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Abstract 

 

Complex fuzzy logic is a new type of multi-valued logic, in which truth values are 

drawn from the unit disc of the complex plane; it is thus a generalization of the 

familiar infinite-valued fuzzy logic. At the present time, all published research on 

complex fuzzy logic is theoretical in nature, with no practical applications 

demonstrated. The utility of complex fuzzy logic is thus still very debatable. In 

this thesis, the performance of ANCFIS is evaluated. ANCFIS is the first machine 

learning architecture to fully implement the ideas of complex fuzzy logic, and was 

designed to solve the important machine-learning problem of time-series 

forecasting. We then explore extensions to the ANCFIS architecture. The basic 

ANCFIS system uses batch (offline) learning, and was restricted to univariate 

time series prediction. We have developed both an online version of the univariate 

ANCFIS system, and a multivariate extension to the batch ANCFIS system.  
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Chapter 1:  Introduction 

 

Complex fuzzy sets are a recently-proposed extension to the standard type-1 fuzzy 

set theory. Whereas a type-1 fuzzy set has membership function with a codomain 

of [0, 1], a complex fuzzy membership function has the unit disc of the complex 

plane as its codomain. Equivalently, a complex fuzzy set is a set of ordered pairs 

(x, (x)) where x  X is an object from some universal set X, and (x)  D is the 

set of complex numbers whose modulus is less than or equal to one [1][2][3]. 

Significant progress has been made in clarifying the properties of complex fuzzy 

sets [1][4], but there have not been any applications of complex fuzzy logic to 

real-world problems. Until such applications demonstrate the utility of complex 

fuzzy logic, it will remain a theoretical curiosity.  

 

The previous work by Dick [1] was proposed that complex fuzzy sets could be a 

practical model for approximately periodic phenomena; it means that it repeats 

itself but never become exactly the same. Complex fuzzy sets might be periodic 

as a result of the phase term [1]. We have been trying to build a complex fuzzy 

inferential system [3] in order to model regular phenomena. One of the important 

expressions of regularity can be found in the form of time series data and 

problems in time series forecasting. Thus, we have been trying to build a time 

series forecasting algorithm using the complex fuzzy logic. Standard fuzzy 

systems can be developed in two ways: either by elicitation from a domain expert 

or by learning from input-output data. Since complex fuzzy sets have 2-

dimensional membership function, they could not simply be represented by 2 

distinct fuzzy sets. Also experts need to present definition of all fuzzy sets and 

rules. As no one knows how to do this in complex fuzzy sets, the experts cannot 

be used here. So we used inductive learning and artificial neural network in order 

to build the complex fuzzy inferential system. The artificial neural network which 

is used here is called ANCFIS (Adaptive Neuro Complex Fuzzy Inference 

System) which is based on ANFIS architecture [5][6][7]. This network is 
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originally developed by Chen et al. [8]. However, in their work, Chen et al. [8] 

did not complete a full performance analysis of ANCFIS and the architecture was 

only limited to batch (offline) learning and univariate problems.  

 

In this thesis, an extensive performance analysis of the ANCFIS architecture is 

presented, and the architecture is extended to incorporate online learning and 

multivariate time series forecasting. All of these algorithms are evaluated using 

the typical forecasting methodology: a one-step-ahead predication, in a single-

split design with all training data chronologically earlier than the test data. The 

performance of univariate ANCFIS technique is tested against five time series 

datasets: Mackey-Glass [5][9][10], Santa Fe A (laser) [11] – [14], Sunspot [15]-

[21], Star [21]-[23] and Waves [22] . Also, online ANCFIS is compared to two 

different time series: Sunspot and Waves. Multivariate ANCFIS applies four 

multivariate time series datasets: Transport and tourism-motel [22], Hydrology-

river flow [22][24], Macro-economic [22] and Car-road-accident [25]-[27].  

Main research work for ANCFIS is summarized as follows: 

1. The experimental evaluation of Offline ANCFIS. Five different time series 

datasets are used and their results are compared to the related literature 

consisting of time series forecasting techniques used up to the year 2009. 

It is subsequently observed that ANCFIS could achieve very good 

performance and is comparable to the published forecasting results.  

2. The development of an online ANCFIS architecture which is based on 

online- learning; using downhill-simplex algorithm (a derivative-free 

algorithm instead of VNCSA) and Recursive Least Square (RLS). The 

experimental evaluation of online ANCFIS includes two problems in time 

series predictions. We compared the results of online learning to those of 

offline learning and to the relevant results found in the literatures.  

3. The development of multivariate ANCFIS architecture. Multivariate 

ANCFIS is used when there are multiple input vectors, where there is 

usually a correlation between the input vectors. We apply algebraic 

product operation which is one of the complex fuzzy conjunctions for 
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layer two. Also, layer five is changed to be compatible with multiple 

outputs. Experimental work on Multivariate ANCFIS includes four 

different multivariate time series datasets. We contrast our results with 

univariate ANCFIS for each variate separately and all variates together. 

This means that each variate is predicted separately with univariate 

ANCFIS. Then, the forecasting results of univariate ANCFIS for each 

variate are combined to find the forecasting results for all variates. 

Multivariate ANCFIS predicts the result of the whole dataset. Then the 

predicted and actual values for each variate are collected and each variate 

can be calculated separately.  

The remainder of this thesis is organized into six chapters:  Chapter 2 presents a 

literature review covering the topics of type-1 fuzzy logic, fuzzy relations and 

fuzzy reasoning, Type-1 fuzzy inferential systems, ANFIS, online and offline 

learning, complex fuzzy logic and complex-valued neural networks. Chapter 3 

covers the original ANCFIS architecture which includes the structure of ANCFIS, 

the node functions of the forward pass, ANCFIS error back propagation and also 

VNCSA algorithm. In Chapter 4, we present the experimental results for 

univariate ANCFIS architecture on five time series forecasting datasets: 

MackyGlass, Santa Fe A (laser), Sunspot, Stellar and Waves. Chapter 5 develops 

online- learning architecture for ANCFIS and presents the procedure of downhill-

simplex algorithm. The experimental work is done on two time series datasets: 

Sunspot and Waves. In Chapter 6, we present the Multivariate ANCFIS 

architecture with the experimental work for four different datasets: Transport and 

Tourism-motel, Hydrology-river, Macro-economic and Car-road-accident. Finally 

Chapter 7 includes summary and discussion of future work.  
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Chapter 2: Literature Review 

 

Since Zadeh published his first paper on fuzzy sets [28], the research and 

applications on type-1 fuzzy logic have made an incredible improvement. In the 

past few years, type-1 fuzzy logic is applied in different ways and many 

disciplines. Its applications can be found in many areas from home appliances 

such as air conditioners, cameras, refrigerators, washing machines to medical 

instruments such as blood pressure monitors and even more. A type- 1 allows the 

gradual evaluation of the membership of elements in a set, and is based on two 

dimensional membership function (MF). It provides an organized calculus in 

order to solve vague and incomplete information linguistically. Here the linguistic 

information is converted to numerical values using linguistic labels specify by MF 

[5][29][30]. Also a type-1 fuzzy inference system uses fuzzy if-then rules to be 

able to model human expertise for a specific application.  A type-2 fuzzy logic is 

a generalization of type-1 fuzzy logic in a way that uncertainty is not only limited 

to linguistic variables but also to the definition of membership functions [31]-

[33]. It uses a function which is itself a type-1 fuzzy number and for this reason 

sometimes type-2 is referred as fuzzy-fuzzy. A type- 2 fuzzy set is illustrated by a 

three- dimensional membership function. The main idea in using type-2 fuzzy set 

is that most/all applications in general area of decision making modeling need to 

handle the imprecise data, knowledge and etc. A type-2 fuzzy set use this 

imprecision and make better computer systems [32]. As complex fuzzy set is an 

extension of type-1 fuzzy sets, we discuss only type-1 fuzzy logic. In this chapter 

a description on Type-1 fuzzy set will be presented first, and then set- theory 

operation and fuzzy relation with linguistic variables will be discussed.  
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2.1. Type-1 Fuzzy sets 

 

A fuzzy set describes the degree to which an element belongs to a set. If we 

consider X as a collection of objects ( Xx ), then a type-1 fuzzy set A in X is a 

set of ordered pairs: 

}))(,{( XxxxA A     ]1,0[: XA          (2.1) 

 

In equation (2.1) 
A  is called membership function and maps elements of X into 

their membership in the fuzzy set A [28]. X usually is considered as universe of 

discourse and it may contain continuous or discrete space.  

The basic operations on fuzzy sets are union, intersection, containment and 

complement. The maximum and minimum is classical fuzzy operator for union 

and intersection on fuzzy sets. Standard fuzzy logic defines these operations as 

follows: 

1. Union (Disjunction): Union of two fuzzy sets A and B generate another 

fuzzy set C whose membership function is derived from membership 

function of A and B: 

Xxxxxx BABAc   )),(),(max()()(                    (2.2) 

The equivalent definition of  ―Union‖ is the smallest fuzzy set which 

contains both A and B . 

2. Intersection (Conjunction): Intersection of two fuzzy set A and fuzzy set B 

generate another fuzzy set C whose  membership function is derived from 

membership function of A and B: 

Xxxxxx BABAc   )),(),(min()()(                    (2.3) 

C is the largest fuzzy set which is enclosed in both A and B 

3. Containment(Subset): Fuzzy set A is contained in fuzzy set B (A is a 

subset of B) or fuzzy set B contains fuzzy set A when: 

XxxxBA BA  ),()(                      (2.4) 
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4. Complement (negation): Complement of fuzzy set A represents with A  . 

Membership of A ( )(xA ) means the degree to which x does not belong to

A . The membership function is represented as:  

   Xxxx AA
 ),(1)(                      (2.5) 

 

2.1.1  Membership functions 

 

A fuzzy set is usually described by its membership function (MF). The common 

choices of parameterized membership functions are triangular MF which is 

specified with three parameters, trapezoidal MF with four parameters, Gaussian 

MF with two parameters and generalized bell MF with three parameters. Figure 

2.1 represents examples of mentioned MFs. 

 

Figure 2.1: Example of four classes of parameterized membership functions: Triangular (x;  

15,60,70); (b) trapezoid (x; 10, 20, 70, 90);  

(a) (c) Gaussian (x; 50,25); (d) bell (x; 20, 2, 50) [5] 
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(a) Triangular MF

0 20 40 60 80 100
0

0.5

1

M
e
m

b
e
rs

h
ip

 G
ra

d
e
s

(b) Trapezoidal MF

0 20 40 60 80 100
0

0.5

1

M
e
m

b
e
rs

h
ip

 G
ra

d
e
s

(c) Gaussian MF

0 20 40 60 80 100
0

0.5

1

M
e
m

b
e
rs

h
ip

 G
ra

d
e
s

(d) Generalized Bell MF
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2.1.2 Fuzzy relation  

 

A fuzzy relation represents the degree of present or absence of association, 

interaction or interconnectedness between elements of two or more crisp sets. In 

explanation fuzzy relation, let‘s consider U and V as two crisp sets, then fuzzy 

relation R (U, V) is a fuzzy subset of a Cartesian product of VU  [34] which can 

be expressed as: ]1,0[: VUR . The membership function of R is ),( yxR

which Ux and Vy . Here for each pair of (x,y) there is a membership value 

between zero and one. If ),( yxR =1, then it means that x and y are fully related 

and if ),( yxR =0, it means that these two elements of x and y are not related at all. 

Obviously the values between zero and one for ),( yxR  reflect the partial 

association. 

Relation can be described by an example from daily life using discrete fuzzy sets. 

First let us consider the relationship between color (x) and grade of maturity (y) of 

a fruit and then characterize the linguistic variable color by a crisp set X and grade 

of maturity by Y. 

},,{ redyellowgreenX   

},_,{ maturematurehalfverdantY   

As it is presented above, X and Y both have three linguistic terms. Table 2.1 

shows the crisp formulation of a relation YX   between these two crisp sets. 

Here zeros and ones represent the grade of membership for this relation.  

 

  verdant half-mature mature 

green 1 0 0 

yellow 0 1 0 

red 0 0 1 

Table 2.1: Relation YX   between two crisp sets [35] 

 

Degree of association can be presented by membership grades in a fuzzy relation 

and it is similar to the way as degrees of the set membership are expressed in a 

fuzzy set. After applying fuzzy relation, table 2.1 changes to table 2.2.  



8 
 

 

  verdant half-mature mature 

green 1 0.5 0 

yellow 0.3 1 0.4 

red 0 0.2 1 

Table 2.2: Fuzzy relation YX   between two crisp sets [35] 

 

2.1.3 Linguistic variable 

 
As it was mentioned by Zadeh [36], conventional techniques for system analysis 

are essentially unsuitable for dealing with humanistic systems, whose behavior is 

strongly influenced by human judgment. This is what is called principle of 

incompatibility: ‖As the complexity of a system increases, our ability to make a 

precise and significant statement about its behavior diminished until a threshold is 

reached which precision and significance become almost mutually exclusive 

characteristic‖[36]. Because of this belief Zadeh proposed the concept of 

linguistic variables as alternative approach to model human thinking [34][37]. An 

example for linguistic variable can be ―age‖. For example if a man at age 60 is 

old, then we don‘t know whether a 58 years old man is old or not. Hedges are not 

used too often; the most common hedges used are very, quite, more or less and 

etc. So we can say that a 58 years old man is quit old. The formal definition of 

linguistic variables is as below. 

