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Abstract
e: 5 is concerned with the practicail
I ~in applying process identification, More
S the methods used for the reduction of the
.umber of the P matrix (the inverted matrix
n most identification algorithms) to improve
al accuracy are investigated. It is demonstrated
.nat . under mild assumptions, the P matrix in the
identification of a first order system can be made well
conditioned but that this is not always possible for higher
order systems,

Elimination of the constant (bias) parameter in the
model is shown to reduce the condition number of the P
matrix. Methods such as the running mean, the filtered mean
and k-incremental are recommended. Methods such as expected
mean, sample mean and fixed equation should be avoided. The
k-incremental method noise sensitivity is minimized if k is
chosen larger than twice the model order. Different filters
for the input and output signals, as suggested in the
literature, should not be employed.

Matrix scaling is shown to have no effect on numerical
accuracy. Coding (data transformation) producing a zero mean
and unity variance is recommended. Normalization is shown to
reduce signal to noise ratio. Its effect on numerical
accuracy cannot always be predicted and in some cases can be
shown to have no effect on numerical accuracy. Analysis of a

videly used example shows that normalization is not a



necessary condition for stable adaptive control, Some
alternatives are suggested.

The condition number of the P matrix is shown to be a
poor measure of persistency of excitation.

1t is demonstrated that the off-diagonal elements of
the P matrix have an approximately exponential effect on the
condition number. The matrix factorization methods examined

provide similar numerical conditioning benefits.

a secondary ore crusher. Ignoring the mean of the signals in
the model had a deleterious effect on the results.
Comparison of the Box-Jenkins model with least squares and
maximum likelihood shows that least squares is not adequate
for this example but maximum likelihood would be suitable in

the context of identification for control purposes.



Acknowledgements
The author wishes to express his sincere gratitude to Dr,
R.K. Wood for his support and encouragement during the
course of this research. The Brenda Mines Ltd. data provided
by Rob Spring and Robert Edwards through the courtesy of Dr.
B.C. Flintoff is gratefully acknowledge.

I would like to thank my fellow graduate students in
process control; in particular the second floor students and
the members of the Friday Pasta Club with whom I had many
discussions.

The author wishes to thank the Department of Chemical
Engineering and the Natural Sciences and Engineering
Research Council of Canada fcr their financial support.

Finally, I would like to acknowledge the support of my
computer widow, Becky, whose encouragements, especially
during the long hours spent in front of a computer terminal,

are greatly appreciated.



Table of Contents

Chapter Page
1, General Introduction ....ieiieieseseasssssasasosanssnal
1.1 The concept of process identification .........2

1.2 TheSisS OVEIVIeW ....vieriessssnsnessssssncinsas 7

2. Modelling Stochastic Processes .......ccevs00s0s002:10
2.1 INtroduction ...ceessiosesensnssssossnsossssssll

2.2 A facile argument for the choice of the 7

least squares family of cost functions .......10

2.2.1 Choice of the cost function ......cc0.11

2.2.2 Rational for the choice of the cost 7
funétigﬁ ill-lpiiliiiiiiililiiiil!!ll!j13

2.2.3 Analytical approach to the selection
of the cost function ....cevvecccessssslb

2.2.4 Modification of the cost function for
recursive identification ....ces00000.019

2.3 Choice of model StructuUre .....scecessoesscsse2l
Literature OVErview ......ccssessssnessacsssnnssssse2B
3.1 INtroduCtion ...cveevessenrcnssoossssnsanseoeselB
3.2 Books and theSes ........e0000000c000s0c0s0e0s029
3.3 Surveys and comparative articles .....ce0000..31
3.4 Identification programs ......cceecesccescssssd’

3.4.1 Control system design programs which

3.5 Other selected principal references
concerning identification ....cccevvcvvcenceccdd

Derivation of the Nonrecursive Algorithms ..........50
‘31 I“t:aductiﬁn iiiili!:iii!iiliiiéllliiilililiiisc
4.2 Least squares algorithm ......ccccccccccss000s50

4.3 Weighted least squares algorithm ....cce00004453



4.8

4.9

Generalized least squares algorithm ..........5%
Instrumental variables algorithm ........00...57
4.5.1 Choice of instrumental matrix .........bHE
Extended least squares algorithm .............60

Maximum likelihood algorithm .....ccvsessss0s:b]1
4.7.1 Box-Jenkins modification to the

maximum likelihood .......cvi0veveesesast?
Box-Jenkins preliminary parameter estimation
algerithm iiﬁiiiiiiiiliilliiiiiilililﬁl-!!!ljlﬁa

CONClUSION ,..veeesocesnscenceansesnsesssssssessBb?

Recursive Identification Methods .......:cc06c33+:53+4+73

5.1
5.2

5.4

5.5
5.6
5.7
5.8
5.9

INtroduction .....esesecssssssssascesasssencasll
Recursive least squares algorithm ,...........73
§.2.1 Choice of initial values ........c0....75
Weighted least squares algorithm .............76
5.3.1 Choice of weights ....cevvscsvecsscssnesl?
5.3.2 Exponential weighting .......co00c00....78

Recursive generalized least squares 7
alggfithm D!i!jiiiiii!iil!iliiii!ilill.-i-lligai

Recursive instrumental variable algorithm ....83

Recursive extended least squares algorithm ...86
Recursive maximum likelihood algorithm .......87

Recursive Box-Jenkins algorithm ........c.....91

canelusien iiiilii‘ii!!‘iiiiiiiiiiiiii-iiilill,g‘

Practical aspects in process identification ........97

6.1
6.2
6.3
6.4

Intradu:tign ‘Iii-ii‘iiil.illi‘il‘llﬂiiiiii-iig?



6.5 Feedback or closed 100D ..esssernessossssesessIB
6.6 Choice of input Signal ...ccoecsvesacsnrasenesd9
6.7 Sampling interval ......cveevecessssannssnsess9d9
6.8 Identification time .....ceevaneeencccsssasasl00
6.9 Validation Criterid@ ..ccesvesescescssssnssass 00
6.10 ConcluSion ..eeeesecesssscssnoassasssasessssslOl

Effect of the Magnitude of the Elements of a
Matrix on its Condition Number ....:.:ssesss0sss000102

7i1 Iﬁtf@ductign ® = ‘i—iiliil'l'iljlliiiiilijiiii192

7.2 Use of the condition .umber as a measure of )
numerical accuracy e tesessseesnsnsssssanasssl03

7.3 Effect of the ratio of the off-diagonal )
elements on the condition number ....ccec0...104

7.4 Combined effect of several off-diagonal
elements on the condition number ......:.....106

7.5 Matrix factorizations .....ceseseesssssssssasll2
7.5.1 Square root factorization ......cc00..113

7i5g2 U-ﬁ faEthizatiQn iiiiﬁl!iiiii:iiiiiii“;

7.5.3 Singular value decomposition .........115

7‘5;4 QR fgctafizatian jiliiiliiiiii?!iiiiliil?
7.6 Illustration of the effect of a

reconstructed P mazrxx and U-D factorization

on identification using a simulated second

Gféer sggtem !liiiilil!!!iiii!i‘ll!iii*!E!!!ﬂ119

7.7 Examination of the condition number of a
first order plus fractional time delay
srstem -iil‘liiiiiiil‘l-liiii-illllﬂilililill122

7.8 Examination of the condition number of a _
system of order larger than unity ...........130

7‘9 cﬁnelugien iiiilliiﬂ@@iii‘iii?ilii!lii‘!!i!i.135

emaving the Constant (Bias) Parameter to Reduce
th! Can ltian “mbgr -!!-iiiiiili.lililil!!l!!!!j!!139

B;‘ intfﬂdlﬂ:ti@n !lii!iliiliil‘.Iilllliiiiiiiilii139



Deviation from the expected mean .....vovve... tdd

Deviation from the sample mean ........cvov... 149

2

3

.4 Deviation from a single time equation .......I14"
5 Deviation from previous values (incremental) 149
6

Deviation from filtered values ......cve00.4.1bl
.7 CONClUSION ..iviesvrenssnssssesnnsassnnsosseans Bg
Scaling to Reduce the Condition Number ............156
9.1 INtroduction .....cesesesssnsnsssassssssssess DU
9.2 Detailed analysis of scaling .....cesoenvasasa15?
9.2.1 P update ...ssresessnrarsrsanasasssass 5’

9:212 éupdate -g-gngllplijlig!--n--u---iggg‘59

9.3 Illustration of the effect of scaling on
identification .....iiiviiiiiiiisriensreiesss 160

934 Can:lgsign iiiiiiiiillﬂiiliiiiiiili‘i‘i-iill!16‘
Coding to Reduce the Condition Number .............162
1D§1 iﬂtfgductign ilQﬂjillliIliijllllllliijﬂiiiﬂél‘éz

19;2 Hgdiaﬁ iiiiiiiiiiiigﬁiligi-iiiiililiiégéii!ii164,

10.3 Range, centered on a reference value ........165
10.4 Range, one-sided ......coe000000essssssssss:s165
10.5 Range, centered on median .....co0esessss0s2:165
10.6 Standard deviuation ......ceccescscssescssssselbb
10.7 Reference valu€ .....ccesecesssss000sessasssselbb
10.8 Summary of the methods .....ccccovivvsnssseecs 166
10.9 1Illustration of the effect of coding on

identification using a simulated second B
QféEE system II!Dl.iliiiﬁij‘iiliiiiiiiiilli-i]67

10§1D Canclugien !iéiili!l!llii!li!iiiill!l!!?!@ill‘69
Normalization and its Role in Identification ......170

11‘1 Intréauetian iii.ﬂliiili‘iijliii‘ii‘iiiiiliij170



12.

13.

1.2

11.3

1.4

11.5

1.

o]

1.7

1gast Equares iiiiii'il'il!iil!iiiiiiii--lii!171

Effect of normalization on the least squares _
Elggrithm pi!i!i-i!!l!iiiiiii!ili!!liiiciiiil173

Effect of normalization on numerical

aécurae? ijiléi!!l!i!!!!!!!iii!i!iiii!!liil!ii?ﬁ
1llustration of the effect of normalization

on identitication vsing a simulated first )
@fdér ;ystgm iii:!lligi!illﬂjiiiiliiil-iiiili1—76

Alternatives to normalization in adaptive
Eaﬂtrcl !ijililiiiigi!!!iiii!giiiiiiii!!iiill!lao

11.6.1 Improving robustness .......eeesesosss180
11!£i2 SYEE—E‘“ mQaEl i::gii:,ﬁiiig-iiig;g-gg:§1182
11.6.3 Simulation results .......coeeseeessss184

CQnGlugiﬁn llliﬁiii'iliiﬁﬂiiiliiil!!lﬁiiliiil191

Time Series Analysis of Brenda Mines Secondary

1201
12.2
12.3
12.4
12.5
12.6

12.7
12.8

12.9

'éiiiiili!l!iisg

INEFOAUCLION soversrnccsssssocsassss - saeessl9d
Description of the mining process ...........194
Purpose of modelling the secondary crusher ..195
The ABLA BEL ..oeeeeesccsssssssssssscscssssss 96
Input prevhitening R 1

Process transfer function and noise model o
!tru:turg e!tim,!tign iiiilliii!!iiii!liiiiliizos

12.6.1 brocess transfer function structure )
‘g‘ﬂtifigatiﬂn iDiiii!Qlliii!iiiiiéllizoa

12.6.2 Noise model structure identification .213

Cor ariyon with least squares and maximum o
likjlihvﬁd ,ll!!iililililii!il!liiiiij!iiilliizgg



13-1 cgnclusign & § ® 5 % @ % & B & F & §F B 5 R F F B B OF OE A K & A S F S S 1225
13-2 Recammendaﬁlens ® & 8 & 5 & % F & & F F F & 5 F K P 5B B F S ® R EEE I234
Eibliﬁgféphy i!!liiiil!jiig|iiiiii§iiiiliiii---ii:l:l!lilzjg

Appendix A:
A.1l
A.2
A.3

Appendix B:
B.1
B.2
B.3

B.4
B.5
B.6
B.?
Appendix C:
c.1

ﬂ

.2
.3
.4

n n

CHOICE OF INPUT SIGNAL AND SAMPLING PERIOD ..246

Type of input signal .......cccceeeeenoces ... 286
Sampling period and identification length ...252
Final remarks ....ceceeersnsscsscsssssssesseas2Bb
MODEL VALIDATION ...cceccocnsnnosasronssssses2B?
Confidence intervals on the parameters ......257
Parameter correlation MAtriX .......eee00000.258

Modified Akaike's information criterion .
(mlc) iliiii‘ll!!Qiiiill!i@éiiiiiii!ﬂéiiii!lzsa
Shortest data description criterion (SDD) ...259
thgt QillilﬁlSjiilil‘iljiiilliiilgiiiiliiijzsg

Chi-square on auto and crosscorrelations ....260

Plati af Egsidualg 'Y EEEEREEEEEREEENYEENENIEENEN I N ] EESQ
€§RRELATI DN ANALYSI S T EEEERENEEENEENEREENRIEINIE: 26 ‘
Autocorrelation function ....ececccescsssscea263

Partial autocorrelation function ....cccs0:4.266
PQ'QE Smetfum !iii!il!iiiilil@ijiliiilliillizsa

Smry on time series CCiillllilDl!iiiliii§§270

C.4.3 White noise check ....vvevsscoscsessss270
Some preliminary examples .....ccceceeescesee2?]
C.5.1 Pure autoregressive process ..........271
C.5.2 Pure moving average process ..........273

695!3 Hixcd Prﬁg,“ D!Iiiiii!illiiii:liiii!127s



™
o

Appendix D:
D.1
D.2
D.3
D.4
D.5

D.6
D.7

Appendix E:

Crosscorrelation function .....eeeesssesssese283
Input prewhitening -1
C.7.1 Prewhitening parameter identification 286

€c.7.2 Transfer function plus noise model -
order identification .....eveevessess 289

summary of model order identification .......292
C.8.1 Prewhitening filter identification ...293

C.8.2 Prewhitening parameter estimation o
Validgtign Dlilil!ll!ilililiiiiiiii!li294

C.8.3 Transfer function order o
identification ,...c.ocesesccnsroresess295

MATHEMATICAL RELATIONSHIPS AND DEFINITIONS ..297
Vector B81gebra .....ccovveececososccasscscsnse2d?
Norms and condition numbers .........ce00000.298
Linear OPerators ..ccesesesescescsssosscasess299
The Marquardt-Levenberg algorithm ...........300
Matrix inversion lemma ......eoo0e0ss0000s000.303
Householder transformation .....cccccceeeess.303
QR decomposition tesessssessssssesssscssseses305
D.7.1 Recursive QR factorization ...........306
D.7.2 Update of Ry., 8nd M,y cccerncscnsesaas307

SELECTED IDENTIFICATION BIBLIOGRAPHY ........310

Control with reduced order model using

modified projection parameters .....c.cee00..332
Control with reduced order model using a
Er!nt‘r Eilt‘f iii!iiliiij:liiiiiii;Ql!iiiisa‘,



F.S5 Conversion from Laplace to discrete transfer
funttian illilli-Diiiiiililiilliiiiiiiiiliiilgza

Appenéix G: PITSA USER HA“UAL igiillﬁliiiiiiii!iél!!ii!i533§



Figure

1.

L

11.3

1.4

11,5

11.6

1,7

List of Figures
Page

Simple example to compare SAE and SSE......c0... 14

Restricted area produced by the combination of
two off-diagonal elementS...cceevseescsssrasssseslll

Input signal used for simulation of the second ,
arde: system!iiiiéjl!iiii!!!jiii!i!!iiiillliiii120

Output signal generated by simulation of the
Sgcand Qrégf systgm!!l!iiiiéiiiiiill!liililiii!121

Input signal used for simulation of the first )
Gféer Systemiié!!lili!l&!iiiiil!l!iii‘éiiiiﬁﬂ!il‘zs

Output signal generated by simulation of the .
Eifst Qrdgf sygtemliiiili!lDiiiill!!iil!!!@iii!.‘zg
Output y, versus time for the system N
Yt- !gyt_‘*gt iiil!!igiiilili,iiiill!!iiilliiiilgi

Convergence of the a, parameter using the RLS B
glgéfithmiiii!iiDjjiillSéﬁiDil!!!!ijillliji!liil‘?B

Convergence of the a, parameter using the NRLS
alggrithmiiggiiiillgééiiililiﬁiiiiii!liiiiljilj‘TE

Convergence of the b, and b, parameters for
the ﬁLS Blgerithmjiiili!!DQiiiiiliiﬁiiii.iiiiil179

Convergence of the b, and b, parameters for
the NRLS alggrithmil!!liiiiill!iﬂjjiiiil!iiiilii179

System output (solid line) and set iéint
(dashed line) for a)deadzone and )
normalization, b)normalization, c)deadzone.....185

Estimated parameter values: a, (solid line)

and b, (dashed line) for a)deadzone and
narngiizatiaﬁ, b)normalization, c)deadzone.....186
System output (solid line) and set point

(dashed line) for a)a=0.5, b)c=4.0, c)a,=-0.8,
d);'j-nissiiillljijll!liliiilll!i!iiiiiiiiliiil’g?



11.8

12.1
12.2
12.3

12.4
12.5
12,6
12,7
12,8

12.9

12.10
12.11
12.12
12.13
12.14
12.15

12.16
12.17

12.18
12,19
12.20

12,21
12,22

Estimated parameter values: a, (solid line)
and b, (dashed line) for a)a=0.5, blc=4.,0,
cla, -0, .B, d)filtered parameters using

ar!_DE E)tl -0 95 iiiiiiiiii!!iliiilililllililisa
Ore feed rate to the crusher....ccesesssssssssss 97
Crusher power CONSUMPtiON......c.vcvereacanssas 197

Ore feed rate to the crusher used for
EStiMAtiON. e s sessssssssssssssssssssssssssssacas 98

Autocorrelogram of the ore feed rate...........199
Partial autocorrelogram of the ore feed rate...199
Differenced ore feed rate......ccvvveevenccsass.20]
Autocorrelogram of differenced ore feed rate...20!

Partial autocorrelogram of differenced ore
fggd EQEEiiiii!!Cl!iiiiil!!li!!:i!l!IDliliiiiiizoz

Cgﬁvérgen:e EE é!i!ﬂIiiii-iiii!ilill!liﬂiliiiiizaz

Convergence Of f...ccveeseccncscssscsascnscessa204
Sum of squares of residualS.....cccscoo0cssossc204
Condition NUMber.....ccccccccssssscncsssscssscsal205
Filtered ore feed rate.....coecevevesvcsnssssess205

Autocorrelogram of filtered ore feed rate......206

Partial autocorrelogram of filtered ore feed
EgtgﬁiliﬁiiiIilil!'iliilllll!il!i!i-iﬁiiilﬂil!lzué

Filtered power consSuUMPtioN...ccceoceevssossoess209
Autocorrelogram of filtered power consumption..210

Partial autocorrelogram of filtered powver
can’u‘ptlanillilIiil!'i"'l‘!Illiilllililill_lizio



12.23
12.24
12.25
12.26

12.27
12.28

12.29
12.30
12.31

A1

C.1
C.2
c.3
C.4
C.5
C.6
C.?
c.s

c.9
C.10

Crusher step response..........................212
Crusher noise signal estimat€.......ccococseeses214
Autocorrelogram of the estimated noise signal..214

Partial autocorrelogram of the estimated noise
Signallttiilﬁ.l..'.0....l‘...ll....ll.‘..l.....215

Power spectrum of the estimated noise signal...215

Normalized spectrum of the estimated noise

signalooo.tco..tc.OC'...O..o‘lot...oo.oo...ol.'

Crosscorrelogram for F(0,1,0)T(2,1,39)N(2,0,0).222

216

Crosscorrelogram for T(2,1,39)N(2,0,0)Cst......222
Crosscorrelogram for F(0,0,0)T(2,1,39)N(2,0,0).223
Input and output values for different types of

input g}gna{ at a 0.12 s. sampling period with

N(O, 107 ") NOiSE. ceveeernssnsscsscosccosscsnssee2d
Realization of the AR(2) process...ccccoceccscs 272
Autocorrelogram of the AR(2) process...........273
Partial autocorrelogram of the AR(2) process...274
Realization of the MA(2) ProcessS.....cceeceeeee275
Autocorrelogram of the MA(2) processS.......s.0.275
Partial autocorrelogram of the MA(2) process...276

Realization of the ARIMA(1,1,1) process........278

Realization of the differenced ARIMA(1,1,1)
prOCst..................................C.....z?g

Autocorrelogram of the ARIMA(1,1,1) process....279

Autocorrelogram of the differenced
ARIMA(’.‘,‘ proce's................’.0........260

Partial autocorrelogram of the ARIMA(1,1,1)
proce.‘...................'..................I.za‘

Partial sutocorrelogram of the differenced
ARI"A(‘,‘,]) ptocess.........................0.281

Power spectrum of the ARIMA(1,1,1) process.....282



C.14

Power spectrum of the differenced ARIMA(1,1,1)
process...........'..!ll!!!!!i!!ﬂ!!!?iﬂ!ﬂii'll-zaz



Table

List of Tables
Page

Cost function values for the simple example.....15

Cost function values for an additional point
Bt 18“&],- Eiiiiﬂijjilliﬂiilj!liiiﬁ?!,‘llii!lliigii15

Summary of selected review, experimental and 7
simulation identification literature............33

Some properties of the nonrecursive algorithms..71

Some properties of the recursive algorithms.....96

Condition number as a function of the
magnitude of the off-diagonal element @........105

Parameters and condition number as a function
of the sampling period...cceeevcescncccacsesess13d

Some typical coding characteristic values and
their corresponding transformations...c..ccece...163
Comparison of various models using validation
criterialiiiliiiiii!:Diiii!-!!ﬁjiii!!!iililiiiizz]
Comparison of various algorithms using

validation criteri@.... seesessasonccssasnssessl25
Nonrecursive least squares identification
results for different input signals and noise

of 0.01 and 0.1 standard deviation.....c.......248

Zeros (in q'') for selected sampling periods
(in Egegnas)iig-Qi!lliitiliiiili!iiiillll!giiijzss

Model characteristics for order selection......271



1. General Introduction
Most common process identification algorithms involve the
inversion of a matrix. Although too frequently ignored
reducing the condition number of the matrix to be inverted
is of prime importance in achieving the successful
identification of a suitable dynamic model. In this thesis,
the effectiveness of the most common methods of reducing the
condition number (scaling, coding i.e. data transformation,
matrix factorization, normelization and reducing the rank of
the matrix by substitution) are examined to provide guidance
to a potential user to make a judicious choice of method(s)
for reducing the condition number.

The thesis also includes a summary of other practical
issues (outliers, model order, quantization, feedback,
choice of input signal, choice of sampling interval, length
of the data collection and model validation criteria) that
must be addressed vhen performing a process identification
excercise. This summary, combined with the derivation of the
most common process identification algorithms and the matrix
conditioning analysis, makes this thesis a unique document
providing the practitioner with guidance and suggestions in
regards to the practical issues in process identification.

During the course of this work a process identification
program was developed to “"experiment” with the various
practical aspects under study. This program proved

indispensable in confirming the theoretical results.



The thesis ends with an example using industrial plant
data. This allows the reader to see how the various aspects
of process identification are used collectively.

Since the focus of this thesis is on the condition
number of the matrix to be inverted, this work does not
address statistical considerations such as the treatment of
initial conditions, (statistically) robust techniques,
missing data, diagnostics, etc.

It is worth while to note that some confusion may exist
between "numerical aspects" and "computational aspects”, for
example when an iterative algorithm such as the
Newton-Raphson, Cochrane-Orcutt or Gauss-Newton is
described. These algorithms are sometimes classified as
being concerned with numerical aspects (i.e. in the sense of
numerical integration) or with computational aspects (e.g.
computation of maximum likelihood estimates) e.g. see Gupta
and Mehra, 1974 and Corradi, 1979. Numerical accuracy, as
interpreted in this work and as used throughout this thesis
relates to the accuracy of the calculations in a finite

(computer) word length representation,

1.1 The concept of process identification

Before the condition number of the matrix to be
inverted can be examined a brief presentation on the general
notion of process identification is warranted.

It is often necessary to gain a better ui.derstanding of

the dynamic behavior of a process if improvement in
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operation or control is desired. One approach would be to
develop a process model from the dynamic state mass, energy
and momentum balances of the process. This is termed
modelling from first principles. The advantage of mode:ling
from first principles is that it gives insight into the
process, also, the different parameters and variables have a
physical interpretation. However the time and effort
necessary to develop such a model, for other than a rather
simple process, is often not economically justifiable and
may not be possible at all due to the complexity of the
process. Furthermore, many of the parameters in the
mechanistic model would often be unknown and would need to
be estimated from process and/or laboratory data.

A useful alternative in many cases is to obtain a

The objective is then to find values for the parameters of a
postulated model such that the process output can be
reliably predicted. It is this approach of empirically
identifying dynamic characteristics of a system from
input/output data that constitutes the field of process
identification.

Process identification can be broken down into four
steps:

i. collect input/output data

ii. postulate a model structure (e.g. polynomial,

exponential, etc.)



orders if applicable)

iv., validate the model
In practice, the procedure of process identification i.
iterative, The data are used to estimate the unknown
parameters for an assumed model. Then, based on the adequacy
of the mofel in describing the system dynamics, the model
structure is altered and the estimation of the parameters
repeated. This procedure is repeated until a satisfactory
model is established or it is concluded that additional data
must be collected.

When investigating a process where there is little a
priori knowledge of system dynamic behavior, it is
reasonable to start with some limited testing (e.g. step,
pulse, frequency, etc.) to obtain some estimate of the
system dynamics. The results can then be used to plan
further experiments. This includes the design of the input
signal wvhich must be sufficiently "rich" to obtain good

results in the desired range of frequencies. An overview of

A.

When a model has been obtained from experimental data,
it is necessary to validate the model to ascertain if the
model adequately describes the process. For this purpose it
is useful to compare the step and impulse responses of the
model to those of the process, if available. It is also
possible to establish model residusls and model statistics,

as described in Appendix B, to assess the suitability of the



model representation.

Models can be classified as discrete or continuous,
deterministic or stochastic, and for use in an on-line or
off-line application,

Discrete models are generally used since most
experimental input/output data are logged by computer and or
measured values of the input and output signals are only
available periodically (e.g. gas chromatograph).

I1f the model does not include modelling of the process
as a deterministic model (Goodwin and Sin, 1984). Obviously
deterministic models are not suitable for processes that
exhibit low signal to noise ratios since the system response
to a change in input signal cannot easily be distinguished
from the system response to noise., For such processes
stochastic models must be employed.

For off-line identification, input/output data ate
collected from the system and this data series (collection
of data pairs) is subseqguently used with a specified
identification algorithm to obtain the parameters of the
model.

In many processes the system characteristics may be

the model parameters thus providing an adaptive control
scheme. This periodic updating of the process model can be
done by repeating the off-line identification or the

identification can be performed on-line. On-line



identification is also termed recursive identification. This
involves updating the parameters after each data point
rather than accumulating a data set for subsequent
calculation of the model parameters.

However, recursive identification algorithms can also
be used on a series of data as an alternative to the more
conventional off-line technique. The advantage of recursive
methods over off-line procedures is that only the relatively
recently acquired data are utilized for updating the model
parameters so only a small amount of computer memory is
necessary. On the ot!sr hand, when the recursive
jdentification approach is used on time invariant processes
the accuracy of the model obtained is usually not as good as
that from an off-line calculation unless several passes
through the collected data are used. If this technique is
employed the memory advantage of the recursive method is
lost.

Due to the rapid industrial growth of model-based
process control, there is a need for an increase in ease and
reliability of model identification. The practical aspects
of process identification are investigated using a computer
program for process identification and time series analysis

(PITSA) developed as part of this study.



1.2 Thesis overview

Chapter 2 is intended for the reader that is not
familiar with process identification or the reader that is
interested in a "layman's approach”" to justifying the sum of
squares as a cost function. A facile argument on the choice
of the least squares cost function is presented along with
the model structures considered in this thesis.

A brief overview of the pertinent literature is
presented in Chapter 3. It covers mcstly the period up to
1989 but some references to more recent literature are
included. The overview is mostly concerned with numerical
accuracy and does not cover statistical computing or
algorithmic implementation aspects of process
identification,

The most common process identification algorithms are
derived in Chapters 4 and 5. These derivations are presented
to demonstrate that most common process identification
algorithms involve the inversion of a matrix (or its
recursive equivalent) in the calculation of the parameter
estimates. This emphasizes the importance of the results
obtained in the remaining chapters. Chapters 4 and 5 thus
provide a consolidated reference to a large collection of
algorithms and their derivation.

Chapter 6 briefly outlines some of the practical
aspects of process identilication. Numerous references are
provided. Additional and more detailed material on the

pratical aspects in process identification are presented in



Appendices A, B and C to supplement this chapter.

Using the standard approach to the numerical analysis
of the solution of a set of equations (which ‘s well known
in the literature e.g. Lawson and Hanson, 1974, Forsythe et
al., 1977) it can be shown that the numerical accuracy of an
jdentification algorithm is inversely proportional to the
condition number of the matrix to invert.

However, this type of analysis does not consider the
effect of the magnitude of specific elements of the matrix
on its condition number. The effect of the magnitude of
individual elements on the condition number is analyzed in
Chapter 7.

On the basis of the results in Chapter 7, the
implementation issues which involve removing the constant
(bias) parameter, scaling and coding are examined in
Chapters 8, 9 and 10 respectively. The effect of
normalization on least squares identification is examined in
Chapter 11 and alternatives to normalization are proposed,
based on an example, to maintain stability of the adaptive
control scheme.

A typical process identification study using
experimental data obtained from a secondary crusher in a
mining operation is presented in Chapter 12. It is shown
that not accounting for the mean of the input and output
data (accounting for the mean can be accomplishe
removing the mean from the data or by including a constant,

or bias, parameter in the model) can have a serious impact



on the reliability of the identified model. Comparison of
the Box-Jenkins algorithm with least squares and maximum
likelihood algorithms is provided to illustrate the relative
performance of the most likely alternatives to the
Box-Jenkins algorithm for this data set.

The conclusions from this study of the practical issues
in process identification and recommendations for future

work are presented in Chapter 13.



2. Modelling Stochastic Processes

2.1 Introduction

In most identification techniques the underlying
approach involves the minimization of the s.m of squares of
the modelling error. Because so many algorithms tend to
minimize the sum of squares of errors, known as least
squares, insight, from layman's perspective, into why the
least squares techni e is so widely used is warranted. The
statistical interpretation of the least squares is not
examined as this can be found in several textbooks e.g.
Draper and Smith, 1981. The reader interested in the
geometrical interpretation of the least squares
identification technique should consult the book of Norton,
1986.

Following a brief discussion of the least squares
identification technique, the models used throughout this
thesis are presented with a brief heuristic explanation as

to vhy they were chosen.

2.2 A facile argument for the choice of the least squares
family of cost functions
Most identification schemes are based on the
minimization of the square of errors (also known as
residuals or model prediction errors) betwveen a measured
output signal and a predicted output. This minimization of

the squares of errors is termed "least squares”. The

10
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mathematical formulation of the least squares minimization
differs for each algorithm depending primarily on the form
of the cost function (there are several possible variations
for the sum of sguares) and/or the manner in which the
modelling error is calculated. Even the so-called maximum
likelihood parameter identification technique involves the
minimization of the sum of squares of errors (by making the
proper assumptions) and not the maximization of the
likelihood function as implied by the name.

This section provides an explanation as to why the
least squares family of algorithms (which includes such
algorithms as ordinary least squares, extended least
squares, generalized least squares, instrumental variables
and the most common form of the maximum likelihood
algorithm) are so popular. First, an intuitive approach is
presented to provide a simple explanation of why the
minimization of the squares of errors is preferred to other
minimization criteria. This is followed by an analytical

presentation of the same arguments.

2.2.1 Choice of the cost function

When formulating an identification problem, a criterion
is introduced as a measure of how well a model fits the
experimental data. This criterion is also known as the cost
function in the optimization literature.

Before selecting a cost function it is necessary to

establish the desired properties of the minimization
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criterion, The first and most important property is that the
modelling error should be minimized. In general terms this
means that the difference between the predicted model output
and the actual output should be as small as possible.

The second desirable property is that the sum of errors
be zero. This is desirable because the modelling error is
assumed to have a zero mean. Another advantage of having a
zero mean error is that the mean of the model input and
output will be the same as the mean of the actual data.

A third desirable property is that the modelling error
reduces with increasing time of operation in the case of
recursive algorithms. This feature is meaningful only if the
process parameters are not time varying (otherwise there is
no basis to expect that the error should reduce as the
length of time for identification is increased).

A fourth property is desirable if identification is to
be used in an adaptive control strategy. That is, the
calculations should be as simple and as easy as possible in
order to reduce computation time with minimal loss of
accuracy.

Therefore the desired properties are minimization of
the modelling error, sum of errors tending to zero and
simple, easy calculation of the cost function.

Obviously the sum of modelling errors itself cannot be
used as a cost function since it has no minimum (it is minus
infinity). The two cost functions that are investigated here

are the sum of absolute errors and the sum of squares of
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errors., Other functions will not be investigated because
they will be more complex than these two (and therefore not
as easily computed) or usual simplifying assumptions reduce
them to the sum of squares of errors. This is the case for
the Bayesian criterion as well as for the maximum likelihood
criterion for which the assumption of a normal distribution
of the modelling error reduces the problem to that of a
least squares parameter estimation., For a discussion on the
equivalence of different criteria see Ljung and Soderstrom,

1983, Chapter 2.

2.2.2 Rational for the choice of the cost function

A very simple example, presented in Figure 2.1, will be
used to provide an insight into the rational for the
selection of the sum of squares of errors (SSE) over the sum
of absolute errors (SAE) as the preferred identification
cost function,

Since the time scale is irrelevant for this example,
the data can be thought of two groups of three points each
that were sampled with a very large time interval between
them. For instance, the ordinate could represent the change
in pressure in a vessel for three consecutive days and the
change in pressure for three days taken a month later.
Assuming a linear relationship and knowing that the straight
line must pass through the two groups at the same ordinate
value (by inspection any other line cannot be minimum) it

then follows that the fitted line will be horizontal in this
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particular case.

Attention can then be focused on one set of three
points if we keep only the vertical displacement of the
straight line as a variable and force the line to be

horizontal,

B T R ET AT R LCEE T TP
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Focusing on only one set of three points, one can see
by inspection that the minimum for both cost functions will
lie between the extreme points 2 and -1 as any horizontal
line outside of these limits would have an associated cost
function that is larger than any solution inside the limits.
Table 2.1 presents the value of the cost functions for
certain vertical levels. As mentioned earlier, these levels
could represent the change in pressure in a vessel,

From Table 2.1 it can be observed that the sum of
absolute errors is not an acceptable cost function since the
sum of errors is not zero at its minimum. For the sum of
squares of errors the sum of errors is zero at the minimum
and the sum of squares of errors is simple to compute.

Consequently it should be the cost function to use for



15

TABLE 2.1

Cost function values for the simple example

| COST FUNCTION
level | SAE | SSE | sum of errors
-1 3 9 3
0 4 6 0
1 5 9 -3
2 6 18 -6

process identification.

A more dramatic illustration of the shortcomings of the
the sum of absolute errors as a cost function is if a fourth
point is added at level 2 (or a point at level -1 is
removed). As can be seen from the cost function values in

Table 2.2, there is no minimum for the sum of absolute

errors.
TABLE 2.2
Cost function values for an additional
point at level 2
| COST FUNCTION
level | SAE | SSE | sum of errors
-1 6 18 6
0 6 10 2
.5 6 9 0
1 6 10 -2
2 6 18 -6

The sum of squares of errors minimum value occurs at
the same level as vhen the sum of errors is zero and
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2.2.3 Analytical approach to the selection of the cost
function
Let the model be
Y, = B + f(x) + ¢, (2.1)
where B is a constant term, f(x) is a function of an
independent variable x and e, is the error at time t. The

cost function for the sum of absolute errors, for N points,

is

L
n

e,
- ly, - 8- (0]

The derivative of this function does not exist at its
minimum (min{Z|y, = 8 - f(x)|} = 0 and the derivative of the
absolute value is undefined at the minimum i.e. at zero). So
analytically this function is not well suited for a
minimization problem and therefore should not be used.

With the sum of squares of errors as the cost function

the following can be obtained

2
€,

1=

[ ]
" [l

(y, = 8= §(x))?

taking the derivative wvith respect to B and setting it to

Zero
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»
g—%--z_ (y, - B - f(x)) =0
L]
(y,-B-f(x)) = 0
L] L]
B= - (y - f(x)) (2.2)

— -—
11 18

now the sum of errors is

L X
S =y, - B - i)
(y, - $(x)) - ~ 8

sl

N
so replacing z B by its value at the minimum (Equation 2.2)
ied

yields

]z

N
e, = (y, - f(x)) - > Ay, - S(x))

el
ot

=0

therefore we can conclude that if a parameter B8 is included
in the model, the property that the sum of errors is zero is
guaranteed regardless of any function of the independent
variable.

This conclusion is very interesting from a process
identificetion point of viev as it indicates that the mean
of the process data must alvays be considered either

explicitly through 8 or implicitly by ensuring that the mean

of f(x) and y, are zero.
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This can be shown by defining the model prediction as

y:’iﬁ* f(x)

then
) | _
Y. = Y. * ¢,
N N N
1 B R
;;1 o i=l i=l
also
X
o - 0
1!71

and defining the mean as

]
Ye§ 2 W
=t
then l
=3

This indicates that the mean of the data points y is also
the mean of the model y" when the sum of squares of errors
(giving ‘Ei!s = 0) is used as the cost function and with a
parameter g in the model. This parameter, 8, will be
referred to as the constant (or bias) parameter later on,
Note that if y is zero and the mean of f(x) is zero then 8
is zero. In general f(x) is chosen to be a linear function
of x such that if the mean of x is zero then the mean of
f(x) is also zero. In the process control and identification
literature the mean of the input and output are freguently

assumed to be zero in order to remove the parameter B, If
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the mean of the input and/or the output is not zero then the
parameter B must be included in the model.

In conclusion, the cost function should be the sum of
squares of errors (with the restriction that a constant
parameter is included in the model form or that the mean of
the input and output data are zero) because the sum of
errors will be zero and it is simple to calculate. This
statement may seem too simplistic for theorists but it is
nice to know that "down to earth"” arguments can be used to

justify least squares.

2.2.4 Modification of the cost function for recursive
identification
Goodwin and Sin, 1984 have introduced the following
cost function to justify the initial condition they use in a
recursive algorithm
I3 I oAy, - 00 ¢ 306 - 0,)R;'(0 - )
vhere ¢" is a vector containing past output and input
values, @ is a vector containing all the parameters, 0, is
the vector of initial parameter estimates and P, is the
initial estimate of a matrix proportional to the covariance
matrix. The first term on the right hand side of the
equation represents the sum of squares of errors and is the
least sqguares cost function (the constant 1/2 does not
change the location of the minimum). The second term
accounts for the initial conditions (this term becomes

negligible as the number of data points increases and it can
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be ignored when asymptotic properties are analyzed).
Unfortunately using this cost function will not give the
least squares estimates for a finite number of data points,
although the deviation from the true least squares estimates
will tend to zero as the number of data points goes to
infinity. Heuristically one can see that the least squares
estimates should be independent of the initial conditions
used for recursive identification and therefore the second
term will "pull” the estimates away from the true least
squares estimates.

This can also be shown by the following. The cost

function can be written in vector form as

vo) + 1(6 - 0,7} (6 - 6;)

3 = 3(Y - #0)T(Y
vhere Y is a vector of past outputs and ¢ is a matrix
containing past ¢'s. Minimizing vith respect to 6 gives

-¢TY + #7060 + P9 - PO, = 0
P,'0, + #'Y

(oT¢ + p;') 0
vhere é denotes the estimates of 0 at the minimum. This
result was also obtained by Goodwin and Sin. For the
rigorous least squares identification algorithm similar
calculations lead to

o0, = ¢7Y
Then 6 can be calculated as
b= (070 + P,') (PO, + ¢T00,,)

o (¢70 + P)'[(0%0 + B)V0, ¢ B0, - 0,)])

so it follows that if P,'= 0 or 0, = 0,5, the second term of

0, + (070 + ") Pl(0, - 0,)
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the cost function will vanish reducing the proposed cost
function to that of the least squares. Since P,'= 0 cannot

be used in the recursive calculations, it is never set to
zero., Since 6, = 6,, implies that the least squares
parameters are known, then for any practical purposes o will
not be the same as 6. The difference between & and 6,; (the
second term of §) will vanish in time only as ¥'¥% grows to
be a matrix with very large elements, much larger than those
of P?. Since most applications deal with a finite number of
data, ¢ may not grow large enough, thus the cost function
proposed by Goodwin and Sin is not totally acceptable. In
other words, guessing 6, and P, is not as good as using the
least squares estimates for initialization. This is
especially true for short data sequences.

