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Chapter 1

Introduction

1.1 Statement of Research Problem

Program verification is the process of proving or disproving the correctness of an implemen-

tation with respect to a certain specification. It can either be specifically aimed at verifying

the code itself, or an abstract model of the program. The proving process is usually done

by providing a formal proof or, when disproving it, by providing further debugging infor-

mation. Two approaches are typically used in program verification: theorem proving and

model checking.

The theorem proving technique is based on deductive logic. A statement declaring that

the program specification is satisfied by an implementation is formalized as a logic formula.

Based on deductive rules from that logic, a theorem prover can be used to prove or disprove

the formula. Theorem proving has the advantage of being able to handle programs with

infinite states, but in most cases it is only partially automated and needs human guidance.

In comparison, model checking can be used with full automation because it verifies a

system by exhaustively searching all possible states that a system could be entering. It is

widely used for automatic verification of hardware or software systems. When doing model

checking, the model checker either confirms that the given properties (usually specified as

temporal logic formula) hold or reports that they are violated. In the latter case, it provides

a valuable counterexample which can be used to find the error.

Since model checking is based on exhaustive exploration of all possible system states, if

the number of program states is too large to be explored in a reasonable time, the model

checker will react as dead without providing any useful feedback. This is called the state

explosion problem. This problem is worse when conducting software model checking because

software systems always manipulate very large data sets which may magnify the number

of program states. In order to make model checking practically feasible, it is essential to

reduce the size of programs and models to a manageable level.

Model checking is a feasible technique for verifying control-intensive properties because
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these properties only needs limited data. In software systems, there are certain program

properties which are control flow intensive. For example, when verifying a resource leakage

problem, we only care whether the opened resource is eventually closed; how that resource

is manipulated in computation is not of interest. However, a proper program abstraction

process is still needed to make the model checking practical.

In this thesis, we focus on model checking those event sequence related program proper-

ties in which data are less important; that is, we do not care what the actual data value is;

we only care if certain events are executed at the right place at the right time. Still, there

are two main obstacles in applying this approach:

• How do we detect all possible system states including those states introduced by

implicit control paths such as exception raised control paths?

• How do we handle the state explosion problem?

Exception handling is the main source for generating the implicit control flow. In most

advanced programming languages like Java, exception handling provides a structured way for

detecting and recovering from abnormal conditions. Some examples of abnormal conditions

are: data corruption, precondition violation and environmental errors. If these abnormal

conditions are not properly handled, they can cause an error or failure of the system. It

has been reported that failures due to exceptions are estimated to account for two thirds of

system crashes and fifty percent of system security vulnerabilities [62].

Generally speaking, it is difficult to protect a system from the effects of abnormal con-

ditions because, by nature, all unusual occurrences cannot be anticipated when the system

is designed. That is also the reason many security vulnerabilities are caused by exception

related attacks. From this point of view, every program verification tool should consider

the impact of exception handling on the system.

For the state explosion problem, most researchers agree that the best way to attack it

is by program abstraction. Program abstraction constructs an abstract model based on the

original program. On the one hand, the abstract model is built to be small enough to make

model checking feasible. On the other hand, it is constructed to be large enough to cap-

ture all property-relevant behavior. To make model checking practical, efficient abstraction

criteria should be provided for each checkable property.

This thesis focuses on how to solve these two main obstacles. We present a model check-

ing based program verification framework on which several techniques have been deployed to

solve these problems. The feasibility and effectiveness of this framework are demonstrated

by three case studies.
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1.2 Overview of the Work

We present a model checking verification framework for event sequence related program

properties. The verification process can be divided into three steps:

• First, the investigated program undergoes static analysis and is instrumented so that

all exceptions can be raised. Since we are concerned about event sequence related

program properties that is indeed control flow determined, presenting implicit control

flow such as exceptions are essential for the verification process. By using static anal-

ysis and program instrumentation, all exceptions can be presented in our framework

with full automation. This gives us some confidence that our verification is complete.

• We then deploy an aggressive program slicer to perform a source to source program

transformation. The program slicing process not only removes irrelevant program con-

structs but also conducts data abstraction, loop abstraction and predicate abstraction.

Compared to the original program, the sliced program has a significantly smaller state

space to explore.

General speaking, we say a program P is event type T relevant with respect to a

certain temporal logic property S, if and only if when with an abstract program Pa

which preserves only control flow related type and event type T from program P , we

have P ! S ⇔ Pa ! S. For certain event type T and program property S, program

P can be safely abstracted to program Pa. Our framework defines program slicing

rules that can transform the original program P into Pa where the program Pa is

still executable but with fewer program states. Thus model checking program Pa is

considered to be much easier.

• Finally, we adopt the sliced program as our program model and fed it into the back-end

model checker. The model checking process can systematically exhausts all possible

execution paths for the given simplified Java program. If there is any property viola-

tion, the model checker dumps out an execution path leading to the error.

We use executable specification to specify event sequence related program properties.

Our executable specifications are written in Java and is used to regulate the designated

behaviors of program events. Each event under investigation needs to have an executable

specification counterpart. The new implementation, while executable, only specifies the

event property constraints.

In this thesis, we present a model checking based verification framework, called Fex. Fex

is a semi-automatic tools in the sense that during the whole process a manually prepared

configuration file supervises the verification. This file provides critical information which is

essential for the verification process. This information includes things such as the types of
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events that are considered as relevant, the types of exceptions that can be ignored and the

scope of the whole application that we should verify. In fact, this configuration file is used

to build up the abstraction function to guide the instrumentation and program abstraction.

Three case studies have been done to demonstrate how our framework can be applied,

and whether it can be helpful in practice:

• Exception reliability verification

• API conformance verification

• Java access rights verification

These properties are all event sequence related program properties. For exception reliabil-

ity, the corresponding events are exception raising and handling. For API conformance, the

corresponding events are these API methods we are interested in. For access rights verifi-

cation, corresponding events are permission granting and checking operations. Therefore,

these tasks can be handled by Fex.

False alarms are always a big concern for verification tools. Theoretically, Fex may gen-

erate false positives due to its over-approximation of the behaviors of the concrete program,

e.g. the program abstraction techniques we adopted may introduce program behaviors which

may not be presented in the original program. However, in our experiential use of Fex, no

false positives are reported.

1.3 Summary of Contributions

This thesis is motivated by the desire to have an automatic tool for detecting event sequence

related program errors. More specifically, it proposes a model checking based framework

for Java programs to detect potential erroneous event sequences. A summary of the main

result and contributions are as follows:

1. The design and implementation of Fex forms a large fraction of this work. We present

a novel, property-guided, program abstraction technique which conduct both data ab-

straction, predicate abstraction, loop abstraction and program slicing to produce a

simplified program for checking. We also integrate a program exception instrumen-

tation procedure into our verification process to ensure no implicit control flow is

missed.

2. We use executable specifications to describe event sequence related program proper-

ties. Previous widely used formalisms like finite state machines can be automatically

translated into executable specification and executable specifications can be used for

describing more complex program properties such as concurrent modifications and
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resource leak problems. Executable specifications also provide as an extra program

abstraction technique that lets us focus on what we are really interested in.

3. The feasibility and the potential usefulness of the approach are demonstrated by ap-

plying Fex to several verification tasks. Both the advantages and limitations of our

methodology learned from the experiments are reported. These lessons are important

for both the use and future development of the Fex tools.

The rest of this thesis is organized as follows:

• Chapter 2 provides the necessary background for understanding our work. We first

introduce the general idea about exception handling and the exception handling mech-

anism adopted in Java programming language. The basic ideas of model checking

technique are surveyed along with a brief introduction to the Java Pathfinder model

checker. Finally, we describe some state of the art program abstraction techniques.

• Chapter 3 presents the design and implementation of Fex, which is used for exception

reliability verification. The program exception instrumentation process and the pro-

gram abstraction techniques adopted by our program slicer are introduced along with

the final model checking process. Appendix A presents the technical descriptions for

the Fex implementation and Appendix B gives a short description for the redundant

exception handler detector which is based on basic Fex.

• Chapter 4 presents the extended Fex, which is use to verify event sequence related

program properties. The Fex executable specification which is used on event sequence

based program specification is introduced and an updated program abstraction tech-

nique is presented. The advantages and limitations of our methodology are also dis-

cussed.

• Chapter 5 and 6 present two case studies on the application of extended Fex . Chapter

5 is focused on API conformance verification, for example, to demonstrate that certain

API is correctly used in a given application. Chapter 6 describes how Fex is used for

Java access rights verification. That is, to verify if there is any possibility that an

attacker can access data or services without proper permissions.

• Finally, Chapter 7 summarizes the main contributions of this thesis and outlines future

work.
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Chapter 2

Background

2.1 Exceptions

Exception handling is introduced in programming languages as a structured way for de-

tecting and recovering from abnormal conditions such as: data corruption, precondition

violation and environmental errors. If these abnormal conditions are not properly caught

and handled, they can cause an error or failure of the system. Exceptions can help the

programmer in simplifying the program structure and handling errors systematically. How-

ever, the use of exceptions can also be error prone, leading to new program errors and

making the code hard to understand. For example, unrestricted use of exceptions often

leads programs into an unanticipated state which is difficult to recover from. Also, the new

control flow constructs introduced by exception handling may be easily misused. It is an

important aspect of program correctness that a program is guaranteed to be reliable under

exceptional conditions. A common solution to this problem is using reasoning techniques

about programs to guarantee that all exceptions are handled properly.

2.1.1 Exception Handling Overview

Before exception handling features were added to programming languages, the common

programming techniques used to handle abnormal conditions were return codes and status

flags [13]. The return code technique requires each routine to return a value on its comple-

tion. Different values indicate if a normal or rare condition has occurred. The status flags

technique uses a shared variable to indicate the occurrence of a rare condition. Setting a

status flag indicates that a rare condition has occurred. Both techniques have noticeable

drawbacks. First, the programmer is required to constantly test the return values or the

status flags and there is no guarantee that all the exceptions will be handled eventually.

Second, the exception handling code blocks are scattered throughout the code, which makes

the program hard to read and maintain. Third, the return values and status flags provide

only partial and local information about the erroneous situation, which makes recovery op-
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eration a difficult task. In this section, we will introduce exception handling concepts which

can alleviate all the above problems.

Terminology

We base our exception related terminology on the work by Goodenough [39] who introduced

the exception handling concepts in use today.

Exceptional conditions are abnormal states in the execution of a program. When handled

improperly, they may lead to system failure or crash. An exception is raised by the system

when such an abnormal state is detected. The Exception raise point is the place where the

exception is raised. Exception handling is a programming language construct designed to

handle run-time errors which may occur during the execution of a computer program. An

exception is handled when a certain block of code associated with that exception is executed.

That block of code is called an exception handler. A code fragment that is labeled has a

certain scope and is followed by corresponding exception handlers is called a guarded block

or protected region. When there is no suitable handler for the raised exception, the exception

must be handled by a default exception handler or passed to the caller. This mechanism is

called exception propagation.

Example in Figure 2.1 demonstrates Java-style exception handling. IOException and

FileNotFoundException are examples of exceptional conditions. The statement at line

5 is a possible exception raise point for exception FileNotFoundException. The method

readLine at line 6 is a possible exception raise point for exception IOException. Line 9 to

line 12 is an example of exception handler. This handler can handle FileNotFoundException.

Code fragment from line 2 to line 8 which is surrounded by try { } is an example of a

guarded block. Since there is no exception handler for MyException that is explicitly raised

at line 7, this exception will be propagated to the caller.

Classifying Exceptions

Goodenough [39] classified exceptions into domain failures and range failures. Domain

failure occurs when a precondition of an operation is violated. For instance, the operation

is expecting a number but got a string instead. To deal with domain failure, the callee must

be given enough information about the failure so that it can modify the inputs to satisfy the

preconditions. If the callee is unable to fix the problem, it should be permitted to report the

problem to the caller or simply terminate the whole program. Detailed information about

the failure and the current execution stack should be preserved.

Range failure occurs when an operation either finds it is unable to satisfy its post-

conditions or decide it may never be able to satisfy its post-conditions. For example, a read

operation does not satisfy its post-condition when it finds an end-of-file mark instead of a
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0 public void test() throws MyException {
1 ...
2 try
3 {
4 ...
5 BufferedReader br = new BufferedReader(new FileReader("MyFile.txt"));
6 String line = br.readLine();
7 if (cond) throw new MyException();
8 }
9 catch(FileNotFoundException e)
10 {
11 System.out.println("File MyFile.txt not found.");
12 }
13 catch(IOException e)
14 {
15 System.out.println("Unable to read from MyFile.txt");
16 }
17 }

Figure 2.1: A Java-style exception handling example

record to read, or a file opening operation can’t satisfy its post-condition when after several

attempts, it still can’t get the correct file-name as the parameter. To deal with range failure,

one needs the ability to abort the current operation or even terminate the whole program.

Sometimes as a side-effect of terminating the operation, it is necessary to undo all effects of

attempted steps. Under some circumstances, when the failure type and the corresponding

solution are well known, the ability to try the operation again is also needed.

Leino and Schulte [57] consider Goodenough’s categories of exceptions to be sometimes

confusing. They replace the term domain failure with client failure and range failure with

provider failure. Furthermore, they divide provider failure into two subclassifications, ob-

served program error and admissible failure. Observed program error refers to the situation

where intrinsic program error such as array out-of-bound or out-of-memory errors occur. In

general, there is little that can be done to repair the situation when one of these errors is

thrown. The common reaction would be termination of the program and reporting details

about the exception and current execution stack. Under some circumstances, the ability to

unroll the operation may be required.

On the other hand, admissible failure refers to an exception where one can recover from

the failure state. For instance, an operation is intended to read bits from a network channel

but the received bits contain too many parity errors. When one of these errors is raised,

enough information about the error is usually available to make the recovery job feasible.

This mechanism is used often when failure is expected–but only rarely–so that one can

separate the normal handling from the exceptional ones.
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2.1.2 Exception Handling Mechanism in Java

As an important control flow technique in language design, an exception handling mechanism

needs to meet several general objectives:

• Provide built-in mechanisms to change the control flow when an exception is raised in

order to avoid extensive testing of return values and status flags.

• Categorize all the exceptions into groups and hierarchies to make them easy to manage.

• Provide a mechanism to prevent any incomplete operations and thus keep the system

in a consistent state.

In this section, we discuss the exception handling mechanism adopted in Java [4].

In programming languages, there might be several suitable exception handlers for a

raised exception. Only one should be picked and executed. This mechanism is called

handler binding. Java adopts semi-dynamic binding mechanism. The local handlers are

bound statically to the guarded block. If no handler is found for the exception locally, the

exception will be transferred automatically to the higher level caller along the control stack

until a proper handler is found.

After the exception is raised and the corresponding handler is executed, the program

should continue its normal execution. This is a semantic issue concerning how to determine

the continuation of the control flow. Java adopts the termination model and uses try/catch

keyword to define guarded region and exception handlers. For the termination model, the

control flow transfers from the raise point to the corresponding handler according to the

handler binding policies. When the execution of the exception handler is completed, the

control flow continues as if the incomplete operation in the guarded block terminated without

encountering any exception.

In Java, only subclasses derived from class Throwable can be considered as excep-

tion type, see Figure 2.2. The class Throwable has two predefined subclasses Error and

Exception. Subclass Exception also has a predefined subclass RunTimeException. All sub-

classes derived from Throwable can be categorized into two groups: The first group contains

these classes derived from either class Error or class RunTimeException. They are called

unchecked exceptions. The second group contains these classes derived from either class

Exception or directly from class Throwable. They are called checked exceptions. Using

Leino’s terminology, unchecked exceptions are observed program error. They include those

exceptions that ordinary programs are not expected to recover from (for example, virtual

machine error, null pointer error, etc.). Checked exceptions are actually admissible errors,

they represent those abnormal situations with enough information to recover.

Software systems should be kept in a consistent state, no matter whether the code

completes normally or is interrupted by an exception. In this sense, it is required to perform
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    Throwable

RuntimeException

      Exception         Error

Figure 2.2: Exception Class Hierarchy in Java

some clean up actions to keep the program in a consistent state before the termination of the

system. Clean up code should release allocated resources, undo some undesired operations

or restore the program. Java provides programmers with the finally syntax feature which

can be used to define clean up actions. The semantics of finally is: the finally block will

always be executed at the end of the corresponding guarded block, no matter whether the

exception is raised or not. In the case where the guarded block raises an exception that

is not caught by its local handlers, the exception is propagated but the finally block is

still executed prior to the propagation. For example, in the following code, no matter what

happens in the try block and the corresponding exception handler, the resource stream will

be eventually released due to the semantics of the finally block.

public void someMethod(File file) throws Exception

{

FileInputStream stream = new FileInputStream(file);

try {

// process stream contents

}

catch (Exception e) {

// do something

}

finally {

if (stream != null) stream.close();

}

}
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2.2 Model Checking

Model checking [21, 50, 64] is the process of checking whether a given model satisfies a

specified property by exhaustively searching all possible states that a model could enter.

The system under investigation is often modeled as a state transition system M, where

nodes represent the reachable states of the system and edges represent state transitions.

The properties that designers wish to impose on the system are presented as logical formula

ψ which usually fall into two categories [56]:

Safety: properties that state “something bad never happens”. A system satisfies

such a property if it does not engage in the proscribed activity. For instance, a typical

safety property for a coffee-machine is that the machine will never provide tea if coffee

is requested by the user.

Liveness: properties that state “something good will eventually happen”. To satisfy

such a property, the system must engage in some desired activity. An example liveness

property for the coffee machine is that it will provide coffee eventually after a sufficient

payment by the user.

Although informal, this classification has proved to be rather useful [53]. The two classes

of properties are almost disjoint, and most properties can be described as a combination of

safety and liveness properties. Logics have been defined to precisely describe these type of

properties. The most widely studied are temporal logics [32] which support the description

of system behaviors over time. Variants of temporal logic differ in the connectives they

provided and the semantics of these connectives. The main temporal logics used currently

are CTL [19], LTL [60, 61] and CTL*[18].

In order to model check a system, the system should first be defined by using the defini-

tion language of a model checker, thus providing the model M. Then the program properties

should be coded by using the specification language of the model checker, thus providing

the logic formula ψ. The model checker then performs a check on all behaviors of the model.

The result of the model checking process either confirms that the properties hold or reports

that they are violated. In the latter case, it can, where one exists, provide a counterexam-

ple which provides valuable feedback illuminating the error. Compared to theorem proving

techniques, model checking has the advantage of being automatic and cost effective, albeit

it is limited to finite systems with relatively few states.

There are two types of model checking:

• Explicit state model checking: Originally, the algorithm for solving the model

checking problem represents the transition system explicitly as a labeled, directed

graph and is therefore called explicit state model checking. The algorithm performs
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a search strategy (usually depth first search) through the states of the graph. The

search is performed in the forward direction state by state (some reduction techniques

can be deployed to skip some states), from a state to its successors, unless the search

strategy requires backtracking. Thus, it is straightforward to assess the number of

states encountered during the verification. Since a transition system could contain

millions of states, abstraction techniques are essential for the explicit state model

checking.

• Symbolic model checking: For explicit state model checking, although the model

checking algorithm is linear in the size of the model, the model size itself can be

exponential in the number of the variables, which is called the state explosion problem.

Efficient data structures such as the Ordered Binary Decision Diagram (OBDD) are

used to attack this problem. In symbolic model checking[63], the transition system is

encoded by using ordered binary decision diagram (OBDD) [12].

A OBDD is a directed, acyclic graph which is used to represent a Boolean function.

Each state of the transition system is encoded using OBDD variables. A set of states

is encoded by a boolean function and transition relations are encoded as sets of pair

states. OBDDs have become very popular for model checking because they offer the

following features:

– OBDDs are often substantially more compact than traditional representations of

transition systems.

– Every boolean function has a unique, canonical OBDD representation so that

state equality check can be performed in constant time.

– Boolean operations such as negation, conjunction, implication etc. can be imple-

mented with complexity proportional to the product of the inputs.

In general, the model checker requires a closed system to analyze which means the

system and the according environments that the system may manipulate must be provided

before conducting the model checking. However, the environment is often unavailable and

therefore needs to be created. Currently, the model checker user often needs to construct the

environment by hand. Since manually presenting all relevant environment is an error-prone

job and sometimes needs domain knowledge (which is impossible to obtain if the domain

expert are not involved), tools and methods are needed to assist in the construction of

program environments.

12



2.2.1 Software Model Checking

Since model checking essentially proves or disproves a property of the system by exhaustive

enumeration, it was first applied to small systems, protocols and hardware related verifica-

tion. The method has been used successfully in practice to verify complex sequential circuit

design and communication protocols [31]. Inspired by these applications and increased com-

puting power, there is a new trend to use model checking techniques to verify real software

systems via so-called software model checking [43].

Conventionally, model checking software systems is primarily concerned with design

validation. That is, one first builds a formal model based on the software design, and then

this model, combined with a set of temporal formulas which reflect the desired software

properties, can be fed into the model checker. The model checker can automatically validate

the design or produce a counterexample which is a trace of erroneous behavior. Once the

design is validated, the actual implementation can be written based on this verified design.

In this process, software errors are caught earlier in the development life cycle.

However, verifying software design only is not enough. There is still a big gap between the

software design and the final product. The final implementation may still have subtle errors

despite the existence of careful design. In fact, errors such as deadlock are often introduced

at the coding level where designs typically do not cover. In recent years, there has been

increased interest in model checking the software program itself. Several software model

checkers have been developed such as Spin [46], Bandera [23], Bogor [72], JPF [58], Verisoft

[38], Modex/Feaver [48] , Zing [3] and Slam [5]. Some of them have been successfully applied

into industry level program verification and subtle program errors have been identified [69,

10, 14].

Model checking of software written in a general purpose programming language can be

done in two ways:

• Extract the model from the program, then verify the model with a model checker.

• model checking the program directly.

Each choice can have a number of implications. By translating the program to a modelling

language acceptable to existing model checkers, we avoid the need to re-implement the ex-

isting model checking techniques. However, the limited expressive power of the existing

modeling languages often makes this process more difficult than it sounds. Many language

constructs of general purpose programming languages cannot find a counterpart in the mod-

elling languages and hence need special treatment. For instance, for these features that are

difficult to translate, Modex/FeaVer requires the user to define the translation/abstraction

rules. Otherwise the default action will simply put the code in print statements which are
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not part of the model. By doing that, the safeness and completeness of the model checking

process can no longer be guaranteed.

Adopting the second approach obviously requires us to build everything from scratch.

However, building the new custom-made model checker can have the advantage of high

coverage of the destination program language features. It also gives us the opportunity

to invent and experiment with new model checking techniques that may be suitable for

software model checking. Java Pathfinder (JPF), for example, uses its own Java virtual

machine and therefore can handle all the language features of the Java program. Is is also

an ideal experiment platform for various program abstraction techniques. Our verification

framework Fex uses JPF as the back-end model checker.

2.2.2 Java Pathfinder Model Checker

Java Pathfinder (JPF)[43] is a software model checker which handles Java byte code directly.

This model checker is different from others in the sense that it consists of its own Java virtual

machine (called JVMJPF) that executes the byte code and a search component that guides

the execution. By modeling the snapshot of the JVMJPF into a concise state representation,

one can use explicit model checking algorithm to systematically explore all the potential

execution paths of a program to find out potential errors. So far JPF can search for dead-

locks, unhandled exceptions and assertion violations, but the user can use JPF’s extension

mechanism to write their own property classes.

The state explosion problem, a common problem associated with explicit model checking,

is tackled by JPF in several ways.

• JPF adopts the state collapse method [47] for storing complex virtual machine states

and uses an efficient hash function for fast state comparison.

• The virtual machine of the JPF is carefully designed so that symmetry reduction [51]

and partial order reduction [17] can be used to reduce the system states.

• Several abstraction mechanisms such as Model Java Interface (see below) is supported

by JPF.

