN oy,

|-.6378 | -.2893 | 0 B S
- “§L4917 ..28686 | -.068 | .M | .26
Cs7 | -omesz | -z lesiz | s
-.1996" | -.26728 | -.1767 - n.312a5;' .745_
10536 | -.25006 |.-.z2s8 | -.084 | .94 -
0 {;g53;;4 -39 |0 |} B N
o572 |-ozee | o4 | .09 | 1.026
1144 | -.19686 .-.é4a7"'« | 8. | noy 1. .
ane | -aeer | ozzs | e [ro
.éggs;‘i~{12533',ff,:2291’ B _ ;.35';;‘;g.95 1?
286 Y| -.oree6 | -.2086 | a5 | 87l
us | o8 |-ose | s [
L4168 | 00069 | -390 ”; ,65' Ai:w58j |
4906 |, +.12709 ”;-,o§5ﬁ$- _f R B S
5642 | +.20696 | -.04696 . | -es | .28 B}

-~ O
r

= e |t amd
(23} ~N -t o
LN
e

-
-
+

i =
(S}

6378 [ +283 [0 la | o
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APPENDIX D : .
" PROGRAM NLHAT

D-i' Preparation-of Inp‘ut Data for Program NL_HAT_ '

Program Limitations

v, anblérspf elunents < 20 i _' -
Number @f no -"/x . I :
\ /‘"“"'—."g ”? ’ - . ? /

| Input:f‘.’" . " ﬁwi
(FoﬁnatF]OO)
. ,}:‘3’; . M}'A is & val ue used in numerica'l d1fferentiation of the

"

.' : eguilibriu'r)EquatiOns (normelly specified as - 05)
(2) fNEL "MAX, NI, IPRINT) (1 c;rn) (Forma't 418)

e NE’E i Nulber of el&ments
i Mx . Maximum number of 1terations in the Newton-Raphson .
| | procedure L : - W,
, NI s Nunber of - subdi’visions for the application*of
TR e Sinson s rule (1NT 2 28) A good choice is NI=5,
v o

~unless the elements are too long
IPRINT Indicator for intemediate printing The Jacbbian
matrix is specified at each step when IPRINT = 1
(ttw) (romt '7no 0

_'_1_“_,‘4Xl’., ':':A Beam Length T e e
't; Al A2.§ B'I 82,: 83 cross sectional dimensions as :
" T - ;{, B w- shown in Figure 1 3 Co
- . -
- " 9

G
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(4) (EM, ET2, ET3, EY1, EY2 SRC) (1 card) (Format 6F10.0)

ET1, ET2, ET3 : Three moduli of e1ast1c1ty involved

,jn the trilinear constitutive equations.

EYY, EY2 + - : The strains correSponding tojchanges in it
| "w . _“' , modulus of elasticity ' A%g%f'f
~SRC .. _ : The compressive in1t1a1 residual stres

whose distribution 1s shown in Figure ﬁv

'(5)' INUMSP ER;)_(] card) (Format I4, F16 0)

| NUMQP : umber of springs

: EPS" : Spesified accuracy for convergence criterion
In case the number of springs is not zero then for each

| spring a separate card is included in sequential order . ' 1;

(6) (NPS(I), NDEGL@PESP(ILL (one card for each spr1ng)(Format 214 M. 0)

.

NPS Nodal point number at which a Spr1ng 1s attached ';,~
NBEG  : Local number of the degree of freedom (1,2,3, or 4"';
for u,.w, u' or w', respectively). '

" ESP ©: Spring stiffriess associated with ¥he degree of - -

freedom ™ ' S
g B AR
() JB(I), 13(2), IB(4*NEL+4)) (Format 108) S T
,' 0 for-an unconstrained degre freedom

IB(I) 1 for a constrained degree of reedom -

»

If IB(I) 1 then BND(I) is the va]ue of the displacement for
. \ ,V P}
constrained (Ith) degree of freedom o :
8) (BND(T) BND(Z), BND(4*NEL+4))>(Format 8F10.0)

BND .t The displacement specifjed for the degree of

;f : freedom

'.-‘ L : N
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() X(1), X(2),...X(NELH1) (Format 8F10.0)
X(1) : X force (transver;e) at the I

(10) z{1), 2(2)...Z{NEL+1) “(F0mt'8F10.0): C
' th

th node

(1) : Axial force at the I"" node

(11) XM(])L XM(2), XM(NEL+1). (Format 8F10. O)

XM(I) . Moment at the 1™ noee

(12) NF NF] (Fohnat 218) _ " ..
0 Initial tria] ,vector on caf‘ds

C F = ] tnitﬁ} trial vector 1n fﬂe 15
_ "2 Initial trial vector in file 16 .

0 ‘last trial vector wi'l] be written §n file 'li. fhﬁ%
NF1 = will be left unchanged
a1l last trial vector ,;l'll be written on file 15 but .
converged solution will be written o‘fﬂe 16, erasing
| ~ previows vector S SRR ﬂ |
(13) U(1),...U(A*NEL+4)  (Format 8F10.0) .

These are the values of the 1n1t1al trial vector and cards

*
containing th'ls are 1ncluded 1n the data preparat'lon 1f NF -

is specified—as zero.

