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Abstract

In the past two decades, the idea of Lab-on-a-Chip (LOC) devices has received a

growing attention from researchers. A Lab-on-a-Chip device can be thought of as

a miniaturized biological microchip that integrates several functionalities such as

sample pre-treatment, sample transportation, mixing, reaction, separation and de-

tection. Among the important functionalities that have been successfully integrated

into a Lab-on-a-Chip device is the Polymerase chain reaction (PCR) process which

enables rapid and inexpensive genetic analysis. PCR process relies on a thermal

cycling process of repeated heating and cooling to replicate the DNA to a suffi-

cient amount for detection and analysis. However, the PCR process requires precise

measurement and control of the reaction temperature that is a challenging problem

especially in the miniaturized LOC environment. The challenges associated with the

thermal control problem of a PCR process in the LOC environment fall into two cat-

egories: first, there is no direct measurement of the temperature inside the reaction

chamber and second, the heat distribution equation governing the thermal dynamics

inside the microchip naturally leads the modeling and control of the microchip into

the distributed parameter systems framework.

This thesis deals with the estimation of the temperature inside the PCR-LOC

microchip. Our goal in this thesis has two folds: first to contribute to the backstep-

ping theory for the PDE systems both in the observer design and controller design

stages, and second to use this theory for our application, PCR-LOC microchip. PDE

Backstepping boundary observer design and its successful implementation involve

several challenges, including:



• Solving the PDE equation for the kernel function of the integral transformation

in the PDE backstepping design and all of the numerical issues that come

along.

• Simulation aspects of the coupled PDE system composed of the PDE observer

and the original PDE system.

• Verification aspects, i.e. how to ensure that calibration is correct and the PDE

observer actually presents the temperature inside the chamber.

This thesis presents a number of innovative approaches to exclusively deal with

each of the aforementioned challenges. The successful implementation of the de-

signed observer and a previously designed controller is also presented.
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Chapter 1

Introduction

Genetic analysis is steadily gaining ground and as a result, significant applications

in wide areas of the technology are emerging. Genetic analysis refers to the overall

process of studies including identification of genes, inherited disorders and molecular

biology [47]. The foundation of genetic analysis goes back to prehistoric times when

humans settled down and started growing crops and breeding domesticated animals.

Through practice, they observed that selective breeding could improve crops and

animals. They also identified that some properties of species are inherent. Modern

genetic analysis can be traced back to the works of Gregor Mendel, known as the

father of modern genetics, whose experiments led to what is now known as Mendel’s

Laws of Inheritance. Observing various organism, Mendel found that traits were

inherited from parents to children while those traits could vary between children.

Later, it was found that there are specific units inside each cell responsible for

inherited traits. These units are called genes. Nowadays, we know genes as

determinants of the inherent properties of species. Genetic traits are governed by

proteins that are created by series of amino acids. The specific portion of these

series of amino acids are identified as genes. These series build up a double helix

structure which is called Deoxyribonucleic acid (DNA). DNA itself is organized into

long structures called chromosomes. Figure 1.1 shows how genes are identified within

DNA.

Genetic analysis offer endless opportunities for new applications. In forensics,

scientists can use DNA collected from a sample found at a crime scene such as

1



Figure 1.1: Genes, DNA and chromosomes [U.S. Department of Energy]

blood, semen, skin, saliva or hair to identify a matching DNA of an individual. This

process which is formally called DNA profiling, also known as genetic fingerprinting,

was developed in 1984 by British geneticist Sir Alec Jeffreys [55] and soon adopted

in forensic science since 1988.

DNA profiling can also be used in the diagnosis of the hereditary diseases, detec-

tion and diagnosis of infectious diseases and early detection of cancer. By identifying

the abnormally working genes in the cancer cells, doctors can diagnose the cancer in

its early development stages which consequently increases the chance of treatment.

In airports, DNA profiling has the promising potential to offer a quick and inex-

pensive way in detection of infectious diseases in people arriving by intercontinental

flights and help to prevent an outbreak.

However, the amount of the DNA gathered from a sample is usually so small

that it is near impossible to directly use it for the genetic analysis purposes. Hence,

a technique to duplicate the DNA is required.

In 1983, Kary Mullis while driving down the Highway One in California had

a vision that changed forensics and medicine forever [94]. He was thinking about

the process by which bacteria continuously double in everyday world, producing

millions of copies of their DNA in a single day. The idea he caught was “what if

this exponential chain reaction could be harnessed in a test tube, amplifying a few

2



gene copies into virtually unlimited quantities for easy detection?”. He tested and

formulated this process using a heat-stable DNA copying enzyme (Taq polymerase).

The polymerase chain reaction (PCR) he introduced revolutionized molecular biol-

ogy [93]. Later in 1993, Mullis was awarded the Nobel Prize in Chemistry for his

work on PCR.

The PCR method relies on a thermal cycling process of repeated heating and

cooling to replicate the DNA. The PCR process can make billions of copies of the

DNA samples which are sufficient for detection. Although PCR is an important

part of the genetic analysis, a successful and precise genetic analysis requires other

important steps to be carefully followed.

Target DNA

P1 P2Taq

Denaturation

Annealing

Extention

Second synthesis cycle
results in four copies of
target DNA sequence

Reaction mixture contains target
DNA sequence to be amplified,
two primers (P1,P2) and
heat-stable Taq polymerase

F
I
R
S
T

C
Y
C
L
E

S
E
C
O
N
D

C
Y
C
L
E

Figure 1.2: PCR Process

Genetic analysis usually consists of three steps: sample preparation, amplifica-

tion and detection. In the first step the DNA is extracted from a raw sample such as

blood. Then, a selected fragment of this DNA is amplified through the PCR process

to obtain sufficient DNA copies to perform detection. Next, the amplified region

of DNA is labelled with a fluorescent dye and finally is detected through various

analysis techniques [59].
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Traditionally, PCR thermal cycling is done in laboratories using equipment that

requires relatively large volumes of costly reagents and DNA samples. PCR was

a lengthy laboratory technique until the concept of lab-on-a-chip (LOC) devices

was proposed in the early 1990s [98, 117]. A LOC device can be thought of as a

miniaturized chemical or biological workbench that integrates many functionalities

(e.g., sample pretreatment, sample transportation, mixing, reaction, separation and

detection) that are typically performed in a well equipped laboratory by trained

personnel.

Miniaturized LOC systems offer advantages beyond conventional biochemical

and clinical laboratories. A distinct benefit of miniaturized LOC systems is the dra-

matic reduction of the costly reagents consumption. A high degree of automation

relieves experimentalists from labor- and time-intensive biochemical characteriza-

tion processes and hence allows more precise and reproducible analysis. Most signif-

icantly, miniaturization improves analysis characteristics, such as achieving shorter

analysis time and higher separation performance, and can even achieve innovative

applications that are not otherwise attainable.

Microfluidic devices, often used as part of a Lab-on-a-chip (LOC) capable of

integrating several laboratory functions in a single chip, have seen a great deal of

attention from the research community in recent years. Microfluidic devices were

first used to develop inkjet printheads but today they are a central component in

a variety of applications, ranging from chemical analysis and water contamination

sensors to genetic analysis and point-of-care disease diagnostics [121]. Microfluidic-

based LOC devices have the potential to change the way in which healthcare is

delivered, by bringing fast, accurate diagnosis directly into the doctor’s office which

can yield high-throughput patient screening. LOC devices can also be made portable

and can be used to detect infectious diseases, common viruses and etc.

1.1 Motivation

Targeting mass production capability, researchers in applied miniaturization labora-

tory (AML) at the university of Alberta recently developed a scalable and modular

LOC-based genetic analysis device [58]. This device, depicted in Fig. 1.3, integrates

4



two important genetic analysis functionalities, PCR and capillary electrophoresis

(CE), into one microchip.

Figure 1.3: Schematic showing major functional blocks of the “shoe-box” sized
portable platform (dimensions: 8′′x10′′x12′′) that can perform a complete PCR-CE
process [57]

CE is a technique in which high voltage is applied to the genetic information in

a microfluidic channel, causing the genetic information to move in the direction of

the applied electric field. When radiated with a focused light source, such as a laser

beam, the genetic information is excited and emits fluorescence. The fluorescent

intensity versus time (or electropherogram) can then be plotted to characterize the

genetic information.

The device works such that a laser beam enters from the edge of the microchip,

and a fraction of this light is coupled into the sieving matrix-filled CE channel. The

DNAs tagged by fluorescent dye under the electrophoretic force migrate through

the illuminated region of the channel, and the resulting emitted fluorescent light is

focused, filtered and captured by a CCD camera.

The microchip is depicted in Fig. 1.4. The chip consists of a thin layer of Poly-di-

methyl-siloxane (PDMS) sandwiched between two Borofloat glass layers. The DNA

5



Figure 1.4: The hybrid PDMS-Glass microchip that integrated PCR-CE [57]

sample passes to an enclosed PCR reaction chamber after loading through “PCR

sample loading well”. The DNA amplification perform in PCR reaction chamber.

Next, the amplified sample moves to the sample well and is finally collected in

the sample waste well. Travelling through the crossing with separation channel, the

amplified portion of the DNA separates down the longer CE channel (the separation

channel) under the force of high electric field.

A more detail picture of the microchip is shown in Fig. 1.5. A cylindrical reaction

chamber with a total volume of 0.64µL is machined at the bottom side of the top

glass layer. The chamber is designed to hold the genetic sample during PCR thermal

cycling. The actuator is a circular strip of platinum etched on the top side of the

bottom glass layer and centred beneath the chamber.

The PCR method relies on a thermal cycling process of repeated heating and

cooling to replicate the DNA. In each cycle, three steps are performed: denaturation

(typically in the range of 92◦C–96◦C), annealing (typically 45◦C–65◦C), and exten-

sion (typically 68◦C–74◦C). A typical PCR cycling process is illustrated in Fig. 1.6

where N0 is the number of original templates, n is the number of cycles, ef is the

6



Figure 1.5: The detailed design of the PCR-CE microchip [57]

efficiency factor of the duplication process and N is the number of the final copies.

In an ideal PCR cycle with ef = 1, the total number of the DNAs would be twice

the number of the DNA samples before the PCR cycle. Multiple elements govern the

properties of the cycling process, but a precise temperature control is a key factor in

performing a successful PCR process. Depending upon the DNA sample’s sensitivity

and complexity, the high amplification efficiency typically requires a ±1◦C temper-

ature precision at each temperature stage, minimized overshoot and undershoot in

transitions and rapid transition time during temperature changes [119].

Regardless of the technology used in the LOC implementation, temperature con-

trol is critical to the efficiency of the DNA amplification process. Accurate tem-

perature control, however, requires measuring the temperature inside the reaction

chamber before it is fed back to the controller, a process that presents multiple

challenges. Indeed, in a typical microfluidic LOC device, the volume of liquid inside

the reaction chamber (including the DNA sample and reagents) can be on the order

of a few micro litres. Therefore, any sensing device directly in contact with such a

small volume will exchange an amount of heat, significant enough to affect the DNA

7



94◦C

Denaturation

74◦C

Extension

60◦C

Annealing

Nn = N0(1 + ef )
n

Figure 1.6: DNA amplification by thermal cycling in PCR process

cycling. Implanting a sensing device inside the reaction chamber can also increase

the risk of sample contamination with the consequent negative effects on the PCR

process. As a result, it is highly desirable, if not mandatory, to have some sort of

estimation of the temperature inside the chamber, based on outside measurements.

Depending upon the LOC’s geometric construction, the problem can be challenging.

In general, despite the small volumes of liquid involved, the temperature inside

the chamber follows a heat distribution law and naturally leads to a distributed pa-

rameter system that can be represented using partial differential equations (PDEs).

In summary, the thermal control problem of the particular PCR microchip con-

sidered in this research is tied down by following challenges:

• Due to the PDE nature of the heat distribution inside the microchip, the

logical choice is to use the theory of the analysis and control of the distributed

parameter systems to deal with the problem considered in this thesis.

• The complex structure of the PCR microchip only permits actuation and mea-

surement from its boundaries, in spite of the fact that the control variable is

located inside the microchip. Moreover, the actuation and sensing are collo-

cated at a particular trace on the boundary. So the type of the control problem

is the boundary control problem.

• The control problem involves certain constraints. For example, the tempera-

ture at the actuation boundary must be limited to 200◦C to prevent perma-

nent damage to the microchip. Overshoots and undershoots can significantly
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degrade the efficiency of the PCR process and should be minimized. Also, sim-

ilar to many other practical applications, the actuation signal has a maximum

limit.

• Considering all the complexities and constraints, the objective of the thermal

control problem of the PCR microchip is to minimize the transition times in

the PCR thermal cycling process and maintain tight fluctuation limits in each

of the temperature stages.

Motivated by the challenges listed above, in this thesis we adopt available tech-

niques and develop new techniques and tools to effectively enhance the thermal

management performance for the chosen PCR microchip.

1.2 Background

The applications of the Lab-on-a-Chip technology has been impressively growing

since its early demonstration by Burn et al [20] integrating DNA amplification and

detection in a microchip scale. Although their system was not sufficiently sensitive

and flexible for general application, they proved it is feasible to build a lab-on-a-chip

system. As the ice of the scepticism toward the feasibility of the LOC technology was

broken, new advancements appeared. Consequently, a first portable fully integrated

PCR-CE system was introduced by Legally et al [72]. Other state-of-the-art LOC

systems were later demonstrated by Mathies group [82] and Meagher et al [91]. The

main problem almost all of these demonstrations shared was the excessive overall cost

of the system that prevented the application in point-of-care diagnosis as pointed

out in recent reviews[73, 95, 121, 120].

Several technologies capable of handling microfluidic-based PCR-LOC devices

have been reported in the literature [106]. The primary differences among these

technologies are the thermal heating method and architecture of the LOC which

may serve specific purposes. Heating methods which are commonly used include

contact-mode “peltier” modules [61, 96], patterned thin-film resistive heaters [60, 54],

noncontact mode infrared radiation [45], laser-mediated heating [114], andmicrowave

heating [108].
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The integrated genetic analysis platform that has been developed in the Applied

Miniaturization Laboratory (AML) at the University of Alberta is designed based

on the patterned thin-film resistive heater technology. This platform is capable of

performing complete genetic analysis on a single microfluidic chip [58]. The full

potential of this device is hidden under the hood. This potential power could be

fully fictionalised by a carefully designed thermal control system.

As pointed out in the previous section, the dominant physical phenomena sur-

rounding the chosen LOC system naturally leads toward the use of distributed pa-

rameter systems theory. A PDE system can be represented in a state-space form as

a distributed parameter system which presents infinite dimensional states. On the

contrary, an ordinary differential equation (ODE) system can be represented as a

lumped parameter system which only contains finite number of the states. In con-

trast to lumped systems, a function of interest in a PDE system not only depends

on time but also independently depends on space. In the other word, a PDE system

is both temporally and spatially distributed.

The traditional approach dealing with control of PDE systems can be divided

into three categories: early lumping approach, late lumping approach and pure PDE

design. In the early lumping approach, the system is approximated in the first step

by using spatial discretization techniques to a finite dimensional system described

by ODEs capturing the dominant modes of the PDE system. The design process is

subsequently followed by synthesis of finite dimensional controllers for the resulting

system [7, 104, 30].