JPF tries to overcome the systematic scalability problem of software model checking by

providing application or property specific abstractions. As a consequence, it provides two

major extension mechanisms, namely Search/Virtual Machine Listeners and Model Java

interface (MJI).

• JPF provides two Search/Virtual machine Listeners allow the user to communicate

with the JPF internal state model and get notified when special events happens. This

is achieved by using the Observer pattern [37] that lets the concrete observers (listen-

ers) to subscribe to certain events inside JPF. These events can be a specific byte code
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instruction execution or the search forward/backtrack steps. Search/Virtual Machine

Listeners provides a convenient way to add new property checks or change search

policies. For example, if we are interested in verifying that there is no way that an

FileNotFoundException could be raised, we can rewrite the event exceptionThrown

from VMListener so that every-time an FileNotFoundException raised, the search

stops and an error report is submitted. The new functionality is not limited to add ver-

ification properties. It can be anything that uses JPF’s systematic program execution

approach. For example, it can be used to produce code coverage metrics.

• JPF also provides a mechanism called Model Java Interface (MJI) to separate and

communicate between the JPF controlled virtual machine (which is state-tracked) and

the host virtual machine (which is not state tracked). MJI can be used for the following

usages:

1. MJI is mainly used to intercept native methods. Since JPF cannot reason about

native calls and therefore it must have models of these native methods instead.

These models are created using the MJI and are used to replace the actual na-

tive method. The model developer is responsible for abstracting the important

characteristics of the native call and retaining it through the model. JPF can

then reason about the behavior of the native call by using these models and MJI

mechanism will make sure that the JPF is checking the model instead of the

original native method.

2. MJI can be used to do the state space reduction. For some methods such as

System.out.println(). We know that its execution has no side effect on the

property we want to verify. we can use MJI to delegate the corresponding byte-

code execution into the non-state-tracked host JVM which can reduce the state

spaces need to be explored.

JPF needs a closed system (a system and all the environment it will execute in) to

analyse. The current version of JPF can handle all the Java language features including

commonly used libraries. It also treats non-deterministic choice expressed in annotations

of the program being analyzed. These annotations are added to the programs through

method calls to a special class verify. For example Verify.getBoolean() returns a non-

deterministic boolean value. Once an error is detected, JPF reports the entire execution

path that leads to the defect.

So far JPF can check program properties like deadlocks, unhandled exceptions and as-

sertion violations. It has been effectively used to find errors in a number of complex systems

including the real-time operating system DEOS from Honeywell [68] and a prototype Mars

Rover developed at NASA Ames [11].
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2.3 Program Abstraction

Since software system always manipulate very large data sets, the state explosion problem

is more immediate while doing software model checking. In order to make model checking

practically feasible, it is essential to reduce the size of program models to a manageable level.

It is also essential that the behaviors of the reduces program/models, with respect to the

properties being checked, is exactly the same as the original program/models. Advanced

model extracting techniques must be applied to satisfy the above two requirements. In

general, the goal of these techniques is to reduce the state space of the system that the

model checker needs to analyze, while still preserving the interesting program behaviors.

Most researchers agree that the best way to attack the state explosion problem for

software model checking is using program abstraction. Intuitively, program abstraction is a

general approach which allows one to deduce properties of a concrete program by examining

a more abstract and smaller program model. This abstract model should be small enough to

make automatic checking tractable, yet it should be large enough to capture all information

relevant to the property being checked.

Abstractions can be performed either on program model level (labeled transition system)

or on program source code level. Abstraction techniques on transition system are partial

order reduction [17], symmetry reduction [51], parametrization, cone of influence reduction

[21, ?] etc. Because the space space for a even small program might be extremely large, it

may not be possible to build a transition system for a reasonable sized program. On the

other hand, abstraction on the program source code directly by program transformation

scales well with the program size and is therefore widely used in software model checking

process. In this section, we present several program source code abstraction techniques such

as abstraction interpretation, data abstraction, predicate abstraction and program slicing.

These techniques have been successfully deployed in several software model checkers. In

order to make software model checking more feasible, new abstraction techniques must be

investigated.

2.3.1 Abstract Interpretation

Abstract interpretation [25] is the technique for formally building a conservative approxima-

tion of the semantics of programming languages. An abstract interpretation is defined as a

approximated program semantics obtained from the concrete program languages by replac-

ing the concrete domain and its concrete semantic operations with an abstract domain and

corresponding abstract semantic operations. Abstract interpretation over-approximate the

behavior of the concrete program so that every behaviors of the concrete program is covered

by a corresponding abstract execution.

We present a common abstract interpretation method to provide a flavor of the technique.
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Sign abstraction consists of replacing integers by their sign and ignore their real values. The

concrete domain integer is now replaced by the abstract domain {pos, zero, neg} All

element operations on the concrete integer domain is redefined. For some element operations,

such as multiplication, such an abstraction does not lose any precision: to get the sign of a

product, it is sufficient to know the sign of the operands (see Figure 2.3 part (b)). For other

operations, the abstraction may lose precision. This means that abstract interpretation may

introduce extra behaviors namely behavior which does not occur in the concrete program.

For example, the concrete result for operation x + y when x = −2 and y = 3 is 1. However,

according to Figure 2.3 the result from the abstract domain is undecided (see Figure 2.3

part(a)).

+ neg zero pos
neg neg neg pos/zero/neg
zero neg zero pos
pos pos/zero/neg pos pos

* neg zero pos
neg pos zero neg
zero zero zero zero
pos neg zero pos

(a) Addition (b) Multiplication

Figure 2.3: Abstract interpretation example

Another common abstract interpretation is interval abstraction that approximates a set

of integers by its maximal and minimal values. Thus, if a counter variable appears in a

property, the counter can be replaced by the lower and upper bound limits of the counter.

Detailed introduction and treatment about abstract interpretation can found in [27, 24].

Since abstract interpretation is not specific to any given property or for any given pro-

gram, they have the power of generality. However, the abstract version of the language

semantics often need to be constructed manually, which is considered as tedious work.

2.3.2 Data Abstraction

Data abstraction operates directly on data values and data operations. By abstracting

away some of the data information, data abstraction can create a smaller model. It is often

performed on the program text manually.

We introduce several commonly used data abstraction techniques. The first one is the

arithmetic operation based data abstraction. For verifying program involving arithmetic op-

erations, congruence modulo a specific integer could be very useful. Thus, for any operation

on integer i, i is now replaced by i mod m. Therefore, the original large concrete integer

domain is abstracted down to m elements. Also, when comparing the orders of magnitude of

some quantities, using the logarithmic representation to replace the actual value has proved

to be useful.

Symbolic abstraction is used in situations where the enumeration of the data values

is tedious. For instance, an application might store a set of items as a vector, but the
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specification being verified may only depend on whether a particular item is in the vector

or not. In this case, we can abstract the large number of vector states onto a small set

{ItemInVector, ItemNotInVector}.

In all the above abstractions, the infinite behavior of the system, resulting from the

presence of variables with large domains, is abstracted. The data abstraction is performed

by mapping the data type of the actual system to an abstract data type. For each variable

to be abstracted, the abstract domain and the operations are defined. An abstract model

is then obtained by replacing each concrete variable and operation by an abstract one.

Data abstractions are very similar to the abstract interpretation technique. The dif-

ference between data abstraction and abstract interpretation is: Data abstraction does not

always hold over all of the concrete system’s execution semantics but abstract interpretation

does. Every abstract interpretation framework needs to establish a methodology based on

rigorous semantics for constructing abstraction that is guaranteed to over-approximate the

behavior of the original program.

2.3.3 Predicate Abstraction

The Predicate abstraction technique was first introduced in [74]. The basic idea of predicate

abstraction is to replace a concrete variable by a boolean variable that evaluates to a given

boolean formula (a predicate) over the original variable. This concept can be easily extended

to handle multiple predicates and predicates over multiple variables.

We use the programs in Figure 2.4 as an example to illustrate the idea. In this figure, we

have a program with three integer variables x, y and z, which can grow ambitiously large

and therefore make the program state-spaces practically unmanageable.1 However, close

inspection may reveal that the only concern about these three variables is their relationship

to each other. We can then define two predicates b1 : x < y and b2 : y < z to represent

the relationships. These two predicates can then be used to construct an abstraction of the

system’s behavior as follows: wherever the condition x < y appears, we replace it with the

predicate b1, and whenever there is an operation involving x or y which may change the

value of b1, we replace it with an operation changing the value of b1 accordingly. We do the

same to condition y < z with b2.

Early predicate abstraction applications [74, 7, 22] require the user herself to identify

the predicate sets. This user-driven predicate discovery does not scale very well.

The SLAM project [5], quite uniquely, uses automated boolean abstraction as the basis

of its model checking process. The model checking process can be divided into three steps:

• First, a C program is translated into a boolean program with respect to a set of

predicates over the variables of the original program. The boolean program updates
1The symbol * in the program represents the non-deterministic choices according to the type definition.
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01 void main()
02 {
03 int x = *;
04 int y = *;
05 int z = *;
06 if (x<y) {
07 if (y<z) {
08 error();
09 }
10 }
11 }

01 void main()
02 {
03 bool b1, b2;
04 b1 = *;
05 b2 = *;
06 if (b1) {
07 if (b2) {
08 error();
09 }
10 }
11 }

(a) Original program (b) Abstracted program

Figure 2.4: Predicate abstraction example

its variables by finding how executing the state would affect the truth of the predicates.

• Second, a model checker exhaustively explores the state space of the boolean program.

If the checker hits a error, we have an abstract counterexample.

• Third, we check if the abstract counterexample corresponds to a real program error.

If not, the predicate sets achieved in the first step are refined. We then repeat the

process.

This kind of program abstraction process is called Counterexample-guided abstraction re-

finement. The validity of SLAM toolkit has been demonstrated by model checking two

properties on a number of windows NT device drivers. In all these cases, the properties were

validated within just a few iterations. Another model checker which is based on predicate

abstraction and counterexample-guided abstraction refinement is the BLAST [45] project.

2.3.4 Program Slicing

Program slicing [41] is a technique that reduce the size of the programs by eliminating

statements that are irrelevant to the designated program properties. Program properties

that must be preserved are defined by slicing criteria. Typically a slicing criterion consists

a set of program points of interest. A slicing process is then defined by describing the slicing

criterion and the transformation rules to be performed upon the program for constructing

the slice. Program slicing has been widely used in testing, debugging, program maintenance,

program comprehension, complexity analysis, reverse engineering and model checking.

An example of program slicing is illustrated in Figure 2.5 2. The original program in

part (a) calculates the sum and the product of a natural number n. The slicing criterion is

defined as (10, product), which means we are only interested in variable product at line 10

and all other program statements which are irrelevant to this criterion can be removed. Part
2This example is borrowed from [77].
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(b) shows the sliced program w.r.t. this slicing criterion. As we can see from this figure, all

statements involving only the variable sum have been removed.

01 read(n);
02 i := 1;
03 sum := 0;
04 product := 1;
05 while i <= n do

begin
06 sum := sum + 1;
07 product := product * i;
08 i := i + 1;

end;
09 write(sum);
10 write(product);

01 read(n);
02 i := 1;
03
04 product := 1;
05 while i <= n do

begin
06
07 product := product * i;
08 i := i + 1;

end;
09
10 write(product);

(a) Original program (b) Sliced program

Figure 2.5: Program slicing example

In [41], program slicing is performed by conducting the data flow and control flow analysis

which compute the consecutive sets of indirectly relevant statements. Because only the static

information is used in this process, it is called static program slicing. An alternative way for

program slicing is proposed by [67], which is depend on the Program Dependence Graphs

(PDG) [49]. A PDG is a directed graph with vertexes represents statements and control

predicates, and edges represents to data and control dependencies. Using PDG, one can

build the program dependent graph by using slicing criteria as the initial vertexes. The

sliced program corresponds to all the PDG vertexes from which the initial vertexes can be

reached.

Since program slicing can reduce the size of the programs and the corresponding program

state spaces that need to be explored, it allows the model checker to handle larger programs.

This technique has been used in both hardware model checking [20] and software model

checking areas [65, 42].

When slicing for model checking, the slicing criterion are often related to the properties

under analysis. For a given property P , the slicing criterion is the set of program points

that affect the values of the variables presents in P . Therefore, every statement which might

affect the slicing criterion should be preserved; otherwise the result slicer is not functionally

equivalent to the original program w.r.t. the properties. The program slicing process in

model checking can be seen to be a pre-processing phase which preserve every statement

that might affecting the slicing criterion. More specifically, the slicer guarantees that:

• The sliced program should be functionally equivalent to the original program w.r.t.

to the slicing criterion.

• The sliced program should still be executable.
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The effectiveness of the slicing for reducing program size varies depending on the structure

of the program. In some cases, slicing could effectively remove the irrelevant states and

dramatically reduces the state space. In other cases, where large sections of the program

are relevant to the specification, the effectiveness of slicing is negligible.
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Chapter 3

Basis: a Framework for
Verifying Exception Reliability

In this chapter, we first introduce the idea of exception reliability and the corresponding

analysis tools. We then describe how our framework can be used for exception reliability

verification.

3.1 Exception Reliability

Exception handling mechanisms in programming languages can help in simplifying program

structure and in the systematically handling of errors. However, the use of exceptions can

also be error prone, leading to new program errors and making the code hard to understand.

For example, unrestricted use of exceptions often leads programs into an undetermined state

which is difficult to recover from. Also the new control flow introduced by exceptions may

lead to program errors such as resource leakage. It has been reported that failures due to

exceptions are estimated to account for two thirds of system crashes and fifty percent of

system security vulnerabilities [62]. A common solution to these problems is to use tools

that guarantee that all the exceptions are handled properly.

We call a program “exception handling reliable” when the following conditions are sat-

isfied:

- All possible exceptions are handled.

- There is no unreachable exception handler in the program.

In real applications, one might divide all the possible exceptions into levels of importance,

and then decide on which levels these exceptions should be handled and on which they might

not. For example, the Java language divides all exceptions into two categories. One is called

checked exceptions and the other is called unchecked exceptions where checked exceptions

are considered more important and must be handled by the programmer. However, for a

robust program, all possible exceptions should be properly handled.
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Unreachable exception handlers are another common mistake in programming. For ex-

ample, one might write an exception handler for an exception that will never be thrown from

the try block; or, if the exception representation is adopting a class hierarchy mechanism,

one might write a handler for the subclass right after the handler for the super-class. In that

case, the subclass exception handler will never be executed and therefore is unreachable.

3.2 Existing Tools

Most compilers can do some shallow checks like type checking to guarantee that every excep-

tion is carrying the correct parameters. Some language compilers, such as the Java compiler

do more advanced checks for checked exceptions. The Java compiler can guarantee that all

checked exceptions will be handled locally or propagated to their caller. However, compilers

can not find all the possible errors mentioned above. Various static analysis tools and tech-

niques have been proposed to address problems related to exception handling. Using static

analysis, we can estimate the dynamic behavior of the system and gather the information

about uncaught exceptions and the exception propagation flow. This information can be

used to facilitate the understanding of exceptional program behavior and make better use of

the exception handling mechanism. These static analysis tools may generate false positive

alerts since they can only simulate the run-time behavior of the exceptional control flow. A

detailed review of static exception analysis techniques and corresponding tools is available

in [15].

Historically, exception analysis was first introduced for ML based on abstract interpre-

tation [82], which is shown to be very slow. So the analysis was redesigned [83] based on

a set-constraint framework to improve the speed, and the implementation is integrated in

the SML/NJ compiler to give programmers information on potential uncaught exceptions.

In [16], an efficient inter-procedural exception analysis was proposed by applying the idea

in [83] to Java so that one can estimate uncaught exceptions independently of the program-

mer’s specified exceptions. They implemented the analysis on top of Barat, a front end

of a Java compiler. It has shown that the analysis is able to detect uncaught exceptions

and unnecessary catch and throws clauses effectively. Robillard and Murphy [73] also have

developed a similar tool called Jex for analyzing exceptions in Java.

Among all these static analysis tools, Jex is a typical representative. Based on a general

model of the exception-handling structures and algorithms [75], the Jex tool extracts the

information about the structure of exceptions in Java programs, and provides a view of

the actual exception types that might be raised at different program points. Using this

information users can detect uncaught exceptions, find out redundant exception handlers

and get a better understanding of the system structure. All these benefits can help users to

build robust applications.
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3.3 Introduction to basic Fex

3.3.1 An Uncaught Exception example

Figure 3.1 shows an example of a program with an uncaught exception. The program first

creates a FileInputStream object which is connected to the file named args[0]. Then,

it reads the contents from this file byte by byte (by executing fis.read()) and prints

the contents on the standard output. When the end of the file is reached, the program

closes the file and exits. The program is handling exceptions, but it skips the possible

FileNotFoundException which could be raised by line 04. In a suitable environment,

FileNotFoundException will be triggered and since there is no exception handler for this

exception, the whole program is led to an abnormal exit; therefore, this program is not

exception reliable.

01 import java.io.*;
02 public class Example1 {
03 public static void main(String[] args) throws IOException {
04 FileInputStream fis = new FileInputStream(args[0]);
05 try{
06 int i = fis.read();
07 while(i != -1) {
08 System.out.print((char)i);
09 i = fis.read();
10 }
11 fis.close();
12 }
13 catch (IOException ex) {
14 System.err.println(ex);
15 }
16 }
17 }

Figure 3.1: Example of Uncaught Exception

This uncaught exception flaw is quite trivial in the sense that it can be detected by

an experienced programmer working with a standard Java run-time environment. First of

all, a standard Java compiler will consider this program as “correct” because at line 3, the

program explicitly declared that an uncaught IOException might be propagated. However,

if an experienced programmer senses that there might be a tiny possibility that the required

file is not available, he can then deliberately mimic this situation by setting the file to be

unreachable. The JRE (Java runtime environment) will reply to this setting by reporting an

error message like the following:

Exception in thread "main" java.io.FileNotFoundException: ... (No such file or directory)
at java.io.FileInputStream.open(Native Method)
at java.io.FileInputStream.<init>(FileInputStream.java:106)
at java.io.FileInputStream.<init>(FileInputStream.java:66)
at Example1.main(Example1.java:4)

We would like to build a model checking based verification framework to verify that a

given program is exception reliable. This verification framework should provide following
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functionaries:

• The framework should be fully automatically. Thus, the exception reliability flaw

should be detected without any extra man-made error conditions.

• The framework should handle not only uncaught checked exceptions but also uncaught

unchecked exceptions. Although unchecked exceptions are often considered as trivial

and therefore discarded by the standard Java compiler, we think, under some cir-

cumstances, some of them are important and need to be considered in the exception

reliability verification.

3.3.2 Fex Structure

Model checking is based on exhaustively exploring all possible states of the model. In

general, a model is given as a labeled transition system such as Kripke structure where

nodes represent the reachable states of the system and edges represent state transitions.

The model checking process can then be rephrased as traversing the whole system to find

whether an error situation is reachable from the initial nodes. However, in the real world,

the program is written in language such as Java which is based on variables, references,

functions and threads. There is a big gap between the real program and the model checking

model. Usually it is not easy to translate a real program into a finite state model which can

be traversed in a manageable time.

The main obstacle in applying model checking techniques to software verification is the

state explosion problem. All programs need to be abstracted to an finite-state model before

feeding into the model checker. On the one hand, this model should be big enough to carry

all interesting program properties. On the other hand, this model should be relatively small

so that the whole model checking process is feasible.

We have developed a model checking framework, called Fex, which can be used for

exception reliability verification. In order to alleviate the state explosion problem while still

preserving all interesting program properties, Fex adopts several novel techniques.

The whole framework can be divided into three parts:

1. A static analyzer for exception instrumentation. The first part of Fex is a

static analyzer. This analyzer is used to collect all exception related information. As

we are conducting a exception reliability check that is indeed a control flow related

program property, acquiring a complete program control flow is crucial. Our static

analyzer can gather all exception related information and produce a new program

with all possible exceptions instrumented at the proper places. With the help from

this instrumentation, the back-end model checker can now be aware of these potential

exceptions and check the corresponding implicit program control flows raised by these

25



exceptions. Thus we can now have a complete control flow of the program under

investigation.

2. A program slicer for program abstraction. The second part of Fex is a program

slicer for program abstraction. In general, the program states for a regular size program

is intractable without any program abstraction. Our slicer performs a source to source

transformation with three abstraction operations:

• Our aggressive program slicing replaces a general loop construct with a fixed

iteration loop. When reasoning about control flow related program properties,

these control flow related program properties are typically dominated by the

structure of the program control flow. As the program control structure is usu-

ally determined by a small set of control flow variables including guards for the

conditional statements, exceptions and the loop indexes. Model checking such

control flow related properties needs to traverse all these possible execution paths.

For conditional statement, we need to traverse both branches. For exceptions,

we need to explore all potential exceptions. For loops, we need to check every

single iterations. However, because the program properties we are interested in

are insensitive to the loop index, instead of executing all loop iterations, we can

only execute a fixed iteration of the loop to see if there is any property violation.

This replacement can minimize the contribution of the loop execution to the sys-

tem states. Because exception reliability property is loop index insensitive, this

transformation can preserve exception reliability property.

• The program constructs which manipulates only “don’t care” variables are re-

moved. In the original program, there are only a small amount of variables such

as control flow variables and program property related variables are considered

as relevant to the property being checked. Other variables are treated as “don’t

care” variables. Based on this observation, we divide all program variables into

several type groups (control flow related type group, verification property related

type group, irrelevant type group) and all these “don’t care” variables belong to

the irrelevant type group. By conducting type analysis. our program slicer can

slice away these program constructs which only manipulate “don’t care” vari-

ables. Removing these parts can greatly reduce the program states which need

to be explored.

• Although the program constructs which manipulates only “don’t care” variables

are removed, there are still some “don’t care” variables that need to be preserved

due to the structure dependence. For example, for a method with a parameter

which is actually a “don’t care” variable, this parameter needs to be preserved.
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These variables are only preserved to make the sliced program syntactically cor-

rect i.e. to make the sliced program executable. The real values of these variables

are irrelevant. Therefore, we can stuff these variables with a predefined (“don’t

care”) value to eliminate the data diversity. Because the data diversity is one

of the main contributor to the state explosion problem, this diversity reduction

action can eliminates many program states. Also, we can now skip the test case

preparation phase (traditionally, these variables need to be stuffed with a mean-

ingful value to conduct the verification).

Compared to the original program, the sliced program has a significantly smaller

program state space to explore.

3. A model checker for verification. The third part of Fex is the back-end model

checker JPF. We adopt the sliced program as our program model and feed it into JPF

. The model checking process is conducted upon this simplified program on-the-fly in

the sense that we only check reachable program states. Compared to model checking

the whole transition system, the reachable state are often in a small fraction, which

means we abstract away entirely exponentially large number of unreachable program

states. JPF can systematically exhausts all possible execution paths for a given Java

program. In our framework, it checks if there is any uncaught exception in the sliced

program. If so, JPF dumps out an execution path leading to the property violation.

This execution path can help the programmer to fix the problem. We selected JPF as

our back-end model checker for a number of reasons:

• Compared to other model checkers like Bandera [23] or Bogor [72], JPF can handle

more Java features.

• As an explicit state model checker, JPF adopts several efficient state reduction

techniques like heap symmetry reduction and partial order reduction.

• JPF provides non-deterministic constructs for modelling environment driven choices.

• JPF is an open source project.

Since the model checker typically finds only one problem at a time, each iteration corrects

a single problem and the process is repeated.

Besides these three main parts, Fex also need a configuration file to guide the verifica-

tion process. This configuration file is used to provide extra information to support the

verification. For example, for some applications, instrumenting all exceptions is tedious

and impractical. We need to provide the static analyzer the extra information about which

exceptions can be safety ignored during the exception instrumentation process. Also, for

some more complicated verification tasks such as API conformance verification (see the
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next chapter), we also need to provide the information about which API need to be verified.