A linguistic variable is characterized by a 5-tuple (x, T(x), X, G, M) [38] where x 

is the name of the variable, X is the universe of discourse, T is the term set, which 

is the set of terminal symbols that can actually appear in a linguistic term. G is a 

syntactic rule which generates linguistic terms using the terminal symbols from T. 

Most commonly, G is null, so that the set of linguistic terms is exactly T. G is 

normally used to add linguistic hedges to atomic terms in T and M is a semantic 

rule which associate with each linguistic value B its meaning M(B), where M(B) 

indicates a fuzzy set in X. 
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Term set consists of primary term and/or hedges such as very, quite, etc [5]. As an 

example, age is interpreted as a linguistic variable with its term set to T(age) and 

it can be: 

T(age) = { young, old, middle aged, very young,…}  

Here each term in T (age) is specified by a fuzzy set of a universe of discourse X 

= [0,100]. We can say ―age is old‖ to assign the linguistic value ―old‖ to linguistic 

variable age. Here primary terms are (young, middle aged, old) and hedges are 

(very, more or less, quit).  

The idea of linguistic variables is used in fuzzy reasoning for modeling and 

control problems. While variables in mathematics use numerical values, in fuzzy 

logic applications, the non-numeric linguistic variables are often used to facilitate 

the expression of rules and facts [39].  

 

Figure 2.2: Typical membership functions of term set T(age) [5] 

 

 

2.1.4 Fuzzy reasoning 

 

Fuzzy reasoning is an inference process which uses fuzzy if-then rules and known 

facts to derive new facts. Fuzzy if-then rule or Fuzzy rule is expressed in the form 

of:  

if x is A then y is B,         (2.6) 

where A and B both are linguistic values. Here the first part which is ―if x is A” is 

antecedent or premise and ―y is B‖ is consequence or conclusion. Modus ponens 
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is basic rule of inference in traditional two-valued logic. Here the truth of 

proposition B can be determined from the truth of A and implication BA . For 

example, if A is identified by ―the tomato is red‖ and B with ―tomato is ripe‖, 

then if it is true that ―the tomato is red‖, it is true that ―the tomato is ripe‖ [5]. For 

single rule with single antecedent, the inference procedure is described as: 

premise1 (fact): x is A , 

premise2 (rule): if x is A then y is B 

------------------------------------------- 

Consequence (conclusion): y is B  

However, in most of human reasoning, modus ponens is used in an approximate 

manner. As an example if we have the same application rule ―if the tomato is red, 

then it is ripe‖, knowing that ―tomato is more or less red‖, then it may infer that 

―the tomato is more or less ripe‖. 

premise1 (fact): x is A , 

premise2 (rule): if x is A  then y is B 

------------------------------------------- 

Consequence (conclusion): y is B  

where A is close to A and B is close to B. Also A, B, A and B all are fuzzy sets 

of approximate universe. This inference procedure is called approximate 

reasoning or generalized modus ponens [40][41]. The MF of B  can be 

determined from equation 2.7 where   and   are max and min: 

)()]()([)],(),(min[max)( yxxyxxy BAAxRAyB        (2.7) 

 

If there is a single rule with multiple antecedents, the individual conditions are 

combined together by and connective. The inference procedure is defined as 

below: 

premise1 (fact): x is A and y is B , 

premise2 (rule): if x is A  and y is B ,  then z is C  

------------------------------------------- 

Consequence (conclusion): y is C   
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 Then the membership function for C   is calculated as: 

)()(

)()]}()([{)]}()([{

)]()()([)]()([)(

21

,

z

zyyxx

zyxyxz

C

CBByAAx

CBABAyxC

















   (2.8) 

 

Here 
21    is firing strength which reflects the degree to which antecedent part 

of the rule met, also   and   are max and min. 
 

2.1.5 Type-1 Fuzzy Inferential Systems 

 

Fuzzy inference system is based on fuzzy reasoning, fuzzy if-then rules and fuzzy 

set theory. Its application can be found in many fields such as decision analysis, 

time series prediction, expert system, etc. As Fuzzy inference system is multi-

disciplinary, it is known by many names such as fuzzy model [42] [43], fuzzy 

associative memory [44], etc.  

Fuzzy inference systems are the most important modeling tool based on fuzzy set 

theory. The basic components for structure of fuzzy inference system are: first a 

rule base, which is made up of fuzzy rules; second a database, which stores 

membership functions used in fuzzy rules; third a reasoning mechanism, which 

implements generalized modus ponens; fourth a fuzzification interface which 

converts crisp data inputs into membership degrees for the fuzzy set antecedents; 

fifth a defuzzification inference that transforms a fuzzy consequent into a crisp 

output [5][7]. A fuzzy inference system is shown in figure 2.3.  

 

Figure 2.3: Fuzzy inference system [5][7] 
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There are three principal models for fuzzy inference systems: the Mamdani, TSK 

and Tsukamoto models [45] [46]. These three models are shown in Fig. 2.4. The 

main difference among them is in the consequences of their fuzzy rules, 

aggregation and defuzzification procedures.  

The Mamdani fuzzy model [47] was the first fuzzy contro ller.  The problem was 

to control the combination of steam engine and boiler by the aid of a set of 

linguistic control rules expressed by experienced human operators. As the plant 

takes only crisp values as inputs, a defuzzifier must be used to convert a fuzzy set 

to crisp value.  There is more than one method for defuzzification available. The 

most common one is to adopt the centroid of the area under the output 

membership function. The computation of the centroid of an area is expensive as 

it needs integration across a varying function. The centroid of an area zCOA is 

represented by: 






z

A

z

A

COA
dzz

zdzz

z
)(

)(





        (2.9) 

where )(zA is the aggregated output membership function.  

Sugeno fuzzy model which is also known as TSK fuzzy model was proposed by 

Takagi, Sugeno and Kang [5][42][43]. The aim of this model is to develop a 

systematic approach to generate fuzzy rules from a given input-output data set. 

Here a typical fuzzy rule presents like this: 

 If x is A and y is B then z = f(x, y)                   (2.10) 

In 2.10 A and B are fuzzy sets in antecedent and z is a crisp function in the 

consequence. Mainly f(x,y) is a polynomial function but it can be any function as 

far as it can completely represent the output of model with in the fuzzy region 

defined by the antecedents of the rule. If the function is first-order, then there is a 

first-order TSK fuzzy model and so on. The output level iz  of each rule is 

weighted by the firing strength iw of the rule. The final output is weighted average 

of all outputs represented as: 
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


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i
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zw

z

1

1          (2.11) 

where 
iz is a first order polynomial.  

In the Tsukamoto fuzzy model [48], consequent of each fuzzy if- then rule is 

described by a fuzzy set with monotonic MF.  Each rule‘s inferred output is 

defined as a crisp value made by the rule‘s firing strength. The overall output is 

the weighted average of each rule‘s output, presented as: 








N

i

i

N

i

ii

w

zw

z

1

1          (2.11) 

 

Figure 2.4: fuzzy if- then rules and Fuzzy inference mechanism [5][7] 

 

2.2 ANFIS Review 

ANFIS (Adaptive Network-based Fuzzy Inference System) is a class of adaptive 

networks that are functionally equal to fuzzy inference systems. Below adaptive 
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networks are explained as well as the architecture of ANFIS and how this system 

works. 

2.2.1 Adaptive Network Review 

An adaptive network is a network structure, consisting of a number of nodes 

connected through directed links. Each node corresponds to a process unit and the 

links between nodes represent communication links. All or some of the nodes are 

adaptive which means the outputs of these nodes depend on modifiable 

parameters. The learning rule defines the way that these parameters should be 

updated in order to minimize the error measure which can be the difference 

between actual output and desired output.  

Adaptive networks are usually classified into two categories based on the type of 

the connection they have: feedforward and recurrent [5]. We call an adaptive 

network feedforward if the output of each node spreads from the input side to 

output side. If there is a feedback link which causes a circular path or loop in a 

network then we have a recurrent network. Figure 2.5 and 2.6 represent two types 

of adaptive network. Here square nodes are adaptive and circle nodes are fixed 

nodes. 

 

 

Figure 2.5: A feedforward (left-to-right) adaptive network in layered representation [5] 
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Figure 2.6:  A recurrent adaptive network [5 ] 

 

As it is shown in figure 2.6 node 8 has a feedback link to node 3 which changes 

the network from feedforward to recurrent.  

 

2.2.2 On-line vs. Off-line learning 

The main significance of a neural network is its ability to learn from its 

environment and to improve from its performance through learning. A neural 

network learns about its environment by an interactive process of adjustments 

applied to its synaptic weights and bias levels. Usually the network earns more 

knowledge about its environment after each iteration of the learning process. The 

learning process of a neural network starts by stimulation of the network by an 

environment. Then, it changes its free parameters as a result of this stimulation. 

Finally, it reacts in a new way to the environment because of the changes that 

occurred in its internal structure. There are two main learning strategy for 

adaptive networks; online learning and batch/offline learning.  

In online learning the learning strategy is based on the online parameter 

identification for systems with changing characteristics. In online learning the 

training parameters/weights are updated after each presentation of training pattern 

(training vector) [49]. By changing the weights after each pattern, they could go 

backward and forward with each iteration although this may cause waste of 

considerable amount of time. This may happen because all the training data is not 

available at the same time. This method is used for online learning, in which 
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learning or updating is needed when data arrives in real time. We can minimize 

the random fluctuation of weights by batch learning in which weights adjustment 

is based on total error derivative over whole training set [5][49][50].  

The batch/offline learning is different from the on-line training concerning the 

convergence speed and the quality of approximation. In batch learning, the weight 

update for each training vector is noted but the weights are not changed until all 

the input patterns have been presented [5][49]. Although using several/all training 

data pairs gives a better estimation for the predicted error than just using one, but 

batch updating requires extra memory storage for weight corrections before the 

weights are updated. This is critical especially when the network has large number 

of weights. Also, averaging the weight corrections may cause extra computational 

complexity for the algorithm and finally the smoothing effect of batch updating 

may cause the learning algorithm converge to local minima. Generally the 

performance of batch updating is case dependent [49][50].  

 

2.2.3 ANFIS Definition  

 

ANFIS (Adaptive Neuro-Fuzzy Inference System) is a feed-forward adaptive 

network with five layers and is equivalent to a TSK fuzzy inference system [6][7]. 

Each node indicates a processing unit and the directed links represent the flow 

direction of signals between connected nodes. To represent ANFIS architecture, 

consider a two input first-order Sugeno fuzzy model with two fuzzy if-then rules 

as it is shown in Fig. 2.7(a) then the equivalent ANFIS architecture can be shown 

in Fig. 2.7(b).  

For a fist-order Sugeno fuzzy model, a common rule set with two fuzzy if- then 

rules is as below: 

Rule 1: If x is 1A  and y is 1B , then 1111 ryqxpf  , 

Rule 2: If x is 2A  and y is 2B , then 2222 ryqxpf   
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(a) 

 

 

(b) 
 

Figure 2.7: (a) A two-input first-order Sugeno Fuzzy model with two rules (b) 

Equivalent ANFIS architecture [5] 

 

In 2.7 (b) square nodes are adaptive and circle nodes are fixed nodes. Layer one 

and layer four have adaptive or parameterize nodes. The parameters in layer one 

are premise parameters and the parameters in layer four are consequent 

parameters. Nodes in the same layer have the same node functions which are 

different from other layers.  

ANFIS uses offline or batch learning; each epoch consists of a forward pass and a 

backward pass. In the forward pass the parameters of layer one are fixed and the 

output nodes are calculated from first layer to fourth layer from left to right, and 

the parameters in fourth layer are identified by least-squares optimization. After 
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the parameters of polynomial in layer four are identified, and then the error is 

measured for training data pairs and summed together. Then in backward pass 

consequence parameters are fixed and error signals propagate from layer five to 

layer one from right to left and premise parameters in layer one are updated with 

gradient descent method. Below five layers of ANFIS are explained: 

 

Layer 1: 

Nodes in this layer are adaptive nodes. The node function of each node i in layer 1 

is as following: 

4,3),(

2,1),(

2,1

,1






iyO

ixO

i

i

Bi

Ai




                 (2.13) 

Here x or y is input to node i and iA or 2iB  is linguistic label related to that node. 

Equivalently, iO ,1 is membership grade of fuzzy set A (where
2121 ,, orBBAAA  ) 

which implies in what degree the inputs (x or y) satisfy of quantifier A. The 

membership function for A is any appropriate parameterized membership function 

such as bell function. 

b

i

i

A

a

cx
x

2

1

1
)(




         (2.14) 

Here },,{ iii cba is the parameter set. Parameters of this layer are called premise 

parameters. 

 

Layer 2: 

Nodes in this layer which are labeled by    are fixed nodes. The output of each 

node is product of all incoming signals and represents the firing strength of a rule. 

Generally speaking, any T-norm operation that presents fuzzy AND is suitable to 

be used as node function in this layer.  

2,1),()(,2  iyxO
ii BAii        (2.15) 
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Layer 3: 

Every node in this layer is labeled by N and is a fixed node that normalizes each 

weight by sum of all rules firing strength.  

2,1.
21

,3 


 iO i

ii



        (2.16) 

Layer 4: 

Each node in layer four is an adaptive node with this node function: 

),(,2 iiiiiii ryqxpfO         (2.17) 

In this function, i is the output of layer three and iii rqp ,, are consequent 

parameters for this node. 

 

Layer 5: 

This layer has only one fixed node which calculates the overall output and is the 
summation of all incoming signals.  

