
Clustering Web Sessions by Sequence

Alignment

Weinan Wang Osmar R. Zäıane

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada
{weinan, zaiane}@cs.ualberta.ca

Abstract
Clustering means grouping similar objects into groups such that objects

within a same group bear similarity to each other while objects in different
groups are dissimilar to each other. As an important component of data min-
ing, much research on clustering has been conducted in different disciplines.
In the context of web mining, clustering could be used to cluster similar click-
streams to determine learning behaviours in the case of e-learning, or general
site access behaviours in e-commerce or other on-line applications. Most of
the algorithms presented in the literature to deal with clustering web sessions
treat sessions as sets of visited pages within a time period and don’t consider
the sequence of the click-strem visitation. This has a significant consequence
when comparing similarities between web sessions. We propose in this paper
a new algorithm based on sequence alignment to measure similarities between
web sessions where sessions are chronologically ordered sequences of page ac-
cesses.

1 Introduction
Clustering web sessions is the problem of grouping web sessions based on

similarity and consists of maximizing the intra-group similarity while min-
imizing the inter-group similarity. The problem of clustering data sets in
general is also known as unsupervised classification, since no class labels are
given. The problem of clustering web sessions is part of a larger work of web
usage mining which is the application of data mining techniques to discover
usage patterns from Web data typically collected by web servers in large logs
[18]. Data mining from web access logs is a process consisting of three consec-
utive steps: data gathering and pre-processing for filtering and formatting

the log entries, pattern discovery which consists of the use of a variety of
algorithms such as association rule mining, sequential pattern analysis, clus-
tering and classification on the transformed data in order to discover relevant
and potentially useful patterns, and finally, pattern analysis during which the
user retrieves and interprets the patterns discovered [21].

Session cluster discovery is an important part of web data mining. In
the context of e-learning, our application of interest, the function of cluster-
ing can have a myriad uses, such as grouping learners with similar on-line
access behaviour, grouping pages with similar access or usage, or grouping
similar web sessions to determine different learning behaviours in a given
on-line course. Most of these groupings are concerned with categorical data.
Learners, pages or sessions are indeed represented by vectors, either feature
vectors for learners and pages, or sequences in the case of sessions. Unfortu-
nately, most current clustering algorithms cluster numerical data. Very few
are particularly suitable for clustering categorical attributes.

In our study, we are interested in clustering sessions in order to identify
significant or dominant learning behaviours in online courses. The ulimate
goal is to provide educators with a tool to evaluate not only on-line learners,
but also evaluate the course material structure and its effective usage by
the learners. In order to cluster sessions, after identifying the sessions in a
pre-processing phase, we used clustering algorithms known for their ability
to handle categorical data: ROCK [5] an algorithm that acts on a sample of
the dataset, CHAMELEON [9], which is based on graph partitioning, and
a new algorithm TURN for discrete distributions that we introduced in [3].
All of these algorithms, when used in the past for clustering web sessions,
have treated sessions as unordered sets of clicks. The similarity measures
used to compare sessions were simply based on intersections between these
sets, such as the cosine measure or the Jaccard coefficient. This was also the
case for our work in [3] where we also applied the Jaccard coefficient which
basically measures the degree of common visited pages in both sessions to be
compared. While it is the common practice, it is not an adequate measure
since the sequence of events is not taken into account. If page A is visited
just before page B, it is different from the statement acknowledging that
pages A and B were visited in the same session, disregarding the possible
pages visited in between.

In this paper, we introduce a new method for measuring similarities be-
tween web sessions that takes into account the sequence of event in a click-
stream visitation. This measure also considers similarities between pages
visited in a session. This method can be used to cluster web sessions using
any clustering algorithm that allows the usage of an arbitrary similarity mea-
sure as a distance function for grouping similar data objects. Our preliminary
experiments using the algorithms ROCK, CHAMELEON and TURN show

2

that the clusters discovered are more meaningful than those discoved when
considering sessions as simple sets of visited pages.

