
University of Alberta

Neuro-fuzzy architecture based on complex fuzzy logic

by

Sara Aghakhani

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

©Sara Aghakhani

Spring 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users

of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Dr. Scott Dick, Department of Electrical and Computer Engineering

Dr. Petr Musilek, Department of Electrical and Computer Engineering

Dr. Paul Lu, Department of Computing Science

To my lovely husband Amir

For your enduring love, support and encouragement

To my parents Parichehr and Jalal

For your guidance and unconditional love

To my brothers Amir Hossein and Shahriar

For your support all the way since the beginning of my studies

Abstract

Complex fuzzy logic is a new type of multi-valued logic, in which truth values are

drawn from the unit disc of the complex plane; it is thus a generalization of the

familiar infinite-valued fuzzy logic. At the present time, all published research on

complex fuzzy logic is theoretical in nature, with no practical applications

demonstrated. The utility of complex fuzzy logic is thus still very debatable. In

this thesis, the performance of ANCFIS is evaluated. ANCFIS is the first machine

learning architecture to fully implement the ideas of complex fuzzy logic, and was

designed to solve the important machine-learning problem of time-series

forecasting. We then explore extensions to the ANCFIS architecture. The basic

ANCFIS system uses batch (offline) learning, and was restricted to univariate

time series prediction. We have developed both an online version of the univariate

ANCFIS system, and a multivariate extension to the batch ANCFIS system.

Acknowledgement

I would like to express my gratitude to my Supervisor Dr. Scott Dick, for his

support and guidance through this project. Without his knowledge and assistance

this study would not have been possible.

My family has been a continued source of support. I would like to thank my

parents for their encouragement and continued support that they have always

given me. Also I am grateful to my brothers for their help and encouragement

since the beginning of my studies.

 Most importantly, I am heartily thankful to my husband, my friend Amir who has

inspired me through this graduate study and for all he has done for me.

Table of contents

1. Introduction -- 1

2. Literature Review -- 4

2.1. Type-1 Fuzzy Set -- 5

2.1.1. Membership functions -- 6

2.1.2. Fuzzy relation --- 7

2.1.3. Linguistic variables -- 8

2.1.4. Fuzzy reasoning -- 9

2.1.5. Type-1 Fuzzy Inferential Systems ------------------------------------- 11

2.2. ANFIS Review -- 13

2.2.1. Adaptive Network Review-- 14

2.2.2. On-line vs. Off-line learning -- 15

2.2.3. ANFIS Definition --- 16

2.3. Complex Fuzzy theory -- 25

2.3.1. Complex Fuzzy Sets --- 26

2.3.2. Complex Fuzzy logic--- 27

2.3.3. Complex-value Neural Networks ------------------------------------- 28

2.3.4. Implementation of Complex Fuzzy Logic in ANFIS---------------- 29

3. An introduction to ANCFIS --- 31

3.1. The VNCSA algorithm -- 32

3.2. ANCFIS Architecture -- 35

3.3. ANCFIS Back propagation -- 40

4. Off-line experiments on Univariate Datasets ----------------------------------45

4.1. Mackey-Glass dataset -- 46

4.2. Santa Fe A (laser) dataset --- 49

4.3. Sunspot dataset --- 52

4.4. Stellar (Star) dataset -- 55

4.5. Waves dataset --- 58

5. Online Learning For Univariate Case-- 61

5.1. Down-Hill Simplex Algorithm --- 62

5.1.1. Recursive-Least-Square Estimation ----------------------------------- - 65

5.2. Online ANCFIS Design -- - 65

5.3. Experimental Results -- 67

5.3.1. Sunspot Results -- 67

5.3.2. Waves Results --- 70

5.4. Discussion and Conclusion --- 73

6. Multivariate ANCFIS --- 75

6.1. Multivariate ANCFIS Design --- 76

6.1.1. Multivariate ANCFIS Back propagation Example ------------------- 78

6.2. Experimental Comparison of Multivariate ANCFIS ---------------------- 93

6.2.1. Transport and Tourism- Motel -- 94

6.2.2. Hydrology- River flow -- 97

6.2.3. Macro Economics --- 102

6.2.4. Car Road Accident -- 105

6.3. Discussion and Conclusion -- 110

7. Summary and Future Work -- 111

8. References -- 113

List of Tables

Table 2.1: Relation YX  between two crisp sets [90] ------------------------------------ 7

Table 2.2: Fuzzy relation YX  between two crisp sets [90] ---------------------------- 8

Table 4.1: Training Parameters for Mackey-Glass Dataset ---------------------------------- 47

Table 4.2: Different error measurements for Mackey-Glass --------------------------------- 47

Table 4.3: Comparison of Test Error for Mackey-Glass Dataset ---------------------------- 48

Table 4.4: Membership Functions after Training for Mackey-Glass dataset --------------- 49

Table 4.5: Parameters for the Santa Fe A dataset -- 50

Table 4.6: Different error measurements for Santa Fe A ------------------------------------- 50

Table 4.7: Comparison of Testing Errors for Santa Fe Dataset A (Laser) ------------------ 51

Table 4.8: Membership Functions after Training for Santa Fe A dataset ------------------- 52

Table 4.9: Training Parameters for Sunspot Dataset -- 53

Table 4.10: Different error measurements for Sunspot --------------------------------------- 53

Table 4.11: Comparison of Testing Error for Sunspot Dataset ------------------------------ 54

Table 4.12: Membership Functions after Training for Sunspot dataset --------------------- 55

Table 4.13: Training Parameters for the Star Dataset --- 56

Table 4.14: Different error measurements for Star -- 56

Table 4.15: Comparison of Testing Error for Star Dataset ----------------------------------- 57

Table 4.16: Membership Functions after Training for Star dataset ------------------------- 58

Table 4.17: Training Parameters for the Waves Dataset ------------------------------------- 58

Table 4.18: Different error measurements for Waves -- 59

Table 4.19: Comparison of Testing Error for Waves Dataset ------------------------------- 60

Table 4.20: Membership Functions after Training for Waves dataset ---------------------- 60

Table 5.1: Training Parameters for sunspot dataset used in online-ANCFIS -------------- 68

Table 5.2: Comparison of Testing Error for Sunspot Dataset ------------------------------- 68

Table 5.3: Training Parameters for waves dataset used in online-ANCFIS --------------- 71

Table 5.4: Different error measurements for Waves -- 71

Table 5.5: Comparison of Testing Error for Waves Dataset --------------------------------- 71

Table 6.1: Training Parameters for the Motel Dataset -- 95

Table 6.2: NMSE testing error comparison for Motel --------------------------------------- 96

Table 6.3: Training Parameters for two variates of the River Dataset -------------------- 100

Table 6.4: NMSE testing error comparison for two variates of the River Dataset ------ 100

Table 6.5: Training Parameters for three variates of the River Dataset ------------------- 100

Table 6.6: NMSE testing error comparison for three variates of the River Dataset ----- 100

Table 6.7: Training Parameters for four variates of the River Dataset ------------------- 100

Table 6.8: NMSE testing error comparison for four variates of the River Dataset ---- 100

Table 6.9: Training Parameters for five variates of the River Dataset ------------------- 100

Table 6.10: NMSE testing error comparison for five variates of the River Dataset --- 100

Table 6.11: Training Parameters for two variates of the Macro Dataset ---------------- 104

Table 6.12: NMSE testing error comparison for two variates of the Macro dataset --- 104

Table 6.13: Training Parameters for three variates of the Macro Dataset --------------- 104

Table 6.14: NMSE testing error comparison for three variates of Macro dataset ------ 104

Table 6.15: Training Parameters for the Car Accident dataset ----------------------------- 108

Table 6.16: Testing error comparison for Car Accident dataset --------------------------- 108

Table 6.17: AFER testing error for the Car Accident dataset ------------------------------ 108

Table 6.18: AFER error comparison for the Car Accident dataset ------------------------ 109

List of Figures

Fig. 2.1: Example of four classes of parameterized membership functions ---------------- 6

Fig. 2.2: Typical membership functions of term set T(age) [79] ---------------------------- 9

Fig. 2.3: Fuzzy inference system [3] [12] -- 11

Fig. 2.4: fuzzy if- then rules and Fuzzy inference mechanism [3][12] --------------------- 13

Fig. 2.5: A feed forward adaptive network in layered representation [3] ------------------ 14

Fig. 2.6: A recurrent adaptive network [3] --- 15

Fig 2.7: (a) A two-input first-order Sugeno Fuzzy model with two rules (b) Equivalent

ANFIS architecture [3] -- 17

Fig 2.8: Error propagation for Fig. 2.2 (b) -- 22

Fig 2.9: Complex fuzzy set [1] --- 26

Fig 3.1: An ANCFIS architecture [8] --- 31

Fig 3.2: Implicit structure in the convolution of input vector and sampled points generated

from complex membership function (SMF111 = SMF112 , SMF121 = SMF122 ,

SMF211 = SMF 212 , SMF221 = SMF 222) --- 38

Fig. 4.1: Mackey-Glass dataset --- 47

Fig. 4.2: Mackey-Glass test results for one-step prediction -------------------------------- 48

Fig. 4.3: Mackey-Glass test errors --- 49

Fig.4.4: Santa Fe A after normalization --- 50

Fig.4.5: Santa Fe A test results for one-step prediction ------------------------------------- 52

Fig.4.6: Santa Fe A prediction error --- 52

Fig.4.7: Sunspot after normalization --- 53

Fig.4.8: Sunspot test results for one-step prediction --- 55

Fig.4.9: Sunspot prediction error --- 55

Fig.4.10: Star after normalization -- 56

Fig. 4.11: Star test results for one-step prediction -- 57

Fig.4.12: Star prediction error --- 57

Fig.4.13: Waves after normalization --- 58

Fig.4.14: Waves test results for one-step prediction --- 59

Fig.4.15: Waves prediction error --- 59

Fig 5.1: Outcomes for a cycle in the downhill simplex search after (a) reflection away

from
hP ; (b) reflection and expansion away from

hP ; (c) contraction along one dimension

connecting
hP and P ; (d) shrinkage toward

lP alone all dimensions [3] ----------------- 63

Fig. 5.2: Sunspot test results for online prediction -- 69

Fig.5.3: Sunspot test errors for online prediction --- 69

Fig. 5.4: Testing NMSE errors for different lambda from 1 to 0.5 ------------------------- 70

Fig. 5.5: Testing errors for different lambda from 1 to 0.3 ---------------------------------- 70

Fig. 5.6: Waves test results for online prediction --- 72

Fig.5.7: Waves test errors for online prediction --- 72

Fig. 5.8: Testing NMSE errors for different lambda from 1 to 0.4 ------------------------- 73

Fig. 5.9: Testing errors for different lambda from 1 to 0.35 --------------------------------- 73

Fig.6.1: Multivariate ANCFIS network -- 77

Fig.6.2: Forward pass of a Multivariate ANCFIS structure with two inputs and two

complex membership functions for each input -- 79

Fig.6.3: Backward pass of a Multivariate ANCFIS structure with two inputs and two

 complex membership function for each input --- 79

Fig 6.4: Pearson’s correlation between two variates of Motel dataset --------------------- 94

Fig 6.5: Original Motel dataset -- 95

Fig 6.6: Normalized Motel dataset -- 95

Fig 6.7: Multivariate test results for one-step prediction of Motel dataset ---------------- 96

Fig 6.8: Multivariate system prediction errors for Motel dataset --------------------------- 96

Fig 6.9: Pearson correlation efficient between different variates of River dataset ------- 98

Fig 6.10: Original River-flow dataset -- 99

Fig 6.11: Normalized River-flow dataset -- 99

Fig 6.12: Multivariate test results for one-step prediction of River-flow dataset ------- 101

Fig 6.13: Multivariate system prediction errors for River-flow dataset ------------------ 101

Fig 6.14: Pearson correlation efficient between different variates of Macro dataset --- 102

Fig 6.15: Original Macro dataset -- 103

Fig 6.16: Normalized Macro dataset -- 103

Fig 6.17: Multivariate test results for one-step prediction of Macro Economics dataset104

Fig 6.18: Multivariate system prediction errors for MacroEconomic dataset ----------- 105

Fig 6.19: Pearson correlation between different variates of Car Accident dataset ------ 106

Fig 6.20: Original Car Accident dataset -- 107

Fig 6.21: Normalized Car Accident dataset -- 107

Fig 6.22: Multivariate test results for one-step prediction of Car Accident dataset ---- 109

Fig 6.23: Multivariate system prediction errors for Car Accident dataset --------------- 109

1

Chapter 1: Introduction

Complex fuzzy sets are a recently-proposed extension to the standard type-1 fuzzy

set theory. Whereas a type-1 fuzzy set has membership function with a codomain

of [0, 1], a complex fuzzy membership function has the unit disc of the complex

plane as its codomain. Equivalently, a complex fuzzy set is a set of ordered pairs

(x, (x)) where x  X is an object from some universal set X, and (x)  D is the

set of complex numbers whose modulus is less than or equal to one [1][2][3].

Significant progress has been made in clarifying the properties of complex fuzzy

sets [1][4], but there have not been any applications of complex fuzzy logic to

real-world problems. Until such applications demonstrate the utility of complex

fuzzy logic, it will remain a theoretical curiosity.

The previous work by Dick [1] was proposed that complex fuzzy sets could be a

practical model for approximately periodic phenomena; it means that it repeats

itself but never become exactly the same. Complex fuzzy sets might be periodic

as a result of the phase term [1]. We have been trying to build a complex fuzzy

inferential system [3] in order to model regular phenomena. One of the important

expressions of regularity can be found in the form of time series data and

problems in time series forecasting. Thus, we have been trying to build a time

series forecasting algorithm using the complex fuzzy logic. Standard fuzzy

systems can be developed in two ways: either by elicitation from a domain expert

or by learning from input-output data. Since complex fuzzy sets have 2-

dimensional membership function, they could not simply be represented by 2

distinct fuzzy sets. Also experts need to present definition of all fuzzy sets and

rules. As no one knows how to do this in complex fuzzy sets, the experts cannot

be used here. So we used inductive learning and artificial neural network in order

to build the complex fuzzy inferential system. The artificial neural network which

is used here is called ANCFIS (Adaptive Neuro Complex Fuzzy Inference

System) which is based on ANFIS architecture [5][6][7]. This network is

2

originally developed by Chen et al. [8]. However, in their work, Chen et al. [8]

did not complete a full performance analysis of ANCFIS and the architecture was

only limited to batch (offline) learning and univariate problems.

In this thesis, an extensive performance analysis of the ANCFIS architecture is

presented, and the architecture is extended to incorporate online learning and

multivariate time series forecasting. All of these algorithms are evaluated using

the typical forecasting methodology: a one-step-ahead predication, in a single-

split design with all training data chronologically earlier than the test data. The

performance of univariate ANCFIS technique is tested against five time series

datasets: Mackey-Glass [5][9][10], Santa Fe A (laser) [11] – [14], Sunspot [15]-

[21], Star [21]-[23] and Waves [22] . Also, online ANCFIS is compared to two

different time series: Sunspot and Waves. Multivariate ANCFIS applies four

multivariate time series datasets: Transport and tourism-motel [22], Hydrology-

river flow [22][24], Macro-economic [22] and Car-road-accident [25]-[27].

Main research work for ANCFIS is summarized as follows:

1. The experimental evaluation of Offline ANCFIS. Five different time series

datasets are used and their results are compared to the related literature

consisting of time series forecasting techniques used up to the year 2009.

It is subsequently observed that ANCFIS could achieve very good

performance and is comparable to the published forecasting results.

2. The development of an online ANCFIS architecture which is based on

online- learning; using downhill-simplex algorithm (a derivative-free

algorithm instead of VNCSA) and Recursive Least Square (RLS). The

experimental evaluation of online ANCFIS includes two problems in time

series predictions. We compared the results of online learning to those of

offline learning and to the relevant results found in the literatures.

3. The development of multivariate ANCFIS architecture. Multivariate

ANCFIS is used when there are multiple input vectors, where there is

usually a correlation between the input vectors. We apply algebraic

product operation which is one of the complex fuzzy conjunctions for

3

layer two. Also, layer five is changed to be compatible with multiple

outputs. Experimental work on Multivariate ANCFIS includes four

different multivariate time series datasets. We contrast our results with

univariate ANCFIS for each variate separately and all variates together.

This means that each variate is predicted separately with univariate

ANCFIS. Then, the forecasting results of univariate ANCFIS for each

variate are combined to find the forecasting results for all variates.

Multivariate ANCFIS predicts the result of the whole dataset. Then the

predicted and actual values for each variate are collected and each variate

can be calculated separately.

The remainder of this thesis is organized into six chapters: Chapter 2 presents a

literature review covering the topics of type-1 fuzzy logic, fuzzy relations and

fuzzy reasoning, Type-1 fuzzy inferential systems, ANFIS, online and offline

learning, complex fuzzy logic and complex-valued neural networks. Chapter 3

covers the original ANCFIS architecture which includes the structure of ANCFIS,

the node functions of the forward pass, ANCFIS error back propagation and also

VNCSA algorithm. In Chapter 4, we present the experimental results for

univariate ANCFIS architecture on five time series forecasting datasets:

MackyGlass, Santa Fe A (laser), Sunspot, Stellar and Waves. Chapter 5 develops

online- learning architecture for ANCFIS and presents the procedure of downhill-

simplex algorithm. The experimental work is done on two time series datasets:

Sunspot and Waves. In Chapter 6, we present the Multivariate ANCFIS

architecture with the experimental work for four different datasets: Transport and

Tourism-motel, Hydrology-river, Macro-economic and Car-road-accident. Finally

Chapter 7 includes summary and discussion of future work.

4

Chapter 2: Literature Review

Since Zadeh published his first paper on fuzzy sets [28], the research and

applications on type-1 fuzzy logic have made an incredible improvement. In the

past few years, type-1 fuzzy logic is applied in different ways and many

disciplines. Its applications can be found in many areas from home appliances

such as air conditioners, cameras, refrigerators, washing machines to medical

instruments such as blood pressure monitors and even more. A type- 1 allows the

gradual evaluation of the membership of elements in a set, and is based on two

dimensional membership function (MF). It provides an organized calculus in

order to solve vague and incomplete information linguistically. Here the linguistic

information is converted to numerical values using linguistic labels specify by MF

[5][29][30]. Also a type-1 fuzzy inference system uses fuzzy if-then rules to be

able to model human expertise for a specific application. A type-2 fuzzy logic is

a generalization of type-1 fuzzy logic in a way that uncertainty is not only limited

to linguistic variables but also to the definition of membership functions [31]-

[33]. It uses a function which is itself a type-1 fuzzy number and for this reason

sometimes type-2 is referred as fuzzy-fuzzy. A type- 2 fuzzy set is illustrated by a

three- dimensional membership function. The main idea in using type-2 fuzzy set

is that most/all applications in general area of decision making modeling need to

handle the imprecise data, knowledge and etc. A type-2 fuzzy set use this

imprecision and make better computer systems [32]. As complex fuzzy set is an

extension of type-1 fuzzy sets, we discuss only type-1 fuzzy logic. In this chapter

a description on Type-1 fuzzy set will be presented first, and then set- theory

operation and fuzzy relation with linguistic variables will be discussed.

5

2.1. Type-1 Fuzzy sets

A fuzzy set describes the degree to which an element belongs to a set. If we

consider X as a collection of objects (Xx), then a type-1 fuzzy set A in X is a

set of ordered pairs:

}))(,{(XxxxA A  ]1,0[: XA (2.1)

In equation (2.1)
A is called membership function and maps elements of X into

their membership in the fuzzy set A [28]. X usually is considered as universe of

discourse and it may contain continuous or discrete space.

The basic operations on fuzzy sets are union, intersection, containment and

complement. The maximum and minimum is classical fuzzy operator for union

and intersection on fuzzy sets. Standard fuzzy logic defines these operations as

follows:

1. Union (Disjunction): Union of two fuzzy sets A and B generate another

fuzzy set C whose membership function is derived from membership

function of A and B:

Xxxxxx BABAc  )),(),(max()()( (2.2)

The equivalent definition of ―Union‖ is the smallest fuzzy set which

contains both A and B .

2. Intersection (Conjunction): Intersection of two fuzzy set A and fuzzy set B

generate another fuzzy set C whose membership function is derived from

membership function of A and B:

Xxxxxx BABAc  )),(),(min()()( (2.3)

C is the largest fuzzy set which is enclosed in both A and B

3. Containment(Subset): Fuzzy set A is contained in fuzzy set B (A is a

subset of B) or fuzzy set B contains fuzzy set A when:

XxxxBA BA ),()( (2.4)

6

4. Complement (negation): Complement of fuzzy set A represents with A .

Membership of A ()(xA) means the degree to which x does not belong to

A . The membership function is represented as:

 Xxxx AA
),(1)( (2.5)

2.1.1 Membership functions

A fuzzy set is usually described by its membership function (MF). The common

choices of parameterized membership functions are triangular MF which is

specified with three parameters, trapezoidal MF with four parameters, Gaussian

MF with two parameters and generalized bell MF with three parameters. Figure

2.1 represents examples of mentioned MFs.