Overall output=



 

i i

i

ii

i

ii

f

fO




1,5
     (2.18) 

 

If the values of the premise parameters in ANFIS are fixed during forward pass, 

then the overall output can be expressed as a linear combination of consequent 

parameters. The output of figure 2.2 (b) can be expressed like below: 
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  (2.19) 

 

In order to avoid converging to local minima and speed up the identification of 

the parameters of adaptive network, hybrid learning is presented which integrates 

both gradient method and least square estimation. The main part of gradient 

descent in ANFIS is the calculation of gradient vector [5]. The gradient vector is 

derivative of an error measure regarding to a parameter. This is referred to back 
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propagation learning rule as the way it is calculated is from the output towards the 

inputs. The thp error measure 
PE can be gained from each training pair in our 

training data. The main goal is to minimize the total error measure.  

 P PEE          (2.20) 

The error measured can be minimized by adjusting individual parameters of the 

network.  In another way, a small change in parameter   (this parameter belongs 

to a node) may cause a high impact on the output of the node containing  . The 

target of calculating the gradient vector is to pass a form of derivative information 

from output layer, layer by layer towards the input layer.  

Suppose an adaptive network with L layers and thk layer has N (k) nodes, then 

output of node i in layer l can be expressed as ilx , and its function as ilf , . Since an 

output node depends on its incoming signals and its parameter set, it can be 

written this way: 

....),,,,...( )1(,1,1,, cbaxxfx lNlllilil        (2.21) 

Here a, b, c, etc. are parameters related to this node.  

Suppose that the given training dataset has P entries. Here the error measure for 

the pth ( Pp 1 ) entry of training data entry can be defined as the sum of 

squared error as below equation. 





)(

1

2

, )(
LN

k

kLkP xdE         (2.22) 

In equation 2.22, kd is the kth component of pth target output vector and kLx ,  is 

the kth component of actual output vector generated by the current pth input 

vector. Consequently, the overall error measure can be expressed as: 

 


P

P PEE
1

. 

To perform a learning procedure that applies gradient descent of E in the whole 

parameter set, the computation of error rate 
x

E p




 is the primary need. Here error 

rate is for pth training data and for each node output x. The error rate for output 

node at (L, i) can be derived from equation 2.23. 
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Also the error rate for internal node (l, i); 11  Ll  can be executed by the 
below chain rule: 
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This means that the error rate in internal node can be stated as a linear sum of the 

error rates of the nodes on the next layer.  

The gradient vector is described as the derivative of the error measure with 

respect to each parameter. The chain rule should be applied again to find gradient 

vector. Consider   as a parameter of ith node in layer l, and then we have: 
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The derivative of overall error measure E regarding to   is: 
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 Consequently the generic parameter   can be updated as: 








E
          (2.27) 

In above equation   is learning rate and can be written as: 
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2
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         (2.28) 

In 2.28 k is step size which is the length of each gradient transition in parameter 

space. Step size can affect the convergence rate. ANFIS use batch learning mode 

to update   based on formula 2.26.  
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Figure 2.8 illustrate an ANFIS example of two inputs, first order TSK fuzzy 

model with two fuzzy if- then rules and bell function membership function; the 

same as Figure 2.2 (b). 

 

  

 
 

Figure 2.8: Error propagation for Fig. 2.2 (b) 
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Then the gradients for parameters iii cba ,, in related nodes 4,3,2,1i  of layer one 

can be derived according to equation 2.29. Therefore for node one, we have: 
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And also for node two we have: 
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And the same equations for node 3: 

 

)1(
2)(

33

3

3

3

3

3

3

3

3

3

3

3

33

AA

APP

a

b

aa

f

a

f

x

E

a

E



 























 






































3

3

3

3

3

3

3

3

3

3

3

3

33 ,0

),1(ln2)(
33

3

cifx

cifx
a

cx

bb

f

b

f

x

E

b

E
AAAPP 

  





































3

33

3

3

3

3

3

3

3

3

3

33 ,0

),1(
2

)(
333

cifx

cifx
cx

b

cc

f

c

f

x

E

c

E
AAAPP 

  

 
And for node 4: 

 

)1(
2)(

44

4

4

4

4

4

4

4

4

4

4

4

44

AA

APP

a

b

aa

f

a

f

x

E

a

E



 























 






































4

4

4

4

4

4

4

4

4

4

4

4

44 ,0

),1(ln2)(
44

4

cifx

cifx
a

cx

bb

f

b

f

x

E

b

E
AAAPP 

  



25 
 




































4

44

4

4

4

4

4

4

4

4

4

44 ,0

),1(
2

)(
444

cifx

cifx
cx

b

cc

f

c

f

x

E

c

E
AAAPP 

  

 
Therefore adaptive parameters will be updated with respect to equations 2.26, 

2.27 and 2.28. 

 

2.3 Complex fuzzy theory  

Complex fuzzy sets are an extension to type-1 fuzzy sets. It is a combination of 

traditional fuzzy set and complex numbers and is characterized by complex-value 

membership function [2] [51]. The result of this idea is the development of 

complex-valued membership fuzzy sets [2] and complex fuzzy logic [1][4].  

Complex fuzzy sets appear to be good model for ―approximately periodic‖ 

temporal phenomena [1]. We call it ―approximately periodic‖ because usually it 

never repeats itself exactly. An example of approximately periodic phenomena is 

traffic congestion. The traffic is heavy in the morning from one way to work and 

in the afternoon the opposite way back from work and during night the roads are 

quit empty. This behavior repeats every day but it never repeats itself exactly the 

same each day [4]. 

Complex fuzzy sets are different from the complex fuzzy numbers which Buckley 

developed in [52] [53]. The fuzzy set representing the fuzzy complex number is 

an ordinary fuzzy set with membership grades in range of [0,1]. In another way, a 

fuzzy complex number is a type-1 fuzzy set whose members are elements of 

complex plane. Fuzzy complex numbers were used in the solution of fuzzy 

relational equation in [54] [55]. In [56] a complex fuzzy set was defined as a 

membership function which maps the complex plane into ]1,0[]1,0[  ; this is very 

similar to complex fuzzy set defined in [2] and close to the formulation in [57].  
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2.3.1 Complex Fuzzy Sets 

Complex fuzzy set S which is defined on the universe of discourse U is 

characterized by membership function )(xS  where Ux . The values of 

membership function are in the form of:  

)(
).(

xjw

SS
sexr  , 1j       (2.30) 

 Here terms of )(xrS
and )(xwS

 as amplitude and phase; are real values and

]1,0[)( xrS . The complex fuzzy set can be presented as a set of ordered pairs as 

below [2]. 

}|),{( UxxS S          (2.31) 

In complex fuzzy sets, membership values are drawn from unit disc of complex 

plane. The membership function of a complex fuzzy set is a vector in complex 

plane and its magnitude is less or equal to one. A complex fuzzy set is shown in 

Fig. 2.9 where the membership function is visualized by placing the complex 

plane R × I at right angles to the universe of discourse U. The complex 

membership function then forms a trajectory within the cylinder formed by 

projecting the unit disc D along U.  

 

 

Figure 2.9: Complex fuzzy set [1] 
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As the complex fuzzy sets are extension of the ordinary fuzzy sets, it is possible to 

convert the complex fuzzy set in to traditional fuzzy by setting )()( xxr sS  and 

also 0)( xwS
 which means that the phase term is not considered at this point.  

The amplitude term is the same as real-valued grade of membership which lies in 

range of [0, 1] and can be considered as the degree to which x is a member of 

complex fuzzy set S. Though the phase term is an innovative parameter of 

membership which with this, the complex fuzzy sets are recognized from the 

ordinary fuzzy sets. Also it is the phase which makes complex fuzzy logic 

different from the conventional fuzzy logic. The phase term allows a new type of 

interaction happen between membership functions. Complex fuzzy membership 

function can be in form of wave where phase term let them interfere with each 

other [2].  

 

2.3.2 Complex fuzzy logic 

Complex fuzzy logic [1][4] employ rules built with complex fuzzy sets to develop 

a complex fuzzy logic system. These rules are represented in the form of If-Then 

statements similar to traditional fuzzy logic.  

The complex fuzzy implication relation is characterized by a complex-valued 

membership function and is represented as ),( yxBA . The amplitude term (

),( yxr BA ) is real-valued grade of membership and shows the degree of truth of 

the implication relation. The phase term ( ),( yxBA ) represents the phase 

associated with implication. Phase term is of little consequence by itself though it 

becomes a more important parameter when several implication relations are 

combined at the same time, similar to what occurs in complex fuzzy systems. The 

implication function employed in complex fuzzy logic is the product implication: 

)().(),( yxyx BABA          (2.16) 

Also the amplitude and phase are calculated this way: 

)().(),( yrxryxr BABA         (2.17) 
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)()(),( yxyx BABA  
       (2.18) 

Complex fuzzy implication can be used in order to build complex fuzzy inference 

rules in the generalized modus ponens form. 

 

Premise 1: ―X is *A ‖ 

Premise 2: ―IF X is A, THEN Y is B‖ 

------------------------------------------------- 

Consequence: ―Y is *B ‖ 

Where all the sets A, B, *A  and *B are complex fuzzy sets. 

The amplitude and phase term of membership function *B  can be given by: 

))]().(()(sup[)],()(sup[ *** yrxrxryxrxrr BAABAAB
     (2.18) 

)))]()(((),(([))],(),(([ ** yxxgfyxxgf BAABAAB
     (2.19) 

Where g refers to any function used to compute the intersection of two 

membership phases and f is the membership phase equal to sup operation [4]. 

Both of them are application dependent. 

 

2.3.3 Complex Valued Neural Networks 

ANCFIS architecture is complex-value neural networks (CVNN) architecture. 

CVNN accept complex-valued inputs and outputs and it is possible that their 

neuron weights and biases be complex-valued as well [58][59]. Early models of 

CVNN have generalized the Hopfield model, back propagation and perception 

learning rule in order to handle the complex inputs. Noest [60] introduced an 

associative memory network with local variables assuming one of q equidistant 

positions on the unit circle (q-state phasors) in the complex plane. Leung and 

Haykin [61] extended real-valued back propagation networks to complex-valued 

back propagation networks in order to solve problems related to radar signal 

processing and communication in which complex-valued representation of signal 

is required.  Kim and Guest [62] also extended back propagation to the complex 

domain, to process frequency-domain data. More recent work was done by Hirose 
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et al. They have used complex- valued neurons in the coherent neural network 

architecture. All input signal, output signal and weight are complex numbers. The 

neural connection weight nm  was explained by 1],2exp[ ifi nmnm  . 

Here nm is connection amplitude nm  is delay time and f is the carrier 

frequency which modifies the phase of selected neuron weights. Two applications 

for development- learning architecture are proposed [63] [64]. Dynamics of 

complex-value NNs with real- imaginary-type activation was evaluated when it 

was used in complex-plane transform [65][66]. Also the characteristics of 

activation functions discussed in [67][68]. Associative memories (mainly 

Hopfield networks) are an important area for complex-value NNs research. One 

of recent work on this area is related to an exploration of the properties of 

different neuron activation functions [69] and an application to traffic signal 

coordination [70]. In [71], quantum associative memory uses complex-valued 

neuron weights with a distribution function that is a solution of Schrodinger‘s 

diffusion equation. Nitta proposed a quaternion-valued neural network [72]. 

Generally speaking a good overview of complex-value NNs can be found in [63]. 

 

2.3.4 Implementation of Complex Fuzzy Logic in ANFIS 

Previously there was just one attempt to develop an inductive learning 

architecture using complex fuzzy sets which was named CANFIS [73]. It was 

considered for complex-value input-output pairs with modeling a simple lead- lag 

compensator transfer function in form of 
)1(

)1(

ST

TS
k




 where jS  . The 

architecture of CANFIS is a hybrid of complex fuzzy sets and a complex-valued 

single layer neural network. The real-valued adaptive parameters of the complex 

MFs for each rule were updated by a steepest descent algorithm and weights and 

bias parameters were updated by complex least square estimator. Here the idea is 

derived from [2] where phase and magnitude are considered separately. As the 

phase and amplitude treat separately, the nature of complex fuzzy sets is ignored. 
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Also, the key property of rule interference [6] was not implemented. An earlier 

architecture developed by Li and Jang [74] also named CANFIS was an extension 

of ANFIS architecture with complex-valued inputs and outputs. Here each input 

has its real and imaginary component and 2 Gaussian type-1 fuzzy sets are 

assigned to each component of each input. The number of rules for example for a 

three complex input system is 64. Similar to ANFIS, the premise parameters were 

updated with gradient descent and the consequent parameters were updated via 

the least square algorithm. In ANCFIS architecture phase and magnitude are 

coupled with each other [1]. This approach leads to a parsimonious network 

structure, different from other proposed architectures [73] [74]. 
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Chapter 3:  An Introduction to ANCFIS 

 

The original ANCFIS architecture was developed by Chen et al. [8]. ANCFIS is a 

six-layer adaptive neural network with complex-valued signals through much of 

the network [8]. Its adaptive nodes are in layer one and five. Figure 3.1 represents 

one example of ANCFIS architecture with one input and three rules.  