The difference betveen # and 6,, could also be reduced
by choosing a small P,'(large P,). This choice for P, also
implies little confidence in initial parameters i.e. a large
P, vill produce large variations of the parameter estimates
(mainly in the initial stages). This may be undesirable in
some cases. The choice of P, should be guided by the fact
that on one hand P, should be large so that the deviation
from true least squares estimates is minimized. ' ' the other
hand P, should not be too large so that paramete will not
exhibit an excessively wide variation during their
estimation. The effect of the initial value of the parameter
estimates on the estimated model parameters vill be stressed

again in Chapter 5 wvhere the recursive algorithms are



22

derived.
2.3 Choice of model structure

The model structure is the specific form of f(x) (in
EqQuation 2.1) that is used. In general the model structure
is taken to be linear in the parameters. This means that the
output variable may be a nonlinear function of the input
variable., For example

Yy =8, X+ 8, x *ax
is nonlinear in x but is linear in the a2 parameters. Some
nonlinear functions can be linearized by transformations.
For example

y=Ae"

1n(y) = 1n(A) + K x
This can be written in terms of transformed variables as
y' = a, + a;, x'

Although in the sequel only models that are linear in both
the parameters and variables are used, it must be understood
that the technique also applies to nonlinear models that are
linear in parameters and to nonlinear models that can be
linearized by applying a suitable variable transformation.

In the field of process control the general model
structure used is one vhere the output is a function of past
outputs, past inputs and past and present noise. These
models are often expressed in a form that uses the backshift

operator which allows the model to be written in polynomial
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form (see Appendix D.3 for a description of the backshift
operator). Model structure determination not only deals with
the choice of how many polynomials are to be used but also
the order of the polynomials for a given system.

First consider the number of polynomials to be used.
One obvious model is one that relates the output to past
inputs, past and present noise, and a constant term. Present
input is not included because the process would have to be
instantaneous in order for the present input to affect the
output (it can also be regarded as an implied delay of one
sample). This model is written as

Y. = Bu +Ce + B

where
B=bg' +bg’+ ... +bgqg"
C=1+c,g +c,q° + o0o + @™
B = a constant
q 'y, =y,

In this model the coefficients of the B polynomial are known
as the finite impulse response weights (FIR) or Markov
parameters. The random noise, ¢,, is generally assumed to be
"wvhite noise”. That is, ¢, is uncorrelated to past noise.

Many processes have delays, meaning that the first
parameters in B are zero. For example if there is a delay of
tvo samples (beyond the implied delay), the first input
influencing y, will be u,. ;. Therefore b, and b, will be zero.
Since keeping parameters in the model that are zero is

unnecessary and is a vaste of calculations, the model is
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modified to

Y. = Bu._ +Ce + 8 (2.3)
where k is the delay. Note that k does not include the first
sample that affects the output (i.e. in the example above
k=2 and not 3, the third sample affects the output therefore
ks3-1=2), Another way of viewing Equation 2,3 is simply that
k denotes the number of parameters set to zero to account
for the delay.

This model can be enhanced even further. In certain
cases, 8 large number of B and/or C parameters will be
required to provide an acceptable fit to the input/output
data. A large number of parameters is undesirable because
this requires more computation time and some numerical
accuracy will likely be lost. It also means that many past
values of u, and ¢, are necessary to perform the
identification.

One way of avoiding a large number of parameters is to
employ a ratio of polynomials. By proper choice of
coefficients, a ratio of two polynomials can almost match
any polynomial using fever parameters. The ratio can even
replace an infinite polynomial. This is due to the fact that
the result of the long division of two polynomials can be an
infinite polynomial. Taking this into consideration the
model can be written as

yo=Ru., +&e 48 (2.4)
vhere

A= | + .|q¥‘ + ,-;q * L. ¥ ,.nq-n
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=5

D=1+dq +dq°  + ... +d,q"
This model is the first model of practical use, It provides
number of process identification problems. This model is the
most gereral model used in the thesis, It will be referred
to as the Box-Jenkins model (Box and Jenkins, 1976).

Models with both the B and A polynomials on the right
hand side of the equation are known as output error models
since the noise term represents the misfit between the
actual output and modelled output based on inputs and past
modelled outputs.

Although this is a general model with an economic
number of parameters it has one major drawback: it is

convergence of the parameters is no longer assured (if the
initial parameters are too far from the optimal values).
Nevertheless this general form of model will be retained
because of its flexibility but a simplified version of this
model will be used vhenever possible,

The first simplification to the model is to assume that
the A and D polynomials are equal. This model which
represents a compromise between nonlinearity and economy of
parameters can be written as

Ay =Buy_ +Ce +8 (2.5)

This model can be considered nonlinear if both sides are
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divided by C so that the model has a "white noise” error

term ¢, instead of the "colored noise” Ce,. This is the

can also be considered linear if estimates of the noise e,
are used in the model. This is the approach employed by the
extended least squares algorithm.

The model expressed by Equation 2.5 can be considered
as a model based on past outputs as well as past inputs and
present and past noise, Models based on past outputs rather
than past modelled outputs are known as equation error
models since the noise represents the "closure" term of the
eqguation.

1f the C parameters are known, the model can be further
simplified to

Ayl =Bul, +e + 8 (2.6)
vhere

Y, = y./C

Uy ® U, /C
g = B/C

This approach is that of the generalized least squares

technique where the residuals are modeled as if they vere a
process by themselves and the C parameters thus identified
A further assumption that C=1 (i.e. all the C
parameters are zero) leads to the simple (but effective)
model used for the least squares and veighted least squares

identification techniques. This model is
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(2.7)



3, Literature Overviaw

3.1 Introduction

The material included in this chapter is not intended
to be an exhaustive review of the identification literature
but rather to provide the reader with some indication of the
pertinent publications in the field. Since the emphasis of
the thesis is on numerical accuracy, the literature
associated with statistical computing is not included since
virtually all the contributions tend to relate to detailed
algorithmic implementations for the computer and do not deal
with the numerical aspects. The numerical methods journals
such as Numerische Mathematik and the SIAM Journal on
Numerical Analysis cover a wide range of subjects such as
solving differential equations and finite element methods.
Articles from these journals that pertain to numerical
accuracy of a least squares problem use the perturbation
analysis approach. No references to these articles have been
included as the perturbation analysis is fully summarized in
LINPACK (Dongarra et al., 1979).

Selected books, thesis, surveys and comparative
articles are noted to illustrate the breadth of the field of
process identification and time series analysis. Computer
programs that were encountered in the published literature
are mentioned to give the reader an idea of the state of
programming in the area of process identification. Finally,

other references of general interest in the field of process

28
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identification are indicated.

3.2 Books and theses

The most often cited book in the process identification
literature is without a doubt that of Box and Jenkins, 1976,
This book is cited throughout this thesis but more
particularly in reference tc the Box-Jenkins model (Chapter
4), correlation analysis (Appendix C), and model validation
(Appendix B). Many studies are based on the approach
proposed by Box and Jenkins, 1976 (e.g. MacGregor, 1984) or
use the well known "gas furnace data" (data provided in
Appendix J of Box and Jenkins, 1976) with other process
identification algorithms (Young, 1984). The book of Nelson,
1973 covers Parts I and II of Box and Jenkins, 1976 in a
simplified manner and therefore is easier to understand for
a person being exposed to time series analysis for the first
time. There are several other books dealing with time series
analysis such as Cryer, 1986, Pandit and Wu, 1983 and
Priestley, 1981 just to name a few,

The frequently cited book of Ljung and SadEEEtram. 1983
presents a general framework for the analysis of recursive
identification algorithms. The approach used in this thesis
is the derivation of the recursive algorithms from their
nonrecursive counterparts. The advantage of this approach is
that the somevhat complex analysis of convergence is not
required and insight gained with nonrecursive algorithms can

also be applied to recursive algorithas.
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covered in the book of Goodwin and Sin, 1984 but the
orientation of this book is more towards identification for
adaptive control applications. The special topic of
forgetting factors is considered by Rogers, 1989.

A good overview of process identification is provided
in the book of Eykhoff, 1981 which presents reviews of
several process identification techniques. A more recent
book on the topic of system identification is that of
Soderstrom and Stoica, 1989. Several algorithms are also
described by Mozel, 1980. Some special modifications to the
least squares algorithm are presented by Hsia, 1977. A
recent thesis shows hov model structure estimation can be
combined with parameter estimation (Niu, 1994). Another
thesis addresses the issue of requirements of identification
in the context of long range predictive control (Shook,
1991).

A book of more general interest is that of Isermann,
1980b which covers topics such as closed loop identification
as vell as identification algorithms in the context of
digital control. Draper and Smith, 1981 , a good reference
for regression analysis, also presents many useful
mathematical and statistical concepts.
such as Householder, 1964, PForsythe et al., 1977 and
Bierman, 1977, Computational aspects are addressed by Knuth,
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vector and matrices may be found in Dennis and Schnabel,

1983,

3.3 Surveys and comparative articles

Surveys providing a general overview of the field of
process identification are presented by Strejc, 1981b and
Gustavsson, 1975, A survey of several variants of the
recursive least squares algorithms, to maintain alertness of
the identification algorithm for use in an adaptive control
context, has been presented by Shah and Cluett, 1991,
Another paper addressing the problem of identification in
the context of adaptive control is that of Malik et al.,
1991, Several factorization techniques are described by
Sima, 1984 while Soderstrom and Stoica, 1981 present a
comparison of some instrumental variable algorithms.
Analysis of the convergence of seven recursive parameter
estimation methods has been studied by Matko and Schumann,
1982. A conceptual overview has been presented by Ljung
(Ljung, 1991 and Ljung, 1993).

A wide variety of studies, based on simulation and
experimental data, are summarized in Table 3.1. The
followving algorithm abbreviations,

LS Least Squares
STA Stochastic Approximation
IV Instrumental Variable
GLS Generalized Least Squares
ML Maximum Likelihood
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ELS Extended Least Squares
EKF Extended Kalman Filter
UDU U-D factorization of the least squares
algorithm
COR Correlation Method
as well as algorithm abbreviations starting with R
indicating that the implemented algorithm is in its

recursive form are utilized in the table.
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3.¢ ldentification programs

There is a wide variety of identification programs,
some of which are now commercially available, that have
originated at a university with research groups developing
process identification programs tailored to meet their needs
(i.e. with a preference for particular identification
algorithms), It is impossible to enumerate all of these
programs since many have not been cited in the published
literature or, like the one offered by McMaster University,
are available through advanced process control continuation
courses as part of the lecture material. Only those programs
that were encountered in the published literature, usually
with limited information and/or documentation available, are
noted. The libraries of subroutines such as IMSL and NAG are
not included since they are a collection of subroutines and
are not complete program packages. Several other commercial
packages that only provide time series analysis or
regression analysis were not included (only the program
packages that offered a selection of identification
algorithms are included). For the reader interested in those
programs Chemical Engineering Progress publishes a
comprehensive softvare directory (Simpson, 1993).

In the following, the name of the program is folloved
by the symbol U or C indicating that the program is

available from a university [U] or is commercially available



(cl.

3.4,

k]

1 Control system design programs which include
identification
In his book, Chalam, 1987 provides a detailed listing

of some adaptive control system software packages that have

been developed by researchers around the world. Only the

aspects of these packages relating to process identification

are

discussed here. For the detailed references on these

packages the reader should consult this book. The programs

are

1.

ADPAC (ADaptive control PACkage) [U]) is a package for
the interactive design of SISO adaptive control systems.
are the recursive least squares and extended least
squares algorithms for ARMAX models. Both algorithms
employ Givens orthogonal factorization (square root
factorization),

KEDDC [U) is a versatile package vhich makes possible
the analysis, identification and design of a variety of
adaptive control systems including SISO and MIMO

systems. Process identification routines encompass both

extended least squares, instrumental variables and
saximum likelihood.
CYPROS [C) is a package that covers a vide range of
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problems: system identification, parameter estimation,
simulation, analysis and design. The model
representation forms include state-space and transfer
function matrices in both continuous and discrete form.
Maximum likelihood and the extended Kalman filter are
the only two identification techniques available in the
CYPROS package.

MATRIX, [C] is a package for control system design and
analysis, system identification, data analysis, and
simulation. System identification tools include
nonparametric frequency-domain techniques, maximum
likelihood algorithms (batch and recursive forms) and
adaptive algorithms,

DESIGN MASTER [U] is composed of five programs: SIMNON,
IDPAC, MODPAC, SYNPAC, and POLPAC. The program of
interest for process identification is IDPAC which
allovs dats analysis, spectral analysis, correlation
analysis, parameter estimation in linear models with
MIMO systems, and model validation.

ISER-CSD (Interactive System for Education and Research
in Control System Design) {C) is a package intended for
the simulation of dynamic systems in time or frequency
domains, SISO and MIMO systems, continuous-time or
discrete-time models, and models in transfer function
form or in state-space form. The program also has four
methods for the identification of MISO systems.
DPASCS-F [U) is a software package for the analysis of
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9.
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multivariable control systems based on state-space and
frequency design methods. This package includes programs
for identification of multivariable systems based on the
maximum likelihood and generalized least squares
techniqgues.

CTRL-C [C) is an interactive computer program for the
analysis and design of multivariable control systems,
time analysis, frequency analysis, matrix analysis and
digital signal processing.

TRIP (TRansformation and ldentification Program) [U] is
an interactive program for the analysis and design of
SISO systems. It provides the option of seven different
types of models for linear systems (c.f. Equations 2.4

to 2.7).

3.4.2 Other identification programs

1.

Other known programs are
MATLAB [C]) is an interactive computer language for the

analysis and design of multivariable control systems

tovards personal computers. The system identification
toolbox is being continually updated and already
includes the maximum likelihood, least squares,
Box-Jenkins, instrumental variables and extended least
squares identification algorithms in both nonrecursive
and recursive forms. The central features of the package

are functions that implement the most useful parametric
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and nonparametric identification techniques. Details of
the system identification toolbox are described in
Ljung, 1987b.

Young and Hampton, 1984 have described the program
CAPTAIN (Computer Aided Program for Time series Analysis
and Identification of Noisy systems) [U). This program
was initially based on the recursive instrumental
variable algorithm and the recursive extended least
squares. The newer features of the program are, refined
algorithms (adaptive prefiltering), MISO model
identification and continuous time model estimation.
SYSID (U] (Denham et al., 1975) is a package that is

least squares, instrumental variables and correlation -
least squares. The program can also perform dynamic
simulations.

PIM+ [C] (Systems Technology Inc., 1988 and Landau,
1990) is a program available for the IBM-PC that is menu
driven. This package was originally developed by 1.D.
Landau from the Laboratoire d'Automatique de Grenoble.
1dentification of up to four types of discrete linear
parametric models using any of nine recursive
identification methods can be performed. With a suitable
interface card, the program can function in real time.

Model validation, time and frequency domain analysis and
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simulation are available,

SATER [U] (van den Boom and Bollen, 1984) is a package
that contains several parameter estimation routines
(extended least squares, generalized least squares,
instrumental variables and maximum likelihood), several
order testing routines, a conversion program to convert
discrete models into continuous models as well as
simulation and test signal generation modules.
Facilities for preprocessing measured signals, as vell
as modules for analyzing continuous systems based on
Nyquist, Bode and root locus diagrams are provided.
SIRENA+ [U]) (Laporte et al., 1985) is a package that

integrates a number of classical identification methods

domain system

"1

based on either time-domain or frequen
representations. The different identification methods

are in output-error or an squatian—e:fa: form, either

I1P-DEM [U] (Caralp et al., 1974) is a package composed
of three programs. The first program is employed to
collect experimental data and perform preliminary dat;
treatment for the purpose of identification. The second
program effects identification and selects the best

maximum likelihood. The third program allows the
estimated model to be validated vith a different set of

data.
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8. ESPION [U] (Haest et al., 1990) is an expert system that
performs an intelligent search for the "best" model
according to a "quality index",

9. SEXI [U] (Gentil et al., 1990) is also an expert system
for process identification that searches for the "best”
model .

10. Xmath [C) (Aling et al., 1993) has several
identification algorithms such as least squares, maximum
likelihood, instrumental variables, etc. It uses QR and
SVD decomposition for numerical robustness. The
demarking feature of this program is its graphical user

interface.

identification

The book of Eykhoff, 1974, probably one of the most
complete books on the topic of process identification, even
though somewvhat outdated, remains a valuable reference.

Another older book is that of Goodwin and Payne, 1977 which

identification is presented in the book of Norton, 1986. The
book of Ljung, 1987b, intended to be used in conjunction
with MATLAB, contains not only a coverage of the common
identification technigues but numerous references to the

identification literature.
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Numerical accuracy aspects of linear systems are
discussed in the books of Wilkinson (Wilkinson, 1965,
Wilkinson, 1963) and in Lawson and Hanson, 1974.
Implementation issues relating to the numerical accuracy
aspects of linear systems are addressed in LINPACK (Dongarra
et al., 1979). Various aspects of the numerical solution of
control and estimation problems are presented in a tutorial
paper of Laub, 1985,

An IFAC award winning series of papers (Willems, 1986a,
Willems, 1986b, Willems, 1987) has provided a general
mathematical description that encompasses time series and
linear systems. These papers are oriented towards the
presentation of linear systems theory rather than practical
considerations of linear systems. In Ljung, 1987a a general
description of process identification focusing mainly on
frequency interpretation is presented.

Many papers have proposed algorithms and proved
convergence for recursive algorithms. A landmark paper in
this area was that of Ljung, 1977 vho presented a new
procedure to analyze the convergence of recursive stochastic
algorithms. Many recent papers use this approach for the
analysis of convergence of recursive parameter algorithms.
Correspondence betwveen Panuska and Ljung (Panuska, 1980,
Ljung, 1980, Panuska, 1980b) has demonstrated that
theoretical convergence of an algorithm is a desirable
property but is not necessary nor sufficient to ensure

convergence vhen the algorithm is applied to plant data



45

where numerical accuracy aspects of the algorithm must also
be taken into consideration.

Some algorithms (e.g. Carayannis et al., 1983) take
advantage of special structures such as the autoregressive
model (with only past values of the output signal and
present noise value used i.e. no values of the input signal
and no past values of the noise) also known as the infinite
impulse response (IIR) model. Another special structure is
the moving average model, also known as the finite impulse
response (FIR) or Markov process, for which values of the
input signal and present noise values are used with no
consideration of past values of the output signal and past

noise values. Because of these implied assumptions, these

not be given further consideration in this work.

Dugard and Landau, 1980, presented output error
identification algorithms and showed that their performance
compared favorably with the recursive extended least squares
and recursive maximum likelihood identification techniques.
The model used is the same as the Box-Jenkins model (c.f.
EqQuation 2.4) with the D polynomial set to unity. Rather
than use a nonlinear estimation scheme as in Box and
Jenkins, 1976, auxiliary outputs are used instead of actual
outputs making the use of the least squares algorithm
possible. This type of algorithm does not seem to have found
wide use, possibly because an auxiliary model for which the

parameters are & prior! unknown is required.



46

Stochastic identification algorithms exhibit slow
convergence and have been found to be too unreliable
(Isermann, 1982) for use in analyzing plant data so they
will not be investigated in this work.

Modified least squares algorithms have been considered
by Hsia, 1977 but it was found that the parameter estimates
use of the generalized least squares algorithm.

Although a symmetric version of the instrumental
variable method exists, it is seldom used (De Larminat,
1985)., Use of the recursive instrumental variable method of
identification under closed loop conditions results in
biased parameter estimates (Isermann, 1982) unless special
instruments (auxiliary variables) are utilized (Soderstrom,
1987).

Alternate versions to the standard maximum likelihood
algorithm exist. For example, Gertler and Banyasz, 1974 used
a maximum likelihood algorithm derived for the following
model

Ay, = By, * %ig
vhich is rarely used. The identification algorithm using
this model is similar to the generalized least squares
identification algorithm in many respects.

The use of the autocorrelation and crosscorrelation

functions to replace the input and output values is a
modification that reduces computation and memory

requirements (c.f. COR-LS in Table 3.1). Memory requirements
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are reduced as the input and output data are now "condensed"
to their correlation functions. Moreover, computing time is
saved in the case of iterative procedures (extended least
squares, instrumental variables, generalized least squares,
maximum likelihood) as some of the calculations do not have
to be repeated. Use of the correlation functions in
conjunction with the generalized least squares
identification techniques has been considered by Ahmed,
1984. Their use with the instrumental variable method
(Ahmed, 1985) and least squares identification (Isermann et
al., 1974) has also been considered. Since the parameter
estimates obtained with these algorithms do not tend to be
as precise as those obtained using the conventional
algorithms (larger variance), this variation of the basic
algorithms has not been considered in this work.

Another possible method of enhancing the various
input/output data to iteratively remove the noise in a
similar manner to that employed with the generalized least
squares identification (Young, 1984). To limit the scope of
this vork, prefiltering of the input/output data will not be
investigated except as a tool to code the data (coding is
examined in Chapter 10).

The use of recursive methods for off-line
identification is addressed by Solbrand et al., 1985. It was
shovn that several passes through the data were required to

obtain similar precision as that obtained by nonrecursive
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methods.
In their paper, Stoica et al., 1986 present two new

model validation selection criteria that can be used to
compare results from two identification runs. An extensive
bibliography on this topic is also included. These
validation criteria were not studied further in this thesis
as their behavior was shown by Stoica et al., 1986 to be
as,mptotically the same as the behavior of Akaike's
information criterion and the behavior of the shortest data
description criterion which are described in Appendix B. The
use of validation criteria is still a topic of research
(Veres, 1990a and Veres, 1990b).

The topic of forgetting factors remains not fully
resolved. Progress in this area is on-going (Parkum et al.,
1992, Yung and Man, 1993, Bittanti and Campi, 1991). A
different approach to maintain alertness is by modifying the
covariance matrix directly (Sadighi and Pierre, 1990,
Ramambason, 1992).

1f the results of process identification are to be used
in the context of process control then consideration shovld
be given to the combination of identification and control
(Shook et al., 1991, Shook et al., 1992, Rivera et al., 1990
and Rivera, 1991).

Although many consider process identification as a
mature research subject there are still some important
discoveries being made e.g. the work of Niu and co-vorkers

(Nju et &l., 1990, Niu and FPisher, 1992 and Niu et al.,
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1992).,

The volume of literature in the field of process
jidentification is s0 extensive that a complete survey of the
literature is not attempted in this work, Several papers,
reviewed in enough detail to assess that their content was

not directly relevant to the focus of this thesis, are

listed in Appendix E.



4. Derivation of the Nonrecursive Algorithms

4.1 Introduction

The derivation of the more common nonrecursive
identification algorithms presented in this chapter is used
to illustrate the similarity of the various algorithms in
using the inverse of a square matrix. This provides a strong
argument for the wide applicability of the results of the
latter chapters. The description of the algorithms will be
useful in Chapter 5 as a basis for the derivation of the
recursive algorithms.

This chapter forms a unique reference vhere a large
number of nonrecursive identification algorithms are
presented to the extent of including a full derivation of
the algorithms,

The derivation of the algorithms that follows is
adapted primarily from the presentations of Isermann et al.,
1974, Box and Jenkins, 1976 and Strejc, 1980. The

nomenclature follows mostly that employed by Isermann et al,

4.2 Least squares algorithm
videly used slgorithm due to its simplicity and its
effectivenzss. The model used for the least squares
algorithm is

Ay, =Bu., *8+e (4.1)

vhere
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A=1+2aq' +aqg’+...+aq"
B=bgqg +bqg°+...+bqg"

k = delay

B

constant parameter (bias)
¢, = model error at time t
the error (also known as the residuals, the white noise) can
be expressed as
e, =y, *A ¥y -Buy,. -8
where
A'=aq' +a,g’+ ... +aq"

the cost function for the least squares is
L
Js= , ¢ (¢.2)

vhere N is the horizon on which the minimization is
performed (i.e. the number of points used for
identification). This cost function is usually modified so
that past values that are not available (i.e. before the
initial time, i=1) are not involved. To take this into
account a variable, u, is defined as

4 = (maximum of n or m+k) + 1
The cost function can be written in vector form as

J = EE (4.3)
vhere

E=Y - ¥ (4.4)
and

E’ L [‘.o‘,o‘oo'°"ll



YT = tyjpyg;1i§:!pyil
iYgél —,Yp*;' LS !yg*ﬂ ug‘k‘i ug’ﬁ‘: LA ugéiif

Y= i¥s="“ !yiii"‘ . s "Yfﬁﬂ Ur;_,ﬂ u‘;l;?.pg . e gn‘l'n*‘ 1

“Yuor “Yun-2  eee T¥nen Up-x-t Up-i-2 oo Up-k-m

QT = [Euﬂgg-i!pgﬁcbnbgi“”biiigj
from Equations 4,3 and 4.4 the cost function may be written
as

(Y-%6)"(Y-%8) (4.5)

&)
n

Y'Y - (¢0)TY - YT(w8) + (¥6)"wo

= Y'Y - 20707Y + 0TWTW4
minimizing J with respect to @
§-J - -20"v + 20796 = 0
90 = ¢7Y
(¢79) 0Ty (4.6)
0 = P¥'Y P= (¢79)"'

It should be noted that P ' cannot be singular for P to
exist and that P and P*' are symmetric. From P the standard
deviations can be found as the covariance matrix is Z = Po’
vhere ¢’ is the variance of residuals.

It is the calculation of this matrix P that is the
focus of the latter chapters of the thesis. The calculation
of the matrix P is the source of most of the numerical
accuracy difficulties associated vith the least squares
algorithm,

It must also be noted that if there is colored noise

(i.e. there is a C polynomial in the model, c.f. Equation



53

2.5) then there will be a bias in the parameters since the
least squares algorithm does not take the C polynomial into

account., This can be seen from the following (in vector

form)
Y = %6 + CE
where
C=14+¢qg *+cq’+ .uv *+cp@™
then
6 = (¥"9) 'Y (least squares estimate of @,
Equation 4.6)
6 = (¥'%) '¥7(¥9 + CE)
6 = (¥79) w790 + (¥'9) 'WCE
E[8) = 6 + E[(¥"¢) '¥'CE)
¢ and E,_, are uncorrelated for i=0 (the only term if the

noise is white) but may correlated if is0 and ¢ has output
terms or input terms correlated with past noise. Since the C
polynomial introduces past E's (i>0) the second term will
not vanish, This term is called the parameter estimate bias.

Investigation into the possibility of a bias will be

constant term § is examined.

4.3 Weighted least squares algorithm

The difference betveen least squares and weighted least
squares identification is that the cost function is modified
to put a veight on the square of error. Generally the
veighting is such that old data bares less importance than
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recent data (usually using exponential weighting).

It should be noted that in regression analysis a more
general weighting scheme is used. In this case weights are
placed on the off diagonal elements of the covariance matriyx
as well as on the diagonal elements. The reader that is not
familiar with regression analysis may wish to consult a book
such as that of Draper and Smith, 1981,

The model used for the weighted least sguares is the
same as for the least squares namely

Ay =Bu._, +8+c¢

The modified cost function is

N
Jd = 2 Uiff
iy
vhere
w, = weight at time i

or it can be expressed in vector form as
J = E'VE (4.7)
vhere E is defined as for the least squares and W is a
diagonal matrix defined as
W= diag(w,, w.,, «coc, W)
J = (Y-90)"W(Y-96)
J = YWY - Y'WeO - (90)TWY + (90)Twes
= YWY - 2670"WY + 0T¢Tweo
minimizing J with respect to 6 leads to
44 . -20"y + 200 = 0
Wl = ¢THY
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6 = (¥wh) 'WTWY

6 = P¥'WY P = (¥wy)" (4.8)
Again the formation of the matrix P is required. Therefore
we can expect to have similar numerical accuracy problems as

in the case of least squares,

4.4 Generalized least squares algorithm

This identification algorithm due to Clarke, 1967 is
similar to the least squares identification algorithm but
with the difference that the input and output signals are
filtered to remove colored noise. The model used in this
case is

Ay, =Bu._ +8+N\
vhere A and B are defined as before and N, is colored noise
which is modelled by

N, = =f N, = f N3 = eoo = I N, + e, + B,

This colored noise can be used in a separate least square
identification to provide the required parameters for the
filtering of the data (f's). The order, v, has to be
selected appropriately.

The generalized least squares is an iterative procedure
in which the filter parameters are updated using the
residuals calculated with the most recent model parameters
available. It is assumed that the model error (residuals) is
a good representation of the actual noise sequence. The
procedure can be summarized by the following steps

i. perform a least squares estimation assuming N =¢,
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(white noise) to find 6

ii., let the residuals N be N = Y - ¥§ vhere

model is

E = N: * {‘thi * jgNtig * [ 3 BN * !FNt‘E = B-

t
This is a least squares model with the input u, set
to zero and the output y, being N, (c.f. Equation

4,:1)- Let aTi;?i[jjgfgjii!'f'pﬂﬁlp

iNi"" iN-,E e iNﬂ—_k 1

$=Z= SN N, eee N, 1
i ; ; P

ENﬁ-i ingz R iN"’—_g 1

(1t should be noted that u has the same definition
as before i.e. usv+1) and Y = N" then from
Equation 4.6
§ = (E'E)7'EN
iii. filter the input/output data
Ui ® U * Fileg ¢ FUge *oeee ., - B,
Yo = Yo * F e * Sa¥er * oeee * Ly, - B,
iv. repeat steps i to iii with the filtered data until
the parameters stop changing
Since there are tvo least squares parameter identification
the latter chapters to apply. Unfortunately the
correspondence vwith least squares is weakened by the
iterative nature of the algorithm and the internal filtering

of the input and output data. Nonetheless the principles
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developed in the following chapters apply to the generalized
least squares algorithm since both the input and output

values are passed through the same filter,

4.5 Instrumental variables algorithm
This algorithm pioneered by Young, 1970 differs from
least squares identification in that the cost function is
modified to include the instrumental matrix. The
instrumental matrix acts as a filter to remove colored
noise., It is introduced in Equation 4.4 such that
H'E = H'Y - HW¥ (4.9)
where the instrumental matrix H must satisfy
E(H'E) = 0 (means that H is uncorrelated with E)
E[¢'H] is non-singular
the cost function is then defined as
J = (H'E)"(HE) (4.10)
Substituting Equation 4.9 in Equation 4,10 gives
J = (H'Y-H'98)T(H"Y-H¥6)
= (HY)T(H'Y) - (HTY)"TH'®0 - (H'#6)"H"Y «+
(H'¢6)(H'%0)
e YHH'Y = 20"¢"H(H'Y) + 6"¢#"HH 0
minimizing with respect to & gives
$J = -20%HH"Y + 20"HH"®0
*HH'®0 = ¢THH'Y
premultiplying by (®'H) ' (it is non-singular by definition)
H'e0 = H'Y
0 = (H'e) 'H'Y



6 = PH'Y P=(H"¥) "'

The numerical accuracy of the algorithm (in the
calculation of P) depends on the choice of the instrumental
variable matrix, The closer H is to ¥ the more applicable
the results from the latter chapters will be.

1t should be noted that the standard deviation of the

parameter estimates cannot be found from P. Calculations

This can be shown by examining the variance of 6, the

estimate of @
6 = (H'%) 'H'Y

= (H'®) 'H"(%8 + E)

=6+ (') 'H'E

E[6) = 6 since E[H'E) = 0
var(8) = E[(6 - 0)(6 - 6)7)
£ (H™) 'WEETH(H"®) ")
o Bl (H™®) 'HTH(®™H) ')

if E[{¢") & H" then
var(8) = (H'®) 'o?

as can be seen, the condition to have valid estimates of the

instruments are the expected values of the input and output.

4.5.1 Choice of instrumental matrix
The instrumental matrix is not unigque. It can be shown
that some instrumental matrices are optimal (Young, 1970).

One of these optimal matrices is composed of an auxiliary



model output and the actual input. This will satisfy the
required constraints on the instrumental matrix because the
output of the model is not related to the noise of the

Ah =Bu. +8
vhere A, B and B are defined as before, The use of the
actual parameters for the auxiliary model will require an
iterative procedure until the parameters stop changing, If
this auxiliary model is used then H is similar to % with h,
replacing y,.
=h__, =h,., ... ~-=h,. 1 I U, y-2 coe U pem !

Hi —hﬂéiii ih!,gii = & & i!h:“_ng.‘ ugiti‘gi u!i!_z..q LN u!i!_!“ '

H H ; H { i {
=By By eee “hy, Upai-s Upn-g-2 eee Uppom !

is close to ¥. The results of the latter chapters will
therefore apply to the instrumental variable method with
this instrumental variable matrix (once the convergence of
the iterative procedure has been reached). Since the
instrumental variable method produces a P matrix that is not
symmetric several matrix factorization methods described in

Chapter 7 will not be applicable.



4.6 Extended least squares rlgorithm
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In this algorithm the model is "extended” to include a

noise model. With this model the procedure for least sqguares

is applied. The model used is
Ay =Bu +Ce + 8
where A, B and B8 are defined as before and
C=1+cg +cq’+
the vector error equation is
E =Y - ¥6

where E and Y are defined as before and

GT L [a|"2,o-o'an,b1'b2@c-npbﬁjgjpggpiiipgﬁﬁpﬁj

-Y.'l -YU‘z 0 -yu"\ un'k'\ u!*ﬁ';
W= =Y. o1 Y201 see “Yener Ypparer Yopoaa
H H : H H :
“Yu-r “Yn-2  cee “¥Ynen Upog-n Up-k-2
Uyok-n €,- €u-2
U, okemet € et €241
Upepom €n-n €y-2

as for least squares the equation for 6 is
o = (¢79) 'Y

6 = POTY P=(¢7¢)"’

_ M
ses ¥ E!’nrq

n

Because estimates of the residuals (¢,) are needed, an

iterative procedure is performed using the estimates of the

residuals from the model with the most recent parameter

estimates.
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Unfortunately, the extended ¥ matrix introduces
off-diagonal elements (with an expected value other than
zero) as well as diagonal elements in ¥'¥, These
off-diagonal elements appear from the dependance of y, on
past ¢, . Therefore one can expect more numerical accuracy
problems from this algorithm than from the least squares
algorithm (see Chapter 7 for the effect of off-diagonal
elements on the condition number). Most of the results of
the latter chapters are still applicable to this algorithm
since a good portion of the ¥'% matrix is the same as that

of the least squares algorithm,

4.7 Maximum likelihood algorithm

Although this algorithm is derived from the likelihood
function, the usual assumptions lead to the minimization of
the sum of squares. The difference between this algorithm
and the other algorithms stems from the fact that a
nonlinear least squares minimization is performed in
algorithms. Therefore this algorithm could also be called a
nonlinear least squares identification algorithm (Astrom,
1981),

The model used is

Ay =Bu., +Ce + 8

vhere A, B, C, k and B are defined as before. The likelihood

L)

function for this model is of the form L(y|u,A,B,C,8). This

is the joint conditional likelihood function (akin to the



probability density function) of the output given the input
and the model parameters. Usually 1n(L) is used because the
logarithmic function is monotonic and the maxima and minima
of 1n(L) occur at the same values as the maxima and minima
of L. This transformation is useful in linearizing the
likelihood function if it has an exponential form.

At the maximum

1n

K =0

[}
#ng

2 1a(L) | 7
ae“’ I..f 0

if ¢, is Gaussian then the multinormal likelihood function

is

LIE) = o™ 1| T
where |L| is the determinant of Z, u is the mean of E and L
is the covariance matrix (see Box and Jenkins, 1976,
Appendix A7.1), If ¢, for t prior to vhich the data is
available is ocmitted in the vector E then the resulting
algorithm is the (conditional) maximum likelihood algorithm
ususlly encountered in the process identification literature
(e.g. Isermann, 1980b). Assuming the mean s to be zero and Z
e 0°1 vhere I is the identity matrix (i.e. the residuals are

independent of each other and have the same variance) then

- a B ——— ) B o j ?
L(E) = ey v gxp(#)
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&1 T
1n(L(e)) = -Binc2m - Binco® - EE
7. 20

0’ is unknown but will be minimum at the maximum of L,

=T
therefore the minimum of %ln(a‘) + %ﬁi occurs for the same
parameter values as the minimum of E'E. Using J = %ETE as a

cost function then

J = % zf
7{?1
3y o - De, o
36, " - ‘v B8] (4.11)
IR YN S Y w2
7" . % 3. ¢ B 0. 4.1:
26, 353 RS RS t‘:‘ t ﬁ]_ '

Marquardt-Levenberg (Levenberg, 1944) parameter update

0., = 0, = (V+1)'W (4.13)
vhere V is the Hessian wvith all the second order derivatives
of J with respect to 6 and VJ is the vector with all the
first derivatives of J with respect to 6 (see Appendix D for
description of the Margquardt-Levenberg algorithm).

In this case V is the matrix to be inverted.
Unfortunately, this iterative approach combined with the
fact that the input and output values are internally
tiltered (see belov) weakens the relationship to the P
matrix of the least squares. Nonetheless the principles

developed in the following chapters apply to the maximum
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likelihood algorithm since all the values in V are passed
through the same filter. It should be noted that the
regressor is also "extended” in a similar fashion as in the
extended least sqguares algorithm (see the partial
derivatives below). Here too a good portion of the matrix is
similar to that of the least squares algorithm (except for
filtering) so that most of the results of the latter
chapters apply.

To find the first and second derivatives of the
residuals with respect to 6 the model equation is rewritten
as

e, = (Ay, - Bu. - 8/C

then the first derivatives are
~ = gtéi/c

iut-lﬂfc

= —]/C

9F Ar 4

3T " T4 /C

It can be seen that the second order derivatives not
involving 3c, are zero. The remaining second order
derivatives are

2
3%,

%, %, " e/

)
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ot~ = u,.,.,.,/C

-sﬁ! "C; = 1/(:

32‘: : :
2¢,.,.,/C

Note that inverting the order of the partial differentials
on the denominator gives the same results (i.e, it is
symmetrical). Also note that in Eguation 4.12 the second
order partial differentials are multiplied by ¢,. This
product is summed over all the data points. The reader can
easily verify that ¢, is not correlated with any of the
second order partial derivatives and consequently the sum of
the product will tend to zero. Neglecting this term in the

second order partial diff~rential equation leads to

2 2 ¢ de¢
—L = " i £ .
26, 90, - & 06, 39 (4.14)

The partial derivatives in Bquations 4.11 and 4.14 can be
expressed as a function of filtered input and output values
using the noise parameters in an autoregressive filter
namely

Yy, = ¥./C

Uiy ® U /C

L]
=
e
L]

[ ]

The filtered modelling error (noise) can be calculated as



K oo af
¢, =AYy, B u., B

The cost function partial derivatives can now be expressed

3] - _F
a;—!% = 2 €Y.,
t=1
, X
%&— = o Ct(iu:*h‘l)
i g=l
. L) _
S%L = _ !t(!f:,;)
i £l
w . !
—l= 5 ,; g ( B — )
B = 1*5'251‘ c,
i=

and the second order partial derivatives are
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a° r =1

2 L )
—u_ac, ol el ) (=el)

2 b
= a7 (et ) (=)
acl aﬁ QT1 ‘ 1+Z <,

3 X - | _
3;4%3 - (=1

v 1#L ¢, 1+I ¢

=i 3

These derivatives are used to construct V and VJ for the

Marquardt-Levenberg parameter update.

4.7.1 Box-Jenkins modification to the maximum likelihood
Modification of the model to include a denominator term

in the noise model ..as beer proposed by Box and Jenkins,
1976.

The expanded model is

yt'f‘!‘tah*%‘:*p

vhere A, B, C and 8 are defined as before and
Det+dq' +dq°+ ... +4,q"
The parameter estimates are calculated using Equation 4.13.

Numerical partial derivatives may be used instead of the
analytical ones using

de,

¢ (0,48)-¢,(0,)
a0, °© N

vhere & is a small increment, typically 1% of 4,.
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4.8 Box-Jenkins preliminary parameter estimation algorithm
This algorithm (Box and Jenkins, 1976) does not involve
the inversior of a square matrix but is presented here to
provide an algorithm which can be used to find initial
estimates for the Box-Jenkins algorithm presented in Section
4.7. "his algorithm uses the fact that the impulse response
can be obtained from the crosscorrelation if the input is
white noise (Appendix C) to find the model parameters. The
impulse response model is
Y. * Vu + N + 8 (4.15)
vhere
Vev +vg' +vg?+ ...
N, = colored noise
The aim is to find the parameters in the model
Yo * Ru. + N+ 8 (4.16)
Equating Equations 4.15 and 4,16 gives
AVuy =8u,., (4.17)
and equating equal powvers of q"' the folloving preliminary
i. wv(j) = 0 for j s k, k the delay
ii, if n> 0, £ind A from povers of q' beyond the
order of B such that the right hand side of
Equation 4.17 is 0. this gives rise to the
folloving set of eguations
eaA=YV
with

A= [—‘l? ,-zj RN !nj
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V= [Vkomoll Vieme2r o o0y Vp,,..n]
@, ® = Vi, fOr j < m+i

L]

a.=0 for j > m+i

iii, b, = v,
ive if m> 1, find B from
if n>0B = A+ V
where
B =1[b,, b, ..., b,]
B,y ® Vie,-yey for j s i
B,y = v for j > i
V om [Vias Vieyr ooer Viepld
ifns=0, B=V
for i = 1, ..., m-1
and j = 1, ..., N
To complete the model, the noise model preliminary estimates
are obtained in the same manner as for the prevhitening
parameter identification (Appendix C) and using Equation
4.15 to £ind the values of the colored noise. It should be
kept in mind that these estimates are statistically

inefficient (Box and Jenkins, 1976).

4.9 Conclusion
Except for the Box-Jenkins preliminary estimation
algorithm, the algorithms presented use the general form
6 =P v

vhere ¢ is the estimated parameter vector, P is the inverse
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of a matrix and v is a vector. 6, P, v are defined by the
algorithm chosen. Thus, the nonrecursive algorithms can be
viewed in a unified manner in the spirit of Ljung and
Soderstrom, 1983,

Some of the algorithms require an iterative solution in
vhich P and v are functions of the parameters. This
dependance of P on 6 for some algorithms weakens the
relationship with the matrix P of the least squares
algorithm but most of the results of the latter chapters
still apply (this is especially true for the algorithms with
internal filtering i.e. for generalized least squares,
maximum likelihood and Box-Jenkins as all the values are
affected in the same manner). The applicability of the
results of the latter chapters is thus not limited to the
least squares algorithm.