.D-Z Program ListLq_ R . : S \
A Hsting of the program fo'llows ‘ ’

%

ta
.,
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. DN
. WY L

Ly 4

C MATN PROGRAM FOR wCNLINGLAR ANALYSIS OF UNSYMMETRIC 1= BEAM
IMPLICIT ReAL*8(A-H,0-2) . \

“-

U IMENS TUN U(Aou).odtloO).M1(¢:3
LUMMONIPUAD/Z(ZI).X(cl).XM(Zl) -

KH

COMMUN/TBNDZIB CAU0) " =~ o
.LUMMUN/&NDLUN/uND(LOO) L _ ,
COMHUN/CN‘TLu/:Tl,tlZ.tT!}tYl 32 7 N ,
CUMMON/SELT/XG sALl oAl A3yl 482,33 I Y ¥
LUHMUN/RL&IO/SRLL.)KT,SkL : o ' R
CUMMUN/EINITEZ K ) - : o .
LUMMUN/NUHK ZIPRINT. ' ‘ : -
LuanN/spu{Nc/tsvtao).wv>(~C).Nubﬁ(40) o
CUMMUN/UERIV/ALFA :
KREAU TSy 1ICO) ALFA iﬁ#ﬂ
WRITc(byle34) ALFA A o
READ{S,c9CU), NtLvHAXleleKINT
o WwRITEloyslal) Nt—L'MAX,NI,IPKlNT
1111 FORMAT(L1HOs+110) . .
© - Rbaul,10C0) XL, Al.Az.Ai Blyddels
WKITLlOyLe3%) XLy AL.A‘.A.".&"&‘vBJ a o oo
1234 FUKMAT(LHUysELLe3) o
CREAD(291ICO) - ETLyLT2y tr;.tVL.tvg.>kc
C owrITetoglesd) ETA.tT(,tIJ'EYl'tYL'SKC T . a-
'0=l(A;*B¢*Aa*5:)*((‘.*A4+A14Aab*(b ‘Al'BLI(AZ*ﬁ;))OJ.*AJ#Q.*A&)-(
-1 - ,z.tnxtal+nztec)~(s *Ajtz.*Ad)l '
SKLl= (AJ‘ba*(é.*A3+¢.*A4l/b)*SRL : "
snT={AJ*B3*{(6. *Al*nl/(Az*dcl)*(z."A£+A1+A.a)f:$-*A3+‘t.¥A&)I*SRC/U .

thTb(u'*J‘o) "SRC L4 SRT
AG=D e >*A101A¢*uz*u.b*lA4+Al)+A3t63*(A2fu.>*1A3+A1))rvla;td;*Azth+ '

'-Aa~d4) - v . .
NRITE(0.1£33) XC ' ., : o s _ -"'} “.!ﬂ;
1255, FORMA](IHO,IOKo'XG- sELD S W B A ‘1'&
wEAUt 39 12C0) NUMSEP,LPS ST o . e . A
DO 55 1=1,40 - . . MR ‘ e LI R
"NPS{I1)=0. . . Lo

Nptu(l)so._V;' . ,
55+ SP(l)*O. , : ' '
FANUNSPo 6T 8) REAU(SvltOL) (NPS(I)oND:b(I)vESP(l"l L NUN&P)'

¢

1200 RIRNAT { 140 FHea ) o o L |

1201 FORMAT (2140 Floagd "~ = .-;/.' . ’ TN

o Ncﬁﬂa¥ﬁ“91. B 1':‘9‘;“1
- e pur; L . &

'J%Wpilp¢lco: ;i'Jﬁtxlrxax. o e
o '“R‘F@(O.&itli - h‘l’tlilva*' ' S S e
L MR UCT ' P , ~
.., T iTtlb Le3%) fggf : -
T Rtxotb.loce) T S
S L 2 : R

. “ ‘t\) . P
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WRITE(6 12340 (ZU1)eI=1,NPCT ‘ . ‘
REAUA Y9 LILUS (XM{E) 9E=1 ¢yNPCT) . | R ’
WRITE o ta34) (XM(I).!=1 NPOT) . -y
o REARL 200D NESNEL o
I+ (NKouT.0) -Gu‘TngJQ ' o
REAUTS, 40C0) (JEE) o I=L19N)
GU T 237 o -
204 1M9=1 .
’NNr\=l-e+NF . o , :
0U Z32 l=1.NPCT R o A -
. 1EI=4+(1=-1) . ' L e :
C READ(NNK'E12) - _(U(lllfKR)JKK=lo4l-
ajb I15=115+1. S ' N
157 CONT INUE
WRITE(OgLede) (U(l).l LeND-
~  CALL NEHRAP‘NnU LUpNPOTQtPSvMAX)MI'NI)‘ :
WRITLE(6,3GC0) (UC1deI=1oN) e : _
3000 rufnnrlxna.Lux.'RESULra'.//.Lox.-u'sx9x. WOy 19X tUPY o LBXe ' WPY 4 //
It © O (4E20.T)) R S
IFINFLOEQLD) U T 77 - ' P L
Tlo=1 S
wz.ou 235 I=hyNPUT
sl l=ae( t=1) o . o
WRITE(Lot 116)° lU([ll+NR).KR=lo4) A
335 lio=lloel - o - ' ' : '
.~ 77 CUNT INUE ‘ ? o o '

- WRITE(6,5000) e : T
. 5000 FURMAT(1ROyZ771.75 bx.ﬂELEHENT NO.* .;SE;'BENDING’MCHENT',5x.
- 1. 'MQu. AMIAL FURCE®+ 8%y Y4X FAL FOR X : R
St g YTRLe=t wBKe CYTFG#=1y 5 X8 xtss-o-uix YWYF4-+Y/ s P
3 IYW 4=y 5Xy t YW24=! .5x.'va3-+-.sx.'vu4~+'.sx. e SA0
: ‘0 'Yd"lf""'o)x"YBFZ’l’" .)x. .YBFJ'+'.5*"YBF§“"')//) 4 “‘"-"; :
o 00 B I=LeNEL g e
- g;,unuu NMP(!,NI L,N-l) R I
88 CONTINUE " o, T S
' TF{NUMSP. tq.u: Gu ru 19 T T
o100 T=1,NUMSP s
NN=NPSIL) . o 1‘”[ -
. NZ-kaN4 - '_"‘f‘“.:_ ‘ I
o w0 TU (99 '97v9u)oJ o T e
Yu € xax(uﬂlngsatl)tutuz-sj
o G Td 99"
»911EX=Z(&N)~&SP(11*U(NJ-£)
GU Tu 99 o
98 EX=AMENND~ Esg;lotogtqu(U(N¢41l (l.+U(N2))i
94 WRITECL 5500k NNaUoBX: ,
100 LONTINUE 27 o - : ’ ' '
,5200uFusHAT(lHﬂ:IIII;lQX"N 7 FURCE AT NUDt'.lh.'DEGKEE UF FRtLuUM'.lA.
i 'theautt PuﬁCh'gEl 5) o _ :