 

 

Figure 3.1: An ANCFIS architecture [8] 

 

ANCFIS is based on ANFIS [7] architecture with some modifications. First 

ANFIS needs several inputs to capture a segment of univariate time series which 

leads to a combinatorial exploration in number of inferential rules, but ANCFIS 

get only a single input which is a sliding window of observed values in the time 

series. Consequently by requiring a lower input dimensionality, ANCFIS step  

aside from the ―curse of dimensionality‖.  Also input presentation is a natural 

consequence of using complex fuzzy sets; thus, a segment of the time series must 

be available to match its phase and frequency with our proposed complex fuzzy 

sets. Thus, usual practice of selecting prior values of the time series as orthogonal 

inputs to a learning algorithm (―lagged‖ representation) destroys this phase 

information, and cannot be used. The main modification in ANCFIS is addition of 

layer four which is a dot-product layer. This layer is closely related to the rule 

inference. 

In ANCFIS a parameterized form of complex fuzzy set is required. The best 

choice is sinusoid. Under general conditions, an arbitrary periodic function can be 
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represented by a Fourier series, the sum of a series of sine and cosine terms. The 

complex fuzzy set which is used for ANCFIS is represented by: 

cbadr  )sin()(         (3.1) 

where, )(r  is magnitude, and   is the phase of complex membership value. 

Also, the set of },,,{ dcba  are adaptive parameters that manipulate the sine 

function, where a means frequency of a sine wave, b represents a phase shift, c 

shifts the sine wave vertically and d varies the amplitude of the wave. There are 

two constraints for the amplitude of the complex fuzzy membership, as it is within 

the unit disc: 10  cd , 10  cd . 

Same as ANFIS, in ANCFIS, least-square optimization is applied for forward 

pass, and parameters of layer five (consequents) are determined. In backward pass 

ANFIS employs gradient descent method to determine parameters of layer one 

(premise). However, in ANCFIS, gradient descent is used until it reaches a point 

where it does not work properly, that is, the partial derivatives of the parameters 

of the complex fuzzy sets in ANCFIS do not have a closed form solution. Then, 

derivative-free optimization technique is used to update the complex fuzzy set 

parameters of layer one. In the basic ANCFIS architecture, the derivat ive-free 

optimization technique method which is applied is VNCSA.  

 

3.1 The VNCSA Algorithm 

 

In simulated annealing (SA), the value of an objective to be minimized is similar 

to energy in a thermodynamic annealing process. At high ―temperatures,‖ SA 

allows function evaluations at faraway points and it is likely to accept a new point 

with higher energy. As the ―temperature‖ decreases, the algorithm is increasingly 

restricted to a local neighborhood. The disadvantage of SA lies in its dependence 

on the random number generator; a random search of a large solution space can be 

very slow. Chaotic maps provide an alternative means of exploring a solution 

space, which is confined to a (possibly fractal) subspace and thus can be much 

faster. A transiently chaotic neural network (TCNN) [75] was proposed to solve 
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combinatorial optimization problems by introducing simulated annealing to 

Hopfield neural network (HNN). The nonlinear dynamics approach [76] used an 

additive chaotic forcing function in determining the global minimum of a 

continuous, unconstrained or bound-constrained cost function. The Chaotic 

Simulated Annealing (CSA) algorithm [77] introduced the concepts of chaotic 

initialization and chaotic sequences to SA. 

In mathematics and physics, many one–dimensional maps exhibit sensitivity to 

initial conditions, with small changes in initial conditions leading to large changes 

in the long-term outcome (popularly known as the ―butterfly effect‖). Due to this 

sensitivity, the behavior of nonlinear chaotic maps seems to be random, as any 

measurement error in initial conditions is magnified exponentially through time. 

However, these maps are deterministic, analytical functions (hence the term 

―deterministic chaos‖) [64]. An example is the logistic map given by: 

)1(1 nnn xxx   , ]1,0[nx        (3.2)   

This map is known to be chaotic for parameter values of µ= 4.0 [8]. The long-

term behavior of this map covers the entire codomain of the map (i.e. [0,1]), as 

long as the initial point of the map (x0) is not one of the fixed points of the logistic 

map; these consist of the set {0, 0.25, 0.5, 0.75, 1.0, 
8

55
, 

8

55
, 

4

32
, 

4

32
}[8]. The Ulam-von Neumann Map is another chaotic map defined by  

2

1 1 nn ryy  , ]1,1[ny        (3.3) 

This function is chaotic and covers the codomain of [-1,1] for parameter values r 

≥ 2.0. These two maps are used to replace the random number generator in the 

simulated annealing algorithm. 

The VNCSA algorithm was developed to solve nonlinear constrained 

optimization problems:  

 minimize  )(Sf  subject to   0Sci ,   0Sc j , Ei , Ij   (3.4) 

where f() is the objective function, S is the control variable(s), ci is the set of 

equality constraints in the problem, and cj is the set of inequality constraints; both 
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these sets are assumed finite. VNCSA simulates the cooling of a physical system 

whose possible energies correspond to the values of the objective function to be 

minimized, and allows solution candidates of worse quality than the current 

solution (uphill moves) in order to escape from local minima. The probability of 

allowing an uphill move is represented by the temperature parameter, which is 

reduced over time. The algorithm starts by producing a group of solutions 

satisfying all given constraints, by iterating the Logistic map from a random initial 

point with the parameter =4.0. Then, three steps are iterated until the stopping 

condition is reached: 1) A new solution Snew is generated from the neighborhood 

N(S) by iterating the Ulam-von Neumann map; 2) Snew is checked against the 

constraints, and discarded if it does not meet them all (goto (1)); 3) f(Snew), 

f(Scurrent) and temperature T are compared to decide if Snew is accepted as the new 

current solution. The structure of the VNCSA is given in Algorithm 1. In this 

algorithm, Lmax is the number of iterations at a given temperature, and M is the 

number of solutions generated per iteration (equally, iterations of the Ulam-von 

Neumann map). The distinguishing characteristic of VNCSA (differentiating it 

from e.g. [77]) is the variable neighborhood step, which modifies N(S). After Lmax 

iterations at a given temperature, both the temperature and  the size of the search 

neighborhood are updated; the new search neighborhood will be based on the 

magnitude of the update at the previous temperature. This will (usually) cause the 

neighborhood to contract, leading to a further speedup in the algorithm.  
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Begin  

    :currentS  GenerateInitialSolutionPopulationLogisticMap()  

    :0T SetInitializationTemperature()  

     While ( )minTTk   do 

         While( maxLl  ) do 

                While( Mm  ) 

                       :newS PickNeighborAtUlam_von_NeumannMap()  

                          if )()( currentnew SfSf   then 

                                :currentS newS  

                          else 

                                accept newS as new solution with probability 

                                            )))()((exp(
kcurrentnew TSfSf   

                           end if 

                end while 

        end while   

        UpdateNeighborhood( D )  

        UpdateTemperature( kT )  

   end while 

  :bestS currentS  

   output: bestS viewed as optimization solution for x 

End  

Algorithm 1: VNCSA 

 

3.2 ANCFIS Architecture 

As mentioned before ANCFIS has six layers. In the following, it is described how 

each layer works: 

 

Layer 1: Premise parameters 

Here premise parameters are {ai, bi, ci, di} with i =1, 2…, n-CMF, where n-CMF 

represents the number of complex membership functions. In this layer the 

convolution of each membership function (MF) and input vector are computed. 

The MF is sampled by: 

cbadr kkk  )sin()(                        (3.5) 
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,
2

k
n

k


                              (3.6) 

Here n is length of input vector and k is the element index of complex samples,  

k=1, 2, …, n. The sampled points are converted from polar to rectangular 

coordinates using well-known transforms [4]: 

)cos( kkk rx                      (3.7) 

)sin( kkk iry                      (3.8) 

These samples with complex value are convolved with the original real-valued 

input vector. Considering f is input vector and g is sampled point vector and n is 

length of f and m is length of g, a vector of length m+n-1 is called h whose kth 

element is:  

 
j

jkgjfkh )1()()(        (3.69) 

)sin()cos()1( 111111 jkjkjkjkjkjk irriyxjkg                 (3.10) 

This sum covers all values of j which lead to subscript for )( jf and )1( jkg  ; 

),min(:)1,1max( mknkj  . 

Suppose that both two vectors are within the same length; m=n; the result is: 

 )(*)()12

....

)1(*)(...)1(*)2()(*)1()(

....

)1(*)2()2(*)1()2(

)1(*)1()1(

ngnfnh

gnfngfngfnh

gfgfh

gfh









 

In conclusion the convolution sum is equal to:  

  






 


12

1

12

1

),min(

)1,1max(

)1()()(
n

k

n

k

nk

nkj

jkgjfkh                  (3.11) 

Convolution sum can be expressed as a form of neural network in Figure 3.2.  

ikjSMF is the weight which connecting the thj  element of input vector ANCFIS to 

thk sample point of 
thi membership function in first layer. This insight provides 

essential guidance in driving the gradient descent formula for ANCFIS learning 

algorithm (however, note that this is only a conceptual tool, the neural network in 
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Figure 3.1 does not in fact exist). So the convolution sum equation can be 

represented this way:  

Convolution sum =  
 











n

k

n

k

ikjjo SMFO
1 1

,
 [8]               (3.12) 

Where n is the length of the input vector, and jO ,0 , nj ,2,1 , denotes the jth 

element of the input vector presented to ANCFIS. This sum might not be 

restricted to the unit disc of the complex plane; to enforce this restriction without 

changing the phase of the sum, the Elliot function is employed [78]: 

z

z
zf




1
)(                      (3.13) 

which z is a complex number. 

Substituting Eq. (2.13) into Eq. (2.14), the output of the nodes in layer one is 

given by: 

CMFni

SMFO

SMFO

O
n

k

n

k

ikjjo

n

k

n

k

ikjjo

i _,...,2,1,

1
1 1

,

1 1

,

,1 























 

 

 

 
               (3.14) 
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Figure 3.2: Implicit structure in the convolution of input vector and sampled points 
generated from complex membership function ( SMF111 = SMF112 , SMF121 = 

SMF122 , SMF211 = SMF 212 , SMF221 = SMF 222 )[8] 

 

Layer 2: Firing strength 

Each node in this layer is a fixed node and output is product of its complex inputs.  

1,1,2 ,...,2,1, OiOO
i

ii                   (3.15) 

In Figure 3.1, the network only has  one input vector x  (univariate time series) so 

the output of layer two is the same as layer one.  Each output of layer two 

represents the firing strength of a fuzzy rule. In multivariate time series, it can 

also involve interaction between inputs. The algebraic product is identified as a 

complex fuzzy conjunction in [1], and was proposed as a complex fuzzy 

intersection in [79]. 

 

Layer 3: Normalized firing strength 

This layer is responsible for normalizing the firing strength:  
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2

1

,3 ,...,2,1,
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Oi
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w
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j

j

i

ii 




               (3.16) 

Here 


2

1

O

j

jw  represents the sum of magnitude of each weight jw and 2O is the 

number of rules. In this layer, only magnitude is normalized and phase does not 

change. 

 

Layer 4: Dot product 

Output of each node in this layer is dot product of normalized firing strength and 

sum of outputs of all nodes in the previous layer. The equation is:  

3

1

,4 ,...,2,1,
3

OiwwwO
O

i

ii

DP

ii  


               (3.17) 

 3O
 
is the number of nodes in layer 3 and  



3

1

O

i

iw  is a complex sum. Output of 

this layer is a real value. 

 

Layer 5: Consequent parameters 

Each node in this layer is an adaptive node in the hybrid learning rule. Calculation 

of each output node i is represented by: 

njrxpxpxpxpw

rxpwfwO

innijjiii

DP

i

ii

DP

ii

DP

ii

,..,2,1),.....(

)(

,,22,11,

,5




           (3.18) 

 

where,
DP

iw is the thi  output of the layer four and jx is the thj value in the input 

vector, n is the input vector length and },{ ii rp is the parameter set for the linear 

output function. The length of ip is the same as input vector x  and ir  
is a 

constant. Parameters in this layer are called ‗consequent parameters‘, which are 

identified in forward pass using a linear least square estimator ([7], [80], [81]). 
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Layer 6: Final output 

This layer has just one node which is the overall summation of incoming signals 

of layer five. 

 i

DP

i

DP

i fwwO 1,6                     (3.19)  

 

3.3 ANCFIS Back propagation 

In this section, back propagation for updating the sampled points will be 

discussed. Here premise parameters are not updated as there is no closed-form 

solution for derivative of network error [8]. Instead, the SMF (sample 

membership function) points are updated. 

The sum of squared error is used for error measure for thp entry of training 

dataset. Here, Pp 1 , and sum of squared error is defined as below: 





)(

1

2

, )(
LN

q

qLqp xdE         (3.20) 

where, qd  is thq of thp desired output vector, L refers to layer number and qLx , is 

thq  component of thp actual output vector of the whole network. The main 

purpose of ANCFIS is to minimize the total errors of the system which is sum of 

all pE . In terms of defining the error signal, pE is defined as the derivative of pE

regarding to the output of node i in layer l. 

il

p

il
x

E

,

,







          (3.21) 

The error signal of ith output node in layer L is calculated by equation 3.19. 

)(2 ,

,,

, iLi

iL

p

iL

p

iL xd
x

E

x

E














        (3.22) 

Then, for each internal node of ANCFIS network the error signal is calculated as 

below: 
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In equation 3.23, the index i refer to node position in layer l and error signals and 

m  refers to nodes in layer 1l . For each internal node, error signal is as a linear 

combination of error signals from next layer that is l+1. 