In this unigue collection of algorithms and their
derivation the algorithms were introduced individually to
facilitate their examination and that of their recursive
counterpart presented in the next chapter.

Some of the properties of these algorithms that are not
related to numerical accuracy but are of general interest
are summarized in Table 4.1 (see also Isermann, 1980a). The
choice of a method over another should be based on
statistical as vell as numerical considerations. The purpose
of modelling is also important. Are parameters sought or is
only the prediction important? For the former the
polynomials that should be included can be estimated from
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correlation analysis (Appendix C)., This will dictate which
algorithms may be used,

TABLE 4.

Some properties of the nonrecursive
algorithms

Parameter Polynomials Remarks
Estimation 1Included
Method

LS A, B Biased estimates for colored noise
Small computational expense
Good starting method for IV or ML

WLS A, B Same as LS , )
Requires & priori knowledge of
weighting matrix

ELS A, B, C Iterative
Close to ML

GLS A, B Biased estimates possible
Iterative ,

Large computational expense
Colored noise filtered
Requires a priori filter order

v A, B Possibly iterative )
Gond performance for a wide range of
noise models
Medium to small computational expense
Difficulties appear with closed loop
If not iterative requires a priori
knowledge of instrumental matrix

ML A, B, C Iterative ,
Good performance for specific noise
model
Large computational expense
Noise model estimated
Converges to local minima
BJ A, B, C, Same as ML except for the model

The least squares algorithm is the most widely used

algorithm due to its effectiveness and simplicity. If some
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part of the data is known to be "bad" e.g. outliers then
weighted least squares can be used to minimize their effect.
There is little difference between extended least squares
and (conditional) maximum likelihood. The convergence of
maximum likelihood is more robust than that of extended
least squares from the use of the Marquardt-Levenberg
algorithm, Generalized least sguares and instrumental
variable algorithms cannot be advantageously used for
stochastic model prediction as the effect of the noise is
eliminated from the model (in least squares the effect of
I1f several algorithms can be used or if only the
prediction is important then the simpler the algorithm the

using one or more of the criteria described in Appendix B.



5. Racursive ldentification Mathods

$.1 Introduction

In this chapter the recursive version of the more
common identification algorithms are presented. The
derivation of the algorithms from their nonrecursive
counterparts is used to emphasize their relationship with
the inverse of a square matrix. Hence, the remarks on the
numerical accuracy aspect discussed in Chapter 4 also apply
to this chapter.

This chapter forms a unigque reference where a large
number of recursive identification algorithms are presented

to the extent of including a full derivation of the

algorithms.
The development presented for each recursive algorithm

is based on the appropriate material that has been presented
for the corresponding nonrecursive algorithm described in

Chapter 4.

5.2 Recursive least squares algorithm
The nonrecursive least squares parameter estimates for
N points can be calculated as (c.f. Equation 4.6)
Oy = ("’;"-)E"‘EY-
vhere
* = [0, 600r coer 8]
O = [=Y,.ov =¥Yi2s coes “Yionr Ypoporr Yoz oo

Uiogeme 1]

73
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Yo o= Ly, Yooor eoer W)
To establish the recursive least squares algorithm, consider

the situation where one more observation is introduced.

Using
P, = (¥%,)"
gives .
T
Py, = ¥, ¥y
Pre on.

=1

P

Puor = (W) + 0.1 0p.,)
Use of the matrix inversion lemma (c.f. Appendix D) with A =
v.¢,, B=9¢,,, C=1 (identity matrix) and D = éz. produces
P, = (W)™ = (¥19,) e, (1 +
o (010, 0, ) Ten, (re,)
Puo, = Py = Pudy (1 + 00, Puo..,) 'on. P,
It should be noted that this last equation uses the inverse

of a scalar quantity. The error gain, K,.,, is defined as
- Piéyaﬂ

Kpoi ® =% (5.1)
e 1 + ‘:tipnéﬁ*i
80
Pntl = Pu = Ki-}i’:%‘?ﬁ (5-2)
= (I + Kn-ﬂi‘:ii)Pu

The parameter estimates for N+) points may be expressed as
Ouer = Puuy * Yy

’;ii Yuer

eiil = P-:H [’:Y. + ’!tiy!i-i]

substituting for P, , gives
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_ 5 ; T T .
anei = (PH = RH“@H"‘PN) (‘IHYR + @Hi‘}'"i‘)

6y + [Pyop.. = Kuoi®ne Pyoy.i) Yoo
- K. Op. .6,
Bper = 0y *+ Kyo(¥pey = @n. 6)) (5.3)
In summary, the update of the recursive least squares
algorithm is Equations 5,1, 5.3 and 5.2 used successively.
Although the use of the matrix invers »n lemma

implified the calculation of the inverse to obtain P,,, trom

[+ ]
e

P, the calculation of P is still subject to the same
numerical accuracy constraints as the nonrecursive version
i.e. the calculation of the inverse has been broken into

smaller steps but has not been fundamentally changed.

$.2.1 Choice of initial values

The computation of the recursion equations (Equations
5.1 to 5.2) is based on the knowledge of 6, and P,. These
can be found using a nonrecursive least squares but this
requires a minimum number of points equal to the number of
parameters plus delay if the input signal is persistently

exciting and more points are ;equireé if the input signal
does not excite all the modes of the process, It is common
practice to give the parameters, 6,, and the P matrix, P,
the initial arbitrary values 6,= 0, P, = al, a a large
number and I the identity matrix. This introduces an error
in the algorithm which can be corrected by reducing the
effect of the initial values (c.f. Chapter 2 discussion on

the effect of arbitrary values on the cost function)., The
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effect of initial values can be minimized by using very long
data sequences or by using a weighted least squares to put
little weight on initial values. Choosing a large a also
minimizes the effect of the initial parameters as it is used
for the calculation of K,,,, the gain associated with the

error.

5.3 Weighted least squares algorithm
For the least squares algorithm it is assumed that the
process and hence the mouel parameters are fixed but unknown
values. However, there are many instances where the process
is time varying. For example, there may be a change in
catalyst activity in a chemical reactor or changes in
production rate may change the dynamics of a distillation
column due to the change in tray loading. In these
instances, it may be of interest to track these changing
parameters. To accomplish this, the recursive weighted least
squares estimation algorithm is utilized.
The nonrecursive weighted least squares estimates for N
points was given as (c.f. Equation ¢.8)
0, = (¥]We,) '¥W,Y,
Py = (.:wu’u)-‘

Consider one extra observation, then

Pe. = || *. w0 || e

’:0 1 o 'l' 1 ‘:* 1
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Pyr = (W:wni’,‘. + ¢N,,wN,,o:,,)"
using the matrix inversion lemma with A = ¥{W¥,, B = o,

C=1, D= w,o, gives

-1

Pno‘ = pN - Pn¢nol(1 + wno¥¢:¢1puonol) wN010:’1PN

defining the error gain, K., as
P,0y. Wya-
N+ = > E?’ = (5.4)
T+ W".1¢Nup"¢".1

K

then
Puer = Py = Kyui®yuiPy (5.5)

The parameter estimates can be derived as follows
6, = PWY,

N+t

’:u 0 w,., Yuer

Oper = Pror [ WY + 00 ¥e Ypor]
substituting for P,,, gives

Oper = 6 + Koot (Yyor = 04016y) (5.6)
In summary, the weighted least squares is updated by
Equations 5.4, 5.6 and 5.5. Here too, P, is calculated as
the inverse of a matrix and is therefore subject to the same

numerical accuracy problems as the nonrecursive version.

$.3.1 Choice of weights

For the sake of completeness the choice of weights is
nov briefly addressed. Many authors have proposed choices
for the veights. Weights calculated using a deadband
effectively "turn off" the identification algorithm if the
error is lov. Three examples of weight selection due to

Goodwin and Sin, 1984 are presented here. The first veight



scheme is

€

rs

w1 = K, for oy Pue,.,

= K, for o,.,Py0,., < ¢
with K, >> K, > 0, This weight scheme produces an algorithm
which is close to the projection algorithm and is sensitive

to noise, The secondTpossibility is to use
¢N“PN¢N“ " L ]
Wyey ® — ¥ if ¢N01°N¢l‘o
ONHQN.]

= arbitrary otherwise

and the third weight scheme is
D LN
Weoo = 1 if ¥ >
V o+ ouPy 0y
= 0 otherwise

a’ > 0

where A’ is an upper bound on errors (noise),

5.3.2 Exponential weighting

Rather than put weight on the present value it is
common to exponentially discount past values (w, = "',
0 <A< 1), Por this, it is more convenient to write the
weighting matrix under a different form namely

W = A-diag(w,, v, .00, 1/))

The lower A is, the more weight there is on present data and
less on past data. For A = 0, only present data is
considered and for A = 1 all the data is considered vith
equal weighting. Since

I \e s (for A < 1, = if Ast)

i=0
the right hand side of this equation can be employed to
calculate the effective number of past data points used, For

example, if A = .95 then the effective number of data points
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used is 20 i.e. A = ,95 is approximately the same as a
weighting sequence of 20 values of X\ equal to one and the
remaining values of A being zero. The effective number of
data points used is termed the asymptotical window length,
When using a forgetting factor, there is a trade-off
between speed of adaptation (or tractability) and variance
(precision) of the estimates. A low A allows for fast
adaptation but also high variance, a higher A allows for a
slower adaptation but a lower variance of the parameters.
The weighted least squares algorithm, with exponential
weighting, can be derived as follows. Starting with the
nonrecursive weighted least sguares algorithm
8, = (¥Jw,¥,)'¥, Wy,
P, = (¥iwe,)"”"
and considering one more observation and letting X\ be A,., to

allow for a variable forgetting factor yields

=1

Puor = || ®u | Neer | W O || #,
e 05— || e

N

1,-1_1
Pyoy = (’:wn’u + ’Nﬂ‘:‘lx-.—‘) 'm
then using the matrix inversion lemma with A = ¥W.9,,
B=¢u,,C=1,D-= O:HX'L produces
Ne

Pyer = xllT‘!(Px - Pu‘nol(l * x;j_t‘:”Pl’un)-‘ x
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1
o

defining the error gain, K,.., as

o...P,)

Poy..

K - = - (5.7)
D N T 2] N
then
pNﬂ = k 1 (PN - KN0V¢:01PN) (5.8)
N+
The parameter estimates can be derived as follows
T
8, = P W WY,
Oper = Ppoy ¥, Aper w, 0 Y,
T 1
0”", 0 XN.‘ Y"ol
Opor = P (T N0y + O Ay Yoot
substituting for P,,, gives
enﬂ = en + Knn(ynu = 0:,,0,‘) (5.9)

In summary, the exponentially weighted least squares is
updated by Equations 5.7, 5.9 and 5.8. It is common to have
a variable forgetting factor A, To eliminate the effect of
initial guesses, that may be not very reliable or incorrect,
a forgetting factor of the following form may be used

Aar = Mg+ (1 = )
with typical values A\, = .95 and A, = .95 (Isermann, 1980b).
This imposes an exponential data weighting during startup
only. Other forgetting factors aim at forgetting the data
only if a shift in parameters is perceived, usually by
monitoring the size of the modelling error. Comparison of

different forgetting factors has been carried out by Rogers,
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19885,

5.4 Recursive generalized least squares algorithm

The nonrecursive generalized least squares
identification was shown in Chapter 4 to be composed of five
steps

i, filter input/output data w. - the noise filter

ii. perform a least squares estimation on filtered data

iii. calculate a new vector of residuals

iv. perform & least squares estimation on the residuals

v. repeat until converged
Since for recursive generalized least squares it is
impossible to repeat the procedure (steps i to iv) without
loosing all the benefits of the recursion, the recursive
generalized least squares procedure is reduced to

i. filter input/ouvtput data with noise filter

ii. perform recursive least squares estimation on

filtered data

calculate the new residual (only one, not the whole

e
[
[
.

vector)

iv. perform recursive least squares estimation on the
residuals
v. repeat the procedure with the next input/output
data point
Assuming a new pair of data points y,.,, u,., has become
available, the recursive generalized least sqQuares algorithm

can be described as follows (this is the same algorithm as
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proposed by H- d Sage, 19¢9)

i. gues . -+« vectors 6, t, and matrices P,
P, . suals)

ii. fi-
fc ceer “Yuoperr Upepr eeer Upipemers 1)
ths o (F) = S 0nis Ve () = 1.y, where f, is
the - with its parameters taken at time N

iii. recursive least squares

iv,

P oy (f)

1+ o, (F)IP oy, (1)
Oper = Oy * Kyoylyy () - ¢:01(§)0N)

Kyey =

Pu.t = PN - K"¢1¢:ol(")PN
calculate residual
Cnet * Yoy T O:nonn
perform recursive least squares on the residuals

Onei () = [y, vuuy =€4 0y 1]

. Pydy. (1)
Kyor = T T
1+ ¢p, ()P 0., ()
fuor = fu * Kioi (@ = Oy, (r)f)

Pi., = P, - Ki.,0p., (C)P}

This algorithm will converge to true values of the

parameters if the signal to noise ratio is high enough. For

a lov signal to noise ratio, it is possible that the

estimator will converge to false values (Strejc, 1981a).

Although this algorithm is only an approximation to its

nonrecursive counterpart it still involves the inversion of

2 matrices so that comments about this algorithm in the

previous chapter do apply.
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5.5 Recursive instrumental variable algorithm
The nonrecursive instrumental variable estimation was
given by
6, = (H¥,) HyY,
The recursive solution is established in the same fashion as
for the least sguares

T -1
P, = (H¥,) .

Py, = H, v, ]
¢r.. (h) One J

where ¢,,,(h) contains the instruments (auxiliary outputs).
This can be expressed as

P, = (H¥, + ¢,..(h)en.,)"
using the matrix inversion lemma with A = H¥,, B = ¢.,(h),
C =1 (identity matrix) and D = ‘:q (Appendix D) gives

P,., = (H%) ' - (H#,) "o, (h)(1 +

o, (HI®,) '¢,.,(h)) oy, (Hi®)™

Pror = Py = Pyby (h) (I + o). P, (h)) "o, P,

It should be noted that this last equation uses the inverse

of a scalar quantity. The error gain, K,.,, is defined as
Pn‘.o] (h)

Koy =

P A Y INTY)
then

Pyor = Py - K,..,O:.,?,,
The parameter estimates are .

Ouer = Py H, Yy
.:0‘(h) YIO?
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6,.. = P

Ne ver [HY. + op (h)y,..]
substituting for P,,, gives

T T
€. = (P, - KN,'QN.'PN) (HLYy + QN"(h)yN“)

= 6, + [Pwo,..(h) - K. 0n P (h)] y,..
- Ky @p. .6,
Bpor = €y *+ Ky (Y., = 05..6,)

The instrumental variable method is composed of the
following steps

i. perform least squares estimation

ii. generate auxiliary output

iii, perform the instrumental variable method

iv. if parameters have not converged repeat from step 2
Since this cannot be carried out with the recursive
instrumental variable algorithm (without losing the benefits
of recursion), the following approximation is used

i. perform recursive least squares estimation for a

certain number of recursions

ii. generate auxiliary output

iii, perform recursive instrumental variable

iv. repeat from step (ii) for the next data point
Note that the recursive least squares estimation startup is
carried until reasonable instruments can be found. This will
make the algorithm more "robust” and will accelerate
convergence,

Assuming a nev pair of data points y,.,, u,., has become
available the recursive instrumental variable algorithm can

be described as
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i. guess 6, and P,
ii. recursive least squares estimation and auxiliary
output generation

¢:0‘. = ["YN. ‘YN-“ oo ey uN'k' uN'k“' ooy 1]
PNONQ'.
b+ ¢:°‘.PN¢N¢!
T
ON’\ ON + KN01(YN01 - ¢N"9N)

Kyo: =

T
P = Py = Ky 0y Py

Ne

auxiliary output startup
¢noi(h) = [-hy, =hy.iy eeey Upoir Upoporr soey 1]
hy., = 0n.,(h) 6,.,

note that the most recent 4 available is used for
this update. The number of times step (ii) is
executed before the recursive instrumental variable
algorithm is employed is defined by the user. This
could be a fixed number of recursions or it could
be when the relative change in parameter estimates
is smaller than a specified level,

iii. recursive instrumental variable
1) ¢.., and ¢,.,(h) are formed as above
2) the core of the recursive instrumental variable

is
Pydy.1(h)

1 +7:olpl.lo'(h) .
Oper = 0y = Koy (Yyor = Oper8y)

K.ol =

Pyer = Py - K,..,O:..P,.
3) update of the auxiliary output
Byer = Opei(h) 0.,

This algorithm is only an approximation to the nonrecursive
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instrumental variable algoerithm but the inversion of a
matrix is still present so the comients of Chapter 4 still

apply.

5.6 Recursive extended lea:t squares algorithm
The nonrecursive extended least squares can be

described as follows

i, find the residuals E Y - %6

ii. introduce the residuals E in %

iii. 6 = (¥"9) ¥y

iv. repeat these steps until parameters have converged

The recursive extended least sguares must approximate the
iterative process to fully take advantage of the recursion,
The procedure is reduced to

i. find the residual e, = y, - .6,

ii, place ¢, in ¢,

iii, use recursive least squares estimation
assuming a new pair of data points y,,,, u,,, is available,
the recursive exterided least sqguares algorithm can be
described as follows

i. gquess 6, and P,

ii. € =y, =~ 6.6,

i;ﬂ = [=Yur coer Upyr veer € voey 1]
Pyt

1 + ‘ztijpﬁ’i*‘ T

Oper = 0y + Kyo i (ypor = #4.160y)

K-* i =

Pysy = Py = K-*v‘:*rpu

Even though this is an approximation to its nonrecursive
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counterpart comments on the calculation of the inverse of P
in Chapter 4 dc apply (especially wher closer to

convergence) .

$.7 Recursive maximum likelihood algorithm
The nonrecursive maximum likelihood algorithm is an
iterative procedure using

6., = 68, - (V + »I) V]

Ne N
where V is the Hessian with the second order partial
derivatives of J with respect to 6 and VJ is the vector of
first derivatives of J with respect to 6 (c.f. Equation
4,13), In vector form the partial derivatives may be
expressed as
VI = (%r%;)E
and V can be approximated by
Va (%E—;) (%E—;V (5.10)
or using the filtered values
Oir = [=Yer eeer Upoyy ooey €4 suey 1]
Seer = ia
and defining
VA -(%—5})
Vo= I8y, vees 8]
then
VI = -V'E
Ve Yy

The update for the N+1st iteration can now be written as
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fu. = B+ (y + 1) TE

Expand.ng to show the new data explicitly aives

T '
by.. = € ¢+ |‘- v [ (4N MELETER! ¥n [ Ey ‘l
'\l{;. [§: Sw [CN' '
with L
pN“‘ - V’N \(/N + pN,‘I
Sne Sy
or

Puor = (Uq¥p * SparSmer + ¥putl)

Unfortunately the solution requires the inverse of an nxn

matrix (n the total number of parameters) and the inversion
lemma will not help in this case. Instead of the Marquardt-
Levenberg algorithm, the Gauss-Newton algorithm may be used

6y, = 6, - V'V

N+1 -1
[ T i T
Oper = 6y + Vn Yn Yu E,
s:ol 5:01 S:ol '"0]
let -1
- T -
p.ol = WN [ W,.
5:01 I.S:”

Pyor = (":wn + S..‘S:n)-‘
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using the matrix inversion lemma with A = Vnoperr B = Spery

C=1,D= §i,

Po., = (6ady) ™ = (Umd) '8y (1

szti(w:wn)i‘S“nl)!‘Szgl(izivi’g) l
= Py = Pl (1 + 80 PuSy) 'Se. Py
noting that it involves the inversion of a scalar, let
, Pulyer

Kyer = 4+ {..P.
N+t LR PRY - SO

80 that
Puor * Py = KyoiSue:Py
now 6,,, can be rewritten as
Ousr ® Oy * Puo, (VEy *+ Syr€yay)

substituting for P,.,

Ouer = Oy + (Py = Ko\ 8§y Pu) (VREy + Speieyy)
Oper = 6y * Eu“’:gn * Pylpereps - R,-.HS:HP—-*;E.. -

Kus s e 1 P8 w1 € oy

Oy = Oy = Pn“’:Ei

substituting back

Bpor = Oy *+ 0, = 6,y = Kui$nar(0y = 6,.0) + Ky,
near the optimum 6, = 6,., so

Op., ® 0, + K, e,
vhere

Cuer ® Yuer ~ ‘: Oy
This approximation gives tL: recursive maximum likelihood
algorithm normally presented in the literature (Ljung and

algorithm can be thought of as the projection using the
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gradient of 6 with respect to the recursion number (time).
In practice this term leads to a large change in parameters
in the initial stages and does not improve convergence
(Soderstrom, 1973). Convergence may be improved by using a
variable forgetting factor to eliminate the effect of
starting parameter values. This can also be applied to the
noise parameters alone as they are used for filtering (Ljung
and Soderstrom, 1983).

Convergence can also be improved by constraining the
noise parameters to be in the stable region (Soderstrom,
1973).

If the C polynomial does not have its roots inside the
unit circle in the q plane the algorithm may diverge. This
is especially true in the early stages where the C
parameters are not well known. It has been noted that the C
parameters have a slower convergence than the A and B
parameters (Isermann, 1980a).

Although an approximation to the nonrecursive maximum
likelihood was utilized, the matrix inversion is retained
therefore the comments of Chapter & are also valid in this
case.

From a computational point of view changing from
Marquardt-Levenberg to Gauss-Newton means that the

convergence is less robust.



5.8 Recursive Box-Jenkins algorithm
Although the nonrecursive Box-Jenkins algorithm may use
numerical derivatives, this is impractical for a recursive
algorithm. For the recursive case analytical derivatives are
used. The Box-Jenkins model is
yt = %Ugan + %gt * B

The derivatives for this model are

alt ED
oa. EA Uy

1

E% ut‘!-l

g

3
"
Il
)

ki

hE E
T C

kI3

The second derivatives not involving ¢, or 4, are zero, the

remaining sggané derivatives are

e, B
%, ?

ab, 5&5 ®cia Uerin
2%

- ‘:!;'-j

3
d -
]
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1
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[ 1
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325! £
azfz 1
5 Ei' 53; = T urn-r;
Ezet B 1
SEI 5 3,, = ﬁ E:-x'j
azfz 1
a;étf 1
53 533 =T
recall Equation 4.12
- N - - ] 2.
: -~ 0de., Qe = 9%¢
0 Tt t L t
20, 06, " . B9 38, T L 38, 09,

. h st o LA . -
¢, is not correlated with the second order derivatives,
therefore the second summation will tend to zero. Neglecting
this term yields ,
N
3 - de, de
A;—i; i y __t t
30, 06, " L 36, 39,

g=1 ! 1

As vas obtained for the recursive maximum likelihood (c.f.

Equation 5.10)

é E T
Ve (é %) (58
- (L E_
vJ (d e)E
defining the following filtered quantities
uiin = ?:% Ueoy
ui., = % uéi;
‘t:gf:igugﬂ—gp
- g Y. - B “Li - % [
N I
¢ " C ¢



the derivative can

values

defining

then

The remainder of

Vp =

T
Snn =

VI =

V =

nn

1+ £ g
- l.'
nn

1 +Z ¢
jmt

d E,
-3
[-uz-u' O U:-., eee, €
nan
1+% q
isl ]

"N
1+Z ¢
ist

- VuE
Va¥x

recursive maximum likelihood giving

with

Kyer =
Pyor =

O.u -

Cuey =

P.s.ol
1+ S rPube:
Py = KyorSue1Py

0, * Ko e,

Yuer ":ﬁol

t

-el
LT

the derivation is the same as for the
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Although the algorithm of Sherif and Liu, 1984 was derived
in an extended Kalman filter context, their algorithm is

eguivalent to the recursive Box-Jenkins algorithm,

5.9 Conclusion
following general recursive form

60y = 6+ Kooy €,
where 6., is the new parameter vector, 6 is the old
parameter vector, K ,, is the gain vector which involves the
inverse of a matrix and e,, is the prediction error. These
values are defined by the algorithm chosen.

All of the algorithms are close approximations to their
nonrecursive counterparts. The approximations are the result
of initial conditions and/or combining an iterative step
with a recursive step in order to retain the computer memory
advantage of the recursion., The recursive algorithms
converge to the same values as their nonrecursive equivalent
when the effect of initial conditions vanishes. Therefore
numerical accuracy is expected to be similar to that of the
nonrecursive algorithms unless the initial transients lead
to additional numerical accuracy difficulties.

Since the required initial values are usually unknown,
the wveighted least squares algorithm is generally preferred
to the least squares algorithm so that the initial effects
may be attenuated by a proper choice of the weighting

seqguence.



95

Nonrecursive algorithms usually perform better than
recursive algorithms for short sequences since the effect of
initial values will remain relatively important for short
sequences. With large data records, recursive algorithms are
more appealing since their computer memory requirements are
smaller than those of the nonrecursive algorithms.

Some characteristic of the different recursive
algorithms, not related to numerical accuracy, are presented
in Table 5.1. The remarks regarding the nonrecursive
algorithms discussed in Chapter 4 also apply to the

recursive version of the algorithms.
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TABLE 5.1

Some properties of the recursive algorithms

Parameter
estimation
method

Remarks

RLS

a priorf factors: initial parameter estimates,
initial P matrix
Reliable convergence

RWLS

a priori factors: initial parameter estimates,
initial P matrix, forgetting factor formulation
Convergence depends on forgetting factor

RELS

Close to RML but convergence less reliable

RGLS

a priori factors: 2 sets of initial parameter
estimates, 2 initial P matrices, noise filter
order

RIV

a priori factors: initial parameter estimates,
initial P matrix and possibly the instrumental
matrix

No reliable convergence therefore start with RLS

a priori factors: initial parameter estimates,
initial P matrix

Slow convergence in starting phase
Convergence more reliable than RELS

RBJ

Same as RML except for the model
Slower convergence than RML




6. Practical aspects in process identification

6.1 Introduction

Many practical aspects in process identification must
be considered if a satisfactory model is to be identified.
These include outliers, initial conditions and forgetting
factors for recursive algorithms, time delay and model order
estimation, quantization and round-off errors, feedback
(closed loop), type of input signal, sampling interval,

identification time (run length) and validation criteria.

Brief comments on these aspects follow with references.

Additional and more detailed information on the practical

aspects in process identification are provided in Appendices

A, B and C. Only the round-off effects, principally due to

the inversion of the P matrix, are investigated in the

remainder of the thesis, For further discussion of practical
£i

aspects of process identification see Isermann, 1980a.

Outliers can be most easily detected by plots of
residuals. Astrom, 1981 suggests that residuals that are
larger than three standard deviations be discarded. Other
possibilities are to replace the outliers by the maximum
permissible values, by the mean, by filtering or by any
other scheme that would give an estimate of the expected
value of the outlier. It should be noted that these "fixes"

may bias the parameter estimates and the only "true”®

wm‘
-y
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golution is to discard the outliers and not use those data

points in the parameter estimation,.

6.3 Time delays and model orders

Time delays and model orders can be estimated through
correlation analysis (Appendix C, Box and Jenkins, '97¢),
The adequacy of models of different orders can be compared
based on certain statistics (Appendix B). Crosscorrelation

of the input and residuals can be used to detect a

yste

m
faulty time delay estimate (Astrom, 1981),

6.4 Quantization and round-off

Round-off (numerical accuracy) effects can be minimized
through proper coding of the variables and numerical
enhancement methods such as those studied in the remainder
of this thesis. The importance of quantization can be seen
by the example of rounding values to the nearest integer
which can introduce oscillatory behavior (Astrom and

Eykhoff, 1971).
6.5 Feedback or closed loop

the system input and residual (Astrom, 1981). Closed loop
systems must meet the identifiability conditions (Isermann,
1980b). An example of a Box-Jenkins model for a system in

which an external signal was used is presented in Box and



99

identification can be found in Aude and Sandoz, 1986. Baur
and Unbehauen, 1979 have used the instrumental variable
method with an extra signal as the instrument to replace the
input. They showed that the instrumental variable method
does not work very well even with the extra signal but its

performance would be better if the controller were known.

6.6 Choice of input signal

Although optimal input signal designs are available
(Goodwin and Sin, 1984), they reguire the a priori knowledge
of the model (which is usually not available). Some other
input signals are conducive to good identification
regardless of the underlying plant model. An introduction to

the field of input signal design is presented in Appendix A.

6.7 Sampling interval

I1f the underlying process is continuous, changing the
sampling interval will change the value of the parameters of
the discretized model and may help or hinder identification.
In certain circumstances, identification may be blamed for
controller problems when in fact identification is not at
fault (Appendix A).

Another problem linked to the choice of sampling
interval is the phenomenon of aliasing. This occurs when a
high frequency signal is sampled too slowvly and appears as a

low frequency signal (Appendix A). This can be avoided by a
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not all the sampled data points are used but only every nth

point is used then a prefilter based on the original sampled
data should be used to remove the high frequencies that the

nth sampled system cannot model (change in cut-oft

frequency).

6.8 Identification time

The length of the identification period depends largely
on the input signal and on the signal to noise ratio. The
experiment must be long enough so that all pertinent

information about the process is collected (Appendix A).

6.9 Validation criteria

The model can be tested by crossvalidation, that is, by
testing the estimated model using a different data set.
Standard deviations and the parameter correlation matrix can
be used to determine if some parameters should be removed.
Crosscorrelation between inputs and residuals may indicate a
feedback path or a erroneous delay estimate. Comparison
between collected data and simulated output can also be used
as a validation criterion., The residuals can be tested for
vhiteness (Appendix C). Finally several statistics are

available to measure the adequacy of the model (Appendix B).
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6.10 Conclusion

Although only the round-off (numerical accuracy)
effects are examined in the remainder of this thesis many
other practical aspects in process identification must be
considered if a satisfactory model is to be identified.
These include outliers, initial conditions and forgetting
factors for recursive algorithms, time delay and model order
estimation, quantization errors, feedback (closed loop),
type of input signal, sampling interval, identification time
(run length) and validation criteria,

Brief comments on these aspects were presented.
Additional and more detailed information on the practical
aspects in process identification are available in

Appendices A, B and C and through the references cited.



7. Effect of the Magnitude of the Elements of a Matrix on

its Condition Number

7.1 Introduction

In Chapters 4 and 5 it was argued that the numerical
accuracy of the various algorithms can generally be linked
to the numerical accuracy of the least squares algorithm, In
the sequel only the numerical accuracy of the least squares
algorithm will be examined in detail,

Using the standard approach to the numerical analysis
of the solution of a set of equations (which is well known
in the literature e.g. Lawson and Hanson, 1974, Forsythe et
al., 1977) it can be shown that the numerical accuracy of
least squares is inversely proportional to the condition
number of the P matrix., However, this type of analysis,
known as perturbation analysis, does not consider the effect
of the magnitude of specific elements of the matrix on its
condition number.

This chapter extends the results of perturbation
analysis by examining the effect of the magnitude of
specific elements of the P matrix on its condition number.
This analysis will be useful for developing and assessing
techniques employed to reduce the condition number of the P
matrix. These technigues are examined in the following
chapters.

Various matrix factorizations are reviewved and are

shown to provide similar numerical conditioning benefits.

102
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Finally, two theorems on the effet of coding (scaling each
variable) and the choice of input signal for first and
higher order systems are presented. Significant insight into
the application of the least squares algorithm is developed

from these two theorems.

7.2 Use of the condition number as a measure of numerical

accuracy

There are two factors that will influence the condition
number of a matrix: the ratio of the diagonal elements and
the ratio of the off-diagonal elements of the matrix. The
ratio of diagonal elements refers to the range of magnitudes
of the diagonal elements of the P matrix vhile the ratio of
the off-diagonal elements relates to their magnitude with
respect to diagonal elements. It should be noted that, by
construction, the P matrix cannot have an off-diagonal
element larger than the largest diagonal element on the same
row or column.

The numerical sensitivity of the calculation of the
matrix inverse due to the ratio of diagonal elements is
problem dependent and generalizations using the condition
number are not possible in this case. But, since a vector
multiplication follows the matrix inversion in the least
squares problem the ratio of diagonal elements should be as
close to unity as possible, for better numerical accuracy.

For properly ratioed problems (for the purpose of this

vork, 8 properly ratioed matrix is defined as a matrix for
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which the ratio of the diagonal elements is close tc unity)
the condition number, x, provides a quantitative measure of
the computational difficulty that can be expected. For
example if x(A) is 10" then the solution of a linear system
computed in t-digit (decimal) arithmetic (e.g. 6 digits for
single precision) will have no more than t-k accurate

figures (Dongarra et al., 1979).

7.3 Effect of the ratio of the off-diagonal elements on the
condition number

In this section, the effect of the ratio of the
off-diagonal elements on the condition number is examined.
The results of this section will be used in latter chapters
to stress the importance of selecting an appropriate method
to manipulate the off-diagonal elements.

Let A be a symmetric matrix of order n and E be a
symmetric matrix of the same order with a single pair of
nonzero elements and zeros on the diagonal. Let the value of
the nonzero elements be a. The eigenvalues of E are -a, a
and n-2 eigenvalues of 0. Using the property (e.g. see Golub
and Van Loan, 1983)

A(A) + A (E) < A (A+E) s N\ (A) + )\ (E)

vhere A, is the kth largest eigenvalue then

A (A+E) S )\, (A) + X (E)

A (A+E) 2 A (A) + A (E)

The condition number can be expressed as (Dennis and

Schnabel, 1983)
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A, (A+E)

k.(A+E) = ;:T;:ET

A (A) + A (E)
A (A) + A (E)

k. (A+E) <

(A+E) s () ¢ la] (7.1)
- ‘. [ I}
“ARE) = TR - e

Unfortunately this provides only an upperbound on the

condition number. For the special case of A =1 (i.e. for
the ideal case)

k.(A+E) = } > :
This ratio can be thought of as a first order Pade
approximation to e’* ., This implies that as the off-diagonal
terms increase in magnitude, the condition number will
increase at an approximately exponential rate. Table 7.1
gives the condition number as a function of a for A being
the identity matrix.

TABLE 7.1

Condition number as a function of the
magnitude of the off-diagonal element a

Condition Condition
a number a number
0.0 1.0 0.6 4.0
0.1 1.22 0.7 5.67
0.2 1.58 0.8 9.0
0.3 1.86 0.9 19.0
0.4 2.33 0.95 39.0
0.5 3.0 0.99 199.0
1.0 [
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7.4 Combined effect of several off-diagonal elements on the
condition number

The results obtained in this section will provide the
motivation (in latter chapters) for the methods used to
reduce the condition number when off-diagonal elements are
present.,

The case of several pairs of elements can be addressed
by applying Inequality 7.!' to each peir in succession giving
A (A) + Za |
A, (A) - Z|a,|
This implies that the upperbound of x(A+E) follows an

k(A + ZE ) s

approximately multiple exponential rate. Although the
upperbound can be much larger than the condit.on number
itgself it nonetheless points tc an exponential trend.

The combined effect of several off-diagonal elements

3 matrix

™R -
- -
-t TRy

with

10

|a] 1

18] s 1

Iyl s 1
Determining the eigenvalues of this matrix analytically is
rather involved so to avoid this difficulty the following
relationship between 3 x 3 matrix norms is used (Dennis and

Schnabel, 1983)
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3HAL s Ak s 3T
vhere ||A|l. is the maximum row sum of absolute values,
Applying this relationship to the condition number of a 3 x
3 matrix gives

Tk (A) € Kk (A) S 3k,(A)
From this it can be concluded that a, B and y will have a
similar effect on «_(A) and on k,(A). The inverse of the
matrix A, needed to calculate « (- is given by
1=y yB-a ay-8,

A :é yB-a 1-8° aB-vy
2

ay-Bf af-y 1-a

where A = 1 - a®> - g2 - y* + 2aBy. The condition number can

be expressed as ?
1+|a|+|8] | 1=y*|+|yB-a|+|ay-B|
k(M) = 37 max{1+|a|+|y| max{ |vB-a|+|1-8"|+|ag=y]| (7.2)

o S
118117l lay-B|+|aB-y|+| 1-a’|

The first expression in the first bracket may be assumed to
be the maximum value of the first bracket without loss of
generality since the result will be symmetric with respect
to the variables (i.e. a, B and y may be interchanged and
the condition number will remain unchanged).

Assuming that the first expression of the first bracket

is maximum implies that

I8l 2 |v]| (7.3)
la] 2 |v] (7.4)

The maximum expression of the second bracket is determined
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by the greater of

| 1=y*| + |ay-B8] *+ |yB-a] (7.5)
|1-8%| + |aB-y| + |yB-a| (7.6)
|1-a%| + |ay-B] + |af-v]| (7.7)

Expression 7.5 will now be shown to be larger than

Expression 7.7 will produce similar results due to the

symmetry between Expression 7.6 and Expression 7,7 and

Inequalities 7.3 and 7.4 with respect to the parameters a

and B. The comparison can therefore be reduced to comparing
|1=v*| + lay-8| and |1-§°| + |ap-v|

Inequality 7.3 combined with |B8| < 1 gives

s 2 ;,
| 1=y"| 2 |1-87|

lay-8] 2 |aB-v|
Since both sides of the inequality are positive Juantities
the ineqguality can be squared giving

(ay=B)? - (ap-y)? 2 0

(a’~1)(y*-p") 2 0 (7.8)
Since |a|] < 1, it follows from Inequality 7.3 that

second bracket in Expression 7.2 is thus the maximum rov sum
of the inverse of the matrix A so the condition number is
given by

x.(A) = 3 (1+]a|+|8]) (|1-y'|+|yB-a|+|ay-B])  (7.9)

with the following restrictions
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la| <1
|81
lv] < |a]
vl s |8l
A>0

M
sl

This last ineguality states that the determinant is positive
(a requirement for positive definite matrices). From the
symmetry involved in the calculation of the condition
number, a, B and y can be interchanged to satisfy the

inequalities.
Minimum condition number

In this section the condition number as expressed by
Equation 7.9 is examined to determine if a minimum can occur
by cancelling effects of the off-diagonal elements or if a
minimum occurs only when the off-diagonal elements are zero.
To simplify the analysis, the lower bound on the
condition number is examined. First, the last two positive

terms of the numerator of the condition number are neglected

giving

(1 + la] + 18D
1-a‘~p°-y +2aBy

Then |a| and || are replaced by their lower bound, |y|, in

k_(A) 2

the positive terms of the numerator and the negative terms
of the denominator so that the lower bound on the condition

number may be expressed as 7
(A) 2 CO1+2]y D (1=y")
KB 1 -39 +2aBy




10

Closer examination of the denominator reveals that
1 -3y +2aBy s 1 -3y +2 |aBy]
and since |a] < 1 and |B] < 1
1 =3¢y +2aBy <1 =34 +«2 |yl
the lower bound on the condition number can be written as
({%ngli(i-y‘)
1+ 2|y] - 3y

This bound can also be expressed as
(1*?]1]){j-|7|)(1*|7|?

IR T

k. (A) =

which can be simplified to .
1 + 3ly]| + 2y
K’(A) = s e *;lj*!* —
1+ 3y
The minimum of the lower bound on the condition number is

unity when y is zero. For any other value of y the lower
bound on the condition number will be greater than unity and
therefore the condition number will not be minimum since the
minimum is unity in this case. Since the minimum condition
number will occur only for y=0 then the condition number at

the minimum is reduced to

*

(1 + |a] + |B])’
K.(A) = 77’7§ g; — B;

for which the minimum occurs only if a and B are zero. It

thus follows that the minimum condition number occurs only
vhen there are no off-diagonal elements and the existence of
off-diagonal elements cannot compensate or interact to

cancel the effect of each other on the condition number.
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Increase of the condition number with several off-diagonal

elements

It is instructive to consider the increase in the condition
number for the special case of y = 0 which allows the
condition number to be expressed as
(1+|a|+]|8)])°

1-a°-8°
From this expression it follows that any nonzero

Kk (A) =

off-diagonal component (recall that a, B and y can be
interchanged for the condition number) will tend to increase
the condition number approximately exponentially as the
magnitude of the off-diagonal components increase.
Furthermore the combined effect on the condition number of
more than one off-diagonal component will become larger than
the sum of the individual effects as the magnitude of the
off-diagonal elements increases. It can be seen from
Equation 7.10 that the condition number increases as a’ + §°
approaches unity which is more restrictive than a’ or 52
approaching unity. This latter restriction can be
interpreted as a square that circumscribes the circle
defined by a’ + 8’ = 1, The area enclosed by the square is
larger than that enclosed within the circle with the
difference between the two areas representing the added

) restriction due to the "interaction" between the
oft—&iaganal terms. This is depicted in Pigure 7.1 vhere the

"interaction” is the portion outside the circle. The smaller
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faster rate with several off-diagonal elements as compared

to a single off-diagonal element,

Fig. 7.1 Restricted area produced by the combination
of two off-diagonal elements

It should be noted that singularity (x, = =) can occur
for an infinite number of cases (any point on this circle)
even vhen the value of one off-diagonal element (y) is zero.
This is in contrast to the pair of points that can generate
singularity when a single off-diagonal element is present.
This remark stresses the fact that ill-conditioned matrices
are not a rare occurrence and conditions for the existence

of singularity are not as strict as commonly perceived.