The early lumped approach, however, often leads to high-dimensional and com-

plex feedback control structures. Many other well-known disadvantages are asso-

ciated with this approach. For example, fundamental control properties such as

controllability and observability which should depend only on the location of the

sensors and actuators, may also depend on the discretization method and the num-

ber and location of discretization points [104]. Moreover, a closed-loop system may

become unstable due to the neglected dynamics [6]. In the late lumping approach,

the infinite-dimensional process model is picked at the first step but, later, during

the control law design, the equations are discretized. It cannot be denied that in or-

der to practically implement a distributed parameter control system in a real-world
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application, lumping should occur at some point either at the early or at final stage

of the design.

Early and late lumping approaches are extensively described in many good books

covering the theory of the analysis and control of the distributed parameter systems

[80, 34, 75, 42, 21, 26]. In [34], Curtain and Zwart presented a state-space the-

ory for infinite-dimensional linear systems using the semi-group theory. Classical

state space concepts of input-output controllability, observability, stabilizability, de-

tectability and the transfer function of the infinite dimensional system on a Hilbert

space were generalized afterwards. The linear quadratic optimal control problem

on a finite and infinite time horizon is also addressed by Fursikov in [42]. Lasiecka

and Triggiani in [75] provided a thorough treatment of the theory of infinite dimen-

sional approximation. While the mentioned references provided useful methods for

analysis and control synthesis for distributed parameter systems with actuation and

measurement distributed inside the spatial domain of the system (in-domain), the

boundary control problem for distributed parameter system has remained relatively

unexplored. Boundary control PDE systems are those distributed parameter sys-

tems in which measurement and control is only possible through their boundaries.

Doubtlessly, in many real-world applications the actuation and sensing are present

only at the physical boundaries. The complexity in optimal boundary control of the

distributed parameter systems comes from the fact that applying semi-group theory

to design an optimal boundary controller will usually lead to unsolvable algebraic

Riccati operator equations [69].

Very recently, the well-known backstepping approach to control design was gen-

eralized to systems described by partial differential equations, [69, 109, 110]. An im-

portant feature of this approach is the constructive nature of the design, which uses

classical Lyapunov stability theory, making the design process relatively straight-

forward. The basic idea and results of backstepping go back to work of Colton [28]

and Seidman [107], where integral transformations were used to solve PDEs and

state controllability results. However, those results were not used for the design of

feedback laws.

Subsequent attempts were made on PDE backstepping by Krstic and co-workers

[9, 16, 15, 17] which relied on spatial discretization. As they point out, their approach
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is highly dependent on the discretization scheme and does not yield convergent

integral transformation kernels when the size of the discretization grid converges

to zero. Interestingly, they observed that the control action signal produced by

the same non-convergent kernel is convergent. In [83, 109, 110], they solved this

issue by describing the integral transformation kernel by its compact solution and

demonstrate their theory on various classes of the PDE systems. Smyshlyaev and

Kristic nicely summarized their theory in [69] covering the PDE backstepping design

for boundary control and observation.

References [69, 109] and [110], however, deal exclusively with one-dimensional

systems. The extension of PDE backstepping boundary design to higher order sys-

tems is non-trivial as the complexity of the approach can quickly make the problem

intractable. Kristic and Smyshlyaev in [111] provided some general guidelines for

special systems in two and three dimensions, but, in general, backstepping control

for high order PDE systems remains unsolved.

Observer design for infinite-dimensional systems is also a challenging problem.

Research in control and state estimator design for distributed parameter systems

can be traced back to the 60s and 70s [3]. Kitamura et al. [63], and Gressang and

Lamont [46] developed conditions to generalize observer theory to infinite dimen-

sional systems. El Jai and Amouroux [41] showed that because of the distributed

nature of the problem, sensor location can have a detrimental effect on the observer

existence. Liu and Lapidus [84] incorporated a Lyapunov-based observer design for

linear and non-linear distributed-parameter diffusion systems. Yaz et al. [118] in-

troduced the receding-window observer that has a structure similar to a Kalman

filter and proved its convergence in the presence of bounded noises and parameter

perturbation. Miranda et al. [92] proposed a sliding-mode observer by adding the

sliding-mode term to the PDE backstepping boundary observer. This method is

further developed for feedback stabilization [24]. Adaptive observers are discussed

in [79, 64, 35, 31, 33, 32].
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1.3 Research Goals and Methods

The main objective of this research is to develop a theoretical framework based on

the theory of analysis and synthesis of the distributed parameter systems that can

be used to design and implement an advanced thermal management system for the

PCR microchip.

In order to achieve the mentioned objective, we set the following goals:

• The temperature distribution inside the PCR microchip, including the reac-

tion chamber, is a distributed parameter system in which the temperature is

spatially and temporally distributed in the space and time. Hence, our first

goal is to develop and verify a PDE model describing the dynamics of heat

distribution inside the PCR microchip.

• The main control variable in our problem is not accessible for direct measure-

ment, and the system’s structure only allows boundary measurement. Our

second goal is to design a boundary observer for the PCR microchip to pre-

cisely estimate the temperature inside the PCR process chamber.

• Any PDE controller and observer must be spatially discretized at some point to

enable its simulation and implementation. Our third goal is to adopt a space

discretization method and extend it to be used to calculate interconnected

PDE systems.

• Many constraints must be considered in the implementation phase. PDE con-

trollers are in their infancy and many problems are associated with their im-

plementation. Measuring the control variable using the PDE observer makes it

possible to use a lumped controller to shape the input signal. Our final goal is

to design a controller in order to appropriately satisfy the problem objectives

considering all the constraints.
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1.4 Thesis Contributions

The major contributions of the research considered and presented in this thesis are

listed below:

1. Development of a PDE model and calculated its full solution describing the

heat distribution inside the microfluidic DNA analysis microchip.

2. Extension of the characterization method of using thermochromic liquid crystal

(TLCs) to dynamic characterization of thermal properties of the PCR-LOC

microchip.

3. Extension of the PDE backstepping boundary observer design technique to a

2-D cylindrical domain structure.

4. Simplification of the PDE backstepping boundary observer and controller de-

signs via use of a conformal transformation.

5. Development of a numerical technique based on compact finite difference, en-

abling the simulation of interconnected PDE systems.

6. Development and implementation of an advanced thermal management system

consisting of a model predictive controller and a PDE observer for the PCR-

LOC microchip.
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1.5 Applications

A major contribution in this thesis is the use of classical complex analysis in the

solution of the PDE backstepping theory and especially extension to higher dimen-

sions. It is the author’s belief that the same principles are applicable in a wide

range of distributed parameter control problems. Some potential applications are

the following:

Flexible Structures [5, 68]: Hyperbolic PDE equations govern flexible structures

in civil engineering applications, aircraft wings and helicopter rotors, astro-

nomical telescopes, and in nanotechnology devices such as the atomic force

microscope. A recent application of distributed control is in active control of

cantilever beams in micro-devices with piezoelectric actuators.

Fluids, Aerodynamics, Turbulences, Propulsion, Acoustics: In many appli-

cations PDE equations are playing key roles in systems dynamics such as in

fluid flows [52, 50, 25], aerodynamics and propulsion applications, acoustic

waves [48, 4] and water waves irrigation systems, instabilities in thin film

manufacturing and in flame dynamics [78]. In irrigation systems, nonlinear

hyperbolic PDEs describe the gravity-based laminar fluid flow in canals and

rivers [81, 27]. Distributed parameter control systems have the potential of

offering a better performance than the lumped model control of those systems.

Quantum Control [86] : Some compelling applications are identified in chem-

istry, optical networking, computer science and in the design and implemen-

tation of advanced nano-scale technologies.

Delays [12, 67, 66, 105] : Time delay arises in various engineering applications

such as process control, mass transport in stirred-tank reactors and heat ex-

changers, population dynamics and traffic flows. Delays can severely degrade

the performance of the control system. Some recent advances reported in the

literature involve stabilizing the nonlinear and linear time invariant (LTI) sys-

tems with input and state delays using tools coming from the adaptive control

of parabolic PDEs.
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Magnetohydrodynamic (MHD) Flows [116, 112] : MHD refers to the study

of the dynamics of electrically conducting fluids such as plasma, liquid metals

and electrolytes. When a moving conductive fluid passes through a magnetic

field, electric current is induced in it, which in turn creates forces on the fluid

and affects magnetic field as well. MHD is governed by a combination of the

Navier-Stokes and Maxwell’s equations. MHD has applications in cooling nu-

clear reactors or computing devices, plasma confinement in fusion reactors,

pumping in microfluidic devices, magnetic drug targeting and electromagnetic

casting. Feedback control can effectively enhance mixing and heating transfer,

prevent instability in tokamak and reduce pumping power in MHD applica-

tions.
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1.6 Thesis Outline

The rest of the dissertation is organized as follows:

Chapter 2 presents, in detail, the definition of the problem involved in this dis-

sertation. The PCR-LOC microfluidic microchip is fully described and an analytical

model is developed describing the dynamics of the heat distribution around the PCR

chamber inside the microchip. Next, the PDE equation in the analytical model of

the PCR-LOC microchip is fully solved. Having a general solution of the model in

hand, the model parameters are optimized to maximize the fit between the model

and the actual microchip. The model is fully verified using precise FEM simulations

and the experimental characterization of the microchip.

Chapter 3 is concerned with the observer design problem. In section 3.3 we pose

the observer design problem in standard backstepping form, which results in a four-

dimensional PDE equation. In 3.4 we introduce conformal mapping and provide a

step-by-step approach to reduce the original problem into one with a much simpler

structure that results in a two dimensional PDE. In section 3.5 we take advantage

of the new structure and complete the observer design using the PDE backstepping

boundary observer design technique.

In chapter 4, we numerically solve the PDE equation describing the kernel func-

tion of the PDE backstepping boundary observer developed in chapter 3. Also, we

calculate the observer parameters. To enable performing simulation scenarios on

the interconnected system composed of the PDE model and PDE observer, we de-

veloped a discretization technique based on the compact finite difference method.

The simulation results are presented and discussed. In addition, the observer design

is verified using TLC sensors implanted inside the microchip. A signal processing

algorithm is developed to use the characterization data in the observer verification

process.

Chapter 5 presents the implementation of the thermal management system on

the selected PCR-LOC microchip. The experimental setup is illustrated and the

interfacing circuit design is discussed in detail. Next, the design of the Model predic-

tive control (MPC) is presented and the simulation results verifying its performance

are depicted. Finally, the result of full system implementation, including the PDE
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observer and MPC controller, are discussed.

In chapter 6, we present an extension of the PDE backstepping control design

to 2-D cylindrical coordinate system. We show that the design goes in parallel

with our technique developed and discussed in chapter 3. However, the resulting

design presents aggressive control action signals that makes it not a suitable choice

to be incorporated into the thermal management of the PCR-LOC device which has

certain constraint on control action.

Chapter 7 presents the summary of the research. The major contributions of the

thesis are high lighted and future directions are discussed.
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Chapter 2

Modeling

2.1 Introduction

In this chapter, we present the development of a mathematical model for the PCR

microchip. As briefly introduced in Chapter 1, the PCR microchip that we con-

sidered in this dissertation features a thin layer of Poly-di-methyl-siloxane (PDMS)

sandwiched between two Borofloat glass layers which results in a multi-domain model

structure. Calculating a general solution for a multi-domain PDE problem (or cou-

pled PDEs) is usually either very difficult or non-solvable in most of the cases. More-

over, any later attempt to design a controller or an observer for a multi-domain PDE

system would be intractable [74].

In order to account for this problem, we take an innovative approach. In this

chapter, we show that it is possible to use a single-domain PDE model to approxi-

mate the heat distribution in an important portion of the multi-domain full model

which contains the PCR chamber and the heater ring. We provide the general solu-

tion for the simplified model that describes both the steady-state and the transient

heat distribution inside the domain. Next, we formulate an optimization problem

for this model in order to minimize the mismatch between heat distribution in the

real system and the heat distribution approximated by the model. In the following

section, we inspect the PCR microchip in more detail enabling us to chose a useful

modeling framework.
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Figure 2.1: PCR-CE microchip developed at the University of Alberta

2.2 Microchip Structure

A pictorial description of the microfluidic chip considered in this work is given in

Fig. 2.1 (see also [58] for a complete description). As seen in the figure, the PCR

reaction chamber is surrounded by a resistive heater ring. The squares plates in the

picture are the heater contact pads.

The microchip consists of a thin layer of Poly-di-methyl-siloxane (PDMS) sand-

wiched between two Borofloat glass layers. A cylindrical reaction chamber with a

total volume of 0.64µL is machined at the bottom side of the top glass layer. The

chamber is designed to hold the genetic sample during PCR thermal cycling. The ac-

tuator is a circular strip of platinum etched on the top side of the bottom glass layer

and centred beneath the chamber. The platinum heater acts both as actuator and

sensor and is the only temperature information available from measurement. The

temperature inside the chamber must be estimated based on this reading. A copper

heat-sink with a circular opening in its centre is placed underneath the microchip to

improve the cooling rate during thermal cycling [51]. The fluid flow microchannels,

microvalves and micro pumps are not considered in our analysis as they are placed

relatively far from the reaction chamber and their effect on heat distribution in the

neighbouring chamber is negligible. The previous version of this microchip had a

different structure where a Peltier actuator was used to provide active cooling to
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improve the cooling rate. Complete modeling and controller design for a previous

version of the microchip are presented in [56].

We are mostly interested in heat transfer dynamics around the reaction cham-

ber and heater-sensor ring. The chamber, heater/sensor and heat-sink opening are

circular and share the same axis. This suggests that we should look for an axisym-

metric cylindrical structure for our model. Fig. 2.2 shows the half cross-section view

of the chip along a vertical plane parallel to the smaller side and passing through

the center of the chip. Due to the axysimmetric geometry of the chip, only half of

the chip is shown. The axis of symmetry is along the left vertical side. A circular

hole is cut in the middle of the heatsink to provide thermal insulation under the

heater and chamber. Heat is lost by free convection on the top and by conduction

through the heatsink.
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Figure 2.2: Cross-section view and dimensions of the PCR-LOC microchip [51]

Figure 2.3 depicts the heat distribution in the PCR microchip after applying one

Watt of power to the heater. The calculation was performed using finite element

model analysis. As shown, the coolest part of the microchip is its boundary with

heat-sink experiencing a temperature of 22◦C and the hottest part is the heater with

a temperature of 104.38◦C.
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Figure 2.3: Heat distribution in PCR chip (FEM model)

2.3 Modeling Framework

The irregular and multi-layer multi-material structure of the PCR microchip is not

suitable to form a set of solvable analytic equations and additional simplifications

are needed. To find a simplified model describing the dynamics of the chip where the

heater and chamber are located, we first consider the temperature profile around

the heater and chamber area. Fig. 2.4 depicts the temperature profile along the

chip thickness for some selected distances from the center of the chip, ranging from

2.5mm to 5.0mm. Referring to Fig. 2.4, the temperature profile along the thickness

of the chip at the upper glass layer (1.354mm to 2.454mm from the bottom of the

chip) shows a semi linear trend. Each curve shows the temperature along a vertical

line that crosses through the chip. Such a line is placed at a defined distance from

the centre. The legend shows the radial distance in millimetres. The horizontal

axis represents the vertical distance from the bottom to the top of the chip, which is

2.454mm thick. As the distance from the center increases from 2.5 to 5mm the curves

flatten down towards 22◦C. The temperature along the vertical distance inside the

top glass plate (right side of the curves) is almost constant. By choosing the radius of

3.5mm from the center of the chip, the slope is negligible, as the temperature varies

less than 0.8◦C, which is within the acceptable error for the chamber temperature

during PCR thermal cycling.