Figure 2.1: Example of four classes of parameterized membership functions: Triangular (x;

15,60,70); (b) trapezoid (x; 10, 20, 70, 90);

(a) (c) Gaussian (x; 50,25); (d) bell (x; 20, 2, 50) [5]

0 20 40 60 80 100
0

0.5

1

M
e
m

b
e
rs

h
ip

 G
ra

d
e
s

(a) Triangular MF

0 20 40 60 80 100
0

0.5

1

M
e
m

b
e
rs

h
ip

 G
ra

d
e
s

(b) Trapezoidal MF

0 20 40 60 80 100
0

0.5

1

M
e
m

b
e
rs

h
ip

 G
ra

d
e
s

(c) Gaussian MF

0 20 40 60 80 100
0

0.5

1

M
e
m

b
e
rs

h
ip

 G
ra

d
e
s

(d) Generalized Bell MF

7

2.1.2 Fuzzy relation

A fuzzy relation represents the degree of present or absence of association,

interaction or interconnectedness between elements of two or more crisp sets. In

explanation fuzzy relation, let‘s consider U and V as two crisp sets, then fuzzy

relation R (U, V) is a fuzzy subset of a Cartesian product of VU  [34] which can

be expressed as:]1,0[: VUR . The membership function of R is),(yxR

which Ux and Vy . Here for each pair of (x,y) there is a membership value

between zero and one. If),(yxR =1, then it means that x and y are fully related

and if),(yxR =0, it means that these two elements of x and y are not related at all.

Obviously the values between zero and one for),(yxR reflect the partial

association.

Relation can be described by an example from daily life using discrete fuzzy sets.

First let us consider the relationship between color (x) and grade of maturity (y) of

a fruit and then characterize the linguistic variable color by a crisp set X and grade

of maturity by Y.

},,{ redyellowgreenX 

},_,{ maturematurehalfverdantY 

As it is presented above, X and Y both have three linguistic terms. Table 2.1

shows the crisp formulation of a relation YX  between these two crisp sets.

Here zeros and ones represent the grade of membership for this relation.

 verdant half-mature mature

green 1 0 0

yellow 0 1 0

red 0 0 1

Table 2.1: Relation YX  between two crisp sets [35]

Degree of association can be presented by membership grades in a fuzzy relation

and it is similar to the way as degrees of the set membership are expressed in a

fuzzy set. After applying fuzzy relation, table 2.1 changes to table 2.2.

8

 verdant half-mature mature

green 1 0.5 0

yellow 0.3 1 0.4

red 0 0.2 1

Table 2.2: Fuzzy relation YX  between two crisp sets [35]

2.1.3 Linguistic variable

As it was mentioned by Zadeh [36], conventional techniques for system analysis

are essentially unsuitable for dealing with humanistic systems, whose behavior is

strongly influenced by human judgment. This is what is called principle of

incompatibility: ‖As the complexity of a system increases, our ability to make a

precise and significant statement about its behavior diminished until a threshold is

reached which precision and significance become almost mutually exclusive

characteristic‖[36]. Because of this belief Zadeh proposed the concept of

linguistic variables as alternative approach to model human thinking [34][37]. An

example for linguistic variable can be ―age‖. For example if a man at age 60 is

old, then we don‘t know whether a 58 years old man is old or not. Hedges are not

used too often; the most common hedges used are very, quite, more or less and

etc. So we can say that a 58 years old man is quit old. The formal definition of

linguistic variables is as below.

A linguistic variable is characterized by a 5-tuple (x, T(x), X, G, M) [38] where x

is the name of the variable, X is the universe of discourse, T is the term set, which

is the set of terminal symbols that can actually appear in a linguistic term. G is a

syntactic rule which generates linguistic terms using the terminal symbols from T.

Most commonly, G is null, so that the set of linguistic terms is exactly T. G is

normally used to add linguistic hedges to atomic terms in T and M is a semantic

rule which associate with each linguistic value B its meaning M(B), where M(B)

indicates a fuzzy set in X.

9

Term set consists of primary term and/or hedges such as very, quite, etc [5]. As an

example, age is interpreted as a linguistic variable with its term set to T(age) and

it can be:

T(age) = { young, old, middle aged, very young,…}

Here each term in T (age) is specified by a fuzzy set of a universe of discourse X

= [0,100]. We can say ―age is old‖ to assign the linguistic value ―old‖ to linguistic

variable age. Here primary terms are (young, middle aged, old) and hedges are

(very, more or less, quit).

The idea of linguistic variables is used in fuzzy reasoning for modeling and

control problems. While variables in mathematics use numerical values, in fuzzy

logic applications, the non-numeric linguistic variables are often used to facilitate

the expression of rules and facts [39].

Figure 2.2: Typical membership functions of term set T(age) [5]

2.1.4 Fuzzy reasoning

Fuzzy reasoning is an inference process which uses fuzzy if-then rules and known

facts to derive new facts. Fuzzy if-then rule or Fuzzy rule is expressed in the form

of:

if x is A then y is B, (2.6)

where A and B both are linguistic values. Here the first part which is ―if x is A” is

antecedent or premise and ―y is B‖ is consequence or conclusion. Modus ponens

10

is basic rule of inference in traditional two-valued logic. Here the truth of

proposition B can be determined from the truth of A and implication BA . For

example, if A is identified by ―the tomato is red‖ and B with ―tomato is ripe‖,

then if it is true that ―the tomato is red‖, it is true that ―the tomato is ripe‖ [5]. For

single rule with single antecedent, the inference procedure is described as:

premise1 (fact): x is A ,

premise2 (rule): if x is A then y is B

Consequence (conclusion): y is B

However, in most of human reasoning, modus ponens is used in an approximate

manner. As an example if we have the same application rule ―if the tomato is red,

then it is ripe‖, knowing that ―tomato is more or less red‖, then it may infer that

―the tomato is more or less ripe‖.

premise1 (fact): x is A ,

premise2 (rule): if x is A then y is B

Consequence (conclusion): y is B

where A is close to A and B is close to B. Also A, B, A and B all are fuzzy sets

of approximate universe. This inference procedure is called approximate

reasoning or generalized modus ponens [40][41]. The MF of B can be

determined from equation 2.7 where  and  are max and min:

)()]()([)],(),(min[max)(yxxyxxy BAAxRAyB    (2.7)

If there is a single rule with multiple antecedents, the individual conditions are

combined together by and connective. The inference procedure is defined as

below:

premise1 (fact): x is A and y is B ,

premise2 (rule): if x is A and y is B , then z is C

Consequence (conclusion): y is C 

11

 Then the membership function for C  is calculated as:

)()(

)()]}()([{)]}()([{

)]()()([)]()([)(

21

,

z

zyyxx

zyxyxz

C

CBByAAx

CBABAyxC

















 (2.8)

Here
21   is firing strength which reflects the degree to which antecedent part

of the rule met, also  and  are max and min.

2.1.5 Type-1 Fuzzy Inferential Systems

Fuzzy inference system is based on fuzzy reasoning, fuzzy if-then rules and fuzzy

set theory. Its application can be found in many fields such as decision analysis,

time series prediction, expert system, etc. As Fuzzy inference system is multi-

disciplinary, it is known by many names such as fuzzy model [42] [43], fuzzy

associative memory [44], etc.

Fuzzy inference systems are the most important modeling tool based on fuzzy set

theory. The basic components for structure of fuzzy inference system are: first a

rule base, which is made up of fuzzy rules; second a database, which stores

membership functions used in fuzzy rules; third a reasoning mechanism, which

implements generalized modus ponens; fourth a fuzzification interface which

converts crisp data inputs into membership degrees for the fuzzy set antecedents;

fifth a defuzzification inference that transforms a fuzzy consequent into a crisp

output [5][7]. A fuzzy inference system is shown in figure 2.3.

Figure 2.3: Fuzzy inference system [5][7]

12

There are three principal models for fuzzy inference systems: the Mamdani, TSK

and Tsukamoto models [45] [46]. These three models are shown in Fig. 2.4. The

main difference among them is in the consequences of their fuzzy rules,

aggregation and defuzzification procedures.

The Mamdani fuzzy model [47] was the first fuzzy contro ller. The problem was

to control the combination of steam engine and boiler by the aid of a set of

linguistic control rules expressed by experienced human operators. As the plant

takes only crisp values as inputs, a defuzzifier must be used to convert a fuzzy set

to crisp value. There is more than one method for defuzzification available. The

most common one is to adopt the centroid of the area under the output

membership function. The computation of the centroid of an area is expensive as

it needs integration across a varying function. The centroid of an area zCOA is

represented by:






z

A

z

A

COA
dzz

zdzz

z
)(

)(





 (2.9)

where)(zA is the aggregated output membership function.

Sugeno fuzzy model which is also known as TSK fuzzy model was proposed by

Takagi, Sugeno and Kang [5][42][43]. The aim of this model is to develop a

systematic approach to generate fuzzy rules from a given input-output data set.

Here a typical fuzzy rule presents like this:

 If x is A and y is B then z = f(x, y) (2.10)

In 2.10 A and B are fuzzy sets in antecedent and z is a crisp function in the

consequence. Mainly f(x,y) is a polynomial function but it can be any function as

far as it can completely represent the output of model with in the fuzzy region

defined by the antecedents of the rule. If the function is first-order, then there is a

first-order TSK fuzzy model and so on. The output level iz of each rule is

weighted by the firing strength iw of the rule. The final output is weighted average

of all outputs represented as:

13








N

i

i

N

i

ii

z

zw

z

1

1 (2.11)

where
iz is a first order polynomial.

In the Tsukamoto fuzzy model [48], consequent of each fuzzy if- then rule is

described by a fuzzy set with monotonic MF. Each rule‘s inferred output is

defined as a crisp value made by the rule‘s firing strength. The overall output is

the weighted average of each rule‘s output, presented as:








N

i

i

N

i

ii

w

zw

z

1

1 (2.11)

Figure 2.4: fuzzy if- then rules and Fuzzy inference mechanism [5][7]

2.2 ANFIS Review

ANFIS (Adaptive Network-based Fuzzy Inference System) is a class of adaptive

networks that are functionally equal to fuzzy inference systems. Below adaptive

14

networks are explained as well as the architecture of ANFIS and how this system

works.

2.2.1 Adaptive Network Review

An adaptive network is a network structure, consisting of a number of nodes

connected through directed links. Each node corresponds to a process unit and the

links between nodes represent communication links. All or some of the nodes are

adaptive which means the outputs of these nodes depend on modifiable

parameters. The learning rule defines the way that these parameters should be

updated in order to minimize the error measure which can be the difference

between actual output and desired output.

Adaptive networks are usually classified into two categories based on the type of

the connection they have: feedforward and recurrent [5]. We call an adaptive

network feedforward if the output of each node spreads from the input side to

output side. If there is a feedback link which causes a circular path or loop in a

network then we have a recurrent network. Figure 2.5 and 2.6 represent two types

of adaptive network. Here square nodes are adaptive and circle nodes are fixed

nodes.

Figure 2.5: A feedforward (left-to-right) adaptive network in layered representation [5]

15

Figure 2.6: A recurrent adaptive network [5]

As it is shown in figure 2.6 node 8 has a feedback link to node 3 which changes

the network from feedforward to recurrent.

2.2.2 On-line vs. Off-line learning

The main significance of a neural network is its ability to learn from its

environment and to improve from its performance through learning. A neural

network learns about its environment by an interactive process of adjustments

applied to its synaptic weights and bias levels. Usually the network earns more

knowledge about its environment after each iteration of the learning process. The

learning process of a neural network starts by stimulation of the network by an

environment. Then, it changes its free parameters as a result of this stimulation.

Finally, it reacts in a new way to the environment because of the changes that

occurred in its internal structure. There are two main learning strategy for

adaptive networks; online learning and batch/offline learning.

In online learning the learning strategy is based on the online parameter

identification for systems with changing characteristics. In online learning the

training parameters/weights are updated after each presentation of training pattern

(training vector) [49]. By changing the weights after each pattern, they could go

backward and forward with each iteration although this may cause waste of

considerable amount of time. This may happen because all the training data is not

available at the same time. This method is used for online learning, in which

16

learning or updating is needed when data arrives in real time. We can minimize

the random fluctuation of weights by batch learning in which weights adjustment

is based on total error derivative over whole training set [5][49][50].

The batch/offline learning is different from the on-line training concerning the

convergence speed and the quality of approximation. In batch learning, the weight

update for each training vector is noted but the weights are not changed until all

the input patterns have been presented [5][49]. Although using several/all training

data pairs gives a better estimation for the predicted error than just using one, but

batch updating requires extra memory storage for weight corrections before the

weights are updated. This is critical especially when the network has large number

of weights. Also, averaging the weight corrections may cause extra computational

complexity for the algorithm and finally the smoothing effect of batch updating

may cause the learning algorithm converge to local minima. Generally the

performance of batch updating is case dependent [49][50].

2.2.3 ANFIS Definition

ANFIS (Adaptive Neuro-Fuzzy Inference System) is a feed-forward adaptive

network with five layers and is equivalent to a TSK fuzzy inference system [6][7].

Each node indicates a processing unit and the directed links represent the flow

direction of signals between connected nodes. To represent ANFIS architecture,

consider a two input first-order Sugeno fuzzy model with two fuzzy if-then rules

as it is shown in Fig. 2.7(a) then the equivalent ANFIS architecture can be shown

in Fig. 2.7(b).

For a fist-order Sugeno fuzzy model, a common rule set with two fuzzy if- then

rules is as below:

Rule 1: If x is 1A and y is 1B , then 1111 ryqxpf  ,

Rule 2: If x is 2A and y is 2B , then 2222 ryqxpf 

17

(a)

(b)

Figure 2.7: (a) A two-input first-order Sugeno Fuzzy model with two rules (b)

Equivalent ANFIS architecture [5]

In 2.7 (b) square nodes are adaptive and circle nodes are fixed nodes. Layer one

and layer four have adaptive or parameterize nodes. The parameters in layer one

are premise parameters and the parameters in layer four are consequent

parameters. Nodes in the same layer have the same node functions which are

different from other layers.

ANFIS uses offline or batch learning; each epoch consists of a forward pass and a

backward pass. In the forward pass the parameters of layer one are fixed and the

output nodes are calculated from first layer to fourth layer from left to right, and

the parameters in fourth layer are identified by least-squares optimization. After

18

the parameters of polynomial in layer four are identified, and then the error is

measured for training data pairs and summed together. Then in backward pass

consequence parameters are fixed and error signals propagate from layer five to

layer one from right to left and premise parameters in layer one are updated with

gradient descent method. Below five layers of ANFIS are explained:

Layer 1:

Nodes in this layer are adaptive nodes. The node function of each node i in layer 1

is as following:

4,3),(

2,1),(

2,1

,1






iyO

ixO

i

i

Bi

Ai




 (2.13)

Here x or y is input to node i and iA or 2iB is linguistic label related to that node.

Equivalently, iO ,1 is membership grade of fuzzy set A (where
2121 ,, orBBAAA )

which implies in what degree the inputs (x or y) satisfy of quantifier A. The

membership function for A is any appropriate parameterized membership function

such as bell function.

b

i

i

A

a

cx
x

2

1

1
)(




 (2.14)

Here },,{ iii cba is the parameter set. Parameters of this layer are called premise

parameters.

Layer 2:

Nodes in this layer which are labeled by  are fixed nodes. The output of each

node is product of all incoming signals and represents the firing strength of a rule.

Generally speaking, any T-norm operation that presents fuzzy AND is suitable to

be used as node function in this layer.

2,1),()(,2  iyxO
ii BAii  (2.15)

19

Layer 3:

Every node in this layer is labeled by N and is a fixed node that normalizes each

weight by sum of all rules firing strength.

2,1.
21

,3 


 iO i

ii



 (2.16)

Layer 4:

Each node in layer four is an adaptive node with this node function:

),(,2 iiiiiii ryqxpfO   (2.17)

In this function, i is the output of layer three and iii rqp ,, are consequent

parameters for this node.

Layer 5:

This layer has only one fixed node which calculates the overall output and is the
summation of all incoming signals.

Overall output=



 

i i

i

ii

i

ii

f

fO




1,5
 (2.18)

If the values of the premise parameters in ANFIS are fixed during forward pass,

then the overall output can be expressed as a linear combination of consequent

parameters. The output of figure 2.2 (b) can be expressed like below:

222222111111

22221111

2

21

2

1

21

1

)()()()()()(

)()(

rwqywpxwrwqywpxw

ryqxpwryqxpw

f
ww

w
f

ww

w
f











 (2.19)

In order to avoid converging to local minima and speed up the identification of

the parameters of adaptive network, hybrid learning is presented which integrates

both gradient method and least square estimation. The main part of gradient

descent in ANFIS is the calculation of gradient vector [5]. The gradient vector is

derivative of an error measure regarding to a parameter. This is referred to back

20

propagation learning rule as the way it is calculated is from the output towards the

inputs. The thp error measure
PE can be gained from each training pair in our

training data. The main goal is to minimize the total error measure.

 P PEE (2.20)

The error measured can be minimized by adjusting individual parameters of the

network. In another way, a small change in parameter  (this parameter belongs

to a node) may cause a high impact on the output of the node containing  . The

target of calculating the gradient vector is to pass a form of derivative information

from output layer, layer by layer towards the input layer.

Suppose an adaptive network with L layers and thk layer has N (k) nodes, then

output of node i in layer l can be expressed as ilx , and its function as ilf , . Since an

output node depends on its incoming signals and its parameter set, it can be

written this way:

....),,,,...()1(,1,1,, cbaxxfx lNlllilil  (2.21)

Here a, b, c, etc. are parameters related to this node.

Suppose that the given training dataset has P entries. Here the error measure for

the pth (Pp 1) entry of training data entry can be defined as the sum of

squared error as below equation.





)(

1

2

,)(
LN

k

kLkP xdE (2.22)

In equation 2.22, kd is the kth component of pth target output vector and kLx , is

the kth component of actual output vector generated by the current pth input

vector. Consequently, the overall error measure can be expressed as:

 


P

P PEE
1

.

To perform a learning procedure that applies gradient descent of E in the whole

parameter set, the computation of error rate
x

E p




 is the primary need. Here error

rate is for pth training data and for each node output x. The error rate for output

node at (L, i) can be derived from equation 2.23.

21

)(2 ,

,

, iLi

iL

P

iL xdc
x

E









 (2.23)

Also the error rate for internal node (l, i); 11  Ll can be executed by the
below chain rule:

 





































)1(

1

)1(

1 ,

,1

,1

,

,1

,1,

,

lN

m

lN

m il

ml

ml

il

ml

ml

P

il

P

il
x

f

x

f

x

E

x

E
 (2.24)

This means that the error rate in internal node can be stated as a linear sum of the

error rates of the nodes on the next layer.

The gradient vector is described as the derivative of the error measure with

respect to each parameter. The chain rule should be applied again to find gradient

vector. Consider  as a parameter of ith node in layer l, and then we have:




 















 
il

il

il

il

PP
ff

x

EE ,

,

,

,

, (2.25)

The derivative of overall error measure E regarding to  is:













 P

p

PEE

1 
, (2.26)

 Consequently the generic parameter  can be updated as:








E
 (2.27)

In above equation  is learning rate and can be written as:

 














 


2

E

k
 (2.28)

In 2.28 k is step size which is the length of each gradient transition in parameter

space. Step size can affect the convergence rate. ANFIS use batch learning mode

to update  based on formula 2.26.

22

Figure 2.8 illustrate an ANFIS example of two inputs, first order TSK fuzzy

model with two fuzzy if- then rules and bell function membership function; the

same as Figure 2.2 (b).

Figure 2.8: Error propagation for Fig. 2.2 (b)

2,1,2)(2 111111

11

11 












  ifwdxd

x

E
i

i

i

P ,

 
2,1,11

22

11

10

11

11

10

11

1110

10 

































i

fw

fw

x

f

x

f

x

E

x

E
i

i

i

pP  ,

 
2,1,11

11

11

9

11

11

9

11

119

9 

































i

fw

fw

x

f

x

f

x

E

x

E
i

i

i

pP  ,

 
  211210

2

22

10

8

10

10

8

10

108

8 ff
w

fw

x

f

x

f

x

E

x

E pP  






















 ,

 
  11119

1

11

9

7

9

9

7

9

97

7 ff
w

fw

x

f

x

f

x

E

x

E pP  






















 ,

,
)()()(

)()(

2

21

1121

112

21

1

72

21

1

8

2

21

1

7

2

21

2

8

6

7

7

6

8

8

6

7

76

8

86

6

ww

fwfw

ww

w

ww

w

w

ww

w

w

ww

w

x

f

x

f

x

f

x

E

x

f

x

E

x

E ppP





















































































23

,
)()()(

)()(

2

21

2212

112

21

2

72

21

2

8

1

21

1

7

1

21

2

8

5

7

7

5

8

8

5

7

75

8

85

5

ww

fwfw

ww

w

ww

w

w

ww

w

w

ww

w

x

f

x

f

x

f

x

E

x

f

x

E

x

E ppP





















































































  2

2

21

66

4

6

6

4

6

64

4

)(
A

B

BApP

x

f

x

f

x

E

x

E





 























 ,

  1

1

11

55

3

5

5

3

5

53

3

)(
A

B

BApP

x

f

x

f

x

E

x

E





 























 ,

  2

2

22

56

2

5

6

2

6

62

2

)(
B

A

BApP

x

f

x

f

x

E

x

E





 























 ,

  1

1

11

55

1

5

5

1

5

51

1

)(
B

A

BApP

x

f

x

f

x

E

x

E





 























 ,

The derivative of bell membership;
ib

i

i

A

a

cx

x
























 



2

1

1
)( ; function regarding

to parameters are as below:

)1(
2

AA

i

i

i

A

a

b

a








,























i

iAA

i

i

i

A

cifx

cifx
a

cx

b

,0

),1(ln2 
























i

iAA

i

i

i

A

cifx

cifx
cx

b

c

,0

),1(
2




 (2.29)

Then the gradients for parameters iii cba ,, in related nodes 4,3,2,1i of layer one

can be derived according to equation 2.29. Therefore for node one, we have:

24

)1(
2)(

11

1

1

1

1

1

1

1

1

1

1

1

11

AA

APP

a

b

aa

f

a

f

x

E

a

E



 























,






































1

1

1

1

1

1

1

1

1

1

1

1

11 ,0

),1(ln2)(
11

1

cifx

cifx
a

cx

bb

f

b

f

x

E

b

E
AAAPP 






































1

11

1

1

1

1

1

1

1

1

1

11 ,0

),1(
2

)(
111

cifx

cifx
cx

b

cc

f

c

f

x

E

c

E
AAAPP 



And also for node two we have:

)1(
2)(

22

2

2

2

2

2

2

2

2

2

2

2

22

AA

APP

a

b

aa

f

a

f

x

E

a

E



 





























































2

2

2

2

2

2

2

2

2

2

2

2

22 ,0

),1(ln2)(
22

2

cifx

cifx
a

cx

bb

f

b

f

x

E

b

E
AAAPP 






































2

22

2

2

2

2

2

2

2

2

2

22 ,0

),1(
2

)(
222

cifx

cifx
cx

b

cc

f

c

f

x

E

c

E
AAAPP 



And the same equations for node 3:

)1(
2)(

33

3

3

3

3

3

3

3

3

3

3

3

33

AA

APP

a

b

aa

f

a

f

x

E

a

E



 





























































3

3

3

3

3

3

3

3

3

3

3

3

33 ,0

),1(ln2)(
33

3

cifx

cifx
a

cx

bb

f

b

f

x

E

b

E
AAAPP 







































3

33

3

3

3

3

3

3

3

3

3

33 ,0

),1(
2

)(
333

cifx

cifx
cx

b

cc

f

c

f

x

E

c

E
AAAPP 



And for node 4:

)1(
2)(

44

4

4

4

4

4

4

4

4

4

4

4

44

AA

APP

a

b

aa

f

a

f

x

E

a

E



 





























































4

4

4

4

4

4

4

4

4

4

4

4

44 ,0

),1(ln2)(
44

4

cifx

cifx
a

cx

bb

f

b

f

x

E

b

E
AAAPP 



25




































4

44

4

4

4

4

4

4

4

4

4

44 ,0

),1(
2

)(
444

cifx

cifx
cx

b

cc

f

c

f

x

E

c

E
AAAPP 



Therefore adaptive parameters will be updated with respect to equations 2.26,

2.27 and 2.28.