7.5 Matrix factorizations
In the numerical analysis field the usual method used
to enhance conditioning of a matrix is through matrix

factorization. In this section the relationship between some



113

of these factorization methods and the condition number is

presented for completeness. An extensive analysis of these

factorization methods is available elsewhere (e.g. Dongarra
et al., 1979, Bierman, 1977). Analysis of the round-off

error propagation has been examined by Verhaegen, 1989.

7.5.1 Square root factorization

In this section, the relationship between the condition
number of the P matrix and the condition number of its
square root is presented. The condition number chosen is «,.

ky(P) = P[P},
= [max A(P)] [max A(P'))
This last equality is valid since P is a positive definite
symmetric matrix. The square root of the matrix P is defined
as
P=Q7Q
vhere Q is usually a square nonsymmetric matrix. The
factorization is not unigue unless a special form of the
matrix Q, such as lower triangular, is assumed. The lower
triangular factorization is known as the Cholesky
decomposition (Bierman, 1977). The norm of a general matrix
Q is (Dennis and Schnabel, 1983)
101, = (max A(Q"Q))"?
(max A(P))'"?
el = (el

For the norm of Q' the relationship A(Q'Q) = A (QQ") for Q

square and nonsingular is utilized. This relationship can be
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shown by using the prcperty that similarity transformations
do not affect the eigenvalues (Golub and van Loan, 1983)
giving
AQ'Q) = A(QRTQQ™)
= A (QQ")
Since the norm of Q' is

o1
e

(max A Q70" "))'"?
then
(max M(Q'Q™)) "

R
e ',
',
[ P

If Q is chosen to be square it will be nonsingular if P is

(max A((Q"Q) 'M)"?

(max (P '))'7?
(k"""

nonsingular and the condition number of Q is thus
k,(Q) Hok.He'I,
k(Q) = (JPh)"* (JP7') )"
K, (Q) = (x,(P))'?

So use of Q instead of P will reduce the approximately

exponential increase of the condition number, as the ratio

of the off-diagonal elements increases, to one half th; rate

7.5.2 U-D factorization

Another form of factorization that is widely used is
the U-D factorization proposed by Bierman, 1977. The main
advantage of the U-D factorization is that it eliminates the

need to calculate sguare roots.



115

The U-D factorization of P is
p = UDU’
where U is an upper triangular matrix with unity values on
its diagonal and D is a diagonal matrix., This can also be

written as

By setting

the U-D factorization can be thought of as a form of square

root factorization where Q is chosen to be lower triangular,

The norm of Q' is
1970, = (max A(QQ"))'?

(max A(Q7@))'"*

iel.

and since the norm of its inverse is
IQ‘TIZ = IQﬂI:

it follows that the condition number can be expressed as

x,(UD"?) = x,(Q)
= (x,(P))"?
g U or D individually are not

=
=
]
u‘
g |
Lad
=
=
o
”
[ ]
[
et
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']
mw
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w
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7.5.3 Singular value decomposition

The singular value decomposition (SVD) is a powerful
numerical analysis tool that also provides factorization
(Klema and Laub, 1980, Dongarra et al., 1979). In the

context of process identification, the singular value
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decomposition is usually applied to the P matrix giving
P = UIV’

where U and V are orthonormal matrices and L is a diagonal
matrix (Dongarra et al., 1979). Since orthonormal matrices
and their inverse do not affect the 1, norm, the norm of P
and P'' can be expressed as

el = IZ].

L PRI P

K (P) = 2,17},
k,(Z)

Another decomposition, although seldom employed in the
identification literature but preferred in the numerical
analysis literature (see Dongarra et al., 1979), is

A = ULV,
The matrix P is expressed as a2 function of this matrix A

(e.g. ¥ for least squares)

8
P= (ATA)"
= ( VAEAUZUAZAvi) o
Since U, is an orthonormal matrix U'U is equal to the
identity matrix, this reduces the expression for the matrix

P to

by
]

(v,Zivh™

o5 T 2457
The norm of P and P’ can be expressed as
IPL: = 1200
L et .
'L = 1T,
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Since L, is diagonal, the square can be taken out of the
norm and the condition number of P can be expressed as

K (P) = T2, I3

= (k,(Z))°

The singular value decomposition of A has the same numerical
conditioning advantage as the sguare root decomposition of P
with the added benefit of dealing with the condition of a
diagonal matrix as opposed to a (normally) triangular
matrix.

Unfortunately, SVD is partly iterative. This implies
that the computational load is large and that it cannot
easily be implemented in a recursive form. Since SVD does
not offer better numerical conditioning than square root
factorization but simply concentrates the conditioning in a
diagonal matrix, the square root factorizations are usually

preferred.

7.5.4 QR factorization

In practice, the orthogonal QR factorization is
computationally cheaper and frequently is just as reliable
as SVD unless one explicitly needs V (Klems and Laub, 1980).
The mechanics of the QR factorization are explained in
Appendix D. The method corresponds to solving an
overdetermined set of linear equations expressed as

Ax = b

vhere A is a knovwn matrix (¢ for least sQuares); x is a

vector of unknowns to be determined (6 for least squares);
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and b a known vector (Y for least squares). The matrix A can
be triangularized by the orthogonal transformation matrix Q
giving

QAx = Qb

Rx| = |1,

with the solution for x being R 'n, (usually performed
through backsubstitution). It should be noted that this
matrix is different from the square root factor matrix Q
presented previously, the symbolism used in this section is
conform to the symbolism used in the literature. If the
matrix P is defined as (ATA)™', since Q'Q = QQ" = I, it can
be written as

= (ATQ'QA) "'

b
\

((A)T(QA))™
= (R'R)"
The QR decomposition can therefore be interpreted as a

square root factorization of P i.e. the condition number
is

k,(P7') = x,(P)

= (k,(R))’

The similarity between factorizing P’ through the QR
factorization, giving R, and factorizing P through the
square root factorization, giving Q, can also be observed
from the fact that the recursive versions of the QR

factorization and the sqguare root factorization share the
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same update algorithm (see Dongarra et al., 1979) so x,(R)
is the same as «,(Q). The recursive update of R has the
benefit of being able to keep track of the sum of squares of
residuals which is necessary for the determination of
confidence bands on the parameters.

For singular systems, some parameters may be set to
zero during the backsubstitution, This cannot be achieved
may be started with R = 0. This implies that the recursive
solution for the QR factorization is exactly the same as for
the batch solution without any bias (P,'=0). The square root
anl Q would need to be infinity to produce exactly the same
results as in the batch case.

It should be noted that since R and the square root
factor Q are triangular, singularity may be checked by
inspection of the diagonal elements. If one or more elements
of the diagonal is zero (near zero in practice) then the

system is singular.

7.6 1llustration of the effect of a reconstructed P matrix
and U-D factorization on identification using a
simulated second order system

The recursive least squares (RLS), reconstructed P

matrix recursive least squares (RPRLS) and RLS with U-D

factorization (RUD) algorithms are compared to observe the

effect of numerical enhancement strategies on the condition
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number of the parameter correlation matrix (a scaled P
matrix in which the main diagonal is unity)., In the RPRLS
algorithm the matrix P is decomposed using the Cholesky
decomposition and then recomposed at each recursion to
ensure symmetry (Sripada and Fisher, 1987). For this example
the second order system presented in Section 7.8 and sampled

the second order system are presented in Figures 7.2 and

7.3.

Inpuat

40000

Second order system
MI4)

Fig. 7.2 Input signal used for simulation of the
second order system

The parameter estimates for T,=0.2 using RLS are

a, = - 1,75 ¢ 0,05
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[ T 1 1

2‘6 00 32000 40000

L T
000 8000 160 00
Time

Second order system

M
Fig. 7.3 OugSLt signal generated by simulation of the
second order system

a, = 0,75 ¢ 0.05

b, = 0.,0025 ¢+ 0.0009

b, = 0.0025 £ 0.0009
The parameter estimates using RPRLS and RUD were the same as
those obtained with RLS. The parameter correlation matrix of
RPRLS is flmost identical to that of RLS with variations in
the fourth digit only. There is therefore minimal advantage
to ensuring symmetry without propagating the square root.
Rounding at three digits, the lower triangular part of the
parameter correlation matrix obtained using the RLS and

RPRLS algorithms was found to be
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a. 1.000
a. -0.997 1,000

b, 0.049 -0.054 1.000

b, 0.173 =0.177 0,019 1,000

The condition number for this parameter correlation matrix
is 786, Use of the RUD algorithm resulted in the following
parameter correlation matrix

a, 1.000

a, -0.990 1,000

b, 0.046 -0.052 1.000

b, 0.175 =0.180 0.019 1,000
The condition number of this matrix is 205. The numerical
accuracy of this simulation has therefore been significartly

improved by the proper use of a factorization method.

7.7 Examination of the condition number of a first order
plus fractional time delay system
The results of this section can be summarized by the

Theorem 1: Under the following assumptions (1-4), the P

matrix of the least squares algorithm for a discretized

first order system will exhibit a condition number less than

9.

Assumpt ion 1: Discretization is obtained using a zero order
hold
Assumpt lon 2: The mean of the input and output signals is
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zero and their variance is unity
Assumpt ion 3: The sampling period is less than %T, where
is the time constant

Assumpt ion 4: u, is uncorrelated with past u's

Proof: The first order system can be described as

-{{(n+a)Tsis

K e
rs + 1

vhere Ts is the sampling period, n is the integer part of
the time delay (multiple of the sampling period), A is the
fractional part of the time delay (i.e. a fraction of the
sampling period), K is the steady state gain and 7 is the
time constant. Under Assumption 1, the discretized model is
described by

Y. = “8,¥.., * bu,.,, * bu._, e (7.11)
where

~-Ts
a, = - e /1

b, = K(1 - ™)

b, = K(e™™" - & T")
m=1-4
n = discretized time delay
T, = sampling period
¢, = model residuals (noise)
Squaring both sides of Equation 7.11, using Assumption 4 and

taking expectations gives
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Ely;) = aiElyi.,] + bE[ul....] + bIE[u]...,) -
2a,b,b,Elu;_,..] + o°

where o’ is the variance of the noise. Use of Assumption 2

¥

1 =al + b} +Db-2abb, +o (7.12)
Noting that the sign of b, is the same as the sign cf b_,
all terms on the right hand side of Equation 7.12 are
positive hence
1 >al + bl
and under Assumption 3
|a,| > 0.6

2

therefore b, < 0.64 or equivalently |b,| < 0.8. For this

model the inverse of the P matrix is

= 2 7 3 - s
Y- LY Uearon TLYe-1Yelang
—_— e . . o
P = ~LY,-1Ugorop Lu,_., ZU,. -pUg-2ep
. .. 2
’Eyggluggggﬂ ;ut;r_ﬁugiz-n ;utiéén

Since u,.,., and u,.,, are assumed to be uncorrelated and
E[Y§=\j - E[uthn] = E[‘Ji!;—n] =1

under Assumption 2, the expected value of P' is given by

= -

L]
1
_‘P-‘

E(P') = N 0 1 0

vhere N is the total number of points. From this expression

the condition number is found to be
iy 1 + |b,| ,
k., (E[P ']) = = — (7.13)
? 1 - |by]

The values of the condition number as a function of b, are




the same as those presented in Table 7.1 considering a as
the b, value. It follows that for |b,| < 0.8 the condition

number will be less than 9, This completes the proof.

Corollary: Including a constant parameter in the discrete
model will not significantly increase the condition number
since under Assumption 2 the mean of the input and output
signal is zero. This can be seen by inspection sirce
introducing the constant parameter will introduce a row and
column of zeros except for the diagonal element which has
the same expected value as the other diagonal elements (i.e.

1),

Remark 1: The resulting effect of violating Assumption 4 on
the maximum condition number is undetermined i.e. case
specific for correlations of less than 0.8 between u,, and
u,., but for values larger than 0.8 the condition number
increases approximately exponentially as the correlation
increases. The reason for this is that cross-terms must be
added to Equation 7.12 which reduces the maximum possible
value of b,. The correlation also appears as extra
off-diagonal terms in E[P']. Until the correlation between
U,., and u,_, is larger than the maximum value of b,
previously obtained (i.e. 0.8) the net effect on the
condition number is uncertain. Beyond this value the
cross-correlation term dominates the off-diagonal terms and

an approximately exponential increase can be expected.



126

Remark 2: The implication of Remark 1 is that if u is a
step (high correlation) then the numerical accuracy will be
lower than that of a square wave input (medium correlation)

or that of a PRBS (negligible correlation).

Remark 3: 1f the fractional part of the delay is zero, the
b, parameter will be zero and the P matrix may be reduced to
a 2 x 2 matrix which will have a condition number of unity
under Assumption 2. Thecrem ! is still valid if a 3 x 3 P

matrix is retained.

Remark 4: Assumption 2 implies that the input and output
signals have been suitably coded i.e. such that their mean
is zero and their variance is unity. The effect of violating
this assumption limits the applicability of the use of the
condition number as a measure of numerical accuracy (effect
of diagonal elements preventing generalizations using the
condition number) and can decrease the numerical accuracy of
the calculation of 6 e.g. in the computation of +'Y (due the

possibility of adding small and large numbers).

Remark 5: The integer part of the delay does not influence

system,

Remark 6: Assumption 3 is not restrictive as data are

sampled faster than twice per time constant to satisfy the
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Nyquist (Shannon) sampling frequency theorem (In most cases

L <

I
2 < 2).

Remark 7: 1n practice, the first order plus time delay model
is probably the most widely used model for modelling
chemical processes (Stephanopoulos, 1984) as the first order
plus time delay model is adequate to approximate the dynamic
behavior of most high order systems. This emphasizes the
relevance of Theorem 1,
To illustrate the results of Theorem 1, a first order

system with

m= 0.5

K= 2,97

T,/t = 0.25

giving the discretized model

a, = - 0,7788

b, = 0.3490

b, = 0.3080
vas simulated using the PITSA program developed for this
thesis (described in Appendix G). A noise generator seed
number of 345 was employed to produce a noise variance of
0.01, These particular parameters were chosen so that
scaling would not be required and that Equation 7,12 would
apply. A PRBS sequence (described in Appendix A) of unity
amplitude using a maximum length sequence of order 6 was
selected as the input signal and used to generate 300

input/output data points. The input and output signals are
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depicted in Figures 7.4 and 7.5. The sample mean of the
input is 0.0 and the standard deviation is 1,00, The sample
mean of the output is 0.05 and the standard deviation is

0.97 so the system is well scaled and coding is not

required.
§ Y
3
a.
&
{
I
! ! e
000 8000 16000 24000 32000 40000
Time
First order system
M1(4)
Fig. 7.4

Input signal used for simulation of the first
order system

The following parameter estimates were obtained using the
nonrecursive least squares algorithm in the PITSA program
a, = - 0,782 + 0.006
b, = 0,355 ¢ 0.006
b, = 0.314 ¢ 0.006
The parameter correlation matrix is a scaled form of the P

matrix where the scaling is chosen to provide unity diagonal
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Output

T T T T

v T 1
000 80.00 160.00 240.00 320 00 400 00
Time

First order system

Mi(4 . , ]
Fig. 7.5 OngLt signal generated by simulation of the
first order system

elements. Although the condition number of the parameter
correlation matrix is not necessarily the same as the
condition number of the P matrix, the scaling can be
neglected in this case as the diagonal elements of the P
matrix are of the same magnitude through the appropriate
choice of model parameters. The lower triangular portion of
the parameter correlation matrix provided by the PITSA

program vas

a, 1.000
b, - 0.039 1.000
bz 0.331 - 0.007 10000

Por this example, the theoretical value of the P matrix can

be expressed as
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- \ 7 b
| by 1-b,

P' = E(P) = 5 o 1 0
Dy —u
s I-b

so the lower triangular part o: the theoretical parameter

correlation matrix is

a, 1.000
b, 0.000 1,000
b, 0.349  0.000 1,000

It can be seen that the values of the parameter correlation
matrix elements found by simulation using the PITSA program
are in close agreement with the theoretical values. The
condition number of the parameter correlation matrix,

obtained by simulation, has the very low value of 2,

7.8 Examination of the condition number of a system of order
larger than unity
The results of this section can be summarized by the

following theorem and remarks:

Theorem 2: A discretized system of order larger than unity
may exhibit a P matrix with a large condition number even
under Assumptions 1-4 (where, for a system of order larger
than unity, r in Assumption 3 may be interpreted as the

dominant time constant of the system).

Proof: The possible existence of a large condition number
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follows from the fact that for high order systems the P
matrix involves the off-diagonal element I y,.,y,., which
increases as T, decreases i.e. for higher order systems the
condition number is a function of the sampling period. As
shown in Section 7.3 an increase in the magnitude of the
of{-diagonal element will lead to a larger condition number.

As shown in Section 7.4 this increase of the condition

>

number cannot be prevented by any means other than reducing
dependance of the condition number on the sampling period
cannot be avoided or controlled.

The increase of the magnitude of the off-diagonal
element as the sampling freguency increases can be shown as

follows:

The derivative of the output at time t can be approximated
by

Ay o YT Yo

7& § — ?-, -
multiplying both sides by y,, summing for t = 1 to N, and

rearanging gives

o e 2 )

LY Yer LIy, - T LY Jt
From this equstion it can be seen that as T, decreases
Z y,¥.., (or equivalently L y,.,y,.,) approaches L y;. As
£ ¥..\Y..; approaches I y! the condition number increases at an
approximately exponential rate (c.f. Section 7.3). Therefore
large condition numbers, even under Asumptions 1-4 are

possible. This concludes the proof.



132

Remark 8: The condition number of a high order system
increases at an approximately exponential rate as the
sampling period decreases since y,., and y,.. exhibit stronger

correlation (Zy, y... approaches L yf).

Remark 9: Theorem 2 stresses the fact that good coding is
and that numerical methods, such as those presented in
Section 7.5 are still required. However numerical methods
cannot reduce the condition number as effectively as is
possible by adequate coding for ill-conditioning due to an
undesirable ratio of the magnitude of the matrix elements so
both coding and factorization are required for high order

systems.

Remark 10: 1t %E} = 0 for the entire identification time
period then Z y,..,¥,.; = L yi and the system is singular, as
expected. If the input is a step then I y, g% is relatively
small thus Ly, ,y,., is close to Ly, and the system is
ill-conditioned. This is in addition to the effect observed
in Remack 2. The effect of the input signal is further
explored in Appendix A where the topic of the choice of

Remark 11: The importance of the existence of off-diagonal
elements, especially for high order systems, does not appear

to have been appreciated in the recent literature. This is
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typified by the fact that Sripada and Fisher, 1987 suggest
that the condition number of the P matrix can be used as a
measure of persistency of excitation. This is not the case
since the condition number depends on the sampling period
for high order systems. For example, identification using a
PRBS signal, which is known to be persistently exciting,
will produce a large condition number for a second order
system with high frequency sampling (c.f. Remark 8) as shown

in Table 7.2.

Remark 12: The correlation between parameters of a second
order system may also be explained by the following. The
continuous second order system has three degrees of freedom
(K, 7,, 7,) but its discrete representation has four degrees
of freedom (a,, a,, b,, b,). A change in the sampling period
will change the values of the parameters of the discrete
model representation of the system but obviously does not
affect the actual dynamics of the system other than for the
filtering effect on the signals that takes place due to the
Shannon frequency sampling rule (Appendix A). The sampling
period therefore cannot be considered as an extra degree of
freedom of the continuous system. The discrepancy in the
number of degrees of freedom appears as correlation between
parameters.

To illustrate Theorem 2 and Remark 11 the following

second order system is used
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Discretization with a zero order hold, using the MATLAB
function S22 given in Appendix F, for K=1.0, r =10.0, r.=
yields the model parameters shown in Table 7.2, The
corresponding condition number of the parameter correlation
matrix obtained from the nonrecursive least squares
identification using the PITSA program (with coding .o give
zero mean and unity variance) is also given in Table 7.2,

For this simulation the input signal was the same PRBS
noise variance of 10°°.
TABLE 7.2

Parameters and condition number as a
function of the sampling period

T,20,2 | T,=1.0 |T,=10.0
] ' |

 a, -1.9891 -1.8949 |-1.7989|-1.2727|-0.3679
a, 0.9891 0.8958 | 0.8025|0.3329| 0.0

b, 0.4982x407%]0.4821x107°] 0.0019 | 0.0355 | 0.5913

b, 0.4963x10™° | 0,4648x107° | 0.0017 | 0.0247 | 0,0408
condition ) . o B
number 66692 3422 521 108 | 5225

The decrease in the condition number with increasing

sampling period is explained by the fact that off-diagonal

elements of the parameter correlation matrix are functions
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will therefore affect the condition number of the parameter
correlation matrix. If the sampling period is too long
(T,=10.0), the condition number increases because dynamical
information is lost leading to a degenerate system.

1f the sampling period is chosen to be 0.2 (1/5th of
the smaller time constant) the lower triangular part of the
parameter correlation matrix using the least squares
algorithm, with coded input and output values (c.f. Section

10.9), is calculated to be

a, 1.000
a, -0.996 1.000

b, 0.046 =-0.054 1.000

b, 0.172 -0.178 0.022 1.000

This would suggest that a, be removed and a first order
system with partial time delay be estimated. For an
overdamped second order system it is therefore numerically
preferable to identify a first order system with partial
time delay, perhaps using a longer sampling period and
removing the unmodelled dynamics through a low pass filter,
than estimating four parameters. This confirms the heuristic
rule used by practitioners which is to remove "a" parameters

rather than "b" parameters vhen reducing the model order.

7.9 Conclusion
In this chapter two new theorems were presented stating
that a first order system with uncorrelated input signal and

a sampling period selected to obey the Shannon sampling
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theorem can always be made well conditioned by ensuring that
the input and output mean and variance are zero and unity
respectively. This is not necessarily true for a system of
order larger than unity as correlation between elements of
the regressor is usually present. These correlations depend
on the model parameters which themselves depend on the
sampling period. The implication is that the conditicn
number of the P matrix will grow approximately exponentially
as the sampling period is decreased. This prevents the use
of the condition number as a measure of persistency of
excitation such as proposed by Sripada and Fisher, 1987.

These results also imply that both factorization and
coding are necessary to improve numerical conditioning of
high order systems.

It was observed that a step input produces a condition
number larger than a square wave or PRBS input if there is
more than one b parameter in the model., This is even more
applicable to any high (greater than unity) order system
since the choice of input signal will affect more
off-diagonals terms.

Reconstructing the matrix P in the RPRLS algorithm
(through Cholesky decomposition and then multiplication to
ensure positiveness and symmetry) did not provide any
significant improvements over the recursive least squares
(RLS) algorithm for the simulated example. Improvements from
reconstruction will occur only in cases of very

ill-conditioned systems since the only advantage is that the



matrix P is guaranteed to be positive and symmetric.
Utilization of the RUD (UD factorization) algorithm did
provide a significant reduction in the condition number over
RLS and RPRLS. The parameter estimates are similar for the
three algorithms used because the condition number of 786
obtained for RLS is not high enough to affect parameter
estimates significantly for the low number of input/output
data points used.

The condition number of the P matrix was found to have
an approximately exponential dependance on the magnitude of
the off-diagonal elements relative to magnitude of the
diagonal elements. Also, a combination of several
off-diagonal elements accelerates the increase in the
condition number of a 3x3 matrix due to "interactions”
created by combining more than one effect. Unfortunately
results for a general matrix is not available but the trend
should hold true for higher order matrices based on the
examination of the upper bound of the condition number.

As shown, factorizing the P matrix was found useful in
reducing the condition number. The square root
factorizations were found to provide similar numerical
enhancements as the SVD decomposition and require fever

computations. It vas also demonstrated that the U-D

factorization in which no square root computations are

required.
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The results shown do not appear to have been expressly
addressed in the published literature due to the focus on
the perturbation analysis of the complete matrix rather than

focusing on the effect of specific matrix elements,



8. Removing the Constant (Bias) Parameter to Reduce the

Condition Number

8.1 Introduction

As shown in Chapters 4 and 5, the more common process
identification algorithms involve a matrix inversion to
7 it was demonstrated that better numerical conditioning can
be obtained by reducing the magnitude of the off-diagonal
elements of the P matrix. In this chapter, the removal of
the constant (bias) parameter to reduce the condition number
of the P matrix is examined.

The motivation to remove the constant parameter is
partly based on the following relationship for square
symmetric matrices (Golub and Van Loan, 1983)

Na(AL) s A (A) s A (AL) s o0 S A (A) 5 A(AL)
vhere A\, is the ith largest eigenvalue and A, is the leading

number for square symmetric matrices that
A (A)

k2 (A) = =0
and
xs(A,.,) M (A
%2Wher) = N
therefore

:;(qu,‘) z ‘;(Af)
i.e. removing a rov and a column in A may decrease the

condition number.

139
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This can be achieved by removing one parameter from the
model. An obvious choice is to remove the constant parameter
since it only contains steady state information.

Motivation to properly remove the constant parameter
can also be illustrated using the least squares
identification algorithm introduced in Chapter 4. The least
squares model is (the delay, k, is omitted without loss of
generality, c.f. Remark 5)

Y. = - &y, - 8Y,: +es = &Y,., * bu,._, +
bau,.; «.. * bu._ + B8+ ¢ (8.1)

For N points, the inverse of the P matrix is

- . -
Iy “LYe-1¥e-z v TLYeUee TIYUp eee mEY,

P-1 = ézyt_‘ut§1 ‘zyt;zutgj . \n - zuii‘ Zut,‘u!,g [ Zut-|
“Z¥,- Iy, ... Ly, Zu,, ... LI

where the summations are from 1 to N and vhere Zi=N,

It was shown in Chapter 7 that off-diagonal elements
have an approximately exponential effect on the condition
number and that a combination of off-diagonal elements
cannot reduce the condition number. To reduce the condition
number of P*' therefore requires that the number of nonzero
off-diagonal elements be as small as possible. This can be
achieved vith

L¥¢-r = ¥z ® eoo = LU, =Ly, = .. =0
which states that the sample mean of the input and output

numerical properties also requires that
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San = ZYi; = ... = Lu,., = Zu;; = ... = I
wvhich simply states that the variance of the input/output
data should be unity.

Astrom, 1983 stated that "The least sqguares estimation
is poorly conditioned for high signal to noise ratios. It is
particularly harmful if estimation is based on signals which
have a high superimposed dc level". The first sentence,
which seems to be contrary to normal intuition, should be
interpreted in the light of the second to mean that
if the data is nonzero mean,

Astrom, 1983 also stated that "all estimation methods

correlations betvween parameters since these correlations
appear in the P matrix as off-diagonal elements.

Prom the preceding discussion it is clear that to
numerically enhance computations the mean of the input and
output should be removed. Similar results may be obtained by
removing the constant term, 8, by substitution. This has the
added advantage of reducing the rank of the P matrix by one
and this reduction will improve the numerical robustness by
avoiding computation of quantities that are known to be zero
ss well as reducing computation time.

It should be noted that in the presentation that
follovs methods that introduce a significant bias in the

parameter estimates are considered to be unacceptable. A
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bias is also generally obtained if the number of parameters
of the model is reduced by simply excluding B from the
model. Even though a parameter is removed when substitution
is utilized, there is implicitly one more parameter than if
B is simply ignored. Therefore the substitution method
should be expected to be able to predict the output of the
system more accurately than the exclusion method (i.e.
ignoring B) although the latter may still provide reasonable
predictions in some cases.

Several methods have been proposed to remove the
constant term B (also known as the bias or DC value). The
most common methods of removing the constant term are
(Isermann, 1982)

i. deviation from the expected mean

ii. deviation from the sample mean (averaging)

iii. deviation from a single time equation (e.g. set
point and predicted steady state values; or initial
values)

iv. deviation from previous values (incremental)

V. deviation from filtered values (high pass filter)
These methods are a form of subtracting an equation or a set
of equations from the equation at time t. Each single
equation used must be a member of the set of linear
equations describing the system at time t i.e. for time
varying systems there is the added restriction that the
equation or set of equations used must be close in time.

Since these methods are used to eliminate B as a parameter,
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the following conditions must be met
N -

Zy =0

‘N

I u =0

tul

where  denotes deviation variables.

8.2 Deviation from the expected mean
This is not a practical choice as the expected mean is
unknown and the sample mean may not be the same as the
expected mean for short sequences. For example
Yo = 9 Y, + €, (8.2)
with ¢, = N(0,1), may have long excursions to one side of
the expected mean (zero in this case). A simulation (termed
a "realization" in the time series literature) of Eguation
8.2 for 120 points is shown in Figure 8.1, For this example,
é_‘:' 9; is not zero and the calculated mean for these 120
points is 0.14 so a bias, 8, is present. The variance of the

mean can be calculated using (Box and Jenkins, 1976)
2

VAR(Y,) = ;(—1-&‘—);-
The variance of the noise was unity so that the variance of
the mean is 0.833 or a standard deviation of 0.913. This
deviation is large enough to produce a significant bias., It
should also be noted that using a forgetting factor will not
help as the wvindov is shifted in time so that the bias will
oscillate about zero. Since the wvindow usually covers a

short time duration the bias will likely be larger than if

all the points were used without a forgetting factor.
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Fig. 8.1 Output y, versus time for the system
Y. = ‘gytél toe,

8.3 Deviation from the sample mean

Defining the sample mean as

A . ,
Yy = §'l§‘ Ye-, (8.3)
- N )

u = % L u.,., (8.4)

wvhere the unity delay in u accounts for tihe fact that the
current control action is not available (estimation occurs
before control action). Summing Egquation 8.1 from t=1 to N

and dividing N gives

L B A O S
N o Y- © W o Yo T 8y 2 Ve e
1 ¥ 1 X
T 8N E, Yien-u by E‘ Yparey
R - T 10
* b’;‘i i% Ugezey eee * bﬁﬁ 1}::1 Ue-m-,
N
+ = ‘E, €., *h (8.5

Subtracting Equation
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Equations 8.3 and 8.4 gives
- - 1 -
Yo - F = - oy m¥r glYemYen)) - ap(yesty
1 -
+ E(Y:-1‘Y:-:-Y1-N-'-Yt-n-2)) see T an(Yt-n-y

n

Z (¥,,"Yen-,)) * by, ,=0) + b.(u,,-U

+

d
N 1=
+ -&(u,.;-u‘-,‘_,)) eee * byu,_.-u
1 § 1 X
*N ;§2 (Ue,"Upep-y)) * e = N E‘ €y

or in terms of deviation variables

Yo = T 8,¥er T azi:-z eoe T 8pY¢en + b‘ul" + bzu;—z
- n
b + brutﬂr = ;} ng a) ‘%‘ (Yt—x-yr-ﬂ-a’
N
i (ut-i-ut'l-l) + € - Nl z €:-,

] 182 is)

b
Jl
A bias still remains due to inappropriate sample mean values

+

z'—- .

(summation terms on the right hand side) and colored noise.
In both cases the bias will be reduced as N increases. It
should be noted that if a large step change is introduced,
y,., may be very different from y,.,., and this may lead to a
large bias.

It is sufficient to ensure that the input and output
signals be in the range of -1 to 1 (so that the summation
grows slower than N) to prevent a large bias. This aspect
vill be examined later when coding is considered.

It should be noted that using

§egk Iy,
instead of

AN
does not remove the bias, it only shifts the values used to
calculate the bias. It should also be noted that the biss is

seldom observed in simulations due to the cyclic nature of
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the input signals that are commonly used (PRBS, sine wave,
square wave, sawtooth wave, etc.) and the fact that the
number of points chosen, N, is usually a multiple of the
number of points describing a single cycle. For N chosen in
such a manner, the value of y, ., is close or is equal to the
value of y..,., (the calculated values are in the same
position in the cycle). Therefore the bias is usually not
observed because of the type of input signal that was
employed for the simulation,

Since a bias remains when removing the sample mean, a
slight modification seems appropriate to at least remove one
source of bias. This can be accomplished by using a running

mean, defined as
[
L ¥y

imt

Z u,.
iel t=3

¥, =

u, =

Z|— Z)—-

so that

N

E‘ Y.-io,
N

Z u,.,.,

ie1

Subtracting Equation 8.5 from Equation 8.1 using the running

ir,-‘ s

Upoy

Xl &l

means gives
(y,-¥,.) = - 8,(y,.,=¥.-)) = 8,(¥,3=¥e2) oo
- 8,(¥.p=¥e-n) * by (U, =0,.,) + blu,_,-u,.,)
oo +BUB) + e - f E oo, (8.6)
One source of bias remains, namely colored noise, but the
bias will decrease as N increases vwith the bias eventually

becoming negligible.



8.4 Deviation from a single time equation

Deviation from a single time equation means that an
equation at a given reference time (e.g. steady state values
or a specific equation fixed in time) is subtracted from the
equation at the current time, t, in order to remove the bias
term., It should be noted that if the parameters are time
variant then the single time equation values cannot be used
if those values are "too old" as they will not obey the
current set of linear time invariant equations describing
the system, (The parameters are assumed to be time invariant
for the N points used in the least squares estimation.) Let

the reference equation be

Yo = = 8,Yeur = 8;¥.0; 00 = 8,¥,, * by,
+ bUp; eoe * DU, * €, *+ B (8.7)
Subtracting Equation .7 from Equation 8.1 gives
Yeo¥e = = 8 (Y, 1"Yeey) = 83(¥,0=Ye2) oo

- 8,(¥,-nYe-n) * by(u,my,.,) + bylu,.;-u,_;)

eee * b(u._,=u,,) * €, = ¢,
The bias in the parameters due to colored noise vwas
demonstrated tc be (c.f. fhaptir 4)

6 = (¢7) '¢'E

vhere @ is the bias in the parameters. In general, for the
bias to be zero requires that ®'E be zero. ¢'E for deviation

variables may be vritten as



148

[ N = - 7

= .

= yf"’lff’;

{8

H = =

Z| Yooo-.6-,

1=
ViT'Q ‘H! = ¥ =
VE = - Ye-n-i€e-,

;H,

N - -

z, Uiy €y

1ei

N - -

; Upa-, €y,

i=1

.
N sg =
: uﬁ‘ﬁ“lftil
L 1! 4

¢, and using
Yeor = Y-t T Yo

¢, = ¢, - ¢,

the expected value of the first element of *E is
ElY,r €] = “Bly,.,..e,
Ely,...,¢,] = - a,E[y,.,.,e,] - a,BEly,.,.,e.) ...
- 8,El¥ep-iie0) - 0
I1f ¢, is an old value, relative to the current time, this
substitution can be carried one step further giving
E[§gih‘¢.] = -0l + a0l ¢+ alBly, ;e * ...
The magnitude of the bias will thus depend on the plant
parameters and on the amplitude of the noise. Since plant
parameters and noise level are not “"controllable®, the bias
cannot be reduced as for the sample mean,
It is to be noted that setting y, to the set point and
using the predicted steady state value for u, also
corresponds to a deviation from a single time equation. In

this case, ¢, is still an error term but for future times
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giving
Eli:-'-;‘ol & - Of
It should be noted that the bias is only a function of the

noise level in this case.

8.5 Deviation from previous values (incremental)

Although a single time equation is removed, this
approach differs from that considered in Section 8.4 in that
the equation removed is changed in time rather than be fixed
in time. The incremental approach may be generalized to the
k-incremental approach where the k th removed equation is
used instead of the preceding one. This is slightly more
general than the k-incremental approach of Clarke et al.,
1983 where k is taken as the process delay. In the variable
parameter case, attention should be given to the value of k
from the current time as to be part of a different set of
linear eguations describing the system. The t-k th equation
is

Yeer ™= 7 B\¥e-p-r T 83¥eop-z vee T Bp¥eok-n
+ buiy * biUpyog e *huU .t e+ B
(8.8)
Subtracting Equation 8.8 from Equation 8.1 gives
Yeo¥e-r ® = 81 (¥ Yeorer) = 8(¥ea=Yeopa) oo
= 8,(¥en=Ye-uen) * Dylupymuey)
+ by(u,,=Upoyea) oo ¢ Bulumu,,) * e



E[yt-iﬁnét-’;] == E[}'t"*iit’!’l]
If k=1 then

5
_ =

Ely,..,¢,.,) = 0
This value of k represents the usual incremental case, For
this case there is a bias which is directly proportional to
the variance of the noise. This explains why the incremental
approach is sensitive to process noise (Vermeer, 1987). If
k=2 then

Ely, . ¢.2,] = - 8.E[y,., €.5.,]

= - a,0°

For a stable process E[y, . ¢, ,.,] will tend to zero as k
becomes larger than the asymptotic memory length of the
system (i.e. choose k such that the influence of ¢, ., on

Y¢-1-; i8 minimal). The last term involving the output in the

. ] - = oo - -
bias vector is I y., e, which will vanish as k becomes
is )

(i.e. n).
Since in the variable parameter case it is usually

assumed that the parameters change much slower than the

dynamics of the system using k = n + the asymptotic memory
length should not result in using a reference equation that
is a member of a different set of linear equations (which

would introduce another form of bias).
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8.6 Deviation from filtered values
This method is similar to using the running sample mean
except that the mean, estimated through low pass filtering,
is expressed as
Yo = MY ¢ (1-0))y, (8.9)
U, = Au,., + (1=2))u, (8,10)
wvhere A\, is the filter parameter which may be time varying.
The deviation variables obtained using this method can
also be thought of as the output of a high pass filter. For
example, the output deviation variable is
Yo = ¥ - ¥,
Using Equation 8.9 this can be written as
Yo = ¥ = ANFer - (150D,
or
Yo = MY, = AFeor (8.11)
Using Equation 8.9 to substitute for y,., leads to
Yo " AYe - AN + (1A )y,)
or
Yo = AYe = Ad¥eer = Moy (¥erFona))
Using Equation 8.11 at time t-1 to eliminate ¥., gives
Yo = A(¥e = Yeor) * Ao
vhich can be written as
(1-a,q™ ")y, = A (1-q"")y,
This is the same expression as that of a high pass filter

be thought of as a lov pass filter operating on incremental

data (Foley, 1988).
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The use of a low pass filter to estimate the mean makes
the comparison of the sets of egquations tedious but this
comparison can be approximated to the running mean method by
a suitable choice of N, the sample length, in the running
mean method. This approximation can be justified by
considering y, as the weighted least squares solution for
the mean of y,. The cost function to minimize for the
estimation of the mean at time t based on N past data points
is

£ t N - 2
J, !1—%—: ji,[;'ul? (y, = y.)

minimizing J, with respect to y, gives

184 3 oA, -gf‘ N A, and defining this guantity as vy,

int=N jmis} I feg-M-1 geier
then the following can be obtained

= 3 - _ 1 _ t
Yo = Me¥er ® ;[Y:'}Al.ljyr-ﬂ]
For N sufficiently large, y is equal to the asymptotic
length and the second term in the bracket vanishes giving
= 5 = o 1 _
Yo = MY * YN0
Furthermore if A(:) is constant or A(:) has a small range of

values the asymptotic length may be approximated by

giving
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which is the same expression as Equation 8.9.

Use of the filtering method can therefore be
approximated by a running mean method in which the sample
length is equal to the asymptotical length (N = y).

Using the asymptotical length to approximate the

filter, the filtered values can be expressed as

- 1

y, = ? E‘ Yeou
= 1 X
u =3 E| U,

so the result of subtracting Ejuation 8.5 from Equation 8.1
using the filtered values may be approximated by Eqguation
8.6 with N replaced by v.

As for the case where the sample mean is removed, one

decrease as y increases vitn the bias eventually becoming
negligible when y is sufficiently large. This implies that
the choice of the filter constant should be limited to
values close to unity.

It a different filter constant is used for y, and U,
then there will be a bias as the desired eguation is now
obtained by subtracting Equation 8.5 with N=y (the
asymptotic length of the output filter) and subtracting
Equation 8.5 with Nsy, (asymptotic length of the input
filter) from Equation 8.1 giving

(.~F.) = - 8,(¥,.1=F)) = 8;(¥e=Fea) o0

8, (¥eo=Feen) * BylumU,) + byly, o -u,.,)
cer * b(u ) * e, - ¥ oo,
» Tt Yy im

) f: lg‘ et iif‘;‘ ¢ ‘;f:a: sss * ‘-f:—n
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mot-m

where y. signifies y, calculated with the input filter and u!
signifies u, calculated with the output filter. As can be

observed from Equation 8.12 use of different filtering

—
[
» wal
*

constants introduces a bias in the parameter estimates
the terms after ¢ ).

1f the system parameters change then it will take y
terms before all the values used to calculate the mean no
longer obey the "old" equations, Then and only then will the
estimation algorithm, with its own asymptotical length,
start to "forget" the filtered quantities that are partly or
totally calculated with the old equations, It is the sum of
the tvo asymptotical lengths that determines wvhen the effect
of the values governed by the old equations on the estimated
parameters is negligible, Before the effect of the old
equations is totally removed there will be a bias in the
parameters as the effective set of equations is incompatible
(recall that the set of equations is assumed to have

constant parameters).

8.7 Conclusion

To reduce the condition number of the P matrix the
number of nonzero off-diagonal elements must be minimized.
One method to achieve this is to remove the constant (bias)
parameter by substitution of one or more equations. This has
the added advantage of reducing the rank of the P matrix by

one.
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A result that has not been found in the published
literature is that the sensitivity to noise of the
k-incremental approach can be minimized if k is chosen to be
length of the system.

Analysis of the use of different filters for the input
and output signals as proposed by Sripada and Fisher, 1987
revealed that the use of different filters for the input and
output signals introduces an unnecessary bias in the
estimates and therefore should be avoided.

The use of the expected mean is not recommended as the

expected mean can be significantly different from the sample

effect of the variance cannot be attenuated through a larger
number of data points as for the running mean. Deviation
from filtered values vas shown to be asymptotically

equivalent to the running mean.