Therefore, with reasonable approximation, we can consider a constant temper-

ature wall as the boundary, where this boundary is positioned at a distance of

3.5mm from the center of the chip. These calculations, in addition to several other
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FEM simulations, have been performed using COMSOL Multiphysics 3.5a on

a comprehensive FEM model of the chip that describes its layered geometry, ma-

terial properties and boundary conditions with a high degree of accuracy. More
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Figure 2.4: Vertical temperature profile of the PCR microchip at steady-state

FEM simulations show some other important facts about this chip which can be

summarized as follows:

1. The amount of heat going to the upper portion of the chip through the PDMS

and top glass layer has an approximately constant ratio to the total heat being

dissipated by the heater.

2. If we consider a disk-shape bounded volume at the center of the chip, the

amount of heat lost by natural convection in air through the upper surface

of the disk is negligible compared to the amount of heat lost by conduction

through the wall.

3. If the PDMS layer were replaced by a glass layer, only a small percentage of

the dynamic temperature distribution would be affected, due to the alteration

of thermal properties (thermal conductivity and specific heat capacity). This

small effect on the dynamics can be compensated later by using a correction

factor.
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Figure 2.5: Model structure of the PCR microchip

4. The vertical temperature profile in the top glass layer at a distance of 3.5mm

from the center is approximately constant.

Using these observations we can conclude that by picking a single layer glass

disk, we can model the temperature distribution at a closed disk in the upper side

of the chip with a good level of approximation relative to the temperature accuracy

of ±1◦C demanded by the PCR process. This model structure is shown in Fig. 2.5

where the heater is defined by the circular strip at the bottom surface with k2 width

and k1 distance to the vertical axis.

It is worth noting that our model only approximates the heat distribution in the

area of interest in the chip, and we have put aside the rest of the chip. We will later

optimize the dimensions of this model to arrive to a least-error approximation of

the heat distribution. The rational in choosing this scenario is to arrive to a model

structure that is simple enough to find its analytical solution but accurate enough

to characterize the actual thermal process. The FEM model by itself was verified

by extensive experiments, wherein thermochromic liquid crystals (TLCs) sensitive

to different temperatures were deposited in the chamber to read the temperature

within its volume in steady-state.

2.4 Analytical Formulation

The heat diffusion inside the model structure, depicted in Fig. 2.5, is governed by

the heat equation, [19]:

κ∇2 u =
∂u

∂t
, (2.1)

24



where u(ρ, ϕ, z, t) is the temperature of every point of the domain at any given time

t, and κ is thermal diffusivity. Thermal diffusivity for any substance is defined by

κ =
K

ρ̄ C
, (2.2)

where K is thermal conductivity, ρ is density and C is specific heat capacity of that

particular substance. In our case, the Borofloat glass is the substance that builds

up the domain. The Laplace operator in a cylindrical coordinate system is defined

as follows:

∇2u =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂ϕ2
+

∂2u

∂z2
.

Since the model features axial symmetry, the temperature in the cylinder does

not depend on ϕ. This means that ∂u
∂ϕ

= 0 = ∂2u
∂ϕ2 . Therefore the Laplace operator

can be written in the following 2-D form:

∇2u =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

∂2u

∂z2
, (2.3)

The definition of the chosen domain implies that ρ and z are limited to 0 ≤ ρ ≤ a

and 0 ≤ z ≤ b. The initial and boundary conditions are given by

u(ρ, z, 0) = u0(ρ, z) (2.4)

u(a, z, t) = Tw (2.5)

uρ(0, z, t) = 0 (2.6)

uz(ρ, b, t) = 0 (2.7)

uz(ρ, 0, t) = −f(ρ), (2.8)

where u0(ρ, z) is the initial distribution of temperature. Tw is the temperature of

the outside wall of the cylinder. The boundary condition (2.6) comes from the

axisymmetrical cylindrical structure of the model. The boundary condition (2.7) is

based on the assumption that the upper surface of the chip is isolated. f(ρ) describes

the geometric distribution of the control action signal at the bottom surface, which

is defined by the heater location. A general solution of (2.1) can be found by adding

the solution of homogeneous and non-homogeneous equations describing the steady-

state and a transient temperature distribution, respectively:

u(ρ, z, t) = û(ρ, z, t) + ū(ρ, z). (2.9)
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Substituting (2.9) in (2.1) we get

1

κ
ût = ûρρ + ūρρ +

1

ρ
ûρ +

1

ρ
ūρ + ûzz + ūzz

=

(

ûρρ +
1

ρ
ûρ + ûzz

)

+

(

ūρρ +
1

ρ
ūρ + ūzz

)

.

(2.10)

Without loss of generality, we can assume that ūρρ +
1
ρ
ūρ + ūzz = 0, as we defined

ū(ρ, z) to describe the steady-state temperature. By applying (2.9) to the initial

condition (2.4) and boundary conditions (2.5), (2.6), (2.7) and (2.8), we arrive at

two PDEs:
1

κ
ût = ûρρ +

1

ρ
ûρ + ûzz, (2.11a)

subject to

û(ρ, z, 0) = û0(ρ, z) (2.11b)

û(a, z, t) = 0 (2.11c)

ûρ(0, z, t) = 0 (2.11d)

ûz(ρ, b, t) = 0 (2.11e)

ûz(ρ, 0, t) = 0, (2.11f)

and

ūρρ +
1

ρ
ūρ + ūzz = 0, (2.12a)

subject to

ū(a, z) = Tw (2.12b)

ūρ(0, z) = 0 (2.12c)

ūz(ρ, b) = 0 (2.12d)

ūz(ρ, 0) = −f(ρ). (2.12e)

Equation (2.11a) is an initial value problem with homogeneous boundaries, while

(2.12a) is a non-homogeneous boundary value problem.

26



2.4.1 Solution of the Analytical Model

Steady-state

To solve (2.12a), we employ the method of separation of variables [19]. We assume

that the steady-state heat distribution defined by (2.12a) cab be written as follows:

ū(ρ, z) = P (ρ)Z(z) + Tw, (2.13)

where P,Z are functions of ρ, z respectively. The constant part in (2.13) is used to

normalize the boundary conditions and achieve the homogeneous boundary condi-

tions. Substituting (2.13) in (2.12a) and dividing it by P (ρ)Z(z), we arrive to

P ′′(ρ)

P (ρ)
+

1

ρ

P ′(ρ)

P (ρ)
= −

Z ′′(z)

Z(z)
.

The left side contains functions of ρ alone, while the right side contains functions

of z alone. Since this equality must hold for all ρ and z in the given interval, the

common value of the two sides must be a constant, say −λ2, varying neither with ρ

nor with z.
P ′′(ρ)

P (ρ)
+

1

ρ

P ′(ρ)

P (ρ)
= −λ2 = −

Z ′′(z)

Z(z)
.

The constant here is chosen as a negative value to avoid a trivial solution [19].

Now we have two ODEs for the two factor functions:

ρP ′′ + P ′ + λ2ρP = 0, (2.14)

and

Z ′′ − λ2Z = 0. (2.15)

Taking account of (2.13), the boundary conditions (2.12b) to (2.12e) results in:

P (a) = 0 (2.16)

P ′(0) = 0 (2.17)

Z ′(b) = 0 (2.18)

P (ρ)Z ′(0) = −f(ρ). (2.19)

The solutions of (2.14) and (2.15) are given by [19],

P = c1J0(λρ) + c2Y0(λρ), (2.20)
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and

Z = c3 cosh λ(b− z) + c4 sinhλ(b− z), (2.21)

respectively, where J0 is the Bessel function of the first kind of order 0 and Y0 is the

Bessel function of the second kind of order 0. The Bessel functions of the first kind,

Jn, and the Bessel functions of the second kind, Yn, both of order n, are given by:

Jn(x) =
∞
∑

r=0

(−1)r

r! Γ(n+ r + 1)

(x

2

)n+2r

and

Yn(x) =







Jn(x) cosnπ−J−n(x)
sinnπ

n 6= 0, 1, 2, 3, · · ·

limp→n
Jp(x) cos pπ−J−p(x)

sin pπ
, n = 0, 1, 2, 3, · · ·

where Γ is the gamma function defined by

Γ(n) =

∫

∞

0
xn−1 e−xdx.

When n is a positive integer, the gamma function is defined by

Γ(n) = (n − 1)!.

From the boundedness condition at ρ = 0, stated by (2.17), we must have c2 = 0

because Y0 is unbounded at zero. Thus the solution (2.20) becomes

P = c1J0(λρ). (2.22)

From the boundary condition (2.18) and the fact that

Z ′(z) = −λ (c3 sinhλ(b− z) + c4 coshλ(b− z)) (2.23)

we have

Z ′(b) = −λc4 = 0,

which implies c4 = 0, so the solution (2.21) becomes

Z(z) = c3 coshλ(b− z). (2.24)

The boundary condition (2.16) can be employed to determine λ:

P (a) = c1J0(λa) = 0,
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which is satisfied only if J0(λa) = 0 so that

aλ = r1, r2, r3, · · · , rm, · · ·

where rm(m = 1, 2, 3, · · · ) is the mth positive root of J0(x) = 0. Thus λ’s can be

expressed as

λm =
rm
a

, m = 1, 2, 3, · · · . (2.25)

So a solution satisfying the boundary conditions is

ū(ρ, z) − Tw = Pm(ρ)Zm(z) = AJ0(
rm
a
ρ) cosh

rm
a
(b− z),

where m = 1, 2, 3, · · · and A = c1c3. The general solution of (2.12a) can be obtained

by employing the superposition principle [19]. By replacing A with Am and summing

over all eigenfunctions it follows that

ū(ρ, z) = Tw +
∞
∑

m=1

AmJ0(
rm
a
ρ) cosh

rm
a
(b− z). (2.26)

From
∂ū

∂z
=

∞
∑

m=1

−Am
rm
a

J0(
rm
a
ρ) sinh

rm
a
(b− z) (2.27)

and the last boundary condition (2.19) we can write:

∞
∑

m=1

(

Am
rm
a

sinh
rm b

a

)

J0(
rm
a
ρ) = f(ρ). (2.28)

The right side of (2.28) is the Bessel series expansion of f(ρ) with coefficients equal

to
(

Am
rm
a

sinh rm b
a

)

[19], so we get,

Am =
2

arm sinh( rm b
a

) J2
1 (rm)

∫ a

0
ρJ0(

rm
a
ρ)f(ρ)dρ. (2.29)

Transient

We employ the separation of variables again to solve (2.11a),

û(ρ, z, t) = P (ρ)Z(z)T (t), (2.30)

where P,Z, T are functions of ρ, z, t respectively. Following the same procedure

as the steady-state part, and defining µ, ν and λ as eigenvalues for P , Z and T

respectively, we arrive at the following ODEs:

ρP ′′ + P ′ + µ2ρP = 0 (2.31)
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Z ′′ − ν2Z = 0 (2.32)

T ′ + κλ2 T = 0, (2.33)

where ν2 = µ2 − λ2. Taking account of (2.30), the boundary conditions (2.11c) to

(2.11f), result as

P (a) = 0 (2.34)

P ′(0) = 0 (2.35)

Z ′(b) = 0 (2.36)

Z ′(0) = 0. (2.37)

The solutions of (2.31), (2.32) and (2.33) are given by

P = c1J0(µρ) + c2Y0(µρ) (2.38)

Z = c3 cosh ν(b− z) + c4 sinh ν(b− z) (2.39)

T = c5e
−κλ2t. (2.40)

From the boundedness condition at ρ = 0 expressed by (2.35), we must have c2 = 0.

Thus the solution of (2.38) becomes

P (ρ) = c1 J0(µρ). (2.41)

From the boundary condition (2.36) we have

Z ′(b) = −νc4 = 0

which implies c4 = 0, so the solution (2.39) becomes

Z(z) = c3 cosh ν(b− z). (2.42)

From boundary condition (2.34), we can determine µ.

P (a) = c1 J0(µa) = 0 (2.43)

so we have

µm =
rm
a

(2.44)
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where rm(m = 1, 2, 3, · · · ) is the mth positive root of J0(x) = 0. A solution of (2.31)

satisfying the boundary conditions is

Pm(ρ) = c1 J0(
rm
a
ρ) (2.45)

where m = 1, 2, 3, · · · . From the boundary condition (2.37), we can determine ν.

We have

Z ′(0) = −νc3 sinh νb = 0,

which can be satisfied only if sinh νb = 0 or

ν =
kπi

b
k = 0, 1, 2, · · · . (2.46)

Using (2.46) in (2.42), and considering the fact that

cosh ix = cos x,

then, the solution (2.39) becomes

Zk(z) = c3 cos
kπ

b
(b− z). (2.47)

Now from (2.46) and (2.44), it follows that

λ2 = µ2 − ν2 = (
rm
a
)2 − (

kπi

b
)2 =

r2m
a2

+
k2π2

b2
. (2.48)

So a solution satisfying all boundary conditions is given by

û(ρ, z, t) = Ae−κ(
r2m
a2

+ k2π2

b2
)t J0(

rm
a
ρ) cos

kπ

b
(b− z) (2.49)

where A = c1c3c5 , k = 0, 1, 2, 3, · · · and m = 1, 2, 3, · · · . Replacing A with Akm and

summing over k and m, we obtain the solution by the superposition principle

û(ρ, z, t) =

∞
∑

k=0

∞
∑

m=1

Akm e−κ(
r2m
a2

+ k2π2

b2
)t J0(

rm
a
ρ) cos

kπ

b
(b− z). (2.50)

From the initial condition (2.11b), general solution (2.9) and (2.50), we have
{

∞
∑

k=0

∞
∑

m=1

Akm J0(
rm
a
ρ) cos

kπ

b
(b− z)

}

= u0(ρ, z) − ū(ρ, z). (2.51)

Using (2.50) in (2.51), we have

∞
∑

k=0

∞
∑

m=1

Akm J0(
rm
a
ρ) cos

kπ

b
(b− z) = (u0(ρ, z)− Tw)

+

∞
∑

m=1

−AmJ0(
rm
a
ρ) cosh

rm
a
(b− z)

(2.52)
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where Am is defined by (2.29). To simplify the equation, without loss of accuracy,

we consider that u0(ρ, z) = Tw which is a reasonable assumption, because we start

the experiment when the system is in a uniform temperature distribution. Then

(2.52) becomes

∞
∑

m=1

{

∞
∑

k=0

Akm cos
kπ

b
(b− z)

}

J0(
rm
a
ρ) =

∞
∑

m=1

{

−Am cosh
rm
a
(b− z)

}

J0(
rm
a
ρ).