All of these data can be obtained from our configuration file. This file indeed specifies an

abstraction function which is used to guide the program instrumentation and slicing.

3.3.3 Verification Process

The verification process in Fex is designed to be iterative, with each cycle divided into three

steps (Figure 3.2). To illustrate the whole process, we use the program from Figure 3.1 as

the sample Java program.

Configuration
File

!
!

!"

#
#

#$
Original

Java Prog.
% Static

Analyzer
% Slicer % Model

Checker

Figure 3.2: Verification Process

The first step is to use the static analyzer to collect the exception information and

instrument them into the proper place in the original program so that all possible exceptions

can be raised. The result for the exception instrumentation for program in Figure 3.1 is

shown in Figure 3.3. Notice how lines 5–7, 9–11, 14–15, 17–18 in Figure 3.3 are changed to

represent possible exceptions raised by lines 4, 6, 9, 11 from Figure 3.1. For detail about

how this instrumentation is done, see Section 3.4.

The second step of our process applies the program slicer to do the program abstraction.

For the exception reliability problem, we only preserve control flow related information such

as threads, flow structures and exceptions. All other program constructs and variables are

either discarded or stuffed with a predefined value. Every loop construct is replaced by a

fixed iteration. Figure 3.5 presents the sliced version of the program in Figure 3.3. As we

can see, the simplified program contains only control flow related information. For detailed

information about how program slicer works, see Section 3.5.

The third step of our analysis feeds the sliced program into the software model checker,

Java Pathfinder (JPF) [78], to search for any uncaught exceptions. Upon detecting a possible

exception reliability violation, JPF dumps out an execution path leading to the uncaught

exception which can help the programmer to fix the problem. This verification process

is iterated until no further violation is reported. For the example from Figure 3.1, the

model checker eventually reports that the possible FileNotFoundException raised by new

FileOutputStream() operation (see Figure 3.6) inside the main method is not handled.
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3.4 Instrumenting Exceptions

Exceptions are often caused by unanticipated or rarely encountered situations. They com-

plicate the program control flow by creating implicit control flow paths within or across

methods. As we are interested in verifying exception reliability, which is essentially a con-

trol flow related program property, how to acquire a complete control flow from the program

is crucial. To be precise, all exceptions-triggered program control flows must be included in

our verification scope.

Our verification is based on model checking. Although the back-end model checker has

the power to check all explicitly stated control flow paths, how to exhaust all these implicit

control flows such as exception introduced control flows is still a challenge.

Directly raising the corresponding exception is a convenient way for checking program

behaviors under exceptional conditions. By providing proper data which can trigger excep-

tions, the corresponding program behavior under these exceptions can be model checked.

However, this method has certain disadvantages:

• In order to trigger exceptions, the test harness needs to be carefully prepared. This

process is tedious and error-prone.

• Performing the checking based on a small set in a test harness is indeed program

testing, which is not as convincing as a formal analysis method.

• Data driven test harness can not trigger some environmental exception situations such

as power failure.

Static code analysis is an alternative way to provide exception information. By ap-

proximate the program behavior at the run-time, a static analyzer can gather the exception

related information such as what kind of exception that might be raised at different program

points. This information can be used to build the overview of the entire exception structure

of the program, which can help the developer to reason about the exceptional behaviors of

the program.

We propose to combine static analysis together with model checking techniques to per-

form a complete program control flow check. A static analyzer is first deployed to record

all potentially raised exceptions and the corresponding raising place. Then, we instrument

all these exceptions at the exact place where this exception might be raised. By doing the

instrumentation, the back-end model checker can have the power to exhaust all exception

introduced implicit control flows.

The instrumentation of a Java file is accomplished by traversing the abstract syntax tree

(AST) of the file. For each statement, the analyzer instruments possible exceptions accord-

ing to the Java language specification [4]. For example, a statement a/b which attempts
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a division operation might raise ArithmeticException and therefore is instrumented as

follows:

a/b;

if (Verify.getBoolean()) throw new ArithmeticException();

Thus, not matter what the real value of a and b are, we always considered the possibility

of divide by zero error and therefore raises ArithmeticException. Please note the instru-

mentation call Verify.getBoolean() returns a Boolean value non-deterministically. This

ensures that in the future, the model checking explores all exception-triggered execution

paths in the original program.

For each method call, we have to determine if there is any possible exceptions propagated

from the method. The analyzer first determines if the method source code is available. If

available, the analyzer instruments the method directly; the model checker can take care

of the exception handling and propagating at run time. If not, the analyzer instruments

the exception interface extracted from the byte code of that method to guarantee that the

exception has a chance to be raised. For example, in Figure 3.1 line 9, although we do not

have the source code for FileInputStream available (even if we have the source code, we

would not plan to include it into our verification scope), from the corresponding byte code

we know that the method call fis.read() might raise IOException. We then instrument

this statement as:

if (Verify.getBoolean()) i = fis.read();

else throw new IOException();

This instrumentation style can precisely mimic the behavior of method fis.read(), which

has two exclusive consequences:

• The method terminated successfully.

• The method terminated abnormally and an exception is raised.

It is easy to see when the non-deterministic choice Verify.getBoolean() returns true, we

have the former consequence. When it returns false, we have the latter one. For all the

implementation details about program instrumenting, see Appendix A.3.

Figure 3.3 demonstrates an instrumented file whose original file is in Figure 3.1. The

newly added line 02

import gov.nasa.jpf.jvm.Verify;

in the instrumented program introduces the non-deterministic choice API from the back-end

model checker JPF. This API is used to trigger exceptions non-deterministically. Line 04 in

the original program combines the actions of variables declaration and variable initialization

together. Since there is always a probability that during the variable initialization, excep-

tions might be raised, we have to divide these two actions into two parts in the instrumented
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01 import java.io.*;
02 import gov.nasa.jpf.jvm.Verify;
03 public class Example1 {
04 public static void main(String[] args) throws IOException {
05 FileInputStream fis;
06 if (Verify.getBoolean()) fis = new FileInputStream(args[0]);
07 else throw new FileNotFoundException();
08 try {
09 int i;
10 if (Verify.getBoolean()) i = fis.read();
11 else throw new IOException();
12 while (i != -1) {
13 System.out.print((char)i);
14 if (Verify.getBoolean()) i = fis.read();
15 else throw new IOException();
16 }
17 if (Verify.getBoolean()) fis.close();
18 else throw new IOException();
19 }
20 catch (IOException ex) {
21 System.err.println(ex);
22 }
23 }
24 }

Figure 3.3: Example of Instrumented Program

program. By doing this division, we can have the variable scope working properly while still

instrumenting possible exceptions. Line 05 in the instrumented program

FileInputStream fis;

fulfills the variable declaration task. Line 06–07

if (Verify.getBoolean()) fis = new FileInputStream(args[0]);

else throw new FileNotFoundException();

in the instrumented program fulfills the variable initialization task. Because the constructor

for FileInputStream might raise FileNotFoundException, this exception is instrumented

by using the non-deterministic conditional statement. The same situation happened again

in the original program on line 06, where variable declaration int i and variable assignment

i = fis.read() is combined together. Again, our static analyzer breaks it into two parts

(line 09 and line 10–11), and instrument the method call fis.read() with the potential

exception IOException (line 10–11).

There are several other program constructs which might raise exceptions. In the original

program line 09, method call fis.read() might raise IOException. This exception is

instrumented by the static analyzer as in line 14–15 in the instrumented program.. In

original program line 11, method call fis.close() might raise IOException as well. It is

also instrumented as in line 17–18 in the new generated program. In this example, we do

not have the case where a single statement which might raise exceptions. All other program

constructs such as the class definition, the try-catch block and the while loop are kept

untouched.
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Originally, Fex is designed to address all exceptions that can be raised in a Java program,

so it supports both checked and unchecked exceptions. By default, we consider all possible

exceptions flagged by the static analyzer but also can specify which exceptions to ignore.

For example, the unchecked exception, OutOfMemoryError could be raised after every new

operation and method call. The user might want to turn off the instrumentation of this

exception until the more common modes of failure have been addressed.

Fex depends on a configuration file to specify which exceptions are to be ignored. Figure

3.4 gives out an example of a configuration file for verifying program in Figure 3.1. The

<ignore> item is used to identify these exceptions which are ignored by the static analyzer.

<dir> specifies the location where the Java file is stored. <output> specifies the location

where the output file is written. The information is enough for guiding the exception reliabil-

ity verification, For the future extension of Fex, the configuration file needs to be expanded

to provide verification task related information. Details about how the configuration file is

used to guide the whole verification process can be found in A.1.

<output> /Users/xinli/test/thesisexample/basic-fex/1
<ignore> java.lang.OutOfMemoryError
<ignore> java.lang.NegativeArraySizeException
<ignore> java.lang.ArrayIndexOutOfBoundsException
<ignore> java.lang.ArithmeticException
<ignore> java.lang.NullPointerException
<ignore> java.lang.ArrayStoreException
<ignore> java.lang.ClassCastException
<dir> /Users/xinli/examples/thesisexample/basic-fex/1/

Figure 3.4: Example of the configuration file

3.5 Program Abstraction

A direct application of model checking to a full program of non-trivial size, very quickly

leads to state explosion problem. Therefore, it is necessary to reduce the size of the program

state as much as possible, while still preserving properties of interest. We deploy a program

slicer to serve this end.

A Java program usually contains all kinds of types such as primitive types ( int, char,

etc.), class types from Java API and user defined class types from the program itself. For

some verification tasks that focus on specific program properties, the type information can

give us hints on how to safely abstract the program. For example, when we are conducting

exception reliability verification, only the control flow related types such as Thread and

Throwable really matter. Types such as primitive types are actually irrelevant. Therefore,

those statements which manipulate only irrelevant type variables have no influence on the

program properties we are interested in and can be safely removed. Based on this observa-

tion, we may abstract the program by deploying a type-analysis-based program slicing to
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transform a Java program into a simplified program with fewer program constructs, data

diversities and loop iterations. This simplified program can later be fed into a program

model checker for any exception reliability violation.

For exception reliability verification task, we divide Java types into three categories:

1. Control-flow dependent types (CType). Includes program defined classes and all sub-

classes from class Throwable and class Thread.

2. Primary types. Such as Integer, char, etc.

3. Ignored types (LType). All other types besides (a) and (b).

Based on the above type division, we slice the instrumented Java program into a simpli-

fied program with several significant changes:

1. Program constructs which involve only ignored types are removed.

For programming languages like Java, a concrete program is formed by statements

and definitions. Statements are the executable code such as assignment, conditions,

loops and method calls. Definitions are the declaration code which is used to declare

identifiers. For exception reliability checks, we are only interested in if these statements

produce any uncaught exceptions. So all types other than control flow related type

(CType) are irrelevant here. Therefore, all variable declarations that involve only

primitive types and ignored types can be safely removed. For example, the class

field definition such as ServerSocket ss; can be safely removed but the definition

like IOException ioe; should be preserved because the latter is a CType (control

flow related) variable. For program statements, simple assignments which involve

only primitive type and ignored types can removed. For example, an assignment

statement such as i = j + 5; or statements like i = fis.read(); can be removed.

Conditional and loop statements are treated in a different way in order to preserve the

complete control flow, which will be introduced later. For method calls, if the type of

the method receiver is an ignored type, they may be removed. For example, in Figure

3.3 line 08, statement fis.close(); can be removed because the method receiver fis

belongs to the ignored type. If the method calls are from the user defined classes, they

should be preserved because these method calls form the complete control flow.

2. For program constructs which involve not only ignored type variables but also control-

flow dependent type variables, these variables with ignored types are filled in with a

predefined value.
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Program components often have to interact with each other by passing parameters.

In real application, providing proper parameters is the basic requirement for the pro-

gram to behave correctly. However, exhausting all possibilities for these parameters is

a great challenge for the model checker and is often impractical. Since we are only fo-

cused on exception reliability checking, all exception related information has already

be instrumented at the proper place by the static analyzer in the first phase. The

value of these parameters with ignored types are irrelevant now. For example, a user

defined method

byte[] readFile(String filename, int off, int len)

takes three parameters: integer off, len and string filename. In the concrete pro-

gram, the value of these three parameters is essential for the method to function

correctly, but now, as we are only interested in exception reliability check, we can use

some predefined value to fill in to these parameters just to make the sliced program

executable. We use 2 for the integers, and (String)null for the string reference

types. The sliced program can not fulfill the original functionality, but it still can

demonstrate all the exceptional behaviors.

3. The conditional statement whose guard is not program property relevant is now re-

placed by a non-deterministic choice. All loop constructs are replaced by a fixed

iteration loop that executes each loop only a fixed number of times.

As we are interested in exception reliability verification which is indeed a control flow

related program properties, to get the complete program control flow is a challenge.

We use the non-deterministic choices to replace these program property irrelevant

guard for every conditional statement in order to get the complete control flow. For

example, if we encounter a conditional statement such as

if (i == 5) ... ;

It is transformed into

if (Verify.getBoolean()) ... ;

However, this is not the case for the statement like

if (e instanceof IOException) ...

because now the guard is program property relevant and should be left untouched.

The non-deterministic choice tells the model checker that instead of one specific com-

putation, all possible outcomes of a choice should be considered equally possible.

For the loop statement, because the exception related information has been already

instrumented in the previous process, all we need to do is to guarantee that every

statement inside the loop will be executed at least once. Therefore, we transform the

loop statement from the style of

34



while ( ... ) { ... }

into a fixed iteration loop as

for (JPF index = 0; JPF index < 2; JPF index++) { ... }

to ensure the total coverage of the loop body.

The whole slicing criteria is given out in the form of program transformation rules.

For details about these transformation rules and the corresponding program model, see

Appendix A.4.

01 import java.io.*;
02 import gov.nasa.jpf.jvm.Verify;
03 public class Example1 extends java.lang.Object {
04 public static void main(java.lang.String[] args) throws java.io.IOException {
05 if (Verify.getBoolean()) ;
06 else throw new java.io.FileNotFoundException();
07 try {
08 if (Verify.getBoolean()) ;
09 else throw new java.io.IOException();
10 for (int JPF_index0 = 0; JPF_index0 < 2;JPF_index0++){
11 if (Verify.getBoolean()) ;
12 else throw new java.io.IOException();
13 }
14 if (Verify.getBoolean()) ;
15 else throw new java.io.IOException();
16 }
17 catch (java.io.IOException ex) {
18 }
19 }
20 }

Figure 3.5: Example of Sliced Program

Figure 3.5 demonstrate a sliced file whose original file is in Figure 3.3. Line 05 in

the instrumented file FileInputStream fis; is now removed because this program con-

struct is declaring an object with an ignored type. The same thing happens in line 09

again, where int i; has been removed. The code fragment line 06–07 in the instru-

mented program is used to mimic the behavior of method fis.read() where a potential

FileNotFoundException might be raised. It is now transformed into line 05–06 in the sliced

program. Notice that the statement fis = new FileInputStream(args[0]) has been re-

moved because the receiver of the method call fis belongs to an ignored type. For the

same reason, the method call fis.read()in line 10 and line 14, fis.close() in line 17 and

System.err.println() in line 21 have all been removed. The loop block from line 12 to

line 16

while (i != -1 ) { ... }

is now transformed into

for (int JPF index0 = 0; JPF index < 2; JPF index0++ ) { ... }

Now we only need to execute this loop body twice. Compared to the original program which

needs a string argument as the input to function, the sliced program can be model checked
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directly. There is no need for providing any arguments.

By program slicing, we now have an abstract program with several significant simplifi-

cations:

• In the simplified program, the program constructs that manipulate only primitive

types and ignored types are now safely removed. By this statement remove operation,

we now have a relatively small program with fewer program state spaces for faster

model checking.

• There are some program constructs which are control flow structure dependent. Exam-

ples of these program constructs are method parameters and return values. Although

these program constructs could be primitive types or ignored types, they are still

crucial to achieve the program control flow and therefore should be preserved. How-

ever, our program slicer replaces all these primary and ignored type variables with

the predefined values (2 for integer, 0 for long and null for reference types). By

performing this replacement, we greatly reduce the data diversity (we do not need

to exhaust all values for certain variables anymore), which reduces the program state

space significantly.

• Model checking usually can only addresses the behavior of finite-state closed systems

whose future behavior is completely determined by the current state of the system.

This is typically done by modelling all possible sequences of events and inputs that can

come from the environment. The simplified program is now insensitive to the input

from the environment in the sense that all possible exceptions could be raised without

any data set. Thus our model checker no longer needs to model the environment

anymore.

• As in the simplified program, all loop constructs are replaced by a fixed iteration loop.

Because this replacement can minimize the contribution of the loop execution to the

system states. It greatly reduces the program state spaces which need to be explored.

3.6 Model Checking

As for the final model checking step, we adopt Java Pathfinder, (JPF) [78], as our back-end

model checker. We feed the sliced program into JPF to search for any property violations.

JPF is an unusual software model checker in that it directly handles Java byte code. The

environment is modelled by non-deterministic choice expressed as method calls to a spe-

cial class gov.nasa.jpf.jvm.Verify. For example, the method getBoolean() from class

gov.nasa.jpf.jvm.Verify returns a boolean value non-deterministically. JPF consists of

a custom Java virtual machine that executes the byte code and a search engine that guides
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the execution. Since the states–JVM snapshots—are coded into a concise representation,

one can use an explicit model checking algorithm to systematically explore all potential

execution paths of a program to detect undesired states.

For exception reliability verification, JPF searches for unhandled exceptions. Upon de-

tecting a possible violation, JPF dumps out an execution path leading to the uncaught

exception. The execution path can help the programmer to fix the problem. The verifica-

tion process is repeated until no further violation is reported.

In order to check the exception reliability of the program in Figure 3.1, JPF takes the

corresponding sliced program in Figure 3.5 and the configuration file in Figure 3.4 as inputs

and generates the error report as in Figure 3.6.1 From this error report, we can clearly see

that the FileNotFoundException which is generated at line 06 is unhandled and eventually

lead the program into an unreliable situation.

====================================================== error #1
gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty
java.io.FileNotFoundException

at Example1.main(Example1.java:6)
====================================================== trace #1
------------------------------------------------------ transition #0 thread: 0
gov.nasa.jpf.jvm.choice.ThreadChoiceFromSet {>main}

Example1.java:5 : if (Verify.getBoolean()) ;
------------------------------------------------------ transition #1 thread: 0
gov.nasa.jpf.jvm.BooleanChoiceGenerator[true,>false]

Example1.java:5 : if (Verify.getBoolean()) ;
Example1.java:6 : else throw new java.io.FileNotFoundException();

====================================================== snapshot #1
====================================================== results
error #1: gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty "java.io.FileNotFoundException ..."

Figure 3.6: Error report generated by Fex

3.7 Experimental Results

We present experimental results2 obtained by using our tool on two Java web applications,

Project NanoHTTPD [30] and project FizmexWebServer [1]. Table 3.1 shows the running

time and state space size of these experiments.

NanoHTTP FizmezWebServer

Time 57.6 s 75.3 s

Visited States 15905 38875

Table 3.1: Running time and state space size for the experiments
1The statements and line numbers in this error report are based on the sliced program in Figure 3.5, not

the original program.
2All experiments were performed on a PowerBook with PowerPC G4, 1.67 GHz, 2.0 GB RAM, running

Mac OS X 10.4.6, Sun Java SDK build 1.5.0 06-112 and Java Pathfinder Version 3.1.2.
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Project NanoHTTPD is a simple embeddable HTTP server application written in Java.

After instrumentation and slicing, model checking discovered an uncaught NumberFormatException.

Examining the execution path that triggered the exception we found that in the main func-

tion, there is a call to the library function Integer.parseInt(). The fact that this may raise

an exception was neglected by the programmer. After fixing this problem, the application

has been verified as exception reliable code.

Project FizmezWebServer is an open source Web server application implemented in Java.

Applying our tool to this application detected several errors. First, the application has a

potential unhandled exception. In method getServerSocket(), the socket port number

is provided in string format, and therefore needs to be transformed into integer format.

The transformation process might throw NumberFormatException and is neglected by the

programmer. This puts the application into an exception unreliable situation.

3.8 Discussions

We have presented a model checking based verification framework called Fex for verifying

exception reliability. Compared to a standard Java compiler, it can detect possible uncaught

exceptions without any man-made error-triggering environments. Fex can also detect re-

dundant exception handlers.3

Every tool for addressing exception reliability problem has two phases. The first phase

is used to detect any possible exceptions based on Java specification. This step can only be

done by static analysis. Our framework is doing this by reusing Jex’s static analyzer. False

positives are possible here because we cannot exhaust all data while doing static analysis.

For example, for a statement like a/b, there is a possibility that an ArithmeticException

representing divide by zero error might be raised, but if we can guarantee that variable b

will never be zero, a false positive alert is inevitable here.

The second phase is used to determine if there are any uncaught exceptions or redundant

handlers inside the program based on the program structures and the possible exceptions

provided by the first step. This step can be done in several ways. Most of static analysis

tools, such as Jex, perform this by using a filtering tool to do the inter-procedural control

flow analysis. The filtering tool can calculate the uncaught exceptions based on the formula

uncaught = raises + propagates− catches

Redundant handlers are caught similarly. which means for a given scope, uncaught excep-

tions are those raised exceptions from this scope plus the exceptions propagated from the

callees minus those exceptions caught by the handlers. On the contrary, Fex is doing this by

model checking a program skeleton with only control flows and possible exceptions. Usually,
3For details on how this is achieved, please refer to appendix B.
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model checking is more precise compared to other static analysis tools in catching runtime

program behaviors because the model checker can actually “run” the program. However,

since the runtime behaviors for a program with only control flow constructs (e.g. exceptions)

are statically determined, our model checking based method is no better than these static

analyzers for checking exception reliability.
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Chapter 4

Extension: a Framework for
Verifying Event Sequences

4.1 Introduction

In programming languages, events represent the basic operations of a program. These op-

erations can be method calling, exception handling, locking/unlocking actions etc. The

behavior of a software system may depend on the order in which program events are exe-

cuted.

In practice, these order constraints over program events are called event sequence related

program properties. Although this kind of property constraints may appear to be overly

restrictive, there are many examples of important properties that are expressible in this

way. In fact, these event sequence related program properties, once violated, may lead to

serious damage. For example, it appears that a Mars lander mission failed in part because

the software system designed to assure a soft landing did not deal correctly with the event

sequences[55].

The Mars lander software system assumed that when the lander approached the planet,

the bump detection variable would be set to false so that the landing gear can be deployed.

When contacting with the planet was detected, the bump detection variable will be changed

to true which signals the descent engine to turn off. However, in reality, the firing of the

lander’s retro rockets caused sufficient deceleration to set the bump variable to true. The

value of the variable was never checked or reset to false prior to deployment of the landing

gear. Once the landing gear was deployed, the condition for shutting down the descent

engine was immediately satisfied, and the engine shut down high above the Martian surface.

In this software system, the correct event sequence for landing might be: fire retro rockets,

reset bump variable to false, deploy landing gear, detect bump, shut down retro rockets.

However, the violation of this event sequence causes the loss of the lander.

The situation is even worse when concurrency is introduced. Under concurrent situation,
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two runs of a system on identical inputs may produce different results if the order of pro-

gram events differs for these two runs. Consequently, errors may only manifest themselves

under a few possible task schedules. To help detect serious event sequence related program

property violations, analysts need tools that can exhaustively consider all possible control

flows (including task schedules) and analyze the behavior of the system on each control flow.

In this chapter, we describe our effort to extend basic Fex to address this concern. We

choose basic Fex as our start point because of its two merits:

• The basic Fex can get a complete control flow skeleton of the program. This func-

tionality meets the basic requirement for verifying event sequence related program

properties. if we can extend our slicing rules to not only preserve all control flow

related information such as exceptions and threads, but also preserve those event se-

quence related program properties we are interested in. The back-end model checker

can then examine if there are any violations for these properties.