>

e

A¥

o
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19 00 20 I=1,NPCT, o o _— L,
20 U(4*1-2)=Ul4*1-2)+h%(I-1) : - ‘ ;.'
T WRITE(6,40L0)  (U(4%I=3),U14%1-2) 41=1,NPOT)
4000 FuRnAl(LHo.////.xox.-cooauluares'.//.xox.-x-.19x.'z-.// (4t20.7))
1000 FORMAT(8FLU.0)

2000 FOKMAT(1018) L e
- CALL EXIT : : R : L
END .

. SUBkOUTINE NMP(I.NI.U.N.IND)
: IMPLILIT REAL®E(A=-H, 0-2)
B IND=0 - NC PRINV =1 - PRINT ONLY
s DIMENSIUN U(N) - B :

CTHER = PRINT ALSO

DIMENSION WI(5C). - = - i
DIMENSION vtf(b).thb).voF(S)
COMMON/FINITE/ b ’
conMQN/xNM/PN(«).PPN(4.4) PM(4)yPPM(4,4)
~CUMMON/SECT/XG 1Al AcMJ.Bl.B&.Bd
FLP(Z)=6.%2%(1-1.0)/H ,
F4?(13=3.tz¢z-4.yz+1.' . e
F3P(Z)==FLP(L) : - : o
FaP(Z)=3,%2%2-2.%2 o : IR - e
FLPP(Z)=()2.¥1-6.)/ (H*H) . e - s ~~f\\_.
. F299(l)=(é&42 QV/H L mae L L Y
" F3PPUZI=<FLPPLZ) glees - o N
C F4PP(Z)=(6.%2~co)/H ey _
‘D0 10 IZ=1ly4 . . B 1
‘PNCIZ)=0. - . L A
CPMUIZ)=0.
DO 10 J2=lr4
PAN(IZ+J29=0.
PPU(IZyJZd=Ve
10 CONTINUE
UL=U(4*]1=3)
. UPL=U(4*1-1)
UR=U4*I+1) o
UPR=U(4*1+3).
. WL=Ule*1~2)
- WPLEUL&L*]) . :
L WR=US4*1¢2) v
Lo NPR=U(4%1+4) P o :
© - CFOR SIMPSUN'S RULE .~ -‘~“';*-;p* - S e
~ | NI2=2%NI+1 - o R
L IFANI2.GE. 3.»Nb.Nl¢.LT.>O) -g0 T 3 . T f _
WRITE(Gy4dbi) NI : o Lo W
BT FURHAT(lHO.‘ERhCK - . NI=tyle) - - : T TR
S LALL EXIY . u S I
13 Wittd=le/o.
f,uu b lw-L.ul ¢
19 ujlzfluflaaz Tte . S e
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- WEINI)=le/ 6

D 420 JEL NI :
Z=DFLOAT(J=1)/LFLOAT(NIZ=1) ‘
UP=UL4F 1P{Z) +UPL*F2P (Z)+URAF3P (L) +UPR*F4P( 1)
UPP=ULRFLPP{ L) +UPL*F2ZPPl Z)+UR*F 3PP ( Z)+UPR*F4PP(Z)
Wp= NL*klP(Z)+HFL*F2P(4)+NR*P:P(Z)+NPR*F4P(£)<L1
WPP=WLAF1PP(Z) +WPL*F2PP () +WR*F3PP (Z) +WPR®F4PP
E=WPH0 LS (WPEWF tUP*UP)

,c PPE(L.+WP)~UPEWPP. .
‘ /(12 vt+1.)tu$u§rtz.vt+x o)) ‘ .

' CALL FGRMOM (£ C iXN EM o YTF, Ying YBE ) |
IF(INDJEQ.O) ° GCLTU 3uu,

e P XXM=XMEF (Lo ¥b+ L)

CXXNSUSQRT (2 o%b+1 4 ) SXN®2 X (2. ¥E+]. ) $CHXM
WRITE(HycO00) l.J,XXM,XN.XXN.(YTr(IYTF).IYTF=1.4).
LOYWCLYwW) o IYW=i 04) s (YBFCIYBF ) IYBF=144) ’

)

’

2000 FURMAT (LH 3215 410Ky0EL18.744ELLo3/3ELL.D) -
I (IND.EQal) CU TO 400 | | sON
© 300 PNGLI=PN(L)#WI(JI*XN®FLP(Z)/NI N
PN(<)=PN{2) +Wl (J)*AN®FZP(Z) /NI (