9. Scaling to Reduce the Condition Number

9.1 Introduction

For the purposes of this chapter, scaling is defined as
an operation on a matrix to change the magnitude of its
elements. Scaling of individual input and output data points
before the matrix is formed will be termed coding to avoid
any confusion. Coding is the topic of the next chapter.

It is a misconception that conditioning of the matrix P
through the use of a scaling matrix will provide better
numerical accuracy in the least squares identification. This
is also reported by Dongarra et al., 1979 where they state
that "scaling of the form DAD [SPS in the following) will
not change to any great extent the accuracy of solutions
computed from positive definite routines”. This stems from
the fact that the system of equations that is solved is

06 = &7Y (9.1)
and not

0 = Y (9.2)

Although Equations 9.1 and 9.2 appear to be of the same
form, scaling Equation 9.2 will improve numerical
conditioning vhile scaling Equation 9.1 will not. Equation
9.2 can be suitably scaled by premultiplication by the
scaling matrix, S, on each side of the equation, If this
operation was applied to Bquation 9.1 to scale ¢' then & on
the left hand side cannot be scaled. Even postmultiplication

would not help as this operation scales & and not ¢.

156
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Alternatively if the scaling matrix is designed to scale ¢'¢
then it is not suitable for &' on the right hand side of the
egquation and no numerical advantage is gained. It is to be
noted that using §S between ¢'¢ and 6 will not help either
as poor scaling is only shifted and is therefore not

adequately handled,

9.2 Detailed analysis of scaling

The fact that Equation 9.1 cannot be numerically
improved by scaling can be demonstrated by analyzing the
scaling proposed by Sripada and Fisher, 1987. In fact the
proposed scaling method of Sripada and Fisher, 1987 leads
only to more computations subject to (possibly) more errors.
This can be demonstrated by comparing the computations
involved in the update of P,(t) and 6,(t) versus the update
of P(t) and 6(t). The notation is that of Sripada and
Fisher, 1987 with 6,(t) introduced to differentiate the
update of the parameter vector with scaling, 6,(t), and

without scaling, 6(t).

9.2.1 P update
The scaled covariance matrix and the normalized and
scaled regressor vector used for the update of the
covariance matrix are (Sripada and Fisher, 1987)
Pg(t-1) = S(t=1)P(t-1)S(t~1) (9.3)
$as(t) = S(t=1)""g,(t) (9.4)



Equation 9.4 represents the value of ¢ . (t) used in the
update of P.(t) since S(t) is not available yet. Dropping,
for convenience, the time arguments and remembering that
matrices P and S are available at time t-1 and X and ¢ are
available at time t allows the expression for updating the

covariance matrix to be written as

-

E: ¢ns¢’ns ]Ps
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noting that ($°')" = §™' and replacing P; and ¢, using

Equations 9.3 and 9.4 gives

p §-E§ ‘(SPES ¢¢S SPS
A Ax*os SPSS ¢,

p' = s(E - (——fﬁP“P )1s
) A AT+ 9P,
P' = S(t-1)P(t)S(t-1)

This demonstrates that the actual update of P(t) is
numerically independent of scaling provided SPSSqi%i:S”SPS
and ¢S 'SPSS™'¢, are numerically equivalent to SP¢,e.PS and
#.P¢, respectively. Examining the ij th element of
SPSS™'e,#75 'SPS which is the i th element of SPSS’'e,
multiplied by the j th element of ¢'S 'SPS gives

|z s,Pusighe., .] |

[z .. s, PS,) = 8 [EPus][zenip] s, (9.9)

It should be noted that numerical accuracy is independent of
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the order in which the multiplications are performed (except

possibly for over and/or underflow) since there is no
additive term within the summations on the left hand side.
Numerical inaccuracy occurs most frequently when a small
number is added to & large number or if several numbers of
different magnitudes are added. Multiplication of a small
number by a large number does not lead to large rurerical
inaccuracies, e.g. 1000 x 0,001 x 0,009 is 0.009 in 6-digit
precision arithmetic regardless of the order in which the
multiplications are performed if floating point arithmetic
is used. However, the addition of 1000 + 0.001 0.009 is
1000.01 if added from right to left and 1000.00 if added
from left to right,

Since the numerical accuracy on each side of Equation
9.5 is the same, STSS ‘¢ 0.6 'SPS can be considered
numerically equivalent to SP¢,¢.PS.

Similarly, ¢.5 'SPSS’'e, can be written as

{5 ‘;: ’n.‘n's"':'sxpijs;%’n.j = % % L ILASLI

80 it follows that ¢7,P,e,, is numerically equivalent to ¢,Ps,
shoving that the update of P is not modified by scaling with

a diagonal matrix.

9.2.2 & update
The algorithm given by Sripada and Fisher, 1987 for the

Py(t) = S(t)P(t)S(t)
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P.s(t) = S(t) ‘o (t)

8(t) = 8(t-1) + S(t) 'P(t)eg(t) X
:yh(:)—é(t—1)*¢ﬁ(t)]
which can be rewritten as

A(t) = B(t=1) + FS(t)HS(E)P(t)S(t)E(t)”wn(L)] X

[y, (620 (=170, (1) ]
or as 7

Bt) = Blt-1) + P(z)¢n(;>[yﬁ(t)—é(z-1)*¢n(t)]
Again in this case scaling does not modify the calculations
provided that S(t) 'P;(t)¢,,(t) is numerically equivalent to
P(t)¢,(t). To see this, the calculation for the i th element
of the vector S(t) 'S(t)P(t)S(t)S(t) ‘e (t) is

%% 5,P,,S, %’n-i = %Ps:’m:

Therefore S(t) 'Py(t)e,(t) is numerically equivalent to
P(t)e,(t).

Again, the reason behind this equivalence is that for
multiplicative terms, as in this case, the order in which
the multiplications are performed is not important except
possibly to avoid under and overflow. The order in which the
operations are performed becomes i;pcrtane if additive and
multiplicative terms are involved e.g. if S was full or

triangular instead of being a diagonal matrix.

9.3 Illustration of the effect of scaling on identification
Since in the scaling algorithm (called SRLS in PITSA)
the matrix P is decomposed using the Cholesky decomposition

and recomposed (Sripada and Fisher, 1987) it cannot be
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compared directly to RLS. A version of RLS in which the
matrix P is reconstructed but not scaled (termed RPRLS)
permits a direct comparison with SRLS. It was found that
both SRLS and RPRLS gave the same results to the working
single precision of the Amdahl 5870 computer for the
simulation of the first and second order systems presented

in Chapter 7 thus validating the analysis of scaling.

9.4 Conclusion

It was shown that the original system of equations
(Equation 9.2) can advantageously be scaled but that the
normal equations (Equation 9,1) cannot be adequately be
scaled using a scaling matrix. In fact iealing the normal
equations only introduced more computations without any
numerical benefit. This was demonstrated by a nev detailed
analysis of the scaling proposed by Sripada and Fisher,
1987. The ineffectiveness of scaling was also observed in

simulations.



10. Coding to Reduce the Condition Number

10.1 Introduction

Klema and Laub, 1980 suggest that "columns of A [their
regressor matrix) be equilibrated such that the sum of their
elements be as nearly equal as possible. Exact powers of 16
for 1BM 360/370 machines should be used as scaling factors
80 that the data is not perturbed in trailing digits. Row
scaling will have the effect of introducing weights on the
data if one has a least squares problem and therefore should
be done at a user's discretion”. In the context of process
identification, column scaling ensures that the individual
input and output values are of the same magnitude. In this
work column scaling of the regressor is termed coding to
differentiate with matrix scaling discssed in the previous
chapter.

Coding is a somevhat arbitrary transformation of the
variables performed before the variables are used for
process identification. A well known example is that of
Series J of Box and Jenkins, 1976 for which the input signal
is coded through the transformation X'=0.6-0.04X. The
purpose of coding is to scale the input and output variables
usually in such a vay as to reduce the condition number of
the P matrix and therefore enhance the accuracy of the
computations. Since coding is performed before the P matrix
is formed, it is a simple and effective method of scaling

the entries of the matrix. The most common types of coding

162
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produce dimensionless variables rhat are also often centered
(e.g. with a value such as the mean). A dimensionless
variable is obtained by dividing the problem (physical)
variable by a characteristic value, Table 10.1 gives
examples of characteristic values and the resulting

transformations.
TABLE 10.1

Some typical coding characteristic values
and their corresponding transformations

Characteristic values | Transformation

- Zs
range, centered on z-z,
reference value, z, (e.g. T
steady state or mean) “pax” “min
range, one-sided and  z-z,,,
bounded by k z'me———— x k
=“! g!lﬂ
range, centered on 7 z-%
median, z 2'eg—"3— x k
WmERX THIN
stand;réiééviatian o _= )
(statistical g‘g%?i!
normalization) '
(non-zero) reference g'-gL
value, z, 4]

Since these methods do not attempt to remove the bias,
the constant parameter should be preserved in the model. The

transformation that will provide the lovest condition number
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is the transformation that produ-es Iz' closest to zero and
%E(z}): closest to unity where z' denotes the coded variable
(c.f. Section 8,1).

Once the parameters have been estimated, the model must
be used with coded variables. Output prediction is obtained
output using the inverse transformation.

For recursive identification, changing the coding
during identification should not be attempted as changing
the coding will produce an incompatible set of equations,
For example, assume that the regressor is composed of -y, ,,
u,., and unity so that there are three parameters, 6,=a,,
6.=b, and 6,=8, After a coding change by a factor a, the
regressor becomes -y,.,, au,., and unity. The three estimated
parameters based on this set of equations would then be
6,=a,, 5;!%5,3“5 6,=8, The estimated parameters are
different than in the first case because the underlying

The disti~~tive features of the different

transformations presented in Table 10.1 are now examined.

10.2 Median

This transformation cannot be used for a signal that is
symmetric and centered at zero since z ,=0 for this case. If
the original values are not centered at zero, then Iz' will

is therefore not recommended.
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10.3 Range, centered on a reference value

Assuming that z,,, and z,, are constant and examining
the expectation rather than the summation gives

1
Z;::z::(B[z]‘E[z.])

In this case, the better numerical conditioning will occur

E(z'] =

when

E(z) = E[z,]
Choosing z, as the mean or the steady state value in a
controlled environment will yield good results, It should be
noted that the steady state value may not be changed during
the identification period as this would change the coding
(c.f. earlier comments). If a change in reference is
desirable (e.g. if a step change in set point occurs) then

the parameters should also be modified to reflect the change

of transformation,

10.4 Range, one-sided

This case corresponds to the one of Section 10.3 in
wvhich z, is chosen as z,,,. In this case E(z]) » E[z,,] so
that E[z']) # 0. This implies that Zz' will increase as N

increases and therefore is not recommended.

10.5 Range, centered on median
For this transformation
L (e(z2)- z,)

8." -zli!l
This expectation will only tend to zero for symmetric

El(z'] =

distributions (e.g. for the normal distribution but not for



166

E(z'] = %(E[z]*i)
vhere z is the mean of z. This expectation will tend to zero
but the difficulty in the use of this transfcrmation is the

a priori determination of z and o.

10.7 Reference value

The reference value must be non-zero and since it is
usually chosen as the steady state or mean value then E[z')
will not be zero. This transformation is therefore not

recommended.

10.8 Summary of the methods

transformations are found suitable: range, centered on a
reference value; range, centered on the median; and standard
deviation. Unfortunately, analysis of the variance is not
possible without many simplifying (and somewhat unrealistic)
assumptions except in the case of the standard deviation
vhich is known to produce unity variance. A possible
modification for the range based transformations involves
the use of a multiple of the range as the characteristic
value in order to obtain a variance of unity. For instance,

if the range is approximately six standard deviations (three
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on each side of the mean) then using a characteristic value
of 1/6th of the range will give good results for the
variance of z' provided that the reference value (or median)
is close to the mean.

With this type of modification, range coding can be
interpreted as using a standard deviation transformation
where if the mean is not available it can be estimated by
the median for symmetric distributions or the mean can be
estimated by a reference value known to be close to the mean
such as the set point or steady state value for controlled
systems, If the variance is not available, it can be
estimated by a multiple of the range of the variable, if
known, For instance, if the variable follows the normal
distribution and the variable is within the range 99% of the
time, the range is equal to 5.20 so that using 1/5.2 of the
range as characteristic value will provide a variance close

to unity.

10.9 Illustration of the effect of coding on identification

using a simulated second order system

The second order system sampled at 0.2 time units
presented in Chapter 7 is used to demonstrate the effect of
coding the input/output dats on identification,

The sample mean of the input signal is calculated to be
0.00 and the standard deviation is 1,00, The computed sample
mean of the output signal is 0.15 and the standard deviation

is 0.20. This indicates that coding the output to remove the
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mean and amplification by a factor of 5 should reduce the
condition number of the P matrix,.

1f coding of the output is introduced by subtracting
0.15 and multiplying by 5, yielding a sample mean of -0.01
and a standard deviation of 0.99, the parameters obtained by

using the RLS identification algorithm in PITSA are found to

be
a, = - 1,77 # 0,05
a. = 0.78 ¢ 0.05
b, = 0.012 = 0.004

'
"

0.012 ¢+ C.004

It should be noted that the parameters in Table 5.2 differ
from the parameters obtained here since the parameters
obtained here are for use with the coded input and output
signals. The parameter correlation matrix for RLS with the

coded signals is

a, 1.000

a, -0.996 1.000

b, 0.046 -0.054 1.000

b, 0.172 -0.178 0.022 1.000

This matrix has a condition number of 521 which is less than
the condition number of 691 that would be obtained with RLS
and no coding. Por this simulated example coding did

significantly reduce the condition number.
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10.10 Conclusion

It was shown that in order to reduce the condition
number coding of the input and the output should be such
that Lz, is close to zero and that %2(2;)2 is close to unity

where z, is the coded signal. Although this result may seem

the field of process identification and control.

This type of coding is best achieved by statistical
normalization but if this is not a viable option it can also
be suitably approximated by using a fraction of the range to
approximate the variance and the median to approximate the
mean (7or symmetric distributions). The use of coding to

reduce the condition number was illustrated by simulation.



11, Normalization and its Role in Identification

11,1 Introduction

The concept of normalization as employed in system
identification and adaptive control applications is a
special form of coding where the (possibly time varying'
characteristic value ensures that the input and output data
are bounded (Ortega et al., 1985, Lozano-Leal and Goodwin,
1985). Normalization of the regressor has also been used by
Sripada and Fisher, 1987 in their proof of convergence of
the least squares identification algorithm, but, as shown by
Ljung and Soderstrom, 1983, normalization is not required
for proof of convergence of the least squares identification
algorithm.,

Use of the term normalization by these authors differs
In statistics, normalization means transforming a random
variable such that its probability distribution follows the
normal distribution with mean, u, and variance, o° (usually
the standard normal distribution i.e. w=0, o°=1),
Normalization in the present context signifies coding where
the coding factor at time t is chosen as a function of the
largest element of the (possibly augmented) regressor at
time t (e.g. Cluett et al., 1986). In all cases a lower
bound on the coding {actor is implemented to ensure

boundedness of the normalized values.

170



The negative effect of normalization on parameter
identification will be demonstrated. It will be shown that
normalization does not yield better numerical accuracy for
constant normalization factors. Through a simulated example,
it will be shown that alternatives to normalization can be
found for improving the robustness of an adaptive control
algorithm, No attempts are made to prove the stability of
the alternate methods presented. From this simulated example
it is concluded that normalization cannot be considered a
"necessary evil". The reader interested in alternatives to

normalization is referred to the work of Naik et al., 1992.

11.2 Relationship of normalization to weighted least squares
The effect of normalization on least squares
identification is investigated using the normalization
factor of Sripada and Fisher, 1987 given as
n(t) = max{1,Je(t)}.} (11.1)
For a plant, with time delay d, represented by the model

y(t) = o(£)70(t-1) + e(t)

6" = (a,, +0v 4 8,y by, +us, b,]
()T = (=¥, .1y eee v “Yiens Upeger v sos s Upgon)
the normalized model representation becomes
Yo(t) = ¢,(£)70(t-1) + ¢ (t)
wvhere y,(t), ¢ (t) and ¢, (t) are respectively y(t), e(t) and
o(t) divided by n(t). The least squares cost function for

the normalized values is thus
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J = I e.(t)
7{;’ n(t) )
= L wit)elt) (11.2)

The cost function representation of Equation 11.2 can be
interpreted as a weighted least squares with weights of

é—;ir. The net effect of normalization is to provide more

n(t)

weighting when there is little excitation ([¢(t)|. smal
and less weighting when excitation is large (|jo(t)] large).
However this approach represents precisely the action that
should be avoided for least squares identification. For a
constant magnitude of the noise, a large signal is
characterized by a high signal to noise ratio, resulting in
a more reliable parameter estimation but normalization will
negate this favorable situation, Similarly for a small
will amplify the effect of the noise. If the magnitude of
the noise is proportionsl to the signal then it may be
appropriate to normalize the data so that large errors are
weighted less. In this case the lower bound on the
normalizatior factor should reflect the expected level of
the noise for small signals, This aspect is not explored
further in this thesis.

For robustness, avoiding large parameter value updates
with large signals is desirable so that a sudden large
signal does not create large control actions that may

jeopardize the stability of the system. Yet for



overcome this dilemma is to use a deadzone or a P filter as
described in a subsequent section, Use of a deadzone puts a
lower and an uppe:r limit on the size of the update. In this
context, deadzone can be viewed as another form of weighting
where very large deviations and very small deviations have

less weight than medium deviations.

11.3 Effect of normalization on the least squares algorithm

In theory, both the weighted least squares and ordinary
least squares identification algorithms should estimate the
same parameter values asymptotically if the noise is white
i.e. random, zero mean and uncorrelated with past values.
This fact can easily be demonstrated for the batch case for
vhich the weighted least squares estimate is (c.f. Equation
4.8)

B = (¥TW0) ¥Twy (11.3)
where ¢ is a matrix containing present and past ¢'s, W is a
diagonal matrix containing the weights w(t) and Y is a

vector of past and present y's. For the actual system

described by
Y = %' + E
vhere 6' is the system parameter vector and E is the white
noise vector, Equation 11.3 can be expressed as
s = (97W0) '0TW0’ + (¢Twe) 'OTWE
or
g = 6° + (¥7We) '$HE (11.4)

Since E is uncorrelated with ¢ and W, the second term on the
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right hand side of Equation 11,4 will vanish and

fus = ¢ . The same is true for ordinary least squares as can
be shown Ly setting W equal to the identity matrix (c.f,
Section 4.1), If the noise is structured (i.e. correlated)
the parameter estimates from both algorithms will be biased
and the estimated parameters will be biased differently by
using ordinary least squares versus weighted least squares
identification,

The variance of the ordinary least sqguares parameters
is (1F¢)”§;% (e.g. see Draper and Smith, 1981) where N is
the number éf data points and p is the number of parameters,.
If E is a vector containing white noise terms with variance
o’ then the variance of the parameter vector for least
squares is

VAR(8,5) = (¢7#) "0’
and for weighted least squares

VAR(8,,) = (fwv)"% (11.5)
From Equations 11.4 and 11,5 it is concluded that
normalization has no effect on the asymptotical convergence
of the least squares estimates but since n(t) is a time
varying function no such statement can be made about the
variance of the parameters.
n(t)=n for all times, from Equation 11,3 it follows that

s = n""(t‘ﬂ"%}

or
(11.6)

) i

E
L0

&
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The variance of the weighted least squares estimates,
Equation 11,5, can be written for a constant normalization
factor as
VAR(f,¢) = nfw"“@)“;%af
so it follows that for a c@nstént normalization factor that
the variance of the estimates is identical to the variance
of the estimates for ordinary least squares, that is
VAR(6,,) = VAR(A ) (11,7)
This indicates that if n(t) is constant then normalization

does not affect the least squares identification algorithm,.

11.4 Effect of normalization on numerical accuracy

It has been stated (Sripada and Fisher, 1987) that
normalization improves numerical accuracy yet, as has been
shown in the previous section, no conclusion concerning the
structure of the variance of the parameters (therefore its
numerical accuracy) can be stated a prior! if n(t) is time
variant., Furthermore, there is no improvement in numerical
accuracy if n(t) is time invariant.

This can be demonstrated as follows. Ortega et al.,
1985 have shown that, for a controlled plant, n(t) is
bounded and therefore an upper bound on n(t) exists.
Consider that the input and output values are divided by
this upper bound (or equivalently that the input and output
values are coded such that the regressor norm is alvays less
than unity). It follows from Equations 11.6 and 11.7 that

the parameter estimates and their variances using constant
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normalization (n(t)=n=1 at all times for this case) will be
the same as for the ordinary least squares i.e. the same
calculations will be performed. Since the calculations are
not modified by normalization (n=1), the numerical accuracy
will not be affected i.e. normalization will not provide any
numerical improvement. It should be noted that the constant
normalization factor need not be unity but this value was
selected to maintain consistency with the normalization
factor used by Sripada and Fisher, 1987 (c.f. Equation

11.1).

11.5 1llustration of the effect of normalization on
identification using a simulated first order system
It was demonstrated that normalization reduces the

signal to noise ratio. To illustrate this fact, simulation

order system studied in Chapter 7 using the recursive least
squares (RLS) and the normalized recursive least squares
(NRLS) algorithms in PITSA. An initial covariance matrix
equal to the identity matrix was selected so that
convergence would be slow enough to distinguish between the
identification performance of the RLS and NRLS algorithms.
In practice a larger initial covariance matrix would be used
to compensate for the slower convergence of NRLS. This
compensation is not possible vhen used in conjunction with
adaptive control for time varying systems. The estimated

parameters using RLS for 300 input/output data points vere
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found to be

- 0,779 = 0.006

v
"

0.353 + 0.00e

o
"

0.313 + 0,006
and for NRLS
a, = - 0.77 = 0.01

A4
"

0.35 £ 0.01

b, = 0.32 ¢+ 0.0!
The slower convergence of the parameter estimates using the
NRLS algorithm is evident from the confidence bands for the
parameters and can also be observed by comparing Figures

11.1 and 11.2 and comparing Figures 11.3 and 11.4.
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11.6 Alternatives to normalization in adaptive control

Alternatives to normalization were sought as
normniization is not suited for use in conjunction with the
It is important to show that there are alternatives to
normalization and therefore normalization should not be
considered a necessary evil,

A heuristic description of the motivation behind the
use of normalization is presented in the next subsection
along with the rationale for the use of other methods to
enhance robustness. Following this, the results of Cluett et
al., 1986 are analyzed to ascertain the actual effect of
normalization and deadzone on identification and adaptive
control. It will be demonstrated, through an example, that
neither normalization nor deadzone are required to maintain
the stability of the adaptive control scheme that was

studied.

11.6.1 Improving robustness
Normalization as used by Ortega et al., 1985 in their

proof of the stability of an adaptive pole placement control
scheme is based on the key assumption of stabilizability of
the system. The stabilizability assumption requires that
there exist a controller (or a nonempty set of controliers)
vhich vill keep the regressor, ¢, bounded. Their proof of

tability reduces to analyzing the stability of the

s
difference between the response of the system using a
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stabilizing controller and the response of the system using
the adaptive controller, If the difference in behavior of
the two controllers is stable then the adaptive control
scheme is stable,

Assuming that controllers "close enough” to a
stabilizing controller are also stabilizing, i.e. stability
is a smooth function of the controller parameters, then the
fundamental factor in establishing a proof of stability
depends on the smoothness of the chznge of controller
parameters to avoid unstable behavior (i.e. the controller
parameters cannot move into a region where stabilization of
the process is no longer possible). This smoothness of
change of controller parameters implies slowing down the
adaptation of parameters used in the controller to a level
vhere the controller will be able to stabilize the process
at all times i.e. the updated controller parameters are
close enough to the previous values so that the updated
controller action is not different enough from the action
that the previous controller would have taken as to render
the system unstable. In other words, normalization is a
method to detune adaptive control by slowing down
(smoothing) the parameter update thus keeping the system
stable.

Use of smoothing to stabilize the controlled process
will be demonstrated, by simulation, for the following cases

i. normalization and deadzone,

ii. normalization,
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11i. deadzone,

iv, slowing down tne identification algorithm by
changing its tuning parameters,

v, filtering of the estimated process parameters
before utilization by the controller, and

vi, filtering the input/output regressor.

11.6.2 System model
The system and control algorithm selected to illustrate
alternatives to normalization to provide robust adaptive
control are identical to those used by Cluett et al., 1986.
Although the system was considered as the third order model
Y, = 0.620y,., - 0.0327y,., + 0.000431y,, +
0.234u,., + 0.185u,., + 0.00479y,., (11.8)
for control purposes, a first order model using the
projection algorithm of Goodwin and Sin, 1984 and a minimum
variance (one step ahead) controller were employed. The
projection algorithm, although not used elsewhere in this
thesis because of its slower convirgence compared to the
conventional least squares algorithm, is employed in this
section to conform to the work of Cluett et al., 1986. The
estimated model used by the controller is thus
Y. *= 8,¥,.-, * by, (11.9)
vith parameters a, and b, of this model updated using the
projection algorithm expressed as

a e, .
6, = 0, + ——y—I(y, - 0,6,.,) (11,10)

C + 9,0,
vhere
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6. = [a,, b,] (1r,1)

a, ¢ = projection algorithm tuning parameters
1f normalization is not employed then
¢, = [y,... u,..] (11,12)
and for the projection algorithm tuning parameters taken as
a=1, c=1, Cluett et al., 1986 have shown that the control
action will cause unstable system behavior unless the
control algorithm is modified.
that results in stable operation, the following
trancformations are performed (Cluett et al., 1986) and

identification is carried out with the transformed values

Y. = y./n, (11.13)
Yoo = Y.oi/0, (11.14)
Ur.y = U /N, (11.15)

with n, = max{t, |y, |, Ju |} for t-4 < i < t-1.

1f a deadzone is included (Martin-Sanchez et al.,
1984), the projection algorithm (Equation 11.10) is modified
to the following form ,
_8 Ve,
c + Ve,

by inclusion of the scalar quantity wfg The value of wi is

9, = 6,., * (y, = ¢:6,.,) (11.16)

determined by a criterion for stopping or continuing

parameter adaptation according to

i. if |y, - e10,.,] S 4, then ! = 0 (11.17)
ii. if |y, - #10,.,] > 4, then ¢} = ¥} (11.18)

iii, if 4, < |y, - ¢:6,.,] < 4, then
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201y, = ¢ | - a)

B =Ty, - 6.8, 1769, (11.19)

with .
Vieie,)A
Bl

2 + Vo0,

N
+

(11,20)

2(1 + Ulgle, A

T (11.21)

where wf is a lower boungd, wf is an upper bound and 0 1is an
estimate of an upper bound on the absolute value of the
modelling error. Following Cluett et al., 1986, the values
of v:, V. and A are taken as 0.1, 1.0 and 0.3759
respectively. The value of A represents twice the norm of
the unidentified parameter vector (from mismatch) when
normalization is performed. The control action is computed
as
u, = (y,, - a,y,)/b, (11.22)

vhere y,, is the desired set point.

Simulations were performed with the initial values of
the input signal, output signal and a, set to zero with b,

set to 1.0 to prevent division by zero.

11.6.3 Simulation results

Simulations were conducted using MATLAB (Moler et al.,
1986) by programming Eguations 11.8, 11,9, 11,11 to 11,22,
The results are plotted in Figures 11,5 to 11.8. The results
presented in part a) of Figures 11.5 and 11.6 show the
behavior reported by Cluett et al., 1986 when employing both

a deadzone and normalization.
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As can be seen from parts b) and c¢) of these figures,
the effect of a deadzone and’/or normalization is to slow
down the convergence of the identification algorithm. This
is readily observed from Figure 11.6 which shows that with a
deadzone the parameter values show virtually no adaptation
after the second change in set point, Although providing
stability, the effect of normalization is not as pronounced
as the effect of utilizing a deadzone. To produce a stable
algorithm without utilizing normalization, the deadzone was
enlarged to 1.6 times the deadzone used for the normalized
case. This increase was necessary because the error size is
larger if unnormalized. The value of 1.6 reflects the
scaling effect of the "average™ value of n,.

To test if the stability of the adaptive control
algorithm is linked to slowing down the convergence of the
identification algorithm, simulations were performed without
a deadzone and without normalization, First, the projection
algorithm tuning parameters vere changed to slow down the

convergence. In part a) of Figures 11.7 and 11.8 the "a"

multiplies the update gain of the algorithm (c.f. Equation
11.10), was set to 0.5 instead of the original value of 1.0
used by Cluett et al., 1986. The performance of the
projection algorithm using c=4 rather than c=1, which
reduces the gain of adaptation thus providing a slowver
convergence, is displayed in part b) of Figures 11.7 and

11.8.
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Another option for obtaining stable control is to
employ a low pass filter on the identified parameters before
their use in the control algorithm. Use of this filter,
called a P filter, has the advantage that the identification
is allowed to proceed at "normal speed” i.e. without having
to slow down the convergence of the identification
algorithm. Use of this approach allows the controller to
"keep up"” with the identification leading to stable system
behavior. Control using a P filter provides control
performance similar to that obtained from use of the control
algorithm with a deadzone as can be seen from part c¢) of
Figure 11.7. Furthermore, the estimated a, and b, parameters
change continuously in the P filter case as illustrated in

part ¢) of Figure 11,8, The parameters utilized by the

controller as a consequence of use of 1—On'.gaq“ as the P
filter are displayed in part d) of Figure 11,8, It should be
noted that the numerator value of 0.2 was selected to
maintain the unity gain of the filter.

A different filtering approach is to use the T filter.
This is a low pass filter used to filter the input/output
regressor before it is used in identification. The net
effect of this filter is to remove high frequencies which

translates into a slover convergence as some of the

1
1 - 0.95q
Figure 11.7 and part e¢) of Figure 11.8, This high filter

are presented in part 4) of

filter of the form

parameter value of -0.95 was necessary as the high frequency
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content is low and thus some of the medium frequencies must
be removed to slow down the convergence of the algorithm
enough to achieve stable behavior (the simulation was
performed without adding any noise).

It should be noted that no attempt was made to optimize
the tuning parameters of the identification algorithm or the
filter parameter values beyond finding values which provide
stable control. In all cases sensitivity of the results with
respect to the respective tuning parameter was relatively
low in the region giving stable control, For the T filter
this region was found to be rather small (minimum reasonable
choice being -0.95). A second order T filter may have lower
parameter values since the mismatch is of second order
(third order plant and first order model). In the case of P
or T filters, a possible option would be the use of a
variable parameter scheme to accelerate the initia) phase of
the adaptation where reliable parameter values are not
available. This aspect was not investigated as the purpose
of this work was to demonstrate that alternatives to
normalization do exist without establishing the best

alternative for this system.

11.7 Conclusion

Normalization (as used in the process identification
and control field) employed in conjunction with a least
squares identification algorithm has been shown to be

equivalent to a veighted least sguares identification
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algorithm in which the weights are adjusted to reduce the
signal to noise ratio (for a constant magnitude of the
noise). It is believed that this relationship has not been
exposed in the published literature., The signal to noise
ratio reduction is highly undesirable for identification
unless the magnitude of the noise increases with the
magnitude of the signal, Therefore normalization is not
recommended for use with least squares identification if the
magnitude of the noise does not depend on the magnitude of
the signal.

Normalization was found to have no effect on numerical
accuracy if the normalization factor is constant contrary to
the claims of Sripada and Fisher, 1987. The effect on the
numerical accuracy of the algorithm using a time variant
normalization factor cannot be predicted.

Provided the underlying assumptions are satisfied,
using normalization and a deadzone provide sufficient
conditions for establishing the stability of adaptive
control (Cluett et al., 1986) but these conditions were not
found necessary to ensure stability of the simulated
adaptive control scheme and therefore another method such as
one of the alternatives described could be substituted for
normalization.

Simulation results have shown that an alternate mode of
stabilization for control purposes can be either the use of
a deadzone or P filter (controller parameter filtering). Use

of normalization alone and use of the projection algorithm
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tuning parameters gave oscillatory responses. The first

order T filter has undesirable transients that last for two
changes in set point compared to a single change in set
point using a deadzone or the P filter. The first order T
filter constant necessary to obtain a stable response is
very high and therefore the choice of the T filter parameter
is restricted to a small range of values. This makes the
choice of the T filter parameter more critical than the
choice of the deadzone or the P filter parameter for this
system. Perhaps a second order T filter could be more

effective.



12. Time Series Analysis of Brenda Mines Secondary Crusher

12.1 Introduction

In this chapter time series analysis of a secondary ore
crusher is utilized to illustrate a typical process
identification (Box and Jenkinsg, 1976, also described in
Appendix C) is employed to find the model structure
(polynomial orders) and parameter estimates describing the
dynamic behavior of the secondary crusher. Comparison of
different approaches to handle nonzero mean data is
presented. Results based on least squares and maximum

likelihood estimation are also compared.

12.2 Description of the mining process
Brenda Mines Ltd., Peachland B.C., operated an open pit

ore. The process involved 3 stages of crushing followed by 2
stages of grinding before flotation separetion and
concentration stages. The run-of-the-mine ore (< 3 feet in
diameter) was brought from the pit by dump trucks and dumped
directly into a primary gyratory crusher. The crushed rock
(< 6 inches) was screened and the undersize (< 3/4 inch)
wvent to the fine ore bins to be fed to the grinding circuit.
The oversize vas sent to an outdoor coarse ore stockpile.
Prom the bottom of the coarse ore stockpile, the ore

vas conveyed to one of two secondary standard crushers. The
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product was sent to vibrating screens where the undersize
(< 1 inch) was separated and sent to the fine ore bins where
it joined the primary screens undersize to await grinding.
The oversize was returned to a surge bin which fed four
tertiary shorthead crushers.

The seccndary crusher system consisted of two parallel
circuits. The conveyor of a circuit was fed by any or all of

was determined by the operator on duty.

Since each feeder discharged ore with different
characteristics, which varied with the state of the coarse
ore stockpile directly above the feeder, the operator could
choose the coarseness of the ore being crushed to some
extent. Tonnage was measured by a weightometer located
underneath the conveyor belt downstream of the feeders. The
transportation lag betwveen the feeders and the weightometer
was between 12,2 and 28.7 seconds depending on which feeders
vere operating. The transportation lag between the

weightometer and the crusher was approximately 40 seconds.

12.3 Purpose of modelling the secondary crusher

The difficulty in controlling this system lied in the
transportation lag between the coarse ore feeders and the
pover consumption (a measure of the crusher load) as a

function of the weight of ore fed to the crusher vas to
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produce a crusher power predictor that could be used for
control. Using this predictor, the ore feed rate may be
adjusted to maximize ore throughput without overloading the
crusher which would result in a shutdown of the crusher.
Since a theoretical model of the crusher must account
for ore hardness and size distribution, it is too complex to
use on-line. Moreover, hardness and size distribution
measurements are not available on-line. Conseguently the
approach adopted to determine a dynamic model was to employ

identification using input/output data.

12.4 The data set

The input/output data provided by Brenda Mines was
obtained from normal operation but under manual control. A
typical one hour record (Edwards, 1986) of the input and
output signals is presented in Figures 12.1 and 12.2
respectively. During the experiment, the crusher had to be
stopped twice to remove tramp metal. The tramp metal
detector is triggered whenever there are broken metallic
parts from mining equipment on the conveyor that would block
the crusher. Since stopping and starting the crusher is a
nonlinear function, only the first 1200 points,
corresponding to 20 minutes of operation, were utilized for
establishing a suitable dynamic model using the time series

analysis features of the PITSA program.



tons

»10'
1 % I
=
;3_
Y
=
.
;o
=__

0 00

T T A L
0.00 80.00 160 00 24000 32000 400 00
Time =10}

Brenda Mines dec 17

Fig. 12,1 Ore feed rate to the crusher

g
& -
5
ig
8
8
i
8 LA v v LB L T L o1
000  80.00 16000 24000 32000 40000

Time x10

Brende Mines dec 17

Fig. 12.2 Crusher power consumption



12.5 Input prewhitening

To permit model order estimation, the input signal to
crusher used for identification is presented in Figure 12.3,
1f the process input signal is not representative of white
noise, as can be observed in Figures 12,3 to 12.5, then the
first step of the identification procedure is to find a

prewhitening filter,

tons
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Fig. 12.3 Ore feed rate to the crusher used for
estimation

The filter model is
ou; = oV¥y, + 8

vhere
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1

6, + 6,g° * ... * 6,4

a
N

o = 1 ¢ qui‘ + se. *+ qu'"f

Q\
2
[ |

= degree of differencing (df times)

B = constant term (bias)

u, = input signal

u = filtered input signal

For the input signal, the autocorrelation function shown in
Figure 12.4 does not decrease quickly and the first partial
autocorrelation displayed in Figure 12,5 is almost unity
suggesting that differencing may be reguired.

Differencing of the data results in the input shown in
function results presented in Figures 12.7 and 12,8 show
that the magnitudes of a single autocorrelation and up to
four partial autocorrelations are significant indicating
that the filter model should have nf=1 and mf up to 4 (but
probably less) and further differencing is not required.

For prevhitening, 6, is set to unity as this parameter
will only influence the variance of the filtered input. An
attempt to estimate filter parameters with nf=1, df=1, mf=3,
denoted F(1,1,3) produced the following parameters
0.573 ¢ 0.091

o
= -0.285 ¢ 0.096
0.135 ¢ 0.081
0.046 £ 0.057

L3 ] L]
- ~ -
n L] n



201

tons

g

S — L T { = 'vi L =1
000 40.00 8000 120 00 160 00 20000
Time =10}

Brenda Mines dec 17
Fig. 12.6 Differenced ore feed rate
gi

21
e

0.20
b

AUTOCORRELATION

L

- 0.0
A

A

0.00 10.00 2000 3000 4000 6000
LAG
tons

Pig. 12.7 Autocorrelogram of differenced ore feed rate



202

8—.

-4

-
1
[ =
!
£ o
x o
g i: :::::::::::::Z::i::::Z:;:Z:;Z:;Z:ZI::::::::::
- HERIIAIEER3IEIRIRRRER IR EERD
< 8.
- [-]
=
'- -4
<
a3

o-

3

- L 1] A Bl 1 v 0 1

0.00 10.00 2000 30 00 40.00 80.00

LAG
tons
Fig. 12.8 Partial autocorrelogram of differenced ore
feed rate

Since 6, is not significant, the use of mf=3 instead of mf=4
vas justified and the fact that 6, is not significant also
suggests that F(1,1,2) may lead to an adequate filter,
Parameter estimates using F(1,1,2) were found to be

¢, = 0.515 ¢ 0.048

6, = -0.345 ¢ 0.052

6, = 0.186 ¢ 0.042
All the parameters are significant, the x’ statistic (Box
and Jenkins, 1976, Appendix B) is 60.54 which is less than
the table value at 95% confidence level. Plots presented in
Figures 12.9 to 12,17 are examined to observe any
irregularity in the convergence of the parameters or any

irregularity in the sum of squares of residuals or to ensure
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12.6 Process transfer function and noise model structure

estimation

The process model used in the Box-Jenkins approach is

of the form (see Appendix C for details)
B C

Yo * aUt-x * ple * B

where

1 +aq + ...*aq"

A
B=bgqg + ...+ bg"
c

=mn

T = 1 + c1qéi + ... ¥ c!“q

=nn

1+dq + ...+ 4,49

[ w]
N

k = delay
B = constant term (bias)
u, = input

Yy, = output

e, = white noise (residuals)
This model is composed of two distinct parts: the process
transfer function (B/A + B) and the noise model (C/D). The
process model structure identification is therefore
separated into two steps (described in Appendix C)

summarized below.

12.6.1 Process transfer function structure identification
In order to identify the process transfer function
structure the input signal must be representative of white
noise as described in Section 12.4. To preserve the
relationship between the input and output signals, the

output signal must also be filtered using the same
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prevhitening filter as that applied to the input signal. The
filtered output characteristics are presented in Figures

12.18 to 12,20,

=T
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Fig. 12.18 Filtered power consumption

I1f a high signal to noise ratio is assumed, then the
filtered output can be thought of as a time series solely

driven by the prevhitened input (now white noise). In this

functions of the filtered power consumption suggest the use
of 2 or 3 "B" parameters and 1 or 2 "A" parameters. This
approximate model order may be confirmed by examining the
crosscorrelation function plot, the impulse response and
step response of the process presented in Figures 12.21 to

12.23 respectively.
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I1f the values of the crosscorrelation function at lag
29 and 31 are ignored, as the values are marginal, the delay
is estimated to be 39 samples. This is in agreement with the
estimated transportation lag between the weightometer and
the crusher. From the shape of the croasscorrelation
function, the model orders are estimated to be a maximum of
2 "A" parameters, corresponding to a double exponential
decay of the crosscorrelation function, and 2 "B" parameters
to account for the (possibly two) erratic values before the
exponential decay. The step response of the crusher seems to
indicate an inverse response (i.e. 2 "B" parameters) but
this may be caused by inaccuracies during the reconstruction

of the step response from the crosscorrelation function. By



using a delay of 39, the inverse response, if any exists,
will be avoided. The step response, beyond the delay,

indicates an underdamped system (i.e, 2 "A" parameters).

12.6.2 Noise model structure identification

To identify the noise model structure the process
transfer function part of the output signal must be reinoved.
The resulting signal is a noise sequence that can be used to
identify the noise model structure using standard time
series analysis as described in Appendix C. Since the
process transfer function parameters are still unknown, the
estimated noise sequence is calculated using the impulse
response of the crusher instead of the transfer function.
Analysis of the noise seguence is presented in Figures 12,24
to 12.28.