• Events are generally presented as method calls and it is most often the sequence of

method calls that is important in determining event sequence related property. Data,

in the form of variables or fields, is generally of secondary importance in determining

the set of such sequences and in the specification of valid event sequences. Our program

abstraction techniques adopted in basic Fex can be reused here to reduce the state

space that needs to be explored by eliminating data diversity. This helps us to make

our analysis practical.

With extended Fex , analysts can define a patterns of event behaviors as the specification

part, Fex then automatically creates a simplified program that preserves all interesting

program properties. Based on the specification and the simplified program, the back-end

checking engine JPF determines whether the system satisfies a given property and, if not,

provides execution path that lead to the property violation through the simplified program.

4.2 Fex Extension

We extend the basic Fex in two ways:

• We use executable specification to specify event sequence related program properties.

• We renew our program slicing rules to preserve not only control flow related program

constructs, but also event sequence related program constructs.

4.2.1 Executable Specification for Fex

Previous efforts on specify event sequence related program properties are mainly based on

finite state machine (FSM)[9, 28, 71]. A finite state machine F for specifying event sequence
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related program properties is defined as a 5-tuple F = (Q,Σ, T, q0, e0) where Q is a finite

set called the states, representing all possible program states. Σ is a finite set called the

alphabet, representing interesting program events. T ⊆ Q×Σ→ Q is a transition function,

representing the possible transitions between the states. q0 ∈ Q is the start state. e0 ∈ Q is

the error state. Based on this finite state machine, a practitioner can specify some simple

event sequence related program properties such as in which order methods may be called

inside a single API.

Figure 4.1 presents us an example of how to use the finite state machine to specify

method call sequence constraints for class java.io.FileInputStream. In this example, we

have four program states: undefined, opened, closed and error. All these states form

the state set Q. The alphabet set Σ represent the methods we are interested in. In this

case, we have four methods namely new(), open(), close() and read(). q0 is the start

state and in this case, it is the state undefined. e0 is the error state and in this case, it is

the state error. The transition set T describes the state changing possibilities. This finite

state machine starts in state undefined where the only legal action is to use new operation

which initializes a FileInputStream object by calling a class constructor. After that, this

object is in state opened and is ready to execute other operations (read or close). When

calling method close, all system resources associated with the FileInputStream object

is released. Any attempt to execute read operation after close is not allowed and raises

run-time exception.

opened closed

error

close()

read()

read()

new()
undefined

Figure 4.1: An FSM specification of class FileInputStream

In order to use Fex to check the event sequence related program properties such as

the FSM specification in Figure 4.1, we first need to make all these FSM based properties

expressible at the language level. In other words, those states and state changing actions

should be presented in an executable program. Also, as the original methods/events contain

too much implementation details and introducing too much implementation details into

model checking phase can quickly result in state explosion problem, directly model checking

event sequence related program properties on the original software is impractical.

We propose to use executable specifications to specify the event sequence related program

properties. Our executable specifications are written in Java. Each event under investigation
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needs to have an executable specification counterpart. The new implementation, while

executable, only specifies the event property constraints. All original implementation details

are discarded.

With extended Fex, we instrument and slice the user program to get a simplified user pro-

gram. We then replace the original event implementation with our executable specification.

The simplified user program plus the executable specification form our simplified software

which can later be fed into the model checker. We replace the original event implementation

with the executable specification for two reasons:

• In the simplified user program, all preserved variables with primary types or ignored

types are filled with a predefined data value (see Chapter 3). This process reduces the

data diversity which is the major contributor to the state explosion problem. How-

ever, the original method implementation still need the real value (not the predefined

one) to function correctly. Therefore, the original method can not cooperate with the

simplified user program. Compared to the original method implementation, our ex-

ecutable specifications are focused on encoding property constraints, the actual data

value that the method handles is now irrelevant. For example, the executable speci-

fication in Figure 4.2 encodes the property constraints of class FileInputStream. It

does not care about which specific file is associated with the input stream. Hence, the

executable specification can cooperate with the simplified user program on the data

diversity reduction.

• As the simplified software (simplified user program + executable specification) sup-

ports the data diversity reduction, model checking the simplified software do not need

to rely on any data sets. Thus the model checker can skip the environment modeling

process.

By model checking the simplified software, we can find out potential event sequence con-

straint violations.

Using the FSM based specification (Figure 4.1) as an example, the new version of the

method implementation is achieved by translating the FSM based program property into an

abstract version of these methods implementation. This version of the implementation dis-

cards all the details for the real method work. Instead, it only records the state change from

the finite state machine specification. By doing this, we not only have the finite state ma-

chine specification tractable at the language level, but also have an abstract implementation

which hides all the implementation details. Note we only need to give out the executable

specification for these methods we are interested in. Other methods inside the same class

can be simply neglected by providing an empty implementation. Although this transfor-

mation can be done automatically, we are now doing this manually for convenience. The

43



FSM based program property in Figure 4.1 can be transformed into an implementation as

in Figure 4.2.

package java.io;

public class FileInputStream extends InputStream {

private enum State {undefined, opened, closed}
public State status = State.undefined;
public final int CONSTANT_INTEGER = 2;

public FileInputStream(File file) {
if (status == State.undefined) status = State.opened;

}

public FileInputStream(String s) {
if (status == State.undefined) status = State.opened;

}

public int read() {
if (status == State.closed)

throw new Error ("API Conformance Error! Read after stream closed.");
if (status == State.opened) status = State.opened;
return CONSTANT_INTEGER;

}

public int read(byte[] b) {
if (status == State.closed)

throw new Error ("API Conformance Error! Read after stream closed.");
if (status == State.opened) status = State.opened;
return CONSTANT_INTEGER;

}

public void close() {
if (status == State.opened) status = State.closed;

}
// ... ...

}

Figure 4.2: Executable specification for Class java.io.FileInputStream

Adopting executable specification gives Fex several advantages:

• Our executable specification is more expressive than FSM based specification (see

Section 5.3.1). All FSM based specification can be automatically translated into exe-

cutable specification. Furthermore, by adopting full Java as our specification language,

we can specify the program properties that involve potentially unbounded numbers of

objects.

• The executable specification and the program under verification are separated. For a

pattern of event behaviors, the corresponding executable specification only need to be

prepared once, and can be reused after. Unlike other projects [9, 28] which need extra

annotation on the program side, there is no extra annotation burden for Fex.

• Compared to the original implementation, the executable specification is an abstract

version which encodes only property constraints. It is a simple event behavior model
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of the original implementation with significant less states to be explored. As Fex is

based on model checking, this replacement can effectively alleviate the state explosion

problem.

There has been a long history of debate on whether or not the specification needs to be

executable [44, 36, 40]. Objectors criticize that:

• The demands for high expressiveness and executability are exclusive to each other

and the high expressiveness of the specification is always more important, executable

specifications should be avoided [44].

• Executable specification inevitably implies abstract implementations. In later imple-

mentation, executable specifications can have negative effects because implementers

may want to follow the abstract implementation although that may not be desir-

able [44].

We argue that for our verification task, executable specifications are more practical:

• An executable specification presents a simple behavior model of the system. It is

suitable for the model checking method which executes the program and checks the

program states exhaustively.

• Safety properties such as “bad things never happen” are natural and efficient to specify

by using executable specifications. For example, program assertions are executable and

they allow programmers to define safety constraints on program behaviors.

• As we only interested in verifying the event sequence related program property. The

event implementation itself is assumed to be correct. There is no negative effect from

the executable specification.

The idea of using executable specifications to specify event sequence related program

properties is inspired by [70]. They are proposing using a Java like specification language

called EASL/P to specify the method call constraints. By adopting a subset of Java state-

ments and a restricted set of types (so far only booleans and references), EASL/P can handle

many event sequence related program properties. We use the whole Java language as our

specification language which is more convenient. However, because the executable specifica-

tion is model checked directly without any abstraction, executable specification need to be

carefully written. A too complicated executable specification may cause the state explosion

problem.
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4.2.2 Program Abstraction Revisited

In basic Fex, all Java types are divided into three categories:

1. Control-flow dependent types (CType). Includes program defined classes and all sub-

classes from class Throwable and class Thread.

2. Primitive types.

3. Ignored types (LType). All other types besides (1) and (2).

Based on this type division, we can apply a program slicer that removes all control-flow

irrelevant types to get a simplified Java program for model checking exception reliability

property. As the exception reliability property only concerns with the program control-flow

and our aggressive program slicing procedure can preserve the complete control-flow of the

program, the sliced program can be used for exception reliability verification.

However, as we are now interested in event sequence related program properties, blindly

removing all control flow irrelevant types will lost all the interesting program properties. In

order to solve this problem, we now divide the Java types into four categories:

1. Control-flow dependent types (CType).

2. Primitive types.

3. Crucial types (PType).

4. Ignored types (LType). All other types besides (1), (2) and (3).

Compared to the type category for exception reliability we now have a new category

called Crucial types (PType). It includes types which are related to those event sequence

related program properties we want to verify.

In exception reliability verification, the program slicer removes these program constructs

whose types are control flow irrelevant. The sliced Java program preserves the complete

control-flow for model checking. In the updated program slicer, we now treat the Crucial

type (PType) as it is a control flow related type. That is, if any program constructs manip-

ulates a PType object, it should be preserved. For example, if we are interested in verifying

that certain permission check operation should be performed before the execution of a crit-

ical method, then the class which is in charge of the permission check and the class which is

in charge of the critical method should all be considered as PType and every event/method

comes from these classes should be preserved. Other program constructs which are actually

irrelevant to the permission check events can then be safely removed.
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4.3 Verification Process Updated

The verification process for event sequence related program properties is very similar to the

verification process for exception reliability verification with two major changes:

• We use executable specification to encode designated event sequence related program

properties. These executable specification is directly feed into the back-end model

checker without any abstraction.

• We are deploying an updated slicer to do the program slicing. We now preserve not

only control flow related program constructs but also property relevant (specified by

configuration file) objects and events.

Configuration
File

!
!

!"

#
#

#$
Original

Java Prog.
% Static

Analyzer
% Slicer % Model

Checker

&

Executable
Spec.

Figure 4.3: Verification Process

The whole verification process is still divided into three steps.

In the first step, we instrument the program so that all possible exceptions can be raised

at the proper place. This is the same as in exception reliability verification.

In the second step, we do aggressive slicing for verifying event sequence related program

properties. We have an updated program slicing rule set to serve this end. In general,

only those program constructs whose types are not control flow related type (CType) or

crucial type (PType) are removed. In this way, all interesting events can be preserved.

However, as the concrete implementation of these events (they all come from classes with

crucial types) are heavily depend on other program constructs which might be eventually

removed. The simplified program, although syntactically correct, cannot be executed or

model checked. Therefore, it is necessary to use the abstract version of these classes to

replace the concrete implementations. Our executable specification actually does this work.

For every crucial type class, it should have an executable specification counterpart. For

example, if we are interested in verifying if the usage of class FileInputStream follows the

conformance rules depicted in Figure 4.1, the class FileInputStream is then considered as

in PType.1 All corresponding events coming from class FileInputStream such as operation

open and close should be preserved. The original implementation of the FileInputStream

should now be replaced by the executable specification presented in Figure 4.2.
1This is done by setting the configuration file. Details are in appendix A.1.
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In the third step, we model check the sliced program for any event sequence related

program property violations. Since the proper behaviors of these events are actually encoded

inside the executable specification, these executable specification need to be directly fed

into the model checker along with the simplified program. The executable specification

guarantees that every property violation throws an Error exception, and the back-end model

checker can catch the property violation by detecting these uncaught Error exceptions.

The updated verification process for extended Fex is illustrate in Figure 4.3. For detailed

examples, please see Chapter 5.

4.4 Limitations

When using abstraction techniques to reduce the number of states of a system, one may in-

troduce more behaviors to be present in the abstract program than in the concrete program,

this is called over-approximation. Over-approximation can guarantee that if a program prop-

erty holds in the abstract it also holds in the concrete, but if a program property fails in

the abstract then it might not fail in the concrete.

For event based program properties, over-approximation means any event sequences that

can occur during an actual execution will be represented by an execution in the abstract

program. This is important because it assures that no execution on which a property

violation occurs in the concrete program will be overlooked. However, a event sequences

violation that occurs in the abstract program may not correspond to executions that could

actually occur in the concrete program. In other words, over-approximation does leave

the possibility of “false positives”, namely identification event sequences violations on the

abstracted program that are not actually exist in the concrete program.

Fex adopts several program abstraction techniques that over approximate the concrete

program behaviors. It might generate false positives under some conditions:

• Fex might introduce false positives by instrumenting exceptions which may never be

raised in the concrete program. For example, in Figure 4.4 line 07, Fex will instrument

this statement with the possible ArithmeticException.2 However, as we can see from

statement 06, when variable b is equal to zero, the method returns. Therefore, there

is never a chance that a ArithmeticException will be raised from line 06. So the

statement in line 11 will never get executed in the concrete program, but in the abstract

program, it will.

• The second way for Fex to introduce false positive is by guard replacement operation.

In Fex, every guard of the conditional statement is replaced by an non-deterministic
2We assume that in the corresponding configuration file, the ArithmeticException is not labelled as to

be neglected.
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01 public static void main(String[] args)
02 {
03 try{
04 int a = ... ;
05 int b = ... ;
06 if (b == 0) return;
07 a/b;
08 ... ...
09 }
10 catch (ArithmeticException ae) {
11 error();
12 }
13 }

Figure 4.4: An example for possible false positive introduced by instrumenting impossible
exception

choice.3 However, this aggressive replacement may introduce extra program behaviors.

For example, in Figure 4.5, Fex will replace the guards from line 06, 07 and 08 with non-

deterministic choices which means line 09 can get a chance to be executed. However,

in the concrete program, because the guard in line 08 contradicts with the guards from

line 06 and 07, line 09 will never be executed.

01 public static void main(String[] args)
02 {
03 long x = ... ;
04 long y = ... ;
05 long z = ... ;
06 if (x<y) {
07 if (y<z) {
08 if (x>z) {
09 error();
10 }
11 }
12 }
13 }

Figure 4.5: An example for possible false positive introduced by aggressive guard replace-
ment

Usually, it requires substantial human effort to inspect the output of the model checker

to dismiss a false positive. while in our experiment, we have not met such situation. See

Chapter 5. Reducing the frequency of false alarms is one of our future goals, for details see

Chapter 7.
3This replacement will only take place when the guard is not control flow or property relevant. See

Appendix A.4 for detail.
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The current implementation of Fex supports almost all Java language features including

dynamic allocated objects, global variables, concurrency features and exceptions. The only

limitation is the handling of arrays. So far, Fex does not support property checking on

array elements. That means we cannot handle the situation where the base type of an array

is a crucial type. The reason we cannot handle this situation is because we consider the

integer type to be property irrelevant which means any program construct involves only

integer operation is removed. However, the array manipulation is heavily depend on the

integer index operation, if all these index information is removed, we can not differ these

elements from each other. Hence in Fex, we cannot handle an array if it is used to store

objects coming from crucial types. We could fall back on using a predefined element such

as array[2] to present all array elements, but it would introduce false negatives i.e. there

a real error in the concrete program but is neglected by Fex. How to handle arrays with

crucial types is one of our future work.

4.5 Discussions

event sequence related program property can be either checked statically or at run-time.

Event based run-time verification [26] employs dynamic analysis to detect bugs in software

during execution. It is concerned with checking a single trace of events generated from

the program run against properties described in some logic. When a property is violated,

the program can take actions to deal with it. The technique scales since just one model of

computation is considered, rather than the entire state space as in model checking. However,

runtime verification is akin to program test in the sense that it can never guarantee that a

program is error absence. Besides, sometimes when error is detected at run-time, it is too

late to do any recovery operations.

In contrast to the run-time verification techniques, there are several techniques which

are aiming at verifying the properties statically. Theorem proving relies on the language

semantics and a proof system in order to come up with a proof that the program will behave

correctly for all possible inputs. Unfortunately, this technique cannot be fully automated

for undecidability reasons. Model checking is concerned with checking if all possible traces

derived from a program (or its abstract model) satisfy a property of interest. The state-

space explosion is known to be an issue when considering concurrency and unbounded types.

Additional model abstraction can reduce the model size considerably.

We have presented Fex, a model checking based verication framework which checks the

event sequence related program properties for Java program. In contrast to other tech-

niques, Fex creates a simplified program which is relatively small but still conservative with

respect to the property that is being evaluated. Fex achieves this reduction by deploying

several program abstraction techniques. By applying program abstraction we are trading

50



the scalability at the cost of precision. In other words, Fex may generate false positives.

As case studies, Fex has been used to address following two event sequence based verifi-

cation tasks:

• API Conformance Verification

• Java Access Rights Verification

We present API conformance verification in Chapter 5 and Java access right verification is

presented in Chapter 6. Our case studies, although preliminary, indicates the effectiveness of

our framework. Theoretically, Fex may generate false positives. However, it is surprisingly

that in our case studies, no such situation happens.

Although Fex has described as a framework for verifying Java program only. The ap-

proach can be expended to handle other byte-code based program languages. Also, In

addition to being applicable to programs, the Fex is applicable to other artifacts that cap-

ture the flow of events through a system. For example, it could be applied to architectural

descriptions or detailed designs.
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Chapter 5

API Conformance Verification

5.1 Introduction

Component-based software development is a widely used design approach in the software

engineering field. In general, a large system can be decomposed into several functional

components. Every component has a well-defined application programming interface (API)

which is used for communicating across the components. The API implementers only need to

focus on implementing the services that the API promises. As a result, these components can

then be reused for other applications. By focus on software reuse, component-based software

development greatly improves the efficiency and quality of developing custom applications.

API of a software component declares its methods together with types of parameters

and types of results. Whether a method has been passed appropriate parameters is checked

at compilation time. However, many APIs impose additional constraints on the order of

calling of its methods. For example, a network communication application using the Socket

API is expected to follow constraints like these:

• Operations such as getInputStream or getOutputStream can only be applied on a

Socket object which has already connected to a server.

• After the operation close, there should not be any further operations performed on

this Socket object.

Constraints of this type are called API conformance rules. In general, such rules cannot

be checked statically but their violations at run-time raise exceptions. API conformance

verification has been studied by several groups with different methodologies such as types-

tates [28] and abstract interpretation [70]. All these methods have certain constraints. We

use the extended Fex tool in order to alleviate the situation.

• We add new rules to the slicer such that we can specify which objects and methods

are to be kept as relevant to the API or APIs being verified.
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• The API conformance rules are expressed in executable specifications which are written

as Java classes. These classes form the API implementation at the stage of model

checking.

API conformance rules can be divided into two subcategories:

• API usage: there is no nonconforming order of the method calls from a single API or

among APIs, see Section 5.3.1.

• Resource usage: all resources are properly released at some point, see Section 5.3.2.

Fex’s analysis can guarantee that inside the application, there is no violation of any above

kind, see Section 5.3.3.

Fex improves previous work [9, 28, 33, 71] in several ways.

• Our specifications are more expressive. Some previous work [9, 28, 71] on specifying

API conformance constraints are based on using finite state machines. Finite state

machines are adequate to describe simple behavior inside a single API, but they seem

insufficient for describing cooperation among APIs, see Section 5.3. We use the idea

of executable specifications[70], which can specify all kinds of API constraints.

• In order to verify the resource usage protocol, other works such as the Fugue protocol

checker [28] requires not only annotating the corresponding API but also annotating

applications as well. Our methods only need to write the executable specification for

the method finalize from the corresponding API once, see Section 5.3.2.

• To the best of our knowledge, we are the first to consider “all”1 possible exceptions.

This gives us the confidence that our checking results are more accurate than previous

work. For example, our tool can eliminate a false positive case reported by [70], which

is caused by neglecting a possible exception.

• Previous work [9, 28, 71] performs the verification based on control flow graph whose

granularity is too coarse and may miss some subtle errors. Our method is more

accurate by adopting the sliced program as program model and using model checking.

• We can handle almost all program constructs, including concurrency. It is well known

that finding concurrency related errors is hard for standard static analysis techniques.

In fact, all the previous work on API conformance checking known to us cannot handle

concurrency. Fex remedies this problem by using the JPF model checker as the checking

engine. For example, we can check two multi-thread Java web applications (see Section

5.2) while other tools cannot.
1The exceptions we want to handle are configurable and we can explicitly ignore some of them.
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• Because previous works [9, 28] are mainly based on typestates (see Section 5.5) that re-

fines object states with finite abstract states, the handling of aliasing becomes a major

issue. Typestate based solutions to the aliased objects focuses on making restrictions

on the programs or adding extra annotations on the source code. Fex is based on

explicit state model checking of Java program, which means we base our analysis on

the real virtual machine heap where all aliasing information is coded. Therefore, we

don’t need any extra annotations or restrictions on the source code to do the analysis,

as the back-end explicit state model checker can handle all of this.

The rest of this chapter is organized as follows: in Section 2 we use a simple example

to illustrate an API conformance problem and how the Fex tool is used to verify it. In

Section 5.3 we introduce Fex’s specifications for the API conformance constraints. Section

5.3.3 introduces the verification process, and Section 5.4 presents the experimental results.

Section 5.5 summarizes related work.

5.2 Motivating Example

The event sequence constraints described in Figure 4.1 actually presents a simplified API

conformance specification for java.io.FileInputStream. We would like to verify that

a given program does not violate FileInputStream conformance rules statically. Instead

of running the actual program, we use the JPF model checker which examines all execu-

tion paths. The idea is to replace the concrete implementation of FileInputStream with

an executable specification of FileInputStream conformance rules. Please note that the

executable specification of conformance rules is a much simpler program than the actual

implementation which implicitly encodes the rules.

Figure 4.2 presents the executable specification of java.io.FileInputStream imple-

menting the FSM from Figure 4.1. The FSM state is represented by the field status.

Transition relations are coded as if statements. For example, the if statement inside

method close changes the program state from opened to closed. When the FSM enters

the error state, an exception is raised in the program, representing a possible conformance

violation.

We would like to examine that a very simple program in Figure 5.1 obeys the conformance

rules of FileInputStream. The program first calls the method initialize which creates

a FileInputStream object is connected to file named args[0], and a FileOutputStream

object os connected to file named args[1]. The method copy copies the contents from is

to os. Method cleanUp is called when an exception situation is raised.

The original program in Figure 5.1 is converted into a sliced Java program as in Figure
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03 class Test {
04 private FileInputStream is;
05 private FileOutputStream os;
06 void initialize(String s1, String s2) {
07 try{
08 is = new FileInputStream(s1);
09 os = new FileOutputStream(s2);
10 }
11 catch (IOException e) {
12 System.out.println("Catching Exceptions, now clean up.");
13 cleanUp();
14 }
15 }
16 void copy () {
17 try{
18 int i = is.read();
19 while(i != -1) {
20 os.write(i);
21 i = is.read();
22 }
23 }
24 catch (IOException e) {
25 System.out.println("Catching Exceptions, now clean up.");
26 cleanUp();
27 }
28 }
29 void cleanUp() {
30 try{
31 if (is != null) is.close();
32 if (os != null) os.close();
33 }
34 catch (IOException e) {
35 // do something ...
36 }
37 }
38 public static void main (String[] args) {
39 Test t = new Test();
40 t.initialize(args[0], args[1]);
41 t.copy();
42 }
43 }

Figure 5.1: Example program using java.io.FileInputStream
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5.22. We perform two actions during the conversion (see Chapter 3).

• We instrument the program so that the program can raise all possible exceptions

non-deterministically.

• We slice the program in order to make the program smaller.

Both actions are controlled by a configuration file as in Figure 5.9. This file tells the converter

what kind of exceptions should be instrumented and which APIs are considered relevant and

should be preserved. In this example, because we mentioned both FileInputStream and

FileOutputStream in the configuration file, objects is and os with corresponding operations

are all preserved. At the model checking phase, the model checker examines the sliced pro-

gram together with the executable specification for API java.io.FileInputStream (Figure

4.2). If there is any conformance rule violation, the model checker generates a report which

points out the erroneous execution track.