"PNL4)=PN{4)+WITJI)*XN®F4P{Z)/NI
L PMULI=PMLL) vWTLJ)#XMEFLPP L Z)/NI
PMLL)I=PRI2)+WI (J)*XN*F2PP( L)/ NI : _
PMI4)=PRIG)+W L (JIEXMIF4PPIL)/NT o
‘PPN(l.l)sPPN&L.1)+u1(J)txu#Fthl:*Flptz)/Nl '
. PPN(Lp2)=PPNIL1g2) ¢WI(S)«XN*FLP (-Z)#F2P(Z)/N]
« " PPNlLy4d= PON(11%)#ul(J)‘xN‘FlP(l)*F«P(Zl/N[
cL PPNy R) =PPIN(L 2V #W T (JIRXNSF2PLZ)*F2P(ZI/NI
;PPN Z2e4)=PPN(2,4) +WICJI)IXXNRF2P LL)*F4P(Z) /NI
' PPN(UGs4 ) =PPN(4+4) +WILJIEXNRFLP{2)%2F4PIL)/INIT )
T PPMlLed)=PPMIL, I)+WI{J)*XRRFLPP(L)*FLP(2) /N1 ol
C PPMlLyéil= PPM(l.c)*Hl(Jt*XMtFlPP(l)*FZP(Z)INI, ‘\§$l
"PPMULo4) =PPM(1 4 )+WI (JIEXMOFLIFPLZ)*FHP(L)/NI i .
PPAL221)=PPMI2y LI +RI (J)*XMRF2PPLZ)*FL1P(Z)/NI N
CPPMUs2) =PPMI2,2)+Ad I (J)SRMRFLPP (L) #F2P(2)/NI L
T PPMI2,4) =PPMIL,y4)+WItJ )R XMSFCPP(L)*F4P(L)/NT
‘-PPM(4'1)-PPM(4 L)+WES)¥XMF4PP (Z)*FIPAZ)/NT
PPM14,2)=PpPM ﬁﬁ)+wI(J)*XM*F4PP(Z)‘F2P(Z)/N[
©  PPMl4s4) = M(ﬁ@%)+wl(J}*KH#F4PP(ZJ*P4P(£)/NI‘
400 CUNT INUE-

CIFCINDLEQeL)  RETURN ™ . . o7 o
PNL3)==PNLLY - - T o . -
PM[3)==PM(L) ST o R

PPN(L,s3)=—=PPN{1,y1) S :
PPNU&y2)==PPN(1,2) e —
PPN(3,3)=PPNLLL) . : .
PPN(3s&)==PPN{1s4)

PPA( Ly 2} =~PPM( L4 L)

PPM(2,3)=~PPM(2Zy1) . .

PPU(34h) ==PPM(Ly1) N A
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TPPM(3,2)=-PPM{1,2)
PPM{345)=PPM{L, L)
PPM(344)=—=PPM(Lly4)
PPl 4, 2)=~PPM( 4, 1)
PPN 0 )=PPNlL,y<C)
PPI‘(JOL),-'-.PP(\(I 12)
PPN(3,2)=PPNL2,y3)
PPN(a,s1)=PPN{Ly4d

CPPNL4y)=PPN{2,4)

CPPN(4y3)=PPNL3,4)
RE TURN
END o
SUBKUUT INC FURMUML L, L.sN.SM.er YW, qu)‘

IMPLICIT RLUAL®S (A-H,U=-Z)
COMMUN/ZRESTIU/Z5rG Ly Sk Ty SRG
CUMMUN/SECT/XG 501, A¢9AJ:BI.5215$
LUMMJN/CNSTL&/LTt,tTZyLTJy:YlnEYZ
DIALNSTUN YTP( )vYH(5)vYoF(‘)'STR(Jl
SN=0,

 SM= o. ) .
DU 5 I=1,5 ‘ o , -
YW(1)=0. . ,

5 YuF(1)=0. - | )
ERC=SRC/ETL : ‘
ERCL=SKCIZETRN
tRT=5RT/tT1
STR{2)=ET1*eY]
ST{1i)= STk(c)*tTd*(tY2~tYl)

‘ STR(3)==STR(Z)
" STR(4)=-S5TR (1)

.

.-

. 60 TO 200 ' : ‘
C ' THIS IS A SOLUTION OF HAT SHAPED stcrlon WITH CONSTANT C KESI
c ST+ AT TQ .

: 1o-wa1re¢e.11@¥b SR
1100 FORMAT (LHCS x.'ERRUR —RESIGUAL STRESSES MUST BE INPUT PUSITIVt')
' - CALL EXIT . . ‘ 4

C TOP FLANGE ‘
- 20 SLUOPEL= 2.*(thIfERL)IBl v
: X=XG~AL/Z. o o o
EB=E~2 o ®CEXS(L o= o5LEX)K(E40.5) o
YTF{L)=lEo+ERTL~-EYZ2)/SLUPEL o : .
” YTF{2)=(Ec+chT1-LYL)/SLOPEL S .
© YTR{3)={EB+ERT J4EY L)/SLOPE L - o .
YTF(w)-(EB+tleit72)/SLUPE1 oo R '
YTFUS0=81/2 R
STR{9)=STR(4)+ET 3% (LB~ enc+tv2)
“Su= STR(A)+tTJ*(Eb+EKTl—tY43
SUM=0. : . ‘