(2.53)

Clearly, because of the orthogonality of the Bessel functions, the coefficients of the

two sides of (2.53) must be equal, i.e,

∞
∑

k=0

Akm cos
kπ

b
(b− z) = −Am cosh

rm
a
(b− z). (2.54)

Equation (2.54) can be written in standard form as follows:

A0m +

∞
∑

k=1

Akm cos
kπ

b
(b− z) = −Am cosh

rm
a
(b− z). (2.55)

Recalling the Fourier cosine series expansion [19], the left side of (2.55) is the Fourier

cosine series expansion of the right side with respect to b− z. Thus, by substituting

b− z with x and replacing A0m and Akm with a0
2 and ak respectively, we have

a0
2

+

∞
∑

k=1

ak cos
kπ

b
x = −Am cosh

rm
a
x. (2.56)

The coefficients ak, for k = 0, 1, 2, · · · are given by

ak =
2

b

∫ b

0

(

−Am cosh
rm
a
x
)

cos
kπ

b
x dz. (2.57)

Equation (2.57) can be written as

ak = −
2

b
Am

∫ b

0
cosh

rm
a
x cos

kπ

b
x dz, (2.58)

and solving the integral we have

ak =−
2

b
Am

ab

a2k2π2 + b2rm2

(

akπ cosh(
rm
a
b) sin(kπ)

+ brm cos(kπ) sinh(
rm
a
b)
)

.

(2.59)

Since k takes only positive integers, we can simplify (2.59) and arrive to

ak = 2Am
rm
a b

(−1)k+1

rm2

a2
+ k2π2

b2

sinh(
rm
a
b). (2.60)
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Thus we have

A0m =
a0
2

= −Am
a

b rm
sinh(

rm
a
b), (2.61)

and Akm is defined by (2.60) as

Akm = ak = 2Am
rm
a b

(−1)k+1

rm2

a2
+ k2π2

b2

sinh(
rm
a
b), (2.62)

where k = 1, 2, · · · . Hence, it follows that the complete solution to the problem

is given by (2.9), (2.26) and (2.50), where their coefficients are defined by (2.29),

(2.61) and (2.62).

PDE Model Including Heater Configuration

In the previous section, we calculated the general solution to the Initial-Boundary

PDE problem describing the PCR microchip. The general solution, (2.9), is given

as the summation of the steady-state, (2.26), and the transient part, (2.50), of the

heat distribution inside the PCR microchip. The solutions (2.26) and (2.50) are in

the form of the infinite series where their coefficients are given by (2.29), (2.61) and

(2.62).

The effect of heat flux transferred from the heater to the system is present as

f(ρ) in (2.29), the definition of Am. According to what we chose in the model

configuration, the definition of f(ρ) is given by

f(ρ) =







q
K

if k1 < ρ < (k1 + k2)

0 otherwise,
(2.63)

with

0 < (k1, k2) ≤ a

0 < k1 + k2 ≤ a,
(2.64)

where q is the heat flux from the heater to the chip andK is the thermal conductivity.

For discontinuities, we have f(k1) = f(k1 + k2) =
q
2K .

Using the definition of f(ρ), (2.63) and (2.63), in (2.29), for the Am we can write

Am =
2 q

aK rm sinh( rm b
a

) J2
1 (rm)

∫ k1+k2

k1

ρJ0(
rm
a
ρ)dρ. (2.65)

We have the following equation for q,

q =
P

A
, (2.66)
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where P is the amount of the power transferred from the heater to the chip and A

is the area of the heater which can be calculated as

A = π(k1 + k2)
2 − πk21

= πk2(2k1 + k2)

Recalling the Recurrence Relations for the Bessel function [19], we have

d

dx
[xnJn(x)] = xnJn−1(x) (n = 1, 2, · · · ). (2.67)

Equation (2.67) can be written as follows:

∫

xnJn−1(x)dx = xnJn(x) + c (n = 1, 2, · · · ). (2.68)

By setting n = 1 in (2.68), we obtain

∫

xJ0(x)dx = xJ1(x) + c. (2.69)

Using a change of variable, x = rm
a
ρ, for the integral part of the Am in (2.29), we

can write
∫ k1+k2

k1

ρJ0(
rm
a
ρ)dρ =

(

a

rm

)2 ∫ rm
a

(k1+k2)

rm
a

k1

xJ0(x)dx. (2.70)

Using (2.69) in (2.70) we get

∫ k1+k2

k1

ρJ0(
rm
a
ρ)dρ =

(

a

rm

)2

[xJ1(x)]

∣

∣

∣

∣

rm
a

(k1+k2)

rm
a

k1

, (2.71)

which is calculated as,

∫ k1+k2

k1

ρJ0(
rm
a
ρ)dρ =

a

rm

(

(k1 + k2)J1(
rm
a
(k1 + k2))− k1J1(

rm
a
k1)
)

. (2.72)

Using (2.66) and (2.72) in (2.29), we arrive at the following equation for Am

Am =
2P

(

(k1 + k2)J1(
rm
a
(k1 + k2))− k1J1(

rm
a
k1)
)

πk2(2k1 + k2)K r2m sinh( rm b
a

) J2
1 (rm)

. (2.73)

The value of the parameters and constants introduced in our model of the chosen

microchip are listed in Table 2.1 . We assume Tw = 22◦C and that an input power

of one Watt is being applied to the heater in our simulations.

1These parameters are flexible and their values depends on the chosen portion of the real mi-
crochip. In section 2.5 we will optimize these parameters to get the least error in simplification
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Table 2.1: Parameter Values of the simplified PCR microchip model

Parameter Symbol Value Unit

Cylindrical portion radius1 a 3.5 mm
Cylindrical portion thickness1 b 1.1 mm

Heater power1 P 1 W
Inner radius of heater k1 2.3 mm
Heater trace width k2 200 µ m

Thermal conductivity of Borofloat glass K 1.11 W/ (m.K)
Density of Borofloat glass ρ 2200 Kg/m3

Thermal capacity of Borofloat glass C 830 J/K

Finally, we summarize that the solution of the heat equation for our configuration

is given by

u(ρ, z, t) = utr(ρ, z, t) + uss(ρ, z) (2.74)

where utr(ρ, z, t) and uss(ρ, z) are transient and steady-state responses respectively,

given by

utr(ρ, z, t) =
∞
∑

m=1

∞
∑

k=0

(

Akm e−κ(
r2m
a2

+ k2π2

b2
) t J0(

rm
a
ρ) cos

kπ

b
(b− z)

)

(2.75)

and

uss(ρ, z) = Tw +

∞
∑

m=1

AmJ0(
rm
a
ρ) cosh

rm
a
(b− z) (2.76)

where rm(m = 1, 2, 3, · · · ) is the mth positive root of J0(x) = 0. The coefficients

A0m, Akm and Am are defined by

A0m = −Am
a

b rm
sinh(

rm
a
b) (2.77)

Akm = 2Am
rm
a b

(−1)k+1

rm2

a2
+ k2π2

b2

sinh(
rm
a
b) (2.78)

and

Am =
2P

(

(k1 + k2)J1(
rm
a
(k1 + k2))− k1J1(

rm
a
k1)
)

πk2(2k1 + k2)K r2m sinh( rm b
a

) J2
1 (rm)

(2.79)

2.4.2 Model Verification

In this section, we verify the solution (2.74)-(2.79) which we calculated for the PDE

model (2.1) subject to initial and boundary conditions (2.4)-(2.8) by comparing it to
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the FEM simulations for both steady-state and transient responses. The FEM sim-

ulations are performed by choosing very fine meshes in the COMSOL Multiphysics

software package.

Choosing a Limit for Calculating Infinite Series

For the numerical calculation of (2.76) and (2.75), it is necessary to choose a limit for

the infinite series calculation. Choosing a limitation for the m and k values means

that we want to use finite sets of eigenvalues and eigenfunctions to approximate

(2.76) and (2.75), which are the infinite dimensional equations. These series are in

the form of the Bessel and Fourier series with respect to the ρ and z variables, and

will converge to the actual response at infinity.

To evaluate the Bessel function approximation and to choose a suitable finite

series approximation limit, we calculate and plot the Bessel function expansion of

f(ρ) in (2.72) which is used in the calculation of Am coefficients. Recalling (2.28):

∞
∑

m=1

(

Am
rm
a

sinh
rm b

a

)

J0(
rm
a
ρ) = f(ρ), (2.80)

replacing the term enclosed in the parenthesis with a coefficient, say Bm, we have:

∞
∑

m=1

Bm J0(
rm
a
ρ) = f(ρ), (2.81)

with

Bm = Am
rm
a

sinh
rm b

a

=
2

a2 J2
1 (rm)

∫ a

0
ρJ0(

rm
a
ρ)f(ρ)dρ,

(2.82)

which is exactly the Bessel series expansion of f(ρ). Using (2.79), Bm can be found

as:

Bm =
2P

(

(k1 + k2)J1(
rm
a
(k1 + k2))− k1J1(

rm
a
k1)
)

a πk2(2k1 + k2)K rm J2
1 (rm)

. (2.83)

The simulation of the Bessel series expansion for f(ρ) given by (2.83) for different

sets of m is depicted in Fig. 2.6. It shows that choosing a maximum value of

500 for m will provide a fair approximation of the heater configuration defined by

f(ρ). Choosing values bigger than the selected value will significantly increase the

required computational resources in the numerical calculation.
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Figure 2.6: Approximation of f(ρ) using Bessel series

To select a limit for k in the infinite sum, we can take a closer look at (2.75).

The sum index, k, in (2.75) affects the coefficient Akm, the term cos kπ
b
(b− z), and

the time constant e−κ(
r2m
a2

+ k2π2

b2
) t.

The cosine term, cos kπ
b
(b−z), takes a value between -1 and 1. The values of the

coefficient Akm for different values for k and m are calculated and shown in Table

2.2.

Table 2.2: Values of Akm

m1 m2 m3 m4 m5

k=1 7.8102 -13.8381 5.3073 5.9620 -9.1475
k=2 -2.0361 4.1947 -1.9550 -2.6446 4.7434
k=3 0.9122 -1.9407 0.9524 1.3721 -2.6317
k=4 -0.5145 1.1075 -0.5543 -0.8198 1.6212
k=5 0.3297 -0.7136 0.3606 0.5403 -1.0854
k=6 -0.2291 0.4974 -0.2527 -0.3813 0.7731
k=7 0.1684 -0.3663 0.1866 0.2829 -0.5769
k=8 -0.1290 0.2808 -0.1434 -0.2180 0.4463
k=9 0.1019 -0.2221 0.1136 0.1731 -0.3551
k=10 -0.0826 0.1800 -0.0922 -0.1406 0.2891

The coefficient Akm significantly decreases as k increases. We chose the limit of

k = 30 in our calculations. Choosing a larger limit for k did not produce a significant

change in the simulation results.
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Heat Distribution in Steady-State

In this section, we calculate the steady-state heat distribution given by (2.76) inside

the domain. Next, we verify the accuracy of the calculation by comparing it with

results from the FEM simulation. Heat distribution found by the FEM simulation

is depicted as a color map in Fig. 2.7.

Figure 2.7: Steady-state temperature distribution, FEM Simulation

The next figure, Fig. 2.8, presents the heat distribution that results from calcu-

lating the PDE model.

Figure 2.8: Steady-state temperature distribution, PDE simulation

A stencil of 100×100 points is used to calculate the heat distribution in Fig. 2.8.

For a closer comparison, we calculated the temperature profile along the ρ axis

for five different vertical distances starting from the base at z = 0 up to the top

boundary at z = 1.1mm. The results of the FEM and the PDE model simulations

are depicted in Fig. 2.9a and Fig. 2.9b, respectively.

It can be seen from the figure that there is an excellent match between the two

results.
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(a) FEM simulation
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Figure 2.9: Steady-state temperature for different z

Transient Temperature Distribution in the PCR Microchip

In this section, we verify the solution of the transient heat-distribution inside the

model structure. To do so, we use the same spatial profile presented in Fig. 2.9

and calculate the heat distribution after applying one Watt of power to the heater

for the following times: t = 2.5s, t = 5s, t = 7.5s, t = 10s, t = 15s and t = 20s.

We assume that the chip was initially at rest with a temperature of zero degree at

t = 0. The result of both the FEM and the PDE model simulations are presented

in Fig. 2.10a through Fig. 2.15b.

(a) FEM simulation
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Figure 2.10: Temperature at t = 2.5s for five different distances from the base
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(a) FEM simulation
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(b) PDE model

Figure 2.11: Temperature at t = 5s for five different distances from the base

(a) FEM simulation
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(b) PDE model

Figure 2.12: Temperature at t = 7.5s for five different distances from the base

In another interesting simulation, we calculate the transient temperature for a

particular point inside the chip. The chosen spatial point at ρ = 0 and z = 0.55mm

is located inside the chamber. The results of this simulation, depicted in Fig. 2.16,

shows the transient chamber temperature in response to a step input of one Watt.
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(a) FEM simulation

0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

70

80

90

100
Transient Temperature in t =10s (z in mm)

ρ (mm)

T
 (

0  K
)

 

 
z = 0
z = 0.275
z = 0.55
z = 0.825
z = 1.1

(b) PDE model

Figure 2.13: Temperature at t = 10s for five different distances from the base

(a) FEM simulation
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Figure 2.14: Temperature at t = 15s for five different distances from the base

Correlation Analysis Between FEM Simulation and PDE Model Simula-

tion Data Sets

A correlation analysis was performed between sets of data resulting from the simu-

lation of the temperature value for a predefined point in the spatial domain. Five

and 10 equally distanced points were selected for the z and ρ axes, respectively.

Therefore, for every analysis we obtained five sets of data with 10 values in each set.

The correlation analysis between the data from the PDE model calculation and the

data from the FEM simulation provided a 1 by 5 vector according to each chosen

z. The analysis was repeated for both the steady-state and the transient responses.

The results are given in Table 2.3.

The FEM and PDE model simulation results are strongly correlated. Upon

further inspection, the difference between the temperature found by both methods
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(a) FEM simulation
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Figure 2.15: Temperature at t = 20s for five different distances from the base
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Figure 2.16: Transient temperature at the spatial point ρ = 0 , z = 0.55mm

was calculated and is given in Table 2.4. The same spatial points used for the

correlation analysis are used again and the maximum absolute value of difference

between each set of data from the FEM and PDE model simulations was calculated.

The maximum absolute difference of about 0.2◦C in Table 2.4 verifies the validity

of the PDE model solution.
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Table 2.3: Correlation Analysis

z = 0mm z = 0.275mm z = 0.55mm z = 0.825mm z = 1.1mm

t = 2.5s 1.0000 1.0000 1.0000 1.0000 1.0000
t = 5s 1.0000 1.0000 1.0000 1.0000 1.0000
t = 7.5s 1.0000 1.0000 1.0000 1.0000 1.0000
t = 10s 1.0000 1.0000 1.0000 1.0000 1.0000
t = 15s 1.0000 1.0000 1.0000 1.0000 1.0000
t = 20s 1.0000 1.0000 1.0000 1.0000 1.0000
t = ∞ 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2.4: Maximum Absolute Difference

z = 0mm z = 0.275mm z = 0.55mm z = 0.825mm z = 1.1mm

t = 2.5s 0.1772 0.1764 0.1763 0.1763 0.1762
t = 5s 0.1939 0.1737 0.1737 0.1737 0.1737
t = 7.5s 0.1067 0.0865 0.0865 0.0865 0.0865
t = 10s 0.0624 0.0423 0.0423 0.0423 0.0423
t = 15s 0.0302 0.0101 0.0101 0.0101 0.0101
t = 20s 0.0225 0.0024 0.0024 0.0024 0.0024
t = ∞ 0.0201 0.0000 0.0000 0.0000 0.0000

2.5 Optimization of the PDE Model

In the previous section, we verified the accuracy of the analytical solution derived

for the introduced model structure. The proposed model has a simplified domain

structure which simplifies the analytical solution, however, it is still a simplified

model of the whole PCR microchip structure. Here, the question is, how well does

this model represent the heat distribution in the area of interest of the actual PCR

microchip?