The remainder of the paper is organized as follows: Section 2 gives a
general overview of pre-processing the web logs and presents the data in-
put to our clustering problem. Section 3 presents some clustering algorithms
recently proposed for clustering web sessions, and underlines some shortcom-
ings of these algorithms vis-à-vis the notion of sequence of accesses as web
sessions, which has a significant impact on the effectiveness of the clustering
outcome. Section 4 describes our similarity measures for comparing pages
as well as sequences of pages accesses. We discuss some preliminary experi-
ments in Section 5 using different clustering algorithms for categorical data.
Finally, Section 6 concludes our study and gives general directions for future
work.

2 Pre-processing the data
For a given raw web-log, algorithms have been developed to clean the web

log, identify users, user sessions, and create IDs for web pages. The cleaning
involves the removal of entries in the web log which contain an error flag,
requests for images and other embedded files, applets and other script codes,
requests generated by web agents whose function is to pre-fetch pages for
caching, requests from proxies, and requests reset by visitors, etc.

It was demonstrated that in the general context of e-commerce sites,
sessions could be accurately determined by identifying idle times between
page accesses [13]. While we do not advocate this sessioninzing practice for
web sessions in the context of e-learning [20], we have adopted this method in
this paper for the sake of simplicity and proof of concept. In this study, user
sessions have been identified using a 25-minute timeout threshold between
page access. Web page IDs are constructed based on assigning an ID to each
component of the URL so two web page IDs can be compared for similarity
or “closeness”. Also, in our particular application, learners are uniquely
identified in the web log and the usual user identification problem in web
mining did not apply here. After cleaning the raw web log data, two data
files are provided which contain the cleaned data: on one hand the session
and on the other the accessed pages. The format of the session file is as the
following example:
01000102 962 945458058
01000102 962 945458060
01000102 483 945458060
01000102 484 945458060
01100001 965 937344265
01100001 963 937340669
01100001 964 937340670

3

01100001 964 937341439

Each column of this file represents: session number, page number, and
time stamp respectively. The accessed page file has the following format:
07 : 0060 : /Courses/TECH142/TeachingStaff/index.html
08 : 007 : /Courses/TECH142/index.html
09 : 008 : /Courses/TECH142/side.html
10 : 01 : /Courses/TECH150
11 : 0100 : /Courses/TECH150/CourseDescription/index.html
12 : 0110 : /Courses/TECH150/Evaluation/index.html

Each column of this file represents: page number, page ID and URL
respectively. page ID is a unique string used to represent a web page; each
letter in this string represents one level of URL path.

Our problem of web session clustering is based on these two session and
page files. The output is a file containing a list of session numbers with
their respective cluster label. In these above example files, we do not have
information about the users. However, the learners ID could be attached to
the session numbers. The results of clustering can give insight in the user’s
behaviour in a web site and have significant applications in personalization,
recommendation system, adaptive sites, etc.

3 Related work on clustering web sessions
Most of the studies in the area of web usage mining are very new, and

the topic of clustering web sessions has recently become popular in the field
of real application of clustering techniques. Shahabi et al. [15] introduced
the idea of Path Feature Space to represent all the navigation paths. Sim-
ilarity between each two paths in the Path Feature Space is measured by
the definition of Path Angle which is actually based on the Cosine similarity
between two vectors. In this work, k-means cluster method is utilized to
cluster user navigation patterns. Fu et al. [4] cluster users based on clus-
tering web sessions. Their work employed attribute oriented induction to
transfer the web session data into a space of generalized sessions, then ap-
ply the clustering algorithm BIRCH [22] to this generalized session space.
Their method scaled well over increasing large data. However, problems of
BIRCH include that it needs the setting of a similarity threshold and it is
sensitive to the order of data input. The paper does not discuss in detail how
they measure the closeness between sessions and how they set the similarity
threshold which are very important for clustering. Mobasher et al. [12] used
clustering on a web log using the Cosine coefficient and a threshold of 0.5.
No detail is mentioned of the actual clustering algorithm used as the paper is
principally on Association Rule mining. One recent paper which bears some