The autocorrelation and partial autocorrelation
functions of the noise estimate indicate that at least one
and possibly twvo parameters are needed for both noise
polynomials, C and D. The spectrum plots provide a clear

indication that the noise model should not be ignored.
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12.7 Model parameter estimation
From the model structures determined in Section 12.5
the first model to be estimated is n=2, m=2, delay=39, nn=2
and mn=2 and is denoted T(n,m,delay)N(nn,dn,mn) or for this
specific model T(2,2,39)N(2,0,2) (as described in the PITSA
differenced. The only algorithm that can handle such a model
is the Box-Jenkins algorithm (c.f. Table 4.1). It should be
noted that for numerical accuracy the Box-Jenkins routine in
the PITSA program uses the SVD decomposition at each
singularity. Por this model, the parameters are estimated to

be
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a, = -0,138 £ 0.214

»

a, = 0,078 * 0.132
b, = 0.091 ¢+ 0.025

0.175 ¢ 0.046

Ll 4
L] L]

-0.711 £ 0.265

O
ot
]

0.028 ¢ 0.201
0.442 ¢t 0.263

L]
]

c, = 0,137 ¢ 0.104

As can be seen, only three parameters of the eight are found
to be statistically significant at the 95% confidence level.
This implies that some aspect of the system behavior is left
unmodelled or that the data needs some kind of conditioning
such as filtering. The most probable cause for this
situation is the numerical inaccuracies due to non-zero mean
signals i.e. ignoring g to reduce the number of parameters
proved to be a costly mistake.

Three methods to deal with the non-zero mean data will
constant parameter and coding.

Differencing is demonstrated first with the model now
denoted by F(0,1,0)T(2,2,39)N(2,0,2). The parameters
estimated with the PITSA program are now

a, = -0.983 ¢ 0.098

0.451 ¢+ 0,055
0.165 ¢ 0.021
0.063 = 0.042
, = =0,831 ¢ 0.072

. o o
- ~ -
] | n
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d, = 0.161 ¢ 0,056

c, = -0.762 £ 0.071

c, = -0.213 ¢ 0,062
As can be observed these results are much improved with the
parameter b, being the only parameter not statistically
significant at a 95% confidence level. Use of the process
identification feature of PITSA for a model structure with
the b, parameter removed, represented as F(0,1,0)T(2,1,39)
N(2,0,2), resulted in the following parameter estimates

a, = -1.172 * 0.046

a, = 0,547 ¢ 0.036

b, = 0,179 £ 0.0

d, = -0.856 £ 0.066

d, = 0.186 £ 0.050

c, = -0.796 ¢ 0.064

c, = -0,182 ¢ 0.055

and the parameter correlation matrix produced was

a, 1.00

a, -0.91 1.00

b, 0.72 -0.49 1.00

d, -0.01 0.00 -0.00 1.00

d, 0.03 -0.03 0.02 -0.89 1.00

c, -0.00 0.00 0.00 0.90 -0.79 1.00

c, 0.0 -0.01 0.00 -0.89 0.81 -0.99 1.00

The condition number of this matrix is 494 which,
considering the number of parameters, is not that large.
Since the parameter c, shows a high correlation with the
other noise parameters, it might be possible to eliminate
this parameter to reduce the model order without affecting



the fit of the model. Moreover, eliminating the row and
column of C, in the above parameter correlation matrix
reduces its condition number to 65.

For the model specified as F(0,1,0)T(2,1,39)N(2,0,1),
the parameter estimates calculated by the PITSA program were

a, = -1,163 * 0.047

+

a, = 0,543 ¢ 0.037

b, = 0,181 + 0.011

d, = -1,027 ¢ 0.029

d, = 0.325 ¢ 0.028

c, = -0.977 ¢+ 0.009
Examination of the parameter correlation matrix (not
presented) did not show any significant correlation between
parameters.

Examining the parameter values reveals that the
numerator of the noise model is close to differencing. This
indicates that differencing was not required and that a
different type of conditioning could be suitable. A possible
approach would be to include a constant term in the model to
account for the nonzerg mean data. Although not directly
stated in Box and Jenkins, 1976, the use of the g term
should alwvays be present unless appropriate action to remove
B by subtracting another equation is performed as explained
in Chapter 8. If no differencing of the original data is
employed, this implies that c, will not be required. For no
differencing of the original data, the model to be
considered would be T(2,1,39)N(2,0,0)Cst (Cst indicates that
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a constant term, B, is used). For this model, the PITSA
program computed the parameter estimates to be

a, = -1,193 ¢ 0.046

a, = 0.584 + 0.035

b, = 0,158 ¢ 0.008

+

d, = -1,055 ¢+ 0.028

d, = 0.316 =+ 0.028

B = -74.961 ¢ 0.000

This approach leads to a larger parameter correlation

matrix condition number (see Table 12.1) which is mostly
attributable to correlation of the constant parameter with
the a and b parameters. An alternative approach to the use
of the constant term would be coding the input and output to
obtain zero mean and unity variance data. Keeping 8 in the
coded model does not improve statistical validation criteria
and the condition number is slightly increased in this case.
I1f B is ignored then the model is specified as F(0,0,0)
T(2,1,39)N(2,0,0) where F(0,0,0) denotes that the data has
been coded. The parameter estimates calculated by the PITSA
program were

a, = -1.219 ¢ 0.044

a, = 0,602 ¢ 0.035

b, = 0.349 ¢ 0.021

d, = -1,060 £ 0.028

d, = 0.309 £ 0.028

A comparison of these three models, using the model

validation criteria described in Appendix B, is presented in
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Table 12.1., The MAIC validation criteria for the coded model
has been converted to an uncoded data equivalent to permit
direct comparison. As can be observed, the x’ statistic on

crosscorrelations are much higher for the nondifferenced

this may be obtained by examining the crosscorrelation
function directly.

TABLE 12.1

Comparison of various models using
validation criteria

F(0,1,0)
T(2,1,39)
N(2,0,1)

N(2,0,0)
Cst

F(0,0,0)
T(2,1,39)
N(2,0,0)

Criteria

MAIC | 4737 | 475¢ | 4770

x’ on autocorrelations | 33.8 | 40.8 | 38.5

between input and residuals I 48.5 I 282.4 I 218.0

Condition number | 57 | 1838 | 54

The crosscorrelation function between the input and the
residuals for the different models generated by the PITSA
program are displayed in Figures 12.29 to 12.31, The
crosscorrelogram for the model represented by F(0,1,0)
T(2,1,39)N(2,0,1) does not show any particularities but the
crosscorrelogram of the nondifferenced models do show an

effect typically attributed to nonstationary data.
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12.8 Comparison with least squares and maximum likelihood

The purpose of this comparison is to see the effect of
mismodelling on parameter estimation., Least squares is
selected because it is the most commonly used algorithm.
Maximum likelihood is also presented since the model it uses
is employed in several control schemes such as GPC (Clarke
et al., 1987)., Differenced data is used as a common ground
for comparison (it is also part of the model used in GPC and
other control algorithms to provide an integrating
function).

The estimated parameters are not directly comparable
and therefore vill not be presented. For the comparison only

the fact that for least sqguares the model includes 2 a and 1
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b parameters and for maximum likelihood the model includes 2

a, ' b and 1c parameter is important. The validation

criteria and condition number for the three models (BJ
Box-jenkins, LS - least squares and ML - maximum likelihood)
are presented in Table 12.2, As can be observed the
performance of the least squares is much worse (from a
statistical point of view). Maximum likelihood performed
well considering that the noise model is inappropriate. In
all cases the condition number of the parameter correlation
matrix is low,

The best method from a statistical point of view is the
method with the largest condition number, This is explained
by the fact that the models have a different number of
parameters (BJ-6, LS-3, ML-4). Therefore the condition
number cannot be used to determine the model to select.
However it can be used as a validation criteria to ensure
that proper care has been taken while calculating the model

parameters.
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TABLE 12,2

Comparison of various algorithms using
validation criteria

Criteria | BJ | LS | ML
MAIC | 4737 | 5060 | 4757
x’ on autocorrelations | 33.8 | 81.3 | 5C.3

2 .
x° on crosscorrelations I

|
between input and residuals 48.5 244.0 | e5.1

Condition Number | 57 | 2 | 22

12.9 Conclusion

The analysis of the Brenda Mines secondary crusher data
using the PITSA program has shown that failing to account
for the mean of the signals (e.g. through the inclusion of a
constant (bias) parameter in the model; or coding of the
input and output data; or differencing of the input and
output data) can lead to disaster as only 3 out of 8
parameters were found statistically significant. This is in
contrast to 7 out of 8 parameters when differencing was
used.

Use of differencing or coding drastically reduced the
condition number of the parameter correlation matrix when
compared to including a constant term in the model.

Eliminating a parameter that was highly correlated with
other parameters also drastically reduced the condition
number of the parameter correlation matrix without

detrimental effect on the fit of the model.
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The parameters of three models, which account for the

mean of the signals, are

i. F(0,1,0)T(2,1,39)N(2,0,1) (model with differenced
data)
y 181g" o 1-0,977g"
vyt 0 vut*i? + 2 9

T-1.163q +0.543q 1-1.02q" +0.325q"

ii. T(2,1,39)N(2,0,0)Cst (model with the B parameter)

v e — 0,188 . 1
Yo ® 703.793q '+0.584q ° "t T 1-1.055q +0.316q °

- 74.96

iii. F(0,0,0)T(2,1,39)B(2,0,0) (model with coded input

and output)

(y,-175.31)/26.97 =

x(u,.44~615.55)/61.87

& = = ;Ti', -
1-1.060q +0.309q °

€,

Although most statistical validation criteria were close for
the three models, based on the crosscorrelation betwveen the
differenced data is preferred as it removes the

nonstationarity character of the data. It also has a much
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lower condition number than that of the model with a
constant term,

Use of the least squares algorithm for this data set
(and using differenced data), did not perform well from a
statistical point of view, The maximum likelihood algorithm
(using differenced data) did perform well in this situation
considering that an inappropriate noise model is used. In
fact, for this application, the maximum likelihood algorithm
is good enough to seriously consider it for use in
conjunction with a control algorithm such as GPC for control

of the crusher.



13. Conclusion and Recommendations

13.1 Conclusion

Key results from Theorems ! and 2 are that the P matrix
(the inverted matrix in the least squares identification)
for a discretized first order system will exhibit a
condition number less than 9 but this is not necessarily
true for a system of order larger than unity. This is based
on the assumption that: (1) the input and output signals are
coded (scaled) to provide zero mean and unity variance; (2)
the input is uncorrelated with itself in time; (3) data is
collected using a period smaller than half the time constant
of the system; and (4) the discretization is obtained using
a zero order hold.

It is also concluded that both a matrix factorization
method and coding (data transformation) are required to
obtain a well conditioned P matrix for a system of order
larger than unity.

A reduction in the condition number of the P matrix was
found to be possible by eliminating the constant (bias)
parameter. The folloving methods of removing the constant
parameter were examined to assess their adequacy for use in
conjunction vith least squares identification.

i. deviation from sample mean. If a fixed sample mean

is used then s biss will be present. This bias will
diminish as the number of data points increases. In

8 nev result, use of a running mean vas shown to



iii.

iv.

M
L]
L7 ]

produce a smaller bias than that produced by a
fixed mean. Therefore the running mean should be
preferred over the usual sample mean,

deviation from previous values. The bias was
demonstrated to be a function of the noise. An
important new result was obtained stating that the
bias can be reduced if the deviation is taken from
values that are more than the model order plus the
asymptotical memory length of the system sample
periods in the past.

deviation from filtered values., The use of filtered
values as estimates of the mean was demonstrated to
be analogous to the use of the running mean. A new
analysis of the use of a different filter for the
input and output signal as suggested by Sripada and
Fisher, 1987 revealed that use of different filters
for the input and output signal should not be
employed.

deviation from the expected mean. This method will
generally produce a bias and therefore is not
recommended.

deviation from an equation fixed in time. The bias
created using this method vas found to be a
function of the noise and larger than that obtained
using the running mean. This method was shown to be
not applicable for time varying systems. This

method is not recommended except for special



circumstances.

A new interpretation of the system of equations solved,
in parallel with a new detailed analysis of scaling as
proposed by Sripada and Fisher, 1987, demonstrated that
scaling of the P matrix does not improve accuracy and only
increases the number of computations.

An important conclusion of this thesis is that the
condition number of the P matrix cannot be used as a measure
of persistency of excitation as proposed by Sripada and
Fisher, 1987,

It wvas concluded that the best coding (data
transformation) scheme produces a coded signal mean of zero
and variance of unity.

Use of a step input was noticed to produce a higher
condition number than a square wave or a PRBS input if there
is more than one b parameter in the model, This effect is
amplified for a system order larger than unity.

In a nev interpretation, use of normalization in
conjunction with the least squares identification technique
can be vieved as a veighted least squares identification in
vhich the veights are selected in such a manner as to reduce
the signal to noise ratio (assuming that the noise magnitude
does not vary with the signal amplitude). This is obviously
an undesirable situation for identification.

It wvas concluded that no tangible effect of
normalization on the numerical conditioning could be

observed contrary to the claims of Sripada and Fisher, 1987.
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1t was demonstrated that alternatives to normalization
can be used to attain stable adaptive control operation of a
simulated example. This suggests that normalization is not a
"necessary evil" to ensure the stability of an adaptive
control system.

Furthermore it if concluded that an alternative such as
filtering the parameters before use in the control law
should be preferred to normalization for the simulatzad
example,

Several factorization methods that are often used by
numerical analysts to improve numerical conditioning were
examined. These are: square root, U-D, singular value
decomposition and QR., These methods were found to provide
comparable numerical enhancements namely the reduction of
the condition number to its square root.

Reconstructing the P matrix to ensure positiveness and
symmetry (RPRLS algorithm) did not provide any significant
improvements over the recursive least squares (RLS)

algorithm for a simulated example. Improvements from

ill-conditioned systems since the only advantage is that the
matrix is guaranteed to be positive and symmetric. For this
example, utilization of the recursive UD factorization did
provide a significant reduction in the condition number over
RLS and RPRLS. The parameter estimates were similar for the

RLS was not high enough to significantly affect the
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parameter estimates for the number of input/output data
points used.

From the perturbation analysis performed by numerical
analysts it is known that the numerical sensitivity of the
calculations involving a matrix is related to the condition
number of the matrix.

Analysis of the effect of the off-diagonal elements of
the P matrix, not examined in detail in the published
literature, has demonstrated the approximately exponential
effect of the magnitude of the off-diagonal elements
(relative to the magnitude of the diagonal elements) on the
condition number of the P matrix.

It was also established that several off-diagonal
elements cannot be combined in such a manner as to reduce
the condition number,

A new result stating that the combined effect of
several off-diagonal elements of the P matrix on the
condition number becomes greater than the sum of the effects
of the individual off-diagonal elements as their magnitude
increases vas obtained. )

In the thesis, it was argued that to minimize the
effect of the magnitude of the diagonal elements relative to
each other (which also prevents generalizations using the
condition number) the variance of the input and output data
should be of the same magnitude.

Investigation of the most common nonrecursive and

recursive algorithms revealed that most algorithms involve
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the inversion of a matrix or its recursive equivalent
pointing to the wide applicability of the results of the
thesis.

This thesis forms a unique document in which most
common identification algorithms are presented with their
derivation. It is also a unigue source of informaticn on
practical issues in process identification,

Finally, during the analysis of crusher data it was
found that ignoring the mean of the signals (i.e. simply
neglecting the constant parameter rather than eliminating it

from the model by substitution) can lead to disaster as only

as opposed to 7 out of 8 parameters when differencing was
used. Use of differencing or coding drastically reduced the
condition number of the parameter correlation matrix when

compared to including a constant term in the mndel.

other parameters drastically reduced the condition number of
the parameter correlation matrix (normalized P matrix)
without detrimental effect on the fit of the model,

Use of the least squares algorithm for this data set
(and using differenced data), did not perform vell from a
statistical point of viewv. The maximum likelihood algorithm
(using differenced data) did perform well in this situation
considering that an inappropriate noise model is used. In
fact, for this application, the maximum likelihood algorithm

is good enough to seriously consider it for use in
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conjunction with a control algorithm such as GPC for control

of the crusher,

13.2 Recommendations
Most of the recommendations for future work, based on
this study, can be grouped in the areas of program

techniques for development of dynamic models.
Future projects that would lead to the development of
more reliable dynamic models are the following:

i, Exploring alternatives to normalization with a view
to prove the stability of the resulting adaptive
control system and assuring that they do not hinder
the identification step.

ii. 1Investigation of the relationship between signal to
noise ratio and the number of data points required
to establish a suitable dynamic model. Some of the
questions to be answered are: can an increase in
the number of data points compensate for a low
signal to noise ratio? If so, can it be quantified?
I1f the number of data points is limited what is the
required signal to noise ratio to produce
parameters that are satisfactory? Sensitivity
signal to noise ratio and the number of data points
should be undertaken to establish the minimum

requirements to limit this sensitivity.
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iii, Effect of the number of parameters. Does an
increase in the number of parameters require a
corresponding increase in signal to noise ratio or
number of data points in order to produce
satisfactory parameters? A sensitivity analysis of
the parameter estimates with respect to the number
of parameters is difficult to establish since the
model is changed but perhaps the various validation
criteria may be used for this purpose.

iv. Selection of the PRBS sequence. The effect of the
clock interval; length of the PRBS sequence and
amplitude of the input signal on the estimated
parameters and on the validation criteria should be
investigated. This could provide valuable
guidelines to design a PRBS signal for an
jdentification run. Use of a PRBS sequence based on
a random number generator rather than a maximum
length sequence should be explored to determine if
there are any benefits to using such a scheme.

v. Objective assessment of the acceptability of the
identified model. Determining if the estimated
model is satisfactory for its intended use is
somevhat subjective. Validation criteria should be
examined to determine the amount of subjectivity
(or bias towards certain types of models against
other types of models) inherent in their use. For

this purpose several validation criteria are
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available in the literature (Freeman, 1985,
lsermann et al., 1974, Ljung and Soderstrom, 1983,
Stoica et al., 1986, Box and Jenkins, 1976) and
these should be compared to determine which
criteria will be able to discriminate betveen
candidate models in general applications (i.e. with
the least amount of subjectivity).

vi. A need exists for a reliable method that can be
used to find model orders and transformations
required to linearize nonlinear systems. This
entails the development of a systematic method to
test the type of transformation that is reqguired
(e.g. logarithm) and the type of nonlinearity that
should be included in the model (e.g. which terms
model). This method would dictate the terms to
include in the regressor (e.g. #=[y,.,, Yi.2s Ye-sUp-se
U,.,]) so that a model that is linear in the
parameters is obtained. Through proper formulation
of the regressor the parameter estimates could be
obtained from the usual estimation algorithms.

Once the method has been refined, the
development of an expert system to guide its
application would be wvorthwhile.

Although it no longer makes sense to write your own
process identification program (it is now much easier to buy

an adequate program commercially) the PITSA program is still



237

a usefull tool. The suggestions for enhancements and
modifications to the program are as follows:

i, Not all of the algorithms available in the PITSA
program have been employed for the systems analyzed
in this work. More extensive experimentation with
the various algorithms available should be
undertaken to examine the effectiveness cf each
algorithm. A well established procedure similar to
that presented by Isermann et al., 1974 should be
employed so that the results may be directly
compared to those presented in the literature.

ii. The PITSA program should be expanded to include
identification of multi-input single-output (MISO)
and multi-input multi-output (MIMO) systems as they
become more prominent in control applications. This
should include extending correlation analysis to
permit estimation of model orders in a MISO or MIMO
context.

iii. The weighted recursive least squares algorithm in
PITSA uses a fixed forgetting factor or a
combination of two fixed forgetting factors. Other
forgetting factors published in the literature
should be incorporated in the program so that the
relative merit of the forgetting factor schemes may
be established.

iv. Current implementation of the PITSA program does

not include factorization of all the algorithms.
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The algorithms that are not factorized should be
replaced by the more numerically robust form of the
algorithm,

Use of the PITSA program is currently limited to
University of Alberta main frame computer users
that have access to a graphics terminal or to a
personal computer that supports graphics terminal
emulation, The only remaining stumbling block to
achieve portability of the program is the graphics

support.
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Appendix A: CHOICE OF INPUT SIGNAL AND SAMPLING PERIOD

A.1 Type of input signal
Process models can be identified in a number of ways.

The traditional techniques of step and pulse testing are

processes where the amount of noise present is significant,
the magnitude of the step or pulse necessary to produce
usable results can be detrimental to the operation of the
process. Large manipulations can also drive the process into
regions of nonlinear operation. Statistical methods of
process identification avoid these problems by enabling the
use of small perturbations to the process (e.g. white noise,
PRBS, etc.)

It is difficult to define an optimum input signal a
priori. 1f the process model vere available, then an optimal
input could be designed (Goodwin and Sin, 1984).
Unfortunately this is seldom the case. A good identification
method should be insensitive to the characteristics of the
input signal but some identification methods do require a
persistently exiting signal. For a discussion of
persistently exiting signals the reader is referred to
Isermann, 1980a and Astrom and Eykhoff, 1971.

An example of a poor combination of an identification
algorithm and input signal is that of a least squares

algorithm combined with a step input. This can be
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illustrated by choosing a single step as an input signal.
The difficulty of using a step with the least squares
algorithm stems from the fact that the input does not change
(or may change only once if steady state values are used at
the beginning of the data collection). The least squares
algorithm utilizes the correlation between the input and
output to find parameter estimates and no correlation
between the input and output can be found when the input
does not change. Moreover the condition number of the P
matrix will be larger than a square wave or a PRBS if there
is more than one b parameter in the model (c.f. Remark 2 and
10 in Chapter 7).

This is well illustrated by the results presented in
Table A.1 for nonrecursive least squares identification
performed on simulated data, for the discretization of the

system described by

LP%” | 229 o
uls ‘*1 ‘2 + 308 + 229 (A;‘)

different input signals are: a PRBS (pseudo random binary
sequence) of length 127 and of unity amplitude; a step that
starts at sample 10 (to avoid singularity) and of unity
amplitude and finally a reversing square vave (square vave
with zero mean) of period of 100 samples and unity
amplitude. The sampling period used vas 0.12 seconds. The

step starts at 1.2 seconds and the square vave period is 12
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seconds. The length of each run was set at 500 points which
translates into a PRBS that was repeated almost 4 times and
a square wave that lasted 5 cycles. The noise was generated
using a normal, zero mean, unity variance distribution and
was scaled to provide different standard deviations (s.d.).
The input/output data for a noise level of .01 s.d. is
presented in Figure A.1.

TABLE A.)

Nonrecursive least squares identification
results for different input signals and
noise of 0.01 and 0.1 standard deviation

Actual PRDS ! Stap Square Wave

. | .01 A i 010 A ; .01 .
i‘r! 10 *Qﬁ;lé : *!2-22-:;7‘73;5235 ‘ ‘Q-;E! =12.5:.6 | *12-71,-;;5 *‘2-2:-5
&, & 10 : L j 3.3:.5 3.6:.6 | =3.6:.4 3.6:.9 3.5:.6 3.6:.7
&y & V0 : =. 242 | =30 =.3:.3 ; 2.:2. -.5:.6 : =.4:.2 =.6z.4

|

b, x 100 ! 5.60 | 6.59:.04 5.5:.4 |  4.:9.  <2.:10.  5.9:.3  9.:2.
by & 100 ; 9.50 i 9.4:.2 B.9:.5 | 10.:10. 7.220. ;. 9.3:.8 9.:.2

| | | i
by = 100 | 0.8 ! Ti.8 -9:.6 i 4.:10. 9.210. | T =1.:2.

i i

* numerical singularity encountered
For the step, the least squares algorithm detected
numerical singularity at a noise level of 0.01 but it vas
not found at the 0.1 level., This means that at the 0.01
level there was not enough noise to keep the system
*identifiable” but there was enough noise at the 0.1 level

to prevent numerical singularity. This only means that, with
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matrix are different enough to avoid numerical singularity.
1t does not mean that better parameter estimates were
obtained as witnessed by the large standard deviations., Of
all the results, the step gave the worst parameter estimates
as expected. In fact the parameters for the step at the low
noise level give a steady state gain of 4.5 compared to 2
for the actual system. The reversing square wave produced
good results at a low noise level but deteriorated
significantly at the high noise level. The PRBS produced
good results for both noise levels.

This example illustrates that a least squares type of
algorithm requires a signal that will "excite” all the modes
of the process sufficiently. A signal that does "excite" all
the modes of a process is a white noise sequence. Producing
8 good normal random signal is not an easy task and is a
subject of research by itself (Knuth, 1973, Forsythe et al.,
1977).

Another signal which has properties similar to those of
vhite noise but is easier to produce is a pseudo random
binary sequence (PRBS). It is probably the most widely used
signal in statistical system testing. This signal can take
only two values, t a, vhere a is the amplitude. The state is
updated every bit interval. This bit interval is an integer
multiple of the clock interval (sampling period). The update
follows a predetermined pattern or sequence. This pattern
depends on the length of the sequence desired before the
pattern repeats itself. The length of the sequence should be
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greater than the settling time of the process otherwise the
parameters.

The PRBS should have properties similar to those of
white noise. In general a PRBS pattern has an odd number of
bit intervals, which implies that its mean is not zero. To
be as close to zero as possible, the number of positive
states should not differ from the number of negative states
by more than one, Another desirable property is the number
of runs. The number of runs of length i is the number of
times the state is the same for i consecutive intervals. A
PRBS signal should have half of its runs to be of length
one, a gquarter of length two and so on. Another property is
that the autocorrelation function is significant at lag zero
only (and at every lag corresponding to the start of
recycling the pattern).

The most commonly used PRBS signal is the maximum
length sequence (Davies, 1966). This PRBS is generated by an
n stage shift register with the first stage determined by
the feedback of the appropriate modulo 2 additions
(exclusive OR). This will give a sequence of length 2"-1,
The appropriate modulo addition is determined by the number
of stages. If an inadequate modulo addition is performed
then the sequence will be shorter than the maximum length,
Also some inappropriate additions may lead to the zero
sequence (the register fills with zeros) which never changes

regardless of the modulo 2 addition performed.



A.2 Sampling period and identification length

For a given type of input signal, the sampling period
and the number of input/output data points must be chosen.
The sampling period will be determined by the highest
frequency of interest (Shannon's sampling theorem: only
frequencies smaller than half the sampling rate, the inverse
of the period, can be identified). To avoid the effects of
aliasing, the sampling period should be small enough so that
the power of the signal above the Shannon freqguency (also
known as the Nyquist frequency, half the sampling rate) can
be neglected. If the power above this frequency is due to
noise, a low pass filter before the sampling equipment may
the process exhibits high fregquency dynamic components that
are not of interest, filtering should be utilized
(Gustavsson, 1975),

The number of input/output data points will be
determined by the lovest frequency of interest. As a rule of
thumb Box and Jenkins, 1976 suggest calculation of the auto-
correlation function to a maximum lag of N/4. Applying the
same rule here, the number of input/output data points
should cover at least four times the lowest frequency of
interest (it is also generally known as the settling time).

Although there is no general consensus as to the choice
of the sampling period and the number of input/output data
points, the following guidelines should provide a window

that vill be setisfactory for most cases. The sampling
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period should be 1/6 th to 1715 th of the 95% settling time
(Isermann, 1980a) and the number of input/output data points
times the sampling period should be 4 to 10 times the 953%
settling time. For a first order system this would imply
that between 24 (one 6th for the period and 4 times fo: the
number of points) and 150 (one 15th for the period and 10
times for the number of points) points are needed to
determine the response curve from initial time to settling
time.

Using a very large number of input/output data points
has its drawbacks since statistical inferences become
meaningless because of the large number of degrees of
freedom. Moreover, data collection can be very expensive,
Selection of too long a sampling period can lead to aliasing
if high frequency noise is present. For example a 60 Hz
signal sampled at 14 samples per second appears as a 4 Hz
signal.
£0 . 4.208571
since complete cycles cannot be measured only the remainder
appears. 0.28571 (or {%J of a cycle is apparent every TL
seconds or 4 cycles per seconds. It should be noted that
using a digital filter after sampling to remove high
frequencies will not remove aliasing as the noise has
already been shifted to low frequencies and therefore will
not be affected by a low pass filter.

To illustrate the choice of the sampling period, T, and
the number of input/output data points, N, consider that a
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freguency resolution of 100 Hz with a maximum freguency of

25 kHz is desired.

1
foar = 37
so T should be chosen such that

EL 2 25 x 10" Hz

hence

so for a frequency resolution of 100 Hz

1
NT " 100 Hz

N =

7907 100(2 ; 70 " 500

Either N or T can be chosen and the other calculated. In
this case the rule for the period can be modified to 1/4 th
of the smallest time constant (or egquivalently the period is
taken as the inverse of 4 times the frequency). Therefore T
would be selected as 10° s. Using the factor of 4 times the
largest time constant (or one quarter of the smallest
frequency) N is calculated to be 4000.

The choice of the sampling period will affect the value
of the parameters. Astrom et al., 1984 investigated the
location of zeros (transfer function numerator roots) of
sampled systems and have shown that for a pole (transfer
function denominator roots) excess of more than two an
unstable zero will always result if sampled fast enough,
even for a process that has no zeros in the continuous time
domain. An unstable zero occurs when one of the roots of the

transfer function numerator polynomial (i.e. the B

polynomial) is inside the unit circle for the polynomial
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expressed in terms of q”. Cluett et al., 1987 have shown
that for the transfer function presented in Equation A.,1,
sampled with a zero order hold, the fastest sampling rate
that gives stable zeros is 0.2,

Table A.2 shows the values of the zeros of the d.sr1e1m
form of Equation A,1 for selected sampling periods. Fo: tn:s
example, following the guideline of 1/10 to 1'/5 of the
dominant time constant of interest (Stephanopoulos, 1984)
does not always yield stable zeros (r=1,15, ,115 < T <
.230). This may or may not be significant depending on the
application but it should be stressed that if it is in
conjunction with a controller, the controller must be able
to handle unstable zeros. Isermann, 1980a proposed a
sampling period of 1/15 to 1/6 of T,, (time for 95%
response) yielding sampling periods between 0.22 and 0.55
seconds. This choice results in stable zeros as can be seen
in Table A.2.

TABLE A.2

Zeros (in q°') for selected sampling
periods (in seconds)

Sampling , Zeros , Sampling Zeros
period (one unstable) period (stable)
0.01 -4.02123 -0.29343 0.20 -22.2667 -1.00479
0.04 -5.13584 -0.36196 0.21 =24.6488 -1,06115
0.08 -7.20409 -0.47994¢ 0.24 -33,.6587 -1,24228
0.12  -10.2976 =-0.62491 0.28  -51,7866 =-1.51181
0.16 -15.0015 -0.79929 0.32 -81,0373 -1.812M
0.19  -20.1369 =-0.95043 0.36 -128.866 =-2.14385
0.40 -207.900 -2.50367
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1t should be noted that for the discrete case, an
unstable zero does not necessarily mean an inverse response.
For the example presented above, predictions from the model
containing an unstable zero match the continuous output at
the sampling intervals so the predictions do not exhibit an
inverse response behavior as can be observed from the step

response shown in Figure A.1,

A.3 Final remarks

The ratio of the amplitude of the signal to the
amplitude of the oise is also an important variable. The
higher the ratio, the more reliable the parameter estimates
and the faster the convergence, but the process is subject
to more disturbance. As the ratio decreases, the estimation
of reliable parameter becomes more difficult, a larger
number of input/output data points will be required to
compensate for the fac: that the disturbance to the process
is minimal. For a PRBS signal the sequence may be chosen to
cover the sampling period and number of input/outpv* data
points discussed above and then the sequence is repeated as

long as it is necessary to obtain a good identification.



Appendix B: MODEL VALIDATION

Model validation is used for two purposes: (1) to determine
i{f the model is acceptable (or to be statistically correct
if the model is not rejectable) and (2) to compare two
estimated models and determine which is more suitable for
the data at hand.

Many model validation statistics are available in the
literature (Soderstrom, 1977, Freeman, 1985). Only those
deemed most important are presented here. Some were selected
on the basis on their simplicity and performance with

gsimulated data (Freeman, 1985) while others are from Box and

B.1 Confidence intervals on the parameters

I1f the confidence interval on a parameter contains
zero, then this indicates that the parameter could be set to
zero or that the experimental dates is ill-conditioned (e.g.
poor excitation or numerical accuracy). In the first case
the model should be reduced by eliminating the parameter
from the model and the identification procedure repeated. In
the second case experimental conditions should be reviewed

or the data suitably coded (transformed).
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B.2 Parameter correlation matrix
This matrix reveals any dependence between parameters.

In the ideal situation the correlation between different

matrix equal to the identity matrix, Unfortunately this is
seldom the case, Denoting a , as the parameter correlation
matrix element in the ith row and jth column, the
correlation between parameters i and j increases as the
absolute value of a,, approaches unity. The amount of
correlation between parameters that can be tolerated is
dictated by howv "good" the data is (i.e. numerical
conditioning, level of excitation, etc.) and if there is a
between reducing the correlation between parameters (through
model order reduction and identification of the reduced
model) and fitting data (i.e. reducing model residuals) will

be necessary.

B.3 Modified Akaike's information criterion (MAIC)

Akaike has proposed twvo similar :t:tigti:s.ithg final
prediction error and the information criterion which has
become known as Akaike's information criterion (AIC). A
modified version of the AIC was found to give better results
in most cases (Freeman, 1985). This modified Akaike's
information criterion (MAIC) is defined as

MAIC = N 1n(o?) + ap

vhere
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z
]

the number of points

LF]

the variance of residuals

o

p the number of parameters

a a weighting factor
1f a = 2 then the AIC is obtained. In the PITSA program the
value of a is set to 4, as generally this value is thought
to be the most satisfactory (Freeman, 1985).

The model which results in the lowest MAIC value is

retained.

B.4 Shortest data description criterion (SDD)

This criterion, developed as an extension of Akaike's
information criterion by Rissanen (see Freeman, 1985 for
details), is defined as

SDD = N 1n(o°) + (p+1) 1n(N)

The model that produces the lowest SDD is retained.

B.S5 F test

This is the familiar test of variances in regression
analysis. Let VT be the sum of squares for the ith model
(i=1,2) using N points. Let p, denote the number of

parameters in the ith model, then the statistic
‘e Vi-Vv; N-p for p, < p
&2 P2 - Py ' :
is asymptotically F(p,-p,,N-p,) distributed. Model 1 is

retained if £ < F (at the specified significance level) i.e.
the increase in V due to fewer parameters is not

significant.
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B.f Chi-square on auto and crosscorrelations

Chi-square statistics linked to the autocorrelation of
residuals and the crosscorrelation between residuals and the
input signal are useful to determine the whiteness of the
residuals and to verify that the input signal and residuals
are uncorrelated (Box and Jenkins, 1976).

I1f the value of the statistic is less than the table
value (or given by the program) for the level of

significance chosen then the model is not rejected,

Although not a statistic by itself, plots of residuals
may reveal possible inadequacy of a model or the presence of
unreliable data. These plots include the autocorrelation
function, partial autocorrelation function and the powver
spectrum of the residuals. These are examined to check the
vhiteness of the residuals. If the residuals do not display
the characteristic properties of white noise, as described
in Appendix C, then the model should be rejected. Plots of
the crosscorrelation between inputs and residuals should not
shov any relationship, othervise there is some input/output

behavior that is not accounted for by the model.



Appendix C: CORRELATION ANALYSIS

This material is based on the presentation given by Box and
Jenkins, 1976. For the reader that has some familiarity with
elementary probability and statistics, this Appendix should
provide enough background to use correlation analysis to
obtain some guidance for selecting an appropriats model
structure.

Correlation analysis is based on the analysis of the
autocorrelation and crosscorrelation functions of stochastic
processes. But before explaining the use of correlation
function plots, the general model form, with some related
terminology, is presented. The Box-Jenkins model is

Y:'guz-u*g‘c*p

whrre
A=1+a,q' +aqg’...+aq"
B=Db q' +b g’ ... +bgqg"
C=14+c,q +¢,q° oo *+ @™
D=1+4d,q' ' +4d,q° ... +4d,q9"
k = delay
B = constant term (bias)

u, = input
Yy, = output
¢, = vhite noise, residuals
q"' = backshift operator (Q’'y, = y,.,)
The model can be cons.dered to consist of two parts: the

deterministic part (transfer function) of the process

261
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S CIET B) and the stochastic part (noise transfer function)
of the process (%et)i Identification of the noise model
(noise transfer function) is considered first as several

be used for modelling the process transfer function.

Identification of the noise model falls within the

general topic of time series analysis. The model

N, = D¢
can be thought of as process (or "colored") noise, N, that
is generated from white noise, ¢,, passing through a linear
filter. White noise is assumed to be a normally distributed
random variable with zero mean and variance o’ (N(0,0°))
uncorrelated with its past values (under the normal
hypothesis this also implies independence).

I1f D=1 and C is a polynomial of order mn then the model
is called a moving average (MA(mn)) process. It should be
noted that the term "process” to denote a model, used in the
time series literature, is retained in this material. If C=!
and D is a polynomial of order nn then the the model is
called an autoregressive (AR(nn)) process. If C and D are
polynomials then the model is called an autoregressive
moving average (ARMA(nn,mn)) process. Note that a finite
moving average process can be expressed as an infinite
autoregressive process and vice versa.

Correlation analysis is based on the assumption that
the series under study is stationary, that is, its

distributional properties (mean, variance, etc.) are not
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time dependent. The roots of the D polynomial must lie
outside the unit circle in the q ' plane to provide
stationarity. The dual of stationarity is invertibility for
which the roots of the C polynomial must lie outside the
unit circle in the q°' plane.

Another common form of model (process) is the
autoregressive integrated moving average (ARIMA(nn,dn,mn))
process. This form of process arises if the form of the
model is

V""Nt = %et (c.1)
where
Veil-gq'
The effect of the difference operator, V, is to extract dn
roots of the characteristic polynomial v"D that are on the
unit circle. Removing the roots on the unit circle will make
the process stationary (for instance if the process is a

ramp then taking one difference will "level"” the process

i.e. make it stationary).

C.1 Autocorrelstion function
The autocorrelation function is the first information
that is used in correlation analysis. The function is
related to the concept of variance and correlation
coefficient found in elementary statistics. The variance is
defined as
VAR(n,) = o’ = E[(n,~E[n, )]

vhere
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n, = observed value

E[n,] = the expected value of n, (estimated as
the mean, n)

The variance can be estimated by

=11

FIPRE 1 X 2
s(n) = § z (n, = n)°
The more general autocovariance defined as
y(3) = E[(n,~E[n,])(n.,-E[n )] (C.2)
is estimated by
(i) = T (n-R) (n,.,-R)
It is to be noted that y(0)=o’,

The autocorrelation function is obtained from the

autocovariance function by the normalization

p(3) = y(3)/y(0)
The autocorrelation function is thus independent of the
magnitude of the variance. The autocorrelation function is
estimated as

r(j) = c¢(j)/c(0)

To see how the autocorrelation function can be used in
analyzing the nature of a data series, first consider the
moving average process

N, =Ce,
Substitution of this process in Equation C.2 gives
v(3) = El(e, + crepy * ooy v * Cpe,) (e
*Ci€gy * Caliir vee ¥ Con€iiipn)]
and for j=0 wve obtain
y(0) = (1 +c? et ... +ci)o

since the independencr of ¢, gives
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-

= 0 if iw0
For j#0 the autocovariance is

* Ciej,‘ * E:E s +ss * C

3¢ LLES

w10

y(3) = (c, c
for j=1,...,mn
=0 for j > mn
It thus follows that the autocorrelation function is
p(3) = 0 for j > mn
Therefore theoretically the autocorrelation function is zero
beyond lag mn for a pure moving average process.
Furthermore, since an autoregressive process can be written
as an infinite moving average process, the theoretical auto-
correlation function of an autoregressive process will be
infinite in extent,

Since the analysis involves the estimation of the auto-
correlation function from experimental data, a criterion is
needed for deciding when the sample autocorrelation function
making use of an expression for the variance of the
estimated autocorrelation function of a stationary normal
random process given by Bartlett. Using the variance of the
estimates r(j) given by Bartlett (see Box and Jenkins for
that the autocorrelation function is zero for j > mn (long
lag), the variance of the autocorrelation can be
approximated by

VAR(r(§)) = & {1 + 2T »'(i)} tor j > mn

- -
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substituting r(i) for p(i), the standard deviation of the

autocorrelation estimates for long lags (j>mn) are obtained.

Since the autocorrelation function reveals the moving
average nature of a process, we might expect another tool to
reveal the autoregressive nature of the process. This tool
is the partial autocorrelation function.

Consider the AR(nn) process

DN, = ¢,
changing the notation somewhat, let d, , be the j'th
coefficient of an AR(nn) process. We now have

_ ) nn -3
D=1 *TE‘ —dnn.jq

I1f we define the set of autoregressive coefficients d, , &8
the partial autocorrelations then

d,; = 0 for j > nn
for a pure AR(nn) process. Therefore the partial autocor-
relation function of a pure autoregressive process is zero
for j > nn. Since an MA(mn) can be expressed as an AR(=),
the theoretical partial autocorrelation of a pure moving
average process is infinite in extent.

There are two ways of calculating the partial autocor-
relation function. The first is based on the Yule-Walker
equations.