To answer this question, we investigate the accuracy of the derived analytical

model by comparing its results with the heat distribution in an actual PCR mi-

crochip (calculated by extensive FEM simulations). In addition, we look for options

to improve this accuracy as much as possible. We calculate the effect of the variation

within the parameters of the analytical model on the model fitting accuracy result-

ing by comparing the analytical model with the FEM simulation of an actual PCR

microchip. Next, we propose an optimization problem targeting the optimization of

the parameters of the analytical model. This is done to arrive at the best fit between

the analytical model and the actual PCR microchip. We pay special attention to
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heat distribution in the chamber area where an accuracy of ±1◦C is required for a

successful PCR experiment.

The analytical model consists of a cylindrical glass domain with carefully selected

boundary conditions. These conditions resemble the heat distribution in a cylindrical

domain inside the PCR chip where the chamber is located. To prevent multi-domain

structure, the presence of the PDMS layer, bottom glass layer, heatsink, the property

of the chamber and heat convection at the upper surface are not considered in the

simplified analytical model. These simplifications in the analytical model can result

in a significant approximation error of the heat distribution inside the actual chip.

Heat distribution in the actual model was provided by precise FEM simulation

using the COMSOL Multiphysics software package. Here and afterwards we will

call the actual PCR microchip the FEM model and the analytical model the PDE

model. Because of axisymmetric structure of both models, we need only to compare

the heat distribution in a half cut side view of the chip. Fig. 2.17 and Fig. 2.18 depict

the heat distribution in the FEM and PDE model, respectively, after applying one

Watt of power to the heater.

Figure 2.17: Heat distribution in PCR chip (FEM model)

The selected portion for comparing these two models is enclosed by dash lines.

The radius of the portion is optimized to obtain an approximately constant temper-

ature in the portion’s right side in the FEM model. The chamber is located in the

bottom left corner of the selected portion.

We define area error,eap(ρ, z), as the difference between the temperature in the

PDE model and the temperature in the FEMmodel in any given point at the selected
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Figure 2.18: Heat distribution in simplified chip (PDE model)

portion, as follows:

eap(ρ, z) = uPDE(ρ, z̄)− uFEM(ρ, z) , ρ, z ∈ D1, z̄ = z + 254µm

where D1 = {ρ, z : 0 ≤ ρ ≤ 3.5mm, 0 ≤ z ≤ 1.1mm} describes the selected portion.

Next, we define the chamber error, ech(ρ, z), as the difference of the temperature in

the chamber area between the PDE model and the FEM model, as follows:

ech(ρ, z) = uPDE(ρ, z̄)− uFEM(ρ, z) , ρ, z ∈ D2, z̄ = z + 254µm

where D2 = {ρ, z : 0 ≤ ρ ≤ 1.5mm, 0 ≤ z ≤ 90µm} describes the chamber location.

We calculated the values of eap and ech when one Watt input was applied to the

heater in both models. We depicted the results in Fig. 2.19 and Fig. 2.20 respectively.

To obtain a quantitative measure of the error in the selected portion, we defined

the following parameters:

• Absolute average error in portion: ēap
.
= |

1

A1

∫

A1
eapdA1|

• Maximum absolute error in portion: |eap|max
.
= max|eap(ρ, z)|

• Uniformity of error in portion: Uap
.
= max(eap(ρ, z)) −min(eap(ρ, z))

where ρ, z ∈ D1 and A1 is the area of the portion specified by D1. The values of the

defined measures for a system after applying a power of one Watt to the heater are

calculated and presented in Table 2.5.

Now we focus on the chamber area, which is critically important in our analy-

sis. Fig. 2.20 shows the error between the PDE model and the FEM model in the

chamber area when one Watt of input power is applied to the heater.
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Figure 2.19: The approximation error in the selected portion

Table 2.5: Error measures for Fig. 2.19

Measure Value

ēap 0.38◦ C
|eap|max 19.5◦ C
Uap 32.9◦ C

We define similar quantitative measures for the error in the chamber area:

• Absolute average error in chamber: ēch
.
= |

1

A2

∫

A2
echdA2|

• Maximum absolute error in chamber: |ech|max
.
= max|ech(ρ, z)|

• Uniformity of error in chamber: Uch
.
= max(ech(ρ, z)) −min(ech(ρ, z))

where ρ, z ∈ D2 and A2 is the area specified by D2. Table 2.6 shows the values

of these measures after applying one Watt of power to the heater.

Clearly, the resulting error does not satisfy our criteria.

2.5.1 Effect of Variation in the PDE Model Parameters

The heat distribution in the PDE model is affected by the model parameters and

change in the model parameters will affect the error measures that we defined. We
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Figure 2.20: Error in the chamber

Table 2.6: Error measures for Fig. 2.20

Measure Value

ēch 3.05◦ C
|ech|max 4.9◦ C
Uch 2.8◦ C

selected three parameters of the PDE model representing chip thickness, chip radius

and input power as the manipulated variables. These variables and their notations

are listed in Table 2.7.

We are interested in seeing how our quantitative error measures are effected by

changes in the manipulated parameters defined in Table 2.7.

The effect of variations in chip thickness, b, on the absolute average error and

the uniformity measures for both the selected portion and chamber area are shown

in Fig. 2.21.

As can be seen, the uniformity measure passes a minimum when chip thickness

changes between 2mm and 2.4mm , but the location where the least amount of

changes occurs differs for the areas of interest where we defined our measures.

Fig. 2.22 shows the effect of changing the chip radius, a, on the absolute average
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Figure 2.21: Effect of changing chip thickness
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Table 2.7: Manipulated variables for PDE model

Parameter Description

a chip radius
b chip thickness
P input power

error and uniformity measures for both the selected portion and chamber area. An

exponential trend in relation between the error uniformity and the chip radius can

be seen in both the selected portion and chamber area.

The graphs in Fig. 2.23, show how changing input power affects the absolute

average error and the uniformity measures in both the selected portion and the

chamber area.

2.5.2 Optimization

Problem Formulation

In this section, we formulate the problem of finding proper values for the manip-

ulating variables to obtain acceptable error measures in the form of a standard

optimization problem. We define a weighted-sum objective function including the

L2 norm of the error at the chamber location, the uniformity measure at the chamber

location and the uniformity measure at the selected portion as follows:

J = w1
1

A2

∫

A2

ech
2dA2 + w2Uch + w3Uap, (2.84)

where w1, w2 and w3 are the weight coefficients. Next, we define a set, S, represent-

ing the lower bands and upper bands of the manipulating variables as follows:

S = {a, b, P : a, b, P ∈ R, 0.0035 ≤ a ≤ 0.007, 0.0013 ≤ b ≤ 0.004, 0.1 ≤ P ≤ 2.5}.

(2.85)

Optimization Results

We use MATLAB to solve the optimization problem defined by (2.84) and (2.85).

After comparing the results of optimization with different values of the weighting

coefficients, a good selection for w1, w2 and w3 can be obtained. We obtained the
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Figure 2.22: Effect of changing chip radius
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Figure 2.23: Effect of changing heater power
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best results by choosing weighting coefficients as w1 = 10, w2 = 1 and w3 = 0.1.

Optimized values for the manipulated variables are given in Table 2.8.

Table 2.8: Optimized parameter for PDE model

Parameter Description optimized value

a chip radius 4.9362mm
b chip thickness 2.1015mm
P input power 0.76981Watt

By using the optimized parameters in the PDE model, we expect to get smaller

error measures. Table 2.9 shows the amount of the error measures after employing

optimized parameters.

Table 2.9: Error measures for optimized PDE model

Measure Value in optimized system Value in not optimized system

ēch 7.7× 10−6◦ C 3.05◦ C
|ech|max 0.14◦ C 4.9◦ C
Uch 0.28◦ C 2.8◦ C

ēap 1.14◦ C 0.38◦ C
|eap|max 3.6◦ C 19.5◦ C
Uap 3.7◦ C 32.9◦ C

These results show significant improvement in approximating the heat distri-

bution in the actual system. The distribution of the error in the selected portion

and the chamber locations for the optimized PDE system are shown in Fig. 2.24

and Fig. 2.25 respectively. According to values of the measures in Table 2.9, this

approximation satisfies our criteria of the maximum error of ±1◦C.

Relationship to Input Power

The input power in the simplified model spread into a much smaller structure than

the real PCR microchip. In section 2.3, we reasoned that the amount of heat going

to the upper portion of the chip through the PDMS and top glass layer has an

approximately constant ratio to the total heat being dissipated by the heater. Now

the questions are: does the optimization results in the same previous values for the
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Figure 2.24: Error in selected portion
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Figure 2.26: Relationship between applied power in actual system and simplified
model

chip thickness, b and the chip radius, a, if the input power be altered? and what is

the relation between input power in the simplified model to the input power in the

real system?

In order to answer these questions, we solve the optimization problem of finding

optimum values of chip thickness, b and chip radius, a, separately for a set of eight

different input powers ranging from 250mW up to 2W. As we expect, the optimized

values for the chip thickness,b, and the chip radius,a, converge to the same amount

that we calculated for the input power of one Watt. The only difference in the results

is in the optimized values calculated for the input power P in the PDE model.

Therefore, we fix the parameters a and b with the previously obtained optimized

values, and initiate another optimization problem to find optimized values of P on

eight different data sets calculated by the FEM simulation for the selected input

powers. The optimized values for P versus actual input power are depicted in

Fig. 2.26.

Clearly, the relationship between the input power in the optimized PDE model

and the input power in the FEM model is linear. Using least square approximation,
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we approximate this relationship in a compact form using the following equation:

P = 0.76772P̄ + 1.5595 × 10−3, (2.86)

where P̄ is the actual power considered in the FEM simulation and P is the

input power considered in the PDE model. Table 2.10 presents the variation in the

error measures when we use the optimized values of a and b from Table 2.8 along

with the values of P calculated using (2.86). The last three lines of the Table 2.10

confirms that for the whole operational range of the input power, the error in the

chamber location would be stay far below the acceptable error of ±1◦C.

Table 2.10: Error measures for the optimized PDE model, complete range

P̄ 250mW 500mW 750mW 1W 1.25W 1.5W 1.75W 2W

ēap 0.29 0.57 0.86 1.14 1.43 1.71 1.99 2.27

|eap|max 0.89 1.78 2.67 3.56 4.46 5.35 6.25 7.15

Uap 0.92 1.84 2.78 3.70 4.63 5.56 6.49 7.42

ēch 6.6× 10−5 7.8× 10−5 1.1 × 10−4 7.7× 10−6 0.0012 0.0012 0.0011 0.0011

|ech|max 0.036 0.073 0.109 0.145 0.183 0.222 0.261 0.301

Uch 0.070 0.140 0.209 0.279 0.351 0.423 0.496 0.570
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2.6 Summary

The PDE model described by the model structure in Fig. 2.5, with the optimized

parameters presented in Table 2.8 and the analytical solution given in (2.74) to

(2.79), can be used as an accurate enough approximation of the heat distribution in

the PCR microchip. The calculation of the error proves that the error between the

optimized mathematical model and the actual system is much less than the amount

of the maximum acceptable error of ±1◦C in the chamber area.

The heat distribution in the PCR microchip was previously attainable only by

calculating the extensive and time consuming FEM simulations defined on the com-

plicated multi-domain structure. The superiority of the obtained PDE model to the

FEM model is the fact that is does not need huge amount of the computational

resources and as a result it can perform the dynamic simulations in a much shorter

time. We conclude that the obtained model not only can be used for the controller

design purposes but also it can be used for the analysis of the closed loop system

response.

56



Chapter 3

Observer Design

3.1 Introduction

The observer design problem deals with estimating the states of a dynamical system.

For the lumped parameter systems, an observer such as a Luenberger observer [85]

can estimate the temporally distributed states, e.g. x(t). On the other hand, a

distributed parameter observer is able to estimate states of a distributed parameter

system which are distributed both temporally and spatially, e.g. u(ρ, t).

In Chapter 1, we introduced a PCR-LOC microchip which with the addition of

a well-designed thermal management system is capable of impacting the healthcare

system by offering an inexpensive and portable platform for genetic tests. The main

challenge associated with the thermal control problem of the PCR-LOC microchip

is the necessity of measuring the PCR chamber temperature, which is necessary for

feedback but is out of access for direct measurement. The only available measure-

ment in this system is the temperature of the heater. The governing phenomenon

of heat distribution inside the PCR-LOC microchip can be expressed by partial dif-

ferential equations (PDEs) which naturally leads us to look for a PDE model to

describe the dynamics of the heat distribution in the microchip.

In Chapter 2, we constructed a single domain PDE model in a cylindrical coor-

dinate system and verified that our model provides the heat distribution dynamics

in an area surrounding the chamber with an acceptable accuracy. Our PDE model

features the collocated boundary actuation and sensing architecture, i.e. the heater

and the sensor are both located on the same boundary.
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In the absence of direct temperature measurement inside the reaction chamber,

we turn our attentions to the design of an observer that can provide an estimate

of the chamber temperature, based on other variables. We briefly surveyed the ob-

servers for distributed parameter systems in Chapter 1. One of the most recent

developments in this regard is the PDE backstepping boundary observer introduced

by Krstic et al [69]. The inspiration for PDE backstepping boundary observer is

connected to a work of Krener et al [65] in which a backstepping observer is proposed

for nonlinear ODE systems. The PDE backstepping observer design process starts

with introducing a Luenberger-like observer structure which resembles the PDE for-

mulation of the original system. The next step is to define an integral transformation

that takes the observer error system to an exponentially stable system with a desired

convergence speed. The observer design problem is to find the observer parameters

which are fully achievable after calculating the kernel of the integral transformation.

We choose the PDE backstepping boundary observer approach for our design.

The concept of a distributed parameter boundary observer for a thermal system

is illustrated in Fig. 3.1. In general, a distributed parameter observer is able to

PDE Thermal System

PDE Obsverver

u(a, t)uin(t)

û(ρ, t)

Figure 3.1: Block digram illustration of a distributed parameter observer

estimate all of the distributed states by only reading the inputs and outputs of a

PDE system. Those inputs and outputs could be anywhere in the domain or in the

boundaries.

In this chapter, we design a PDE backstepping boundary observer for the PCR-

LOC microchip described by the PDE model introduced in Chapter 2. The PDE

backstepping boundary observer design process can be followed by more refined
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mathematical equations if the PDE system is normalized in the first place. There-

fore, the first step towards designing the PDE backstepping boundary observer in

Section 3.2, is to normalize our model.

In Section 3.3, we design a PDE backstepping boundary observer for our PDE

model by extending the standard approach to the 2-D cylindrical coordinate system.

However, as we will discuss later in this chapter, the resulting PDE equation for the

kernel of the integral transformation describing the observer is very difficult to solve

either numerically or analytically.