4

similarity to our work is by Banerjee and Ghosh [1]. This paper introduced
a new method for measuring similarity between web sessions: The longest
common sub-sequences between two sessions is first found through dynamic
programming, then the similarity between two sessions is defined through
their relative time spent on the longest common sub-sequences. Applying
this similarity definition, the authors built an abstract similarity graph for
the set of sessions to be clustered, then the graph partition method was ap-
plied to “cut” the abstract graph into clusters. Our method has a similar
basic idea on measuring session similarity, but we consider each session as
a sequence and borrow the idea of sequence alignment in bioinformatics to
measure similarity between sequences of page accesses. However, we look
into more detail of each web page by first defining a similarity between each
two pages, then instead of simply finding the longest common sub-sequence,
our method utilizes dynamic programming to find the “Best Matching” be-
tween two session sequences. In our method, similarity between sessions are
measured through their Best Matching.

Other works indirectly related to the topic of web session clustering in-
clude: Pitkow et al. [8] explored predictive modeling techniques by introduc-
ing a statistic Longest Repeating Sub-sequence model which can be used for
modeling and predicting user surfing paths. Spiliopoulou et al. [14] built a
mining system, WUM, for the discovery of interesting navigation patterns. In
their system, interestingness criteria for navigation patterns are dynamically
specified by the human expert using WUM’s mining language MINT. Man-
nila and Meek [6] presented a method for finding partial orders that describe
the ordering relationships between the events in a collection of sequences.
Their method can be applied to the discovery of partial orders in the data
set of session sequences.

4 Similarity Measures for Web Sessions
The first and foremost question needed to be answered in clustering web

sessions is how to measure the similarity between two web sessions. A web
session is naturally a stream of hyper link clicks. Most of the previous related
works apply either Euclidean distance for vector or set similarity measures,
Cosine or Jaccard Coefficient. Shortcomings for doing this is obvious: (1)
the transferred space could be of very high dimension; (2) The original click
stream is naturally a click sequence which cannot be fully represented by
a vector or a set of URLs where the order of clicks is not considered; (3)
Euclidean distance has been proven in practice not suitable for measuring
similarity in categorical vector space.

Here we propose to consider the original session data as a set of sequences,
and apply sequence similarity measure to measure similarity between ses-
sions. Sequence alignment actually is not a new topic; there exist several

5

algorithms for solving sequence alignment problems [10]. Our method for
measuring similarity between session sequences borrows the basic ideas from
these algorithms. However, most sequence alignment algorithms for DNA
sequencing consider very long sequences consisting of a limited vocabulary
(i.e. “C”, “A”, “T” and “G”). In our case, the sequences are relatively short
(hundreds of clicks at most per session) but the vocabulary is very large (in
the order of thousands of different pages).

There exist two steps in our definition of session similarity. First we need
to define similarity between two web pages because each session includes
several web pages; the second step is to define session similarity using page
similarity as an inner function.
4.1 Similarity Between Web Pages

If we do not consider the content of pages but simply the paths leading to
a web page (or script), we notice that there exist similarities between many
different web pages. One example is like the following two URLs:
URL#1:
http://www.cs.ualberta.ca/labs/database/current.html
URL#2:
http://www.cs.ualberta.ca/labs/database/publications.html
Similarity between these two URLs is obvious: They are very similar pages
with a similar “topic” about the research work in the Database group of the
University of Alberta.

In another example, the similarity between the two URLs is not that
obvious, but the faint similarity definitely exists:
URL#1:
http://www.cs.ualberta.ca/labs/database/current.html URL#3:
http://www.cs.ualberta.ca/theses/
URL#1 is about the current research work in the database lab of the Depart-
ment of Computing Science at the University of Alberta; URL#3 is about the
theses finished in the recent years in the Department of Computing Science
with the University of Alberta. Here the similarity is simply the fact that
both pages come from the same server. We feel that there is some similarity
between URL#1 and URL#3, but the similarity is of course not as strong
as the similarity between URL#1 and URL#2 in the previous example. We
need a systematic method to give a numerical measure for the similarity
between two URLs.