Consider the AR(i) process

N =d, N, +dN_ ... +d N, + ¢
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noting that the means are zero, multiplying both sides by
N.., and taking expectations

y(j) = d, vy,.o v d, 2y wee 4y, for j >0

p(3) = @, o, * @, 20,2 +un * 4, ,p,.,
so that
P&, = »,
vhere
[ 1 P, . P..-
P, = P, 1 . Py
p;i p;; e 1

& = [d,,, Q20 eoes G,,)

NI VTP PPN B
these equations are solved for increasing values of k. The
reader is referred to Box and Jenkins for the Durbin
recursive algorithm for solving these equations.

The Yule-Walker equations are not well conditioned, A
more stable alternative for calculating the partial
autocorrelation function is to fit autoregressive models of
increasing order with least squares.

To test whether a partial autocorrelation is

then
VAR(4, ;) = (1/N) for i > nn

wvhere N is the number of observations.
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C.3 Power spectrum

The power spectrum will help in finding any periodic
component of the signal. Although periodic components can be
functions, they are shown readily in the power spectrum. The
Fourier transform of the autocorrelation function yields the
a large peak in the low freguency range it may indicate a
slowly changing level which can be removed by differencing.

Given an odd number of observations, say N=2#q+1, we

obtain the Fourier transform

s
n(k) = a, + - cas(Zi k) 4 B, 51n(21 ik) 4 e (k)
1Qi
The least squares estimates for a and B are
a, = n
PN ik
8, = (2/N)T n,cos (2% )
b, = (2/N)L n,sin(2rdf )

Now that the data has been transformed into the frequency
domain it has to be presented in a suitable form. Usually
the signal strength is plotted against the frequency. This
is known as the signal spectrum, The signal strength, or
intensity, at frequency f(i) is defined as
I(£(i)) = (N/2)(a%(i) + B’(i)) i=1,...,q

f£(i) = (i/N)
For an even number of samples, N, the procedure is modified
slightly. Let N=2q then

alq) = (VH)E‘ (-1)* n(k)
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b(g) = 0
1'£(q)) = Na‘(q)
with a(i), b(i) and 1(f(i)) for i=1,,,.,g-) defined as
before,

For a truly random series

n(k) = a;, + e(k)
that is the signal will h e only a DC component equal to
the signal average, plus some error component causing it to
vary about this value., In this case the expected value of
I1(£(i)) is 20°(n), distributed as o°(n)x (2) (the intensity
of white noise is uniform at all frequencies and equals
20°(n)).

I1f there are periodic components in the series the
vicinity of the frequencies of these components.

I1f the power spectrum is integrated and normalized,
deviations from the expected behavior of white noise can be
assessed using the Kolmogorov-Smirnov bounds. White noise
has a uniform frequency content, therefore the integrated
spectrum vwill be a straight line of slope 20°. Normalizing
by o’ we obtain a straight line of slope 2. Limit lines can
be drawn at distances +K(1A)//q above and below the white
noise line. For white noise an excursion over the limit line
will occur with probability A. The values of K are
approximately 1.63 and 1.22 for A of .01 and .!

respectively.
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C.4 Summary on time series
This summary provides a short reference that can be

used jointly with the examples that follow.

C.4.1 Differencing

1f the autocorrelation function or partial autocor-
relation function does not decay rapidly, consider
differencing the data. This can be confirmed by finding a
very large power at a freguency of zero on the power
spectrum plot (see the ARIMA example below). If differencing
vas required, examine the differenced series to see if more
differencing is needed. It is advisable not to

overdifferentiate,

C.4.2 ARMA model orders
Table C.1 can be used as a guide to select model

orders.

C.4.3 White noise check

teness of the signal, the autocorrelation

.

To test for wh
function and partial autocorrelation function should not
shov any significant value, the power spectrum should be
evenly distributed and the cumulative power spectrum should

follow the diagonal line.



TABLE C.1

Model characteristics for order selection

model autoregressive|moving average|mixed
DN, =¢, N,=Ce, DN,=Ce,
autocor- infinite finite infinite
relation (damped (damped
exponentials exponentials
and/or damped and/or damped
sine waves) sine waves
after mn-nn
lags)
tails off cuts off after|tails off
mn lags after mn-nn
lags
partial finite infinite infinite
autocor- (dominated by |[(dominated by
relation exponentials exponentials
and/or sine and/or sine
waves) waves after
nn-mn lags)
cuts off after tails nff tails off
nn lags after nn-mn
lags

C.5 Some preliminary examples

A fev examples of the use of the autocorrelation

function, partial autocorrelation function and power
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spectrum are presented in this section. These examples were

inspired by Nelson, 1973,
C.5.1 Pure autoregressive process

A series is generated from a known autoregressive
process (this is termed a "realization” of the process). The

data generated will then be analyzed to illustrate the use



of the information that can be caiculated from input output
data. Only graphical information will be used (as it would
be the case in dealing with plant process data). The AR(2Q)
process used is
(1-q  +.75@ "IN, = e, €,aN(0, 1)
5

This prc-ess has a pair of complex roots at q'= % b f4gj

(thus stationary). The missing values (N ,,N..) are set to
zero and three hundred points are generated. The realization
is presented in Figure C.1.

é-\

. |
©

Time Series
t 00
' A

-100

AR(2) Process
M1(8)

Fig. C.1 Realization of the AR(2) process

The autocorrelation function is shown in Figure C.2. As
can be expected the magnitude of the autocorrelation
function is significant over several lags and follows a

damped sine wave pattern.
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The partial autocorrelation function is presented in
Figure C.3. Here the magnitude of the partial autocor-
relation function becomes negligible after lag 2 as it
should be for a pure second order autoregressive process.

From the form of the autocorrelation and partial auto-
correlation functions, the process is tentatively identified
as being AR(2). This is only a tentative assessment as the

order might be changed later at the model validation step.

C.5.2 Pure moving average process
The MA(2) process used is
N, = (14.7q7'-.2q%) e, e, ~N(0,1)

vhich has roots at q '=-1.09 and q '=4.59 (so is an
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Fig, C.3 Partial autocorrelogram of the AR(2) process
invertible process, but this property is not required for
stationarity). As for the autoregressive process three
presented in Figure C.4.
The autocorrelation function is shown in Figure C.5.
The magnitude of the autocorrelation function is negligible
after lag 2 as expected for a second order moving average
process. The partial autocorrelation function presented in
Figure C.6 shows that the magnitude of the partial autocor-
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identified as being MA(2).
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rig. C.6 ngggal autocorrelogram of the MA(2) process
C.5.3 Mixed process

In real applications, mixed (autoregressive and moving
average) processes are the most common and the most
difficult to identify. The problem is that the magnitude of
neither the autocorrelation nor the partial autocorrelation
functions will become insignificant. Identification thus
requires both judgement and experience. In certain cases it
may even be impossible to identify a unique model. Then all
the possible models are retained and their parameters
estimated (generally resulting in models that are very
similar). Model validation is used to choose the best model
from all the possible candidate models (e.g. the one with

the lowest sum of squares or the one with the fewest
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parameters, etc).

In this example a nonstationary process is used to show
nonstationary behavior. Taking one difference will make this
process stationary (in practice a second difference may be
required but as a rule of thumb no more than twc differences
should be taken) and Lhe mixed process is identified. The
process chosen is ARIMA(1,1,1)

(1-0.5q")UN, = (1+.99 e, €,aN(0,1)
This can be rewritten as

N, = 1.EN._,-.5N,..*¢,+.5¢, _,

t
with the roots of the characteristic equation

(1+1.5q '+.5q7°) at q '=1 and q '=2. Although this is
stationary in the rigorous sense, the zero at q”-1 is on

the limit of stationarity. This can create problems. On the
other hand, the differenced series characteristic equation
is 1-.5q ' which has a single root at g '=2. This is well
within the stationarity boundary. The two cases
(nonstationary and differenced) will be presented in
parallel although in practice the autocorrelation and
partial autocorrelation functions of the nonstationary (or
nearly nonstationary in this case) series would be examined
first and then from the behavior of the autocorrelation and
partial autocorrelation functions (a slov decrease indicates
nonstationarity or near nonstationarity) the choice of
differencing or not differencing would be dictated. The

nature of the powver spectrum can also help in deciding if

differencing is needed. If there is a large peak near zero
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frequency (near DC values) then differencing is required.

In Figures C.7 and C.8 the realization of the two
processes are presented. The autocorrelation functions of
the two processes are clearly different as can be observed
from Figures C.9 and C.10., The slow damping of the autocor-
relation function for the ARIMA(1,1,!) process indicates
that differencing should be performed. The autocorrelation
of the differenced series dampens quickly so a second
difference is not necessary.

2

Time Series

4000 X
1 1

/

e——

o
Ly

A
HI
8 R 1 T T L] 14 1

D | RS v
«0.00 80.00 16000 24000 32000 40000
Time

60 00

ARIMA(1,1.1) Process
M1(8)

Fig. C.7 Realization of the ARIMA(1,1,1) process
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Fig. C.8 Realization of the differenced ARIMA(1,1,1)
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AUTOCORRELATION

T

1

T A T i
0.00 1000 2000 30 00 40 00
LAG

1
50 00

Time Series
ARIMA(1.1,1) Process
. FY(0.1.0)M1(8)
Fig. C.10 Autocorrelogram of che differenced
ARIMA(1,1,1) process
The corresponding partial autocorrelation functions are
presented in Figures C.11 and C.12, Since the power spectrum
can also be used in the choice of differencing, the power
spectrum of the two processes is presented in Figures C.13
and C.14. It can be seen from the power spectrum that

differencing is required.
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C.6 Crosscorrelation function
The crosscorrelation function is used to ascertain the
relationship between u,  and y, if the model being considered

is of the form

Y. © g_u:-u + N+ B

The basis for calculating this function is the crossvariance
from u, to y, defined as

Yo, (3) = EL(u=0) (y,.,=9)]

It should be noted that the autocovariance of y. is Tﬁ(j);
In general vy, (j)=y, (j) but

v, (3) = El(u-0)(y,.,~§))

= E[(u,_,~U)(y,~¥)])
= E[(y,-¥) (u,.,~0)]

= v,,(-3)
The crosscorrelation function, defined in a manner analogous

to that for the autocorrelation function, is expressed as

i)
p..(j) = Yy (3
uy auoy

The crossvariance is best estimated as

Cuy(j) - % :%: (uléﬁ) (yi*li;}) tor j2 0

Ne g - - »
= % kf‘ (y,~y) (u,.y-u) for j<0

> the crosscorrelation function can be estimated as

£, (3) = =
Y ve, (0] ve,,

The criterion for deciding whether a particular
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crosscorrelation is significant is given by Bartlett (see
Box and Jenkins for details, it assumes that u, and y, are
not crosscorrelated at this lag)

-
—

VAR(r,,(§)) & g23 _ e, (i) b, (i)

1z~

If u, is white noise, it follows that

P, (i) = 0 for i# O

P, (0) = 1
so based on the hypothesis that u, and y, are not
crosscorrelated and that u, is white noise, the variance is
given by

VAR(r,,(§)) = g3
C.7 Ilnput prevhitening
If the original data series are already differentiated
(if necessary), then the model can be written as
Yo ® VoUy * ViU, + Vou ., o0 * N, + B

vhere v, are the impulse response weights obtain by the long
division of B by A and the weights before the delay has
passed are zero. Removing the means by subtracting the
equation with the means (i.e. the equation obtained by
replacing all the values by their mean) and then multiplying
by (u,.,~u) and taking the expectations gives

Yoy (3) = vory (3) + vyv, (3-1) ¢ voro(i-2) ...

+ yul3i)

Assuming that u,, is uncorrelated vith N, for all j beyond
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some point K the impulse response of the system will die
out. Truncating at that point, a system of equations can be

written for j=0 to j=K.

Yop = TuV

where
Yoy = [yuy(O),yuy(1).--u7uy(x)]

noting that vy, (3)=y,(-3)

.

Y., (0) Yo, (1) coe Yo (K)

r. .= Yo (1) Y., (0) cee Yy (K1)

uyu
.
.
.

Yo (K=1)  y(K-2) ...y, (0)

L -

Vs [vg, Vi) ooy V]
This system could be solved to obtain the impulse response
weights. However the system can be simplified if the input
is white noise. Then y,(j)=0 for j»0 and v, (0)=0} which
gives

yuy( j) = Vo,

v, = pw(j)—f
This implies that for a white noise input, the impulse
response veights are just a scaling of the crosscor-
relations. Note that the first k weights (v,, ..., v,.,) will

be zero as the crosscorrelations will be zero until the
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delay of k has passed.
To make the input white noise, it is assumed that the
input can be modelled as a time series
ou, = fa, + K a,aN(0,07)
where

e 1+6,g' + 6.9 ...+ 6,9 °

6 -1+0ag"' +0q’ ...+ og
Here « is introduced to account for the mean of u  (if it is
nonzero). Because this model is similar to the noise model
(see Equation B,1), identification of the prewhitening model
is performed in the same manner as that employed to
determine the noise model.

In order to identify the (unaltered) transfer function
the output must also be filtered using the same filter
oy, = 6B, + «
then

v, = b i)zt

The process of fitting a time series model to filter the
input series u, (and filtering the output y,) is termed

prevhitening.

C.7.1 Prevhitening parameter identification

The two prewhitening parameter estimation algorithms

that are employed in the in the PITSA program are now

described.



Preliminary prewhitening parameter estimation

Assuming that suitable differencing has already been

performed, consider the following mixed ARMA(p,q) process

ON, = B¢, + K ¢t=N(0,af)
N, = 0Ny =0:N; e =0 N+ e *+ B,
+ 0,60 oo, * Btk (c.3)

subtracting the equation with the means from Equation C,3

and then multiplying by ‘., - N) and taking expectations

gives
Y(i) = =0, 7 (i=1) = 6,y (i-2) ... = o yuli-p)
+ v, (i) + 6,y,,(i-1) ... + 6.7, (i-q)
since
Yy (i) = 0 for i > 0
then

Yan(i) = =0, 7(i=1) = 0,70 (i-2) o0 = O 7(i=p)
for i2g+1
or in matrix form this can be expressed as
Gé =T

wvhere
¢ = [-0,,-¢;,...,-0,]
" = [yn(Q*1), vm(Q+2), ..., e (Q*P) )
@ Y@ 1) eee val@epe!) |
Ge| y,(qg+l) Y (Q) cee Yn(@-p+2)

Y@ P 1) Yo Q*P-2) eer ViuelQ)

The initial estimates of the autoregressive parameters (¢)
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are readily available from these equations, known as the
Yule-Walker equations,

Once these estimates are available, Equation C,3 can be
written as

¢0N‘ + ¢‘N‘_-, LRI + 0 Nt‘

letting

wt = € + e‘ft-1 ) + 6757 (C-i)

t
allows this equation to be expressed as
W, = 0N + ON_, +ss +tON_ -k
subtracting the equation of the means, multiplying by
(w,.,-w) and taking expectations gives
Yo (i) = 00,7 (1) + 50,7, (i=1) ...
+ 000, Y (i-p) +0,0o7, (i+1) + ¢,0,7,,(i)
cee v 00,7 (17p=1) ...+ O 80r(ivp)
+ o0y (itp=1) L.+ pepy, (i)
vo(i) = B £ 60,y (]i*1-k|) for i=0,...,q

Equation C.4 can be rewritten as

w, = Tee, + T8, ... *+TE_  e=NO,1)
with

To =0,

T, = 6,7,
since

Yeo(i) = 0 for is0
Yee(0) = 1
Noting that the means are zero and multiplying by w,_, and

taking expectations yields
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Yo li) = 107+ 1.7 0 oo+ T T,

G-

=X 7.7

e

so the estimates of the moving average parameters can be

vy 151,000,

obtained by iterating on r (e.g. Newton-Raphson) to solve
q-i

32;'0 T.7,., = Yu(i) =0

Nonlinear least squares prewhitening parameter estimation

This algorithm is the same as the maximum likelihood
estimation algorithm described in Chapter 4 except for the
calculation of the derivatives., Eguation C.3 can be
rewritten as

€, = N + N, oco * ON_ =~ bie., = O, o0

- quvq - K

Oe de,_, de,_
W--'t'i-e'v“‘-oq ‘

b

€,.

de, de,_, 3

W-Nt'i - 0‘ _5? see = oq _F’f
de, de, ., de,_
2 T iy PR My s

with the unknown values set to zero.

C.7.2 Transfer function plus noise model order

identification

Once the impulse response has been obtained it can be
used to estimate the noise series from

Ne=y, -Vy -8
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N . oxy T R
VEVC*V?q *V:q iii*‘}kq

Analysis of the autocorrelation function, partial autocor-
relation function and power spectrum of the noise series
will yield the noise model structure.

For the transfer function recall that

o B 1 A
Yo ® Ui * N+ 8

and
Y. = Vu, + N, + £
then
AVu, = Bu,.,
AV = Bq™"

equating equal powvers of q'
v, = 0 for i=0,..,k
min{1-1,ni
Viey = by - Z Vie,-y3
i TS ,

n = order of A

5 for i=1,..,m

m = order of B
min{i-t,n} _ .
Vie; = *EE‘ Vi.,-48; for i>m

This means that the impulse response will be zero up to the
lag k. Then the weights will follow an inhomogeneous n'th
order difference equation. Finally the weights will follow a
homogeneous n'th order difference equation after m terms.
The delay, k, is the number of initial crosscorrelation
values that are zero. The choice of n and m is less obvious.
Without numerator dynamics (i.e. m=0) the step response
can also be used. The step response is the integral of the

impulse response or in the discrete case step = ﬁn v,. Use
T
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of the step response to determine the delay may be
misleading if a series of small impulse responses of the
same sign appear before the delay has passed. These small
values may render the first step response weight negligible
through the summation and thus unnecessarily increase the
estimated delay. They can also "create" a step weight where
there should be none. This would induce an underestimation
of the delay. The step response of a zero'th order process
is complete at the first step (i.e. it is flat after the
first step). A first order process follows a simple
exponential curve. At least a second order process will be
necessary to explain anything more complex (e.g. overshoot
with oscillations, etc.).

The addition of numerator dynamics make the issue more
confusing by adding terms to the initial response. The
following gquidelines should help. Numerator dynamics will
cut off after m lags, denominator dynamics will tail off. An
exponential decay of the impulse function (may be of
alternating signs) indicates that n=1, a damped sine wave
and/or damped exponéntial indicates that n=2 or higher. A
process with both numerator and denominator dynamics will
have m lags without any obvious patterns and then an
exponential decay (n=1) or damped sine wave and/or damped
exponential (n=2), Examples of impulse (crosscorrelation)
responses for various model orders are presented in Figure

10.6 in Box and Jenkins, 1976.
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Assuming a low order model initially and then adding
(an) extra parameter(s) only if the model is inadequate will
generally produce satisfactory results. It should be noted
that the numerator must have at least one parameter
otherwise the oucput 15 not related to the input.

I1f the noise level is low, an approximate solution may
be used. If the input is white noise and the noise is low,
the output can be thought of as a time series driven by only
one source of noise. In this case the autocorrelation
function, partial autocorrelation function and power

spectrum of the output (prewhitened if necessary) can be

be done for the noise model or for the input prewhitening.
This is only an approximation but if the signal to noise
ratio is high it will yield good results that are easier to
interpret than the use of the crosscorrelation or impulse

response.

C.8 Summary of model order identification

To identify model orders, plots of the autocorrelation
function, partial autocorrelation function and crosscor-
relation function are used. But in order for these plots to
be meaningful the input to the transfer function model must
be white noise. If the input is not white, a filter must be
applied to make the input white. In order that the correct
transfer function is identified, the same filter must be

applied to the output signal. This filtering of the input



and output signals to produce a white input is termed
prewhitening. Therefore in the general case the first step
in time series analysis is the determination of a

prewhitening filter,

C.8.1 Prewhitening filter identification

The first step of prewhitening order identification is
to find if differencing the data is required. This is
achieved by examining the autocorrelation and partial auto-
should be differenced once if the magnitude of the autocor-
relation and partial autocorrelation do not decrease rapidly

(indicating a nonstationary data set). If differencing was

function plots of the differenced series must be examined to
asgsess if further differencing is required. If so,
difference the data again but it is advisable to not
difference the data more than twice. A model for which the
data had to be differenced is termed an integrated model.

Once the degree of differencing has been established
Table C.1 can be used as a guide to select the orders of the
filter,

The model found is known as an AutoRegressive
Integrated Moving Average (ARIMA) model. The model is
denoted by ARIMA(p,d,q) where p is the autoregressive order,
d the number of times the data is differenced and q is the

moving average order.



The transfer function model does not have the same
structure as the prewhitening transfer function therefore
the estimation of the prewhitening parameters must be
performed by one of the prewhitening identification

algorithms as described in Section C.7.

C.8.2 Prewhitening parameter estimation validation

The residuals of cthe least squares prewhitening
estimation should be white noise. To check if the residuals
are white noise, the autocorrelation and partial autocor-
relation function plots should be examined., If their values
are significant (outside the confidence limits) then the
residuals are not white. The power spectrum should exhibit
an even distribution across all frequencies. The normalized
cumulative power spectrum plot should follow the diagonal
within the set confidence limits.

If the magnitude of the highest order autoregressive or
moving average parameter is close to zero, consideration
should be given to reducing the model order with a minimum
loss of accuracy. If more than one parameter is close to
zero, eliminate only one parameter at a time (select the
parameter nearest zero or the one with the overall strongest
correlation in the parameter correlation matrix). If the
reduced model identification gives another parameter close
to zero eliminate one parameter and check the reduced model

again.
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C.8.3 Transfer function order identification

Once the prewhiteniing filter has been identified the
transfer function model order can be found. First check if
the filter produces a white noise input (check as for the
residuals above),

Two different methods can be used to find the transfer
function orders, For the first method (approximate) the
model order can be found in the same manner as for the
prewhitening order (i.e, assuming low noise level, the
transfer function can be thought of as a prewhitening filter
since the input is now white noise). The second method (more
exact) uses the fact that the crosscorrelation function plot
is similar to the impulse response plot for a white noise
be used in the following).

The plot of the crosscorrelation function is examined
first to determine if there is any delay. If there is a
delay, the crosscorrelation function will have k steps equal

to zero i.e, within the confidence limits,

Not including the delay, the crosscorrelation function
plot of a moving average process cuts off (sharp difference

betwveen the last significant and the first non significant
crosscorrelation) after m lags vhile an autoregressive
process tails off. An exponential decay (may be alternating
sign) indicates that n=1, a damped sine wave and/or damped

has m lags without any pattern and then an exponential decay
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(n=1) or a damped sine wave and or damped exponential (n=2
or higher). For examples of impulse (crosscorrelation)
responses of various model orders see Figure 10.b6 in Box and
Jenkins, 1976,

Note that there should always be at least one moving
average parameter, otherwise the right hand side of the
transfer function equation is zero i.e. the output is not
related to the input but only to white noise,

Estimation of the ncise model order is done in the same
manner as for prewhitening. The noise estimates are
generated using the impulse response as a model of the
process since the transfer function parameters are not yet

available.



D.1 Vector algebra

Let Y and U be vectors and ¥ and Z be matrices and
lower case letters denote elemen: ~f a matrix or a vector.
The following relationships are given without proof. For

more details see Stuart, 1973 or Golub and Van Loan, 1983.
y,]
Y = Y:j

Y? = [}'n}';;-n]

F w‘| @@ LI

* = i’;, W2; LI
w!l w;n & & @

*T = 1’,; W;; LI

(Y'e)T = ¢y
(Y'oUu)T = YoU = UTPTYs (#U)TY (Y'$U is scalar)

(Y+oU)™ = YT+ (o)
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o4 o
=K

L= R

au

oja ofa
"‘F: L3 F

"
wm m‘
Y 1 et

L

4 ol
QEXéL =Y (if ¥ is not a function of U)

if » =% ¥ is said to be symmetric

- ,,T _
Q?Ltgi = 29U if » is symmetric

v o= ¥ if ¥ is symmetric

(¥ = (¢7)"

¥'Z¢ is symmetric if = is symmetric

W' is symmetric

% is singular if it is not full rank (determinant=0)

if ¢ is nonsingular ¥ ' exist

[¢"¢) '¥ is called the pseudo inverse of ¥

let ¥ and = be two matrices of appropriate dimensions, then
E(¢+Z] = E[¢) + E[Z]

E(¢E] s E[*) E[Z])

vhere E[ ) denotes the expected values

D.2 Norms and condition numbers

This is a condensed form of the material presented by
Dennis and Schnabel, 1983, The condition number of a matrix
A is defined as

ko (A) = |Al, W',
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where ||A||, is a suitable norm for the matrix A. A suitable

matrix norm is the induced norm defined as
|Av],

Al = max FT‘T;
" "F = “!le,'\{!e Vv p

and the class of vector norms is
) r e
Wi, = [ £ 1v.17]

The most commonly used matrix norms are

1

Al = miin"a'ﬂh (max. column sum)

(LY

Hall.

HAly
Some useful properties are

faBj s fia)- {8l
if A is symmetric

TYR

A, = ith eigenvalue of A

(max eigenvalue of A™A)'"

max |a, |, (max. row sum)

121%n

1=l =1

m?s?n 1]

for c, a constant,

IcAl = clAl

k(cA) = x(A)
for A of dimension nxn (square)

n!‘/éllt'g S l;\lz § n‘;ilj\li

D.3 Linear operators
Define the back shift operator q ' as
Q'Y * Yoo
vhich leads to

Q. = ¢(QY,) = ¥,

or in polynomial form

(£ I I;!ﬂg)‘? (Frobenius norm)
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r , 1
8y 2y
36, 06, 36, 26, °°°
: 3°3 3°J
V=V'd=| 38, a6, 26, 26, °'°

6,,, = 6, - V'V3,
This is known as the Gauss-Newton algorithm, To ensure that
V is i _.rtible, it is sufficient that V be positive
defirn..e. For this, V is modified to

V=V + vl

vhere v is a positive constant such that v > -min{\} where
A\, are the eigenvalues of V in the Gauss-Newton alogrithm,
That is, v guarantees invertibility by moving the
eigenvalues of V into the right half plane. The algorithm
becomes

0,., = 8, - [V+r117'V3,
This is known as the Marquardt-Levenberg algorithm and » is
known as the Marquardt-Levenberg correction factor. Note
that vhen » is very large, the algorithm behaves like a
steepest descent algorithm and when » is small it reduces to
the Gauss-Newton algorithm. The choice of a large initial »
will ensure a rapid convergence vhen far from the optimum
and reducing » will ensure a rapid convergence near the
optimum. The algorithm was modified by Levenberg to include
scaling of the Hessian and the derivative vector. This helps
the algorithm by ensuring that » has a similar relative

effect on all the diagonal elements of the Hessian. The
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D.5 Matrix inversion lemma
Let A, B, C and D be matrices of appropriate
dimensions, with A square and nonsingular, then
(A + BCD) ' = A" - AT'B(CT' + DAT'B) DA’
The reader can easily verify this by premultiplying both
sides by [A +BCD) and obtaining the identity matrix on both

sides.

D.6 Householder transformation

Consider a Hnuseholder transformation matrix defined as
Q=1-2uf

vhere u is any unit length vector (i.e. its Eucledian norm

is unity). The transformation matrix Q has the following

properties

1. Q is symmetric i.e. Q" = Q

2. Q is orthogonal i.e. Q'Q = I

3. the product of Householder transformations is orthogonal
i.e. if Q = Q) ... Q, where Q; are Householder
transformations then Q’Q =

4. given any vector x there exists a Householder

transformation Q such that

Qx=

OO >

1/

vhere A = (x"x)'"?. It can be shown that

Q=1-2uw'
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with
u, = [%(1 - x,/N1'
u, = -x,/(2ud)
satisfies the above equation.
given any N x p matrix X (N > p) there exists an

orthogonal matrix Q such that

~f

where R is a p x p upper triangular matrix and Q is the
product of p Householder transformations. A
transformation Q, can be found such that

= ¥
Ay X" X"y el Xy

A ’ ;¥
Q,X= 0 x',;2 %" ooe X'y

; :
A L 1
0 X'paX'p; eee X'y

he .

similarly Q, is defined by I - 2u'u'’ where the first

element of u' is zero. Then Q, can be chosen such that

LY SRPR SETERE R

QzQ'x. o kz X"::, LA x-zp

"
o x .3 LR N 2 x !F

€D oo

continuing this process yields

Q=0 ... @



D.7 QR decomposition

As an example, take the least squares estimates that
can be shown to be
6 = (¥') ¥y
Unfortunately ¥'¥ is often ill-conditioned, leading to an
inaccurate inverse, In this circumstance special numerical
procedures are required. The QR decomposition is applied
before the formation of #'¥ to prevent numerical
inaccuracies that could occur due to the squaring of the ¥
matrix. The least squares problem can be written as
¥ = Y
Applying a series of Householder transformations Q = Q, ...
Q,, where p is the total number of parameters, gives
Q¥6 = QY
with
Q¥ =] R

QY =|n,

wvhich gives

RO = 1n,
This can readily be solved by back substitution as R is an
upper triangular matrix. The sum of squares of residuals
(cost function) is

J = (Y - #0)7(Y - #0)
using the orthogonal property Q'Q = I

J = (Y - #6)7Q'Q(Y - ¢6)
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J = (Y'Q" - 6™QT)(QY - Qwe)

where R
Yo" = (QY)T = |n,
n:
S
Q" = (o¥)T = | R
0
- .
- qT .~ - -T - b
J =|n, nj - OT R n,
. n, 0 n.
- -T -3 - b -T 3 -’
o - r - T- - - 7
i R{6 + 6 R {6
n, 0 L0 0

J = nTn, + n:nz - OTRTn, - nTRG + 0'R'RE

J = (n, - RO)"(n, - RO) + n3m,
since the least squares solution is

RO = n,
the first term is zero and the sum of squares of residuals
becomes

Sa = nm,

D.7.1 Recursive QR factorization
After factorization the solution to the least square
problem is
Ryus1Oper™ fyo
vhere R,,, is a pxp upper triangular matrix and 79, is a
vector of length p, p the total number of parameters to
jdentify. This set of equations can be solved by back

substitution. The remaining N-p equations are of the form



0 = v,.,

therefore v..,v,., is the sum of squares of residuals, Si;,
N¢1T N N

D.7.2 Update of R,., and 7,

Consider the situation when N observations have been
collected. Assume that the Householder transformation
procedure for the QR factorization has been used. Then

J, = (n, - RO, (n, - RSB, + S]
2

Jer = (ny = Ry, ) (n, = RO,.,) + Si

+ (Y..”' ¢:010N01)=

T

- 11 A
- - B -

nn RN ﬂ'ﬂ RH
JNH = - olﬂ - e!ﬂ + Si
Ynes 0:” Y'gﬂ Q:u
L J L .
such that

An orthogonal transformation (., can be found s
r 1
Qu| Ry |=]| Ryt
e 0
with Q, expressed as Q, ... Q, wvhere Q are Givens orthogonal

transformations of the form



where

I, 0
iC, i 0 &S
Qx' ............
0 #0180
i-5,i 0 iC
= RN ll/kl
= ONol,x/X;
= [R;,n ’:H.x]‘/:

now define n,., and v,,, from

Qu

M

Yner

=1 Nyer

v"o!

recall that since Q, is orthogonal QiQ, = I, then

-T o -
T 2
[ M =1 Ry |6x| QuQy o |~] Ru |On| * Sa
L Yues ’:u Yner 0:.|
J _J -l
-T - - qT -
T
nuot nuol 0"01 Rﬂol nl0|
Vet Vyer 0 J Vyer
ot j A
2
Nyer Ryer o.o\ + OT Ryer Ry euﬂ + S,
Ne?
Ve 0 0 0
- - L -l =3
2 T T
Jgo! = n:o‘n'o\ + ’.01 = onotaﬂoln.01 - n:o|auolou01

T T 2
+ onovnlﬂnnolalﬂ + sl
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JH“ = (ﬂNi1 = Rﬂ‘vé'ﬂe‘)f(ﬁui‘ = Rna!sﬂ‘!) + ;‘iti + Si
S;-:‘ = Si M "iﬂ

The QR decomposition is also known as a sguare root

decomposition since

P, = (¥¥,)"
= (¥.Q0'ov,) "

T
Py =[|Ry Ry
0 0

_ (nTp )"
Py, = (RyR,)
from this R, can be thought of as the square root of the

inverse of P,.
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Appendix F: MATLAB PROGRAMS

F.1 Control with reduced order model using normalization

%Rohr's example: control with reduced order model

%fac is scaling factor on the deadzone normally calculated

% according to rules in Cluett's Ph.D. thesis

Clear

tmout=input('# iterations? ');

fac=input('scale factor? ');

Xinitialization

u(5)=0;

y(5)=0;

th(2)=1,;

phl=.1;

phu=1,;

db=,37596*fac;

itime=0;

¥main loop

while 1

itime=itime+1;

%generate system output

y(1)=,8202y(2)-.0327+y(3)+.000431%y(4)+,2342u(2)+,.1852u(3)
+.00479su(4);

%*form regressor

ve[y(2) u(2)];

%calculate normalization factor

vc-[abs(¥(2:5)) abs(u(2:5))];

n=max(vc);

n=max([n 1]);

%calculate normalized regressor

vnsv/n;

Xcalculate normalized error

en=y(1)/n-thsvn';

Xcalculate phi .

vtvsvnsvn':

dbl=2¢(1+phlsvtv)sdb/(2+phlsvtv);

dbu-zt(1+?hutvtv)tdb/(Z*phutvtv);

if abs(en)<=dbl

phi=0;

elseif abs(en)>dbu

phis=phu;

else
phé-zt(abs(on)-db)/((2tdb-abs(en))tvtv);
en

Xupdate faranctors
thsth+phisensvn/(1+phisvtv);

Xcalculate control action
yspei-(fix(rem(itime,40)/19.9)s2);
u(1)-(ysp-th(l)tf(1))/th(2):
yu(itime,1:2)=[y(1) yspl;
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thu(itime,1:3)=[th(1:2) en];
¥shift vectors

y(5)=y(4);

y(4)=y(3);

y(3)=y(2);

y(2)=y(i);

u{(5)=u(4);

u(d4)=u(3);

u(3)=u(2);

u(2)=u(1);

if itime==tmout;break;end
end N

axis([0 tmout -2 3])
plot(yu)

xlabel('solid output, dash setpoint')
pause

axis([0 tmout -.5 1.5])
plot(thu)

xlabel('solid a, dash b')
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F.2 Control with reduced order model using modified

projection parameters

%Rohr's example: control with reduced order model but no

% normalization

%fac is scaling factor on the deadzone normally calculated

% according to rules in Cluett's Ph.D. thesis

%also allows to modify the projection algorithm parameters

%from their normal values of unity

clear

tmout=input('# iterations? ');

fac=input ('scale factor? ');

a=input('a? ');

c=input('c? ');

¥initialization

u(5)=0;

y(5)=0;

th(2)=1,;

phl=.1;

phu=1,;

db=,37596%fac;

itimes=0;

%main loop

while 1

itime=sitime+1;

%¥generate system output

y(1)=.8202y(2)-.03272y(3)+.0004312y(4)+.2342u(2)+.185%u(3)
+.00479%u(4);

%form regressor

vs[y(2) u(2)]);

%calculate normalization factor as before but set it to

Xunity after these (useless) extra calculations are

Xperformed only to make the comparison with the

¥normalized case easier

vc-[abs(¥(2:5)) abs(u(2:5))1];

n=max(vc);

n=max([n 1]);

n=1;

%calculate normalized regressor

vasv/n}

%calculate normalized error

en=y(1)/n-thsvn';

%calculate phi

vtvsvnsvn';

dbl=2s(1+phlevtv)sdb/(2+phlsvtv);

dbu-Zt(1*?hutvtv)tdb/(2+phutvtv);

if abs(en)<=dbl

phi=0;

elseif abs(en)>dbu

phis=phu;

else

phi=2s(abs(en)-db)/((2sdb-abs(en))svtv);
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end

Yupdate parameters ,
th=th+asphisensvn/(c+phisvtv);
%calculate control action
ysp=1-(fix(rem(itime,40)/19.9)%2);
u(1)=(ysp-th(1)*y(1))/th(2);
yulitime,1:2)=[y(1) ysp]);
thu(itime,1:3)-fth(1=2) en);
%¥shift vectors

y(4)=y(3);
y(3)=y(2);
y(2)=y(1);
u(s)=u(4);
u(4)=u(3);

u(3)=u(2);

u(2)=u(1);

if itimesstmout;break:end

end

axis([0 tmout -2 3])

plot(yu) ,
xlabel('solid output, dash setpoint’)
pause

axis([0 tmout -.5 1.5])

plot(thu)

xlabel('solid a, dash b')
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F.3 Control with reduced order model using a parameter

filter

%Rohr's example: control with reduced order model using

% filtered parameters

%fac is scaling factor on the deadzone normally calculated

% according to rules in Cluett's Ph.D. thesis

% (narmally set to ze:c)

clear , , ,

tmout=input('# iterations? ');

fac=input('scale factor? ');

afilt=input('parameter filter constant: ');

Xinitialization

u(5)=0;

y(5)=0;

thf(2)=1,;

phl=.1;

phus=1,;

db=,37596%fac;

itime=0;

%main loop

vhile 1

itime=itime+1;

Xgenerate system output

y(1)=.,8208y(2)-.0327+y(3)+.000431¢y(4)+,234%u(2)+,185%u(3)
+.00479+u(4);

%form regressor

ve[y(2) u(2)); ,

%c:lcul;te narmalizitlan factar as befare but set it to

ipﬂtfarmcd anly to make the camparilan v;th the
%normalized case easier

vz-[ab:(¥(2:5)) abs(u(2:5))]);

n=max(vc);

n=max({n 1]);

n=1;

%calculate normalized regressor

vnsv/n;

%calculate normalized error
Iﬂ-{(1)/ﬂ‘thiVﬂ"

%calculate phi

vtv=vnsvn';
dbl-zi(1+ph1tvtv)idb/(?*phlivtv),
dbu-?l(1*?hulvtv)idb/(2+phu!vtv):

if abs(en)<=dbl

phi=0;

elseif abs(en)>dbu

phi=phu;

else S ) ,
phi=2¢(abs(en)-db)/((2¢db-abs(en))svtv);
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end
%Yupdate parameters
th=th+phisensvn/(1+phisvtv);
%¥filter parameters before use in controller
%note that this does not affect the parameter identification
¥but only the controller
thf=thfsafilt+(1-afilt)s*th;
¥calculate control action
ysp=1-(fix(rem(itime,40)/19.9)%2);
u(1)=(ysp-thf(1)sy(1))/thf(2);
yu(itime,1:2)=[y(1) yspl:
thu(itime,1:3)={th(1:2) en]);
thuf(itime, 1:3)=[thf(1:2) en];
¥shift vectors

y(5)=y(4);

y(4)=y(3);

y(3)=y(2);

y(2)=y(1);

u(5)=u(4);

u(4)=u(3);

u(3)=u(2);

u(2)=u(t);

if itime==tmout;break;end

end

axis([0 tmout -2 3])

plot(yu)

xlabel('solid output, dash setpoint')
pause

axis([0 tmout -.5 1.5]))

plot (thu)

xlabel('solid a, dash b')

pause

plot (thuf)

xlabel('filtered: solid a, dash b’')
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F.4 Control with reduced order model using a T filter

%¥Rohr's example: control with reduced order model using

% filtered data

%fac is scaling factor on the deadzone normally calculated

% according to rules in Cluett's Ph.D. thesis

% (normally set to zero)

%afilt is the data filter constant

clear

tmout=input('# iterations? ');

afilt=input('data filter constant: ');

%initialization

u(5)=0;

y(5)=0;

vi(2)=0;

yf=0;

phl=,1;

phu=1,;

db=0;

itime=0;

Xmain loop

while 1

itime=itime+1;

Xgenerate system output

y(1)=,8208y(2)~.0327¢y(3)+.000431%y(4)+.234su(2)+,185%u(3)
+.00479%u(4);

%form regressor

ve[y(2) u(2));

Xfilter regressor and output

vi=mv-afiltsvf;

yf=y(1)-afiltsyf;

Xcalculate normalized regressor (since normalization is not

%employed this is a simple assignment statement)

vnsvf:

%calculate normalized error

ensyf-thsvn';

Xcalculate phi

vtvsvnsvn';

dbl=2s(1+phlsvtv)sdb/(2+phlsvtv);

dbus2s( 1+phusvtv)sdb/(2+phusvtv);

if abs(en)<=dbl

phi=0;

elseif abs(en)>dbu

phi=phu;

else

phé-:t(abs(cn)-db)/((thb-abs(cn))tvtv);

en

Xupdate parameters

theth+phisensvn/(1+phisvtv);

%calculate control action

ysp=i-(fix(rem(itime,40)/19.9)¢2);

u(1)=(ysp-th(1)sy(1))/th(2);
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yulitimr,1:2)=(y(1) yspl;
thu(itime,1:3)={th(1:2) en];
4¥shift vectors

y(5)=y(4);

y(4)=y(3);

y(3)=y(2);

y(2)=y(1);

u(s)=u(4);

u(g)=u(3);

u(3)=u(2);

u(2)=al(1);

if itime==tmout;break;end
end

axis([0 tmout -2 3])

plot(yu)

xlabel('solid output, dash setpoint')
pause

axis([0 tmout -.,5 1.5])

plot (thu)

xlabel('solid a, dash b')
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F.5 Conversion from Laplace to discrete transfer function

function [dnum,dden] = s2z(num,den,ts)

IS R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R
%

% 82z Continuous transfer function to discrete

% transfer function.