For calculating the partial derivatives related to complex variables, the approach 

in ANCFIS is similar to [82] and alternative approach is described in [63]. If one 

writes: 

         yxivyxuzivzuzf ,,        (3.24) 

And let iyxziyxz  , and idydxdz  ; then: 
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After finding all values related to all il , s, the gradient for SMF in the first layer 

can be computed: 

 iiii ivuzfx ,1,1,1,1 )( 
 
,  
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

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j

n

k
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ii

i SMFxiyxz
1 1

,0

,1,1

,1
  (3.27)

 

Here ix ,1  is the neuron i in the first layer of the network. The partial derivatives 

for x and y with respect to that real and imaginary parts are R and I, are as follows: 
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The function pE  includes both ),( ,1,1

,1

ii

i yxu and ),( ,1,1

,1

ii

i yxv , and ix ,1 and
iy ,1
are 

both functions of ikjRSMF  and ikjISMF . The gradient of error function with respect 

to the real part of ikjRSMF  is expressed by: 
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In 3.29, 
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are the real and the imaginary parts of the error signals 

of node i in the first layer, the terms 
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
are the partial derivatives of 

the real and imaginary parts of the Elliott function with respect to the real part of 

the convolution sum. Now for the gradient of the error function with respect to the 

imaginary part ikjISMF , the equation is as written by: 
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Now, for gradient of error function pE with respect to the complex sample ikjSMF ,  

both equations 3.26 and 3.27 are used: 
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After calculation of all il , , the update for a generic weight ikjSMF can be executed 

by: 
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where, if ,1 is related to the function of node i of the first layer.  

By using steepest descent, the formula for generic complex sample is updated as 

3.34. 

        (3.34) 

where,  is the learning rate parameter which is defined by user. As with ANFIS, 

the learning rate parameter is adapted using the following heuristic rules [7]:  

1. If the parameter undergoes m consecutive reductions, increase   by a user-

defined factor: rateincrease *   
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2. If the parameter undergoes n consecutive combinations of one reduction and 

one increase, decrease   by a user-defined factor: ratedecrease *   

Once all
i ‘s are obtained, one can straightforwardly calculate the gradient for a 

generic weight ikjSMF  in node i  according to Equations 3.32 and 3.33.  
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Chapter 4:  

Off-Line experiments on Univariate Datasets 

 

 

In this chapter, the results of a series of univariate forecasting experiments using 

ANCFIS are described. The experimental design used in this chapter is typically 

applied in time series forecasting: we use a single-split design, in which all 

training data are chronologically earlier than the holdout test sample. The learning 

objective is a one-step-ahead prediction task. In the context of ANCFIS, this 

means predicting the time series value immediately following the most recent 

entry in the input window. The time series are normalized to the interval [0,1]. 

The size of the input window is selected to approximately cover one ―period‖ in 

the time series. Our experiments include five real-world datasets: Sunspot [15]-

[21], Santa Fe A (laser) [11]–[14], Waves [23], Mackey-Glass [5][9][10] and 

Stellar (Star) [21]-[23]. Mackey-Glass and Santa Fe A (Laser) are known to be 

chaotic time series. 

The performance of ANCFIS is compared to current results for each dataset in the 

literature. The time-series forecasting literature employs several different 

measures of forecast error; these include the Mean Squared Error (MSE), 

Normalized Mean Squared Error (NMSE), the Non-Dimensional Error Index 

(NDEI), Absolute Error, (AE), and Average Relative Variance (ARV); this latter 

is equivalent to NMSE. These measures are defined as: 
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where, x is standard deviation and 
2

x  is variance of the test time series. iy  is 

the desired output, iŷ is the estimated output and n is the total number of 

examples in the testing dataset.  

 

 

4.1 Mackey-Glass dataset 

The time series used is the Mackey-Glass function, given by: 
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                              (4.7) 

This is the same time series as Jang [5][9][10] where time step is 0.1, initial 

condition x(0) =1.2 and t =17 , with 1000 points; these run from t=124 to t=1123, 

to avoid initialization transients. As in Jang‘s work, the first 500 data points are 

used as the training set, while the remaining 500 pairs are the test data set. A 

window of 44 data points is used as our input vector.  
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Figure 4.1: Mackey-Glass dataset 
 

 

Table 4.1 presents all the parameters applied to ANCFIS to find best results for 

Laser dataset and also Table 4.2 presents the best results found for different error 

measurements. 
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Table 4.1: Training Parameters for Mackey-Glass Dataset 

 

RMSE MSE NMSE NDEI 

0.000141 3.099e (-7) 0.0027 1.3721e(-6)  

Table 4.2: Different error measurements for Mackey-Glass 

 

The results for ANCFIS are compared to the published literature in Table 4.3. 

ANCFIS consistently had lower errors on the various measures reported in the 

literature as compared to the existing techniques.  
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Method NDEI MS E NMS E 

ANCFIS 0.0027 3.099x10
-7

 1.37x10
-6

 

ANFIS [83] 0.007 - - 

AR model [83] 0.19 - - 

Cascade-correlation NN [84] 0.06 - - 

Backpropagation NN [84] 0.02 - - 

6
th

 – order Polynomial [84] 0.04 - - 

Linear pred ictor [84] 0.55 - - 

TSK-NFIS [21] 0.0406 2.18x10
-5

 - 

AR model [21] 0.0492 3.2x10
-5

 - 

NAR [21] 0.0466 2.89x10
-5

 - 

Neural Network [21] 0.0488 3.21x10
-5

 - 

SVR [17] - - 4.5x10
-3

 

Bagging SVR [17] - - 2.0x10
-3

 

Boosting SVR (median) [17] - - 8.2x10
-4

 

Boosting SVR (mean) [17] - - 8.0x10
-4

 

Table 4.3: Comparison of Test Error for Mackey-Glass Dataset 
 

Further analysis of the ANCFIS results are provided in Figure4.2 and 4.3, where 

we plot the predicted and actual outputs in part 4.2 and the prediction errors in 

4.3. Plainly, the ANCFIS forecasts track this chaotic time series quite closely, 

using only three rules.   

 

 

Figure 4.2: Mackey-Glass test results for one-step prediction 
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Figure 4.3: Mackey-Glass test errors 

 

A detailed explanation of the analysis of the learning taking place in Layer 1 of 

ANCFIS is presented in Table 4.4, where we present the three complex 

membership functions after training. As a usual practice, these parameters are 

initialized to small random values prior to the start of the training process. It 

should be noted that the phase of the third membership function is constant (a=0), 

meaning that the entire membership function becomes a constant value.  

    

 

  a b c d 

CFS 1 0.969617 48.03118 0.861239 0.085948 

CFS 2 6.31E-05 39.60439 0.129598 0.031515 

CFS 3 0 83.98123 0.345205 0.119537 

Table 4.4: Membership Functions after Training for Mackey-Glass dataset 
 

 

 

4.2 Santa Fe A (Laser) dataset 

 

Santa Fe A is the first dataset in a series of six datasets of Santa Fe time series 

competition [14] in 1991. This is a univariate time series dataset which was 

contributed by Udo Huebner [11]–[13] and were collected primarily by N. B. 

Abraham and C. O. Weiss. These data were recorded from a Far-Infrared-Laser in 

a chaotic state. Specially, the measurements were made on an 81.5-micron 14NH3 

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

1 101 201 301 401



50 
 

cw (FIR) laser, pumped optically by the P(13) line of an N2O laser via the 

vibration of aQ(8,7) NH3 transition. The normalized laser data are shown in 

Figure 4.4. The first 900 data points are used as training data, while the last 100 

are used as testing data (in common with [54]). The length of input vector is set to 

8 leading to 892 input-output data pairs as training data set and 92 data pairs as 

testing data set for ANCFIS. 

 

 

Figure 4.4: Santa Fe A after normalization 

 

 

Table 4.5 represents all the parameters applied to ANCFIS to find best results for 

Laser dataset and also Table 4.6 represents the best results found for different 

error measurements. 
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Table 4.5: Parameters for the Santa Fe A Dataset 

 

RMSE MSE NMSE NDEI 

0.033 0.001089 0.0274 0.1655 

Table 4.6: Different error measurements for Santa Fe A 
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We compare the results for ANCFIS and the published literature in Table 4.7. 

Overall, ANCFIS is in the general range of recent forecasting results for this 

dataset (while using only 2 rules), but does not yield the lowest error.  

 

Method NMS E 

ANCFIS  0.0274 

[85] 0.028 

[80] 0.026 

[11] 0.0701 

[86] 0.099 

MLP [87] 0.0996 

MLP IT [87] 0.1582 

LSTM [87] 0.3959 

LSTM IT [87] 0.3642 

Linear [87] 1.2505 

FIRN [88] 0.023 

sFIRN [88] 0.0273 

MLP [89] 0.0177 

RSOM [89] 0.0833 

EP-MLP [90] 0.2159 

[91] 0.077 

[92] 0.016 

[93] 0.029 

 

Method MS E 

ANCFIS 0.001089 

[86] 0.0014 

Table 4.7: Comparison of testing errors for Santa Fe dataset A  (Laser) 

 

 

Further analyses of the ANCFIS results are presented. Actual versus predicted 

outputs and prediction errors are given in Figures 4.5 and 4.6.  Again, it can be 

observed that ANCFIS tracks this dataset fairly well, except for a small number of 

points near the ―peaks‖ of the output. The trained CFS parameters are presented in 

Table 4.8. 
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Figure4.5: Santa Fe A test results for one-step prediction 

 

 

Figure4.6: Santa Fe A prediction error 

 

 

 a B c d 

CFS 1 6.988808 9.29139 0.690029 0.174359 

CFS 2 8.956521 6.035124 0.354891 0.117247 

Table 4.8: Membership Functions after Training for Santa Fe A dataset 
 

 

 

4.3 Sunspot dataset 

 

Zurich or Wolf sunspot number (now commonly referred to as sunspot number) is 

the average number of sunspots per year as measured from 1700 to 1979. This 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 11 21 31 41 51 61 71 81 91

Desired value

Predicted value

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 11 21 31 41 51 61 71 81 91



53 
 

time series was chosen because it is a commonly cited time series dataset 

[15][16][94][95] and [17]-[21]. The normalized data is shown in Figure 4.7.  

 

 
Figure4.7: Sunspot after normalization 

 
 

The years 1700-1920 are used as training data, while the remaining years up to 

1979 are used as testing data.  This is consistent with the experiments from [18]. 

In other papers [15]-[17], [94][95] and [19]-[21], authors used different number of 

data points as training data and testing data.  

 

V
a
ria

te
s 

In
p

u
t 

L
e
n

g
th

 

O
u

tp
u

ts 

C
F

S
 p

e
r 

In
p

u
t 

S
te

p
 S

iz
e
 

In
c
re

a
se

 

R
a
te 

D
e
c
re

a
se

 

R
a
te 

T
m

a
x

 

L
m

a
x

 

A
lp

h
a
 

W
e
ig

h
t 

T
m

in
 

B
e
ta 

M
 

1 12 1 3 0.001 1.1 0.8 100 2 0.99 0.95 0.01 0.98 400 

Table 4.9: Training Parameters for Sunspot Dataset 

 

RMSE MSE NMSE NDEI 

0.091 0.00829 0.3608 0.1302 

Table 4.10: Different error measurements for Sunspot 

 

The forecasting results are compared to the literature in Table 4.11. ANCFIS is 

often superior, except against one method in a 1997 article, and one publication in 

2009 (last four rows). However, while the four methods investigated b y [96] 
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yielded a lower MSE, the ANCFIS architecture is superior when the same results 

are measured by NDEI. This likely means the four methods in [96] and ANCFIS 

are not significantly different on this dataset.  

 

Method ARV NMS E MS E NDEI 

ANCFIS 0.1302 0.1302 8.29x10
-3

 0.3608 

ARMA [97] 0.252 - - - 

Elman [97] 0.348 - - - 

Extended Elman [97] 0.162 - - - 

FIR [97] 0.115 - - - 

SVR [17] - 0.64 - - 

Bagging SVR [17] - 0.58 - - 

Boosting SVR (median) 

[17] 

- 0.27 - - 

Boosting SVR (mean) [17] - 0.33 - - 

SVM [20] - 0.178 - - 

SVM Ensemble [20] - 0.1541 - - 

[98] - 0.28 - - 

[99] - 0.35 - - 

TSK-NFIS [21] - - 1.32x10
-3

 0.38 

AR [21] - - 1.36x10
-3

 0.385 

NAR [21] - - 2.68x10
-3

 0.541 

Neural Network [21] - - 2.17x10
-3

 0.486 

 

 ANCFIS  [58] [18]  

Absolute Error  0.068 13.83 13.73 

Table 4.11: Comparison of Testing Error for Sunspot Dataset 

 

Further analysis of ANCFIS is provided in Figures 4.8 and 4.9. Again, Figure 4.8 

presents actual versus predicted values, while 4.9 presents prediction errors. The 

trained membership function parameters are presented in Table 4.12.  
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Figure4.8: Sunspot test results for one-step prediction 

 

 

Figure4.9: Sunspot prediction error 

 

 a b c d 

CFS 1 1.000299 81.34112 0.771363 0.109397 

CFS 2 1.76E-05 16.28847 0.463418 0.258022 

CFS 3 2.421611 65.95746 0.196038 0.011797 

Table 4.12: Membership Functions after Training for Sunspot dataset 
 
 

4.4 Stellar (Star) dataset 

 

Star dataset refers to a record of daily brightness of a variable star during 600 

nights; see the normalized data in Figure 4.10.  There are 480 data points that are 

chosen as training dataset and the rest which is 120 is used as testing dataset. The 
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length of input vector is set at 27 which give a total number of 93 for testing data 

pairs and 453 for training data pairs. Table 4.13 represents training parameters 

applied to Star testing dataset.  