AQ=0. .- . - o e
, ,& R . B | . ‘ o
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DU SU [=1.5
IFIYTF{L)) 4ans4b,49 .
25 lr(YlF(l)~(BLI‘.)‘ 40,30,30 ‘
30 SB=SUHISTR{I)I-SUI*(BL/La-AL)/ (YTF(1)-AD)
SUM= 5UM+0.)*()G+56)*(dl/&.—AO)
GU TC 1luu
© 40 SUM= bUM*U.)*(SL*STR(I))*(YTf(l) AG)
AU=YTF(I) : .
SO=5TR(1) : | ,
Gu T 53 ’ ‘
45 Su= bTK(l)~lsTK(I+L)—STK(I))*YIF(I)/(YTF(1+L) YTF(I))
59 CUNTINUE .
100 SN=ON+ .. *5UM*AL -
5M=5.4—é.*SU-'I*A 1*x
Gu. TG &5J
20C X=XG~ A1/2.
LU= E t.o 'X’(l.‘O.b*C‘X)‘(h’fO. J, &h(«l
IF(La+EYY), Lhusciurela
210 3Tk= STFL#)*LTJ*(E6+EY2)
GO Tt 229
2lé IH(eBrEYL) 414'414.416
214 STF=>TRU{3)+tT2»(EB+EYL)
GU TC 239 ’
216 TFLEB-LYL) «cltscd&yclO
218 STH=tT4¥*ED :
GU TC 239 . . _ ,
220 TFLLB-LYe) <lerclarclh : ' g
e STH=5TK{g) )+ 122 (kB-LY L) ‘ :
GO TU 23%. ‘
elh STF=STRILI+ETS*{bo—-LYZ)
239 SN=SN+Ul*AL*STF . . : _ ¥
: SM=S M~ bl*Al*STF*X . . ' ’
290 CUNTINUE
C 80TTCM FLANGE o
IFLERT)  Lusculecl - F
21 SLUPEZ2=2.*(ERT+ERC)/B3
X=—(AL+A2+A3/2 «=XG) v
o EBSE=C.¥CEX®([.~0s5*(EX)*(c+0.5)
5 YBFU(1)={LB+ERT-E£Y2)/SLOPEL ‘
YBF (2)=(EB+ERT~EY1)/SLUPE2
YoF(s)={EB+ERT+EYL)/SLUPE2
YBF(4)=(EB+ERT+EYL)/SLUPEZ
YBF{5)=B3/2.
S STRUSI=STR(4)+ L T2*(EB—ERL+cY2)
CSUSSTRILI+ET3®(Eb+LRT-EY <)
SUM=U.. o
AU=0., - : , . o .
U 51 L=leb - . S . '
SIFLYBRLLY] 40346926 .

" 20 IH‘YdF(,U:WH 419314510 o | :

>



51

44

46
51
101

211

21,
215 >

7
21

221
2E0.

CeDd
LAB

251
Wkt

300

310
305

SGf(STR(IJ-bb)‘(L3/¢.—AU)/(YBF(l)'AD)
=5UM+U. 5*(5u*$8)*(d:/4;-AU) ‘

101 Ce
SUM=SUM+C . S*(SC+STR{T))*(YSEL] )~AU)
AO=YWf (1) ' .

SO=5TR(1)

GG TG 51

58

161

SU=STRUTI=(STR T+l )~ STK(I))‘YBF([)/(Y&F([+1) YBF(I))

LUNTINUL

SN=ON&L ,&SUMEA S )
SM=5M—¢e $SUMKA XX Lo - L
GO T (51 : ‘
K"(A1+A4*AJ/Z-*XG)

kEw= &"L.*L‘X*(ln"Uob"‘C*x)*(L+0 9)
IF({EB+EY L) dlleillycls .
5TF?STR(4)*ET3*(EB+EYZ,’

6R TU 238 _
li§"aoavxx cl8y2l54217, .
T -bTK(:)*tTZ*(Ld*tYl) _

T ¢3¢ : . S
lF(EL EY1) l%eclYeiel .
STF=tTi*cB o -

6O Tu 238 4 :

IF{tB=-EYe) cliedldIeddd
STE=STR{c)+E12#(EB~EYL)

Gu TU 238 :
STF=STRILI+ET ool EB~EY2).

SN=SN+ 0 * ApxSTF :
SM=SM—GH*A3*STE *X
CONTINUE

e o

: e : ) : tr
SIGN=1.0 -, o 1

o

A=+ (ERT+ERLL )/ A2 & S A

3= (ERC L*{X (Al*AZ))fERT*(Xb Al))/Aé
IF{C+a)" 300,500'505 S

"SIGN==1.0 " | N -

DO 310 K=1l,4
STRIK)==STR(K) o

YW(l)=(E+B~ SlGh*tY&)/(C+Al
YW(2)=(E+B5SIGN*EYL) /LC+A)

YW(3)=(E+B+SILNSEYL)/(C+A) -

Yute)—(c+s+sxon*va)/(C+AL

- YW(5)=(XG-Al)

STR(S5) = STR(~)+ETJ*(L+B~(C0A)#Yw(:)vslGN#ENd)
SO= bTK(l}*hlo*(t*bfsL+A)*Yh(a)—ble*tY2l
Au-XG—(AL#AZ) o 3 :

DU 550 I=1,5 ' ~

CIF(YW(I)=-AC) 24593454345

325
- -33u

FF(YW{I)-YW(5))  340,330,35C"
SB= apl(srkcrﬁ 50)*(vu(5) AU)I(YN(I) Al)
2"' - e ““w

o -




5

340

345

350
4090 -
500
510

242

Si4 .

slo

518

520
522

52¢
559

~o ez

SN= SNHUL 54 (SU+S8) B YR5) ~AL)¥B2 o
SM=SM=(YW(S)- AO)*o¢*(SU'O.DO(Yd(5)+A0)+(Sb SO)*O Sk (AQt . *
= (YW{5)~AU)/3.)) . o o , o
Gu T 430
SN=LN+C o b‘(bbfsrk(l))*(Yw(l) Au)*d;
SM=sM=-(Y%(1)- AL) *Be* (SU*J. St(Yw(l)+AU)+(SIR(I) SQ) *9. 5'(Au+
“2-~‘(YH([”AL)/.¢¢), : o
AD=Yn(]) B '
SU=STR(1)
S0 TU 250
SO=STR(I)=-(5TR{1+L)~ STH(I))*(YN(I) A0 /{YW(I+1l)-~YW({]I))
CUNTINUE
RETURN B
IF{L+3+LYZ) "DIJ.Dlu'blg
STF=5Tn{a)+Tox(E+ro+lYL)
GU T L3Y _
IF(rtoekYl) 1445144510
STF=STh o)L 1% (E¥B+EYL)
GL TC 559G
IF{E+p-EYL) L1d 51t e520
STF=ET1%(E+u) ~
GO TO 539 .
IF(E+3~EY2) 522195249524