In order to measure the similarity between two web pages, we first rep-
resent each level of a URL by a token; the token string of the full path of a
URL is thus the concatenation of all the representative tokens of each level.
This process corresponds to marking the tree structure of a web site as shown
in Figure 1. Notice here that we assume that the URL path can fully re-
flect the content of URL, also we assume that the URL connection is tree

6

course

TECH142 TECH150

TeachingStaff

index.html

index.html side.html help.html

Evaluation

index.html

description.html
21

0

0

0

0

3

1

0

1

1

Figure 1: Labeling a tree structure of a web site

structured and there are no loops or cycles. This is often true for on-line
learning environments such as the e-learning system for which we analyzed
the web logs, an on-line course delivery system at the Technical University
of British Columbia (TechBC), a Canadian university that delivers most its
courses on-line.

The web page “/course/TECH142/index.html” in Figure 1, is represented
by the token string “001 ”, the webpage “/course/TECH150/description.html”
is represented by the token string “010”. The computation of web page sim-
ilarity is based on comparing the token string of web pages.

Our web similarity computation works in two steps:

• Step1: We compare each corresponding token of the two token strings
one by one from the beginning, and this process stops at the first pair of
tokens which are different. For example, let us compare the web pages
“/course/TECH142/TeachingStuff/index.html” and “/course/TECH142/side.html”.
The token string of the first web page is “0000”, and the second web
page’s token string is “001”. Now compare the two token strings in
Figure 2.

From Figure 2 we see that the two token strings have two same corre-
sponding tokens. Notice that if we compare the token string “0111”
and “0101”, they have only two same corresponding tokens because
the comparing process stops at the first pair of different tokens.

• Step2: compute the similarity of two web pages. The similarity be-
tween two web pages are computed in this way: suppose the length of
the first token string is length1, and the length of the second token
string is length2, select the the longer string’s length longer length =
(length1 > length2) ? length1 : length2, then we give weight to each

7

Compare corresponding tokens:

"/course/TECH142/TeachingStuff/index.html"

"0 0 0 0"

"0 0 1"

"/course/TECH142/side.html"

same same different

represented by token string

represented by token string

Figure 2: Compare token strings

token string1: 0 0 0 0

token string2: 0 0 1

Weight of each token: 4 3 2 1

Figure 3: Weight each token level

level of the longer token: the last level is given weight 1, the sec-
ond to the last level is given weight 2, the third to the last level is
given weight 3, and so on and so forth, until the first level which is
given weight longer length. For the given example, the length of token
string “0000 ” is 4, and length of the token string “001 ” is 3, thus
longer length = 4, and weight for each level is shown in Figure 3

Next, the similarity between two token strings is defined as the sum of
the weight of those matching tokens divided by the sum of the total
weights. For the given example, we see that their similarity is thus:

(4 + 3)/(4 + 3 + 2 + 1) = 0.7

For any pair of URLs, using this similarity measure, the two pages’
similarity is between 0.0 and 1.0. If the two pages are totally different,
i.e. no same corresponding token, their similarity is 0.0. If the two
pages are exactly same, their similarity will be 1.0.

The reason for giving higher weight to higher level of web pages is because
we think that higher path level usually more important than lower level. For
example, people will think that the URL
http://foo.ca/research/labs/database/current.html

8

and the URL
http://foo.ca/research/labs/database/publications.html
are very similar although their last path level are different. By our similarity
measure, the similarity between this two web pages is 0.93. This reflects the
truth that the two URLs are very similar, but they are not identical.
4.2 Similarity Between Sessions

Using the similarity definition in the web page level, now we can define
the similarity between two web sessions.

Our basic idea of measuring session similarity is to consider each session
as a sequence of web page visiting, and use dynamic programming techniques
to find the best matching between two sequences. In this process, web simi-
larity technique discussed in the previous section serves as a page matching
goodness function. The final similarity between the two sequences is based
on their matching goodness and the length of the sequences.

One difference between our similarity measure and many of the previous
works is: we consider session as a sequence, while many of previous results
measure session similarity in either Euclidean space or sets, for example
Jaccard Coefficient is widely used. The definition of Jaccard Coefficient is as
follows:

sim(T1, T2) =
T1 ∩ T2

T1 ∪ T2

By this definition, if two sessions contain no common web page, their
similarity is 0; if two sessions contain same set of web pages, their similarity
is 1.