 

 

Figure4.10: Star after normalization 
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Table 4.13: Training Parameters for the Star Dataset  

 

 

RMSE MSE NMSE NDEI 

0.00749 5.6106e(-5)  0.0029 0.00084 

Table 4.14: Different error measurements for Star 

 

Our forecasting results are compared to the literature in Table 4.15. Again, further 

analysis of the ANCFIS results are provided in Figures 4.11 and 4.12. Actual 

versus predicted outputs are plotted in Figure 4.11, while prediction errors are 

plotted in 4.12.  
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Method  MS E NDEI 

ANCFIS 5.61x10
-5

 0.0029 

TSK-NFIS [21] 3.31x10
-4

 0.0609 

AR [21] 3.22x10
-4

 0.0601 

NAR [21] 3.12x10
-4

 0.0592 

Neural Network [21] 3.11x10
-4

 0.0591 

Table 4.15: Comparison of Testing Error for Star dataset 

 
 

 

Figure4.11: Star test results for one-step prediction  

 

 

Figure4.12: Star prediction error 

 

The trained membership function parameters appear in Table 4.16. It is interesting 

to note that the values for the d parameter are extremely small for the two of the 

three CFSs. This will mean that the magnitude of the CFS will be nearly constant 

(equal to the value of c). 
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 a b c d 

CFS 1 1.305374 57.13477 0.184654 0.0001 

CFS 2 0.859259 12.02859 0.281818 0.094417 

CFS 3 6.663302 58.42737 0.431561 0.0001 

Table 4.16: Membership Functions after Training for Star dataset 
 

 

4.5 Waves dataset 

 

Wave‘s dataset [23] is a time series that records forces on a cylinder suspended in 

a tank of water with sampling interval 0.15 second and contains 320 data points as 

shown in Figure 4.13.  We choose the first 256 points as the training data set, and 

the remaining 64 points as the testing data. Training parameters are listed in Table 

4.17. 

 

 

Figure4.13: Waves after normalization 
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Table 4.17: Training Parameters for the Waves Dataset 
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Table 4.18 presents the best results found for different error measurements.  

 

RMSE MSE NMSE NDEI 

0.0567 0.003215 0.3136 0.0983 

Table 4.18: Different error measurements  for Waves 

 

Actual versus predicted outputs are plotted in Figure 4.14 and prediction errors 

are plotted in Figure 4.15.  

 

 

 
Figure4.14: Waves test results for one-step prediction 

 

 
Figure4.15: Waves prediction error 
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This dataset has seen subject to limited use. There is only one article that reports 

on it, where the MSE error was not explicitly reported (the value in Table 4.19 

was determined from observation of a graph, not a numeric value). However, 

ANCFIS does outperform this technique. Membership functions after training are 

reported in Table 4.20.  

 

Method  MS E 

ANCFIS  0.003215 

[100] ~0.007 

Table 4.19: Comparison of Testing Error for Waves Dataset 

 
 

 a b c d 

CFS 1 9.680839 78.30599 0.025103 0.0001 

CFS 2 0.000834 78.62769 0.568644 0.000369 

CFS 3 5.99933 31.41722 0.338266 0.012879 

Table 4.20: Membership Functions after Training for Waves dataset 
 

 

In the five experimental contrasts, Off- line ANCFIS is comparable to published 

results on all five real-world datasets. It has not been pursued a test of statistical 

significance, as the training and testing sets vary widely between different 

investigations for any dataset. However, ANCFIS is a viable forecasting 

algorithm. It is also worth noting that the ANCFIS network achieves this 

performance with an extremely parsimonious network; no more than three rules 

are used for any dataset, including the two chaotic ones. In general, ANCFIS 

provides a very compact representation of a time series.  
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Chapter 5:   

Online Learning for Univariate Case 
 

 

 

There are many situations such as in real- time applications, where data becomes 

available gradually and is not available in a single batch. For example, in 

applications related to sensor networks, transaction log analysis and internet 

traffic measurements, data become available incrementally. This is particularly 

true in time series forecasting, where we often seek to create prediction models 

for ongoing phenomena. In these situations, it is important to use online learning 

algorithms [49][50][101], as they are a better fit to the learning problem. It is also 

cheaper to update the existing model instead of building a new model [102][103]. 

There are lots of applications which prefers online learning to batch learning as 

online learning does not need to do retraining when new data is available [104]-

[107]. 

The original ANCFIS architecture [8], however, exclusively uses offline or batch 

learning. Thus, there is a need to create a variant of ANCFIS that employs online 

learning in time series forecasting. 

We have developed online ANCFIS to meet this need. The online ANCFIS 

architecture is based on the original ANCFIS architecture, with substantial 

changes. To update the premise parameters in layer 1, we replace VNCSA with 

another derivative-free optimization algorithm. Also, recursive- least-square (RLS) 

[108]-[114] replaces the regular least square algorithm for updating consequence 

parameters in layer 5. We evaluate online ANCFIS on two of the datasets from 

Chapter 4. We find that, while batch learning does outperform online learning, the 

differences are small and the online ANCFIS still outperforms almost all 

published results on these datasets.  

The remainder of this chapter is organized as follows. We first explain the Down-

Hill simplex algorithm and RLS estimation in Section 5.1. The online ANCFIS 

design will be discussed in Section 5.2, and we evaluate the design on two 
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datasets in Section 5.3. We offer a discussion and summary of this chapter in 

Section 5.4.  

 

5.1 Down-Hill Simplex Algorithm 

 

Downhill simplex search [115][116][5] is a derivative-free method to optimize a 

multidimensional function. The concept behind this method is s impler than other 

methods such as simulated-annealing and it is faster but the disadvantage of this 

method is that it may find a local minimum instead of a global minimum 

depending on initial starting values for parameters with which it is initialized. So 

it may be important to run the procedure with different starting points in order to 

ascertain whether it will coverage the same, assumedly global, minimum.  

This method uses the concept of simplex, which is a collection of (n + 1) vertices 

in n dimensions. For example, in a two-dimensional space, the simplex is a 

triangle. A function of n variables is minimized by repeatedly comparing its 

values at the (n + 1) vertices and replacing the vertex with the highest value by 

another point. The simplex under consideration changes directions and adapts 

itself to local landscape to find the neighborhood of the global minimum. Changes 

in the shape and direction of the simplex are due to a number of rules and 

operations, which are described next.  

To generate the simplex, we begin with an initial start point 0P  and compute the 

remaining n points can be calculated using equation 5.1: 

niePP iii ,...,1,0          (5.1) 

Here ie ‘s are unit vectors which span the n-dimensional space and i  is a constant 

which reflects the guess of length scale of the optimization problem in question. 

The function value at iP  is iy  . 

)(minarg ii yl   (l  for “low”) 

)(maxarg ii yh    (h  for “high”)      (5.2) 

Here l and h are indices for minimum and maximum of iy .  
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)(min iil yy 
         (5.3) 

)(max iih yy   

The average of the (n+1) points is characterized by P . Each cycle in Downhill 

Simplex method begins with *P . The four operations which are used in this 

method, depend on the value at *P ; first one is reflection from hP ; then second 

one is reflection and expansion away from hP ; third is contraction on one 

dimension which connects hP  and P ; and the last one is shrinkage of lP on all 

dimensions. Figure 5.1 shows these four operations for a two input function. 

 

 

Figure 5.1: Outcomes for a cycle in the downhill simplex search after (a) reflection away 

from hP ; (b) reflection and expansion away from hP ; (c) contraction along one dimension 

connecting hP  and P ; (d) shrinkage toward lP  alone all dimensions[5] 

 

 

1. Reflection away from hP  

The equation of reflection is 5.3.  

)(

)(

**

*

Pfy

PPPP h



 
       (5.3) 



64 
 

The reflection point is defined by *P and its value is *y . The reflection 

coefficient  is a positive constant. As shown in figure 5.1, *P  is on the 

line which connects hP  to P . Based on the value of *y , one of the four 

below steps will happen: 

 If lyy *
, then do expansion. 

 If }{,

* max
iyhiil yy  , then replace hP  with *P  and finish cycle. 

 If hyhii yy
i



*

}{,max , then replace hP  with *P  and go to 

contraction. 

 If yyh  , then go to contraction. 

2. Expansion from hP  

The equation of expansion is 5.4.  

)(

)(

****

***

Pfy

PPPP



 
       (5.4) 

The expansion point is defined by **P and its value is
**y . The expansion 

coefficient  is greater than unity. Depend on the value of
*y , we have: 

 If lyy *
, then replace hP  with **P  and finish cycle. 

 If lyy *
, then replace hP  with original reflection point *P  and finish 

cycle. 

3. Contraction along one dimension connecting hP  and P  

The equation of contraction is 5.5.  

)(

)(

****

**

Pfy

PPPP h



 
         (5.5) 

The contraction point is defined by **P and its value is
**y . The 

contraction coefficient  is between 0 and 1. Here also we have: 

 If lyy *
 or }{,

* max
iyhiil yy   or hyhii yy

i


*

}{,max , 

then replace hP  with **P  and finish cycle. Otherwise go to shrinkage. 
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4. Shrinkage toward lP along all dimensions. 

Here each iP  is replaced with 
2

)( li PP 
 

Here it is important to find best values for constants ,   and  . Finding these 

values depends on their applications and can be found by trial-and-error but a 

good starting point is ( ,  , ) = (1, 0.5, 2) which is suggested by Nedler and 

Mead‘s original paper [115][116].  

 

5.1.1 Recursive Least-Squares Estimation 

 

In the online ANCFIS, RLS (Recursive Least-Squares) [110]-[114] estimation is 

applied to update parameters in layer five. Here the effect of old data pairs should 

gradually decay as the new data pairs are presented. For this reason a weight is 

assigned to RLS method which put more importance on recent data. This weight 

parameter usually varies between 0.9 and 1. If this parameter becomes smaller, it 

removes the effect of old data faster. The recursive least squares method is based 

on Equation (5.6) and (5.7). 

)( 1111 i

T

i

T

iiiii ayaP          (5.6) 

][
1

11

11
1









ii

T

i

i

T

iii
ii

aPa

PaaP
PP


                  (5.7) 

 

5.2 Online ANCFIS Design 

 

While the design of online ANCFIS is based on offline ANCFIS design [5], still 

there are major differences. Similar to offline ANCFIS in forward pass we have to 

determine a complex-valued membership given a segment of time series and a 

CFS membership function; thus in backward pass, we used another derivative-free 

optimization technique which is Downhill-simplex instead of VNCSA to 

determine the CFS parameters },,,{ dcba . These changes are done due to the fact 
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that VNCSA does a global optimization, which would overfit a single training 

pattern. In this work only a single iteration of the downhill-simplex method is 

done (instead of running it until convergence on a single pattern), in order to 

avoid over fitting. Also consequence parameters are found using RLS. Although 

the suggested range of values for lambda in RLS is between 0.9 and 1 [5], we 

tried to apply smaller values for Lambda to investigate the performance of the 

system as the effect of old data decays faster.  

To start the downhill simplex search, in each epoch for the first training vector we 

must initialize the simplex of (4+1=5) points in five dimensional space. First, we 

need the initial starting point
0P . Parameters for 

0P are the same parameters 

chosen in forward pass for that related node. Then the rest of four points can be 

calculated using equation 5.1. Here, Lambda is chosen by a random number 

generator. After each training vector presentation, it is needed to find the premise 

values of },,,{ dcba . First, we should calculate the magnitude and phase of each 

weight 
newijkSMF by Equation 3.7 and 3.8, and then there is a set of m magnitude-

phase for each complex membership function. In Equation 5.8, we try to optimize 

a model by minimizing a squared error measure between magnitudes of the 

updated weights and the fitting value of complex membership function at given 

phase related to magnitudes of the updated weights.  

2

1

32144321

2

]))sin([(),,,( 



n

m

mm xxphasexxmagniturexxxxE     (5.8) 

Where 4321 ,,, xxxx  are the premise parameters },,,{ dcba , respectively, n is the 

length of input vector, mmagniture  and mphase  are magnitude-phase data pair of 

the updated weight
newijkSMF . After presentation of each training vector, the values 

found for each simplex point after the single iteration of the downhill-simplex 

algorithm are kept to be used as the initial values of the simplex for the next 

training vector. This continues until all training vectors are covered. Then, the 

best founded minimum value is used with its parameters of  dcba ,,,  as the final 

value for that training epoch. Then, the cycle is repeated.    



67 
 

5.3 Experimental Results 

 

In this section, the results of forecasting experiments using online learning are 

reported.  Two time series dataset is used; Sunspot and Waves. The experimental 

design for each dataset is the same as in Chapter 4; a single-split, one-step-ahead 

prediction design where all training data are chronologically earlier than the 

holdout test sample. The size of the input window is selected to approximately 

cover one ―period‖ in the time series. The performance of online ANCFIS is 

compared to current results for each dataset in the literature and also to the results 

for offline ANCFIS. We again compute several different measures of forecast 

errors for comparison with the literature; the definitions of these measures may be 

found in Chapter 4. Different Lambda values are explored for each dataset. 

Lambda values decrease in intervals of 0.1 from 1 to the point that training errors 

become really huge and do not exceed any more. Also, other stopping criteria are 

defined for our work. One of these stopping points is defined as difference value 

between training errors in two sequential epochs. If this value exceeds the 

minimum value we defined, the program stops. The other stopping point is 

minimum error value defined by the user. If the training error becomes smaller 

than this value, again the program stops.  Even if none of these criteria are met, 

the program stops when it reaches the maximum epoch number.  