2.3 Complex fuzzy theory

Complex fuzzy sets are an extension to type-1 fuzzy sets. It is a combination of

traditional fuzzy set and complex numbers and is characterized by complex-value

membership function [2] [51]. The result of this idea is the development of

complex-valued membership fuzzy sets [2] and complex fuzzy logic [1][4].

Complex fuzzy sets appear to be good model for ―approximately periodic‖

temporal phenomena [1]. We call it ―approximately periodic‖ because usually it

never repeats itself exactly. An example of approximately periodic phenomena is

traffic congestion. The traffic is heavy in the morning from one way to work and

in the afternoon the opposite way back from work and during night the roads are

quit empty. This behavior repeats every day but it never repeats itself exactly the

same each day [4].

Complex fuzzy sets are different from the complex fuzzy numbers which Buckley

developed in [52] [53]. The fuzzy set representing the fuzzy complex number is

an ordinary fuzzy set with membership grades in range of [0,1]. In another way, a

fuzzy complex number is a type-1 fuzzy set whose members are elements of

complex plane. Fuzzy complex numbers were used in the solution of fuzzy

relational equation in [54] [55]. In [56] a complex fuzzy set was defined as a

membership function which maps the complex plane into]1,0[]1,0[ ; this is very

similar to complex fuzzy set defined in [2] and close to the formulation in [57].

26

2.3.1 Complex Fuzzy Sets

Complex fuzzy set S which is defined on the universe of discourse U is

characterized by membership function)(xS where Ux . The values of

membership function are in the form of:

)(
).(

xjw

SS
sexr , 1j (2.30)

 Here terms of)(xrS
and)(xwS

 as amplitude and phase; are real values and

]1,0[)(xrS . The complex fuzzy set can be presented as a set of ordered pairs as

below [2].

}|),{(UxxS S   (2.31)

In complex fuzzy sets, membership values are drawn from unit disc of complex

plane. The membership function of a complex fuzzy set is a vector in complex

plane and its magnitude is less or equal to one. A complex fuzzy set is shown in

Fig. 2.9 where the membership function is visualized by placing the complex

plane R × I at right angles to the universe of discourse U. The complex

membership function then forms a trajectory within the cylinder formed by

projecting the unit disc D along U.

Figure 2.9: Complex fuzzy set [1]

27

As the complex fuzzy sets are extension of the ordinary fuzzy sets, it is possible to

convert the complex fuzzy set in to traditional fuzzy by setting)()(xxr sS  and

also 0)(xwS
 which means that the phase term is not considered at this point.

The amplitude term is the same as real-valued grade of membership which lies in

range of [0, 1] and can be considered as the degree to which x is a member of

complex fuzzy set S. Though the phase term is an innovative parameter of

membership which with this, the complex fuzzy sets are recognized from the

ordinary fuzzy sets. Also it is the phase which makes complex fuzzy logic

different from the conventional fuzzy logic. The phase term allows a new type of

interaction happen between membership functions. Complex fuzzy membership

function can be in form of wave where phase term let them interfere with each

other [2].

2.3.2 Complex fuzzy logic

Complex fuzzy logic [1][4] employ rules built with complex fuzzy sets to develop

a complex fuzzy logic system. These rules are represented in the form of If-Then

statements similar to traditional fuzzy logic.

The complex fuzzy implication relation is characterized by a complex-valued

membership function and is represented as),(yxBA . The amplitude term (

),(yxr BA) is real-valued grade of membership and shows the degree of truth of

the implication relation. The phase term (),(yxBA) represents the phase

associated with implication. Phase term is of little consequence by itself though it

becomes a more important parameter when several implication relations are

combined at the same time, similar to what occurs in complex fuzzy systems. The

implication function employed in complex fuzzy logic is the product implication:

)().(),(yxyx BABA   (2.16)

Also the amplitude and phase are calculated this way:

)().(),(yrxryxr BABA  (2.17)

28

)()(),(yxyx BABA  
 (2.18)

Complex fuzzy implication can be used in order to build complex fuzzy inference

rules in the generalized modus ponens form.

Premise 1: ―X is *A ‖

Premise 2: ―IF X is A, THEN Y is B‖

Consequence: ―Y is *B ‖

Where all the sets A, B, *A and *B are complex fuzzy sets.

The amplitude and phase term of membership function *B can be given by:

))]().(()(sup[)],()(sup[*** yrxrxryxrxrr BAABAAB
  (2.18)

)))]()(((),(([))],(),(([** yxxgfyxxgf BAABAAB
   (2.19)

Where g refers to any function used to compute the intersection of two

membership phases and f is the membership phase equal to sup operation [4].

Both of them are application dependent.

2.3.3 Complex Valued Neural Networks

ANCFIS architecture is complex-value neural networks (CVNN) architecture.

CVNN accept complex-valued inputs and outputs and it is possible that their

neuron weights and biases be complex-valued as well [58][59]. Early models of

CVNN have generalized the Hopfield model, back propagation and perception

learning rule in order to handle the complex inputs. Noest [60] introduced an

associative memory network with local variables assuming one of q equidistant

positions on the unit circle (q-state phasors) in the complex plane. Leung and

Haykin [61] extended real-valued back propagation networks to complex-valued

back propagation networks in order to solve problems related to radar signal

processing and communication in which complex-valued representation of signal

is required. Kim and Guest [62] also extended back propagation to the complex

domain, to process frequency-domain data. More recent work was done by Hirose

29

et al. They have used complex- valued neurons in the coherent neural network

architecture. All input signal, output signal and weight are complex numbers. The

neural connection weight nm was explained by 1],2exp[ifi nmnm  .

Here nm is connection amplitude nm is delay time and f is the carrier

frequency which modifies the phase of selected neuron weights. Two applications

for development- learning architecture are proposed [63] [64]. Dynamics of

complex-value NNs with real- imaginary-type activation was evaluated when it

was used in complex-plane transform [65][66]. Also the characteristics of

activation functions discussed in [67][68]. Associative memories (mainly

Hopfield networks) are an important area for complex-value NNs research. One

of recent work on this area is related to an exploration of the properties of

different neuron activation functions [69] and an application to traffic signal

coordination [70]. In [71], quantum associative memory uses complex-valued

neuron weights with a distribution function that is a solution of Schrodinger‘s

diffusion equation. Nitta proposed a quaternion-valued neural network [72].

Generally speaking a good overview of complex-value NNs can be found in [63].

2.3.4 Implementation of Complex Fuzzy Logic in ANFIS

Previously there was just one attempt to develop an inductive learning

architecture using complex fuzzy sets which was named CANFIS [73]. It was

considered for complex-value input-output pairs with modeling a simple lead- lag

compensator transfer function in form of
)1(

)1(

ST

TS
k




 where jS  . The

architecture of CANFIS is a hybrid of complex fuzzy sets and a complex-valued

single layer neural network. The real-valued adaptive parameters of the complex

MFs for each rule were updated by a steepest descent algorithm and weights and

bias parameters were updated by complex least square estimator. Here the idea is

derived from [2] where phase and magnitude are considered separately. As the

phase and amplitude treat separately, the nature of complex fuzzy sets is ignored.

30

Also, the key property of rule interference [6] was not implemented. An earlier

architecture developed by Li and Jang [74] also named CANFIS was an extension

of ANFIS architecture with complex-valued inputs and outputs. Here each input

has its real and imaginary component and 2 Gaussian type-1 fuzzy sets are

assigned to each component of each input. The number of rules for example for a

three complex input system is 64. Similar to ANFIS, the premise parameters were

updated with gradient descent and the consequent parameters were updated via

the least square algorithm. In ANCFIS architecture phase and magnitude are

coupled with each other [1]. This approach leads to a parsimonious network

structure, different from other proposed architectures [73] [74].

31

Chapter 3: An Introduction to ANCFIS

The original ANCFIS architecture was developed by Chen et al. [8]. ANCFIS is a

six-layer adaptive neural network with complex-valued signals through much of

the network [8]. Its adaptive nodes are in layer one and five. Figure 3.1 represents

one example of ANCFIS architecture with one input and three rules.

Figure 3.1: An ANCFIS architecture [8]

ANCFIS is based on ANFIS [7] architecture with some modifications. First

ANFIS needs several inputs to capture a segment of univariate time series which

leads to a combinatorial exploration in number of inferential rules, but ANCFIS

get only a single input which is a sliding window of observed values in the time

series. Consequently by requiring a lower input dimensionality, ANCFIS step

aside from the ―curse of dimensionality‖. Also input presentation is a natural

consequence of using complex fuzzy sets; thus, a segment of the time series must

be available to match its phase and frequency with our proposed complex fuzzy

sets. Thus, usual practice of selecting prior values of the time series as orthogonal

inputs to a learning algorithm (―lagged‖ representation) destroys this phase

information, and cannot be used. The main modification in ANCFIS is addition of

layer four which is a dot-product layer. This layer is closely related to the rule

inference.

In ANCFIS a parameterized form of complex fuzzy set is required. The best

choice is sinusoid. Under general conditions, an arbitrary periodic function can be

32

represented by a Fourier series, the sum of a series of sine and cosine terms. The

complex fuzzy set which is used for ANCFIS is represented by:

cbadr )sin()( (3.1)

where,)(r is magnitude, and  is the phase of complex membership value.

Also, the set of },,,{ dcba are adaptive parameters that manipulate the sine

function, where a means frequency of a sine wave, b represents a phase shift, c

shifts the sine wave vertically and d varies the amplitude of the wave. There are

two constraints for the amplitude of the complex fuzzy membership, as it is within

the unit disc: 10  cd , 10  cd .

Same as ANFIS, in ANCFIS, least-square optimization is applied for forward

pass, and parameters of layer five (consequents) are determined. In backward pass

ANFIS employs gradient descent method to determine parameters of layer one

(premise). However, in ANCFIS, gradient descent is used until it reaches a point

where it does not work properly, that is, the partial derivatives of the parameters

of the complex fuzzy sets in ANCFIS do not have a closed form solution. Then,

derivative-free optimization technique is used to update the complex fuzzy set

parameters of layer one. In the basic ANCFIS architecture, the derivat ive-free

optimization technique method which is applied is VNCSA.

3.1 The VNCSA Algorithm

In simulated annealing (SA), the value of an objective to be minimized is similar

to energy in a thermodynamic annealing process. At high ―temperatures,‖ SA

allows function evaluations at faraway points and it is likely to accept a new point

with higher energy. As the ―temperature‖ decreases, the algorithm is increasingly

restricted to a local neighborhood. The disadvantage of SA lies in its dependence

on the random number generator; a random search of a large solution space can be

very slow. Chaotic maps provide an alternative means of exploring a solution

space, which is confined to a (possibly fractal) subspace and thus can be much

faster. A transiently chaotic neural network (TCNN) [75] was proposed to solve

33

combinatorial optimization problems by introducing simulated annealing to

Hopfield neural network (HNN). The nonlinear dynamics approach [76] used an

additive chaotic forcing function in determining the global minimum of a

continuous, unconstrained or bound-constrained cost function. The Chaotic

Simulated Annealing (CSA) algorithm [77] introduced the concepts of chaotic

initialization and chaotic sequences to SA.

In mathematics and physics, many one–dimensional maps exhibit sensitivity to

initial conditions, with small changes in initial conditions leading to large changes

in the long-term outcome (popularly known as the ―butterfly effect‖). Due to this

sensitivity, the behavior of nonlinear chaotic maps seems to be random, as any

measurement error in initial conditions is magnified exponentially through time.

However, these maps are deterministic, analytical functions (hence the term

―deterministic chaos‖) [64]. An example is the logistic map given by:

)1(1 nnn xxx   ,]1,0[nx (3.2)

This map is known to be chaotic for parameter values of µ= 4.0 [8]. The long-

term behavior of this map covers the entire codomain of the map (i.e. [0,1]), as

long as the initial point of the map (x0) is not one of the fixed points of the logistic

map; these consist of the set {0, 0.25, 0.5, 0.75, 1.0,
8

55
,

8

55
,

4

32
,

4

32
}[8]. The Ulam-von Neumann Map is another chaotic map defined by

2

1 1 nn ryy  ,]1,1[ny (3.3)

This function is chaotic and covers the codomain of [-1,1] for parameter values r

≥ 2.0. These two maps are used to replace the random number generator in the

simulated annealing algorithm.

The VNCSA algorithm was developed to solve nonlinear constrained

optimization problems:

 minimize)(Sf subject to   0Sci ,   0Sc j , Ei , Ij (3.4)

where f() is the objective function, S is the control variable(s), ci is the set of

equality constraints in the problem, and cj is the set of inequality constraints; both

34

these sets are assumed finite. VNCSA simulates the cooling of a physical system

whose possible energies correspond to the values of the objective function to be

minimized, and allows solution candidates of worse quality than the current

solution (uphill moves) in order to escape from local minima. The probability of

allowing an uphill move is represented by the temperature parameter, which is

reduced over time. The algorithm starts by producing a group of solutions

satisfying all given constraints, by iterating the Logistic map from a random initial

point with the parameter =4.0. Then, three steps are iterated until the stopping

condition is reached: 1) A new solution Snew is generated from the neighborhood

N(S) by iterating the Ulam-von Neumann map; 2) Snew is checked against the

constraints, and discarded if it does not meet them all (goto (1)); 3) f(Snew),

f(Scurrent) and temperature T are compared to decide if Snew is accepted as the new

current solution. The structure of the VNCSA is given in Algorithm 1. In this

algorithm, Lmax is the number of iterations at a given temperature, and M is the

number of solutions generated per iteration (equally, iterations of the Ulam-von

Neumann map). The distinguishing characteristic of VNCSA (differentiating it

from e.g. [77]) is the variable neighborhood step, which modifies N(S). After Lmax

iterations at a given temperature, both the temperature and the size of the search

neighborhood are updated; the new search neighborhood will be based on the

magnitude of the update at the previous temperature. This will (usually) cause the

neighborhood to contract, leading to a further speedup in the algorithm.

35

Begin

 :currentS GenerateInitialSolutionPopulationLogisticMap()

 :0T SetInitializationTemperature()

 While ()minTTk  do

 While(maxLl ) do

 While(Mm )

 :newS PickNeighborAtUlam_von_NeumannMap()

 if)()(currentnew SfSf  then

 :currentS newS

 else

 accept newS as new solution with probability

)))()((exp(
kcurrentnew TSfSf 

 end if

 end while

 end while

 UpdateNeighborhood(D)

 UpdateTemperature(kT)

 end while

 :bestS currentS

 output: bestS viewed as optimization solution for x

End

Algorithm 1: VNCSA

3.2 ANCFIS Architecture

As mentioned before ANCFIS has six layers. In the following, it is described how

each layer works:

Layer 1: Premise parameters

Here premise parameters are {ai, bi, ci, di} with i =1, 2…, n-CMF, where n-CMF

represents the number of complex membership functions. In this layer the

convolution of each membership function (MF) and input vector are computed.

The MF is sampled by:

cbadr kkk )sin()( (3.5)

36

,
2

k
n

k


  (3.6)

Here n is length of input vector and k is the element index of complex samples,

k=1, 2, …, n. The sampled points are converted from polar to rectangular

coordinates using well-known transforms [4]:

)cos(kkk rx  (3.7)

)sin(kkk iry  (3.8)

These samples with complex value are convolved with the original real-valued

input vector. Considering f is input vector and g is sampled point vector and n is

length of f and m is length of g, a vector of length m+n-1 is called h whose kth

element is:

 
j

jkgjfkh)1()()((3.69)

)sin()cos()1(111111 jkjkjkjkjkjk irriyxjkg    (3.10)

This sum covers all values of j which lead to subscript for)(jf and)1(jkg  ;

),min(:)1,1max(mknkj  .

Suppose that both two vectors are within the same length; m=n; the result is:

 )(*)()12

....

)1(*)(...)1(*)2()(*)1()(

....

)1(*)2()2(*)1()2(

)1(*)1()1(

ngnfnh

gnfngfngfnh

gfgfh

gfh









In conclusion the convolution sum is equal to:

  






 


12

1

12

1

),min(

)1,1max(

)1()()(
n

k

n

k

nk

nkj

jkgjfkh (3.11)

Convolution sum can be expressed as a form of neural network in Figure 3.2.

ikjSMF is the weight which connecting the thj element of input vector ANCFIS to

thk sample point of
thi membership function in first layer. This insight provides

essential guidance in driving the gradient descent formula for ANCFIS learning

algorithm (however, note that this is only a conceptual tool, the neural network in

37

Figure 3.1 does not in fact exist). So the convolution sum equation can be

represented this way:

Convolution sum =  
 











n

k

n

k

ikjjo SMFO
1 1

,
 [8] (3.12)

Where n is the length of the input vector, and jO ,0 , nj ,2,1 , denotes the jth

element of the input vector presented to ANCFIS. This sum might not be

restricted to the unit disc of the complex plane; to enforce this restriction without

changing the phase of the sum, the Elliot function is employed [78]:

z

z
zf




1
)((3.13)

which z is a complex number.

Substituting Eq. (2.13) into Eq. (2.14), the output of the nodes in layer one is

given by:

CMFni

SMFO

SMFO

O
n

k

n

k

ikjjo

n

k

n

k

ikjjo

i _,...,2,1,

1
1 1

,

1 1

,

,1 























 

 

 

 
 (3.14)

38

Figure 3.2: Implicit structure in the convolution of input vector and sampled points
generated from complex membership function (SMF111 = SMF112 , SMF121 =

SMF122 , SMF211 = SMF 212 , SMF221 = SMF 222)[8]

Layer 2: Firing strength

Each node in this layer is a fixed node and output is product of its complex inputs.

1,1,2 ,...,2,1, OiOO
i

ii  (3.15)

In Figure 3.1, the network only has one input vector x (univariate time series) so

the output of layer two is the same as layer one. Each output of layer two

represents the firing strength of a fuzzy rule. In multivariate time series, it can

also involve interaction between inputs. The algebraic product is identified as a

complex fuzzy conjunction in [1], and was proposed as a complex fuzzy

intersection in [79].

Layer 3: Normalized firing strength

This layer is responsible for normalizing the firing strength:

39

2

1

,3 ,...,2,1,
2

Oi

w

w
wO

O

j

j

i

ii 




 (3.16)

Here 


2

1

O

j

jw represents the sum of magnitude of each weight jw and 2O is the

number of rules. In this layer, only magnitude is normalized and phase does not

change.

Layer 4: Dot product

Output of each node in this layer is dot product of normalized firing strength and

sum of outputs of all nodes in the previous layer. The equation is:

3

1

,4 ,...,2,1,
3

OiwwwO
O

i

ii

DP

ii  


 (3.17)

 3O

is the number of nodes in layer 3 and 



3

1

O

i

iw is a complex sum. Output of

this layer is a real value.

Layer 5: Consequent parameters

Each node in this layer is an adaptive node in the hybrid learning rule. Calculation

of each output node i is represented by:

njrxpxpxpxpw

rxpwfwO

innijjiii

DP

i

ii

DP

ii

DP

ii

,..,2,1),.....(

)(

,,22,11,

,5




 (3.18)

where,
DP

iw is the thi output of the layer four and jx is the thj value in the input

vector, n is the input vector length and },{ ii rp is the parameter set for the linear

output function. The length of ip is the same as input vector x and ir
is a

constant. Parameters in this layer are called ‗consequent parameters‘, which are

identified in forward pass using a linear least square estimator ([7], [80], [81]).

40

Layer 6: Final output

This layer has just one node which is the overall summation of incoming signals

of layer five.

 i

DP

i

DP

i fwwO 1,6 (3.19)

3.3 ANCFIS Back propagation

In this section, back propagation for updating the sampled points will be

discussed. Here premise parameters are not updated as there is no closed-form

solution for derivative of network error [8]. Instead, the SMF (sample

membership function) points are updated.