Figure 5.3 presents the report Fex generated. The report starts with the stack trace

when the program stopped due to uncaught exception

API Conformance Error! Read after stream closed.

This exception is thrown by our executable specification. The following part presents the

step by step execution trace which leads to the error (non-deterministic choices are doc-

umented). The execution trace tells us that an FileNotFoundException was thrown at

line 12 and was caught at line 14. Method cleanUp was called in turn at line 15 which

closed the input stream is. Then, method copy (line 51) was executed which attempted to

call operation read (line 20) on closed stream is. It violates the API conformance rule of

FileInputStream.

This error is triggered by calling the cleanUp too early inside initialize. Usually the

clean up method is called at the end of the whole action (preferably in a finally block) so

that there is no side effects. However, in this example, trying to do the cleaning in method

initialize results in a closed stream is which is later referenced. For this example, the

proper way would be to add a try-finally block in method main and call cleanUp in the

finally section.

Please note that there is a special error which is not explicitly represented in the FSM

specification. In the state undefined, the only legal operation is to execute a class con-

structor. Attempting any other operation results in a NullPointerException . The above

program can lead to this situation. If operation new FileInputStream() on line 08 fails,

variable is is null and an IOException is raised. Continuing to execute cleanUp at line

13 is OK, but executing method copy which attempts operation read on an null object is

raises NullPointerException. Fex catches this error as well.
2This automatically generated sliced program has been edited due to space constraints.

56



04 class Test extends java.lang.Object {
05 private java.io.FileInputStream is;
06 private java.io.FileOutputStream os;
07 void initialize(java.lang.String s1, java.lang.String s2) {
08 try {
09 if (Verify.getBoolean()) is = new FileInputStream((java.lang.String)null);
10 else throw new java.io.FileNotFoundException();
11 if (Verify.getBoolean()) os = new FileOutputStream((java.lang.String)null);
12 else throw new java.io.FileNotFoundException();
13 }
14 catch (java.io.IOException e) {
15 this.cleanUp();
16 }
17 }
18 void copy() {
19 try {
20 if (Verify.getBoolean()) is.read();
21 else throw new java.io.IOException();
22 for (int JPF_index0 = 0; JPF_index0 < 2; JPF_index0++){
23 if (Verify.getBoolean()) this.os.write(2);
24 else throw new java.io.IOException();
25 if (Verify.getBoolean()) this.is.read();
26 else throw new java.io.IOException();
27 }
28 }
29 catch (java.io.IOException e) {
30 this.cleanUp();
31 }
32 }
33 void cleanUp() {
34 try {
35 if (is != null) {
36 if (Verify.getBoolean()) is.close();
37 else throw new java.io.IOException();
38 }
39 if (os != null) {
40 if (Verify.getBoolean()) os.close();
41 else throw new java.io.IOException();
42 }
43 }
44 catch (java.io.IOException e) {
45 // do something ... ...
46 }
47 }
48 public static void main(java.lang.String[] args) {
49 Test t = new Test();
50 t.initialize((java.lang.String)null, (java.lang.String)null);
51 t.copy();
52 }
53 }

Figure 5.2: Sliced program based on Figure 5.1
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... ...
====================================================== error #1
gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty
java.lang.Error: API Conformance Error! Read after stream closed.

at java.io.FileInputStream.read(FileInputStream.java:19)
at Test.copy(Test.java:20)
at Test.main(Test.java:51)

====================================================== trace #1
------------------------------------------------------ transition #0 thread: 0
gov.nasa.jpf.jvm.choice.ThreadChoiceFromSet {>main}

Test.java:49 : Test t = new Test();
Test.java:50 : t.initialize((java.lang.String)null, (java.lang.String)null);
Test.java:9 : if (Verify.getBoolean()) is = new FileInputStream((java.lang.String)null);

------------------------------------------------------ transition #1 thread: 0
gov.nasa.jpf.jvm.BooleanChoiceGenerator[>true,false]

Test.java:9 : if (Verify.getBoolean()) is = new FileInputStream((java.lang.String)null);
Test.java:11 : if (Verify.getBoolean()) os = new FileOutputStream((java.lang.String)null);

------------------------------------------------------ transition #2 thread: 0
gov.nasa.jpf.jvm.BooleanChoiceGenerator[true,>false]

Test.java:11 : if (Verify.getBoolean()) os = new FileOutputStream((java.lang.String)null);
Test.java:12 : else throw new java.io.FileNotFoundException();
Test.java:14 : catch (java.io.IOException e) {
Test.java:15 : this.cleanUp();
Test.java:35 : if (is != null) {
Test.java:36 : if (Verify.getBoolean()) is.close();

------------------------------------------------------ transition #3 thread: 0
gov.nasa.jpf.jvm.BooleanChoiceGenerator[>true,false]

Test.java:36 : if (Verify.getBoolean()) is.close();
Test.java:39 : if (os != null) {
Test.java:46 : }
Test.java:47 : }
Test.java:17 : }
Test.java:51 : t.copy();
Test.java:20 : if (Verify.getBoolean()) is.read();

------------------------------------------------------ transition #4 thread: 0
gov.nasa.jpf.jvm.BooleanChoiceGenerator[>true,false]

Test.java:20 : if (Verify.getBoolean()) is.read();
====================================================== snapshot #1
... ...

Figure 5.3: Error message generated by Fex

5.3 Fex for API Conformance Verification

Usually a software can be divided into two parts: user programs and the API libraries.

API makes it easier to develop a program by providing all the building blocks, a user put

these blocks together in the user program to perform certain functionality. API blocks

(components) interact with each other in the user program, if there is any error with in the

interaction, a run-time exception is raised.

API conformance rules regulate the order in which API methods may be called. These

rules are implicitly encoded inside the actual implementation. Runtime exceptions are raised

when these conformance rules are violated. The descriptions of these rules are written as

comments to the API and are organized in an informal and unstructured way. In order to

do the API conformance verification, formal specification of these rules is required.

58



5.3.1 Specifying API Usage Protocol

Some previous efforts [9, 28, 33, 71] on formally specifying API conformance rules are based

on finite state machine. Fugue [28] specifies the FSM specification using program annota-

tions. Figure 5.14 presents an annotated API example in Fugue. The annotated TypeStates

forms the program states. All methods form the alphabet set. Transition function is defined

as a pre/post condition pair of a method. [9] is an improvement on Fugue which inherit

the annotation style FSM specification. Project CHET [71] uses the finite state machine

specification where predefined program events form the program states. Those events rep-

resent program actions such as method call or field access. [33] also uses an FSM based

specification.

Finite state machines are adequate to describe simple behavior inside a single API,

but they are insufficient for handling unbounded data and are inconvenient when data

values get bigger. We propose to use executable specifications to specify the API confor-

mance rules. Our executable specifications are written in Java. Each API under verifica-

tion needs to have an executable specification Java class. The new class while executable

only specifies the API conformance rules. For example, our executable specification for

java.io.FileInputStream is implemented as in Figure 4.2.

Our executable specification is more expressive than FSM based specification. All FSM

based specification can be automatically translated into executable specification. Further-

more, by adopting full Java as our specification language, we can specify the conformance

situation that involve potentially unbounded numbers of objects such as API cooperation

issues.

We use the Java Collection API and the corresponding Concurrent Modification Prob-

lem (CMP) as an example to illustrate the API cooperation issue. Every Java collection set

has an iterator that is used to iterate over all elements inside the collection. And, in order

to ensure that the inner structure of the collection does not collapse at runtime, there is

an implicit constraint for the correct usage of the iterator. Once an iterator is created on

a collection, the only valid modification one can conduct on that collection is through the

iterator itself. There are usually two ways to violate this constraint.

• By modifying the collection after the creation of the iterator.

• By creating a new iterator on the collection and doing the modification through the

new iterator.

Both operations lead to inconsistent iterator states. Once these inconsistent situations are

detected at runtime, a ConcurrentModificationException is thrown. As the research

shows that this concurrent modification exception is often related to subtle program er-

rors [70], how to statically determine if all uses of iterators are valid is a challenge.
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public class Version {
}
public class JPF_Collection implements Collection {

public Version ver;

public JPF_Collection() {
ver = new Version();

}

public boolean add(Object i) {
ver = new Version();
return Verify.getBoolean();

}

public Iterator iterator() {
return new JPF_Iterator(this);

}

public boolean remove(Object i) {
ver = new Version();
return true;

}
// ... ...
}
public class JPF_Iterator implements Iterator {

JPF_Collection col;
Version defVer;

public JPF_Iterator(JPF_Collection c) {
defVer = c.ver;
col = c;

}
public boolean hasNext () {

return Verify.getBoolean();
}

public Object next() {
assert defVer == col.ver :
"---Concurrent Modification Problem Raises!---" ;
return this;

}
public void remove() {

assert defVer == col.ver :
"---Concurrent Modification Problem Raises!---" ;
col.ver= new Version();
defVer = col.ver;

}
// ... ...
}

Figure 5.4: Executable specification: Class JPF Iterator for representing interface
java.util.Iterator and Class JPF Collection for java.util.Collection
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The class Collection and Iterator in Java are both interfaces providing descriptions for

common data container and corresponding iteration operations. These two interfaces cannot

be instantiated and do not provide executable methods. Every program using Collection

or Iterator must provide concrete Java classes to implement them. These programs is

expected to obey conformance rules for the Collection and Iterator as described above.

We are interested in verifying that a given program does not violate these conformance

rules.

Based on EASL/P’s description of the CMP problem [70], we implement two concrete

classes JPF Iterator and class JPF Collection as the executable specifications for Collection

and Iterator. presented in Figure 5.4.

From this specification, we can see that every time a Collection object updates (through

method add or remove), it’s Version field gets a new instance. When executing method

Iterator::remove or Iterator::next, the Version field of the Iterator object is com-

pared with the Version field of the back-end Collection object. If the comparison result

is negative, a concurrent modification problem is raised. As class Collection can be up-

dated many times, we need to express behaviors among potentially unbounded numbers of

Version instance. Hence, finite state machine can not specify CMP problem.

An alternative way to achieve this executable specification is to write an abstract imple-

mentation by inspecting the real Java library implementations for Iterator and Collection,

which uses the arithmetic operations to do the version check.

5.3.2 Specifying Resource Usage Protocol

In [28], resources are defined as objects which need to be released by a certain method call

rather than by garbage collection. An instance of an API is considered as resource object

when that API has a clean up method fulfilling the release action. A resource usage protocol

simply stipulates that every resource object should be released once it is no longer used.

In other words, for a resource object, the clean up method has to be executed before the

object is garbage collected. This is indeed an API conformance rule.

In the previous section, we only introduce how to extend Fex to check nonconforming

method calls, we now focused on how to extend Fex to check resource usage protocols.

Resource usage has a practical relationship with the exception handling. We use an

example to illustrate how exceptions may cause incorrect resource usage. Figure 5.5 presents

the sample Java program. This program first tries to acquire two resources: socket and

dataOutputStream, then performs some operations. When leaving the try, the program

attempts to release these two resources. At the first glance, it should work properly since

all the close() operations are inside a finally block. however, the code is flawed:

• A failure to close the dos object (Figure 5.5 line 12) will raise an exception and lead
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to line 13 socket.close() being bypassed. Therefore, resource socket leaks.

• If operation serverSocket.accept() on line 4 or new DataOutputStream() on line

5 fails, variable socket or dos will be null on line 12 or 13. Then a null pointer

dereferencing error will occur.

01 Socket socket = null;
02 DataOutputStream dos = null;
03 try {
04 socket = serverSocket.accept();
05 dos = new DataOutputStream(socket.getOutputStream());
06 // other operations
07 }
08 catch (IOException e) {
09 // handling exceptions here
10 }
11 finally {
12 dos.close();
13 socket.close();
14 }

Figure 5.5: Example of Original Program

First Attempt: Generating Specifications for Resource Leaks

Our first attempt [59] was to use automatically generated resource usage related annotations

to support the verification. This method is similar to Fugue protocol checker (see Section

5.5), only our annotation is generated automatically.

public class Resource {
... ...

public boolean inuse = true;

public void open() {
inuse = true;

}

public void close() {
inuse = false;

}
... ...
}

Figure 5.6: Resource Class Example

Compared to basic Fex, which uses three steps for exception reliability verification (Chap-

ter 3), we now need four steps.

1. Instrumentation. This process is the same as with reliability checking.

2. Slicing. This process is the same as with reliability checking except that now we

preserve not only exceptions and control flow constructs but also all resource usage

related information.
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3. Annotation. We use a generic Resource class (see Figure 5.6) to replace all those

classes which are considered as resources. Since the resource usage protocol requires no

resource leaking guarantee, we need to translate the implicit specification “no resource

leak” into assertions and annotate these assertions at the proper places. In that way, a

model checker can report any resource leak flaws in the fourth (model checking) step.

For example, Figure 5.7 presents the produced program after instrumentation, slicing

and annotation. The original program is in Figure 5.5. For the details about how this

is achieved, see below.

4. Model checking. This process is the same as with reliability checking.

01 Resource socket= null;
02 Resource dos= null;
03 try {
04 socket = null;
05 dos = null;
06 try {
07 if (Verify.getBoolean()) socket = new Resource();
08 else socket = null;
09 if (Verify.getBoolean()) throw new java.io.IOException();
10 if (Verify.getBoolean()) dos = new Resource();
11 else dos = null;
12 if (Verify.getBoolean()) throw new java.io.IOException();
13 // other operations
14 }
15 catch (java.io.IOException e) {
16 // handling exceptions here
17 }
18 finally {
19 dos.close();
20 if (Verify.getBoolean()) throw new java.io.IOException();
21 socket.close();
22 if (Verify.getBoolean()) throw new java.io.IOException();
23 }
24 }
25 finally {
26 assert socket == null || socket.inuse == false;
27 assert dos == null || dos.inuse == false;
28 }

Figure 5.7: Example of Sliced & Annotated Program

In order to do the resource usage check, specification annotations need to be inserted as

assertions into the sliced Java program. JPF then examines all the execution paths, and if

along any path there is an assertion violation, we have a resource leak.

Program resources may be declared at two levels: method and class. At the method

level, resources are declared as local objects that should be released before termination of

the method. (Note: this only works for the situation where the return type is not a resource

type.) For each method, our annotator automatically inserts a new try-finally block.

The new try block encloses the original method body while assertions that all resources

have been released are inserted into the new finally block. In that way, JPF can check if
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there are any assertion violations at the end of method execution. In order to observe scope

issues, all method level resource objects should be predefined before the new try-finally

block. This work can be automatically done by the annotator.

At the class level, it is usually difficult to decide the exact point where a resource should

be released. Additional information about the interactions between classes is required, and

users may need to insert additional specifications. However, for transaction style applications

(such as web applications), the objects that handle a transaction have a well-defined life

cycle. When a class is a descendant of Thread or Runnable, all related external resources

should be released before the run method terminates. Therefore, in this particular case, we

can automatically annotate assertions to the run method just as for ordinary methods.

Second Attempt: Extending Fex Specification

In our first attempt, we check resource usage protocols by inserting some automatically

generated annotations. However, it still has two restrictions.

1. We cannot handle situations where the global variables and method return values

are resource types (in these cases, we are not sure where these resources should be

released).

2. This method needs extra annotations. The protocol checker Fugue from Microsoft

Research [28] suffers the same problem.

In this section, we introduce our second attempt to use the executable specification to specify

the resource usage protocol which can avoid these restrictions.

Looking through our first attempt, almost all information about the resource is provided.

We know which objects are considered as resources (specified by the configuration file). We

know how these resources are manipulated through the program execution (with the help

from executable specification and the model checker). The only reason that we need extra

annotations is because we need to notify the checker to check if the resource is released at a

proper place. Theoretically, this is a liveness problem, stating that “good things (resources

released) will eventually happen at some points”. As we can imagine that every object dies

sometime, if we can spot that time slot, it would be an ideal place to check if the resource

object is released.

In object oriented programming languages, every object has a well defined life cycle

while the memory management mechanism is different from one to another. C++ uses

a programmer governed mechanism. Every class in C++ has an destructor and it will be

called when the object dies. On the other hand, languages like Java use an automatic garbage

collector that will reclaim objects once it figures out the object is no longer used. Although

Java does not have an explicit class destructor, it provides the finalize() method to
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public class FileInputStream extends InputStream {
// ... ...

public void close() {
if (status == State.opened) status = State.closed;

}

protected void finalize() {
if (status != State.closed) throw new Error("---FileInputStream leak!---");

}
// ... ...

}

Figure 5.8: Adding finalize as specification for java.io.InputStream

provide clean up action support. Java specification states that every time when an object is

about to be garbage collected, its corresponding finalize method will be called. Therefore,

to check if a resource object has been released or not at its finalize method would be a

good choice.

There are several technical problems.

• Although Java specification guarantees that every time when an object is garbage

collected, its finalize methods will be executed. It does not regulate when the

garbage collector is called. That means there is a chance that although an object is no

longer used, the garbage collector is never called and therefore the finalize is never

executed (for example, a situation where you have a lot of memory and run a very

small Java program). However, since we are doing model checking, the model checker

can guarantee that, at least when the program terminates, the garbage collector will be

executed once. In fact, our model checker runs the garbage collector more frequently

than that. Since the model checker needs to eliminate dead objects constantly in order

to keep a relatively small heap to check.

• Technically, every resource release method may fail, causes runtime exception. That

means every application has a tiny chance to leak resource. As we are only verifying

that the programmer did not forget to release resource, whether the release operation

success or not is out of the verification scope. Therefore, we instrument every resource

release method in a way that the method is guaranteed to be successful. For example,

instead of instrument FileInputStream method close in a traditional way as

if (Verify.getBoolean()) is.close();

else throw new java.io.IOException();

We instrument it as

is.close();

if (Verify.getBoolean()) throw new java.io.IOException();
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• The original version of the model checker JPF does not support the finalize method

due to performance considerations. We modified the model checker to support finalize

and found out the performance penalty was negligible.

Based on this idea, we extended the Fex executable specification to support the finalize

method. Inside that finalize method, we check if the object is released. If not, we throw

an exception notifying that there is a resource leak. For example, we add the finalize

method to the class java.io.FileInputStream as shown in Figure 5.8. Every time an

FileInputStream type of object dies, the finalize method is executed and if that object

is not in the closed state, an exception is generated which will later be caught by the model

checker.

5.3.3 Verification Process

Compared to basic Fex (Chapter 3), which is used for exception reliability verification, the

verification process for API conformance is almost the same, with two changes:

• We use our executable specification which encodes the API conformance rules to re-

place the original API implementation.

• We are deploying an updated slicer to do the program slicing. We now preserve not

only control flow related program constructs but also relevant (specified by configura-

tion file) API objects and operations.

The executable specification guarantees that every nonconforming behaviors throws an

Error exception, a model checker can catch the API conformance error by detect this

uncaught Error exception.

We use the example program from 5.1 to illustrate the API conformance verification

process.

• First, we perform the instrumentation. The instrumentation step is guided by the con-

figuration file. Compared to the configuration file for exception reliability checking, we

have a new item <crucial> here. This item is used to specify those API classes which

are relevant to the verification task. For example, the configuration file presented in

Figure 5.9 is for the program in Figure 5.1. Here, the APIs which are relevant to our

job are java.io.FileInputStream and FileOutputStream.

• Second, we perform the program abstraction. We apply a program slicer to remove

all program constructs that are irrelevant for checking API conformance. The sliced

program contains nothing but the control flow constructs and all verification related

API class objects and operations. Figure 5.2 presents the sliced program.
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... ...
<ignore> java.lang.ArrayStoreException
<ignore> java.lang.ClassCastException
... ...
<dir> /Users/xinli/examples
<crucial> java.io.FileInputStream
<crucial> java.io.FileOutputStream

Figure 5.9: Example of configuration file for API conformance verification

• Finally, we feed the sliced program into the software model checker, Java Pathfinder

(JPF) [78]. It checks if there are any uncaught API conformance related exceptions in

the sliced program. If so, JPF dumps out an execution path leading to the violation.3

5.4 Experimental Results

We present experimental results obtained by applying extended Fex on several API confor-

mance verification tasks. These tasks can be divided into three categories, we introduce

them one by one.

5.4.1 Concurrent Modification Problem

For Concurrent Modification Problem (CMP), we need to verify that the state of the iterator

and the back-end collections are consistent (see section 5.3 for the detail). Since neither API

Iterator nor Collection has an explicit object release method, we do not need to do the

resource usage check here.

We use the benchmarks from [70] as our test cases. These benchmarks are deliberately

designed as a “stress test” for CMP problem. They include the typical erroneous usage of

the iterators and collections in the real application, such as using the old iterator after the

collection has been modified. and using the old iterator while the aliased iterator has done

modification. These benchmarks also inspect various difficult aspects of CMP problem such

as aliasing, exceptions, inter-procedural call and complex data structure where collections

are deeply embedded inside.

We can find all the CMP errors (12 in total) that the reference [70] could find. However,

the reference [70] does report one false positive from these benchmarks. The reason for this

false positive is due to the limit support for exceptions. Since our tool has a full support

for exceptions, our tool does not generate any false positive.

Compared to previous work in [70], our methodology also has the advantage to handle

some complicated cases. for example, for the case in Figure 5.10, there is a potential

concurrent modification problem in line 05 which is caused by the recursive invocation of

method P . Previous work often fails to detect this error while our tool can.
3For details, please see Appendix A.5.
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01 void P (Set s) {
02 Iterator i = s.iterator();
03 if (...) {
04 P(S);
05 i.next();
06 } else {
07 i.next();
08 i.remove();
09 i.next();
10 }
11 }

Figure 5.10: a complicate situation in Iterator case

5.4.2 Socket API and Java IO Stream API

init connected closed

error

getInputStream(),
getOutputStream()

getInputStream()
... ...

connect() close()

getInputStream(),
getOutputStream()

close()

new()
undefined

new(String s, int port)

Figure 5.11: API specification for API java.net.Socket in FSM

We verify the java.io.Socket API and several java.io.* APIs. the conformance

properties we want to verify are:

• API usage: the order of the API method calls agree with the specification described

in Figure 4.14 and 5.11.

• Resource usage: all resources are released at a proper place.

The benchmarks we use in this verification task include two multi-thread Java web

applications namely project NanoHTTPD [30] and project FizmezWebServer [1]. The source

code can be downloaded from their websites.

API usage protocol

We did not find any API usage violation in these two applications.

Resource usage protocol

for the resource usage protocols, we found 6 resource leak problems in total. 4 of them are

at the method level. In project NanoHTTPD, A BufferedReader type object in is declared
4Other IO stream API specification such as DataOutputStream and BufferedReader are very similar to

this one.
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in method run() in class HTTPSession and a FileInputStream type object fis is declared

in method serveFile() in class NanoHTTPD. The author closes these resources at the end

of the corresponding try block but not in a finally section. As a result, when exceptions are

thrown these resources are never closed and thus may leak. The same situation also happens

in the project FizmezWebServer. Inside method getConfig(),although the programmer

comments the bufferedReader.close() saying that “close the mime file so others can use

it!” there is still a resource leak problem with the object bufferedReader because it is not

protected by a finally block. The same problem happens again in method getMimeTypes()

in FizmezWebServer, leading to a BufferedReader type of object execBufferedReader not

being properly released.

There are also two subtle class level resource leak problems. First, the object mySocket

of type java.net.Socket is defined as a field in class NanoHTTPD. It is initialized when an

HTTPSession is created and should be closed before this HTTP session is terminated, that

is before the corresponding run method ends. The program does call mySocket.close() by

the end of the run() procedure, but this call may be not executed as it is not enclosed in a

finally block. JPF shows us an execution path which under high load causes an exception

prior to the socket closure, and leads to the mySocket leak. Thus the application can

fail under a very high number of requests. Another class level error lies in the project

FizmezWebServer. a java.net.Socket type of object socket is defined as a field in class

WebServer. The author intends to close it by the end of the try block in run method. But

since there are many operations which might throw exceptions inside the try prior to the

close operation, we find yet another leak.