We argue that a URL sequence can better represent the nature of a session
than a set. For example, using Jaccard Coefficient similarity measure there
is no difference between the session “abcd”, “bcad” and “abdc”. Using
our session sequence similarity measure, it can tell you that the three are
different, and “abcd’ is more similar to “abdc” than to “bcad”.

There are many papers [17] [19] in the area of bioinformatics area talk-
ing about sequence alignment. Their objects are DNA or protein sequences
instead of web page sequences. One difference between web page sequences
and DNA sequences is: Each DNA sequences contains a sequence of amino
acids, and there are tens of different amino acids; However for web session
sequences, each sequence contains a sequence of web pages, and there can be
thousands of different web pages. Another difference between our web page
sequences, i.e. web sessions and their protein sequences is that a protein
sequence is typically hundreds of elements, while a session sequence is usu-
ally much shorter than a protein sequence. In our real session data set, the
average session length is about 11.371 web pages. We don’t need to consider
some typical problems such as the tradeoff between memory efficiency and
computational efficiency in protein sequence alignment.

9

We use a scoring system which helps finding the optimal matching be-
tween two session sequences. An optimal matching is an alignment with the
highest score. The score for the optimal matching is then used to calculate
the similarity between two sessions. These are the principles in matching the
sequences:

• The session sequences can be shifted right or left to align as many
pages as possible. For example, session#1 includes a sequence of vis-
iting to URLs 1, 2, 21, 22, here each web page is represented by its
token string as described in the web page similarity part. Suppose ses-
sion#2 includes a sequence of visiting to URLs 2, 21, 22. The best
matching between the two session sequences can be achieved by shifting
session#2:

session#1: 1 2 21 22

session#2: - 2 21 22

In our program, each identical matching, i.e. a pair of pages with
similarity 1.0, is given a positive score 20; Each mis-matching, i.e. a
pair of pages with similarity 0.0 or match a page with a gap, is given
a penalty score −10. For a pair of pages with similarity α, where
0.0 ≤ α ≤ 1.0, the score for their matching is between −10 and 20.
The final score for the best matching of this example pair of sessions is
50.

• Gaps are allowed to be inserted into the middle, beginning or end of
session sequences. This is helpful for achieving better matching. For
example, for the following two sessions, a inserted gap in session#2
helps getting the best matching. The final score for the best matching
of the following pair of sessions is also 50.

session#1: 1 2 21 22

session#2: 1 2 - 22

• We do not simply count the number of identical web pages when we
are aligning session sequences. Instead, we create a scoring function
based on web page similarity measure. For each pair of web pages, the
scoring function gives a similarity score where higher score indicates
higher similarity between web pages. A pair of identical web pages is
only a special case of matching – the scoring function return 1.0 which
means the two pages are exactly the same. One example of matching
non-identical pages is like following:

10

session#1: 1 2 21

session#2: 1 2 22

URL “21 ” in session#1 is matched with URL “22” in session#2, and
the scoring function returns that the similarity between the two web
pages is 0.67. The final score for the best matching of this pair of
sessions is also 50.

The problem of finding the optimal matching can typically be solved us-
ing dynamic programming [10], and its process can be described by using
a matrix as shown in Figure 4. One sequence is placed along the top of
the matrix and the other sequence is placed along the left side. There is a
gap added to the start of each sequence which indicates the starting point
of matching. The process of finding the optimal matching between two se-
quences is actually finding a optimal path from the top left corner to the
bottom right corner of the matrix. Any step in any path can only go right,
down or diagonal. Every diagonal move corresponds to matching two web
pages. A right move corresponds to the insertion of a gap in the vertical
sequence and matches a web page in the horizontal sequence with a gap in
the vertical sequence. A down move corresponds to the insertion of a gap
in the horizontal sequence and matches a web page in the vertical sequence
with a gap in the horizontal sequence.

In solving the optimal matching problem, the dynamic programming al-
gorithm propagates scores from the matching start point (upper-left corner),
to the destination point (lower-right corner) of the matrix.

The optimal path is then achieved through back propagating from des-
tination point to starting point. In the given example, the optimal path
found through back propagating is connected by arrows where the numbers
in brackets indicate the step number in back propagating. This optimal path
tells the best matching pattern.