The sum of squared error is used for error measure for thp entry of training

dataset. Here, Pp 1 , and sum of squared error is defined as below:





)(

1

2

,)(
LN

q

qLqp xdE (3.20)

where, qd is thq of thp desired output vector, L refers to layer number and qLx , is

thq component of thp actual output vector of the whole network. The main

purpose of ANCFIS is to minimize the total errors of the system which is sum of

all pE . In terms of defining the error signal, pE is defined as the derivative of pE

regarding to the output of node i in layer l.

il

p

il
x

E

,

,







 (3.21)

The error signal of ith output node in layer L is calculated by equation 3.19.

)(2 ,

,,

, iLi

iL

p

iL

p

iL xd
x

E

x

E














 (3.22)

Then, for each internal node of ANCFIS network the error signal is calculated as

below:

41




































)1(

1 ,

,1

,1

,

,1
)1(

1 ,,

,

mN

l il

ml

ml

iL

ml
mN

l il

p

il

p

il
x

f

x

f

x

E

x

E
 (3.23)

In equation 3.23, the index i refer to node position in layer l and error signals and

m refers to nodes in layer 1l . For each internal node, error signal is as a linear

combination of error signals from next layer that is l+1.

For calculating the partial derivatives related to complex variables, the approach

in ANCFIS is similar to [82] and alternative approach is described in [63]. If one

writes:

         yxivyxuzivzuzf ,,  (3.24)

And let iyxziyxz  , and idydxdz  ; then:

2

zz
x


 (3.25)

i

zz
y

2




Then, the partial derivatives of the Elliot function,
y

v

y

u

x

v

x

u
















,,, can be stated

as:

 
 


















01

0z if
1

2

2

z

zz

zy

ux
 (3.26)

 

















00

0z if
1

2

z

zz

xy

u y

 

















00

0z if
1

2

z

zz

xy

vx

 
 


















01

0z if
1

2

2

z

zz

zx

vy

42

After finding all values related to all il , s, the gradient for SMF in the first layer

can be computed:

 iiii ivuzfx ,1,1,1,1)(

,  

 











n

j

n

k

ikjj

ii

i SMFxiyxz
1 1

,0

,1,1

,1
 (3.27)

Here ix ,1 is the neuron i in the first layer of the network. The partial derivatives

for x and y with respect to that real and imaginary parts are R and I, are as follows:

j

ikjR

i

x
SMF

x
,0

,1





, 0

,1






ikjR

i

SMF

y
, 0

,1






ikjI

i

SMF

x
, j

ikjI

i

x
SMF

y
,0

,1





. (3.28)

The function pE includes both),(,1,1

,1

ii

i yxu and),(,1,1

,1

ii

i yxv , and ix ,1 and
iy ,1
are

both functions of ikjRSMF and ikjISMF . The gradient of error function with respect

to the real part of ikjRSMF is expressed by:








































 

ikjR

i

i

i

ikjR

i

i

i

i

p

ikjR

p

SMF

y

y

u

SMF

x

x

u

u

E

SMF

E ,1

,1

,1
,1

,1

,1

,1




































ikjR

i

i

i

ikjR

i

i

i

i

p

SMF

y

y

v

SMF

x

x

v

v

E ,1

,1

,1
,1

,1

,1

,1

ji

i

i

p

i

i

i

p
x

x

v

v

E

x

u

u

E
,0,1

,1

,1

,1

,1

,1


































, (3.29)

In 3.29,
i

p

u

E

,1

 

and
i

p

v

E

,1

 

are the real and the imaginary parts of the error signals

of node i in the first layer, the terms
i

i

x

u
,1

,1





and

i

i

x

v
,1

,1




are the partial derivatives of

the real and imaginary parts of the Elliott function with respect to the real part of

the convolution sum. Now for the gradient of the error function with respect to the

imaginary part ikjISMF , the equation is as written by:








































 

ikjI

i

i

i

ikjI

i

i

i

i

p

ikjI

p

SMF

y

y

u

SMF

x

x

u

u

E

SMF

E ,1

,1

,1
,1

,1

,1

,1

43




































ikjI

i

i

i

ikjI

i

i

i

i

p

SMF

y

y

v

SMF

x

x

v

v

E ,1

,1

,1
,1

,1

,1

,1

ji

i

i

p

i

i

i

p
x

y

v

v

E

y

u

u

E
,0,1

,1

,1

,1

,1

,1


































 , (3.30)

Now, for gradient of error function pE with respect to the complex sample ikjSMF ,

both equations 3.26 and 3.27 are used:

ikjI

p

ikjR

p

ikj

p

SMF

E
i

SMF

E

SMF

E













 

ji

i

i

p

i

i

i

p

ji

i

i

p

i

i

i

p
x

y

v

v

E

y

u

u

E
ix

x

v

v

E

x

u

u

E
,0,1

,1

,1

,1

,1

,1

,0,1

,1

,1

,1

,1

,1


































































 (3.31)

After calculation of all il , , the update for a generic weight ikjSMF can be executed

by:

ikj

i

i

ikj

p

SMF

f

SMF

E








 

,1

,1 (3.32)

and,













 P

p ikj

p

ikj SMF

E

SMF

E

1

 (3.33)

where, if ,1 is related to the function of node i of the first layer.

By using steepest descent, the formula for generic complex sample is updated as

3.34.

 (3.34)

where,  is the learning rate parameter which is defined by user. As with ANFIS,

the learning rate parameter is adapted using the following heuristic rules [7]:

1. If the parameter undergoes m consecutive reductions, increase  by a user-

defined factor: rateincrease * 
















P

p ikj

p

ikj

ikj
SMF

E

SMF

E
SMF

1



44

2. If the parameter undergoes n consecutive combinations of one reduction and

one increase, decrease  by a user-defined factor: ratedecrease * 

Once all
i ‘s are obtained, one can straightforwardly calculate the gradient for a

generic weight ikjSMF in node i according to Equations 3.32 and 3.33.

45

Chapter 4:

Off-Line experiments on Univariate Datasets

In this chapter, the results of a series of univariate forecasting experiments using

ANCFIS are described. The experimental design used in this chapter is typically

applied in time series forecasting: we use a single-split design, in which all

training data are chronologically earlier than the holdout test sample. The learning

objective is a one-step-ahead prediction task. In the context of ANCFIS, this

means predicting the time series value immediately following the most recent

entry in the input window. The time series are normalized to the interval [0,1].

The size of the input window is selected to approximately cover one ―period‖ in

the time series. Our experiments include five real-world datasets: Sunspot [15]-

[21], Santa Fe A (laser) [11]–[14], Waves [23], Mackey-Glass [5][9][10] and

Stellar (Star) [21]-[23]. Mackey-Glass and Santa Fe A (Laser) are known to be

chaotic time series.

The performance of ANCFIS is compared to current results for each dataset in the

literature. The time-series forecasting literature employs several different

measures of forecast error; these include the Mean Squared Error (MSE),

Normalized Mean Squared Error (NMSE), the Non-Dimensional Error Index

(NDEI), Absolute Error, (AE), and Average Relative Variance (ARV); this latter

is equivalent to NMSE. These measures are defined as:







n

i

ii

n

yy
AbsError

1

ˆ
 (4.1)







n

i

ii

n

yy
RMSE

1

2)ˆ(
 (4.2)







n

i

ii

n

yy
MSE

1

2)ˆ(
 (4.3)

46





n

i

ii

x

yy
n

NMSE
1

2

2
)ˆ(

1


 (4.4)

x

n

i

ii

x

n

yy

MSE
NDEI









1

2)ˆ(

 (4.5)








n

i

iix yy
n 1

22
)(

1

1
 (4.6)

where, x is standard deviation and
2

x is variance of the test time series. iy is

the desired output, iŷ is the estimated output and n is the total number of

examples in the testing dataset.

4.1 Mackey-Glass dataset

The time series used is the Mackey-Glass function, given by:

)(1.0
)(1

)(2.0
)(

10

.

tx
tx

tx
tx 









 (4.7)

This is the same time series as Jang [5][9][10] where time step is 0.1, initial

condition x(0) =1.2 and t =17 , with 1000 points; these run from t=124 to t=1123,

to avoid initialization transients. As in Jang‘s work, the first 500 data points are

used as the training set, while the remaining 500 pairs are the test data set. A

window of 44 data points is used as our input vector.

47

Figure 4.1: Mackey-Glass dataset

Table 4.1 presents all the parameters applied to ANCFIS to find best results for

Laser dataset and also Table 4.2 presents the best results found for different error

measurements.

V
a
ria

te
s

In
p

u
t L

e
n

g
th

O
u

tp
u

ts

C
F

S
 p

e
r In

p
u

t

S
te

p
 S

iz
e

In
c
re

a
se

 R
a
te

D
e
c
re

a
se

 R
a
te

T
m

a
x

L
m

a
x

A
lp

h
a

W
e
ig

h
t

T
m

in

B
e
ta

M

1 44 1 3 0.001 1.1 0.8 100 2 0.99 0.95 0.01 0.98 400

Table 4.1: Training Parameters for Mackey-Glass Dataset

RMSE MSE NMSE NDEI

0.000141 3.099e (-7) 0.0027 1.3721e(-6)

Table 4.2: Different error measurements for Mackey-Glass

The results for ANCFIS are compared to the published literature in Table 4.3.

ANCFIS consistently had lower errors on the various measures reported in the

literature as compared to the existing techniques.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 101 201 301 401 501 601 701 801 901

48

Method NDEI MS E NMS E

ANCFIS 0.0027 3.099x10
-7

 1.37x10
-6

ANFIS [83] 0.007 - -

AR model [83] 0.19 - -

Cascade-correlation NN [84] 0.06 - -

Backpropagation NN [84] 0.02 - -

6
th

 – order Polynomial [84] 0.04 - -

Linear pred ictor [84] 0.55 - -

TSK-NFIS [21] 0.0406 2.18x10
-5

 -

AR model [21] 0.0492 3.2x10
-5

 -

NAR [21] 0.0466 2.89x10
-5

 -

Neural Network [21] 0.0488 3.21x10
-5

 -

SVR [17] - - 4.5x10
-3

Bagging SVR [17] - - 2.0x10
-3

Boosting SVR (median) [17] - - 8.2x10
-4

Boosting SVR (mean) [17] - - 8.0x10
-4

Table 4.3: Comparison of Test Error for Mackey-Glass Dataset

Further analysis of the ANCFIS results are provided in Figure4.2 and 4.3, where

we plot the predicted and actual outputs in part 4.2 and the prediction errors in

4.3. Plainly, the ANCFIS forecasts track this chaotic time series quite closely,

using only three rules.

Figure 4.2: Mackey-Glass test results for one-step prediction

49

Figure 4.3: Mackey-Glass test errors

A detailed explanation of the analysis of the learning taking place in Layer 1 of

ANCFIS is presented in Table 4.4, where we present the three complex

membership functions after training. As a usual practice, these parameters are

initialized to small random values prior to the start of the training process. It

should be noted that the phase of the third membership function is constant (a=0),

meaning that the entire membership function becomes a constant value.

 a b c d

CFS 1 0.969617 48.03118 0.861239 0.085948

CFS 2 6.31E-05 39.60439 0.129598 0.031515

CFS 3 0 83.98123 0.345205 0.119537

Table 4.4: Membership Functions after Training for Mackey-Glass dataset

4.2 Santa Fe A (Laser) dataset

Santa Fe A is the first dataset in a series of six datasets of Santa Fe time series

competition [14] in 1991. This is a univariate time series dataset which was

contributed by Udo Huebner [11]–[13] and were collected primarily by N. B.

Abraham and C. O. Weiss. These data were recorded from a Far-Infrared-Laser in

a chaotic state. Specially, the measurements were made on an 81.5-micron 14NH3

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

1 101 201 301 401

50

cw (FIR) laser, pumped optically by the P(13) line of an N2O laser via the

vibration of aQ(8,7) NH3 transition. The normalized laser data are shown in

Figure 4.4. The first 900 data points are used as training data, while the last 100

are used as testing data (in common with [54]). The length of input vector is set to

8 leading to 892 input-output data pairs as training data set and 92 data pairs as

testing data set for ANCFIS.

Figure 4.4: Santa Fe A after normalization

Table 4.5 represents all the parameters applied to ANCFIS to find best results for

Laser dataset and also Table 4.6 represents the best results found for different

error measurements.

 V
a
ria

te
s

In
p

u
t

L
e
n

g
th

O
u

tp
u

ts

C
F

S
 p

e
r

In
p

u
t

S
te

p
 S

iz
e

In
c
re

a
se

R
a
te

D
e
c
re

a
se

R
a
te

T
m

a
x

L
m

a
x

A
lp

h
a

W
e
ig

h
t

T
m

in

B
e
ta

M

1 8 1 2 0.001 1.1 0.7 100 2 0.99 0.95 0.01 0.98 400

Table 4.5: Parameters for the Santa Fe A Dataset

RMSE MSE NMSE NDEI

0.033 0.001089 0.0274 0.1655

Table 4.6: Different error measurements for Santa Fe A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901 1001

51

We compare the results for ANCFIS and the published literature in Table 4.7.

Overall, ANCFIS is in the general range of recent forecasting results for this

dataset (while using only 2 rules), but does not yield the lowest error.

Method NMS E

ANCFIS 0.0274

[85] 0.028

[80] 0.026

[11] 0.0701

[86] 0.099

MLP [87] 0.0996

MLP IT [87] 0.1582

LSTM [87] 0.3959

LSTM IT [87] 0.3642

Linear [87] 1.2505

FIRN [88] 0.023

sFIRN [88] 0.0273

MLP [89] 0.0177

RSOM [89] 0.0833

EP-MLP [90] 0.2159

[91] 0.077

[92] 0.016

[93] 0.029

Method MS E

ANCFIS 0.001089

[86] 0.0014

Table 4.7: Comparison of testing errors for Santa Fe dataset A (Laser)

Further analyses of the ANCFIS results are presented. Actual versus predicted

outputs and prediction errors are given in Figures 4.5 and 4.6. Again, it can be

observed that ANCFIS tracks this dataset fairly well, except for a small number of

points near the ―peaks‖ of the output. The trained CFS parameters are presented in

Table 4.8.

52

Figure4.5: Santa Fe A test results for one-step prediction

Figure4.6: Santa Fe A prediction error

 a B c d

CFS 1 6.988808 9.29139 0.690029 0.174359

CFS 2 8.956521 6.035124 0.354891 0.117247

Table 4.8: Membership Functions after Training for Santa Fe A dataset

4.3 Sunspot dataset

Zurich or Wolf sunspot number (now commonly referred to as sunspot number) is

the average number of sunspots per year as measured from 1700 to 1979. This

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 11 21 31 41 51 61 71 81 91

Desired value

Predicted value

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 11 21 31 41 51 61 71 81 91

53

time series was chosen because it is a commonly cited time series dataset

[15][16][94][95] and [17]-[21]. The normalized data is shown in Figure 4.7.

Figure4.7: Sunspot after normalization

The years 1700-1920 are used as training data, while the remaining years up to

1979 are used as testing data. This is consistent with the experiments from [18].

In other papers [15]-[17], [94][95] and [19]-[21], authors used different number of

data points as training data and testing data.

V
a
ria

te
s

In
p

u
t

L
e
n

g
th

O
u

tp
u

ts

C
F

S
 p

e
r

In
p

u
t

S
te

p
 S

iz
e

In
c
re

a
se

R
a
te

D
e
c
re

a
se

R
a
te

T
m

a
x

L
m

a
x

A
lp

h
a

W
e
ig

h
t

T
m

in

B
e
ta

M

1 12 1 3 0.001 1.1 0.8 100 2 0.99 0.95 0.01 0.98 400

Table 4.9: Training Parameters for Sunspot Dataset

RMSE MSE NMSE NDEI

0.091 0.00829 0.3608 0.1302

Table 4.10: Different error measurements for Sunspot

The forecasting results are compared to the literature in Table 4.11. ANCFIS is

often superior, except against one method in a 1997 article, and one publication in

2009 (last four rows). However, while the four methods investigated b y [96]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 51 101 151 201 251

54

yielded a lower MSE, the ANCFIS architecture is superior when the same results

are measured by NDEI. This likely means the four methods in [96] and ANCFIS

are not significantly different on this dataset.

Method ARV NMS E MS E NDEI

ANCFIS 0.1302 0.1302 8.29x10
-3

 0.3608

ARMA [97] 0.252 - - -

Elman [97] 0.348 - - -

Extended Elman [97] 0.162 - - -

FIR [97] 0.115 - - -

SVR [17] - 0.64 - -

Bagging SVR [17] - 0.58 - -

Boosting SVR (median)

[17]

- 0.27 - -

Boosting SVR (mean) [17] - 0.33 - -

SVM [20] - 0.178 - -

SVM Ensemble [20] - 0.1541 - -

[98] - 0.28 - -

[99] - 0.35 - -

TSK-NFIS [21] - - 1.32x10
-3

 0.38

AR [21] - - 1.36x10
-3

 0.385

NAR [21] - - 2.68x10
-3

 0.541

Neural Network [21] - - 2.17x10
-3

 0.486

 ANCFIS [58] [18]

Absolute Error 0.068 13.83 13.73

Table 4.11: Comparison of Testing Error for Sunspot Dataset

Further analysis of ANCFIS is provided in Figures 4.8 and 4.9. Again, Figure 4.8

presents actual versus predicted values, while 4.9 presents prediction errors. The

trained membership function parameters are presented in Table 4.12.

55

Figure4.8: Sunspot test results for one-step prediction

Figure4.9: Sunspot prediction error

 a b c d

CFS 1 1.000299 81.34112 0.771363 0.109397

CFS 2 1.76E-05 16.28847 0.463418 0.258022

CFS 3 2.421611 65.95746 0.196038 0.011797

Table 4.12: Membership Functions after Training for Sunspot dataset

4.4 Stellar (Star) dataset

Star dataset refers to a record of daily brightness of a variable star during 600

nights; see the normalized data in Figure 4.10. There are 480 data points that are

chosen as training dataset and the rest which is 120 is used as testing dataset. The

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51

Desired value

Predicted value

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 11 21 31 41 51

56

length of input vector is set at 27 which give a total number of 93 for testing data

pairs and 453 for training data pairs. Table 4.13 represents training parameters

applied to Star testing dataset.

Figure4.10: Star after normalization

V
a
ria

te
s

In
p

u
t

L
e
n

g
th

O
u

tp
u

ts

C
F

S
 p

e
r

In
p

u
t

S
te

p
 S

iz
e

In
c
re

a
se

R
a
te

D
e
c
re

a
se

R
a
te

T
m

a
x

L
m

a
x

A
lp

h
a

W
e
ig

h
t

T
m

in

B
e
ta

M

1 27 1 3 0.001 1.1 0.8 100 2 0.99 0.95 0.01 0.98 400

Table 4.13: Training Parameters for the Star Dataset

RMSE MSE NMSE NDEI

0.00749 5.6106e(-5) 0.0029 0.00084

Table 4.14: Different error measurements for Star

Our forecasting results are compared to the literature in Table 4.15. Again, further

analysis of the ANCFIS results are provided in Figures 4.11 and 4.12. Actual

versus predicted outputs are plotted in Figure 4.11, while prediction errors are

plotted in 4.12.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501

57

Method MS E NDEI

ANCFIS 5.61x10
-5

 0.0029

TSK-NFIS [21] 3.31x10
-4

 0.0609

AR [21] 3.22x10
-4

 0.0601

NAR [21] 3.12x10
-4

 0.0592

Neural Network [21] 3.11x10
-4

 0.0591

Table 4.15: Comparison of Testing Error for Star dataset

Figure4.11: Star test results for one-step prediction

Figure4.12: Star prediction error

The trained membership function parameters appear in Table 4.16. It is interesting

to note that the values for the d parameter are extremely small for the two of the

three CFSs. This will mean that the magnitude of the CFS will be nearly constant

(equal to the value of c).

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91

Desired value

Predicted value

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

1 31 61 91

58

 a b c d

CFS 1 1.305374 57.13477 0.184654 0.0001

CFS 2 0.859259 12.02859 0.281818 0.094417

CFS 3 6.663302 58.42737 0.431561 0.0001

Table 4.16: Membership Functions after Training for Star dataset

4.5 Waves dataset

Wave‘s dataset [23] is a time series that records forces on a cylinder suspended in

a tank of water with sampling interval 0.15 second and contains 320 data points as

shown in Figure 4.13. We choose the first 256 points as the training data set, and

the remaining 64 points as the testing data. Training parameters are listed in Table

4.17.

Figure4.13: Waves after normalization

V
ariates

In
p
u
t L

en
g
th

O
u
tp

u
ts

C
F

S
 p

er

In
p

u
t

S
tep

 S
ize

In
crease R

a
te

D
ecrease

R
ate

T
m

ax

L
m

ax

A
lp

h
a

W
eig

h
t

T
m

in

B
eta

M

1 12 1 3 0.001 1.1 0.8 100 2 0.99 0.95 0.01 0.98 400

Table 4.17: Training Parameters for the Waves Dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 51 101 151 201 251 301

59

Table 4.18 presents the best results found for different error measurements.

RMSE MSE NMSE NDEI

0.0567 0.003215 0.3136 0.0983

Table 4.18: Different error measurements for Waves

Actual versus predicted outputs are plotted in Figure 4.14 and prediction errors

are plotted in Figure 4.15.

Figure4.14: Waves test results for one-step prediction

Figure4.15: Waves prediction error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51

Desired value

Predicted value

-0.15

-0.1

-0.05

0

0.05

0.1

1 11 21 31 41 51

60

This dataset has seen subject to limited use. There is only one article that reports

on it, where the MSE error was not explicitly reported (the value in Table 4.19

was determined from observation of a graph, not a numeric value). However,

ANCFIS does outperform this technique. Membership functions after training are

reported in Table 4.20.