The novel approach introduced in Section 3.4 is to use classical complex analysis

theories to transform the domain of the problem to a new coordinate system where

the observer design approach results in a more tractable kernel equation for the

integral transformation. To the best of our knowledge, our work is the first demon-

stration of the application of conformal transformation in the PDE backstepping

problem. The design approach in Section 3.5 will complete the observer design.

The block diagram in Fig. 3.2 shows how an observer designed in a transformed

and normalized space can be used on the original PDE system.

3.2 Preliminaries

3.2.1 Normalizing the PDE system

Recalling the PCR microchip model introduced in Chapter 2, The following PDE

equation describes dynamic heat distribution inside the microchip:

1

κ
vt(ρ, z, t) = vρρ(ρ, z, t) +

1

ρ
vρ(ρ, z, t) + vzz(ρ, z, t), (3.1)

subject to the initial and the boundary conditions given by

v(ρ, z, 0) = v0(ρ, z) (3.2)

v(a, z, t) = Tw (3.3)

vρ(0, z, t) = 0 (3.4)

vz(ρ, b, t) = 0 (3.5)

vz(ρ, 0, t) = −f(ρ)U(t), (3.6)
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PDE System

u(ρ, z) in D

Normalized

PDE System

u(ρ, z) in f(D)

PDE Backstepping

Boundary Observer

û(ρ, z) in f(D)

û(ρ, z)

input actuation measured boundary

δU

δU · f ′(z)

uFA

u(a)

û in D

û in f(D)

f(D) f [−1](D)

Figure 3.2: Interconnection between the observer designed for the transformed PDE
system and the original normalized PDE system

where v(ρ, z, t) is the temperature of every point inside the domain at any given

time t, and κ is thermal diffusivity. v0(ρ, z) is the initial heat distribution and

Tw is the temperature of the outside wall of the cylinder (ambient temperature).

f(ρ) describes the geometric distribution of the control action signal at the bottom

surface which is defined by the heater pattern and location and U(t) is the amount

of the external power applied to the heater. ρ and z are limited to 0 ≤ ρ ≤ a and

0 ≤ z ≤ b. The geometric distribution of the control action signal, f(ρ), is as follows:

f(ρ) =



















q
K

if k1 < ρ < (k1 + k2)

q
2K if ρ = k1 or ρ = (k1 + k2)

0 otherwise,

where 0 < k1 ≤ a, 0 < k2 ≤ a and 0 < k1 + k2 ≤ a.
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We start the normalization of the spatial space by scaling ρ and z axes:

ρ =
ρ

a

z =
z

b
.

(3.7)

In the scaled spatial space, the PCR model described by (3.1) to (3.6) is written as:

a2

κ
vt(ρ, z, t) = vρρ(ρ, z, t) +

1

ρ
vρ(ρ, z, t) +

a2

b2
vzz(ρ, z, t), (3.8)

with the following initial and boundary conditions:

v(ρ, z, 0) = v0(ρ, z) (3.9)

v(1, z, t) = Tw (3.10)

vρ(0, z, t) = 0 (3.11)

vz(ρ, 1, t) = 0 (3.12)

vz(ρ, 0, t) = f(ρ) (U0 + δU(t)), (3.13)

where v0(ρ, z) and f(ρ) are initial heat distribution and the geometric distribution

of the control action signal in the scaled spatial space, respectively. Next, we scale

time to normalize the thermal diffusivity

t =
κ

a2
t

and introduce the following variable

η =
a2

b2

So (3.8) to (3.13) become

vt(ρ, z, t) = vρρ(ρ, z, t) +
1

ρ
vρ(ρ, z, t) + η vzz(ρ, z, t) (3.14)

with

v(ρ, z, 0) = v0(ρ, z) (3.15)

v(1, z, t) = Ta (3.16)

vρ(0, z, t) = 0 (3.17)

vz(ρ, 1, t) = 0 (3.18)

vz(ρ, 0, t) = f(ρ)(U0 + δU (t)), (3.19)
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where 1 ≪ η because b ≪ a. Introducing a new function,

u = v − v,

where v is the steady-state profile and is a solution to the boundary value PDE

vρρ(ρ, z) +
1

ρ
vρ(ρ, z) + η vzz(ρ, z) = 0, (3.20)

with the following boundary conditions

v(1, z) = Tw (3.21)

vρ(0, z) = 0 (3.22)

vz(ρ, 1) = 0 (3.23)

vz(ρ, 0) = f(ρ) U0. (3.24)

Finally we obtain,

ut(ρ, z, t) = uρρ(ρ, z, t) +
1

ρ
uρ(ρ, z, t) + η uzz(ρ, z, t) (3.25)

with the following boundary condition

u(ρ, z, 0) = v0(ρ, z)− v0(ρ, z)
.
= u0(ρ, z) (3.26)

u(1, z, t) = 0 (3.27)

uρ(0, z, t) = 0 (3.28)

uz(ρ, 1, t) = 0 (3.29)

uz(ρ, 0, t) = f(ρ) δU(t) (3.30)

For the sake of readability, we use the same notation ρ, z and t that we used for

the original space instead of the scaled spatial and temporal variables ρ, z and

t. Obviously, the normalized system is expressed in the normalized spatial and

temporal spaces and the backward calculations are necessary before continuing with

any attempt to implement the results.

To summarize this section, the normalized PDE equation describing dynamic

heat distribution in PCR microchip is given by:

ut(ρ, z, t) = uρρ(ρ, z, t) +
1

ρ
uρ(ρ, z, t) + η uzz(ρ, z, t) (3.31)
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where u is temperature, ρ and z are normalized spatial variables, 0 ≤ ρ ≤ 1 and

0 ≤ z ≤ 1. η = a2

b2
and 1 ≪ η. Initial condition and boundary conditions for the

normalized model are as follows:

u(ρ, z, 0) = u0(ρ, z) (3.32)

u(1, z, t) = 0 (3.33)

uρ(0, z, t) = 0 (3.34)

uz(ρ, 1, t) = 0 (3.35)

uz(ρ, 0, t) = f(ρ) δU(t) (boundary actuation) (3.36)

where δU(t) is the normalized input power and f(ρ) describes the spatial distribution

of the actuator at the bottom boundary as follows:

f(ρ) =



















1 if k1
a
< ρ < (k1+k2)

a

0.5 if ρ = k1
a
or ρ = (k1+k2)

a

0 otherwise.

(3.37)

To simplify our notation, we will drop the dependence on time, t, from our

equations. Thus, we write, u(ρ, z), instead of u(ρ, z, t), etc.

3.2.2 Overview of Mathematical Background

The following formulas are repeatedly used in this chapter and throughout the chap-

ter 4 [102].

Leibniz Integral Rule

d

dα

∫ b(α)

a(α)
f(x, α)dx =

db(α)

dα
f(b(α), α) −

da(α)

dα
f(a(α), α) +

∫ b(α)

a(α)

∂

∂α
f(x, α)dx

(3.38)

Integration by Parts
∫ b

a

f(x)g′(x)dx =
(

f(x)g(x)

∣

∣

∣

∣

b

a

−

∫ b

a

f ′(x)g(x)dx (3.39)
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3.3 PDE Backstepping Boundary Observer Design

For the PDE system described by (3.31) to (3.36), the PDE backstepping boundary

observer has the following form [69] :

ût(ρ, z) = ûρρ(ρ, z) +
1

ρ
ûρ(ρ, z) + η ûzz(ρ, z) + ℓ(ρ, z) (u(ρ, 0) − û(ρ, 0)), (3.40)

along with the following boundary conditions:

û(1, z) = 0 (3.41)

ûρ(0, z) = 0 (3.42)

ûz(ρ, 1) = 0 (3.43)

ûz(ρ, 0) = f(ρ) δU + ℓa (u(ρ, 0) − û(ρ, 0)), (3.44)

where ℓ(ρ, z) and ℓa are the observer parameters. Introducing the observer error

ũ(ρ, z) = u(ρ, z) − û(ρ, z), calculating the PDE equation of the observer error dy-

namics results in:

ũt(ρ, z) = ũρρ(ρ, z) +
1

ρ
ũρ(ρ, z) + η ũzz(ρ, z)− ℓ(ρ, z) ũ(ρ, 0), (3.45)

with the following boundary conditions:

ũ(1, z) =0 (3.46)

ũρ(0, z) =0 (3.47)

ũz(ρ, 1) =0 (3.48)

ũz(ρ, 0) =− ℓaũ(ρ, 0). (3.49)

The observer design problem consists of determining the observer parameters

ℓ(ρ, z) and ℓa such that the estimation error asymptotically converges to zero at the

all points in the domain. We look for an integral transformation of the form

ũ(ρ, z) = w̃(ρ, z)−

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2) w̃(ξ1, ξ2) ξ1 dξ2dξ1, (3.50)

to transform the error dynamics into the following exponentially stable target sys-

tem:

w̃t(ρ, z) = w̃ρρ(ρ, z) +
1

ρ
w̃ρ(ρ, z) + η w̃zz(ρ, z), (3.51)
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with the following boundary conditions:

w̃(1, z) = 0 (3.52)

w̃ρ(0, z) = 0 (3.53)

w̃z(ρ, 1) = 0 (3.54)

w̃z(ρ, 0) = 0. (3.55)

We start differentiating the integral transformation (3.50) with respect to ρ as

follows:

ũρ(ρ, z) =w̃ρ(ρ, z) −
d

dρ

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1dξ2dξ1

=w̃ρ(ρ, z) −

∫ z

0

(

d

dρ

∫ 1

ρ

P (ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1dξ1

)

dξ2

=w̃ρ(ρ, z)

−

∫ z

0

(

−P (ρ, ρ, z, ξ2)w̃(ρ, ξ2) ρ+

∫ 1

ρ

Pρ(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1dξ1

)

dξ2

which results in

ũρ(ρ, z) =w̃ρ(ρ, z) +

∫ z

0
P (ρ, ρ, z, ξ2)w̃(ρ, ξ2) ρdξ2

−

∫ z

0

∫ 1

ρ

Pρ(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1dξ1dξ2.

(3.56)

Differentiating (3.56) with respect to ρ gives

ũρρ(ρ, z) = w̃ρρ(ρ, z)

+

∫ z

0

d

dρ
(P (ρ, ρ, z, ξ2)w̃(ρ, ξ2) ρ) dξ2

−

∫ z

0

d

dρ

(
∫ 1

ρ

Pρ(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1dξ1

)

dξ2

and

ũρρ(ρ, z) = w̃ρρ(ρ, z) +

∫ z

0
w̃(ρ, ξ2) ρ

d

dρ
P (ρ, ρ, z, ξ2) dξ2

+

∫ z

0
P (ρ, ρ, z, ξ2)w̃ρ(ρ, ξ2) ρ dξ2 +

∫ z

0
P (ρ, ρ, z, ξ2)w̃(ρ, ξ2)dξ2

−

∫ z

0

(

−Pρ(ρ, ρ, z, ξ2)w̃(ρ, ξ2)ρ+

∫ 1

ρ

Pρρ(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1 dξ1

)

dξ2
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which results in

ũρρ(ρ, z) = w̃ρρ(ρ, z) + 2

∫ z

0
Pρ(ρ, ρ, z, ξ2)w̃(ρ, ξ2) ρ dξ2

+

∫ z

0
Pξ1(ρ, ρ, z, ξ2)w̃(ρ, ξ2) ρ dξ2

+

∫ z

0
P (ρ, ρ, z, ξ2)w̃ρ(ρ, ξ2) ρ dξ2

+

∫ z

0
P (ρ, ρ, z, ξ2)w̃(ρ, ξ2)dξ2

−

∫ z

0

∫ 1

ρ

Pρρ(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1 dξ1dξ2.

(3.57)

Now we differentiate the integral transformation (3.50) with respect to z as follows:

ũz(ρ, z) =w̃z(ρ, z)−
d

dz

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1dξ2dξ1

=w̃z(ρ, z)−

∫ 1

ρ

(

d

dz

∫ z

0
P (ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ2

)

ξ1dξ1

=w̃z(ρ, z)

−

∫ 1

ρ

(

P (ρ, ξ1, z, z)w̃(ξ1, z) +

∫ z

0
Pz(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ2

)

ξ1dξ1

which results in:

ũz(ρ, z) =w̃z(ρ, z) −

∫ 1

ρ

P (ρ, ξ1, z, z)w̃(ξ1, z) ξ1 dξ1

−

∫ z

0

∫ 1

ρ

Pz(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1dξ1dξ2.

(3.58)

Differentiating again with respect to z we have

ũzz(ρ, z) = w̃zz(ρ, z)−

∫ 1

ρ

d

dz
(P (ρ, ξ1, z, z)w̃(ξ1, z)) ξ1 dξ1

−

∫ 1

ρ

(

d

dz

∫ z

0
Pz(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ2

)

ξ1dξ1

and

ũzz(ρ, z) = w̃zz(ρ, z) −

∫ 1

ρ

d

dz
(P (ρ, ξ1, z, z)) w̃(ξ1, z) ξ1 dξ1

−

∫ 1

ρ

P (ρ, ξ1, z, z)w̃z(ξ1, z) ξ1 dξ1

−

∫ 1

ρ

(

Pz(ρ, ξ1, z, z)w̃(ξ1, z) +

∫ z

0
Pzz(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ2

)

ξ1dξ1
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which results in

ũzz(ρ, z) = w̃zz(ρ, z) − 2

∫ 1

ρ

Pz(ρ, ξ1, z, z)w̃(ξ1, z) ξ1 dξ1

−

∫ 1

ρ

Pξ2(ρ, ξ1, z, z)w̃(ξ1, z) ξ1 dξ1

−

∫ 1

ρ

P (ρ, ξ1, z, z)w̃z(ξ1, z) ξ1 dξ1

−

∫ 1

ρ

∫ z

0
Pzz(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1 dξ2dξ1.

(3.59)

Next we differentiate the integral transformation (3.50) with respect to temporal

variable t as follows:

ũt(ρ, z) = w̃t(ρ, z) −

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃t(ξ1, ξ2) ξ1 dξ2dξ1, (3.60)

Using (3.51) in (3.60), we get:

ũt(ρ, z) = w̃t(ρ, z)

−

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ1ξ1(ξ1, ξ2) ξ1 dξ2dξ1 (3.61)

−

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ1(ξ1, ξ2) dξ2dξ1 (3.62)

− η

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ1ξ1(ξ1, ξ2) ξ1 dξ2dξ1. (3.63)

We separately calculate (3.61), (3.62) and (3.63). To calculate (3.61), we integration

by part,

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ1ξ1(ξ1, ξ2) ξ1 dξ2dξ1 =

∫ z

0

(
∫ 1

ρ

P (ρ, ξ1, z, ξ2)w̃ξ1ξ1(ξ1, ξ2) ξ1 dξ1

)

dξ2

=

∫ z

0

(

(

P (ρ, ξ1, z, ξ2)ξ1w̃ξ1(ξ1, ξ2)

∣

∣

∣

∣

1

ρ

−

∫ 1

ρ

d

dξ1

(

P (ρ, ξ1, z, ξ2)ξ1
)

w̃ξ1(ξ1, ξ2) dξ1

)

dξ2

=

∫ z

0

(

P (ρ, 1, z, ξ2)w̃ξ1(1, ξ2)− P (ρ, ρ, z, ξ2)ρw̃ξ1(ρ, ξ2)