The score of any element in the matrix is the maximum of the three scores
that can be propagated from the element on its left, the element above it
and the element above-left. The score that ends up in the lower-right corner
is the optimal sequence alignment score [10]. One example of our matching
process and its result is shown in Figure 4.

After finding the final score for the optimal session alignment, the fi-
nal similarity between the two sessions is computed by considering the final
optimal score and the length of the two sessions. In our method, we first
get the length of the shorter session - lengthShort, then the similarity be-
tween the two sessions is achieved through dividing the optimal matching
score by 20 ∗ lengthShort because the optimal score can not be more than
20 ∗ lengthShort in our scoring system. For the example in Figure 4, the
similarity between the two sessions is 65/(20 ∗ 5) = 0.65.

11

− 1 123 126 1 2

−50−40−30−20−10−

−20−10010−101

5152535−2012

3040500−30123

455520−10−40124

453510−2012

65(1)

55(2)

45(3)

30(4)

10(5)

20(6)

0(7)

45250−30−60

−50

22

Figure 4: Session matching example

We argue that our similarity measure is better than previous set similar-
ity measures, for example Jaccard Coefficient. This is due to two reasons:
(1) considering session as sequence of URLs is better than considering session
as a set of URLs. As mentioned before, Jaccard Coefficient cannot differ-
entiate session “abcd” from “bcad” and “abdc”, here each token “a, b, c
and d represents a URL. Our method can not only tell the difference, but
also precisely measure the cross similarity between each two of them. (2) In
measuring the similarity between sessions, our method considers URL simi-
larity. This has been proven effective in reflecting session similarity in many
cases. For example, for the following two sessions:

session#1: 12 123 124

session#2: 1 125 126

The two sessions have no common URLs, but they are actually about a
similar topic. Jaccard Coefficient will tell us that the similarity between the
two sessions is 0.0, however our method tells that the two sessions still bear
some similarity and their similarity is 0.67. This result better reflects the
true connection between the two sessions.

5 Web Sessions Clustering
The session similarity method described in the previous section can be

applied to compute the similarity between each pair of sessions, and construct
a similarity matrix. Proper clustering algorithms will be applied to this
similarity matrix to find the session clusters.

12

For the known clustering algorithms, we tried ROCK[5], CHAMELEON
[9] and TURN [3] on our testing data set. K-modes is also applicable for
categorical data [7], but its similarity measure is tightly based on vector space
which is different from our sequence similarity measure, also considering the
common problem of k-means family algorithms, which assumes clusters of
spherical shapes , we did not try k-mode in our implementation. DBSCAN
[2] and WaveCluster [16] could also be applied to some special categorical
data sets, however, they require that any dimension of the categorical data
space be somehow converted into numerical order. In this sense, they are
not truly algorithms for general categorical data.

Another important issue is how to evaluate the quality of clusters in the
result. Clustering Validation is a field where attempts have been made to find
rules for quantifying the quality of a clustering result [11]. This issue, how-
ever, is a difficult one and typically people evaluate clustering results visually
or compare to known manually clustered data. Visually inspecting clusters
in 2-dimensional numerical data is to achieved by drawing the 2-dimensional
clusters into 2-dimensional graphs. However, it is much harder to evaluate
categorical data, like session data. What we did is to order the resulting
clusters according to their descending sizes, and draw a three dimensional
picture to represent the cross similarity between sessions in different clusters.
For example, suppose for an ideal case that we have three clusters in a 1000
sessions data set, cluster #1 with 400 sessions, cluster #2 with 300 sessions,
and cluster #3 has 300 sessions. The cross similarity between each pair of
sessions within a same cluster is 1.0, and cross similarity between each pair
of sessions from two different clusters is 0.0. For the 3-dimensional picture,
we use x-axis and y-axis to represent 1000 sessions, z-axis is used to repre-
sent the similarity between the two sessions from x-axis and y-axis. For this
given very simple and idealistic example, we expect to see a 3-dimensional
picture like Figure 5. For this very special example, we see blocks along
the diagonal of the x-y two dimensional space. This tells us the similarities
between sessions within a same cluster are high, and the similarities between
sessions which belong to different clusters are low. For real problems, the
cluster result can rarely be so clear as the given example, but for successful
clustering, we should see higher square areas along the diagonal of x-y space,
and all the other areas should be lower.