Method MS E

ANCFIS 0.003215

[100] ~0.007

Table 4.19: Comparison of Testing Error for Waves Dataset

 a b c d

CFS 1 9.680839 78.30599 0.025103 0.0001

CFS 2 0.000834 78.62769 0.568644 0.000369

CFS 3 5.99933 31.41722 0.338266 0.012879

Table 4.20: Membership Functions after Training for Waves dataset

In the five experimental contrasts, Off- line ANCFIS is comparable to published

results on all five real-world datasets. It has not been pursued a test of statistical

significance, as the training and testing sets vary widely between different

investigations for any dataset. However, ANCFIS is a viable forecasting

algorithm. It is also worth noting that the ANCFIS network achieves this

performance with an extremely parsimonious network; no more than three rules

are used for any dataset, including the two chaotic ones. In general, ANCFIS

provides a very compact representation of a time series.

61

Chapter 5:

Online Learning for Univariate Case

There are many situations such as in real- time applications, where data becomes

available gradually and is not available in a single batch. For example, in

applications related to sensor networks, transaction log analysis and internet

traffic measurements, data become available incrementally. This is particularly

true in time series forecasting, where we often seek to create prediction models

for ongoing phenomena. In these situations, it is important to use online learning

algorithms [49][50][101], as they are a better fit to the learning problem. It is also

cheaper to update the existing model instead of building a new model [102][103].

There are lots of applications which prefers online learning to batch learning as

online learning does not need to do retraining when new data is available [104]-

[107].

The original ANCFIS architecture [8], however, exclusively uses offline or batch

learning. Thus, there is a need to create a variant of ANCFIS that employs online

learning in time series forecasting.

We have developed online ANCFIS to meet this need. The online ANCFIS

architecture is based on the original ANCFIS architecture, with substantial

changes. To update the premise parameters in layer 1, we replace VNCSA with

another derivative-free optimization algorithm. Also, recursive- least-square (RLS)

[108]-[114] replaces the regular least square algorithm for updating consequence

parameters in layer 5. We evaluate online ANCFIS on two of the datasets from

Chapter 4. We find that, while batch learning does outperform online learning, the

differences are small and the online ANCFIS still outperforms almost all

published results on these datasets.

The remainder of this chapter is organized as follows. We first explain the Down-

Hill simplex algorithm and RLS estimation in Section 5.1. The online ANCFIS

design will be discussed in Section 5.2, and we evaluate the design on two

62

datasets in Section 5.3. We offer a discussion and summary of this chapter in

Section 5.4.

5.1 Down-Hill Simplex Algorithm

Downhill simplex search [115][116][5] is a derivative-free method to optimize a

multidimensional function. The concept behind this method is s impler than other

methods such as simulated-annealing and it is faster but the disadvantage of this

method is that it may find a local minimum instead of a global minimum

depending on initial starting values for parameters with which it is initialized. So

it may be important to run the procedure with different starting points in order to

ascertain whether it will coverage the same, assumedly global, minimum.

This method uses the concept of simplex, which is a collection of (n + 1) vertices

in n dimensions. For example, in a two-dimensional space, the simplex is a

triangle. A function of n variables is minimized by repeatedly comparing its

values at the (n + 1) vertices and replacing the vertex with the highest value by

another point. The simplex under consideration changes directions and adapts

itself to local landscape to find the neighborhood of the global minimum. Changes

in the shape and direction of the simplex are due to a number of rules and

operations, which are described next.

To generate the simplex, we begin with an initial start point 0P and compute the

remaining n points can be calculated using equation 5.1:

niePP iii ,...,1,0   (5.1)

Here ie ‘s are unit vectors which span the n-dimensional space and i is a constant

which reflects the guess of length scale of the optimization problem in question.

The function value at iP is iy .

)(minarg ii yl  (l for “low”)

)(maxarg ii yh  (h for “high”) (5.2)

Here l and h are indices for minimum and maximum of iy .

63

)(min iil yy 
 (5.3)

)(max iih yy 

The average of the (n+1) points is characterized by P . Each cycle in Downhill

Simplex method begins with *P . The four operations which are used in this

method, depend on the value at *P ; first one is reflection from hP ; then second

one is reflection and expansion away from hP ; third is contraction on one

dimension which connects hP and P ; and the last one is shrinkage of lP on all

dimensions. Figure 5.1 shows these four operations for a two input function.

Figure 5.1: Outcomes for a cycle in the downhill simplex search after (a) reflection away

from hP ; (b) reflection and expansion away from hP ; (c) contraction along one dimension

connecting hP and P ; (d) shrinkage toward lP alone all dimensions[5]

1. Reflection away from hP

The equation of reflection is 5.3.

)(

)(

**

*

Pfy

PPPP h



 
 (5.3)

64

The reflection point is defined by *P and its value is *y . The reflection

coefficient  is a positive constant. As shown in figure 5.1, *P is on the

line which connects hP to P . Based on the value of *y , one of the four

below steps will happen:

 If lyy *
, then do expansion.

 If }{,

* max
iyhiil yy  , then replace hP with *P and finish cycle.

 If hyhii yy
i



*

}{,max , then replace hP with *P and go to

contraction.

 If yyh  , then go to contraction.

2. Expansion from hP

The equation of expansion is 5.4.

)(

)(

Pfy

PPPP



 
 (5.4)

The expansion point is defined by **P and its value is
**y . The expansion

coefficient  is greater than unity. Depend on the value of
*y , we have:

 If lyy *
, then replace hP with **P and finish cycle.

 If lyy *
, then replace hP with original reflection point *P and finish

cycle.

3. Contraction along one dimension connecting hP and P

The equation of contraction is 5.5.

)(

)(

**

Pfy

PPPP h



 
 (5.5)

The contraction point is defined by **P and its value is
**y . The

contraction coefficient  is between 0 and 1. Here also we have:

 If lyy *
 or }{,

* max
iyhiil yy  or hyhii yy

i


*

}{,max ,

then replace hP with **P and finish cycle. Otherwise go to shrinkage.

65

4. Shrinkage toward lP along all dimensions.

Here each iP is replaced with
2

)(li PP 

Here it is important to find best values for constants ,  and  . Finding these

values depends on their applications and can be found by trial-and-error but a

good starting point is ( ,  ,) = (1, 0.5, 2) which is suggested by Nedler and

Mead‘s original paper [115][116].

5.1.1 Recursive Least-Squares Estimation

In the online ANCFIS, RLS (Recursive Least-Squares) [110]-[114] estimation is

applied to update parameters in layer five. Here the effect of old data pairs should

gradually decay as the new data pairs are presented. For this reason a weight is

assigned to RLS method which put more importance on recent data. This weight

parameter usually varies between 0.9 and 1. If this parameter becomes smaller, it

removes the effect of old data faster. The recursive least squares method is based

on Equation (5.6) and (5.7).

)(1111 i

T

i

T

iiiii ayaP    (5.6)

][
1

11

11
1









ii

T

i

i

T

iii
ii

aPa

PaaP
PP


 (5.7)

5.2 Online ANCFIS Design

While the design of online ANCFIS is based on offline ANCFIS design [5], still

there are major differences. Similar to offline ANCFIS in forward pass we have to

determine a complex-valued membership given a segment of time series and a

CFS membership function; thus in backward pass, we used another derivative-free

optimization technique which is Downhill-simplex instead of VNCSA to

determine the CFS parameters },,,{ dcba . These changes are done due to the fact

66

that VNCSA does a global optimization, which would overfit a single training

pattern. In this work only a single iteration of the downhill-simplex method is

done (instead of running it until convergence on a single pattern), in order to

avoid over fitting. Also consequence parameters are found using RLS. Although

the suggested range of values for lambda in RLS is between 0.9 and 1 [5], we

tried to apply smaller values for Lambda to investigate the performance of the

system as the effect of old data decays faster.

To start the downhill simplex search, in each epoch for the first training vector we

must initialize the simplex of (4+1=5) points in five dimensional space. First, we

need the initial starting point
0P . Parameters for

0P are the same parameters

chosen in forward pass for that related node. Then the rest of four points can be

calculated using equation 5.1. Here, Lambda is chosen by a random number

generator. After each training vector presentation, it is needed to find the premise

values of },,,{ dcba . First, we should calculate the magnitude and phase of each

weight
newijkSMF by Equation 3.7 and 3.8, and then there is a set of m magnitude-

phase for each complex membership function. In Equation 5.8, we try to optimize

a model by minimizing a squared error measure between magnitudes of the

updated weights and the fitting value of complex membership function at given

phase related to magnitudes of the updated weights.

2

1

32144321

2

]))sin([(),,,(



n

m

mm xxphasexxmagniturexxxxE (5.8)

Where 4321 ,,, xxxx are the premise parameters },,,{ dcba , respectively, n is the

length of input vector, mmagniture and mphase are magnitude-phase data pair of

the updated weight
newijkSMF . After presentation of each training vector, the values

found for each simplex point after the single iteration of the downhill-simplex

algorithm are kept to be used as the initial values of the simplex for the next

training vector. This continues until all training vectors are covered. Then, the

best founded minimum value is used with its parameters of dcba ,,, as the final

value for that training epoch. Then, the cycle is repeated.

67

5.3 Experimental Results

In this section, the results of forecasting experiments using online learning are

reported. Two time series dataset is used; Sunspot and Waves. The experimental

design for each dataset is the same as in Chapter 4; a single-split, one-step-ahead

prediction design where all training data are chronologically earlier than the

holdout test sample. The size of the input window is selected to approximately

cover one ―period‖ in the time series. The performance of online ANCFIS is

compared to current results for each dataset in the literature and also to the results

for offline ANCFIS. We again compute several different measures of forecast

errors for comparison with the literature; the definitions of these measures may be

found in Chapter 4. Different Lambda values are explored for each dataset.

Lambda values decrease in intervals of 0.1 from 1 to the point that training errors

become really huge and do not exceed any more. Also, other stopping criteria are

defined for our work. One of these stopping points is defined as difference value

between training errors in two sequential epochs. If this value exceeds the

minimum value we defined, the program stops. The other stopping point is

minimum error value defined by the user. If the training error becomes smaller

than this value, again the program stops. Even if none of these criteria are met,

the program stops when it reaches the maximum epoch number.

5.3.1 Sunspot Results

As Sunspot is a very popular time series dataset [17]-[21] and [15][16][94][95],

we used it to compare the results found in literature with our online experimental

results for ANCFIS. More detail about this dataset is indicated before in chapter 4.

All training parameters applied to online ANCFIS, are presented in table 5.1. As it

is shown, the values related to alpha, beta and gamma are the same values as what

Nelder and Mead suggested in their paper [101].

68

V
a
ria

te
s

In
p

u
t L

e
n

g
th

O
u

tp
u

ts

C
F

S
 p

e
r In

p
u

t

S
te

p
 S

iz
e

In
c
re

a
se

 R
a
te

D
e
c
re

a
se

 R
a
te

A
lp

h
a

B
e
ta

G
a
m

m
a

1 12 1 3 0.001 1.1 0.8 1 0.5 2

Table 5.1: Training Parameters for sunspot dataset used in online-ANCFIS

In the comparison between online ANCFIS results and results which are found in

literature, ANCFIS is often superior, except against one method published in 2009

(last four rows). Though, the four methods in [21] yielded a lower MSE, the

ANCFIS architecture is superior when the same results are measured by NDEI.

This may indicate that the four methods in [21] and ANCFIS don‘t have much

difference on this dataset. Moreover, the results for online ANCFIS is very close

to offline ANCFIS which represents the good performance of this system.

Method ARV NMS E MS E NDEI

ANCFIS (offline) 0.068 0.1302 8.29x10
-3

 0.3608

ANCFIS (online) 0.069 0.1473 9.2x10
-3

 0.38

ARMA [97] 0.252 - - -

Elman [97] 0.348 - - -

Extended Elman [97] 0.162 - - -

FIR [97] 0.115 - - -

SVR [17] - 0.64 - -

Bagging SVR [17] - 0.58 - -

Boosting SVR (median)

[17]

- 0.27 - -

Boosting SVR (mean)

[17]

- 0.33 - -

SVM [20] - 0.178 - -

SVM Ensemble [20] - 0.1541 - -

[98] - 0.28 - -

[99] - 0.35 - -

TSK-NFIS [21] - - 1.32x10
-3

 0.38

AR [21] - - 1.36x10
-3

 0.385

NAR [21] - - 2.68x10
-3

 0.541

Neural Network [21] - - 2.17x10
-3

 0.486

 ANCFIS

(offline)

ANCFIS

(online)

[97] [60]

Absolute Error 0.068 0.069 13.83 13.73

Table 5.2: Comparison of Testing Error for Sunspot Dataset

69

Further analyses of the online ANCFIS results are presented in Figure 5.2 and 5.3.

Figure 5.2 shows the actual versus predicted outputs and Figure 5.3 presents the

prediction errors.

Figure 5.2: Sunspot test results for online prediction

Figure 5.3: Sunspot test errors for online prediction

The best testing error is found with considering Lambda=1; the NMSE error

measured is 0.1473. As the values of Lambda decrease, test errors increase.

Figure 5.4 presents the different error values for different Lambda from 1 to 0.5

and also Figure 5.5 shows these test error values from 1 to 0.3 where the error

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51

Desired value

Predicted value

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 11 21 31 41 51

70

becomes really huge. Regarding these two figures, it is clear that after decreasing

Lambda below 0.9 the test error increases faster.

Figure 5.4: Testing NMSE errors for different lambda from 1 to 0.5

Figure 5.5: Testing NMSE errors for different lambda from 1 to 0.3

5.3.2 Waves Results

The Waves dataset [23] is another time series dataset which is used for online

ANCFIS experiments. The experimental results for online ANCFIS is compared

to offline ANCFIS and the results found in literature This dataset is explained in

details in chapter four. Table 5.3 represents all the parameters applied to online

ANCFIS to find best results for Waves dataset. Again, the parameter values of the

0

0.5

1

1.5

2

2.5

1

0
.9

7

0
.9

4

0
.9

1

0
.8

8

0
.8

5

0
.8

2

0
.7

9

0
.7

6

0
.7

3

0
.7

0
.6

7

0
.6

4

0
.6

1

0
.5

8

0
.5

5

0
.5

2
0

5

10

15

20

1

0
.9

6

0
.9

2

0
.8

8

0
.8

4

0
.8

0
.7

6

0
.7

2

0
.6

8

0
.6

4

0
.6

0
.5

6

0
.5

2

0
.4

8

0
.4

4

0
.4

0
.3

6

0
.3

2

71

three coefficients  ,, are the same suggested values by Nelder and Mead

[101].

 V
a
ria

te
s

In
p

u
t L

e
n

g
th

O
u

tp
u

ts

C
F

S
 p

e
r In

p
u

t

S
te

p
 S

iz
e

In
c
re

a
se

 R
a
te

D
e
c
re

a
se

 R
a
te

A
lp

h
a

B
e
ta

G
a
m

m
a

1 12 1 3 0.001 1.1 0.8 1 0.5 2

Table 5.3: Training Parameters for Waves dataset used in online-ANCFIS

Table 5.4 presents best results found for different error measurements for offline

and online learning methods. As it is shown, the results are quite similar.

 MSE NDEI NMSE

Offline method 0.0032 0.3136 0.0983

Online method 0.0034 0.3330 0.1109

Table 5.4: Different error measurements for Waves

This dataset is not as popular as Sunspot dataset. We found only one article which

applies this dataset, though the MSE error was not mentioned numerically and it

was determined from the observation of a graph. Table 5.5 presents the

forecasting results; both online and offline ANCFIS results are superior to the

results in literature.

Method MSE

ANCFIS (offline learning) 0.003215

ANCFIS (online learning) 0.003492

[66] ~0.007

Table 5.5: Comparison of Testing Error for Waves Dataset

More analysis is provided in Figure 5.6 and 5.7; which 5.8 again presents actual

versus predicted values and 5.9 presents prediction errors.

72

Figure 5.6: Waves test results for online prediction

Figure 5.7: Waves test errors for online prediction

The best forecasting error for this time series dataset in online ANCFIS is found

for Lambda=0.99. Figure 5.6 and 5.7 represent the best forecasting results of the

online system with different Lambda; as the Lambda reduces our results become

worse till we reach to the point (Lambda=0.35) that the error becomes really

huge.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51 56

Desired value

Predicted value

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 6 11 16 21 26 31 36 41 46 51 56

73

Figure 5.6: Testing NMSE errors for different lambda from 1 to 0.4

Figure 5.7: Testing errors for different lambda from 1 to 0.35

5.4 Discussion and Conclusions

In this chapter, we have presented and evaluated the design of an online learning

algorithm for ANCFIS. The key design decisions were to replace VNCSA with

the downhill simplex algorithm (iterated only once per pattern), and to replace

least-squares estimation with recursive least-squares in learning the layer 5

consequent parameters. Although ANCFIS in batch mode does give us better

forecasting performance, online ANCFIS still outperforms almost all other

methods on these two datasets. Again, this is accomplished with three or fewer

rules in each dataset. We also found that this performance is reasonably robust

0

5

10

15

20

25

1

0
.9

7

0
.9

4

0
.9

1

0
.8

8

0
.8

5

0
.8

2

0
.7

9

0
.7

6

0
.7

3

0
.7

0
.6

7

0
.6

4

0
.6

1

0
.5

8

0
.5

5

0
.5

2

0
.4

9

0
.4

6

0
.4

3

0
.4

0

10

20

30

40

50

60

70

1

0
.9

6

0
.9

2

0
.8

8

0
.8

4

0
.8

0
.7

6

0
.7

2

0
.6

8

0
.6

4

0
.6

0
.5

6

0
.5

2

0
.4

8

0
.4

4

0
.4

0
.3

6

74

against changes in the  parameter, which controls the contribution of older

patterns to the recursive least squares procedure. Our results show that complex

fuzzy logic systems can also be designed using online learning; this is the first

time that this has been demonstrated.

75

Chapter 6: Multivariate ANCFIS

Multivariate forecasting consists of two or more observations recorded

sequentially over equal time increments. Usually, due to theory or physical

property, these observations should relate to each other in some fashion. This

relationship should in turn allow us to improve upon the forecasting of these time

series; the possibility of dynamic interactions among them is important [117][49].

Previously, the ANCFIS architecture was developed only for one input vector;

that is called univariate forecasting. However, a multivariate fuzzy inference

system is needed for the case where there are multiple input vectors.

In order to implement multivariate fuzzy inference, a multivariate ANCFIS

architecture is developed. The main difference between univariate and

multivariate ANCFIS system is related to the layer two where the algebraic

product (a complex fuzzy conjunction) is applied. This provision was made in the

original ANCFIS architecture, but was never fully implemented. Also, an

extension is needed in layer five to accommodate multivariate outputs.

Multivariate ANCFIS is applied to the domain of time-series forecasting, an

important machine learning problem. Four different time-series datasets are used:

Transport and tourism-motel [22], Hydrology-river flow [22][24], Macro-

economic [22] and Car-road-accident [25]-[27]. We compare these results against

the forecasts obtained by the univariate ANCFIS on each individual time series.

However, our performance evaluation is disappointing; in our experiments the

univariate version of ANCFIS is able to model the individual variates better than

the multivariate version can, even though the variates in each dataset are highly

correlated with each other. We provide extensive detail on our multivariate design

and experimental results, as a starting point for future work on this topic.

The remainder of this chapter is organized as follows. We first discuss the

multivariate ANCFIS design in section 6.1. We then present our experimental

76

results in section 6.2. We conclude the chapter with a summary and discussion in

section 6.3.

6.1 Multivariate ANCFIS Design

Multivariate ANCFIS is an adaptive network with six layers. The architecture of

multivariate ANCFIS is similar to the original univariate ANCFIS with some

modifications. The difference in their architecture is related to layer two and layer

five. Layer two contains fixed nodes and is responsible for multiplication of

incoming signals and transferring them to the next layer. This layer output is the

firing strength of a fuzzy rule. As with ANFIS, the operations for this layer should

be conjunctions; here the algebraic product is applied, as it was proposed as a

complex fuzzy conjunction in [1][5][10]. The function related to this layer is as

below:





n

i

iim iyxf
1

,1,1,2)((6.1)

Where m refers to nodes in layer two and n refers to total number of nodes in

layer one related to node m in layer two. When there are two input vectors, there

are two different nodes in layer one connected to each node in layer two. In this

case, the Equation 6.1 can be expressed as below:

)()(

))(()(

1,12,12,11,12,11,12,11,1

2,12,11,11,1

2

1

,1,1,

yxyxiyyxx

iyxiyxiyxf
i

iiml






 (6.2)

 Layer five includes adaptive nodes. The number of nodes in this layer is related

to the number of multivariate outputs. Each node in this layer is calculated by:

))_%((,,...,2,1,

],)......([

])([

_

1

,,,,2,2,1,1,

_

1

,5

nIniimnj

rxpxpxpxpw

rxpwfwO

i

nIn

k

nknijkjikiki

DP

m

i

nIn

k

ki

DP

mi

DP

mi

















 (6.3)

77

where DP

mw is the mth output of fourth layer, jkx , is the jth value of kth input

vector, n is the length of input vector, In_n is the total numbers of input vector,

},{ ii rp


is the parameter set for linear output function, ip


 is a vector of the same

length as input vector x


 and ir is a constant. Figure 6.1 presents a multivariate

ANCFIS for two input vectors (two variates).

Figure 6.1: Multivariate ANCFIS network

As discussed before, for each internal node of ANCFIS network the error signal

was calculated by Equation 3.23. Regarding that we use algebraic prod uct for

layer two, the error signals for layer two is calculated by:

78

)))...((((...)))...((((

)))...(()(((
...