−

∫ 1

ρ

Pξ1(ρ, ξ1, z, ξ2)w̃ξ1(ξ1, ξ2) ξ1 dξ1 −

∫ 1

ρ

P (ρ, ξ1, z, ξ2)w̃ξ1(ξ1, ξ2) dξ1

)

dξ2

(3.64)
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Again by using integration by parts we have,

∫ 1

ρ

Pξ1(ρ, ξ1, z, ξ2)w̃ξ1(ξ1, ξ2) ξ1 dξ1

=
(

Pξ1(ρ, ξ1, z, ξ2)ξ1w̃(ξ1, ξ2)

∣

∣

∣

∣

1

ρ

−

∫ 1

ρ

d

dξ1

(

Pξ1(ρ, ξ1, z, ξ2)ξ1

)

w̃(ξ1, ξ2) dξ1

= Pξ1(ρ, 1, z, ξ2)w̃(1, ξ2)− Pξ1(ρ, ρ, z, ξ2) ρ w̃(ρ, ξ2)

−

∫ 1

ρ

Pξ1ξ1(ρ, ξ1, z, ξ2)ξ1 w̃(ξ1, ξ2) dξ1 −

∫ 1

ρ

Pξ1(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ1

(3.65)

and

∫ 1

ρ

P (ρ, ξ1, z, ξ2)w̃ξ1(ξ1, ξ2) dξ1

=
(

P (ρ, ξ1, z, ξ2)w̃(ξ1, ξ2)

∣

∣

∣

∣

1

ρ

−

∫ 1

ρ

d

dξ1

(

Pξ1(ρ, ξ1, z, ξ2)
)

w̃(ξ1, ξ2) dξ1

=P (ρ, 1, z, ξ2)w̃(1, ξ2)− P (ρ, ρ, z, ξ2) w̃(ρ, ξ2)

−

∫ 1

ρ

Pξ1(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ1

(3.66)

Now by using (3.65) and (3.66) in (3.64) we have

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ1ξ1(ξ1, ξ2) ξ1 dξ2dξ1

=

∫ z

0

(

P (ρ, 1, z, ξ2)w̃ξ1(1, ξ2)− P (ρ, ρ, z, ξ2)ρw̃ξ1(ρ, ξ2)
)

dξ2

−

∫ z

0

(

Pξ1(ρ, 1, z, ξ2)w̃(1, ξ2)− Pξ1(ρ, ρ, z, ξ2) ρ w̃(ρ, ξ2)

−

∫ 1

ρ

Pξ1ξ1(ρ, ξ1, z, ξ2)ξ1 w̃(ξ1, ξ2) dξ1 −

∫ 1

ρ

Pξ1(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ1

)

dξ2

−

∫ z

0

(

P (ρ, 1, z, ξ2)w̃(1, ξ2)− P (ρ, ρ, z, ξ2) w̃(ρ, ξ2)

−

∫ 1

ρ

Pξ1(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ1

)

dξ2

(3.67)
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And finally we arrive to:

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ1ξ1(ξ1, ξ2) ξ1 dξ2dξ1

=

∫ z

0
P (ρ, 1, z, ξ2)

(

w̃ξ1(1, ξ2)− w̃(1, ξ2)
)

dξ2

+

∫ z

0
P (ρ, ρ, z, ξ2)

(

−w̃ξ1(ρ, ξ2)ρ+ w̃(ρ, ξ2)
)

dξ2

−

∫ z

0
Pξ1(ρ, 1, z, ξ2)w̃(1, ξ2)dξ2 +

∫ z

0
Pξ1(ρ, ρ, z, ξ2)w̃(ρ, ξ2) ρ dξ2

+

∫ z

0

∫ 1

ρ

(

Pξ1ξ1(ρ, ξ1, z, ξ2)ξ1 + 2Pξ1(ρ, ξ1, z, ξ2)
)

w̃(ξ1, ξ2)dξ1dξ2

(3.68)

To calculate the second part, (3.62), we integration by part,

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ1(ξ1, ξ2) dξ2dξ1 =

∫ z

0

(
∫ 1

ρ

P (ρ, ξ1, z, ξ2)w̃ξ1(ξ1, ξ2) dξ1

)

dξ2

=

∫ z

0

(

(

P (ρ, ξ1, z, ξ2)w̃(ξ1, ξ2)

∣

∣

∣

∣

1

ρ

−

∫ 1

ρ

d

dξ1

(

P (ρ, ξ1, z, ξ2)
)

w̃(ξ1, ξ2) dξ1

)

dξ2

=

∫ z

0
P (ρ, 1, z, ξ2)w̃(1, ξ2)dξ2

−

∫ z

0
P (ρ, ρ, z, ξ2)w̃(ρ, ξ2)dξ2

−

∫ z

0

∫ 1

ρ

Pξ1(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ1dξ2

(3.69)

To calculate the third part, (3.63), we write,

η

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ2ξ2(ξ1, ξ2) ξ1 dξ2dξ1

=η

∫ 1

ρ

(∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ2ξ2(ξ1, ξ2) dξ2

)

ξ1 dξ1

(3.70)
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But we have
∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ2ξ2(ξ1, ξ2) dξ2

=
(

P (ρ, ξ1, z, ξ2)w̃ξ2(ξ1, ξ2)

∣

∣

∣

∣

z

0

−

∫ z

0
Pξ2(ρ, ξ1, z, ξ2)w̃ξ2(ξ1, ξ2) dξ2

=
(

P (ρ, ξ1, z, ξ2)w̃ξ2(ξ1, ξ2)

∣

∣

∣

∣

z

0

−
(

Pξ2(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2)

∣

∣

∣

∣

z

0

+

∫ z

0
Pξ2ξ2(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ2

= P (ρ, ξ1, z, z)w̃ξ2(ξ1, z)− P (ρ, ξ1, z, 0)w̃ξ2(ξ1, 0)

− Pξ2(ρ, ξ1, z, z)w̃(ξ1, z) + Pξ2(ρ, ξ1, z, 0)w̃(ξ1, 0)

+

∫ z

0
Pξ2ξ2(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) dξ2

(3.71)

So by using (3.71) in (3.70) we finally arrive to

η

∫ 1

ρ

∫ z

0
P (ρ, ξ1, z, ξ2)w̃ξ2ξ2(ξ1, ξ2) ξ1 dξ2dξ1

= η

∫ 1

ρ

P (ρ, ξ1, z, z)w̃ξ2(ξ1, z)ξ1 dξ1

− η

∫ 1

ρ

P (ρ, ξ1, z, 0)w̃ξ2(ξ1, 0)ξ1 dξ1

− η

∫ 1

ρ

Pξ2(ρ, ξ1, z, z)w̃(ξ1, z)ξ1 dξ1

+ η

∫ 1

ρ

Pξ2(ρ, ξ1, z, 0)w̃(ξ1, 0)ξ1 dξ1

+ η

∫ 1

ρ

∫ z

0
Pξ2ξ2(ρ, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1 dξ2 dξ1

(3.72)

Now, using (3.68), (3.69) and (3.72), (3.60) can be simplified and written as
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follows:

ũt(ρ, z) = w̃t(ρ, z)

−

∫ z

0
P (ρ, 1, z, ξ2)w̃ξ1(1, ξ2)dξ2

+

∫ z

0
P (ρ, ρ, z, ξ2)w̃ξ1(ρ, ξ2)ρdξ2

+

∫ z

0
Pξ1(ρ, 1, z, ξ2)w̃(1, ξ2)dξ2

−

∫ z

0
Pξ1(ρ, ρ, z, ξ2)w̃(ρ, ξ2) ρ dξ2

−

∫ z

0

∫ 1

ρ

(

Pξ1ξ1 +
1

ξ1
Pξ1 + ηPξ2ξ2

)

w̃(ξ1, ξ2)ξ1dξ1dξ2

− η

∫ 1

ρ

P (ρ, ξ1, z, z)w̃ξ2(ξ1, z)ξ1 dξ1

+ η

∫ 1

ρ

P (ρ, ξ1, z, 0)w̃ξ2(ξ1, 0)ξ1 dξ1

+ η

∫ 1

ρ

Pξ2(ρ, ξ1, z, z)w̃(ξ1, z)ξ1 dξ1

− η

∫ 1

ρ

Pξ2(ρ, ξ1, z, 0)w̃(ξ1, 0)ξ1 dξ1.

(3.73)

From (3.50) we have

ũ(ρ, 0) = w̃(ρ, 0). (3.74)

Subtracting (3.51) from (3.45) and using (3.52), (3.53), (3.54), (3.55) and (3.74) we

obtain,

∫ z

0

∫ 1

ρ

(

Pξ1ξ1 +
1

ξ1
Pξ1 + ηPξ2ξ2

)

w̃(ξ1, ξ2) ξ1 dξ1dξ2

−

∫ z

0

∫ 1

ρ

(

Pρρ +
1

ρ
Pρ + ηPzz

)

w̃(ξ1, ξ2) ξ1 dξ1dξ2

+

∫ z

0
P (ρ, 1, z, ξ2)w̃ξ1(1, ξ2)dξ2

+ η

∫ 1

ρ

Pξ2(ρ, ξ1, z, 0)w̃(ξ1, 0)ξ1 dξ1

+ 2

∫ z

0

(

ρ
d

dρ
P (ρ, ρ, z, ξ2) + P (ρ, ρ, z, ξ2)

)

w̃(ρ, ξ2) dξ2

− 2η

∫ 1

ρ

d

dz
P (ρ, ξ1, z, z)w̃(ξ1, z) ξ1 dξ1

= ℓ(ρ)w̃(ρ, 0).

(3.75)
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Boundary conditions provide two additional conditions. From (3.49) we have

ũz(ρ, 0) = −ℓa ũ(ρ, 0). (3.76)

Setting z = 0 in (3.58) and using (3.76) we arrive to,

ℓa w̃(ρ, 0) =

∫ 1

ρ

P (ρ, ξ1, 0, 0)w̃(ξ1, 0) ξ1 dξ1. (3.77)

Applying transformation (3.50) to boundary condition (3.47) and using (3.53) , we

get

ũρ(0, z) = −

∫ z

0

∫ 1

0
Pρ(0, ξ1, z, ξ2)w̃(ξ1, ξ2) ξ1dξ1dξ2 = 0. (3.78)

Equation (3.78) provides a new boundary condition for kernel function P (ρ, ξ1, z, ξ2),

Pρ(0, ξ1, z, ξ2) = 0. (3.79)

Applying transformation (3.50) to the boundary condition (3.48) and using (3.54),

we get

ũz(ρ, 1) = −

∫ 1

ρ

(

P (ρ, ξ1, 1, 1)w̃(ξ1, 1)

+

∫ 1

0
Pz(ρ, ξ1, 1, ξ2)w̃(ξ1, ξ2)dξ2

)

ξ1dξ1

= 0,

(3.80)

so we have

P (ρ, ξ1, 1, 1)w̃(ξ1, 1) +

∫ 1

0
Pz(ρ, ξ1, 1, ξ2)w̃(ξ1, ξ2)dξ2 = 0. (3.81)

Which provides the following new conditions for kernel function P (ρ, ξ1, z, ξ2),:

P (ρ, ξ1, 1, 1) = 0 (3.82)

Pz(ρ, ξ1, 1, ξ2) = 0. (3.83)

To eliminate w from the equations, we proceed as follows: using (3.77) in (3.75) we
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have,

∫ z

0

∫ 1

ρ

(

Pξ1ξ1 +
1

ξ1
Pξ1 + ηPξ2ξ2

)

w̃(ξ1, ξ2) ξ1 dξ1dξ2

−

∫ z

0

∫ 1

ρ

(

Pρρ +
1

ρ
Pρ + ηPzz

)

w̃(ξ1, ξ2) ξ1 dξ1dξ2

+

∫ z

0
P (ρ, 1, z, ξ2)w̃ξ1(1, ξ2)dξ2

+ η

∫ 1

ρ

Pξ2(ρ, ξ1, z, 0)w̃(ξ1, 0)ξ1 dξ1

+ 2

∫ z

0

(

ρ
d

dρ
P (ρ, ρ, z, ξ2) + P (ρ, ρ, z, ξ2)

)

w̃(ρ, ξ2) dξ2

− 2η

∫ 1

ρ

d

dz
P (ρ, ξ1, z, z)w̃(ξ1, z) ξ1 dξ1

+

∫ 1

ρ

(

ηPξ2(ρ, ξ1, z, 0) −
ℓ(ρ)

ℓa
P (ρ, ξ1, 0, 0)

)

w̃(ξ1, 0) ξ1 dξ1

= 0.

(3.84)

Setting every part of (3.84) equal to zero and adding the results to (3.79), (3.82),

and (3.83), we arrive to PDE equation describing the kernel function, P (ρ, ξ1, z, ξ2).

Observer parameters ℓ(ρ) and ℓa can be found by setting the last part of (3.84)

equal to zero as follows:
ℓ(ρ)

ℓa
=

η Pξ2(ρ, ξ1, z, 0)

P (ρ, ξ1, 0, 0)
. (3.85)

We summarize the results in a theorem stating that the observer parameters

ℓ(ρ, z) and ℓa can be defined by the integral kernel P (ρ, ξ1, z, ξ2).

Theorem 1. Consider that the PDE observer error dynamics in 2-D cylindrical

coordinates can be defined by (3.45) along with the integral transformation (3.50)

that transforms the error dynamics into (3.51), where P (ρ, ξ1, z, ξ2) is the kernel of

the integral transformation with 0 ≤ ρ ≤ ξ1 ≤ 1 and 0 ≤ ξ2 ≤ z ≤ 1. Under these

conditions the observer parameters ℓ(ρ, z) and ℓa can be explicitly obtained from the

kernel function, P (ρ, ξ1, z, ξ2), and the kernel function itself can be calculated by

solving the following PDE equation:

Pρρ +
1

ρ
Pρ + ηPzz = Pξ1ξ1 +

1

ξ1
Pξ1 + ηPξ2ξ2 , (3.86)
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with following boundary conditions:

ρ
d

dρ
P (ρ, ρ, z, ξ2) + P (ρ, ρ, z, ξ2) = 0 (3.87)

d

dz
P (ρ, ξ1, z, z) = 0 (3.88)

Pρ(0, ξ1, z, ξ2) = 0 (3.89)

Pz(ρ, ξ1, 1, ξ2) = 0 (3.90)

P (ρ, 1, z, ξ2) = 0 (3.91)

P (ρ, ξ1, 1, 1) = 0. (3.92)

Remarks A simple inspection of the PDE (3.86)–(3.92) shows it has four independent

variables. Solving this 4-D PDE is, in general, very difficult either analytically or

numerically. In the next section, we use a conformal transformation to simplify

(3.86) to a 2-D PDE of much simpler solution.