Our testing session set used in our experiments has 1000 randomly se-
lected sessions from a real e-learning system web log. Both Jaccard similarity
and our Dynamic-Programming-Based similarity methods were used to pro-
vide similarity matrices for the given session set. ROCK, CHAMELEON
and TURN were then applied on the similarity matrices to each produce
clustering result. From the clustering results, we found that ROCK tends
to find bigger clusters with lower average similarity. ROCK indeed tends

13

Sessions in cluster#1 Sessions in cluster#2 Sessions in cluster#3

Similarity

Clustered
sessions

Clustered
sessions

Sessions in cluster#1

Sessions in cluster#2

Sessions in cluster#3

Figure 5: Session clustering result visualization example

to merge several genuine clusters into a bigger cluster. CHAMELEON and
TURN can find clusters with high internal cross similarity. The difference
between CHAMELEON and TURN is that TURN can identify outliers while
CHAMELEON cannot. Rare sessions dissimilar to most other sessions are
identified by TURN, while CHAMELEON forces them to belong to a given
cluster.

Using the Jaccard Coefficient as a similarity measure for sessions tends
to give more clusters than our Dynamic-Programming-Based similarity mea-
sure. In general when evaluated manually, the cluster quality between clus-
ters using the Dynamic-Programming-Based similarity measure was better
than when using the Jaccard Coefficient similarity measure. The clusters
where simply more meaningful, which is an expected result since we took in
consideration the sequence of clicks in a session. However, we do not cur-
rently have the means to compute quantitatively this cluster quality, and it
would be very difficult to manually evaluate and compare the quality of the
clusters resulting from the different similarity measures when the dataset is
very large. Nevertheless, our method scales well with the size of the dataset
to cluster, and we are confident, given our preliminary tests with the 1000
session set, that the web session clustering with sequence alignment would
always yield more significant results than the commonly used approximation
of sessions with sets.

6 Conclusions and Remarks
Session clustering is an important task in web mining in order to group

similar sessions and identify trends of web user access behaviour. This is
useful not only in e-commerce for user profiling, but also in e-learning for on-
line learner evaluation. Accurate clustering of web sessions depends on good
similarity measures between sessions. In this paper, through analysis and
examples, we introduce a new similarity measure based on sequence align-
ment using dynamic-programming. This measure also considers the notion
of similarity between pages. In our experiments, we compared the cluster-
ing characteristics of three algorithms (TURN, ROCK and CHAMELEON)
on the session similarity measures: Jaccard Coefficient and Dynamic Pro-

14

gramming Based measure. Among the three algorithms, we determined that
TURN was the winner based on our 3D graph for the visualisation of cluster
“goodness”. Our sequence alignment approach produced more meaningful
clusters than the commonly used Jaccard coefficient. However, we do not
have a quantitative measure to ascertain the righteousness of sequence align-
ment in session clustering with certitude. This can be achieved by testing the
clustering on labelled data, where the exact cluster to wich a session should
belong is known a-priori and hidden from the algorithm. Precise measure of
the quality of clustering can be computed by comparing the results with the
known cluster labels.

In addition to this specific evaluation, we are also considering sessions as
sequences of learning actions rather than merely page accesses. Most requests
in an e-learning site are requests to scripts generating dynamic pages. These
accesses are mapped to learning actions such as sending a message to a
forum, accessing a demo, answering a quiz question, reading a message or
module, uploading an assignment, etc. Using a matrix representing similarity
between learning actions, we are experimenting with clustering sessions of
learning actions using our sequence alignment method as similarity between
sequences of actions. Educators seem to better understand such clusters of
action sessions than clusters of page access sessions.

References
[1] Arindam Banerjee and Joydeep Ghosh. Clickstream clustering using

weighted longest common subsequences. In Proc. of Workshop on
Web Mining in First International SIAM Conference on Data Mining
(SDM2001), pages 33–40, Chicago, April 2001.