5.4.3 API java.sql.*

API package java.sql.* from Java provides the API for accessing and processing data

stored in a database. When used, it should obey the following constraints: client programs

can create Connection to databases. Any number of Statements can be created over a

Connection. A Statement can be used to execute an SQL query over the database by

using executeQuery() method, which returns the results to the query as a ResultSet.

The next method from class ResultSet is used to repeatedly iterate over the results of

the query. However, the execution of the executeQuery method of a Statement implicitly

closes any ResultSet previously returned by the Statement. Therefore, it is illegal to use

any of these ResultSet any more. Similarly, after closing a Connection, it is illegal to use

any of the Statements created from that Connection or any of the ResultSet returned by

these Statement. These constraints can be describe using our executable specification as in

Figure 5.12.
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public class JPF_Connection implements java.sql.Connection {
boolean closed;
HashSet statements;
public JPF_Statement createStatement() {

assert !closed;
JPF_Statement st = new JPF_Statement(this);
statements.add(st);
return st;

}
public void close() {

closed = true;
Iterator its = statements.iterator();
while (its.hasNext()) {

JPF_Statement s = (JPF_Statement)its.next();
if (s.myResultSet != null) {

s.closed = true;
s.myResultSet.closed = true;

}
}

}
// ... ...

}

public class JPF_Statement implements Statement {
boolean closed;
JPF_ResultSet myResultSet;
JPF_Connection myConnection;
public JPF_Statement (JPF_Connection c) {

closed = false;
myConnection = c;
myResultSet = null;

}
public JPF_ResultSet executeQuery(String qry) {

assert !closed;
if(myResultSet != null) myResultSet.closed = true;
myResultSet = new JPF_ResultSet(this);
return myResultSet;

}
public void close() {

closed = true;
if (myResultSet != null) myResultSet.closed = true;

}
\\ ... ...

}

public class JPF_ResultSet implements ResultSet {
boolean closed;
JPF_Statement ownerStmt;
public JPF_ResultSet (JPF_Statement s) {

closed = false;
ownerStmt = s;

}
public void close() {

closed = true;
}
public boolean next() {

assert !closed;
return Verify.getBoolean();

}
// ... ...

}

Figure 5.12: The executable specification for Java JDBC assessment
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consider the Java program fragment from Figure 5.13 5. This program performs a

number of database manipulation operations. There is a subtle error which violated the

API conformance constraints we presented in the last paragraph. The buggy scenario is as

follows: the execution of a query in line 28, which executing a database query on stmt2, has

an unnoticed side effort of discarding the results to the previous query executed in line 27

(because they are executing the query on the same Statement). Therefore, the subsequent

attempt to use the discarded result rs2 in line 40 is invalid.

As this JDBC manipulation constraint is a typical example of API conformance check.

We apply our extended Fex to solve this problem. We use several benchmarks from [81]

as our test cases. The first test case named JDBCExample is an extended version of the

running example that uses several connections and Statements. There is an deliberately

implanted erroneous scenario as follows: The program closes a database Connection under

a very rare exception situation. However, another Statements is still associated with this

Connection and is dereferenced after the closing operation of the Connection. Therefore,

an illegal dereferencing problem raises. Our framework can quickly detect this erroneous

situation.

We also use a relatively big example named SQLExecutor as our test case. SQLExecutor

is an open source JDBC framework based on java.sql.* API. The whole implementation

of SQLExecutor is about 2000 lines of Java code. As previous effort such as [33] fails to verify

this example due to the complex program relations, our framework can have this program

successfully verified in about 500 seconds. Our framework reports that there is no possible

conformance violation inside this JDBC framework.

5.5 Related Works

There are several projects focus on API conformance verification. The project that is closest

to our work is Fugue [28]. Fugue is a static software analyzer based on typestate checking.

Typestates [76] specify extra abstract states of objects beyond the usual types. Operations

which change object states change their type state as well. Fugue uses extra annotations

to specify API conformance protocols and aliasing information. For conformance protocol,

Fugue need to annotate the API’s source code to describe the typestates and the state

changing properties (the pre typestates as preconditions and the post typestates as the

postconditions). Sometimes it also needs to annotate on the applications to describe the

resource usage protocol and typestates. For aliasing information, every object need to be

labelled as either NotAliased or MaybeAliased. NotAliased means the object has only one

unique pointer reference. MaybeAliased means there might be many pointers refer to this

object. By applying aliasing rules such as “a NotAliased parameter can only be assigned
5This example is borrowed from [81].
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10 ConnectionManager cm = new ConnectionManager();
11 Connection con1 = cm.getConnection();
12 Statement stmt1 = cm.createStatement(con1);

// ... ...
15 ResultSet MaxRs = stmt1.executeQuery(maxQry);
16 if (maxRs.next())

// .... ...
18 ResultSet rs1 = stmt1.executeQuery(balanceQry);
19 if (maxBalance1 < threshold) {
20 stmt1.close();
21 closed1 = true;
22 }
23 Connectionn con2 = cm.getConnection();
24 Statement stmt2 = cm.createStatement(con2);

// ... ...
27 ResultSet rs2 = stmt2.ExecuteQuery(balanceQuery);
28 ResultSet maxRs2 = stmt2.executeQuery(maxQry);
29 if (maxRs2.next())

// ... ...
31 ResultSet minRs2 = stmt2.executeQuery(minQry);

// ... ...
40 while(rs2.next())

// ... ...

Figure 5.13: A buggy JDBC manipulation example

to a local or a NotAliased field” and “a MaybeAliased parameter can only be assigned to

a local or a MaybeAliased field”, Fugue can track the aliasing information across method

call.

Figure 5.14 6 shows us an example about how Fugue specifies the API Socket. For every

object with type Socket, it has four possible typestates: "Raw", "Bound", "Connected" or

"Closed". For every method, Fugue specifies the pre and post condition. For example, the

precondition for method connect() is that the receiver of the method must in typestate

"Bound" and after the execution of that method, the typestate of the receiver changes to

"Connected". Fugue also specifies the aliasing information for each method and variable

concerning if aliasing is allowed or not. For example, for the receiver of the method open

and close, aliasing is prohibited, but for method send and receive, aliasing is allowed.

Upon checking, Fugue inspects all methods in turn. For every method, Fugue does the

data flow analysis over the method control flow graph. At the method entry, the initial

typestates representing the pre-condition of the method is deployed. A heap model and cor-

responding operational semantics on every instructions are defined and is used by the Fugue

to check how the method evolves. Among those instructions, method call is checked differ-

ently in the sense that Fugue only inspect the callee’s declaration and not its body. At the

methods exit, Fugue checks if the current typestates agree with the method post-condition.

So far, Fugue cannot handle global variables, concurrency features and exceptions.

Bierhoff et al. [9] improves Fugue on several ways. First, by extending the typestate
6Since Fugue is based on CLR language, so this specification is different from the FSM specification in

Figure 5.11 which is based on Java .
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[ TypeStates("Raw", "Bound", "Connected", "Closed") ]
class Socket {

[ Post("Raw"), NotAliased ]
Socket ();

[ Pre("Raw"), Post("Bound"), NotAliased ]
void Bind( string endpoint );

[ Pre("Bound"), Post("Connected"), NotAliased ]
void Connect ();

[ Pre("Connected") ]
void Send( string data );

[ Pre("Connected") ]
string Receive ();

[ Pre("Connected"), Post("Closed"), NotAliased ]
void Close ();

}

Figure 5.14: A Fugue specification for API Socket

refinement ability to the subclasses, they can now support more expressive specifications.

Second, by applying the “access permission” annotation method which allows to change

state even when aliasing exists (still has some constraints though), they are more flexible

than Fugue’s NotAliased/MaybeAliased annotation method.

Ramalingam et al. [70] use an alternative way to handle API conformance. They spec-

ify the API conformance specification with a Java like language EASL/P. The original Java

program is translated into TVP (a language based on first order logic to specify the op-

erational semantics) program. By applying a parametric shape analysis on the heap while

checking through the program control graphs, the checker can dig out possible conformance

violations. So far, this method cannot handle resource leak problem and is hard to scale.

Compared to these related works, our method uses real Java as the executable specifica-

tion which can specify things that finite state machine protocol cannot describe. We based

our analysis on the implicit program model (sliced program) rather than on the program

control flow graph. For aliasing analysis, we are monitoring the real heap, which means

we do not need extra annotation information about the aliasing and we can handle aliasing

directly. Furthermore, our method can handle global variables, concurrency features and

exceptions.
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Chapter 6

Access Rights Verification

6.1 Introduction

Access control mechanisms in software systems are used to supervise access rights to system

resources like files, memory, and CPU time. Access control is meant to protect software

systems from malicious attacks by granting authorized access to resources and preventing

unauthorized access. As more distributed software is deployed, access control plays a big-

ger role in system security. However, proper use of access control mechanism is far from

straightforward. Problems like insufficient access checking or excessive access rights granting

are very common mistakes which make software vulnerable to abuse.

Software model checking works on control-intensive verification problems in which the

state space is small, but the paths through the space are intricate. Since the verification of

access granting is control intensive it is natural to ask if there is a feasible model-checking

based verification framework for access rights verification in Java programs.

In order to fulfill the task, that verification framework need s to have the following

characteristics:

• It allows examination of all possible execution paths including control flows resulting

from raised exceptions.

• It provides abstraction mechanisms that make model checking of large system feasible.

• The back-end model checking engine can handle real programs with language-based

access control mechanisms.

• The back-end model checking engine has the power to inspect the Java execution

stack [79].

As we can see, our extended Fex can fulfill the first three characteristics. It is possible

to customize the Fex to solve this problem. This chapter describes our effort to extend the

Fex tool for verifying that access checks are properly used in Java applications.
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This chapter is organized as follows: In the next section, we describe the access control

mechanism of J2SE version 1.4. In Sections 3, we discuss how we apply the extend Fex for

the access rights verification. A case study is given in Section 4. Section 5 introduces the

related work and Section 6 concludes.

6.2 Java Access Control Mechanism

In this section, we briefly present the Java 2 access control mechanism using a banking

example adopted from [52] with minor modifications. This example is used later to present

our verification framework.

Backend
database

Server side App. 
(Account)

Valid user 
request

Malicious request
(MaliciousUser)

Trusted Library 
(ControlledVar)

Figure 6.1: On-line banking system: component layout

Figure 6.1 shows the architecture of the banking system. User information including

account numbers and balances is stored in a back-end database. Class ControlledVar,

Figure 6.2, supplies trusted library code to manage the database. This class provides basic

operations of read and write, each protected by a corresponding permission check.

In this diagram, edges represent method invocations, not network requests. The code

for the system is assembled from various components, each component comes from a source

identified by an URL. The code could be late-bound, perhaps during execution. What mat-

ters is that every method call originates from some URL-named codebase. Permissions are

then associated with codebases as defined by the developer in a policy file, see Section 6.2.1.

Security sensitive methods call permission checks. Whether a check is successful during

execution, depends on a policy file and active method calls on the stack, see Section 6.2.2.

Figure 6.9 presents a server based on the trusted code of Figure 6.2. The server handles

client’s requests and updates the back-end database. These requests include getBalance,

debit and credit.

When a client makes a request to the server, it results in client’s code executing in the

context of the server to handle the request. Figure 6.3 illustrates sample client’s code. If

the client code is granted the required permissions then its execution succeeds. Otherwise,

an access permission exception will be raised.
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01 public class ControlledVar {
02 // ... ...
03 ControlledVar (float init, String id) { /* ... ... */ }
04 void write(float f) {
05 WritePermission wp = new WritePermission("write");
06 AccessController.checkPermission(wp);
07 var = f;
08 // do the actual IO work
09 }
10 float read() {
11 ReadPermission rp = new ReadPermission("read");
12 AccessController.checkPermission(rp);
13 // do the actual IO work
14 return var;
15 }
16 void clean () {
17 ReadPermission rp = new ReadPermission("read");
18 AccessController.checkPermission(rp);
19 WritePermission wp = new WritePermission("write");
20 AccessController.checkPermission(wp);
21 this.read();
22 // do the rest actual cleanup work ...
23 }
24 }

Figure 6.2: Class ControlledVar

01 public class ValidUser {
02 public static void main () {
03 Account account = new Account(1000, "001");
04 account.getBalance();
05 }
06 }

Figure 6.3: Valid user Code Example

6.2.1 Defining and granting Permissions

In Java 2, all access rights are represented by permission classes. All permission classes are

derived from the abstract class java.security.Permission. These classes represent access

rights to certain system resources. The permission definition usually takes two parameters:

target and action. For example, the following new creates FilePermission with action

write to file named "/home/a.txt".

FilePermission perm = new java.io.FilePermission("/home/a.txt", "write");

Another way to define permission classes is through extending subclasses of class Permission

such as java.security.BasicPermission. For example, the following permission class

WritePermission

01 public class WritePermission extends BasicPermission {
02 public WritePermission(String para) {
03 super(para);
04 }
05 }

is used in class ControlledVar (Figure 6.2) to protect the write operation. This class is used

in Figure 6.2 line 5, where we are instantiating a WritePermission object wp to represent
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write access permission. In our example, there are several application specific permission

classes: ReadPermission, WritePermission, BalancePermission, CreditPermission and

DebitPermission. Their definitions are analogous to class WritePermission.

In Java, most permissions are granted statically by using a security policy file. This

policy file contains a sequence of policy clauses. Here is an example:

grant CodeBase "www.aBank.com"{
permission WritePermission "write";
permission ReadPermission "read";

};

This policy clause states that any code executed from the codebase located at the URL

www.aBank.com has WritePermission with the parameter write and ReadPermission with

parameter read. A policy file usually includes many grant clauses.

In our example, any code attempting to call methods read and write of class ControlledVar

must have the respective permissions, ReadPermission and WritePermission. Such per-

missions are granted only to code arriving from the URL www.aBank.com.

Similarly, valid callers of methods from class Account must have all required permis-

sions since this class also comes from a trusted library. In order to be executed, the

code of the ValidUser in Figure 6.3 must have expected permissions: BalancePermission,

DebitPermission and CreditPermission which are granted using entries in the policy file,

for example, as

grant CodeBase "www.aBank.com"{
permission BalancePermission "getBalance";
permission CreditPermission "credit";
permission DebitPermission "debit";

};

Note that the policy file can grant different permissions to code originating in different

code bases, but for our example to work class Account must come also from the code base

granted the read and write permissions. However, a valid user is not expected to come

from a code base that must have all the permissions. Our example will work when the

code of valid users comes from a code base granted all the permissions to interact with the

Account class as follows:

grant CodeBase "www.ATMServer.com" {
permission BalancePermission "getBalance";
permission CreditPermission "credit";
permission DebitPermission "debit";

};

Note that with this architecture, it is possible for a malicious request from an untrusted

code base to attempt to get access to critical operations. The policy file and permissions

are meant to prevent such an attacker from succeeding. In this situation, malicious code is

essentially the same as that of a valid code:
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01 public class MaliciousUser {
02 public static void main () {
03 Account account = new Account(1000, "002");
04 account.debit(100);
05 }
06 }

What makes it malicious is that it originates from a place not mentioned in the policy

file and thus has no permissions granted. Our task is to establish whether such an attack

can ever succeed.

6.2.2 Checking Permissions with Stack Inspection

Java’s standard library provides special class java.security.AccessController with a

number of security related methods. Before a critical operation, a method checkPermission

from AccessController can be called to check that a given permission is granted, and throw

an exception if not. For example, in Figure 6.2, we first instantiate a permission object wp at

line 5. At line 6, we check if the code currently executing is granted the permission required

for continuing with the write operation. If not, an AccessControlException is generated.

Java’s access control mechanism is built around the concept of stack inspection [79].

Stack inspection works as follows: each class is granted a set of permissions to execute certain

operations (for example, reading a file or writing to a file, etc) according to the policy file.

Usually, every method and its entire call chain must have the required permission granted.

In this way, the stack inspection may prevent a program from performing an operation

on behalf of unauthorized code. However, this is too restrictive in general and Java also

provides a Privileged mechanism to relax the permission requirements for a region of code.

A privileged region is entered when method doPrivileged is called and lasts for the time

of the call. For example, lines 26 to 33 in Figure 6.9 form a privileged region which is called

when credit executes. During execution of the code in the privileged region, JVM marks

all frames that were placed on the stack before the current method (credit in our case) as

privileged.

old

new

  ......

                        P      MaliciousUser::main

               U         Account::debit

                      U      PrivilegedAction::run

                       U     ControlledVar::write

A: stack scenario for a ValidUser call B: stack scenario for a MaliciousUser call

old

new

  ......

                    P         ValidUser::main

                    U      Account::getBalance

                      U      PrivilegedAction::run

                       U      ControlledVar::read

Figure 6.4: Runtime stack demonstration. The essential difference between scenarios A and
B is the URL at which the initial method main originated.
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Method getBalance in class Account (see Figure 6.9) is acting as the interface to get the

credit information—its caller is usually not expected to have ReadPermission to directly

access the database. A privileged region is deployed here to solve the problem.

Figure 6.4 part A shows a runtime stack snapshot for that scenario. The main entrance

of this calling chain is the main method from class ValidUser, Figure 6.3. This class

comes from the URL www.ATMServer.com and is granted customer level permissions like

DebitPermission etc. However, ValidUser code has no ReadPermission but having the

BalancePermission granted in the policy file, it calls getBalance from class Account to

do the job.

When the privileged region of getBalance is executing, the method main that called

getBalance is marked with a P (for privileged); other frames are marked U (for unprivi-

leged). At the top of the call stack, the method read from class ControlledVar is about

to execute. Because it is protected by a ReadPermission check—line 12 in Figure 6.2—the

whole stack needs to be inspected; the stack inspection proceeds as follows.

1. Check that class ControlledVar has the ReadPermission. It has as it comes from

www.aBank.com.

2. The frame of PrivilegedAction::run corresponds to code from the Standard Java

API and thus has all permissions.

3. Check that class Account has the ReadPermission. It has as it comes from www.aBank.com.

4. Check that class ValidUSer has the ReadPermission. Since this frame is marked

privileged, JVM skips the check, stack inspection succeeds and the program continues.

6.3 Fex for Access Rights Verification

6.3.1 Access Rights Verification

We call a program access rights reliable when there is no possible execution path along

which an unauthorized user can eventually get access to critical operations.

Using the Java security model in practice is not straightforward. Since it is up to the code

to check if it has permission to do something, Careless security checking often leads to in-

sufficient permission checking and therefore breaches system security. In our malicious code

example, operation write from class ControlledVar directly updates the user’s account.

Operation debit is called by a valid user and to change user’s account information by calling

write. A valid user is granted DebitPermission but not WritePermission in the policy

file. The operation debit has to invoke a privileged region as otherwise stack inspection

would prevent a valid user from having write executed on its behalf by debit. However, if—
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erroneously—there is no check for DebitPermission in debit (see Figure 6.9), a malicious

user like class MaliciousUser can get access to operation write by calling debit.

The code of MaliciousUser originates at an URL which has no permissions yet it can call

Account::debit. Because of the absence of DebitPermission check in Account::debit

code, the call proceeds to the privileged region. Further stack inspections do not discover

any irregularities and finally, the back-end data base is illegally modified, see scenario B

in Figure 6.4. Even this small example calls for a technique to verify that a system has

appropriate permission checks that ensure security. This is what our framework assists in

discovering. How this is achieved is discussed in Section 6.4.

6.3.2 Verification Process

As described in Chapter 4, the verification process for access right verification can be divided

into three steps (Figure 4.3):

1. Static analysis and code instrumentation.

2. Program slicing.

3. Model checking.

The purpose of the program instrumentation is to produce a Java program with all

possible exception can have a chance to be raise. Program slicing is used to produce a

simplified Java program which has significant smaller program state to explore ans still

preserves all interesting program properties. Several manually prepared specification Java

classes are used to provide the permission granting information and an abstract version of the

critical operation. The simplified Java program, along with these executable specification

Java classes, are fed into the back-end model checker. Our back-end model checker JPF

, which has been customized to have the power to inspect the Java execution stack and

perform the stack inspection, can then catch any possible permission violations.

Instrumentation

Malicious code almost always stages an attack by exploiting situations that are unanticipated

or rarely encountered. Theses situations are frequently related to the program components

handling exceptional situations. Therefore, the ability to examine all possible exceptional

control flows is essential in our verification. As described in appendix A.3, after program

instrumentation process, the resulting Java program is able to raise all possible exceptions,

thus we have the confidence that we are examine the complete program control flow.
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Slicing

The instrumented program from step 1 is fed into a slicer to remove all program constructs

deemed irrelevant for analyzing access rights. According to chapter 4, The program slicer

is now divide all Java types into four categories:

1. Control-flow dependent types (CType): e.g. the Thread class.

2. Primitive types (PrimType).

3. Crucial types (PType): these types which are related to checking access rights per-

missions, e.g. all subclasses of java.security.Permission and the class

java.security.AccessController.

4. Ignored types (LType) : these types that come from the Java library or from third

party application whose source code is not available. Since we do not know how the

classes in LType implement the access rights mechanism, we assume that they do it

properly. Such classes are trusted and ignored in further verification.

By slicing, the class fields of primary or ignored type are removed. Parameters of primary

or ignored type are replaced with a fixed value, e.g. NULL for reference types, 2 for integer,

etc.

Executable Specification for Access Right Verification

In order to model check the simplified program, the permission granting information (which

class is granted with what kind of permission) should be visible to the model checker. In

reality, this permission granting information is encoded in a security policy file (see Section

6.2.1), and it is the virtual machine’s responsibility to provide correct permission granting

information upon the stack inspection process. In our model checking phase, to decode the

security policy file needs to take care of too much implementation detail and is therefore

impractical. Instead, we use an specification class ca.ualberta.cs.PermissionRelation

to present the permission granting information to the model checker. This class encodes the

permission granting information by using if statements with the name check.

Figure 6.5 is an example for class PermissionRelation which encodes the permission

granting information for the banking application we introduced in Section 2. In this example,

to check if the class bankexample.Controlledvar has the permission ReadPermission, we

only need to call the static method checkPermissionRelation from class PermissionRelation

with the correct parameter cName and pName. Although this specification class can be

translated from the security policy file automatically, we are now doing this manually for

convenience.
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package ca.ualberta.cs;

public class PermissionRelation{
// ... ...

public static boolean checkPermissionRelation(String cName, String pName) {

if (cName.equals("bankexample.ControlledVar") & pName.equals("ReadPermission")) return true;
if (cName.equals("bankexample.ControlledVar") & pName.equals("WritePermission")) return true;
if (cName.equals("bankexample.ControlledVar") & pName.equals("BalancePermission")) return true;
if (cName.equals("bankexample.ControlledVar") & pName.equals("DebitPermission")) return true;
if (cName.equals("bankexample.ControlledVar") & pName.equals("CreditPermission")) return true;
// ... ...
return false;

}
// ... ...

}

Figure 6.5: Class PermissionRelation as the executable specification

Besides the permission granting information, the back-end model checker also need to be

aware of which method are considered as the critical operation, the operation which should

never be reachable from the outside attacker. In fact, we are not interested in how these

critical operation functions, the only thing we are concerned is the reachability of the critical

operation. Therefore, we replace every critical operation with its executable specification

counterpart whose body contains only one assertion statement:

assert:contradiction

This assertion is used to denote that the critical operation is suppose to be unreachable. Fig-

ure 6.6 show us an example for the executable specification version of the critical operation

for the banking application in Section 2.

public class ControlledVar {
// ... ...
void write(float f) {

assert: contradiction
}

float read() {
assert: contradiction

}
// ... ...