)))...(()(((

..

,,,,,1,,,,1,1

,

,,,,,,

,1

,

,,,,,,

1,1

,

,1

,1

,

2,1

2,1

,

1,1

1,1

)1(

1 ,

,1

,1

)1(

1 ,

,1

,1,

,

klkljljlmlklkljljll

il

klkljljlilil

ml

il

klkljljlilil

l

il

ml

ml

il

l

l

il

l

l

mN

i il

ml

ml

mN

i il

ml

ml

P

il

P

il

iyxiyxiyxiyx

x

iyxiyxiyx

x

iyxiyxiyx

x

f

x

f

x

f

x

f

x

f

x

E

x

E




















































































 











(6.4)

Where the index i refers to node position in layer l and error signals and m refers

to nodes in layer 1l . Equation 6.4 shows that algebraic product used for

complex fuzzy numbers, which acts the same way as it is used for real numbers.

Next, the back propagation of two inputs multivariate ANCFIS is described.

 6.1.1 Multivariate ANCFIS back propagation example

The back propagation equations can be computed through equations 3.20 to 3.31,

the same as original ANCFIS. Here errors in different layers are calculated from

last layer to first layer.

79

Figure 6.2: Forward pass of a Multivariate ANCFIS structure with two inputs

and two complex membership functions for each input

Figure 6.3: Backward pass of a Multivariate ANCFIS structure with two inputs and

two complex membership functions for each input

Figure 6.2 and 6.3 present the structure of multivariate ANCFIS for two input

vectors and in total four membership functions (two MF for each input). In below

this ANCFIS example is described.

80

From the output to layer 6:

)(2 2727

27

27 xd
x

EP 





 (6.6)

)(2 2626

26

26 xd
x

EP 





 (6.7)

From layer 6 to layer 5:

27

44

27

25

27
27

25

27

2725

25
)(

)(
 


























fw

fw

x

f

x

f

x

E

x

E i

DP

iPP

 (6.8)

26

44

26

24

26
26

24

26

2624

24
)(

)(
 


























fw

fw

x

f

x

f

x

E

x

E i

DP

iPP

 (6.9)

27

33

27

23

27
27

23

27

2723

23
)(

)(
 


























fw

fw

x

f

x

f

x

E

x

E i

DP

iPP

 (6.10)

26

33

26

22

26
26

22

26

2622

22
)(

)(
 


























fw

fw

x

f

x

f

x

E

x

E i

DP

iPP

 (6.11)

27

22

27

21

27
27

21

27

2721

21
)(

)(
 


























fw

fw

x

f

x

f

x

E

x

E i

DP

iPP

 (6.12)

26

22

26

20

26
26

20

26

2620

20
)(

)(
 


























fw

fw

x

f

x

f

x

E

x

E i

DP

iPP

 (6.13)

27

11

27

19

27
27

19

27

2719

19
)(

)(
 


























fw

fw

x

f

x

f

x

E

x

E i

DP

iPP

 (6.14)

26

11

26

18

26
26

18

26

2618

18
)(

)(
 


























fw

fw

x

f

x

f

x

E

x

E i

DP

iPP

 (6.15)

81

From layer 5 to layer 4:

724825

4

74

24

4

84

25

17

24
24

17

25

25

17

24

2417

25

2517

17

)(

)(

)(

)(
ff

w

fw

w

fw

x

f

x

f

x

f

x

E

x

f

x

E

x

E

DP

DP

DP

DP

PPP

















































 (6.16)

522623

3

53

22

3

63

23

16

22
22

16

23

23

16

22

2216

23

2316

16

)(

)(

)(

)(
ff

w

fw

w

fw

x

f

x

f

x

f

x

E

x

f

x

E

x

E

DP

DP

DP

DP

PPP

















































 (6.17)

320421

2

32

20

2

42
21

15

20

20

15

21
21

15

20

2015

21

2115

15

)(

)(

)(

)(
ff

w

fw

w

fw

x

f

x

f

x

f

x

E

x

f

x

E

x

E

DP

DP

DP

DP

PPP

















































 (6.18)

118219

1

11
18

1

21
19

14

18

18

14

19

19

14

18

1814

19

1914

14

)(

)(

)(

)(
ff

w

fw

w

fw

x

f

x

f

x

f

x

E

x

f

x

E

x

E

DP

DP

DP

DP

PPP

















































 (6.19)

From layer 4 to layer 3:

)(

)]([(

)(

)]([(

)(

)]([(

)(

)]([(

)(

)(

)(

)(

)(

)(

)(

)(

4

43211

14

4

43212

15

4

43213

16

4

43214

17

4

1
14

4

2
15

4

3
16

4

4
17

13

14
14

13

15
15

13

16
16

13

17
17

13

14

1413

15

1513

16

1613

17

1713

13

w

wwwww

w

wwwww

w

wwwww

w

wwwww

w

w

w

w

w

w

w

w

x

f

x

f

x

f

x

f

x

f

x

E

x

f

x

E

x

f

x

E

x

f

x

E

x

E

DPDPDPDP

PPPPP
















































































































 (6.20)

82

)(

)]([(

)(

)]([(

)(

)]([(

)(

)]([(

)(

)(

)(

)(

)(

)(

)(

)(

3

43211

14

3

43212

15

3

43213

16

3

43214

17

3

1
14

3

2
15

3

3
16

3

4
17

12

14
14

12

15

15

12

16

16

12

17

17

12

14

1412

15

1512

16

1612

17

1712

12

w

wwwww

w

wwwww

w

wwwww

w

wwwww

w

w

w

w

w

w

w

w

x

f

x

f

x

f

x

f

x

f

x

E

x

f

x

E

x

f

x

E

x

f

x

E

x

E

DPDPDPDP

PPPPP
















































































































 (6.21)

)(

)]([(

)(

)]([(

)(

)]([(

)(

)]([(

)(

)(

)(

)(

)(

)(

)(

)(

2

43211

14

2

43212

15

2

43213

16

2

43214

17

2

1
14

2

2
15

2

3
16

2

4
17

11

14
14

11

15

15

11

16

16

11

17

17

11

14

1411

15

1511

16

1611

17

1711

11

w

wwwww

w

wwwww

w

wwwww

w

wwwww

w

w

w

w

w

w

w

w

x

f

x

f

x

f

x

f

x

f

x

E

x

f

x

E

x

f

x

E

x

f

x

E

x

E

DPDPDPDP

PPPPP
















































































































 (6.22)

)(

)]([(

)(

)]([(

)(

)]([(

)(

)]([(

)(

)(

)(

)(

)(

)(

)(

)(

1

43211

14

1

43212

15

1

43213

16

1

43214

17

1

1
14

1

2
15

1

3
16

1

4
17

10

14
14

10

15
15

10

16
16

10

17
17

10

14

1410

15

1510

16

1610

17

1710

10

w

wwwww

w

wwwww

w

wwwww

w

wwwww

w

w

w

w

w

w

w

w

x

f

x

f

x

f

x

f

x

f

x

E

x

f

x

E

x

f

x

E

x

f

x

E

x

E

DPDPDPDP

PPPPP
















































































































 (6.23)

83

If
111 iyxw  ,

222 iyxw  ,
333 iyxw 

and

444 iyxw  then the derivative

formula in (6.20) yields:






















)(

)][(

)(

)][(

)(

)][(

)(

)][(

4

41312111

14

4

42322212

15

4

43332313

16

4

44342414

1713

w

wwwwwwww

w

wwwwwwww

w

wwwwwwww

w

wwwwwwww





114215316417432117

111422153316

4321432117

44

4141313121211111

14

44

4242323222222121

15

44

4343333332323131

16

44

4444434342424141

17

2

1

2

1

2

1

2

1
)(

2

1

)(
2

1
)(

2

1
)(

2

1

))2()2((
2

1

)(

)]()()()[(

)(

)]()()()[(

)(

)]()()()[(

)(

)]()()()[(

wwwwwwww

iyxiyxiyx

yyyyixxxx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx









































 (6.24)

 Here iw reflects the complex conjugate of normalized weights. With the use of

derivative formula of complex function in (6.21) we have:

84






















)(

)][(

)(

)][(

)(

)][(

)(

)][(

3

41312111

14

3

42322212

15

3

43332313

16

3

44342414

1712

w

wwwwwwww

w

wwwwwwww

w

wwwwwwww

w

wwwwwwww





114215316432116417

111422154321

4321164417

33

4141313121211111

14

33

4242323222222121

15

33

4343333332323131

16

33

4444434342424141

17

2

1

2

1

2

1
)(

2

1

2

1

)(
2

1
)(

2

1
))2(

)2((
2

1
)(

2

1

)(

)]()()()[(

)(

)]()()()[(

)(

)]()()()[(

)(

)]()()()[(

wwwwwwww

iyxiyxyyyyi

xxxxiyx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx









































 (6.25)

Again the use of derivative formula of complex function in (6.22) represents:

114215432115316417

11144321

43211533164417

22

4141313121211111
14

22

4242323222222121
15

22

4343333332323131
16

22

4444434342424141
17

2

1

2

1
)(

2

1

2

1

2

1

)(
2

1
))2(

)2((
2

1
)(

2

1
)(

2

1

)(

)]()()()[(

)(

)]()()()[(

)(

)]()()()[(

)(

)]()()()[(

wwwwwwww

iyxyyyyi

xxxxiyxiyx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx









































 (6.26)

85

The same case happens for (6.23):






















)(

)][(

)(

)][(

)(

)][(

)(

)][(

1

41312111

14

1

42322212

15

1

43332313

16

1

44342414

1710

w

wwwwwwww

w

wwwwwwww

w

wwwwwwww

w

wwwwwwww





114432114215316417

4321432114

221533164417

11

4141313121211111
14

11

4242323222222121
15

11

4343333332323131
16

11

4444434342424141
17

2

1
)(

2

1

2

1

2

1

2

1

))2()2((
2

1

)(
2

1
)(

2

1
)(

2

1

)(

)]()()()[(

)(

)]()()()[(

)(

)]()()()[(

)(

)]()()()[(

wwwwwwww

yyyyixxxx

iyxiyxiyx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx

iyx

yyxxyyxxyyxxyyxx









































 (6.27)

From layer 3 to layer 2:

)(

][

)(

][

)(

][

)(

][

)(

)(

)(

)(

)(

)(

)(

)(

4

4321

1

10

4

4321

2

11

4

4321

3

12

4

4321

4

13

4

1
10

4

2
11

4

3

12

4

4
13

9

10

10

9

11
11

9

12
12

9

13

13

9

10

109

11

119

12

129

13

139

9

w

wwww

w

w

wwww

w

w

wwww

w

w

wwww

w

w

w

w

w

w

w

w

w

x

f

x

f

x

f

x

f

x

f

x

E

x

f

x

E

x

f

x

E

x

f

x

E

x

E PPPPP




















































































































 (6.28)

86

)(

][

)(

][

)(

][

)(

][

)(

)(

)(

)(

)(

)(

)(

)(

3

4321

1

10

3

4321

2

11

3

4321

3

12

3

4321

4

13

3

1
10

3

2
11

3

3

12

3

4
13

8

10

10

8

11
11

8

12
12

8

13

13

8

10

108

11

118

12

128

13

138

8

w

wwww

w

w

wwww

w

w

wwww

w

w

wwww

w

w

w

w

w

w

w

w

w

x

f

x

f

x

f

x

f

x

f

x

E

x

f

x

E

x

f

x

E

x

f

x

E

x

E PPPPP




















































































































 (6.29)

)(

][

)(

][

)(

][

)(

][

)(

)(

)(

)(

)(

)(

)(

)(

2

4321

1

10

2

4321

2

11

2

4321

3

12

2

4321

4

13

2

1
10

2

2
11

2

3

12

2

4
13

7

10

10

7

11
11

7

12
12

7

13

13

7

10

107

11

117

12

127

13

137

7

w

wwww

w

w

wwww

w

w

wwww

w

w

wwww

w

w

w

w

w

w

w

w

w

x

f

x

f

x

f

x

f

x

f

x

E

x

f

x

E

x

f

x

E

x

f

x

E

x

E PPPPP




















































































































 (6.30)

87

)(

][

)(

][

)(

][

)(

][

)(

)(

)(

)(

)(

)(

)(

)(

1

4321

1

10

1

4321

2

11

1

4321

3

12

1

4321

4

13

1

1
10

1

2
11

1

3

12

1

4
13

6

10

10

6

11
11

6

12
12

6

13

13

6

10

106

11

116

12

126

13

136

6

w

wwww

w

w

wwww

w

w

wwww

w

w

wwww

w

w

w

w

w

w

w

w

w

x

f

x

f

x

f

x

f

x

f

x

E

x

f

x

E

x

f

x

E

x

f

x

E

x

E PPPPP




















































































































 (6.31)

If we assume that
111 iyxw  ,

222 iyxw  , 333 iyxw 

and

444 iyxw  .

Then with complex function in (6.28) we have:

)(

]
)(

[

)(

]
)(

[

)(

]
)(

[

)(

]
)(

[

44

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1

11

10

44

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1

22

11

44

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1

33

12

44

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1

44

139

iyx

yxyxyxyx

iyx

iyx

yxyxyxyx

iyx

iyx

yxyxyxyx

iyx

iyx

yxyxyxyx

iyx










































 (6.32)

88

Consider 2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1 yxyxyxyxM  and

44
44 ivu

M

iyx



 and

33

33 ivu
M

iyx



 and

22
22 ivu

M

iyx



 and

11
11 ivu

M

iyx



. Then,

2

2

4

2

4

2

4

4

4

M

yx

x
M

x

u 






 ,

4

4

2

4

2

4

2

44

4

4

x

v

yxM

yx

y

u














 and

2

2

4

2

4

2

4

4

4

M

yx

y
M

y

v 
































































4

4

4

4

4

4

4

4

44

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1

44

2

1

)(

]
)(

[

x

v
i

y

u
i

y

v

x

u

iyx

yxyxyxyx

iyx

And here is
33

33 ivu
M

iyx



 with

M

x
u 3

3  ,
M

y
v 3

3  and

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1 yxyxyxyxM 
:

2

4

2

4

2

43

4

3

yxM

xx

x

u









,

2

4

2

4

2

43

4

3

yxM

yx

y

u









,

2

4

2

4

2

43

4

3

yxM

xy

x

v









 and

2

4

2

4

2

43

4

3

yxM

yy

y

v



































































4

3

4

3

4

3

4

3

44

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1

33

2

1

)(

]
)(

[

x

v
i

y

u
i

y

v

x

u

iyx

yxyxyxyx

iyx

And let 22
22 ivu

M

iyx



with

M

x
u 2

2  ,
M

y
v 2

2  and

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1 yxyxyxyxM 
then,

89

2

4

2

4

2

42

4

2

yxM

xx

x

u









,

2

4

2

4

2

42

4

2

yxM

yx

y

u









,

2

4

2

4

2

42

4

2

yxM

xy

x

v









 and

2

4

2

4

2

42

4

2

yxM

yy

y

v



































































4

2

4

2

4

2

4

2

44

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1

22

2

1

)(

]
)(

[

x

v
i

y

u
i

y

v

x

u

iyx

yxyxyxyx

iyx

Also let
11

11 ivu
M

iyx



 with

M

x
u 1

1  ,
M

y
v 1

1 

and

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1 yxyxyxyxM 
, then:

2

4

2

4

2

41

4

1

yxM

xx

x

u









,

2

4

2

4

2

41

4

1

yxM

yx

y

u









,

2

4

2

4

2

41

4

1

yxM

xy

x

v









 and

2

4

2

4

2

41

4

1

yxM

yy

y

v



































































4

1

4

1

4

1

4

1

44

2

4

2

4

2

3

2

3

2

2

2

2

2

1

2

1

11

2

1

)(

]
)(

[

x

v
i

y

u
i

y

v

x

u

iyx

yxyxyxyx

iyx

Continuing with this, we can have:

2

3

2

3

2

43

3

4

yxM

xx

x

u









,

2

3

2

3

2

33

3

4

yxM

yx

y

u









,

2

3

2

3

2

43

3

4

yxM

yx

x

v









 and

2

3

2

3

2

43

3

4

yxM

yy

y

v










And

90

2

2

3

2

3

2

3

3

3

M

yx

x
M

x

u 






 ,

3

3

2

3

2

3

2

33

3

3

x

v

yxM

yx

y

u














 and

2

2

3

2

3

2

3

3

3

M

yx

y
M

y

v 







And

2

3

2

3

2

32

3

2

yxM

xx

x

u









,

2

3

2

3

2

32

3

2

yxM

yx

y

u









,

2

3

2

3

2

32

3

2

yxM

xy

x

v









 and

2

3

2

3

2

32

3

2

yxM

yy

y

v










And

2

3

2

3

2

31

3

1

yxM

xx

x

u









,

2

3

2

3

2

31

3

1

yxM

yx

y

u









,

2

3

2

3

2

31

3

1

yxM

xy

x

v









 and

2

3

2

3

2

31

3

1

yxM

yy

y

v










And

2

2

2

2

2

42

2

4

yxM

xx

x

u









,

2

2

2

2

2

24

2

4

yxM

yx

y

u









,

2

2

2

2

2

24

2

4

yxM

xy

x

v









 and

2

2

2

2

2

42

2

4

yxM

yy

y

v










And

2

2

2

2

2

32

2

3

yxM

xx

x

u









,

2

2

2

2

2

23

2

3

yxM

yx

y

u









,

2

2

2

2

2

23

2

3

yxM

xy

x

v









 and

2

2

2

2

2

32

2

4

yxM

yy

y

v










And

91

2

2

2

2

2

2

2

2

2

M

yx

x
M

x

u 






 ,

2

2

2

2

2

2

2

22

2

2

x

v

yxM

yx

y

u














 and

2

2

2

2

2

2

2

2

2

M

yx

y
M

y

v 







And

2

2

2

2

2

21

2

1

yxM

xx

x

u









,

2

2

2

2

2

21

2

1

yxM

yx

y

u









,

2

2

2

2

2

21

2

1

yxM

xy

x

v









 and

2

2

2

2

2

21

2

1

yxM

yy

y

v










And

2

1

2

1

2

41

1

4

yxM

xx

x

u









,

2

1

2

1

2

14

1

4

yxM

yx

y

u









,

2

1

2

1

2

14

1

4

yxM

xy

x

v









 and

2

1

2

1

2

41

1

4

yxM

yy

y

v










And

2

1

2

1

2

31

1

3

yxM

xx

x

u









,

2

1

2

1

2

13

1

3

yxM

yx

y

u









,

2

1

2

1

2

13

1

3

yxM

xy

x

v









 and

2

1

2

1

2

31

2

4

yxM

yy

y

v










And

2

1

2

1

2

21

1

2

yxM

xx

x

u









,

2

1

2

1

2

12

1

2

yxM

yx

y

u









,

2

1

2

1

2

12

1

2

yxM

xy

x

v









 and

2

1

2

1

2

21

1

2

yxM

yy

y

v










92

And

2

2

1

2

1

2

1

1

1

M

yx

x
M

x

u 






 ,

1

1

2

1

2

1

2

11

1

1

x

v

yxM

yx

y

u














 and

2

2

1

2

1

2

1

1

1

M

yx

y
M

y

v 







From layer 2 to layer 1:

)()(

)(

))()((

)(

))()((

)))((()))(((

339227

5

35535353

9

5

25525252

7

5

5533

9

5

5522

7

5

9

9

5

7

7

5

9

95

7

75

5

iyxiyx

x

yxyxiyyxx

x

yxyxiyyxx

x

iyxiyx

x

iyxiyx

x

f

x

f

x

f

x

E

x

f

x

E

x

E PPP

































































(6.33)

)()(

)(

))()((

)(

))()((

)))((()))(((

338226

4

34434343

8

4

24424242
6

5

4433

8

5

4422
6

4

8

8

4

6

6

4

8

84

6

64

4

iyxiyx

x

yxyxiyyxx

x

yxyxiyyxx

x

iyxiyx

x

iyxiyx

x

f

x

f

x

f

x

E

x

f

x

E

x

E PPP

































































(6.34)

)()(

)(

))()((

)(

))()((

)))((()))(((

559448

3

35535353

9

3

34434343

8

5

5533

8

5

4433

6

3

9

9

3

8

8

3

9

93

8

83

3

iyxiyx

x

yxyxiyyxx

x

yxyxiyyxx

x

iyxiyx

x

iyxiyx

x

f

x

f

x

f

x

E

x

f

x

E

x

E PPP

































































(6.35)

93

)()(

)(

))()((

)(

))()((

)))((()))(((

557446

2

25525252
7

2

24424242
6

5

5522
8

5

4422
6

2

7
7

2

6
6

2

7

72

6

62

2

iyxiyx

x

yxyxiyyxx

x

yxyxiyyxx

x

iyxiyx

x

iyxiyx

x

f

x

f

x

f

x

E

x

f

x

E

x

E PPP

































































(6.36)

After calculating all i for all nodes, then the gradient for generic weight of

ijkSMF in node i is easy to be calculated according to Equations (3.32) and (3.33).

6.2 Experimental Comparison of Multivariate ANCFIS

In this section, the results of forecasting experiments using multivariate ANCFIS

are reported. The experimental design for multivariate ANCFIS is similar to

univariate ANCFIS; a single-split, one-step-ahead prediction design with all

training data before testing data. In all of the experiments, the normalized mean

squared error (NMSE) is reported. All variates in each dataset are already co-

registered, which means that the data points relate to the same moments in time. It

is also important to normalize multivariate data, so the results are not dominated

by the variates that have a larger absolute variance. The window size is again

based on finding one approximate period in the time series.