STF=STR{Z)+Ci2% (E+B-EYL) - . ~

GU TO Y39 ' S -,
STF= hTK(l)+cTJ°(E+B~tYZ) . ' : T,
SN=SN+STHAS2AZ - - _ : ' « '
RETURN L . S S

cND ' S . : -

SUBROUTEINE DNMP( 15Uy NeNI )

IMPLICIT REAL*E{A=H,0~Z)

DIMENSIGN U(N)

COMMUN/FENITE/ R

CUNMUN/ANNZPNL4) sPPNL%94)y PHI4) ,PPM (444 )
uOMMUN/UXNM/UPh(#.b).UPPN(4-4,8),DPM(4.8)sUPPM(Q;4.d)

© CUMMON/CNSTEQ/ETL, trz,e14.cv1.svz . . o
COMMON/OERIV/ ALFA : toe LT

DIMENSIUN APN(4)9APPN(414)'APM(4):APPMl4o4)
VIMENSION BPN(Q)95PPN(#96)oBPMIQ).BPPM(4,4l

o EY=EY] ' e - N
bha-dﬂ 50 K=ly4 , ) , oo , . r
“E ARN{K)=PNIK) o - e

APH(K) PE‘K)
DO 50 ‘L=leé S
APPN(&’L) PPNLK,L) - .

'-"Apvn(x.u:zppntx.L)

CCONTINGE - o o  .' ;o
‘DO 100 : J=1,3 ‘ o - - -

S IDELTA=ALFAREY®E

lb((J-((J*L)/4)*4)-bT¢4) ueerfALFA~ty

9
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Juzax(i-1)+J
o A=yU(JJ)
C ALFA.LT.U ALTS AS IVUILATOK TU LSe- A‘hthT“URUtR UtKIVAFth
IF(ALFA) 90C,e0C,T7CO ,
60U WRITE(S,10uV)
1000 FURMAT(1HO, "ER kLR ALFuso.")
CALL CXxIT
500 . UEL==DELTA
Jl{JJd=a-uvEL
CALL NMP (I, ‘ll LeNaT) -
UtJdJdi=A _ E .
DU 550 KE=lg4 ' '
OPN(KyJd)= (AFNIK)=PN{K)) ZUEL
uPM(«.J)-(APM(F;-PM(K))/utL - -
DU 535Q. L=ly4- o o
DPPNT{KyLyJd)=(AFPNIKsL)- PPN(K.L)l/dtL R .
UPPMIK gLy J) =(AFPMIK,L)=PPM (KyL))/0EL
550 CUNTINUE ' ‘
GU TC Luu S ' /-
700, UlJJ) =Aa-UELTA
CALL NﬁP(lgNIpUQan,

00y L50 1C=dy4 e
PNUIC )= PN([L) ' : : '
B aPMOIL)=PM{IC) o

DU 150 JC=lg« e L ' e
BPPNLIC,JC): =PPNEIC ,UC) :
‘ L BPPMLLL,dL)=PPM{IC,JC)
150 CON® INUL :
UL JJ)SA+DELTA = N
CALL NMP(I NlsL, Ng')l .
utddr=a
DU cud  K=l,4
DPN(KpJd)=(PNIK )~ BPN(K))/(Z.‘DtLTAi
T OOPM{KeJ)=(PM(KI)- BPM(K))/(Z.#UELTA)
DU 200 L=la4
-UPPN(K.L.J)—(PPN(K.L) BPPN(K L))I(‘.*DELTA)
UPPM(K L) =IPFM(K, L’-BPPN(K:L)JI(Z *DtLTA)
200 CONTINUE . : .
100 CONTINUE
00 3090 K=114%
CPN{K)=APNIK) -
, PM(K)=APM(K)
00 590 JL=l,4
 PPNUK,L ) =APPNIK, L) : o
CPPMUK L) =APPMIK,L) , )
‘300 COANT INUE T
RETURN -
END -
SUSROUTINE hBCb(h UcNI)
IMPLICIT REAL*E(A-HsU~Z)

"

S S



]64. N

- DIMENSTON UIN) ,

UIMFNSIUN Lidg4) oBlas8) oAl 2494),06(4) . I

DI MENSTUN APN(4,vAPM(ﬁJ9APPN(414)'APPM(4'4)

OIMENS TON AUPN (490 ) s AUPM (498 ) s AUPPN( 444, 3) ,ADPPMH."-M
LJMMUN/XQM/PN(Q)'PPN(QQ“’vPP(Q"PPM(4,“)
LUHMUN/UXNM/DPN(4OW,'DPPN(41498,QUPH(Q'8) UPPH‘Q.“ 8)

COMMUN/FINITE/ ¢

LA
.a !

w

.

COMMUN/NCHKZ TP KINT.

L OMMON/
CGMMUN/

COMMUN/ BNUCUNZBND(1GO)
CUMMUN/SPHINB/L:P(#O).NPS(QO):NULb(QJ)

Iii=1
I1e=1

NP=N/4

KUUNT 2=
KUUNT=1"
oy 500

FY=UATANC(U{4% 1= L).((¢+u14¢11)» Ly

CF=pC0Ss

SE=USIN(FI)
Gl1)==-X{1)

T Glz)=-2
GU3)=-XM(II*(L.+UC4%1)) = SRR
Gl4)=aM(I)*Ule®I-1) . . . e

100

\u(«)-u(«)ou~nv~(4;
10 CONTINWE o

IF(]atw

-~
-

POADS Z( . l)yX(cl)nXﬂltl)
IeNL/IG (100)

i
I=1yNP

(FI)

NP) . CU TE 100

CCALL NMERILNIGULoNGO £ f Ly

CALL ONMP (1,UyNoNI) '*»“,~ S R

GlA)=G(

LyeReMLL) j -

GlLI=0 () +HEPNL{L) .