 

5.3.1 Sunspot Results 

 

As Sunspot is a very popular time series dataset [17]-[21] and [15][16][94][95], 

we used it to compare the results found in literature with our online experimental 

results for ANCFIS. More detail about this dataset is indicated before in chapter 4. 

All training parameters applied to online ANCFIS, are presented in table 5.1. As it 

is shown, the values related to alpha, beta and gamma are the same values as what 

Nelder and Mead suggested in their paper [101]. 
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1 12 1 3 0.001 1.1 0.8 1 0.5 2 

Table 5.1: Training Parameters for sunspot dataset used in online-ANCFIS  

 

In the comparison between online ANCFIS results and results which are found in 

literature, ANCFIS is often superior, except against one method published in 2009 

(last four rows). Though, the four methods in [21] yielded a lower MSE, the 

ANCFIS architecture is superior when the same results are measured by NDEI. 

This may indicate that the four methods in [21] and ANCFIS don‘t have much 

difference on this dataset. Moreover, the results for online ANCFIS is very close 

to offline ANCFIS which represents the good performance of this system.  

 

Method ARV NMS E MS E NDEI 

ANCFIS (offline) 0.068 0.1302 8.29x10
-3

 0.3608 

ANCFIS (online) 0.069 0.1473 9.2x10
-3

 0.38 

ARMA [97] 0.252 - - - 

Elman [97] 0.348 - - - 

Extended Elman [97] 0.162 - - - 

FIR [97] 0.115 - - - 

SVR [17] - 0.64 - - 

Bagging SVR [17] - 0.58 - - 

Boosting SVR (median) 

[17] 

- 0.27 - - 

Boosting SVR (mean) 

[17] 

- 0.33 - - 

SVM [20] - 0.178 - - 

SVM Ensemble [20] - 0.1541 - - 

[98] - 0.28 - - 

[99] - 0.35 - - 

TSK-NFIS [21] - - 1.32x10
-3

 0.38 

AR [21] - - 1.36x10
-3

 0.385 

NAR [21] - - 2.68x10
-3

 0.541 

Neural Network [21] - - 2.17x10
-3

 0.486 

 

 ANCFIS  

(offline) 

ANCFIS  

(online) 

[97] [60]  

Absolute Error 0.068 0.069 13.83 13.73 

Table 5.2: Comparison of Testing Error for Sunspot Dataset 
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Further analyses of the online ANCFIS results are presented in Figure 5.2 and 5.3. 

Figure 5.2 shows the actual versus predicted outputs and Figure 5.3 presents the 

prediction errors.   

 

 

Figure 5.2: Sunspot test results for online prediction 

 

 

Figure 5.3: Sunspot test errors for online prediction 

 

The best testing error is found with considering Lambda=1; the NMSE error 

measured is 0.1473. As the values of Lambda decrease, test errors increase. 

Figure 5.4 presents the different error values for different Lambda from 1 to 0.5 

and also Figure 5.5 shows these test error values from 1 to 0.3 where the error 
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becomes really huge. Regarding these two figures, it is clear that after decreasing 

Lambda below 0.9 the test error increases faster. 

 

 

Figure 5.4: Testing NMSE errors for different lambda from 1 to 0.5  

 

 

Figure 5.5: Testing NMSE errors for different lambda from 1 to 0.3  

 

 

5.3.2 Waves Results 

 

The Waves dataset [23] is another time series dataset which is used for online 

ANCFIS experiments. The experimental results for online ANCFIS is compared 

to offline ANCFIS and the results found in literature  This dataset is explained in 

details in chapter four. Table 5.3 represents all the parameters applied to online 

ANCFIS to find best results for Waves dataset. Again, the parameter values of the 
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three coefficients  ,, are the same suggested values by Nelder and Mead 

[101]. 
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Table 5.3: Training Parameters for Waves dataset used in online-ANCFIS  

  

Table 5.4 presents best results found for different error measurements for offline 

and online learning methods. As it is shown, the results are quite similar.  

 

 MSE NDEI NMSE 

Offline method 0.0032 0.3136 0.0983 

Online method 0.0034 0.3330 0.1109 

Table 5.4: Different error measurements for Waves 

This dataset is not as popular as Sunspot dataset. We found only one article which 

applies this dataset, though the MSE error was not mentioned numerically and it 

was determined from the observation of a graph. Table 5.5 presents the 

forecasting results; both online and offline ANCFIS results are superior to the 

results in literature. 

 

Method  MSE 

ANCFIS (offline learning) 0.003215 

ANCFIS (online learning) 0.003492 

[66] ~0.007 

Table 5.5: Comparison of Testing Error for Waves Dataset 

 

More analysis is provided in Figure 5.6 and 5.7; which 5.8 again presents actual 

versus predicted values and 5.9 presents prediction errors. 
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Figure 5.6: Waves test results for online prediction 

 

 

Figure 5.7: Waves test errors for online prediction 

 

The best forecasting error for this time series dataset in online ANCFIS is found 

for Lambda=0.99. Figure 5.6 and 5.7 represent the best forecasting results of the 

online system with different Lambda; as the Lambda reduces our results become 

worse till we reach to the point ( Lambda=0.35) that the error becomes really 

huge. 
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Figure 5.6: Testing NMSE errors for different lambda from 1 to 0.4  

 

 

Figure 5.7: Testing errors for different lambda from 1 to 0.35  

 

 

5.4 Discussion and Conclusions 

 

In this chapter, we have presented and evaluated the design of an online learning 

algorithm for ANCFIS. The key design decisions were to replace VNCSA with 

the downhill simplex algorithm (iterated only once per pattern), and to replace 

least-squares estimation with recursive least-squares in learning the layer 5 

consequent parameters. Although ANCFIS in batch mode does give us better 

forecasting performance, online ANCFIS still outperforms almost all other 

methods on these two datasets. Again, this is accomplished with three or fewer 

rules in each dataset. We also found that this performance is reasonably robust 
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against changes in the  parameter, which controls the contribution of older 

patterns to the recursive least squares procedure. Our results show that complex 

fuzzy logic systems can also be designed using online learning; this is the first 

time that this has been demonstrated.  
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Chapter 6:  Multivariate ANCFIS 

 

Multivariate forecasting consists of two or more observations recorded 

sequentially over equal time increments. Usually, due to theory or physical 

property, these observations should relate to each other in some fashion. This 

relationship should in turn allow us to improve upon the forecasting of these time 

series; the possibility of dynamic interactions among them is important [117][49]. 

Previously, the ANCFIS architecture was developed only for one input vector; 

that is called univariate forecasting. However, a multivariate fuzzy inference 

system is needed for the case where there are multiple input vectors.  

In order to implement multivariate fuzzy inference, a multivariate ANCFIS 

architecture is developed. The main difference between univariate and 

multivariate ANCFIS system is related to the layer two where the algebraic 

product (a complex fuzzy conjunction) is applied. This provision was made in the 

original ANCFIS architecture, but was never fully implemented. Also, an 

extension is needed in layer five to accommodate multivariate outputs. 

Multivariate ANCFIS is applied to the domain of time-series forecasting, an 

important machine learning problem.  Four different time-series datasets are used: 

Transport and tourism-motel [22], Hydrology-river flow [22][24], Macro-

economic [22] and Car-road-accident [25]-[27].  We compare these results against 

the forecasts obtained by the univariate ANCFIS on each individual time series. 

However, our performance evaluation is disappointing; in our experiments the 

univariate version of ANCFIS is able to model the individual variates better than 

the multivariate version can, even though the variates in each dataset are highly 

correlated with each other. We provide extensive detail on our multivariate design 

and experimental results, as a starting point for future work on this topic.  

 

The remainder of this chapter is organized as follows. We first discuss the 

multivariate ANCFIS design in section 6.1. We then present our experimental 
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results in section 6.2. We conclude the chapter with a summary and discussion in 

section 6.3.  

 

6.1 Multivariate ANCFIS Design 

 

Multivariate ANCFIS is an adaptive network with six layers.  The architecture of 

multivariate ANCFIS is similar to the original univariate ANCFIS with some 

modifications. The difference in their architecture is related to layer two and layer 

five. Layer two contains fixed nodes and is responsible for multiplication of 

incoming signals and transferring them to the next layer. This layer output is the 

firing strength of a fuzzy rule. As with ANFIS, the operations for this layer should 

be conjunctions; here the algebraic product is applied, as it was proposed as a 

complex fuzzy conjunction in [1][5][10]. The function related to this layer is as 

below: 





n

i

iim iyxf
1

,1,1,2 )(        (6.1) 

Where m  refers to nodes in layer two and n refers to total number of nodes in 

layer one related to node m in layer two. When there are two input vectors, there 

are two different nodes in layer one connected to each node in layer two. In this 

case, the Equation 6.1 can be expressed as below: 
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 Layer five includes adaptive nodes. The number of nodes in this layer is related 

to the number of multivariate outputs. Each node in this layer is calculated by: 
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where DP

mw is the mth output of fourth layer, jkx , is the jth value of kth input 

vector, n is the length of input vector, In_n is the total numbers of input vector, 

},{ ii rp


is the parameter set for linear output function, ip


 is a vector of the same 

length as input vector x


 and ir  is a constant. Figure 6.1 presents a multivariate 

ANCFIS for two input vectors (two variates).  

 

 

Figure 6.1: Multivariate ANCFIS network 

 

As discussed before, for each internal node of ANCFIS network the error signal 

was calculated by Equation 3.23. Regarding that we use algebraic prod uct for 

layer two, the error signals for layer two is calculated by: 
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Where the index i refers to node position in layer l and error signals and m  refers 

to nodes in layer 1l . Equation 6.4 shows that algebraic product used for 

complex fuzzy numbers, which acts the same way as it is used for real numbers. 

Next, the back propagation of two inputs multivariate ANCFIS is described.  

 

 

 6.1.1 Multivariate ANCFIS back propagation example 
 

 
The back propagation equations can be computed through equations 3.20 to 3.31, 

the same as original ANCFIS. Here errors in different layers are calculated from 

last layer to first layer.  
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Figure 6.2: Forward pass of a Multivariate ANCFIS structure with two inputs 

and two complex membership functions for each input 

 

 

 

Figure 6.3: Backward pass of a Multivariate ANCFIS structure with two inputs and 

two complex membership functions for each input 

 

Figure 6.2 and 6.3 present the structure of multivariate ANCFIS for two input 

vectors and in total four membership functions (two MF for each input). In below 

this ANCFIS example is described. 
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From the output to layer 6: 
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From layer 6 to layer 5: 
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From layer 5 to layer 4: 
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If
111 iyxw  , 

222 iyxw  , 
333 iyxw 
 
and 

444 iyxw   then the derivative 

formula in (6.20) yields: 
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  (6.24) 

 

 Here iw reflects the complex conjugate of normalized weights. With the use of 

derivative formula of complex function in (6.21) we have: 
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Again the use of derivative formula of complex function in (6.22) represents: 
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The same case happens for (6.23): 
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From layer 3 to layer 2: 
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From layer 2 to layer 1: 
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After calculating all i for all nodes, then the gradient for generic weight of 

ijkSMF in node i is easy to be calculated according to Equations (3.32) and (3.33).  

 

 

6.2 Experimental Comparison of Multivariate ANCFIS 
 

 
In this section, the results of forecasting experiments using multivariate ANCFIS 

are reported.  The experimental design for multivariate ANCFIS is similar to 

univariate ANCFIS; a single-split, one-step-ahead prediction design with all 

training data before testing data. In all of the experiments, the normalized mean 

squared error (NMSE) is reported. All variates in each dataset are already co-

registered, which means that the data points relate to the same moments in time. It 

is also important to normalize multivariate data, so the results are not dominated 

by the variates that have a larger absolute variance. The window size is again 

based on finding one approximate period in the time series.  

 

Four different time-series dataset is used; river-flow-hydrology, micro-economics, 

motel-tourism and car-road-accidents. River-flow is geographically indexed data, 

collected over time and at different locations [118]-[121]. Although economics 

data does not necessarily contain geographic component, it represents a source of 

high-volume multivariate time series data.  
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We have compared the results of Multivariate ANCFIS with those of univariate 

ANCFIS for individual variates and all variates together on four different datasets. 

Each variate is forecasted separately with univariate ANCFIS. Then, the 

forecasting results of univariate ANCFIS for each variate, are combined to find 

the forecasting results for all variates. We then forecast the whole dataset using 

multivariate ANCFIS. The predicted and actual values for each variate are 

collected, and the forecast error for each variate can be calculated separately as 

well as in aggregate.  

 

 

6.2.1 Transport and Tourism-Motel 
 

This dataset is collected by Australian Bureau of Statistics [22]. There are 186 

observations with two different variates related to monthly data of hotels, motels 

and guesthouses in Victoria between Jan 1980 - June 1995. First variate is total 

number of room night occupied and second variate is about total takings from 

accommodation. The Pearson‘s correlation between these columns is 0.943 which 

means they are very strongly correlated. Figure 6.4 presents this correlation.  