[2] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proc. 1996 Int. Conf. Knowledge Discovery
and Data Mining (KDD’96), pages 226–231, 1996.

[3] Andrew Foss, Weinan Wang, and Osmar R. Zäıane. A non-parametric
approach to web log analysis. In Proc. of Workshop on Web Mining
in First International SIAM Conference on Data Mining (SDM2001),
pages 41–50, Chicago, April 2001.

[4] Yongjian Fu, Kanwalpreet Sandhu, and Ming-Yi Shih. Clustering of web
users based on access patterns. Workshop on Web Usage Analysis and
User Profiling (WEBKDD99), August 1999.

[5] Studipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: a robust
clustering algorithm for categorical attributes. In 15th Int’l Conf. on
Data Eng., 1999.

15

[6] H.Mannila and C.Meek. Global partial orders from sequential data.
In Proc. 6th Intl. Conf. on Knowledge Discovery and Data Mining
(KDD2000), pages 161–168, August 2000.

[7] Zhexue Huang. Extensions to the k-means algorithm for clustering large
data sets with categorical values. Data Mining and Knowledge Discov-
ery, 2:283–304, 1998.

[8] J.Pitkow and P.Pirolli. Mining longest repeating subsequences to predict
world wide web surfing. In Proc. 2nd USENIX symposium on Internet
Technologies and Systems (USITS’99), October 1999.

[9] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: A hier-
archical clustering algorithm using dynamic modeling. IEEE Computer,
32(8):68–75, August 1999.

[10] K.Charter, J.Schaeffer, and D.Szafron. Sequence alignment using fastlsa.
In International Conference on Mathematics and Engineering Tech-
niques in Medicine and Biological Sciences (METMBS’2000), pages
239–245, 2000.

[11] M. Vazirgiannis M. Halkidi, Y. Batistakis. On clustering validation
techniques. Journal of Intelligent Information Systems, 17(2-3):107–
145, December 2001.

[12] B. Mobasher, R. Cooly, and J. Srivastava. Automatic personalization
based on web usage mining. Technical Report TR99-010, Department
of Computer Science, Depaul University, 1999.

[13] B. Mobasher, M. Spilipoulou, and J. Wiltshire. Measuring the accu-
racy of sessionisers for web usage mining. In Proc. of Workshop on
Web Mining in First International SIAM Conference on Data Mining
(SDM2001), pages 7–14, Chicago, IL, April 2001.

[14] M.Spiliopoulou and L.C.Faulstich. Wum: A tool for web utilization
analysis. In Extended version of Proc. EDBT Workshop WebDB’98,
pages 184–203, Springer Verlag, 1999.

[15] C. Shahabi, A.M. Zarkesh, J. Adibi, and V. Shah. Knowledge discovery
from users web-page navigation. In workshop on Research Issues in Data
Engineering, Birminghan, England, 1997.

[16] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: a multi-
resolution clustering approach for very large spatial databases. In 24th
VLDB Conference, New York, USA, 1998.

16

[17] S.Needleman and C.Wunsch. A general method applicable to the search
for similarities in the amino acid sequences of two proteins. Journal of
Molecular Biology, 48:443–453, 1970.

[18] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning
Tan. Web usage mining: discovery and applications of usage patterns
from web data. ACM SIGKDD Explorations, Jan 2000.

[19] T.Smith and M.Waterman. Identification of common molecular se-
quences. Journal of Molecular Biology, 147:195–197, 1981.

[20] Osmar R. Zäıane. Web usage mining for a better web-based learning
environment. In Proc. of Conference on Advanced Technology for Edu-
cation, pages 60–64, Banff, AB, June 2001.

[21] Osmar R. Zäıane and Jun Luo. Towards evaluating learners’ behaviour
in a web-based distance learning environment. In Proc. of IEEE In-
ternational Conference on Advanced Learning Technologies (ICALT01),
pages 357–360, Madison, WI, August 2001.

[22] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data
clustering method for very large databases. In 1996 ACM SIGKDD Int.
Conf. Managament of Data, pages 103–114, June 1996.

17