Gli)=ul

G(a)=G(4) +H*PN(2) . o | L
IF(LeEGal) CGUTO Ao S

Sl Lae
G(zi&éﬁ

ula)“Q(

DU <O
Dy 200

145 b(d*&-iF'C(Z*K-L)*H*(APPN(K‘L.&)*U(lI-9)t(APPM(K0£'L1°APPH(L KOZ))

[1=4%l¢2%L .
IF{1.EQuNP) GO TO 140

S1+H®UPN(3) -

. . ‘ ' . ‘ o .4..‘."
3)¥HPML2) SR S .ig!i.

1)+H~APN(:)

) +HEAP M (4)

L=1.4‘ L

*ﬁf

GI2¥K=1)=Cl2oK~1)+HE(PPNI(K, L)'b(ll 5)+(PPN(K.L)*P?H(LgK))‘U(II—»))

G(2*K)=

G(Z*K)tP*IPPN(KcLJ‘UIll~4l+(PPM(L,K]-:Eﬁ(Kf¥,)*U(ll 5)1

IF(l.cQel) GO TG 290

i *U(I1-8M °
' b(d*k) G(¢¥K1+P*4APPN(K+Z.L)*UI!l-&)*(APPH(L K¢2)- APPMQ&#Z.L))*
1 e . U(ll =91 R S
200 LUNTINUL . g oL Py ) ”/ff_

Y

~



ﬂ? B, 5w w . . . .
3 L : e .. 165 ¢ S
Lt S R | g

A8 AR, NE oNPS (KULAT) Dith0) 10 “cel T

: kL = NDEGLRLUNT) s -

o eu T (celycalvecaladl . o : W

Yl Gl = u(1)+Lkr(K0LNT)~U!«tl-3) o ’

& oU TC oib . R ' .
24 GleiEsl ) +LSPIRLINTI®OL4®T =) VN : - Wy D
ST G0 TU 2240 T ’ U

S des uls)E b(J)fer(kGUNf)‘fl'(l.*u(ﬂtl)) L : Y
ot ulw)5e(4)mESPIKTUNT.ISF LYY L4#1=1) . ‘ e
" &uzg«”&cuwr KUUNT #1 L , S o ER

- B TCc 1Sy 0 . . . fgil o

. 20L CONTINUE ‘ ~ S e

; DJ 10 K= Lo @0 ) ' Bl o L
L=a=-K : : S
. u(h)—u(h)*({.—lo(Q‘1-L))+(U(4*l L)—bNU(«*l—L))'lb(ﬁ*l Lo \
2?0 CuNFINUE , , . R
U0 3uu Kebyd . L _ o R A
0U 590 L=1l,4 : S o o S
R R\ DAL YT S VP P A : _ ‘ Lo T
CoLe=tLlvad e - [ i¥ "
PFUleGad), TGU-T0 310 L
CloxKoLaL)® H*(ADPM(KfZ.L)*AFPNQK*Z.LL)‘(L*lND)t(Q'PM(KtZ.LL)-‘ o~
1 © T aPPMILL,K¥Z)I=IND) ¥ ¥ . W
CLL2ZBKGL)=FR(ADPNIK 43 L) +APPNE o¢.LL)*lNu+(APPﬁ&k&.K+¢)anvvan+..

SL LALLM ECL=INDD ) S G R . s
W0 sUivK=isL)sCe - o i R e e e T ,
- Bl*RyL )= 0.,. N e A IR '

'&.  1Flla tu{bp) Cu, TO 320 . *“ * o AR e

‘ aﬁ-~K~ L= H*(JPM(N.L)*PPNtK.LL)*(t—!ND)#(PPM(K.tL)-.m (ut;x)lv L
ok o IND ), ,;ﬁn;

R B(c*K i) = r*(uPA(K L)*PPN(K.Lt)'INU#JPPH&LL.«)-PPH(K,LLl)‘(L*INU)l
(; . IF({lecGel) - GL TO 330- L et L
320 BlogK=1,L)=B(2%K- L.L)fH*lAD Kt;.L*é)*APPN(K*Z.LL*Z)*(L lND)* s
1 [ARPMIK+yLL+ ) =APPNLILL #Z KeFYSIND) e ‘
b(:un.L) B(2-KyL)+H* (ADPN oz.L*«)»A#VN(Kog,Ltoz)t1N0+‘ o
(APRMILL#2¢K+2 ) =APPMIKSE Lozbttti-muu)) A
JJO%IFtl.tu.NP) ‘GL TO 340°° ‘L
- A(&‘h-le) ﬂ‘(LP&(K:L#4)¥PPN(K.LL+¢)*(L INDY+(
1 PPM{LL#2,K) 1 *IND) ‘.
rily L)-H»(Jvn(x L+4I*PPAIK.LL+4)'IﬂD#(ﬁPN(LLOZ.K)— . L
1 o PPM«&.LL+23!#(L =INU))T S - ' .
340 LUNIINL: : N . o S . L.
DO 300 M=zly4 e "..'*'Vﬂﬁ" T
S Ilmavlea®M 5 S
e IF(IEGLY) . GU ro 3507, S ' ST Ce
. jL(z*K-lpLisutzwk-qulﬁH¥(AOPPN(KwaH.LI‘Uill-9l+ R
L LADPPM{K#caMyL ) =AUPPMIM¢K+2yt:) DOULTI-8))." e
C(4#K.LI=C(Z*K,Ll+H*lADPPN(K+¢.MqL)*U(ll-8)* e e T ~
(AuPPMfN:KOLoL)-ABPFM(KOZyHgkﬁi‘U(11-9)l co e Ll
Jb” xrtx eu.upr' GU TO 360 N R /__,v; e . -