Four different time-series dataset is used; river-flow-hydrology, micro-economics,

motel-tourism and car-road-accidents. River-flow is geographically indexed data,

collected over time and at different locations [118]-[121]. Although economics

data does not necessarily contain geographic component, it represents a source of

high-volume multivariate time series data.

94

We have compared the results of Multivariate ANCFIS with those of univariate

ANCFIS for individual variates and all variates together on four different datasets.

Each variate is forecasted separately with univariate ANCFIS. Then, the

forecasting results of univariate ANCFIS for each variate, are combined to find

the forecasting results for all variates. We then forecast the whole dataset using

multivariate ANCFIS. The predicted and actual values for each variate are

collected, and the forecast error for each variate can be calculated separately as

well as in aggregate.

6.2.1 Transport and Tourism-Motel

This dataset is collected by Australian Bureau of Statistics [22]. There are 186

observations with two different variates related to monthly data of hotels, motels

and guesthouses in Victoria between Jan 1980 - June 1995. First variate is total

number of room night occupied and second variate is about total takings from

accommodation. The Pearson‘s correlation between these columns is 0.943 which

means they are very strongly correlated. Figure 6.4 presents this correlation.

Figure 6.4: Pearson’s correlation between two variates of Motel dataset

Here the length of window is set to six, and the first 166 observations are used as

the training dataset and the rest are used for the testing. Figure 6.5 and 6.6

represents the dataset before and after normalization.

0

10000

20000

30000

40000

50000

60000

0 100000 200000 300000 400000 500000 600000

95

Figure 6.5: Original Motel dataset

Figure 6.6: Normalized Motel dataset

We compared results of multivariate with univariate ANCFIS in Table 6.2 where

individual variates and all together are compared. Also the training parameters for

multivariate ANCFIS are represented in Table 6.1.

V
ariates

In
p
u
t

L
en

g
th

O
u
tp

u
ts

C
F

S
 p

er

In
p

u
t

S
tep

S
ize

In
crease

R
ate

D
ecreas

e R
ate

T
m

ax

L
m

ax

A
lp

h
a

W
eig

h
t

T
m

in

B
eta

M

2 6 2 2 0.001 1.2 0.8 100 2 0.99 0.95 0.01 0.98 400

Table 6.1: Training Parameters for the Motel Dataset

0

100000

200000

300000

400000

500000

600000

1 9 1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 9 1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

96

 Column 1 Column 2 Column 1 & 2

univariate system 0.314275 0.113525 0.146618

multivariate system 0.410481 0.109129 0.162816

Table 6.2: NMSE testing error comparison for Motel

Further analysis of Multivariate ANCFIS results is provided in Figure 6.7 where

the actual output is plotted versus predicted outputs and prediction errors in

Figure 6.8.

Figure 6.7: Multivariate test results for one-step prediction of Motel dataset

Figure 6.8: Multivariate system prediction errors for Motel dataset

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 6 11 16

Actual vaue-variatel1

Predicted value-variate
1

Actual value-variate 2

predicted value-variate
2

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 6 11 16

Variate1

variatec2

97

6.2.2 Hydrology- River flow

This dataset is originally from Pablo Baldazo [22][24]. The tabulation of 6

unregulated (natural) annual river flow series is represented. Here the first River is

Snake River near Moran, Wyoming. Second river is Snake River near Heise,

Idaho. The third and fourth rivers are Boise River near Twin Springs and Salmon

River near Whitebird, Idaho. The last river is Bruneau River near Hot Springs,

Idaho. The data is collected from 1912-1994. The Pearson‘s correlations between

different variates are presented in Figure 6.9. Variate one, two, three and four are

strongly correlated to each other, though their correlation with variate five is not

as strong as the other variates.

Pearson correlation between variate 1

and 2 = 0.953

Pearson correlation between variate 1

and 3 = 0.869

Pearson correlation between variate 1

and 4 = 0.846

Pearson correlation between variate 1

and 5 = 0.666

0

2000

4000

6000

8000

10000

0 1000 2000

0

500

1000

1500

2000

0 1000 2000

0

5000

10000

15000

0 1000 2000

0

200

400

600

800

0 1000 2000

98

Pearson correlation between variate 2

and 3 = 0.882

Pearson correlation between variate 2

and 4 = 0.849

Pearson correlation between variate 2

and 5 = 0.742

Pearson correlation between variate 3

and 4 = 0.93

Pearson correlation between variate 3

and 5 = 0.724

Pearson correlation between variate 4

and 5 = 0.698

Figure 6.9: Pearson correlation efficient between different variates of River dataset

Here the length of window is considered eight and the first 73 is as training set

and the rest as testing. The original and normalize datasets are plotted in Figure

6.10 and Figure 6.11.

0

500

1000

1500

2000

0 5000 10000

0

5000

10000

15000

0 5000 10000

0

200

400

600

800

0 5000 10000

0

5000

10000

15000

0 1000 2000

0

200

400

600

800

0 1000 2000

0

200

400

600

800

0 5000 10000 15000

99

Figure 6.10: Original River-flow dataset

Figure 6.11: Normalized River-flow dataset

Tables 6.4, 6.6, 6.8 and 6.10 compare the NMSE measurements for two, three,

four and all five variates separately and all together, calculated with univariate

and multivariate ANCFIS as described before. Also, their training parameters are

presented in Tables 6.3, 6.5, 6.7 and 6.9.

0

2000

4000

6000

8000

10000

12000

14000

1 11 21 31 41 51 61 71 81

Series1

Series2

Series3

Series4

Series5

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81

Series1

Series2

Series3

Series4

Series5

100

V
ariates

In
p
u
t

L
en

g
th

O
u
tp

u
ts

C
F

S
 p

er

In
p

u
t

S
tep

S
ize

In
crease

R
ate

D
ecreas

e R
ate

T
m

ax

L
m

ax

A
lp

h
a

W
eig

h
t

T
m

in

B
eta

M

2 8 2 2 0.001 1.1 0.9 100 2 0.99 0.95 0.01 0.98 400

Table 6.3: Training Parameters for two variates of the River Dataset

 Column 1 Column 2 Column 1 & 2

univariate system 0.3048 0.3219 0.3059

multivariate system 0.5675 0.4636 0.5065

Table 6.4: NMSE testing error comparison for two variates of the River Dataset

V
ariates

In
p
u
t

L
en

g
th

O
u
tp

u
ts

C
F

S
 p

er

In
p

u
t

S
tep

S
ize

In
crease

R
ate

D
ecreas

e R
ate

T
m

ax

L
m

ax

A
lp

h
a

W
eig

h
t

T
m

in

B
eta

M

3 8 3 2 0.001 1.1 0.8 100 2 0.99 0.95 0.01 0.98 400

Table 6.5: Training Parameters for three variates of the River Dataset

 Column 1 Column 2 Column 3 Column 1 & 2 &3

univariate system 0.3048 0.3219 1.4632 0.3960

multivariate system 0.46319 0.4577 0.4101 0.4344

Table 6.6: NMSE testing error comparison for three variates of the River Dataset

V
ariates

In
p
u
t

L
en

g
th

O
u
tp

u
ts

C
F

S
 p

er

In
p

u
t

S
tep

S
ize

In
crease

R
ate

D
ecreas

e R
ate

T
m

ax

L
m

ax

A
lp

h
a

W
eig

h
t

T
m

in

B
eta

M

4 8 4 2 0.001 1.1 0.9 100 2 0.99 0.95 0.01 0.98 400

Table 6.7: Training Parameters for four variates of the River Dataset

 Column 1 Column 2 Column 3 Column 4 Column 1 & 2
&3&4

univariate system 0.3048 0.3219 1.4632 0.4526 0.4144

multivariate system 0.7550 0.5834 1.0601 0.4760 0.7197

Table 6.8: NMSE testing error comparison for four variates of the River Dataset

V
ariates

In
p
u
t

L
en

g
th

O
u
tp

u
ts

C
F

S

p
er

In
p

u
t

S
tep

S
ize

In
crease

R
ate

D
ecreas

e R
ate

T
m

ax

L
m

ax

A
lp

h
a

W
eig

h
t

T
m

in

B
eta

M

5 8 5 2 0.001 1.1 0.8 100 2 0.99 0.95 0.01 0.98 400

Table 6.9: Training Parameters for five variates of the River Dataset

Column 1 Column 2 Column 3 Column 4 Column 5

All 5
columns

univariate

system 0.3048 0.3219 1.4632 0.4526 0.4246 0.4311

multivariate

system 0.6754 1.4512 1.9426 1.6309 2.5974 1.3111

Table 6.10: NMSE testing error comparison for five variates of the River Dataset

101

Again, further analysis of the ANCFIS results are provided in Figure 6.12 where

we plot actual versus predicted outputs and then, prediction errors in Figure 6.13.

Figure 6.12: Multivariate test results for one-step prediction of River-flow dataset

Figure 6.13: Multivariate system prediction errors for River-flow dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

river1-actual

river1-predicted

river2-actual

river2-predicted

river3-actual

river3-predicted

river4-actual

river4-predicted

river5-actual

river5-predicted

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

variate1

variate2

variate3

variate4

variate5

102

6.2.3 Macro Economics

This dataset is collected by Australian Bureau of Statistics [22]. It contains 141

observations with three variates during March 1956 to March 1991. The first

variate is related to quarterly average weekly male earnings in Australia for all

industries. The second variate is related to CPI for same quarters and the last

variate is real average weekly male earnings. Here the length of window is

considered four and the first 127 data points are considered as training data and

the rest as testing data. The Pearson‘s correlation between the first two variates is

0.998 (which means they are highly correlated), between the first and third variate

is 0.819 (still strong), and between the second and third variate is 0.794,

(moderately strong). Figure 6.13 shows these correlation plots.

Pearson correlation between variate 1

and 2 = 0.998

Pearson correlation between variate 1 and

3= 0.819

Pearson correlation between variate 2

and 3 = 0.794

Figure 6.14: Pearson correlation efficient between different variates of Macro

dataset

Figure 6.15 and Figure 6.16 show the Macro Economics original and normalized

dataset.

0

100

200

300

0 200 400 600 800

0

200

400

600

800

0 100 200 300 400

0

100

200

300

0 100 200 300 400

103

Figure 6.15: Original Macro dataset

Figure 6.16: Normalized Macro dataset

All training parameters for the two and three variates are represented in Table

6.11 and 6.13. Table 6.12 and 6.14 contain the forecasting results for two variates

and three variates, separately and all together.

0

100

200

300

400

500

600

700

1 9 1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

Series1

Series2

Series3

0

0.2

0.4

0.6

0.8

1

1.2

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

Series1

Series2

Series3

104

V
a
ria

te
s

In
p

u
t

L
e
n

g
th

O
u

tp
u

ts

C
F

S
 p

e
r

In
p

u
t

S
te

p

S
iz

e

In
c
re

a
se

R
a
te

D
e
c
re

a
s

e
 R

a
te

T
m

a
x

L
m

a
x

A
lp

h
a

W
e
ig

h
t

T
m

in

B
e
ta

M

2 4 2 2 0.001 1.1 0.75 100 2 0.99 0.95 0.01 0.98 400

Table 6.11: Training Parameters for two variates of the Macro Dataset

 Column 1 Column 2 Column 1 & 2

Univariate system
0.00079 0.00069 0.0149

Multivariate system
0.4143 0.4473 0.432

Table 6.12: NMSE testing error comparison for two variates of the Macro dataset

V
a
ria

te
s

In
p

u
t

L
e
n

g
th

O
u

tp
u

ts

C
F

S

p
e
r

In
p

u
t

S
te

p
 S

iz
e

In
c
re

a
se

R
a
te

D
e
c
re

a
se

R
a
te

T
m

a
x

L
m

a
x

A
lp

h
a

W
e
ig

h
t

T
m

in

B
e
ta

M

3 4 3 2
0.00

1
1.1 0.75 100 2 0.99 0.95 0.01 0.98 400

Table 6.13: Training Parameters for three variates of the Macro Dataset

 Column 1 Column 2 Column 3 Column 1 & 2 &3

Univariate system 0.00079 0.00069 0.0018 0.0029

Multivariate system 1.558 1.419 1.441 1.2543

Table 6.14: NMSE testing error comparison for three variates of Macro dataset

More analysis of the ANCFIS results are shown in Figure 6.17; actual versus

predicted outputs and Figure 6.18; prediction errors.

Figure 6.17: Multivariate test results for one-step prediction of MacroEconomics

dataset

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

Actual value-
variate1
Predicted value-
variate1
Actual value-
variate2
Predicted value-

variate2
Actual value-

variate3
Predicted value-
variate3

105

Figure 6.18: Multivariate system prediction errors for MacroEconomic dataset

6.2.4 Car road accident

This dataset is total number of annual car road accident casualties in Belgium

from 1974 to 2004. Here we have five variates; the first one is number of killed

persons, second one is mortally wounded, third variate represents the number of

people died within thirty days, fourth one is severely wounded and finally the last

variates indicates light casualties [25]-[27]. Figure 6.19 represents Pearson‘s

correlation between different variates. It shows that among all variates, variates 2

& 3 have the highest correlation. On the other hand, variates 2 & 5 and 3 & 5

have the lowest correlation among the other variates.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

variate1

variate2

variate3

106

Pearson correlation between variate 1

and 2 = 0.755

Pearson correlation between variate 1

and 3= 0.921

Pearson correlation between variate 1

and 4 = 0.921

Pearson correlation between variate 1

and 5 = 0.629

Pearson correlation between variate 2

and 3 = 0.950

Pearson correlation between variate 2

and 4 = 0.853

Pearson correlation between variate 2

and 5 = 0.544

Pearson correlation between variate 3

and 4 = 0.942

Pearson correlation between variate 3

and 5 = 0.544

Pearson correlation between variate 4

and 5 = 0.636

Figure 6.19: Pearson correlation efficient between different variates of Car Accident

dataset

0

500

1000

0 500 1000 1500 2000

0

1000

2000

3000

0 500 1000 1500 2000

0

10000

20000

0 500 1000 1500 2000

0

20000

40000

60000

0 500 1000 1500 2000

0

1000

2000

3000

0 500 1000

0

10000

20000

0 500 1000

0

20000

40000

60000

0 500 1000

0

10000

20000

0 1000 2000 3000

0

20000

40000

60000

0 1000 2000 3000

0

20000

40000

60000

0 5000 100001500020000

107

Here the length of input vector is 8 and the first 19 is considered as training

dataset and the rest as testing dataset. Figure 6.20 and 6.21 present Car accident

original and normalized datasets.

Figure 6.20: Original Car Accident dataset

Figure 6.21: Normalized Car Accident dataset

Also the training parameters and Multivariate forecasting results are represented

in Table 6.15 and 6.16.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Series1

Series2

Series3

Series4

Series5

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31

Series1

Series2

Series3

Series4

Series5

108

V
ariates

In
p
u
t

L
en

g
th

O
u
tp

u
ts

C
F

S
 p

er

In
p

u
t

S
tep

S
ize

In
crease

R
ate

D
ecreas

e R
ate

T
m

ax

L
m

ax

A
lp

h
a

W
eig

h
t

T
m

in

B
eta

M

5 8 5 2
0.00

1
1.2 0.6 100 2 0.99 0.95 0.01 0.98 400

Table 6.15: Training Parameters for the Car Accident dataset

 Column 1 Column 2 Column 3 Column 4 Column 5 All columns

Univariate

system
0.278 0.4753 0.024 0.056 0.775 1.09

Multivariate

system
0.1007 0.500 0.047 0.1689 0.3177 2.03

Table 6.16: Testing error comparison for Car Accident dataset

The error measurements in [25] are AFER and MSE (for non-normalized dataset).

AFER error measurement is defined as:

100)//)ˆ((
1

 


nyyyAFER
n

i

iii
 (6.37)

where iy is the desired output, iŷ is the estimated output and n is the total number

of examples in the testing dataset. AFER cannot be used with normalized data; as

one of the normalized values becomes zero due to normalization, leading to a

divide-by-0 error. Knowing that ANCFIS system is designed in a way to work

with normalized data, first the normalized dataset is used in order to find the

prediction values. Then, both actual and predicted values are un-normalized.

Table 6.17 reflects the results regarding to AFER and table 6.18 presents the

AFER error comparison between multivariate ANCFIS and other methods in [96].

As it is shown, multivariate ANCFIS result is not comparable to any of them.

Column 1 Column2 Column 3 Column 4 Column 5

All

columns

AFER 2.70 13.07 1.55 8.5 1.73 5.52

Table 6.17: AFER testing error for the Car Accident dataset

109

 AFER

Multivariate ANCFIS 5.52

Jilani and Burney –method 1 (2008) [26] 2.6951

Jilani and Burney –method 2 (2008)[26] 5.244

Lee et al. (2006) [27] 5.248

Egrioglu et al. (2009) [25] 2.1715

Table 6.18: AFER error comparison for the Car Accident dataset

Further analysis of multivariate ANCFIS is provided in Figure 6.22 and Figure

6.23. Again Figure 6.22 shows the actual versus predicted results for all variates

and Figure 6.23 is plotted prediction errors.

Figure 6.22: Multivariate test results for one-step prediction of Car Accident dataset

Figure 6.23: Multivariate system prediction errors for Car Accident dataset

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4

Actual value-variate1

Predicted value-variate1

Actual value-variate2

Predicted value-variate2

Actual value-variate3

Predicted value-variate3

Actual value-variate4

Predicted value-variate4

Actual value-variate5

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4

Variate1

variate2

variate3

variate4

variate5

110

6.3 Discussion and Conclusion

In our four experimental contrasts, we realized that multivariate ANCFIS does not

work properly. Univariate ANCFIS was consistently superior on all datasets,

despite having strong linear correlations between the variates. One of the possible

problems that multivariate ANCFIS architecture can be related is in choosing the

proper complex fuzzy conjunction for layer two. Here we used algebraic product;

this may be an ineffective choice despite its mathematical appeal. Another

possible problem can be related to layer four which is related to rule interference;

dot product may not work for multiple inputs.

Future work on this area can be focused on exploring different complex fuzzy

logic conjunctions for layer two. As possible candidates of complex fuzzy

conjunctions, we can average the magnitudes and use weighted average for phase,

or even we can compare the magnitudes. Definitely, this needs both theoretical

and experimental work. Also, we have to ask how rule interference will be

implemented; having the weight of a given rule depend on the weights of other

rules is somewhat unique and not yet well-understood. An exploration on layer

four to find other options for rule interference is needed.

111

Chapter 7: Summary and Future Work

In this thesis, we completed a performance evaluation for ANCFIS on five real-

world time series datasets. Also, ANCFIS is compared to published forecasting

results on all five datasets, and achieves results which in most of the cases are

superior to the literature. In particular, ANCFIS performed the best on the chaotic

Mackey-Glass time series. The ANCFIS network obtained this performance with

no more than three rules per dataset. It leads us to a key finding that ANCFIS is a

viable forecasting algorithm.

We have also developed an online version of ANCFIS for those cases when the

data becomes available incrementally. Down-hill-simplex and recursive- least-

square are employed to determine the updates for layer one and layer five

parameters. The performance evaluation for online ANCFIS is done on two time

series dataset. Also, the forecasting results are compared to the literature and

offline ANCFIS. The results are comparable to offline ANCFIS and generally

superior to published results found in literature.

A multivariate ANCFIS architecture is also developed and evaluated. Algebraic

product is applied for layer two and also the node functions in layer 5 are

extended for multiple variates. The performance evaluation for multivariate

ANCFIS is done on four different multivariate time series datasets. Usually,

having multiple variates lead us to better results as a result of interaction between

them, but our results were significantly worse than the univariate ANCFIS results.

This may be caused by layer two complex fuzzy conjunctions (algebraic product)

or even by layer four rule interferences (dot product).

Future work in this area will concentrate on exploring multivariate time series

forecasting; what other complex fuzzy conjunction operators work best in Layer

2? As little is currently known about complex fuzzy conjunctions, this work will

inform theoretical investigations of complex fuzzy logic as well as practical time-

series forecasting problems. Also, we have to ask how rule interference is

112

implemented; dot-product might not be the right choice. In addition, we will

investigate linguistic interpretations of complex fuzzy rules. At this point in time,

it is not at all clear how to interpret a complex-valued membership function –

especially a sinusoidal one. Traditional linguistic interpretations of fuzzy rules

assume convex type-1 or type-2 membership functions rather than sinusoids (or

any other multi-modal function). Finally there are a huge number of neuro-fuzzy

systems and fuzzy neural network architectures that can be extended to use

complex fuzzy sets when modeling the phenomenon of regularity.

113

References

[1] S. Dick, ―Towards Complex Fuzzy Logic,‖ IEEE Transactions on fuzzy

systems, vol.13, pp. 405 – 414, 2005.

[2] D. Ramot, R. Milo, M. Friedman, A. Kandel, ― Complex Fuzzy Sets,‖

IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 171- 186 , 2002

[3] D. Ramot, M. Friedman, G. Langholz, and A. Kandel, ―Complex Fuzzy

Logic,” IEEE Transactions on Fuzzy Systems, vol. 11, pp. 450 – 461,

2003.

[4] J.Y. man, Z. Chen, S. Dick, ―Towards Inductive Learning of Complex

Fuzzy Inference Systems,‖ IEEE Fuzzy Information Processing Society,

pp. 415-420, June 2007

[5] R. Jang, C.T. Sun, E. Mizutani, Neuro-Fuzzy and soft computing A

computational Approach to Learning and Machine Intelligence, Prentice

Hall, 1996.

[6] R. Jang, ― Neuro-Fuzzy Modeling for Dynamic System Identification,‖ in

Proceedings of the 1996 Asian Soft Computing in Intelligence Systems and

Information Processing, pp.320-325, 1996.

[7] R. Jang, ―ANFIS: Adaptive-Network-Based Fuzzy Inference System,‖

IEEE Transactions on Systems, Man and Cybernetic, vol. 23, pp.665-685,

1993.