}

Figure 6.6: Executable specification for critical operation

Model Checking

The current version of JPF does not support the stack inspection action. We need to

customize the JPF to perform the stack inspection action. how this is achieved is introduced

in Section 6.3.3.

Because there might have several entrance points for a certain application, a test harness
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Attacker which can cover all possible public entrances should also be provided. How to get

this test harness is introduced in Section 6.3.4.

In the model checking phase, the simplified program along with the executable specifica-

tions which presents the permission granting information and the critical operation are fed

into the back-end model checker JPF for examination. JPF used the test harness Attacker

as the main entrance to explore all possible execution paths, if along any paths, there is a

permission violation, a possible access right violation is detected.

6.3.3 Customizing the Model Checker

The sliced program is fed into a model checker, a customized version of Java Pathfinder,

JPF [78], to search for access rights violations. Upon detecting a possible access rights

violation, JPF dumps out an execution path leading to the offending situation.

JPF is an unusual software model checker in that it directly handles Java byte code.

JPF consists of a custom Java virtual machine that executes the byte code and a search

engine that guides the execution. Since the states–JVM snapshots—are coded into concise

representation, one can use an explicit model checking algorithm to systematically explore

all potential execution paths of a program to locate undesired states. In the process, JPF

searches for deadlocks, unhandled exceptions and assertion violations. Once a violations is

found, JPF reports the entire execution path that leads to the situation.

Java library class AccessController depends, among others, on some native code for

reading the security policy file. Although the basic JPF cannot handle native code, JPF

provides an an extension mechanism called the model Java interface (MJI). MJI is analogous

to Java native interface (JNI) and is used to delegate execution from the Java level to the

native system level. MJI is used to transfer the execution from JPF controlled VM level into

the host VM level. MJI guarantees that once the corresponding method is invoked, the MJI

version will be executed instead of the original Java version. This is particularly useful for

intercepting calls to native methods or to code which is too complex for model checking. We

have implemented a customized MJI version for java.security.AccessController called

JPF_java_security_AccessController.

JPF provides functionality for gathering call stack information at a specific program

state. Therefore, we can do the stack inspection in our customized version checkPermission

procedure in a way presented in Section 6.2.2.

6.3.4 Generating test cases

Our framework automatically generates a test case class named Attacker which defines

the entry point for JPF. This class forms a test harness providing environmental choices

to the model checker by exhaustively calling all publicly accessible program methods. For
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example, the generated Attacker class example for application Account from Figure 6.9 is

as in Figure 6.7.

public class Attacker {
public static void main(String[] args) {

bankexample.Account var;
var = new bankexample.Account( 2, (java.lang.String)null);
try { var.getBalance();} catch (Exception e) {}
try { var.debit(2);} catch (Exception e) {}
try { var.credit(2);} catch (Exception e) {}

}
}

Figure 6.7: Class Attacker

The class Attacker is generated by using Java reflection [35] tools for examining internals

of the given application. By using Java reflection, we examine the internal structure of the

given Java applications. The generate test harness class Attacker instantiates application

classes and tries to call all the publicly accessible methods. These methods are considered as

the possible program entries for the given application. By doing this, we have the confidence

that all possible entry points are checked.

Attacker acts as an intruder and by default is granted no permissions. However, the

user can grant permissions to this code by modifying the executable specification class

PermissionRelation. These methods which are considered critical should also be re-

placed by it’s executable specification replacement whose method body is only one statement

assert: false to identify its unreachable property. In general, the Attacker is not al-

lowed to lead to their execution. Every execution path which begins with the main entry

of Attacker and eventually reaches one of the critical operations forms an access rights

violation and is reported.

6.4 Experimental Results

We present some experimental results based on the on-line banking example we introduced

in Section 2. Ignoring the ValidUser in Figure 6.1, an access permission breech involves

three players:

• A trusted library (Class ControlledVar, see Figure 6.2), with the functionality to

manipulate the back-end database. It has all the permissions.

• A server side application (Class Account, see Figure 6.9), with the functionality to

perform remote requests. It has all the permissions.

• A malicious agent (Class Attacker, see section 6.3.4) which acts as an intruder, trying

to get access to critical operations. It has no permissions granted.
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We want to verify that there is no possibility of an unauthorized access to critical oper-

ations: read and write from class ControlledVar. With the assistance of our verification

framework, we find two access rights violations in this program.

The first security flaw is inside the method debit from class Account. This method

contains a privileged region which calls critical operations read and write from class

ControlledVar. They are used to directly update user’s account information. Since these

critical operations are all in the privileged region, operation debit can be called to update

user’s account information. It looks fine since every critical database manipulation opera-

tion is protected by corresponding permission checks. However, since there is no permission

check for DebitPermission in debit, a class like Attacker which has no permissions can

eventually get access to operations read and write by calling debit. This may lead to an

illegal database modification.

Our verification framework detects this scenario as an access control flaw as follows.

Since class Attacker doesn’t have any permission granted, any execution which starts at a

method from Attacker and reaches the critical operation read is a violation of the program

access rights policy. Every critical operation is replaced by the executable specification

whose body contains only one assertion statement: assert: contradiction (denoting that the

critical operation is suppose to be unreachable.) If JPF is started at the class Attacker

and the control flow reaches a critical operation, JPF aborts when it reaches the assertion.

Upon abort, JPF presents an execution path leading from a method of Attacker to a critical

operation. The actual call chain is analogous to Figure 6.4 part B.

main()

getBalance() credit() cleanUp() debit()

read() clean() write()

Attacker

Account

ControlledVar

old

new

  ......

              U          Account::cleanUp

                      U       PrivilegedAction::run

                      U      ControlledVar::clean

                      U       ControlledVar::read

                       P          Attacker::main

               P          Account::credit

Figure 6.8: Call graph and the runtime stack state for the 2nd access control flaw

The above security flaw is quite trivial in the sense that it can be detected by an ex-

perienced programmer playing with a standard Java compiler. On the other hand, our

verification framework also identifies another security flaw which other static analysis tools

like ESC/Java [34] miss. This security flaw is inside the method credit from class Account.
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By going through the error execution path produced by our model checker, we see

the security flaw scenario as follows: the method credit is first checking system consis-

tency by calling procedure checkConsistency, then it checks if the current user has the

CreditPermission. If so, the program continues with the actual credit operation, if not,

the program throws out an AccessControlException. This guarantees that a malicious

user which doesn’t have proper permissions can’t break inside.

There is a subtle error: since the method checkConsistency might throw an IOException.

The careful programmer has placed a catch block to perform the clean up by calling

cleanUp. But this cleanUp operation is not protected by any permission checks! Un-

fortunately, the cleanUp method calls clean from ControlledVar, which in turn calls the

critical operation read.

The above means that a malicious user eventually gets access to the critical opera-

tion read by staging an IOException. This flaw is detected by our verification framework

since the instrumented program triggers all possible IOExceptions. As a result, the back-

end model checker can go through this implicit control path which begins with the class

Attacker, and when the control flow eventually reaches the critical operation read, the

model checker detects a stack violation because the malicious class Attacker has no per-

missions granted. (The JPF running time on this small example is negligible.) Figure 6.8

demonstrates the call graph and the runtime stack snapshot for this situation.

6.5 Related Work

There are several approaches to access rights verification that are closely related to stack

analysis. Jensen et al. [52] proposed a framework for verifying general security properties

by model checking. They model the program as a flow graph. Each node in the flow graph

corresponds to a program point. Each edge presents a possible control flow in the program.

Since there is no data handled in this model, the operational semantics is defined as a

transition system over a control stack consisting of program points. A model checking tool

was further developed by Jensen to verify that in all executions all permissions are granted

wherever they are being checked.

Following Jensen’s pioneering work, Naumovich [66] discusses the same problem using

a conservative data flow analysis tool while his program model is basically the same as

Jensen’s. Koved et al. [54] also propose a technique for computing the access rights require-

ments by using a precise data flow analysis. Compared to Naumovich’s work, they can also

model more advanced features, like multi-threading. Bartoletti et al. [6] adopt a control flow

graph based static analysis to approximate the access right sets granted at run time. Blanc

et al. [8] propose a static analysis tool for detecting access control related security defects.

They also provide a formal model on which the correctness of their analysis is proved.
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Compared to Jensen’s pioneering work and other control flow based static analysis tech-

niques, we offer several advantages.

• Our tool can handle all Java language features including threads.

• We consider all possible exceptions.

• Most of the previous techniques are based on approximate control flow analysis for

virtual calls and inter-procedural calls. Our framework is based on model checking

actual calls in a simplified program.

6.6 Discussions

We have presented a verification framework for access rights verification that uses a cus-

tomized version of the JPF model checker for examining call stack and execution paths.

First, the investigated program undergoes static analysis and is instrumented such that all

exceptions can be easily raised. Then the program is simplified through slicing which retains

only control flow and the access rights relevant data. A test harness is automatically gener-

ated and the model checker examines all execution paths of the simplified program. A set

of manually prepared specification classes states the permission granting information and

the critical methods that are not permitted to be accessed by the test suite. If the model

checker reaches such a critical method, then an access right violation is reported. With

our simplification rules we can still obtain false positives (e.g. due to raising an exception

unreachable in the original program).

This framework is directly derived from the extended Fex which is used for verifying event

sequence related program properties. Compared to the event sequence program properties

such as API conformance verification, access right verification share much in common. Both

verification are control-flow determined, differing only in data types relevant for the verified

property. For API conformance check, the relevant data could be of any class which is defined

as crucial types. For access rights verification, the relevant data is any class derived from

the base permission class. We are looking for other control-flow determined applications for

this “aggressive” slicing approach.
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01 public class Account {
02 private ControlledVar balance; // ... ...
03 public Float getBalance() {
04 BalancePermission bp = new BalancePermission("getBalance");
05 AccessController.checkPermission(bp);
06 AccessController.doPrivileged(
07 /*... Manipulate database by calling Controlled::read ...*/);}
08 public void debit(final float amount) {
09 AccessController.doPrivileged(
10 /*... Manipulate database by calling Controlled::write ...*/);}
11 private void cleanUp() {
12 AccessController.doPrivileged(
13 new PrivilegedAction() {
14 public Object run() {
15 balance.clean();
16 return null;
17 }
18 }
19 );
20 }
21 public void credit(final float amount) {
22 try {
23 checkConsistency(); //might throw IOException;
24 CreditPermission cp = new CreditPermission("credit");
25 AccessController.checkPermission(cp);
26 AccessController.doPrivileged(
27 new PrivilegedAction() {
28 public Object run() {
29 balance.write(balance.read() + amount);
30 return null;
31 }
32 }
33 );
34 }
35 catch(IOException e) {
36 this.cleanUp();
37 }
38 }
39 private void checkConsistency() throws IOException { /* ... ... */ }
40 }

Figure 6.9: Class Account
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Chapter 7

Conclusion and Future Work

7.1 Summary of Result and Contributions

The world is increasingly dependent on software, yet software remains buggy. Many research

efforts to improve software reliability have focused on proving the absence of defects. While

such software verification has been a goal since the work of Floyd, Hoare and Dijkstra in the

1960s, it is now becoming reality. The shift in focus from total correctness, which is hard to

even specify, to common specific properties (e.g., memory safety and deadlock freedom) and

new techniques for model checking such as automatic abstraction, decision procedures, pro-

gram analysis combined with great increases in computing power have resulted in practical

verification methods.

Model checking approaches are precise but are choked by state explosion as they track

too many facts. Most researchers agree that the best way to attack this problem is to use

program abstraction. by applying proper program abstraction, one can have a simplified

program (or program model) which not only preserves the interesting program properties

but also keeps the program states at a manageable level.

We use the term event sequence related program properties to denote these program prop-

erties which are related to the execution sequence of the program events. As model checking

is an ideal approach for control-flow intensive verification task and event sequence related

program properties is indeed control flow intensive, we propose to use a model checking based

verification framework for verifying event sequence related program properties. In order to

effectively detect subtle errors, this framework must have the following functionality:

• The framework needs to provide the ability to explore all possible control-flow paths

including the implicit one such as control-flow raised by an unexpected exceptions.

• The framework needs to conduct the program abstraction techniques to not only

preserve the interesting program properties but also keep the program state at a

manageable level.
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This thesis is focuses on presenting a framework which can achieve the above two goals.

This framework combines static analysis with model checking techniques for verifying event

based program properties fully automatically. The feasibility and effectiveness of the frame-

work are demonstrated by these case studies. We conclude that this tool is indeed useful

for detecting subtle errors.

As we know, handling exceptions is important for software reliability. Up to half of a

mature program may be devoted to exception handling. Unfortunately, it is difficult to

reason about control-flow paths introduced by exceptions because exceptions do not occur

on demand and thus do not lend themselves to traditional verification methods. As event

sequence-based program properties are essentially control flow determined, being able to

acquire a complete control flow from the program is crucial. To be precise, all exception-

triggered program control flows must be included in our verification scope. Our framework

deploys a static analyzer for exception instrumentation. By static analysis, we can have

all possible exceptions instrumented at the proper places. The back-end model checker can

then be aware of these potential exceptions and check the corresponding implicit program

control flows raised by these exceptions. Thus we can now have a complete control flow

model of the program under investigation.

We use executable specification to specify event sequence related program properties.

Executable specification is an abstract version of the original implementation. By discard-

ing the irrelevant implementation details and focus on the interesting program properties,

executable specification can greatly reduce the program state which need to be explored.

As executable specification is usually manually prepared, it can be used to specify all kinds

of program properties.

Mindlessly applying program abstraction may either preserve too much details which

make the checking process less effective or discards interesting program behaviors which skips

subtle errors. We have developed a property guided program abstraction technique which

combines data abstraction, loop abstraction and program slicing techniques together to

obtain a small yet precise program model. Unlike previous analyses, our program abstraction

technique is based on program transformation. The simplified program is guaranteed to

have the interesting program properties preserved, providing both precision and scalability.

Using this novel technique, we are able to analyze large Java applications with complicated

program properties.

These program instrumentation and abstraction techniques are implemented in a tool,

Fex, which can verify event sequence related program properties for Java programs. We have

used Fex to verify that multi-threaded Java web applications adhere to API conformance

rules such as the rule specifying that a socket is eventually closed or that a file be written

to only if it was previously opened. Fex is also used to verify the success of access control
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checks in Java applications. e.g. there is no possibility that a malicious user can break into

an access control protected area.

In short, this work focus on extending the current program instrumentation and abstrac-

tion techniques to support software model checking and applying it to verify event sequence

related program properties. A summary of the main result and contributions are as follows:

1. The design and implementation of Fex forms a large fraction of this work. We present

a novel, property-guided, program abstraction technique which conduct both data ab-

straction, predicate abstraction, loop abstraction and program slicing to produce a

simplified program for checking. We also integrate a program exception instrumen-

tation procedure into our verification process to ensure no implicit control flow is

missed.

2. We use executable specifications to describe event sequence related program proper-

ties. Previous widely used formalisms like finite state machines can be automatically

translated into executable specification and executable specifications can be used for

describing more complex program properties such as concurrent modifications and

resource leak problems. Executable specifications also provide as an extra program

abstraction technique that lets us focus on what we are really interested in.

3. The feasibility and the potential usefulness of the approach are demonstrated by ap-

plying Fex to several verification tasks. Both the advantages and limitations of our

methodology learned from the experiments are reported. These lessons are important

for both the use and future development of the Fex tools.

7.2 Future Work

In this section, we suggest four main directions for future work.

Applying Fex to verify other interesting API conformance rules

Fex has been successfully applied for verifying the conformance of APIs such as

java.net, java.io and java.sql. It is necessary to apply Fex to more API con-

formance case studies to investigate how well Fex works in helping programmers to

find subtle conformance errors. For example, Fex can be used to check the conformance

rules of java.util.concurrent.Semaphore to detect language based concurrent pro-

gram errors such as deadlocks. Ideally, every java API should have a corresponding

executable specification to encode these conformance rules for check.

Fex as a basis for other program verification tasks

Fex conducts the program abstraction by applying an “aggressive” program slicing ap-

proach to produce an simplified program which is insensitive to most of data. Therefore
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it can only be used to handle control-flow determined program properties such as API

conformance check. We are looking for applying Fex to other applications which is

control-flow determined. For example, the information flow security problem, in which

we need to verify that there is no illicit information flow in programs, can be handled

by Fex. As the back-end model checker can systematically exploring all potential ex-

ecution paths of a program, one can trace the actual information flow over program

execution and detecting any illicit information flow.

Improve the error report understanding.

Another research direction which can help the software verification practice is error

report understanding. As of now, the error reports generated by software quality

tools can often only be understood by tool experts. Ultimately, finding and reporting

bugs will not increase software reliability if programmers are unable to understand the

reports well enough to fix the bugs. If model checking techniques are to be integrated

into software engineering practices, error reports must be improved.

So far the error report generated by Fex is an execution trace which leads to the

property violation. The execution trace is actually based on the simplified program.

As there is still a big gap between the original program and the simplified program, it

need the practitioners substantial efforts to have the error report clearly understand.

We think the next step in improving Fex tool would be to building the bridge between

the original program and the simplified program so that the trace based error report

can actually be shown on the original program instead of on the simplified program.

By doing this, we improve the readability of the error report so that the tool can be

used by real programmer. We can also adopt a Counterexample-guided abstraction

refinement methodology which re-examines the counterexample error trace on the

original program to either confirm it is a real error or just a false alarm. We believe

this method can greatly improve the precision of Fex.

Adding limited data

The current program abstraction strategy that Fex is adopting is rather aggressive in

the sense that all primary types such as integers are removed. On the one hand, this

give us the benefit to greatly reduce the program state to explore, on the other hand,

it also narrows down the application scope of our tool. For example, so far Fex can

not be used to verifying arrays with crucial types. The reason is as we have remove

all information about integer, we have no idea how the array index works. In other

words, all array element are now the same to us.

In order to overcome this limitation, we are thinking about applying a less aggressive

program slicer to preserving only limited data. For example, for integer type, instead
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of get rid of all integers completely, we now use a small scope such as [-2, 2] to replace

the original integer scope. By doing this, we can still make the program state at a

manageable level while greatly improves the application scope of the verification tool.
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Appendix A

Fex Implementation

A.1 Configuration File

The configuration file is used to provide several kinds of information, including:

• What kind of exceptions should be neglected in this verification process?

• What kind of classes/types are considered crucial in this verification process and there-

fore should be preserved?

• What program do we want to verify?

• Where is the program source code we want to verify?

• Where is the target directory for the generated output?

Fex uses a plain text file as the configuration file. This file contains several lines of rules

and for each rule, it must follow the following format:

<token> value \n

Where <token> is either <ignore>, <crucial>, <output>, <dir> or <import>. A complete

list of so far supported token is in Figure A.1.

The value of token <ignore> is used to identify these exceptions which are suppose

to be ignored by the static analyzer. By default, our analyzer instruments every possible

exception, but the user can choose to skip some kinds of exceptions. The exception labeled

with <ignored> will not be instrumented by Fex.

The value of token <crucial> is used to identify those types which are considered as

crucial types (PType, see Chapter 4). For exception reliability check, PType is empty,

which means only the control flow related types are preserved. However, for other more

complicated verification tasks, those <crucial> items are used to inform the slicer which

types are considered as inside PType and therefore should be preserved. For example, in

API conformance verification, <crucial> is used to label these API which we are interested

in.
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Name Meaning Example
<ignore> to identify the exception which

is about to be neglected
<ignore> java.lang.OutOfMemoryError

<crucial> to identify the class type which
is about to be preserved

<crucial> java.net.Socket

<import> to identify the specific Java
package which need to be veri-
fied

<import> jnfs.security

<dir> to identify the path where Java
package under verification lo-
cates

<dir> /Users/xinli/examples

<output> to identify the place for output
file

<output> /Users/xinli/test

Figure A.1: Example of Configuration Token

The value of token <dir> is used to specify the place where the source code we want

to verify lies. The value of token <import> specifies the Java packages which need to be

verified. The value of <dir> plus the value of <import> forms a final path. All files with a

.java suffix inside the final paths will be processed by Fex. The value of token <output> is

used to specify the place for generated Java files.

For example, assume a Java package jnfs.security is the application we want to verify

and this package is located under directory /Users/xinli/examples, in order to let Fex find

all these Java files which need to be transformed, the value of token <dir> should be set to

/Users/xinli/examples and the value of token <import> should be set to jnfs.security.

And if the value of token <output> is set to /Users/xinli/test, all generated files will be

put under directory /Users/xinli/test/jnfs/security.

Figure A.2 shows an example of a complete configuration file. This file tells us that in

this verification process, there are seven types of exceptions need to be neglected. They all

labeled with <ignore>. Any statement which might throw these exceptions will not be in-

strumented. Additionally, we know that the application we want to verify exists in the path

/Users/xinli/examples and there are three packages we want to verify. They all labelled

by <import> token. Hence all Java files under directory /Users/xinli/examples/jnfs,

/Users/xinli/examples/jnfs/security and /Users/xinli/examples/jnfs/security/acl

will be processed. The processing result will be put under directory /Users/xinli/test.

Finally, since we have two <crucial> items there, we know that objects with class type

java.net.Socket or java.io.DataOutputStream are considered as crucial and are pre-

served.
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<output> /Users/xinli/test
<ignore> java.lang.OutOfMemoryError
<ignore> java.lang.NegativeArraySizeException
<ignore> java.lang.ArrayIndexOutOfBoundsException
<ignore> java.lang.ArithmeticException
<ignore> java.lang.NullPointerException
<ignore> java.lang.ArrayStoreException
<ignore> java.lang.ClassCastException
<dir> /Users/xinli/examples
<import> jnfs
<import> jnfs.security
<import> jnfs.security.acl
<crucial> java.net.Socket
<crucial> java.io.DataOutputStream

Figure A.2: Example of Configuration File

A.2 AST and Visitor Pattern

The implementation of Fex is based on the Kjc compiler [2], an open sourced Java language

compiler and the idea of visitor design pattern. In order to better understand how our

program instrumentor and slicer works, we first give a brief introduction to the Kjc compiler,

abstract syntax tree and visitor design pattern.

    TypeCheck()
    Prettyprint()
    CodeGenerate()

CompilationUnit

    TypeCheck()
    Prettyprint()
    CodeGenerate()

MethodDeclaration

    TypeCheck()
    Prettyprint()
    CodeGenerate()

ClassDefinition

    TypeCheck()
    Prettyprint()
    CodeGenerate()

FieldDeclaration

Figure A.3: The AST class hierarchy for Java language in Kjc Compiler (In part)

Kjc compiler parses Java program and encode the parse tree as an abstract syntax

tree. An abstract syntax tree (AST) is a directed tree where each inner node represents

a meaningful programming language construct and the children of that node represent the

sub-components of the construct. It is often used as a compiler or interpreter’s internal

representation of a program.
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In the AST representation, the node that represent the class declaration is different from

the node that represent field declaration or method call expression. Hence, there will be

one class node for class declaration, another for field declaration, another for method call

expression, and so on. For example, Figure A.4 shows part of the AST class node hierarchy

tree for Java program. A Java program is composed by class declaration operation. Each

class declaration can contain field declaration, method declaration etc.

The compiler needs to perform all all kinds of operations on abstract syntax trees for

syntax or semantic analyses such as type checking, pretty printing, code generation and code

instrumentation. These operations could be associated with the AST node just as Figure A.4

shows. However, it is confusing to have type-checking code mixed with pretty printing code.

A better way to do this would be to present each analysis operation (belonging to a separate

compiler feature) separately, leaving the classes in the AST representation independent of

the operations that apply to them.

visitClassDeclaration(ClassDeclarationNode)
visitFieldDeclaration(FieldDeclarationNode)
......

KjcVisitor

visitClassDeclaration(ClassDeclarationNode)
visitFieldDeclaration(FieldDeclarationNode)
......

InstrumentVisitor

visitClassDeclaration(ClassDeclarationNode)
visitFieldDeclaration(FieldDeclarationNode)
......