 

 

Figure 6.4: Pearson’s correlation between two variates of Motel dataset 

 

Here the length of window is set to six, and the first 166 observations are used as 

the training dataset and the rest are used for the testing. Figure 6.5 and 6.6 

represents the dataset before and after normalization.  
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Figure 6.5: Original Motel dataset 

 

 

Figure 6.6: Normalized Motel dataset 

 

We compared results of multivariate with univariate ANCFIS in Table 6.2 where 

individual variates and all together are compared. Also the training parameters for 

multivariate ANCFIS are represented in Table 6.1.  
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Table 6.1: Training Parameters for the Motel Dataset 
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  Column 1 Column 2 Column 1 & 2 

univariate system 0.314275 0.113525 0.146618 

multivariate system 0.410481 0.109129 0.162816 

Table 6.2:  NMSE testing error comparison for Motel 

 

Further analysis of Multivariate ANCFIS results is provided in Figure 6.7 where  

the actual output is plotted versus predicted outputs and prediction errors in 

Figure 6.8. 

 

 

Figure 6.7: Multivariate test results for one-step prediction of Motel dataset 

 

 

Figure 6.8: Multivariate system prediction errors for Motel dataset 
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6.2.2 Hydrology- River flow 
 

This dataset is originally from Pablo Baldazo [22][24]. The tabulation of 6 

unregulated (natural) annual river flow series is represented. Here the first River is 

Snake River near Moran, Wyoming. Second river is Snake River near Heise, 

Idaho. The third and fourth rivers are Boise River near Twin Springs and Salmon 

River near Whitebird, Idaho. The last river is Bruneau River near Hot Springs, 

Idaho. The data is collected from 1912-1994. The Pearson‘s correlations between 

different variates are presented in Figure 6.9. Variate one, two, three and four are 

strongly correlated to each other, though their correlation with variate five is not 

as strong as the other variates.  
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Pearson correlation between variate 2 

and 3 = 0.882 

Pearson correlation between variate 2 

and 4 = 0.849 

  
Pearson correlation between variate 2 

and 5 = 0.742 

Pearson correlation between variate 3 

and 4 = 0.93 

  
Pearson correlation between variate 3 

and 5 = 0.724 

Pearson correlation between variate 4 

and 5 = 0.698 

Figure 6.9: Pearson correlation efficient between different variates of River dataset 

 

Here the length of window is considered eight and the first 73 is as training set 

and the rest as testing. The original and normalize datasets are plotted in Figure 

6.10 and Figure 6.11. 
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Figure 6.10: Original River-flow dataset 

 

 

Figure 6.11: Normalized River-flow dataset 

 

Tables 6.4, 6.6, 6.8 and 6.10 compare the NMSE measurements for two, three, 

four and all five variates separately and all together, calculated with univariate 

and multivariate ANCFIS as described before. Also, their training parameters are 

presented in Tables 6.3, 6.5, 6.7 and 6.9.  
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Table 6.3: Training Parameters for two variates of the River Dataset 

 Column 1 Column 2 Column 1 & 2 

univariate system 0.3048 0.3219 0.3059 

multivariate system 0.5675 0.4636 0.5065 

Table 6.4: NMSE testing error comparison for two variates of the River Dataset 
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Table 6.5: Training Parameters for three variates of the River Dataset 

 Column 1 Column 2 Column 3 Column 1 & 2 &3 

univariate system 0.3048 0.3219 1.4632 0.3960 

multivariate system 0.46319 0.4577 0.4101 0.4344 

Table 6.6: NMSE testing error comparison for three variates of the River Dataset 
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Table 6.7: Training Parameters for four variates of the River Dataset 

 Column 1 Column 2 Column 3 Column 4 Column 1 & 2 
&3&4 

univariate system 0.3048 0.3219 1.4632 0.4526 0.4144 

multivariate system 0.7550 0.5834 1.0601 0.4760 0.7197 

Table 6.8:  NMSE testing error comparison for four variates of the River Dataset 
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Table 6.9: Training Parameters for five variates of the River Dataset 

 
Column 1 Column 2 Column 3 Column 4 Column 5 

All 5 
columns 

univariate 

system 0.3048 0.3219 1.4632 0.4526 0.4246 0.4311 

multivariate 

system 0.6754 1.4512 1.9426 1.6309 2.5974 1.3111 

Table 6.10:  NMSE testing error comparison for five variates of the River Dataset 
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Again, further analysis of the ANCFIS results are provided in Figure 6.12 where 

we plot actual versus predicted outputs and then, prediction errors in Figure 6.13.  

 

 

Figure 6.12: Multivariate test results for one-step prediction of River-flow dataset 

 

 

Figure 6.13: Multivariate system prediction errors for River-flow dataset 
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6.2.3 Macro Economics 
 

 

This dataset is collected by Australian Bureau of Statistics [22]. It contains 141 

observations with three variates during March 1956 to March 1991. The first 

variate is related to quarterly average weekly male earnings in Australia for all 

industries. The second variate is related to CPI for same quarters and the last 

variate is real average weekly male earnings. Here the length of window is 

considered four and the first 127 data points are considered as training data and 

the rest as testing data. The Pearson‘s correlation between the first two variates is 

0.998 (which means they are highly correlated), between the first and third variate 

is 0.819 (still strong), and between the second and third variate is 0.794, 

(moderately strong). Figure 6.13 shows these correlation plots.  

 

  

Pearson correlation between variate 1 

and 2 = 0.998 

Pearson correlation between variate 1 and 

3= 0.819 

 

 

Pearson correlation between variate 2 

and 3 = 0.794 
 

Figure 6.14: Pearson correlation efficient between different variates of Macro 

dataset 

 

Figure 6.15 and Figure 6.16 show the Macro Economics original and normalized 

dataset. 
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Figure 6.15: Original Macro dataset 

 

 

Figure 6.16: Normalized Macro dataset 

 

 

All training parameters for the two and three variates are represented in Table 

6.11 and 6.13. Table 6.12 and 6.14 contain the forecasting results for two variates 

and three variates, separately and all together.  
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Table 6.11:  Training Parameters for two variates of the Macro Dataset 

 Column 1 Column 2 Column 1 & 2 

Univariate system 
0.00079 0.00069 0.0149 

Multivariate system 
0.4143 0.4473 0.432 

Table 6.12:  NMSE testing error comparison for two variates of the Macro dataset 
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Table 6.13:  Training Parameters for three variates of the Macro Dataset 

 Column 1 Column 2 Column 3 Column 1 & 2 &3 

Univariate system 0.00079 0.00069 0.0018 0.0029 

Multivariate system 1.558 1.419 1.441 1.2543 

Table 6.14:  NMSE testing error comparison for three variates of Macro dataset 
 

More analysis of the ANCFIS results are shown in Figure 6.17; actual versus 

predicted outputs and Figure 6.18; prediction errors.  

 

 

Figure 6.17: Multivariate test results for one-step prediction of MacroEconomics 

dataset 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

Actual value-
variate1
Predicted value-
variate1
Actual value-
variate2
Predicted value-

variate2
Actual value-

variate3
Predicted value-
variate3



105 
 

 

Figure 6.18: Multivariate system prediction errors for MacroEconomic dataset 

 

 

6.2.4 Car road accident 
 
 

This dataset is total number of annual car road accident casualties in Belgium 

from 1974 to 2004. Here we have five variates; the first one is number of killed 

persons, second one is mortally wounded, third variate represents the number of 

people died within thirty days, fourth one is severely wounded and finally the last 

variates indicates light casualties [25]-[27]. Figure 6.19 represents Pearson‘s 

correlation between different variates. It shows that among all variates, variates 2 

& 3 have the highest correlation. On the other hand, variates 2 & 5 and 3 & 5 

have the lowest correlation among the other variates.  
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Pearson correlation between variate 1  

and 2 = 0.755 

Pearson correlation between variate 1  

and 3= 0.921 

  
Pearson correlation between variate 1  

and 4 = 0.921 

Pearson correlation between variate 1  

and 5 = 0.629 
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and 3 = 0.950 
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Pearson correlation between variate 4  

and 5 = 0.636 

Figure 6.19: Pearson correlation efficient between different variates of Car Accident 

dataset 
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Here the length of input vector is 8 and the first 19 is considered as training 

dataset and the rest as testing dataset.  Figure 6.20 and 6.21 present Car accident 

original and normalized datasets.  

 

 

Figure 6.20: Original Car Accident dataset 

 

 

Figure 6.21: Normalized Car Accident dataset 

 

Also the training parameters and Multivariate forecasting results are represented 

in Table 6.15 and 6.16. 
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Table 6.15: Training Parameters for the Car Accident dataset 

 

 Column 1 Column 2 Column 3 Column 4 Column 5 All columns 

Univariate 

system 
0.278 0.4753 0.024 0.056 0.775 1.09 

Multivariate 

system 
0.1007 0.500 0.047 0.1689 0.3177 2.03 

Table 6.16: Testing error comparison for Car Accident dataset 

 

The error measurements in [25] are AFER and MSE (for non-normalized dataset). 

AFER error measurement is defined as: 

100)//)ˆ((
1

 


nyyyAFER
n

i

iii
      (6.37) 

where iy  is the desired output, iŷ is the estimated output and n is the total number 

of examples in the testing dataset. AFER cannot be used with normalized data; as 

one of the normalized values becomes zero due to normalization, leading to a 

divide-by-0 error. Knowing that ANCFIS system is designed in a way to work 

with normalized data, first the normalized dataset is used in order to find the 

prediction values. Then, both actual and predicted values are un-normalized. 

Table 6.17 reflects the results regarding to AFER and table 6.18 presents the 

AFER error comparison between multivariate ANCFIS and other methods in [96]. 

As it is shown, multivariate ANCFIS result is not comparable to any of them.  

 

 
Column 1  Column2  Column 3  Column 4  Column 5  

All 

columns 

AFER 2.70 13.07 1.55 8.5 1.73 5.52 

Table 6.17: AFER testing error for the Car Accident dataset 
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 AFER 

Multivariate ANCFIS  5.52 

Jilani and Burney –method 1 (2008) [26] 2.6951 

Jilani and Burney –method 2 (2008)[26] 5.244 

Lee et al. (2006) [27] 5.248 

Egrioglu et al. (2009) [25] 2.1715 

Table 6.18: AFER error comparison for the Car Accident dataset 

 

Further analysis of multivariate ANCFIS is provided in Figure 6.22 and Figure 

6.23. Again Figure 6.22 shows the actual versus predicted results for all variates 

and Figure 6.23 is plotted prediction errors.  

 

 

Figure 6.22: Multivariate test results for one-step prediction of Car Accident dataset 

 

 

Figure 6.23: Multivariate system prediction errors for Car Accident dataset 
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6.3 Discussion and Conclusion 

 
 

In our four experimental contrasts, we realized that multivariate ANCFIS does not 

work properly. Univariate ANCFIS was consistently superior on all datasets, 

despite having strong linear correlations between the variates. One of the possible 

problems that multivariate ANCFIS architecture can be related is in choosing the 

proper complex fuzzy conjunction for layer two. Here we used algebraic product; 

this may be an ineffective choice despite its mathematical appeal. Another 

possible problem can be related to layer four which is related to rule interference; 

dot product may not work for multiple inputs.  

 

Future work on this area can be focused on exploring different complex fuzzy 

logic conjunctions for layer two. As possible candidates of complex fuzzy 

conjunctions, we can average the magnitudes and use weighted average for phase, 

or even we can compare the magnitudes. Definitely, this needs both theoretical 

and experimental work. Also, we have to ask how rule interference will be 

implemented; having the weight of a given rule depend on the weights of other 

rules is somewhat unique and not yet well-understood. An exploration on layer 

four to find other options for rule interference is needed.  
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Chapter 7: Summary and Future Work 

 

In this thesis, we completed a performance evaluation for ANCFIS on five real-

world time series datasets.  Also, ANCFIS is compared to published forecasting 

results on all five datasets, and achieves results which in most of the cases are 

superior to the literature. In particular, ANCFIS performed the best on the chaotic 

Mackey-Glass time series. The ANCFIS network obtained this performance with 

no more than three rules per dataset. It leads us to a key finding that ANCFIS is a 

viable forecasting algorithm.  

We have also developed an online version of ANCFIS for those cases when the 

data becomes available incrementally. Down-hill-simplex and recursive- least-

square are employed to determine the updates for layer one and layer five 

parameters. The performance evaluation for online ANCFIS is done on two time 

series dataset. Also, the forecasting results are compared to the literature and 

offline ANCFIS. The results are comparable to offline ANCFIS and generally 

superior to published results found in literature. 

 

A multivariate ANCFIS architecture is also developed and evaluated. Algebraic 

product is applied for layer two and also the node functions in layer 5 are 

extended for multiple variates. The performance evaluation for multivariate 

ANCFIS is done on four different multivariate time series datasets. Usually, 

having multiple variates lead us to better results as a result of interaction between 

them, but our results were significantly worse than the univariate ANCFIS results. 

This may be caused by layer two complex fuzzy conjunctions (algebraic product) 

or even by layer four rule interferences (dot product).  

Future work in this area will concentrate on exploring multivariate time series 

forecasting; what other complex fuzzy conjunction operators work best in Layer 

2? As little is currently known about complex fuzzy conjunctions, this work will 

inform theoretical investigations of complex fuzzy logic as well as practical time-

series forecasting problems. Also, we have to ask how rule interference is 



112 
 

implemented; dot-product might not be the right choice. In addition, we will 

investigate linguistic interpretations of complex fuzzy rules. At this point in time, 

it is not at all clear how to interpret a complex-valued membership function – 

especially a sinusoidal one. Traditional linguistic interpretations of fuzzy rules 

assume convex type-1 or type-2 membership functions rather than sinusoids (or 

any other multi-modal function). Finally there are a huge number of neuro-fuzzy 

systems and fuzzy neural network architectures that can be extended to use 

complex fuzzy sets when modeling the phenomenon of regularity.  
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