[8] Z. Chen, S. Aghakhani, J. Man, S. Dick,‖ ANCFIS: A Neuro-Fuzzy

Architecture Employing Complex Fuzzy Sets,‖ submitted to IEEE

Transactions on Fuzzy Systems, August 2009.

[9] R. Jang, C.T. Sun, ―Predicting chaotic time series with fuzzy if-then

rules‖, Proc. Of IEEE international conference of fuzzy systems, San

Francisco, 1993.

[10]R. Jang,‖ANFIS: Adaptive-network-based fuzzy inference systems‖, IEEE

Trans. On Systems, Man, and Cybernetics, pp. 665-685, 1993.

114

[11]U. Huebner, W. Klische, N. B. Abraham, and C. O. Weiss: ―On problems

encountered with dimension calculations.'' Measures of Complexity and

Chaos; Ed. by N. B. Abraham et. al., Plenum Press, pp. 133, 1989.

[12]U. Huebner, W. Klische, N. B. Abraham, and C. O. Weiss: ―Comparison

of Lorenz-like laser behavior with the Lorenz model.'' Coherence and

Quantum Optics VI; Ed. by J. Eberly et. al., Plenum Press, pp. 517, 1989.

[13]A. Weigend, ―The Sante Fe Time Series Conpetition Data,‖

http://wwwpsych.stanford.edu/~andreas/Time-Series/SantaFe.html

[14] U. Huebner, N. B. Abraham, and C. O. Weiss: ``Dimensions and

entropies of chaotic intensity pulsations in a single-mode far- infrared NH3

laser.'', Phys. Rev. ,pp. 6354, 1989.

[15]H. H. Sargent, ―A prediction for the next sunspot cycle,‖ in Proc. 28th

IEEE Vehicular Technology Conference, vol. 28, pp. 490 – 496, 1978.

[16]T. Nobuhiko, H. van Dijk, ―Combined forecasts from linear and nonlinear

time series models,‖ International Journal of Forecasting, vol. 18, pp.

421- 438, 2002.

[17]Y.F. Deng, X. Jin, Y. X. Zhong, ―Ensemble SVR for prediction of time

series ―, IEEE proceeding of the fourth international conference on

machine learning and cybernetics, vol. 6,pp. 3528-3534, 2005.

[18]J.T. Tsai, J.H. Chou, T.K. Liu, ―Tuning the structure and parameters of a

neural network by using hybrid Tanguchi-Genetic algorithm‖, IEEE

Transaction on neural networks, vol. 14pp. 79-88, 2003.

[19]J.T. Tsai, J.H. Chou, T.K. Liu, ―Tuning the structure and parameters of a

neural network by using hybrid Tanguchi-Genetic algorithm ―, IEEE

transaction on neural networks, vol. 17, pp. 69-80, 2006.

[20]L. J. Cao, ―Support vector machines experts for time series forecasting ―,

Neurocomputing, pp. 321-339, 2003.

[21]D. Graves, W. Pedrycz, ―Fuzzy prediction architecture using recurrent

NN‖, Neuro-computing , vol. 72 , pp. 1668-1678, 2009.

[22]R. J. Hyndman, ―Time series data library,‖ http://www-

personal.buseco.monash.edu.au/~hyndman/TSDL/

http://wwwpsych.stanford.edu/~andreas/Time-Series/SantaFe.html
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

115

[23]T. J. Cholewo, J. M. Zurada, ―Sequential network construction for time

seriesprediction,” in Proc. International Conference on Neural Networks

1997, vol. 4, pp. 2034 – 2038, 1997.

[24]A. C. Robertson, R. J. Sutter, P. J. Baldazo, R. H. Lutz, ‖Stream flows in

the Snake river basin 1989 conditions of use and management‖, Idaho

department of water resources Boise, Idaho, June 1989.

[25]E. Egrioglu, C. H. Aladag, U. Yolcu, V. R. Uslu, M. A. Basaran, ―A new

approach based on artificial neural networks for high order multivariate

fuzzy time series‖, Expert Systems with Applications, 2009.

[26]T. A. Jilani, S. M. A. Burney, ―Multivariate stochastic fuzzy forecasting

models‖, Expert Systems with Applications, pp. 691–700, 2008.

[27]L.W. Lee, L.H. Wang, S.M. Chen, Y.H. Leu , ―Handling forecasting

problems based on two factors high order fuzzy time series‖, IEEE

Transaction on Fuzzy systems, pp. 468-477, 2006.

[28]L. A. Zadeh, ―Fuzzy sets‖, Inform. Control, vol. 8, pp.808-821, 1965.

[29]G. J. Klir, and B. Juan, Fuzzy sets Fuzzy logic and Fuzzy systems: selected

papers by Lotfi A. Zadeh, World scientific Pub Co Inc, 1996.

[30]D. Wang, L. Acar, “An analysis of type-1 and type-2 fuzzy logic

systems,‖ in Proc.1999, IEEE International Symposium on Intelligent

Control/Intelligent Systems and Semiotics, pp.353-358, 1999.

[31]W. Pedrycz, F. Gomide, Fuzzy systems engineering: Toward human-

centric computing, Wiley-IEEE Press, 2007.

[32]H. Hagnis, ―Type-2 FLCs: A new generation of fuzzy controller,‖ IEEE

Transaction on Computational Intelligence, vol. 2, pp. 30-43, 2007.

[33]J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems, Prentice-Hall,

2001.

[34] L. A. Zadeh, ―Quantitative fuzzy semantics,‖ Information Sciences,

pp.159-176, 1971.

[35] C. Schmid, ―Dynamics of multidisplicinary and controlled Systems‖,

(http://www.esr.ruhr-uni-bochum.de/rt1/syscontrol/main.html).

http://www.esr.ruhr-uni-bochum.de/rt1/syscontrol/main.html

116

[36]L. A. Zadeh, ―Outline of a new approach to the analysis of the complex

systems and decision processes,‖ IEEE Transactions on Systems, Man,

and Cybernetics, pp. 28-44, 1973.

[37]L. A. Zadeh, ―The Concept of a Linguistic Variable and its Application to

Approximate Reasoning—Parts I, II, III,‖ Information Sciences, vol. 8, pp.

199- 249, 1975.

[38]S. Dick, A. Kandel, ―Granular Computing in Neural Networks,‖ in

Granular Computing: an emerging paradigm, 2001.

[39]L. A. Zadeh , Fuzzy Sets, Fuzzy Logic, Fuzzy Systems, World Scientific

Press, 1996.

[40]A. Kandel, Fuzzy expert systems, CRC press, 1993.

[41]N. N. Morsi and A.A. Fahmy, ―On generalized modus ponens with

multiple rules and a residuated implication‖, Fuzzy Sets and Systems, pp.

267- 274, 2002.

[42]M. Sugeno and G. T. Kang, ―Structure identification of fuzzy model‖,

Fuzzy Sets and Systems, pp. 15-33, 1988.

[43]T. Takagi and M. Sugeno, ―Fuzzy identification of fuzzy systems and its

applications to modeling and control‖, IEEE transactions on Systems,

Man, and Cybernetics, pp. 116-132, 1985.

[44]B. Kosko, Neural networks and fuzzy systems: a dynamical systems

approach, Prentice Hall, Upper Saddle River, NJ, 1991.

[45]E. H. Mamdani, ―Application of fuzzy logic to approximate reasoning

using linguistic synthetic synthesis,‖ IEEE Transaction on Computers, vol.

26, pp.1182-1191, 1977.

[46]Y. Tsukamoto, ―An approach to fuzzy reasoning method,‖ In Madan M.

Gupta, Rammohan K, Ragade, and Ronald R. Yager, editors. Advances in

Fuzzy Set Theory and Applications, pp. 137- 149, 1979.

[47]E. H. Mamdani, S. Assilian, ―An experiment in linguistic synthesis with a

fuzzy logic controller‖, International Journal of Man-machine studies, pp.

419-435, 1990.

117

[48]Y. Tsukamoto, ―An approach to fuzzy reasoning method‖, Advances in

fuzzy set theory and applications, pp. 137- 149, 1979.

[49]S. Samarasinghe, Neural Networks for Applied Sciences and Engineering:

from fundamentals to complex pattern recognition, Auerbach publication,

2007.

[50]F.M. Ham, and I. Kostanic, Principle of Neurocomputing for Science &

Engineering, McGraw-Hill, 2001.

[51]J. J. Buckley, ―Fuzzy complex numbers‖, Fuzzy set and systems, Vol.33,

pp. 333-345, 1989.

[52]J.J. Buckley, ―Fuzzy complex analysis I: Differentiation,‖ Fuzzy sets

System , vol.41, pp.269-284, 1991.

[53]J.J. Buckley, ―Fuzzy complex analysis II: Integration,‖ Fuzzy sets Sysem.,

vol.49, pp.171-179, 1992.

[54]J. J. Buckley, Y. Qu, ―Solving linear and quadratic fuzzy equations,‖

Fuzzy Sets System, vol. 38, pp. 43–59, 1990.

[55]J. J. Buckley, Y. Qu, ―Solving fuzzy equations: a new solution concept,‖

Fuzzy Sets System, vol. 39, pp.291–301, 1991.

[56]D. Moses, O. Degani, H.-N. Teodorescu, M. Friedman, and A. Kandel,

―Linguistic coordinate transformations for complex fuzzy sets,‖ in Proc.

1999 IEEE Int. Conf. Fuzzy Systems, pp. 1340–1345, Korea, 1999.

[57]A. Kaufman and M. M. Gupta, Introduction to Fuzzy Arithmetic, New

York: Van Nostrand Reinhold, 1985.

[58]. E. Michael, A. A. S. Awwal, and D. Rancour, ― Artificial neural

networks using complex numbers and phase encoded weights-electronic

and optical implementations,” in Proc. Int. Joint C. Neural Networks,

pp.1213-1218, 2006.

[59]H. Akira, Complex-Valued Neural Networks, Springer, 2006.

[60]A.J. Noest, ―Discrete-state phasor neural nets,” Physical Review A, vol.38,

pp. 2196-2199, 1988.

[61]H. Leung, and S. Haykin, ―The Complex back propagation algorithm,‖

IEEE Trans. Signal Process, vol. 39, pp.2101-2104, 1991.

118

[62]M.S. Kim, and C.C.Guest, ―Modification of Backpropagation for

complex-valued signal processing in frequency domain,‖ in Proc. Int.

Conf. Neural Networks, San Diego, CA, USA, vol. 3, pp. 27-31, 1990.

[63]A. Hirose, Complex-Valued Neural networks, Berlin, Germany: Springer-

Verlag, 2006.

[64]A. Hirose, Y. Asano, and T. Hamano, ―Developmental learning based on

coherent neural networks with behavioural mode tuning by carrier-

frequency modulation,‖ in Proc. Int. Joint C. Neural Networks, pp. 8874-

8881, 2006,.

[65]T. Nitta, ―An analysis of the fundamental structure of complex-valued

neurons,‖ Neural Processing Letters, vol. 12, pp.239-246, 2000.

[66]T. Nitta, ―On the inherent property of the decision of melodies by

complex-valued network,‖ Neurocomputing, vol. 50, pp.291-303, 2003.

[67]T. Kim and T. Adali, ―Fully complex multi- layer perceptron network for

nonlinear signal processing,‖ Journal of VLSI Signal Processing Systems

for Signal Image and Video Technology, vol. 32, pp. 29-43, 2002.

[68]T. Kim and T. Adali, ―Approximation by fully complex multilayer

perceptrons,‖ Neural Computation, vol. 15, pp. 1641-1666, 2003.

[69]Y. Kuroe and Y. Taniguchi, ―Models of self-correlation type complex-

valued associative memories and their performance comparison,‖ in Proc.

Int. Joint. C. Neural Networks, pp. 605-609, 2006.

[70]I. Nishikawa, T. Iritani, and K. Sakakibara, ―Improvements of the traffic

signal control by complex-valued Hopfield network,‖ in Proc. Int. Joint.

C. Neural Networks, pp. 1186-1191, 2006.

[71]G. Rigatos, ―Energy spectrum of quantum associative memories,‖ in Proc.

Int. Joint. C. Neural Networks, pp. 599-604, 2006.

[72]T. Nitta, ―An extension of back propagation algorithm to quaternions,‖ in

Proc. Int. C. Neural Information Processing, pp. 247- 250, 1996.

[73]A. Malekzadeh-A, M. Akbarzadeh-T, ― Complex-Valued Adaptive Neuro

Fuzzy Inference System-CANFIS,‖ in Proc.2004, World Automation

Congress, Sevilee, Spain, vol. 17, pp. 447-482, 2004.

119

[74]Y. Li, Y. T. Jang, ―Complex adaptive fuzzy inference systems,‖ Soft

Computing in Intelligent Systems and Information Processing,

Proceedings of the 1996 Asian, pp. 551- 556, 1996.

[75]L. Chen and K. Aihara, "Chaotic simulated annealing by a neural network

model with transient chaos," Neural Networks, vol. 8, pp. 915–930, 1995.

[76]R. Konnur, "Additive chaotic forcing scheme for determination of the

global minimum of functions," Communications in Nonlinear Science and

Numerical Simulation, vol. 9, pp. 499-513, 2004.

[77]J. Mingjun and T. Huanwen, "Application of chaos in simulated

annealing," Chaos, Solitons & Fractals, vol. 21, pp. 933-941, 2004.

[78]G. M. Georgiou and C. Kutsougeras, "Complex Domain

Backpropagation," IEEE T. Circuits and Syst. II, vol. 39, pp. 330-334,

1992.

[79]M. Gruber, Regression Estimation a Comparative Stud, Burlington, MA:

academic Press, Inc., 1990.

[80]A. Lendasse, F. Corona, J. Hao, N. Reyhani, M. Verleysen,

―Determination of the Mahalanobis matrix using nonparametric noise

estimation‖, European symposium on ANN Bruges, April 2006.

[81]T.C. Hsia, System identification: least-squares methods, Lexington, MA,

USA: D.C. Health and Company, 1977.

[82]H. Leung and H. S., "The complex back propagation algorithm," IEEE T.

Signal Proc., vol. 39, pp. 2101-2104, 1991.

[83]J.-S.R. Jang, C.-T. Sun, ―Neuro- fuzzy modeling and control,‖ proceedings

of IEEE, Vol. 83, pp. 378-406. 1995

[84]R. S. Crowder, "Predicting the Mackey-Glass timeseries with cascade-

correlation learning," in Connectionist Models: Proceedings of the 1990

Summer School D. S. Touretzky, J. L. Elman, and T. J. Sejnowski, Eds.

SanFrancisco, CA, USA: Morgan Kaufmann, pp. 117-123, 1991.

[85]A. S. Weigend, N. A. Gershenfeld, ―Results for time series prediction

competition at the Santa Fe Institute‖, IEEE international conference on

Neural Networks, Vol. 3, pp. 1786-1793 , 1993

120

[86]J. A. B. Tome and J. P. Carvalho, "One step ahead prediction using Fuzzy

Boolean Neural Networks," in Proc. Joint EUSFLAT - LFA Conf.,

Barcelona, Spain, 2005, pp. 500-505.

[87]F. A. Gers, D. Eck, and J. Schmidhuber, "Applying LSTM to time series

predictable through time-window approaches," in Proc. Int. C. Artificial

Neural Networks, Vienna, Austria, 2001, pp. 669-676.

[88]E. A. Wan, ―Time series prediction by using a connectionist network with

internal time delays,‖ Time Series Prediction: Forecasting the future and

understanding the past, pp. 195-217, 1994.

[89]T. Koskela, M. Varsta, J. Heikkonen, and K. Kaski, ―Reccurent SOM with

local linear models in time series prediction,‖ in 6th European Symposium

on Artificial Neural Networks. ESANN‘98. Proceedings. D-Facto,

Brussels, Belgium, pp. 167- 72, 1998.

[90]R. Bakker, J. C. Schouten, C. L. Giles, F. Takens, and C. M. van den

Bleek, ―Learning chaotic attractors by neural networks,‖ Neural

Computation, vol. 12, no. 10, 2000.

[91]T. Sauer, ―Time series prediction using delay coordinate embedding,‖ in

Time Series Prediction: Forecasting the Future and Understanding the

past, Addition-Wesley, 1994.

[92]A. S. Weigend and D. A. Nix, ―Predictions with confidence intervals

(local error bars),‖ in proceedings of the International Conference on

Neural Information Proceeding (ICONIP‘94), (Seoul, Korea), pp. 847-

852, 1994.

[93]B. H. Bontempi G., Birattari M., ―Local learning for iterated time-series

prediction,‖ in Machine Learning: Proceedings of the sixteenth

International Conference, San Francisco, USA, pp. 32- 38,1999.

[94]J. Wu, M. Liu, ―Improving generalization performance of artificial neural

networks with genetic algorithms,‖ in Proc. IEEE International

Conference on Granular Computing, vol. 1, pp. 288-291, 2005.

[95]T. T. Nguyen, C. P. Willis, D. J. Paddon, H. S. Nguyen, ―A hybrid system

for learning sunspot recognition and classification,‖ in Proc. International

121

Conference on Hybrid Information Technology, vol. 2, pp. 257 – 264,

2006.

[96]G. Dangelmayr, S. Gadaleta, D. Hundley, M. Kirby, ―Time series

prediction by estimating Markov probabilities through topology preserving

maps‖, proc. SPIE applications and science of NN, fuzzy sys. And

evolutionary computing, 1999.

[97]T. J. Cholewo, J. M. Zurada, ―Sequential network construction for time

series prediction‖, IEEE International conference on NN, pp. 2034-2038,

1997.

[98]H.Tong, K.S. Lim, ―Threshold autoregressive, limit cyclical data‖, J.

Royal Statistical Society B, vol. 42, pp. 245-292, 1980.

[99]A. S. Weigend, B. A. Huberman, D.E. Rumelhart, ―Predicting the future: a

connectionist approach‖, Int. J. Neural Systems, vol.1, pp. 193-209, 1990.

[100] X. Hong , J. Harris, ―Experimental design and model construction

algorithms for radial basis function networks‖, International journal of

system science, vol. 34, pp. 733-745, 2003.

[101] J. Sum, K. Ho, “On-line estimation of the final prediction error via

recursive-least-square method‖, Neurocomputing, pp. 2420-2424, 2006.

[102] L. Cohen, G. Avrahami, M. Last, A. Kandel, ―Info-fuzzy

algorithms for mining dynamic data stream‖, applied soft computing, pp.

1283-1294 ,2008

[103] S. Blazic, I. Skrjanc, S. Gerksic, G. Dolanc, S. Strmcnik, M. B.

Hadjiski, A. Stathaki, ―Online fuzzy identification for an intelligent

controller based on a simple platform‖, Engineering applications of

artificial intelligence, pp. 628-638, 2009

[104] H. Duan, X. Shao, W. Hou, G. He, Q. Zeng, ―An incremental

learning algorithm for Lagrangian support vector machines‖, Pattern

recognition letters, pp. 1384-1391, 2009

[105] N. Y. Liang, G. B. huang, ―A fast accurate online sequential

learning algorithm for feedforward networks‖, IEEE transaction on neural

networks, vol. 17, pp. 1411-1423, November 2006

[106] X. Deng, X. Wang, ―Incremental learning of dynamic fuzzy neural

networks for accurate system modeling‖, fuzzy sets and systems, pp. 972-

987, 2009

122

[107] S. Okada, O. Hasegawa, ―Incremental learning, recognition, and

generation of time-series patterns based on self-organizing segmentation‖,

Journal of advanced computational intelligence and intelligent

informatics, vol. 10, 2006

[108] S. Haykin, Adaptive Filter Theory, Third ed. Englewood Cliffs,

NJ: Prentice-Hall, 1996.

[109] T. Kailath, A. Sayed, and B. Hassibi, Linear Estimation.

Englewood Cliffs, NJ: Prentice-Hall, 2000.

[110] C.S. Leung, K.W. Wong, P.F. Sum, L.W. Chan, ―A pruning

method for recursive least squared algorithm‖, Neural Networks, pp. 147-

174, 2001.

[111] Bjorck A. (1996). Numerical Methods for Least Squares Problems,

SIAM PA.

[112] Y. Engel, S. Mannor, R. Meir, ―The Kernel Recursive Least-

Square Algorithm”, IEEE transaction on signal processing, vol. 52,

August 2008

[113] S. Lewis and J. N. Hwang, ―Recursive Least Squares Learning

Algorithms for Neural Networks,‖ SPIE's 1990 Int'l Symposium on

Optical and Optoelectronic Applied Science and Engr., pp. 28-39, 1990.

[114] G.C. Goodwin and K.S. Sin, Adaptive Filtering, Prediction and

Control, Printice Hall, Englewood Cliffs, NJ (1984).

[115] J. A. Nedler, and R. Mead, ―A simplex method for function

minimization‖, The Computer Journal, pp. 308- 313, 1965.

[116] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.

Vetterling, Numerical Recipes in C++: The Art of Scientific Computing,

Pearson Education, 1992.

[117] H. Lütkepohl, Introduction to Multiple Time Series Analysis,

Springer Verlag, New York, 1991.

[118] P. J. Brockwell, R.A. Davis, S.E. Feinberg, Time series: Theory

and methods, Springer Series in Statistics, Springer-Verlag 1987.

123

[119] K. Chakraborty, K. Mehrotra, C.K. Mohan and Sanjay Ranka,

―Forecasting the behaviour of multivariate time series using neural

networks ―, Neural Networks, vol. 5, pp. 961-970, 1992.

[120] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis,

Cambridge Nonlinear Science Series, Cambridge University press, 2003.

[121] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed.,

Cambridge Nonlinear Science Series, Cambridge University press, 2003.

	University of Alberta-1
	ChapterS