%

% I S22 R RS R R R R R 222 R R R R R R R RS R R RS R R R R R R R R R Y
% ,

% [dnum,dden) = s2z (num,den,ts)

.

x

% Definitions:

%

% Discrete 7 dnum(z)

% Transfer G(z) = =-===--=----

% Function 7 ~ dden(z)

% (descending order in z)

%

% Continuous , num(s)

% Transfer : G(s) = --=------

% Function den(s

% (descending order in s)

%

L3 Sampling Time : Ts

%

X SERRRRREREERRRRRRRE RN RN AR RN AR RN NN RN RE R RN REE RN R RS

[a,b,c,d])=tf2s8(num,den);
{alpha, beta)=c2d(a,b,ts);
(dnum,dden)=ss2tf(alpha,beta,c,d, 1);



during the course of this thesis. All the simulations and

experimental results were obtained using this program except

which were carried out using MATLAB.
The user manual is self-contained with its own table of
contents and bibliography. To be used as a stand alone,

Appendix B and C should be appended to the user manual.
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Process ldentification and Time Series Analysis (PITSA v.3.5)
User Manual
André Vien
INTRODUCT ION

This material describes use of the PITSA program but it does
not explain the underlying theory involved in performing a time
series analysis or process identification. Users not familiar
with the area of process identification should consult the Ph. D,
thesis of Vien, 1994 and/or other appropriate references.

Two classes of models are used ir this program. The class of
models used with the Box-Jenkins algorithms is (Box and Jenkins,
1976):

Y, = B/AU._, + C/(DV") ¢, + 8 (1)
wvhile for all the other algorithms the class of models is:

AY =BU_,+Ce +8 (2)
wvhere:
= 1+Aq + ... +AqQ"
=Bqg' +...+Bqg"

delay expressed as a number of sample intervals

constant term (bias)

A
B
)
B
C=1+Cq" + ... +Cq™

D=1+Dq'+ ... +D,q"

7" « degree of differencing (dn times,V=(1-q"'))
¢, = vhite noise

U, = input

Y., = output



g Y, =Y,
if filtering is required the filter model is expressed as:

0 25 =6 V' 2, v« (3)
where:

=6, +6qg' *+ ...+ 6,q"

¢ =1 +0qg" ' *+ ... *0,q"

V¢! x degree of differencing (df times)

k = constant term (bias)
= input to the filter (input (U,) or output (Y,))

= output of the filter (filtered input or output)

1t should be noted that two different filters are available:
one for the input data and the other for the output data. If
prewhitening is desired, in performing a time series analysis,
both filters would be the same and would be based on prewhitening
of the input as described in Appendix B (also see below). This
filter also allovws for scaling (setting 6,) and mean removal
(setting x to the negative of the mean) since 6, and x are still
operative even if the orders nf, df and mf are zero.

As can be seen from the filter model as implemented in the
program (cf. Equation 3), if no filtering action is desired then
6, should be set to unity and x to zero.

The short notation representation used in the program for
the transfer function is T(N,M,DELAY)CST or T(N,M,DELAY) if the
constant term 8 is omitted. For the noise it is N(NN,DN,MN) and

(0,0,0) signifies that some scaling vas done without any dynamic



filtering.

parametric identification method, so if the exact model structure
is not known a priori, some logical approach to establishing a
suitable structure is necessary. For this, it is appropriate to
use a nonparametric method. The method adopted and implemented in
the program is correlation analysis. Correlation analysis helps
the user make an initial determination of suitable model orders
(structure) and then a parametric identification methcd can be
applied. The analysis of the input-output data by correlation

analysis will not necessarily yield the best structure, but

However in order to correctly interpret these plots, the input
signal (data) must be white noise. If the input data is not
representative of white noise the data must be filtered so, in
general, the first step in time series analysis will be
determination of a prewhitening filter. Filtering of the input
data so that the input signal closely approximates white noise is
termed prewhitening. Once the prevhitening filter has been
determined, this same filter must also be applied to the output
model. If this is not done, the identified process model will not
be representative of the original input-output data. The
determination of the prevwhitening filter, as explained in

Appendix B, is based on correlation analysis information (plots).



It should be noted that the filter form used in the program
is the inverse of the form used in Appendix B. This can be
readily observed by examining Equations 3 and B.1. The
correspondance between the two equations is as follows: ¢=C;

2'=¢ ; 6=D; V"'=V""; 2, <N _and k=0, 6,=1, The reason for this change

the right hand side and thus is similar in form to the cransfer

function model.



1. PROGRAM OPERATION

A. Hardware requirements

This program expects a terminal that supports basic ANSI
commands. If the terminal does not support ANSI commands, the
commands will appear as question marks and letters. Although
annoying, it is still possible to use the program.

The program also expects the terminal to have a graphics
mode., If the terminal does not support graphics, the program
can still be used. In this case the user has to answer no
when asked if plots are to be shown. The plots can then be

saved and examined at a later time.

B. Reading data
The program can read data from any data file, provided
the appropriate user defined read function is supplied. The
user read function is a FORTRAN subroutine, named DATIN, that
replaces the default DATIN subroutine included with the
program. The required format is as follows:
SUBROUTINE DATIN(X,U,Y,NDAT,START,SKIP,END,
& XCOL,UcoL, YCOL)
INTEGER NDAT,START, SKIP,END,XCOL,UCOL, YCOL
REAL X(s),U(s),¥Y(s)

vhere:
X time (abscissa)
U input
Y output

NDAT number of points read



program (so they cannot be used to control the subroutine),
When using the DATIN subroutine supplied with the
program the data file can have a header before the data
itself. The default DATIN subroutine can read up to 10
columns, from which time (abscissa), input and output values
are read, If time values are not contained in the data file,
the subroutine will prompt the user for the initial (start)
time and sampling interval. This action will allow the
subroutine to establish a time scale for the data.
used in the data file; SKIP allows the user to not use all

the data points by specifying the number of lines to be

used. The program is currently limited to 4000 data points.

The default subroutine DATIN causes the number of points
and the last point read to be printed on the screen so that
the user can verify that the data values were read correctly
by the subroutine,

In summary, the following parameters are used to control
the default DATIN subroutine for reading data from the data
file:

START first line of data
SKIP number of lines to skip between points
END last line of data



XCOL column of time (abscissa)
UcoL column of input

YCOL column of output

Starting the program
To activate the program type:
$SO VIEN:PITSA
This will set the MTS parameters reguired sc that the
R *PROFILE
FECP XPAGE=QOFF
FECP XTCC=OFF
FECP XRMAR=255
FECP XLEN=255
FECP XPTOP=ON
END
R VIEN:PITSA SERCOM=-ERROR
CONTINUE WITH sMSOURCEs
To rerun the program within the same computer session it
is only necessary to type the following:
R VIEN:PITSA SERCOM=-ERROR
1f you have created a user defined read subroutine
written in FORTRAN 66 or 77, and have compiled the subroutine
into a file, say USER.OBJ, then USER.OBJ must be typed before

VIEN:... in the run command, that is R USER.OBJ+VIEN:....



Modifying parameters

For each option, the relevant specifications for that
option are shown for possible modification. When asked if the
user wants tc change any of these parameters (the guery at
the bottom of the screen) the user can reply Y (or y for
yes), N (or n for no), Q (or q for quit this part) or ? (for
help).

1f the user enters Y the cursor will move to the first
parameter that the user may set. If a parameter is not to be
changed, press the RETURN key to move to the next parameter.
Changes can be made .mply by entering the new value and
pressing the RETURN key. If the value is not acceptable a
message at the bottom of the screen will appear and the old
value will be displayed again., If the value is acceptable the
new value will be displayed and can be further modified. If ?
is entered then a short description of the current parameter
will be shown at the bottom of the screen. If Q or q is
entered then the full screen is updated and the cursor is
back at the query at the bottom of the screen. Also, &~ :r
the last parameter the cursor moves back to the query.

If the user enters N then the program will proceed with
the execution of the program step.

I1f the user enters Q the program will return to the main
menu,

I1f the user enters ? a short description of the relevant
parameters is presented on the screen and the parameters are

shown again for possible modification.



Program plots

The plots that are produced depend upon the particular
menu option that has been selected. 1f confidence limits are
applicable, they should be used to determine the significance
of the plotted values.
autocorrelation plots the confidence limits shown are the one
and two standard deviation bounds as calculated by the
Bartlett long lag bcunds (Box and Jenkins, 1976). The
confidence limits for the cumulative power spectrum are the
1% (outside) and 10% (inside) Kolmogorov-Smirnov bounds (Box
and Jenkins, 1976).

In certain options plots of parameters vs iterations are
generated. The symbols used in these plots are consistent
with the model representation (e.g. A, is the first parameter
of A). B and « are represented by CNT (constant). Additional
plots are given with diagnostic parameters., For these plots
s’ is the sum of squares and COND is the condition number of
the matrix used to update the parameters.

1f the user is operating from a graphics terminal and
regquests to see the plots, the first plot relative to the
current menu option will appear with a cursor., This cursor
indicates that the program is waiting for plotsee commands.
Documentation (no. R169) on the plotsee program is available
from Computing Services at the University of Alberta. All the
plotsee commands can be used, The most useful plotsee

commands are: Next, SKip n (where n is the number of plots to
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skip), STop and ? (for help). The capital letters are the
permissible abbreviations., Help will also give the other

commands not described here.

Program Menus

The different menus available are the following

PITSA MAIN MENU

1. Generate data

2. Retrieve data from data file

3. Save results or data in a file

4. Minimum, maximum, mean and variance of input and output
and plots of input and output

5. Prewhitening order identification

6. Box-Jenkins preliminary prewhitening estimation

7. Box-Jenkins least squares prewhitening estimation

8. Transfer function order identification

9. Non-recursive identification

10. Recursive identification

11, Change one or more of any parameter of any option (or
change title(s))

12. Stop
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NON-RECURSIVE IDENTIFICATION

"
-

Box-Jenkins prelim, trans, func., estimation

Box-jenkins least sguares trans. func. estim,

Least squares

Weighted least squares

Instrumantal variables

Generalized least squares

Maximum likelihood

Extended least sguares

Return to main menu

o



RECURSI 'E_IDENTIFICATION

8.
9.
10.
11,

12,

Least squares (RLS)

Normalized least squares (NRLS)

Least squares with scaling (SRLS)

Least squares with reconstructed P matrix (RPRLS)
Least squares with U-D factorization (RUD)
Weighted least squares (RWLS)

Generalized least squares (RGLS)
Instrumental variables (RIV)

Extended least squares (RELS)

Maximum likelihood (RML)

Box-Jenkins (RBJ)

Return to main menu

SAVING RESULTS/DAT

Save all the parameters

Save input-output data

Do (1) and (2) above

Save filtered data

Do (1) and (4) above

Save the current plot file
Save the current report file

Return to main menu



Program Structure

The general organization of the program relates to
options of the different menus. The normal sequence of
options of the main menu a user would use is presented in

Figure 1,

data handiing |
options 1 and 2]

filter identification
oplions 4, 5, 6 ond 7
| |
structure order identification
option 8

Fig. 1 Flow chart for the normal option sequence for
the main menu

The first step involves providing input/output data which can
be done by generating data (option 1) or by reading data from
a file (option 2). Once the data has been supplied, the user
can use the identification algorithms directly if the model
structure and input and output fiiters are known (or have

been preselected).
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By selecting option 4 the user will be provided with the
calculated mean and variance of the inout and output data
along with the minimum and maximum values of each data
series. This allows the user to design a filter that will
normalize, scale and/or remove the mean, Options 5, 6 and 7
are used to design a filter that will produce white noise
vhen applied to the input signal, This is necessary for
option B and for identification algorithms that require a
wvhite noise input such as option 1 of the non-recursive
algorithms. Option 5 is used to find the structure of the
filter, option 6 to find preliminary estimates of the filter
parameters and option 7 to find final estimates fo the filter
parameters.

Option 8 provides plots for model structure
identification using correlation analysis (see Appendix B for
details).

Many algorithms are available either in their
non-recursive or recursive version. Results of the
identification run can then be used to determine if the
identified model is acceptable. If the results are not
satisfactory then the structure or the filters may be
modified and a nev identification, using the same or a
different algorithm (recursive or non-recursive), is

performed. The nev results are examined and the procedure is

Although results of an identification run (actually from any

option) may be saved in a file at any time using option 3, it



is common practice to save generated or filtered data and
only the successful identification runs (usually the last

one) in order to reduce disk storage requirements.

15
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11. DESCRIPTION OF PROGRAM OPTIONS
A description of the features and use of each of the options

of the different menus is provided in this section.
A. Main menu options

1. Generate data

This option allows the user the generate output data
for a specified model. The input signal may be generated
(the available types of input signals are: PRBS, uniform,
sinusoidal, Gaussian, step, reversing (changing sign)
square wave and reversing saw tooth wave) or the input
signal may be read from a file. The specified model is of
the form of Equation 1., Specification of the model of the
form of Equation 2 is possible by setting the D
polynomial equal to the A polynomial in Equation 1. Once
the user has selected this option, the parameters and
orders for the model to be used for the data generation
will be shown for possible modification along with the
titles (including labels for axis). The program will
prompt the user for the length of the series to be
generated and choice of type of input signal (including
from a file).

Depending on the input signal selected, the user
vill also be prompted for such information as amplitude
of input signal, seed number, etc. or the file name and
in which column is the input in the case of a file

(similar to the default read subroutine). The user will
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be asked to enter the mean level of the input, the noise
model seed number for the random generation, the standard
deviation and mean, A sampling time is entered to provide

a time scale for the abscissa of the plots.

Retrieve data from data flle

1f the user has specified option "2", the p-ogram
will display the read control parameters for possible
modification along with the titles (including labels for
axis).

I1f the program is using the default read subroutine,
DATIN, the user will be asked to enter the data file
name. The user will be asked if there is a column for the
prompted to enter the starting value and the sample
interval if the time scale is generated.

If the data file only contains a single time series
that is to be analyzed, as in time series forecasting
(e.g. economics), where only the prevhitening (filtering)
section of this program will be used, enter the same
values for the output as for the input (i.e. output title
same as input title, YCOL same as UCOL), See Appendix A
of this manual for a description of the program variables

such as YCOL, UCOL, etc.
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Saving results/data

1f the user enters option 3 of the main menu, the

program will display the following menu

1. Save all the parameters

2. Save input-output data

3. Do (1) and (2) above

4. Save filtered data

5. Do (1) and (4) above

6. Save the current plot file
7. Save the current report file

8. Return to main menu

which shows the user the options that are available for
storing data or results.

The program can write input/output data (original or
filtered) and/or all user specifiable parameters to a
file. The file will contain the title of the run, all the
program parameters, if they are desired, followed by the
titles for the abscissa (time), input and output and
their values in 3 columns (free format). All the plots
generated from the last option can be saved (only the
plots from the last option used can be saved). The
program can also save the report file that contains the

numerical results of the last option.
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The only user input required (beside the saving data
menu option chosen) is the file name. If filtered values
are saved the last filter parameters are used. If the
file already exists the user will be asked if the file

can be replaced.

Minimum, maximum, mean, variance and plots of input and
output

The user can specify filter parameters before the
minimum, maximum, mean, variance of the input and output
are calculated. Plots of the input vs time, output vs
time and output (possibly delayed) vs input are presented
to show trends, any unusual aspects of the data and if
the relationship between input and output is linear or
not. If there is anything unusual or if the relationship
in nonlinear proper manipulation of the data (e.g.
linearization, removal of outliers) should be performed
before this program is used. Discussion of these topics
can be found in Draper and Smith, 1981, 1f prewhitening
is not required the results obtained from this step can
be used to design a filter (e.g. for least squares).
Filtering can be used to improve numerical conditioning
of the data, thus resulting in an enhanced model
identification. A good example of this would be removal
of the mean and scaling the input and output data so that

their relative magnitude is about the same.
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Prewhitening order identification

Given a time series (i,e, the input series) and the
degree of differencing the program will produce the
time, autocorrelation, partial autocorrelation, power
spectrum and cumulative power spectrum.,

The table of Appendix B used for model order
filter form so that the user does not have to transpose

model orders,

Box-Jenkins prel iminary prewhitening est imation

Given the ARIMA model orders, which are
predetermined by the user (e.g. throigh the prewhitening
order identification), the program will calculate the
preliminary estimates of the filter parameters for the

prevhitening model. The residual variance is also given.

Box-Jenkins least squares prewhitening estimation

Given the ARIMA model order and initial estimates of
the parameters, which are predetermined by the user (e.gq.
through the preliminary prevhitening estimation), the
program determines the nonlinear least squares estimates
of the parameters of the ARIMA model and their standard
deviations. The program also provides the parameter
correlation matrix, the Akaike's information criterion
(Freeman, 1985), the shortest data description criterion

(Freeman, 1985), the variance of residuals and CHI-square



TABLE 1
Model characteristics for order selection

autoregressive moving average mixed
mode 1 =6 2, PLi=2, 02' =0 2,
autocor- infinite (dampedfinite infinite (damped
relation exponentials exponentials
and/or damped and or damped
sine waves) sine waves after
nf-mf lags)
tails off cuts off after tails off after
nf lags nf-mf lags
partial autocor-finite infinite infinite
relation (dominated by (dominated by
exponentials exponentials
and/or sine and/or sine
vaves) waves after
mf-nf lags)
cuts off after tails off tails off after
mf lags mf-nf lags

statistic on the residuals autocorrelations (Box and
Jenkins, 1976) for the fitted model,

Because the least squares prewhitening estimation
option involves the use of a nonlinear least squares
algorithm, special attention must be given to the
convergence parameters LAMBDA and NU. The following
suggestions should help the user in the choice of LAMBDA
and NU, If the initial values are far from the expected
values then start with a large LAMBDA (say 5 to 40), If
the initial values are close to the expected values then
start with a small LAMBDA (say 1). If the condition

number is initially near 1.0 consider decreasing LAMBDA
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P

and if the condition numbe: decreases quickly tc nearly
near the optimum., If an ill-conditioned or sinqular
matrix is encountered try increasing LAMBDA and- or NU. If
the algorithm diverges try changing the initial gquesses
for the parameters.

The parameters EPSPAR and EPSUM are used os
convergence criteria, the former as the relative change
in parameters and the latter as the relative change in
th- sum of squares of residuals. Also the parameter MAXIT
is provided to limit the number of iterations in case of
nonconvergence of the parameters or of the sum of squares
of residuals. The parameter NBAD is also provided to
limit the number of iterations if for NBAD successive
iterations the sum of squares was not reduced the
iterations are stopped as no improvement of the sum of

squares can be found.

variable vs time, autocorrelation, partial autocor-
relation, power spectrum and cumulative power spectrum

plots of the residuals are produced.

Transfer function order Identification

Given the prevhitening ARIMA model order and
parameters, previously determined by the user (e.q.
through Box-Jenkins least squares prevhitening

estimation), the program can perform a prevhitening
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set NFU, DFU and MFU to 0, TETAFU=1,0 and similarly for
NFY, DFY, MFY and TETAFY) and display the variable vs
time, autocorrelation, partial autocorrelation, power
spectrum and cumulative power spectrum plots for the
prewhitened input and output data. Display of these plots
is followed by plots of the crosscorrelation between the
prewhitened input and output, the impulse and step
responses as welli as the variable vs time, autocor-
relation, partial autocorrelation, power spectrum and

cumulative power spectrum plots for the estimated noise,

Move to the nonrecursive identif ication menu

This leads to the submenu which presents all the
nonrecursive identification algorithms available. The
different items in the menu are described in the next
section. Note that the user should know which model
orders and type of filtering (if required) including the

filter parameters to use before going to this submenu.

Move to the recursive ident If icat ion menu

This leads to the submenu which presents the
recursive identification algorithms available. The
different items in the menu are described in a subsequant
section. Note that the user should know which model
orders and type of filtering (if required) including the

filter parameters to use before going to this submenu.
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Change the value of any parameter or title

One or more parameter(s) of any option can be
changed by selecting this step of the main menu instead
of at the time the option is selected. Also other
variables not directly attached to a specific option can
be changed. This option also allows the user to change
the different titles and the length of the axis for
plotting purposes. Note that the number of data points
can only be changed by reading a na2w data set. This is a
security precaution., Also note that all the variables
changed here will take effect only the next time they are
needed (e.g. changing the column number will not change
the variable used until a new set of data points are read

in).

Exit the program

Upon exit from the program, the last plot file is
not destroyed and is called ~PLOT. This file can then be
saved in a permanent file for plotting purposes (the plot
file can also be saved earlier through the data storage
option), Similarly the last report from the
identification is in the file -REPORT which can be saved
in a permanent file (can also be saved earlier through

the data storage option).
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Items from the nonrecursive identification menu

For all of these items, the filter (prewhitening) orders
and parameters must be specified. The results generated are
estimates of the parameters and their standard deviation, the
parameter correlation matrix, the modified Akaike's
information criterion (Freeman, 1985), the shortest data
description criterion (Freeman, 1985), the variance of
residuals, the CHI-square statistic on the residuals autocor-
relations (Box and Jenkins, 1576), the CHI-sqguare statistic
for the crosscorrelation between the input and the residuals
(Box and Jenkins, 1976). For the residuals, plots of the
variable vs time, autocorrelation, partial autocorrelation,
power spectrum and cumulative power spectrum are also

produced.

1. Box-Jenkins preliminary transfer function estimation
Once the transfer function model order and the noise

ARIMA model order have been specified (previously
determined by the user, e.g. through the transfer
function order identification) preliminary estimates of
the transfer function and noise model parameters is
obtained. The characteristics of this algorithm are such
that standard deviations and parameter correlation matrix

are not available.
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Box-Jenkins least squares transfer function estimation

I1f the transfer function model order and its initial
parameters, noise model order and its initial parameters
and the prewhitening ARIMA model order and parameters are
specified (previously determined by the user, e.g.
through the Box-Jenkins preliminary transfer functcion
estimation), the program will perform a nonlineur least
squares fit of the transfer function and noise model
parameters.

Note that because this algorithm is a nonlinear
least squares, sometimes it is better to have guesses
(say 0) for all parameters rather than estimates from
another method. Unfortunately no general rules can be
formulated as to whether guesses or previous estimates
from another method yields the best results. Because the
least squares prewhitening estimation option involves the
use of a nonlinear least squares algorithm, special
attention must be given to the convergence parameters
LAMBDA and NU. The following suggestions should help the
user in the choice of LAMBDA and NU. If the initial
values are far from the expected values then start with a
large LAMBDA (say 5 to 40). If the initial values are
close to the expected values then start with a small
LAMBDA (say 1). If the condition number is initially near
1.0 consider decreasing LAMBDA and if the condition
number decreases Quickly to nearly 1.0 consider

decreasing NU. LAMBDA should approach zero near the



optimum. If an ill-conditioned or singular matrix is
encountered try increasing LAMBDA and/or NU. If the

algorithm diverges try changing the initial quesses for

The parameters EPSPAR and EPSUM are used as
convergence criteria, the former as the relative change
in parameters the latter as the relative change in
the sum of squares of residuals. Also the parameter MAXIT
is provided to limit the number of iterations in case of
nonconvergence of the parameters or of the sum of squares
of residuals. The parameter NBAD is also provided to
limit the number of iterations if for NBAD successive
iterations the sum of squares was not reduced the
iterations are stopped as no improvement of the sum of

squares can be found.

Least squares

A nonrecursive least squares estimation of the
is performed (Isermann and coworkers, 1974).

To improve numerical conditioning, the mean can be
removed through filtering. Another possibility is
differencing of the input and output data to obtain an

incremental data set.



1 least squares
1is techrique is a modification of the least

>s that allows a weighting on past values of the

series,

The user will be asked to enter the name of the file
that contains the desired weights. The user must specify
the column in the file which contains the weights as well
as the first line containing a weight value.

Weights as read apply from the first to the last
data point. If not enough weights can be read in then the
number of data points is reduced to the number of weights
available (i.e. the most recent data points in time are
not used).

If the user presses the RETURN key when asked for a
file name then by default an exponential decay weighting
is performed. The most recent (last) data point will be
given a weight of 1.0 and the other data points will have
the weight of the preceding data point reduced by the

factor requested.

Instrumental variables

A nonrecursive instrumental variable estimation of
the reduced model with vhite noise (i.e., NN=0, DN=0 and
MN=0) is performed (Isermann and coworkers, 1974),.

The model predictions of the output are used as
instruments. An iterative procedure is required to update
the predictions with the latest parameter values

obtained. The least squares estimation is used to provide
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initial quesses. The convergence criterion is the
relative change in parameter values between two
iterations (variable EPSPAR). To prevent an infinite loop
a maximum number of iterations is provided (variable
MAXIT). The relaxation factor, LAMBDA, is available tc¢
promote convergence by slowing down (if LAMBDA is less
than one) the auxiliary model parameters. The lower
LAMBDA is the slower the adaptation will be.

Note that the standard deviations given are actually
"pseudo standard deviations” since the standard

deviations cannot be obtained from this algorithm (Vien,

1994).

General ized least squares

A nonrecursive generalized least squares estimation
of the reduced model with coloured noise is performed
(the coloured noise is not part of the model as such)
(Isermann and coworkers, 1974).

In this method the first step is to perform a least
squares estimation of the transfer function parameters.
Then the residuals (noise) are modelled with an
autoregressive filter of order NN. The noise model thus
obtained is used to filter the input and output before a
nev least squares estimation of the trangier function is
performed. The iterative solution is continued until the
noise is vhite. The relative change in the transfer
function parameters, EPSPAR, is the stopping criterion.

To prevent an infinite loop a maximum number of
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iterations is provided (variable MAX!IT),

Maximum ] ikel ihood est imation

N

A nonlinear least sguares algorithm is used to
obtain the estimates of the parameters of the A, B and C
poiynomials and of B. This is similar to the Box-Jenkins
algorithm except for the model used (Eykhoff, 1981, Vien,
1994).

8. Extended least squares

An extended least squares estimation of the reduced
model with only the numerator noise polynomial is
performed (i.e, NN=0O, DN=0 and MN is defined by the
user).,

In this method the data vector for the least squures
is augmented with the estimated noise. It is an iterative
procedure which uses the relative change in the transfer
function plus noise parameters as a stopping criterion
(variable EPSPAR). To prevent an infinite loop a maximum
number of iterations is provided (variable MAXIT). Also
to help convergence a relaxatioun factor (variable LAMBDA)
is available. Initial guesses are provided by the least

squares estimation.

Items from the recursive identification menu

Por all of these items, the filter (prevhitening) orders
and parameters must be specified along with initial values of
the parameters and of the covariance matrix (called P). The

results generated are the estimates of the parameters and
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their standard deviation, the parameter correlation matrix,
the modified Akaike's information criterion (Freeman, 1985),
the shortest data description criterion (Freeman, 1985), the
variance of residuals, the CHI-square statistic on the
residuals autocorrelations (Box and Jenkins, 1976), the
CHI-square statistic for the crosscorrelation between the
input and the residuals (Box and Jenkins, 1976). For the
residuals, plots of the variable vs time, autocorrelation,
partial autocorrelation, pcwer spectrum and cumulative power
spectrum are also produced. These are given for the last
estimates only for comparison with their nonrecursive
counterparts. Also shown are the parameter values plotted

against the recursion number (same as data point number).

1. Least squares

This is the standard recursive least squares without

any numerical enhancement.

2. Normal ized least squares

In this algorithm the data is first normalized using
the 1, norm of the regressor as a normalization factor. A
lower bound of unity is implemented to avoid division by
a smal) number. A description of the normalization factor

may be found in Sripada and Fisher, 1987.

3. Least squares with scaling
It is claimed that this algorithm provides better

numerical properties than the least squares due to

scaling (Sripada and Fisher, 1987). It is not so, and
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this algorithm is included for comparison purposes only,
The following algorithm will provide exactly the same

estimates with fewer computations.

Least squares with reconstructed P matrix

In this algorithm, the updated P matrix is
decomposed in its Cholesky (square root) factor and then
reconstructed. This will ensure that the P matrix is
positive definite if P is nonsingular. The new parameter
estimates are calculated using this reconstructed P

matrix.

Least squares with U-D factorization
This is the standard U-D factorization of Bierman,

1977.

Weighted least squares

Currently two types of forgetting factors are
available: a constant forgetting factor and and a
forgetting factor obeying the following law

A= A v (1-2y)

vhere A\, is a second forgetting factor, This scheme will
allow to discoun*t initial data rapidly when poor initial
estimates are used but will retain all data points after
the initial period. Typical values for A, and A, are 0.95
or 0.99. The user will be asked which forgetting factor

to use and vhat are the initial values to use.
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General ized least squares

For the generalized least squares the parameters and
the covariance matrix for the residual model must also be
given, If unknown, the parameters can be set to zero and
the covariance matrix to a multiple of the identity

t squares,

matrix as would be done for an ordinary lea

Instrumental variables

The instrumental variable method is started with an
ordinary least squares to provide initial parameters with
which to calculate the instruments (auxiliary output).
performed before the recursive instrumental variable
method is engaged is controlled by MAXIT, the maximum
number of time the recursive least squares can be
executed, and EPSPAR, the relative change in parameter
estimates. In the later case it is assumed that if the
parameter change is not too great then the recursive
instrumental variable will perform well as the
instruments will be relatively "stable". To avoid
correlation between the residuals and the instruments, a
relaxation factor, LAMBDA, is available, If LAMBDA is
unity then there is no relaxation and if LAMBDA is zero
then the auxiliary parameters are not updated. Any value
of LAMBDA between zero and unity will give an

1so be seen as

intermediate result. This relaxation can

a lov pass filter on the auxiliary parameters.
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Extended least squares

Here the noise initial parameters have to be
provided and the covariance matrix includes the ncise
parameters as well as the transfer function parameter-,
For this algorithm NN is set to zero (cnly ncise

numerator dynamics allowed)},

Maximum 1 ikel ihood

Initial guesses also comprise noise parameters

Box-dJenkins

This is simliar to the recursive maximum likelihood

with the model of Box-jenkins (Box and Jenkins, 1976).
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jdentification) are available in the literature. An example of
particular interest is data set J of Box and Jenkins. This
example is fully detailed in Box and Jenkins, 1976 and by others

(MacGregor, 1984, Young, 1984). The data set from Box and Jenkins

A, Sample terminal session
This sample run of the PITSA program generates 300 data
points for a least squares model with a,=-0.7788, b,=0.349
and b,=0.308. The noise generated has a variance of 0.01. The
PRBS input utilized a maximum lergth sequence of 6 and was
updated every sampling period.,

Note that the user input is in bold characters and that

comments are italicized.

#s0 pitsa

’ $.00, $16.41T

#R sPROFILE

#11:38:21 7

#11:38:21 T=0.009 RC=0

’ $.01, $16.42T

#EM -ERROR ,

File "-ERROR" has been emptied.
’ $.01, $16.43T

#R VIEN:OBJ.PITSA.2 SERCOM=-ERROR
#11:38:21 7

new page generated here

Process ldentifcation and Time Series Analysis
(P.1.T.S.A. version 3,5)

Chemical engineering dept.
University of Alberta

. ]
&
. s
¢ written by: Andre Vien L
$ &
. .
s Edmonton, Alberta i



Canada

Any comments or guestions about this program
should be forwarded to Andre Vien (MTS id VIEN)

Constructive criticism would be appreciated.

reminder: the (Y/N/Q/?) prompt means answer
y for yes, n for no, q for quit and return to
main menu and ? for help (short description of

%
| 3
|
x
*
*
%
¥
* the parameters for thiE step)
* 3

Y
]
¥
|
¥
*
%
*
k%

Press RETURN to continue
(RETURN key pressed)
new page generated here

. WARNIHG‘ THIS PRDGRAH WQRKS ON THE GIGG

* PRINCIPLE. SPECIAL CARE WAS TAKEN TO
* ENSURE THAT IF WRONG OR UNSUITABLE

* PARAMETERS ARE GIVEN THEN UNPREDIC-
* TABLE ANSWERS WILL BE PRODUCED.
| ]
*

*
*
*
.
THIS VERSION WORKS ON ANSI TYPE TERMINALS *
SET %TCCs=OFF, XRMAR=255, XPAGE=OFF *
* %LEN=255, XPTOP=ON *
ON THE RUN COMMAND ADD: SERCOM=-ERR *
YOU CAN ALSO USE: SO VIEN:PITSA .
THIS WILL DO THE ABOVE AND START THE PROGRAM .

*

*

*

.

%
&
*
*
* documentation is available under VIEN:TXTF.PITSA
* :ené thi; Eile to the printer to have a capy.
12232223322 222 22 22 R 2 2 22 2 2 2t

Press RETURN to continue

(RETURN key pressed)
new page generated here

s*s PITSA program main menu #¢#

1 Generate data ,

2 Retrieve data from data file

3 Put data into data file , 7

4 Minimum, maximum, mean and variance of input and output,
plot of output vs input

5 Prevhitening order identification , ,

6 Box-Jenkins preliminary prewhitening estimation

7 Box-Jenkins least squares prevhitening estimation

8 Transfer function order identification

9 Non-recursive identification

10 Recursive identification ,
11 Change one or more of any parameter of any



option (or change title(s))
12 Stop

Enter a number from the above:

1
new page generated here

Generate data N 7
The changes presented here are actually performed on
a screen template that could not be reproduced here.
N = 0

NN = 0

CST = 1

M = 1

DN = 0

DELAY = 0

MN = 0

THETA = 0:0 ’ D;D ’ Q-D ’ DiD ’ D-D ?
¢c.0, 0.0, 0.0, 0.0, 0.0

THETAN= 0-6 ’ 0.0 ’ 0-0 ’ D-D ’ D-Q v
o.0, 0,0, 0.0, 0.0, 0.0

PTITLE=

XTITLE= Time

UTITL Input

YTITL = Qutput ) ,

Do you want to change any of these (Y/N/Q/?)
Y

By answering yes the cursor will rove in sequence to each
value so that it can be modified. If a value does not need
mod If icat ion the RETURN key Is pressed. Only the modif led
values are presented below.

N 1

M 2

NN 1

Even though this example generates a least squares model

a noise denominator term equal to the A polynomial Is
required because of the model form assumed by the program
(the BQX*dEﬁgiﬂS model form).

C3T -

GST-Q‘seEEIFles that the model should not Include a constant
term (B).

The parameters for THETA are

-.7788

. 349

.308 o 7 , o
followed by RETURN for all the other parameters of THETA.

The parameters for THETAN are
-.7788
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followed by RETURN for all the other parameters of THETAN.

At the bottom of the template the title is entered and the
axe labels are not modified (i.e. RETURN key pressed!’.
Simulation of the first order system

The program permits further modification.
Do you want to change any of these (Y/N’Q,?)
n
new page generated here
enter length of series (int):
300

Input signal type

PRBS

Uniform

Sinusoidal

Gaussian

Step

Reversing square wave
Saw tooth

From file

DD NPEWN -

Enter input signal type code number:

Enter N (length=2ssN-1),amplitude,bit length(int,real,int):
6 1. ‘

Enter input mean (real):

0.

Enter seed, sigma, mean (int,real,real) for the noise.

(if seed <= 0 then no noise):

345,.1,0.

gsig~al/noise R.M.S, ratio = 0.6114E+01

enter sampling time (positive real):

1.

Press RETURN to continue
(RETURN key pessed)
new page generated here

s¢s PITSA program main menu s=s

Generate data

Retrieve data from data file

Put data into data file

Minimum, maximum, mean and variance of input and output,
plot of output vs input

Prevhitening order identification

Box-Jenkins preliminary prevhitening estimation
Box-Jenkins least squares prevhitening estimation
Transter function order identification

Non-recursive identification

VOO +WN -~
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10 Recursive identification

11 Change one or more of any parameter of any
option (or change title(s))

12 Stop

Enter a number from the above:
9
new page generated here

s*% Non-Recursive Identification ##»

Box-Jenkins prelim, trans. func. estimation
Box-jenkins least squares trans. func. estim.
Least squares

Weighted least squares

Instrumental variables

Generallzeé least squares

Extended least squgres

Return to main menu

WO O O R e L MY

Enter a number from the above:

‘W

new page generated here

The template for the least squares i|s shown here, but since
there are no modifications required for this example the
quest ion |s answered negatively.

Do you want to change any of these (Y/N/Q/?)
n

Press RETURN to continue

(RETURN key pressed)

new page generated here

The results of the Identir ication run are now produced

Estimates for Simulation of, the first order system
using LS .

The transfer function model is of order ( 1, 2, 0)
Transfer function denominator parameters :

-0.78191E+00+/- 0.63275E-02
Transfer function numerator parameters :

0.35470E+00+/- 0.58230E-02 0.31351E+00+/- 0.61660E-02

Ptlli RETURN to continue
URN key pressed)
neu page generated here

Parameter correlation matrix

A(1) 0.10000E+01
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B(1) -0.39331E-01 0.10000E+01
B(2) 0.33097E+00 -0.66906E-02 0.10000E+01

Press RETURN to continue
(RETURN key pressed)
new page generated here

Modified Akaike's information criterion(alpha=4)=-0.137E+04
Shortest data description criterion = -0,13561E+04

Variance of residuals = 0,10088E-01

CHI-Squared statistic = 0.27680E+02

For 49 degrees of freedom, approximate Chi-Square vaiues are:

P(Chi-Square < 0.74933E+02) = 0.99
P(Chi-Square < 0,66336E+02) = 0.95
P(Chi-Square < 0.62035E+02) = 0.90
P(Chi-Square < 0.57076E+02) = 0.80

Press RETURN to continue
(RETURN key pressed)
new page generated here

CHI-Squared statistic for cross-correlation

between filtered input and residuals = 0.64094E+02

between filtered output and residuals = 0.53012E+02

For 46 degrees of freedom, approximate Chi-Square values are:

P(Chi-Square < 0.71215E+02) = 0.99
P(Chi-Square < 0.62827E+02) = 0.95
P(Chi-Square < 0.58637E+02) = 0.90
P(Chi-Square < 0.53814E+02) = 0.80
Do you want to see the plots (Y/N)?

Press RETURN to continue
(RETURN key pressed)
new page generated here

ss% PITSA program main menu &%

Generate data

Retrieve data from data file

Put data into data file

Minimum, maximum, mean and variance of input and output,
plot of output vs input

Prevhitening order identification

Box-Jenkins preliminary prevhitening estimation
Box-Jenkins least squares prevhitening estimation
Transfer function order identification
Non-recursive identification

Recursive identification

Change one or more of any ?arametcr of any

option (or change title(s)

- AP0 IR0 ®WN -

-0



12 Stop

Enter a number from the above:
12
screen |Is cleared
#11:42:28 T=4.477 RC=0
# $2.60, $19.03T
#

41



Appendix A: PROGRAM VARIABLES

short description of their function, are presented in this
Appendix. These descriptions are also available "online" by
typing ? whenever the prompt (Y/N/Q/?) appears or when changing
program allows the user to change one or more parameters. Only
the parameters relevant to the particular menu option are

displayed and can be changed.

Variables

CST flag for presence of constant parameter B (0O=no, l=yes)
DELAY delay expressed as integer multiple of sampling time (&)
DFU input filter differencing order (V%)

DFY output filter differencing order (v?"Y)

DN noise differencing order (V")
END last line of data to be read from data file

EPSPAR relative convergence criterion on parameters

EPSUM relative convergence criterion on sum of squares

LAMBDA relative step size change in parameters for next iteration
(relaxation factor)

M transfer function numerator order (B)

MAXIT maximum number of iterations

NFU input filter numerator order (6))
MNFY output filter numerator order (6,)

MN noise numerator order (C)



N
NAUTO
NBAD
NCROSS
NFU
NFY
NIMPUL
NN
NPAUTO
NU
PTITLE
SKIP
START
TETAFU

THETAN
UCcoL
UTITL
XCOL
XLEN
XTITLE
YCOL
YLEN
YTITL

transfer function denominator order (A)

number of points in the autocorrelation

max. number of consecutive unsuccessful iterations
number of points in the crosscorrelation

input filter denominator order (e¢,)

output filter denominator order (¢,)

number of points in the impulse response

noise denominator order (D)

number of points in the partial autocorrelation
multyplier for change in LAMBDA after each iteration
run title

number of lines to skip between each data points
first line of data to be read from data file

input filtering parameters (0%, eeer®upyr 05,85, 0ee)Bpyrk®)
output filtering pafgmetérg (O, cee @lpy 07,60%, 000, 8)ey, k)
transfer function parameters (A,,...,A,,B,,...,B,,B)
noise parameters (D,,...,Du,Ci).0.,Cp)

column number for U (input)

input title

column number for time (abscissa)

length of X axis on plot (centimetres)

abscissa title

column number for Y (output)

length of Y axis on plot (centimetres)

output title

Note that TETAFU, TETAFY, THETA and THETAN are currently limited

to 10 parameters. In the filter parameters (TETAFU, TETAFY), 6,
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and k are always present (even if all the orders are zero). In
the transfer function (THETA), B is present only if CST is | and
there should be always at least one B parameter. The noise does
not have any "permanent"” parameter. Beyond these restrictions the
number of parameters is optional (e.g. for the input filter any
combination of up to eight ¢ and/or # parameters is acceptable).

NAUTO, NPAUTO, NCROSS and NIMPUL are currently limited to
one hundred points (including lag zero). All titles are currently
limited to thirty five characters.

All variables are integer variables except for EPSUM,
EPSPAR, LAMBDA, NU, TETAFU, TETAFY, THETA, THETAN, XLEN and YLEN
which are real and PTITLE, UTITL, XTITL and YTITL which are of

type character.
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