N(Q)Lu+‘)-'
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7 G 166

‘.
..', N .
g . - }Q

3

Bletk=14L)=cle®K- L|L,+H‘(UPPN‘KQ

MoLIRUCTE=5)+

1 (DPPM{K My L) =UPPHMLM Ky L)) RULLI=4)) ,
BUoHK L)SE(2¥K L) +HEEDPENIK My L) UL TT=0d e =
i FRY MM KoL) PMIK M.L))vu(lx ))) ‘ R
xhtﬁbtu. L osu Ju 570 “ S
S 3000 Rk .L) Stifad I'L)*it(ALPPN(th.M.L*Q)*U(Il 9)+
i \“'(thPM(IH" At b ~AUPP MY MR +2ZyL+4))FULLT-8DY
- p(';#,x,uab’l' He (AUPPN{K4 2 MoL @) *U(TT-8)+ -
BTN, L +4 ) <ALPPM K+ Mo L+aTI#Y(TT-90) . ,
: :?o‘éﬁm@x‘gg? o Y .,
. AGK=L L A=A (¥ K1y L) #H® (DPPN (KoM, Learsufr1- 5)e
1- TORRMUR, My L +4)=DPPM (MoK oL4a) ) $ULLI-4) ) - 8% |
(onn ST RN Ko L) +HE (UPPNCK (Mo L) 2ULLI=4) s .
1 < {OPPM ,Lea) ~UPPHIK n.L+4))~uell :)) ' -
2Jd CunTINUE R
,o(a,ﬁ)=b(3'1)—lﬁl() o vl e
. Blagod= 3“01’*)" ( )» - RN
VO, ps0 ;L2Llh9 “f“} Bi v . g bt
o dk= wtl‘t 5 R B 200
L A meRal e T o SR
lF(Iﬁmu.NPO R (VREY & TR ot N 3
AL eMI=ATL M ECI=ERLIL Y . o Ak
“}J b(LoP)—B(('Mb‘(l SICLILRES Y i e
SRINE G DN SN ~u(L.u)=dﬁL.nt+xu(xm) PR o
*"IF(l.Eu.zt . 6L TQ. «0Q L BTy
L(L#Nl‘C(L.P)*ll fb(lLi). o Voo A ke S
%‘.ummuc - ok
IF'(I.NE. NPS(KDLNTZ») U yu 428 - .8
"‘,; KK = MU&G(KUUNTZ) g o
*ﬁ' GU TR 14c004c30424008K . & ) - tew,
‘ q;ull,l) =3 (51, +ESPEKLUNTZ) =, 37 T A
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- APPENDIX E

'

~CALCULATION ‘OF NET. CHORD ROTATIONS

The top chord compression member of joists AX05 and AXOl
have been investigated under various boundary cond&tions Net chord
rotations at both ends of the top chord compression member need to.be ’
calculated for the specification of displacement and spring boundarx R >
onditions For displacement boundary conditions the net chord rotation ,"
> s applied at both ends, while for spring boundary conditions the spring

‘ 'stiffness is calculated~on the: basis of the. caltulated net chord

" rotation.- Calculation of the net chord rotations and . spring. stiﬁjnesses

are il lustx:ated below

E l Calculation of Net Cho

: “The. length of the ] ;chord member = 22 96" B
T From Figure 5. S(b) and Table 5. l T *'t o -
(a) Vertical deflection at the right support &us) = 5756908 _f
~ (b) Vertical deflection at the Teft support (us) - 4625646 .
*(c) Relative deflection = .1131262 - - R “;
(d) thion of. chord due to this relati\:?de*i’t&“on = —%—3—]9%& o o
‘ .~ | o | : : o | ”;,{ l

St . X 004927 R
- e ' : oo
.“-f(e) Absolute rotation of r\e Teft support (sg) = =.009882 . .

?’ (f)*Absolutwrota n of the right. support (95)” 002]092;‘ o ? .
‘9) Net rotition fom the chord at the left support. (9'5) DA
- o\ = "10]09852 ‘|' 1“”‘927 . . msoSaz o .‘. ) .

‘. \ PL I . "‘
R . .



v yw

(#3
e

~(a) Relative deflection = 5159207 - 4091547 - 166766 B
"(b) Chord rotation due to relative deﬂectioﬂ:- 5T " .0046
- . \} .

‘ . (d)' Net rotation from the

175

A '
(h) Net rotation from the chord at the right sup’port (6'6)
= -.0021092 + .004927 0028178

I

E-2 Calculation of Net Chord Rotation and Spr1ng,5t1ffnéss in Joist AX01.

Length of the top éhofd member (2) = 2317 fnch
From Figure 5.4(b) .and Tab’le 5‘1

. 106266

(c) Net rotation: from the chord at the left_s(wport
) IR - - . v A

-.0110928 + .0046 =

*ﬂ*-=,4'oe17483 +'~oodb =

oba_ned as shovm belon. _ | B ’
’(e), Springgstiffness at left support (K5) : : P ' -

s ﬂ“m{ o ) P
& ’ A S '.-.‘f'.-' 'm . ' :
. .o ) } . . . o ) * N s nar’ SNE '
_"Moment.at goint 5 for: member 4 2N S
- Net rbtat on at the left support ' S .

;;'f'j,ff-‘ : o o
(f) Sgﬁng s&ffness at right support (Ks) @"‘ R r."._ A
- Momentfat*foiSt"siforfmeﬁbeilss'-ﬁ? :
- Net rotation at the right support .
- el ! . .
J S a0 i .

L] .
"\.vr"? ) o
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" From Table 5.2,

‘Kg

-KG.

- 2205 s = 339606
i

= 70064928
L18s
- ““8“7%2 517

64873

in-1b/radian

.1n¥]b/ra31an__
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