SlicingVisitor

Figure A.4: KjcVisitor class hierarchy

The Kjc compiler provides access to the AST through an implementation of the Visitor

design pattern [37]. The purpose of the Visitor Pattern is to encapsulate an operation that

you want to perform on the elements of a data structure without changing those structures.

The word “Visitor” refers to the ability of performing operation without changing anything

from the data structure.

The visitor pattern lets you have the separation of operations and structures by packaging

related operations from each class in a separate object, called a Visitor, Each node in the

AST can accept a visitor, which sends a message to the visitor which includes the node’s

class. The node makes a call to the visitor, passing itself in, and the visitor executes its

operation on the node.
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public interface KjcVisitor {

void visitClassDeclaration( ... );

void visitClassBody( ... );

void visitFieldDeclaration( ... );

void visitMethodDeclaration( ... );

void visitKopiMethodDeclaration( ... );

void visitWhileStatement( ... );

void visitVariableDeclarationStatement( ... );

void visitVariableDefinition( ... );

void visitTryCatchStatement( ... );

void visitTryFinallyStatement( ... );

void visitThrowStatement( ... );

void visitReturnStatement( ... );

void visitIfStatement( ... );

void visitExpressionStatement( ... );

void visitExpressionListStatement( ... );

void visitMethodCallExpression( ... );

public void visitBinaryExpression( ... );

... ...
}

Figure A.5: Code sample for interface KjcVisitor

For example, a compiler that pretty print a program using the visitor pattern would

create a PrettyPrintVisitor object and call the accept operation on the abstract syntax

tree with that object as an argument. Every nodes on the AST hierarchy would implement

an accept for calling back on any Visitor instance. For instance, a class declaration node

calls visitClassDeclaration operation on the Visitor, while a method call expression

calls visitMthodCallExpression. Consequently, the PrettyPrint operation that used

to be in class classDeclarationNode is now the visitClassDeclaration operation on

PrettyPrintVisitor.
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Therefore, the visitor pattern results in two interdependent class hierarchies: one for

the elements being operated on (AST class node hierarchy in our case) which is liter-

ary untouched. And one for the visitors that define operations on the elements (the

PrettyPrintVisitor hierarchy in our case) which can be quickly expended for a new op-

eration.

Because Kjc compiler works on the AST for more than just one operation, an interface

class KjcVisitor is presented for all visitors (See Figure A.5). This interface declares an

abstract operation based on the AST hierarchy. New functionality can be added simply by

defining new KjcVisitor subclasses. For example, the class InstrumentVisitor, which is

used to perform the program instrumentation, and the class SlicingVisitor, which is used

to perform program slicing, are defined as subclasses of interface KjcVisitor.

A.3 Program Instrumentation

The purpose of program instrumentation in Fex is to make sure that every possible exceptions

can be raised. In general, it is difficult to gather all exception related information because

exceptions do not occur on demand. Static analysis is an efficient way to cure this problem.

By approximate the program behavior at the run-time, a static analyzer can gather the

exception related information such as what kind of exception that might be raised at which

program points. Our exception analysis is based on the Jex tool [73], a static analysis tool

for analyzing exception flow in Java programs.

Jex is a static analysis tool that provides information about the exceptions that can

be raised in a Java program. For each method of each class, Jex outputs a description of

all exceptions that can be raised in the method. The description shows the origin of each

exception. Jex is built on top of Kjc, the Kopi open source Java compiler. In fact, Jex is

implemented as an extension to the Kjc project. Jex takes as input a set of Java source

files and a configuration file and produces, for each Java class, a human-readable Jex file. A

Jex file contains, for each method in the associated Java class, a view of the exception flow.

Figure A.6 is a Jex file example for a class constructor.

From this example, we see that an SecurityException can be raised as a result of

the call to method checkWrite of class SecurityManager. Furthermore, in the try block,

IOException can result from the calls to methods openAppend and open of class FileOutputStream,

and a NullPointerException can be raised by the run-time environment. The catch clause

declares to catch IOException and in the corresponding block, a FileNotFoundException

is explicitly raised using the keyword throw. The view of exception flow produced by Jex

is more precise and more complete than the information available through exception inter-

faces i.e, the ”throws” list in method declarations. Our static analyzer tool can reuse this

exception information for our verification purpose.
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<init>(java.lang.String,boolean) throws IOException
{

java.lang.SecurityException:SecurityManager.checkWrite(java.lang.String);
try
{

java.io.IOException:java.io.FileOutputStream.openAppend(java.lang.String);
java.io.IOException:java.io.FileOutputStream.open(java.lang.String);
java.lang.NullPointerException:*environment*;

}
catch( java.lang.IOException )
{

throws java.io.FileNotFoundException;
}

}

Figure A.6: A Jex file example for a class constructor

Based on Jex, our tool is organized around three central functions: parsing and type

checking Java files, extracting exceptions, and instrumenting exceptions at the proper places.

The parsing and type checking of Java source files is performed by the Kjc compiler. This

compiler operates like the standard Sun Java compiler, taking as input a series of Java

source files. The Kjc compiler parses the Java files and produces an abstract syntax tree

(AST) for each file. Based on the generated AST, The Kjc compiler typechecks the code,

which evaluates the type of all expressions in the AST. We then implement the extraction of

exception information and the exception instrumentation as one instances of KjcVisitor,

namely InstrumentVisitor.

For environment-generated exception types, we extract the corresponding exception

based on the Java language specifications [4] and instrument the possible exception right

after the statement which might raise that exception. For example, a statement a/b which

attempts a division operation might raise ArithmeticException and therefore is instru-

mented as:

a/b;

if (Verify.getBoolean()) throw new ArithmeticException();

Thus, not matter what the real value of a and b are, we always considered the possibility of

divide by zero error and therefore raises ArithmeticException. To do this we need to imple-

ment the visitBinaryExpression() from class InstrumentVisitor to ensure every time

when conducting division operation, an ArithmeticException exception is instrumented.

For each method call, we have to determine if there is any possible exceptions propagated

from the method. The analyzer first determines if the method source code is available. If

available, the analyzer instruments the method directly; the model checker can take care

of the exception handling and propagating at run time. If not, the analyzer instruments

the exception interface extracted from the byte code of that method to guarantee that the

exception has a chance to be raised. For example, a method call fis.read, where object

fis belongs to class java.io.FileOutputStream, might raise IOException. We need to
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instrument this statement as:

if (Verify.getBoolean()) fis.read();

else throw new IOException();

This instrumentation style can precisely mimic the behavior of method fis.read(), which

has two exclusive consequences.

• The method terminated successfully.

• The method terminated abnormally and an exception is raised.

However, for the operation which might raise more than one exceptions, we need to adopt

another instrumentation style. For example, a method call socket.bind(), where object

socket belongs to class java.net.Socket, might raise both IllegalArgumentException

and IOException. We then need to instrument this statement as:

if (Verify.getBoolean()) socket.bind();

else if (Verify.getBoolean()) throw new IOException();

else throw new IllegalArgumentException();

In this way, we can precisely mimic the behavior of method socket.bind(). We do not

need inter-procedural analysis to determine the possible exception propagation since this

is effectively achieved in the model checking phase. Our analysis only need to traverse the

AST twice.

For the method call which fulfills the resource release operation, we are adopting an al-

ternative way for the exception instrumentation. Technically, every resource release method

may fail, causes runtime exception. That means every application has a tiny chance to leak

resource. As we are only verifying that the programmer did not forget to release resource,

whether the release operation success or not is out of the verification scope. Therefore,

we instrument every resource release method in a way that the method is guaranteed to

be successful. For example, instead of instrument FileInputStream method close in a

traditional way as

if (Verify.getBoolean()) is.close();

else throw new java.io.IOException();

We instrument it as

is.close();

if (Verify.getBoolean()) throw new java.io.IOException();

These instrumentation process is fulfilled by coding method visitMethodCallExpression

in class InstrumentVisitor.
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Jex is designed to address all exceptions that can be raised in a Java program, so it

supports both checked and unchecked exceptions. By default, we consider all possible ex-

ceptions flagged by Jex (although not all possible exceptions are reported by the tool) but

we also can specify which exceptions to ignore. For example, the unchecked exception,

OutOfMemoryError could be raised after every new operation and method call. The user

might want to turn off the instrumentation of this exception until the more common modes

of failure have been addressed.

A.4 Program Slicing and Abstraction

Figure A.7 presents the abstract syntax of core Java following the definition in [29]. We

would like to perform a source to source program transformation to get a simpler program

with less program states to explore. The simplified program needs to follow the program

model whose abstract syntax is defined in Figure A.8.

Prog ::= Class∗

Class ::= class CId extends CName
{CMember∗}

CMember ::= Field | Method
Field ::= VarType VarId;
Method ::= MHeader MBody
MHeader ::= (void | VarType) MId ((VarType PId)∗) throws CName∗
MBody ::= {Stmts [return Expr ]}
Stmts ::= (stmt; )∗
Stmt ::= if Expr Stmts else Stmts

| Var = Expr | Expr.MName(Expr∗)
| throw Expr
| while Expr Stmts
| try Stmts (catch CName Id Stmts)∗ finally Stmts
| try Stmts (catch CName Id Stmts)+

Expr ::= Value | Var | Expr.MName(Expr∗)
| new CName() | this

Var ::= Name | Expr.VarName | Expr[Expr]
Value ::= PrimValue | RefValue
RefValue ::= null | ...
PrimValue ::= intValue | charValue | boolValue | ...
VarType ::= PrimType | CName
PrimType ::= bool | char | int | ...

Figure A.7: Abstract Syntax of Core Java

Compared to the concrete Java program model in Figure A.7, the syntax of the simplified

Java model has been changed in several places:

1. Variable types are now divided into four categories:

(a) Control-flow dependent types (CType). Includes program defined classes (CId

from syntax definition) and all subclasses from class Throwable and class Thread.
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(b) Primary types.

(c) Crucial types (PType).

(d) Ignored types (LType). All other types besides (a), (b) and (c).

And the ignored types (LType) has been removed from the simplified program model.

2. In the concrete model, he PrimValue is divided into intValue, charValue, boolValue

etc. In the simplified program model, we stuff the predefined value for each primary

value. For instances, we stuff 2 for intValue, ’a’ for charValue, etc. Therefore, the

PrimValue in the simplified model is fixed.

3. The loop construct in the concrete model is now replaced in the simplified program

model by a fixed iteration loop that executes each loop only a fixed number of (in our

case, 2) times.

Prog ::= Class∗

Class ::= class CId extends CName
{CMember∗}

CMember ::= Field | Method
Field ::= VarType VarId;
Method ::= MHeader MBody
MHeader ::= (void | VarType) MId ((VarType PId)∗) throws CName∗
MBody ::= {Stmts [return Expr ]}
Stmts ::= (stmt; )∗
Stmt ::= if Expr Stmts else Stmts

| Var = Expr | Expr.MName(Expr∗)
| throw Expr
| for (int Findex = 0; Findex < 2; Findex++) Stmts
| try Stmts (catch CName Id Stmts)∗ finally Stmts
| try Stmts (catch CName Id Stmts)+

Expr ::= Value | Var | Expr.MName(Expr∗)
| new CName() | this

Var ::= Name | Expr.VarName | Expr[Expr]
Value ::= PrimValue | RefValue
RefValue ::= null | ...
PrimValue ::= 2 | ’a’ ...
VarType ::= PrimType | CName (iff CName ∈ CType ∪ PType)
PrimType ::= bool | char | int | ...

Figure A.8: Abstract Syntax of Simplified Java for Verifying Exception Reliability

Besides the program models, we also need to define the transformation rules for the

program to describe how we transform a Java program from its concrete model to the

simplified model. Mechanically, our program slicer works as follows: First, the Java file under

investigation is parsed and the corresponding abstract syntax tree (AST) is generated. The

program slicer then traverse the AST, for every inner node which satisfied the precondition
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of a transformation rules, that rule is executed and the corresponding program constructs

is rewrote. When the traverse terminates, we get a simplified program.

The definition of these program transformation rules are based on the abstract syntax

from Figure A.7. A rule of the form

[ A ] B
C
D

means that when visiting program construct A, and while condition B is true, program

fragment C (one of the variants of A) is be transformed to D. In these rules, we frequently

use the following two operations

• type(expr) returns the type of parameter expr.

• eval(expr) returns true iff expr is not CType or Ptype related.

In conditional statements, if the guard expression does not involve control flow type or

crucial type manipulation (that is eval(expr) returns true), we use Verify.getBoolean()

to replace the expr to ensure that model checking examines all possible paths.

The slicing rules are used to transform a program construct from the original model

(Figure A.7) to the simplified model (Figure A.8). Here, we follow the type division category

from Chapter 4. For exception reliability check which does not contain any crucial type

(PType), one can simply replace the PType with empty set. Here we list all 15 slicing

rules. These rules are encoded in class SlicingVisitor, which is a subclass of the interface

KjcVisitor. While traverse the AST of a specific Java program, SlicingVisitor slice the

original program and produce the simplified program.

[Field] VarType )∈ PType
VarType VarId

[ ]
(A.1)

[Field] VarType ∈ PType
VarType VarId
VarType VarId

(A.2)

The above two rules concerns class fields: every class field that is not a PType is removed.

However, the class field that is a PType is preserved.

In the actual implementation, the above three rules concerning class field declaration is

fulfilled by implementing method visitFieldDeclaration from class SlicingVisitor.

[MBody] type(Expr) ∈ LType
{Stmts [return Expr]}
{Stmts [return null]} (A.3)

This rule concerns return statements: if the type of Expr belongs to the ignored type

(LType), we return null instead.

[MBody] type(Expr) ∈ PrimType
{Stmts [return Expr]}

{Stmts [return PrimValue]} (A.4)
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When the type of the return expression is primitive, then a predefined value of the corre-

sponding primitive type (see below) is returned.

[MBody] type(Expr) ∈ CType ∪ PType
{Stmts [return Expr]}
{Stmts [return Expr]} (A.5)

When the type of the return expression belongs to the control flow dependent type

(CType) or crucial type (PType), the whole statement is preserved as untouched.

In the actual implementation, the above three rules concerning return statement is ful-

filled by implementing method visitReturnStatement from class SlicingVisitor.

[Stmt] eval(Expr)
if Expr · · ·

if Verify.getBoolean() · · · (A.6)

If the guard expression Expr is not CType relevant, it is replaced by

Verify.getBoolean().

[Stmt] ¬eval(Expr)
if Expr · · ·
if Expr · · · (A.7)

If the guard expression Expr is CType or relevant, it is kept as untouched.

In the actual implementation, the above two rules concerning if statement is fulfilled by

implementing method visitIfStatement from class SlicingVisitor.

[Stmt] eval(Expr)
while Expr Stmts

for (int Findex = 0; Findex < 2; Findex++) Stmts
(A.8)

For while loops, if the guard expression Expr is not CType relevant, it is replaced by a

fixed iteration loop. Therefore, the loop body is executed fixed times. We choose the magic

number 2 here because, if we choose 1, the loop construct is actually downgrade to an if

statements which is not good for unveil the loop related errors. For example, one may close

a resource in a iteration and try to use it in another iteration. There is no way to find

this kind of conformance violation by traverse the loop once once. And since the program

properties we want to verify is loop index insensitive, choosing the number greater than 2

makes redundant iteration.

[Stmt] ¬eval(Expr)
while Expr Stmts
while Expr Stmts

(A.9)

For while loops, if the guard expression Expr is CType or PType relevant, it is kept as

untouched.

In the actual implementation, the above two rules concerning while statement is fulfilled

by implementing method visitWhileStatement from class SlicingVisitor.

[PrimValue]
intValue |textitboolV alue| · · ·

2 | true | · · · (A.10)
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Every primitive value is replaced by a predefined value, if it is going to be preserved. For

instance, we use 2 to replace any int value.

[Stmt] type(Expr) ∈ PrimType ∪ LType
Var = Expr

[ ]
(A.11)

All assignment statements over primitive types or library type variables/objects are removed.

In the actual implementation, the above rule concerning primitive type is fulfilled by

implementing several methods from class SlicingVisitor which might manipulate the

program construct with primitive types such as method visitArguments.

[Stmt] type(Expr) ∈ CType ∪ PType
Var = Expr
Var = Expr

(A.12)

All assignment statements over control flow related types (CType) or crucial types (PType)

objects are kept as untouched.

In the actual implementation, the above rule concerning assignment statement is fulfilled

by implementing method visitAssignmentExpression from class SlicingVisitor.

[Stmt] type(Expr) ∈ LType
Expr.MName(Expr∗)

[ ]
(A.13)

Each irrelevant call is removed (as its exceptions have been already instrumented).

[Stmt] type(Expr1) )∈ LType & type(expr) )∈ PrimType ∪ PType

Expr1.MName(expr, Expr∗)
Expr1.MName(null, Expr∗)

(A.14)

If we invoke a method not from a library, and the parameter is not of primitive type or

PType, we use null to replace that parameter.

[Stmt] type(Expr1) )∈ LType & type(expr) ∈ CType ∪ PType

Expr1.MName(expr, Expr∗)
Expr1.MName(expr, Expr∗)

(A.15)

If we invoke a method not from a library, and the parameter is from CType or PType,

the parameter is kept as untouched.

In the actual implementation, the above three rules concerning method call expressions is

fulfilled by implementing method visitMethodCallExpression from class SlicingVisitor.

In addition to the above, other Java program constructs not included in Figure A.8 are

handled as follows:

1. Abstract classes and interfaces are sliced like a standard class.

2. Array types are sliced in the same way as the basic array type.
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3. All thread related program constructs are preserved since they are essential for pro-

gram execution. This can be seen as treating them like CType in their slicing rules.

Since we relax the guards of all program control statements, there is a possibility that

we generate false alarms; that is, we generate an assertion violation execution path which

never happens in the original program. It requires substantial human effort to inspect the

output of the model checker in order to dismiss a false alarm. Reducing the frequency of

false alarms is one of our future goals.

A.5 Model Checking

We use Java Pathfinder (JPF) as our back-end model checking engine. By default, JPF checks

for unhandle exceptions. Hence when feeding with the simplified programs, it can be used

directly for the exception reliability verification. For the event sequence related program

properties, these event sequence constraints are encoded inside the executable specification

classes. JPF takes the simplified program as well as the executable specification classes

to exhaustively check if there is any assertion violations (event sequence constraints are

encoded as assertion checks inside the executable specification). If any violation is detected,

JPF dumps out the execution trace which lead to the violation.

In general, JPF works on the Java byte code and reads all necessary Java class files from

the default place. However, in event sequence related program property verification, we are

suppose to use the executable specification classes, which is an abstract implementation of

the original classes to replace all these concrete classes. For example, in order to perform

the conformance check for API java.io.FileInputStream, the concrete implementation of

that API should be replaced by the executable specification class as in Figure 4.2.

In order to let JPF use these executable specifications instead of the concrete classes,

these executable specification should be placed at a proper place. If the executable specifi-

cation comes with the user defined class, it can be directly feed into the JPF . However, if

the executable specification is meant to replace the standard Java API which the JPF has

its own copies, these copies should be replaced. JPF keeps its own copies of standard Java

API 1 under the directory \JPFroot\env\jpf 2, by replace the corresponding JPF copy

with the executable specification, JPF can recognize the new class and model check it. For

example, to verify the conformance rules for java.io.FileInputStream, the corresponding

executable specification should be placed under directory \JPFroot\env\jpf\java\io.

Under some circumstance, we also need to customize the JPF to fit our requirement.

• The first customization is adding the support for finalize method. the standard

JPF does not support the finalize method due to the performance consideration.
1So far, JPF only supports limited standard Java API.
2Here, JPFroot refers to the directory where JPF is installed.
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However, in API conformance verification, the finalize method is used to regulate

the proper place for checking if the resources are correctly released. Hence, we have to

modify the model checker to support finalize i.e. to guarantee that every time when

an instance from a class which defines finalize method dies, that finalize will be

executed. We found out as long as we keep the implementation of that finalize as

concise as possible (so far, our implementation of the finalize method only involves

assertion check), the performance penalty was negligible.

• The second customization is add the support for dynamic stack inspection. The per-

mission check operation in Java is fulfilled by the Java library class AccessController.

However, the concrete implementation of AccessController depends on some native

code for reading the security policy file. hence the standard JPF can not perform the

stack inspection.

We use one of JPF’s extension mechanism called model Java interface (MJI) to solve

this problem. MJI is analogous to Java native interface (JNI) and is used to transfer

the execution from JPF controlled VM level into the host VM level. MJI guaran-

tees that once the corresponding method is invoked, the MJI version will be exe-

cuted instead of the original Java version. This is particularly useful for intercepting

calls to native methods or to code which is too complex for model checking. We

have implemented a customized MJI version for java.security.AccessController

called JPF_java_security_AccessController to fulfill the real permission check

task. The permission relation is acquired from the executable specification class

ca.ualberta.cs.PermissionRelation.
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Appendix B

Redundant Exception Handler
Check

Usually every handler in a program is intended to catch some particular exceptions, and if

a handler does not catch any, then it is likely that we have a redundant handler.

01 import java.io.*;
02 public class Example2 {
03 public static void main(String[] args) throws IOException {
04 FileInputStream fis = new FileInputStream(args[0]);
05 try{
06 int i = fis.read();
07 while(i != -1) {
08 System.out.print((char)i);
09 i = fis.read();
10 }
11 fis.close();
12 }
13 catch (FileNotFoundException ex) {
14 System.err.println(ex);
15 } 2
16 catch (IOException ex) {
17 System.err.println(ex);
18 }
19 }
20 }

Figure B.1: Example of Redundant Exception Handler

Figure B.1 shows us an example of a program with unreachable exception handler. The

catch handler from line 13 to line 15 is redundant because from the corresponding try block

(line 05–12), a FileNotFoundException would never be raised. So this program is not

exception handling reliable. This kind of redundant exception handler flaw usually can not

be detected by a standard Java compiler1, but an exception analysis tool such as Jex or our

framework is able to do so.

For exception reliability problem, our back-end model checker can detect any uncaught

exceptions automatically. but it cannot detect redundant exception handlers directly. This
1Some redundant exception handlers, such as a handler for a subclass right after the handler for a super

class, are actually dead code and therefore can be detected by a standard Java compiler.
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is because the model checker can only sense all program constructs that are reachable. How-

ever, the redundant exception handlers are the program constructs that are not reachable.

An extra work is needed here.

Unreachable: Exception handler for java.io.FileNotFoundException
at Example2.java: line 18

===================================
1 Error Found: unreachable exception handler

===================================

Figure B.2: Error report for redundant handler

We solve redundant exception handler in the following way: at static analysis session, the

analyzer can label all exception handlers and form a set AllHandler. At a later stage, the

model checker can label all reachable exception handlers and form a set ReachableHandler.

The difference of these two sets AllHandler - ReachableHandler are those exception han-

dlers which are not reachable, i.e. redundant exception handlers. We provide an extra

filtering tool for detecting redundant exception handlers. It works as follows. At program

instrumenting stage, our analyzer generates a text file as a byproduct, which records all

exception handlers. For example, for the program from Figure B.1, this text file looks like:

Handler 1 (java.io.FileNotFoundException) at Example2.java: Line 8
Handler 2 (java.io.FileNotFoundException) at Example2.java: Line 18
Handler 3 (java.io.IOException) at Example2.java: Line 22

When doing the model checking, We supervise the JPF to record every exception handler

it has visited and write it to another text file. For the program from Figure B.1, it looks

like:

ReachableHandler 1 (java.io.FileNotFoundException) at Example2.java: Line 8
ReachableHandler 2 (java.io.IOException) at Example2.java: Line 22

The filtering tool can then compare these two text files and reports those unreachable

exception handlers. For this particular case, The output from our framework for this re-

dundant exception handler is as in Figure B.2 2.

2The line numbers in this error report are based on a sliced program, not the original program.
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