3.4 Transforming the Model Structure

3.4.1 Motivation

We begin by investigating the heat distribution in our problem: Fig. 3.3 shows the

heat flux lines and constant temperature lines in our microchip. Heat flux lines

and constant temperature lines are the solutions of the orthogonal functions in an

infinite series describing the heat distribution in the microchip. Therefore, heat flux

lines and constant temperature lines always intersect at 90◦angles.

x

y

FE

D C

BA

Figure 3.3: Initial geometry

The central idea to our approach consists of finding a transformation that maps

the present domain structure into a new one in which the flux lines and the constant
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temperature lines are straight lines intersecting at 90◦angles. According to the

standard results in the theory of complex variables, such transformation is known as

conformal transformation or conformal mapping, [18]. Indeed, conformal mappings

are characterized by the angle preserving property, meaning that any two curves

before and after the transformation intersect at the same angle. A key element in

the process of using the conformal mapping in a heat distribution problem is the

fact that the Laplace equation describing the heat distribution is invariant under a

conformal mapping, [18].

Since this section heavily relies on results from complex analysis, we introduce

the notation used throughout. C denotes the field of complex numbers. For any

z ∈ C, Re(z) and Im(z) denote the real and imaginary parts of z, respectively.

The modulus of z is denoted as |z| = [Re2(z) + Im2(z)]
1
2 . Unless otherwise stated,

all the constants have complex values and every function is a real function of a

complex-variable. {Ωz; z1, z2, z3, z4} denotes a generalized quadrilateral in complex

plane where Ωz is a Jordan region (i.e., bounded by the image of the unit circle

under a continuous, one-to-one function) and four points z1,z2,z3 and z4 are lying

in order on the boundary.

Throughout the rest of this section we will make use of standard results in the

theory of complex analysis. For completeness, the main definitions and related

theorems on conformal mapping are provided in the next section.

3.4.2 Background Material: Conformal Mapping

In this section, we briefly summarize the main relevant definitions and theorems in

complex analysis. Let C represent the field of complex numbers. A set Ω ∈ C is

said to be a domain if it is open and connected. A function f : C → C is said to be

analytic in a domain Ω if it differentiable at each point in the domain.

Definition 1. Let Ω and Ω1 be two domains in C and let f : Ω → Ω1. Let γ1(t)

and γ2(t) in Ω be two differentiable curves defined on the time interval (−ǫ, ǫ) and

assume that γ1(t) and γ2(t) intersect at t = 0. The mapping f is said to preserve

angles if the angle formed by the tangents to γ1(0) and γ2(0) is equal to the angle

formed by the tangents to f ◦ γ1 and f ◦ γ2 at t = 0. A Conformal map from Ω to

Ω1 is a one-to-one, onto, differentiable function that preserves angles.
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Theorem 2. A function f : C → C is conformal in a domain Ω ⊂ C if and only if

it is analytic in Ω and f ′(z) 6= 0 in Ω.

A central result in the conformal mapping is Riemann Mapping Theorem which

can be stated as follows:

Theorem 3. (Riemann Mapping Theorem) Any simply-connected domain Ω ⊂ C,

whose boundary consists of more than one point, can be mapped conformally onto

the unit disc D1 := {z ∈ C : |z| < 1}. Moreover, the mapping f is unique provided

that f(z0) = 0 and f ′(z0) > 0 for z0 ∈ Ω [71].

In practise, however, the unit disc is not always the target domain. We might

be interested in other forms of the target domain. This can be achieved using the

chain property:

Corollaries 1. (Chain Property) Any two simply-connected domains Ω1 and Ω2 can

be mapped conformally onto each other. The mapping Ω1 → Ω2 is unique up to the

choice of three real parameters.

The Riemann mapping theorem considers the interior point of the domain but

does not provide any information about the boundary points. The question is an-

swered in the next theorem:

Theorem 4. (Carathéodory-Osgood) Let Ω be a Jordan domain, i.e. a domain

bounded by a closed curve, or Jordan curve, and let f be a conformal mapping

f : Ω → D1. Then, f can be extended one-to-one continuously to the closure Ω̄1 :=

Ω ∪ ∂Ω of the domain Ω. Moreover, any three point on ∂Ω can be mapped on any

three preassigned points (of the same orientation) on the unit circle ∂D1.

To probe how the Laplace equation is invariance under the conformal mapping,

we first recall the definition of harmonic functions:

Definition 2. A twice continuously differentiable real-valued function u(x, y) ∈

C2(Ω) of two real variables x and y is said to be harmonic in a domain Ω of the

xy-plane if it satisfies Laplace equation, i.e. ∇2u = 0 [18] throughout Ω.

Theorem 5. Suppose that f(z) = u(x, y) + iy(x, y) is an analytic function in a

domain Ω. It follows that u(x, y) and v(x, y) are harmonic functions.
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The function u(ρ, z) in (3.103) that describes the heat distribution in a given

domain is a harmonic function of the real variables ρ and z. We use these variables

to construct a complex function which is analytic.

Central to the theorem 5 is the following theorem which states the invariance of

the Laplace equation under conformal mapping.

Theorem 6. Suppose that an analytic function w = f(z) = u(x, y) + iy(x, y) maps

a Domain Ωz in the z-plane onto a domain Ωw in the w-plane. If h(u, v) is a

harmonic function defined on Ωw, then the function H(x, y) = h(u(x, y), v(x, y)) is

a harmonic function in Ωz.

The important point about theorem 6 is the fact that the boundary conditions for

both of the harmonic functions are of the Dirichlet type. In other words, we have

h = h0 on the boundary. In contrast, practical problems can impose boundaries

of Neumann type or even of the mixed type. The following theorem provides the

necessary result in that case.

Theorem 7. Suppose that a transformation w = f(z) = u(x, y)+ iy(x, y) is confor-

mal on a smooth arc γ, and let Γ be the image of γ under that transformation. If ,

along Γ, a function h(u, v) satisfies either of the conditions h = h0 or dh
dn

= 0 where

h0 is a real constant and dh
dn

denotes derivatives normal to Γ, then, along γ, the

function H(x, y) = h(u(x, y), v(x, y)) satisfies the corresponding conditions H = h0

or dH
dN

= 0 where dH
dN

denotes derivatives normal to γ.

An important aspect of theorem 7 is the fact that it only considers Neumann

condition equal to zero. For non-zero Neumann conditions (dh
dn

= cte 6= 0) we can

write dh
dn

= (gradh).n and dH
dN

= (gradH).N which result it the following equation

[18],

‖gradH(x, y)‖ = ‖grad h(u, v)‖ · ‖f ′(z)‖. (3.93)

Next, we introduce a transformation known as Schwarz-Christoffel transforma-

tion which helps solve an important class of the boundary value problems that

involves regions with polygonal boundaries. The Schwarz-Christoffel transforma-

tion provides the formula to map the upper half-plane Re{z} > 0 (or the unit disc

|z| < 1) in the z-plane onto the interior of a given polygon in the w-plane.
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Definition 3. (Schwarz-Christoffel Transformation) Consider a polygon in the w

plane having vertices at w1, w2, · · · , wn with corresponding interior angles α1, α2, · · · , αn,

respectively. Let points w1, w2, · · · , wn be the images of the points x1, x2, · · · , xn on

the real axis of the z-plane. A transformation that maps the upper half region of the

z-plane onto the interior of the polygon of the w-plane and the real axis onto the

boundary of the polygon is given by:

dw

dz
= C

n
∏

i=1

(z − xi)
αi
π
−1, (3.94)

or in its integral form

w = f(z) = C0 + C

∫ z

z0

n
∏

i=1

(ζ − xi)
αi
π
−1dζ, (3.95)

where C and f(z0) are complex constant.

The inverse Schwarz-Christoffel transformation is given by

z = f [−1](w) = z0 + C ′

∫ w

w0

n
∏

i=1

(ζ − wi)
µi
π
−1dζ, (3.96)

where µi = π−αi. The main practical difficulty with (3.95) is that except in special

cases, the prevertices xi cannot be computed analytically. Three of the prever-

tices, including the already fixed zn, may be be chosen arbitrarily. The remaining

n − 3 prevertices are then determined uniquely and can be obtained by solving a

system of nonlinear equations. This is known as the Schwarz-Christoffel param-

eter problem, and in particular, its solution is the first step in calculation of any

Schwarz-Christoffel mapping function. Once the parameter problem is solved, the

multiplicative constant C can be found, and the mapping function f and its inverse

can be computed numerically.

3.4.3 Mapping the System Domain

We are interested in a transformation to map the six vertex [A,B,C,D,E, F ] poly-

gon shown in Fig. 3.3 onto a new coordinate system. The Riemann mapping theorem

ensures that a mapping function exists taking the initial domain shown in Fig. 3.3

to the simpler domain shown in Fig. 3.5, [2].

The six segments that define this polygon, namely [AB], [BC], [CD], [DE],

[EF ], and [FA] intersect at points B, C, D, and E, with 90◦ angles and at points F
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x

y

AB

C D E F

Figure 3.4: Auxiliary geometry

x

y

F E D C

BA

Figure 3.5: Final geometry

and A with 180◦ angles. To this end, we break down the problem into the following

two steps:

1. find the mapping f1 which transforms the initial geometry shown in Fig. 3.3

to the auxiliary geometry shown in Fig. 3.4.

2. find the mapping f2 which transforms the auxiliary geometry to the final

geometry depicted in Fig. 3.5.

The initial geometry is a generalized quadrilateral defined byQ := {Ωw;A,B,C, F}

resembling the domain of system (3.31)–(3.36). The auxiliary geometry, defined by

R := {Ωz; ã+ib̃,−ã+ib̃,−ã, ã}, is a rectangle symmetrically placed about the y-axis

in z-plane depicted in Fig. 3.4.

The first step itself can be broken down into three steps. We first find the

mapping f11 which maps Q to upper half plane denoted by H+. Mapping f11 is

given by inverse Schwarz-Christoffel transformation [71]:

f11(w) = C0 + C

∫ w

w0

6
∏

i=1

(ζ − wi)
αi
π dζ, (3.97)

79



where αi, i = 1, · · · , 6 are the interior angles of wi vertices in counter-clockwise

order, C and C0 are complex constants and w0 is the image of the axes center in

the target domain. The process of finding unknown parameters in (3.97) is known

as Schwarz-Christoffel parameter problem [37].

The mapping f11 transforms vertices A,B,C and F into z1, z2, z3 and z4 which

are laid in order on the real axis.

Next we use the Möbius transformation, f12, to reorder z1, z2, z3 and z4 so

that they are placed at 1
k
, − 1

k
, −1 and 1, respectively for some k ∈ (0, 1). This

transformation is essential to the next step.

The next step is to find mapping f13 to map the domain represented by H+ and

critical points in 1
k
, − 1

k
, −1 and 1 onto an auxiliary domain R.

This transformation is given by elliptic integral of the first kind [71],

f13(z) =

∫ z

0

dζ
√

1− ζ2
√

1− k2ζ2
, (3.98)

where k is uniquely defined by the aspect ratio of the rectangle R. By preassigning

k, the aspect ratio of the rectangle R is given by:

b̃

2ã
=

K(k)

K ′(k)
, (3.99)

where K(k) is the complete elliptic integral of the first kind and K ′(k) is complete

complementary elliptic integral of the first kind, [90]:

K(k) =

∫ 1

0

dζ
√

1− ζ2
√

1− k2ζ2
(3.100)

K ′(k) =

∫ 1
k

0

dζ
√

1− ζ2
√

1− k2ζ2
. (3.101)

The ratio K(k)
K ′(k) for k ∈ (0, 1) can be found from the table given in [1] or numerical

calculation. Therefore, the composition of f11, f12 and f13 construct mapping f1,

f1(z) = f13 ◦ f12 ◦ f11(z). (3.102)

Transformation from auxiliary geometry to final geometry can be easily carried

out by the following linear mapping performing rotation, translation and stretching:

f2(z) =
1

b̃
z + 1−

ã

b̃
+ i,
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where ã and b̃ are calculated as ã = 1.7017 and b̃ = 2.1079.

Finally, the mapping g(z) from the initial geometry to the final geometry is given

by the composition of the mapping f2 and the inverse mapping f1, as follows:

g(z) := f2 ◦ f1(z).

Calculation of the forward and inverse Schwarz-Christoffel mappings require cer-

tain numerical considerations. These considerations are well implemented it SC

Toolbox for MATLAB written by T. A. Driscoll [37, 36], which is our main tool in

the numerical calculation of the function g(z). We can now proceed to the design

of the PDE backstepping boundary observer in the new coordinate system.
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3.5 Observer Design for the Transformed System

The observer synthesis follows the same method that we used in section 3.3 with

an important difference that the modified system has a modified geometry which

corresponds to a cylindrical domain in three dimensions. This domain is depicted

in Fig. 3.6.

ρ

z

ϕ

b

1

a

Figure 3.6: Mapped domain structure

The major features that differentiate the domain shown in Fig. 3.6 from the

original domain structure are:

• The heating power is applied from the inside boundary and is absorbed through

the outside boundary.

• Lower and upper boundaries are isolated,

• A Neumann boundary condition defines the amount of the heat power applied

to the domain while the outside boundary is kept at a constant temperature,

• A Dirichlet boundary condition describes the outside boundary of the cylinder.

• The structure is symmetric with respect to both ϕ and z axes

These conditions result in a PDE equation for the heat distribution problem

which is simpler than the equation for heat distribution in the original system.

ut = uρρ +
1

ρ
uρ, (3.103)
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where a ≤ ρ ≤ 1 and boundary conditions are as follows:

u(1) = 0 (3.104)

uρ(a) = δU (3.105)

u(a) = Measurement. (3.106)

With these modifications, the resulting PDE backstepping design is much easier

than the original problem. We propose the following observer for the system (3.103):

ût = ûρρ +
1

ρ
ûρ + ℓ(ρ) (u(a)− û(a)) (3.107)

û(1) = 0 (3.108)

ûρ(a) = δU + ℓa (u(a)− û(a)) , (3.109)

where ℓ(ρ), and ℓa, are the coefficients to be designed. Define the observer error:

ũ(ρ) = u(ρ)− û(ρ), ρ ∈ (a, 1) (3.110)

which satisfies the following PDE:

ũt = ũρρ +
1

ρ
ũρ − ℓ(ρ)ũ(a) (3.111)

ũ(1) = 0 (3.112)

ũρ(a) = −ℓaũ(a). (3.113)

Equations (3.111)–(3.113) define the observer error dynamics. The coefficients

ℓ(ρ) and ℓa should be designed to stabilize (3.111). We look for an integral trans-

formation of the following form:

ũ(ρ) = w̃(ρ)−

∫ ρ

a

P (ρ, ζ)w̃(ζ)ζdζ, (3.114)

that transforms (3.111)–(3.113) into the following exponentially stable target system

with desired dynamics:

w̃t = w̃ρρ +
1

ρ
w̃ρ − λ2w̃ (3.115)

w̃(1, z) = 0 (3.116)

w̃ρ(a, z) = 0. (3.117)
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The function P (ρ, ζ) is the kernel of the integral equation proposed in (3.114).

The parameter λ defines the observer convergence speed. Applying the standard

PDE backstepping observer design, we obtain the following result:

Theorem 8. Consider the PDE observer error dynamic defined by (3.111) along

with the integral transformation (3.114) that transform the error dynamics into

(3.115)–(3.117), where P (ρ, ζ) as the kernel of the integral transformation with

a ≤ ζ ≤ ρ ≤ 1. Then observer parameters ℓ(ρ) and ℓa can be explicitly calcu-

lated by kernel function, P (ρ, ζ), and the kernel function itself can be calculated by

solving the following PDE equation:

Pρρ(ρ, ζ) +
1

ρ
Pρ(ρ, ζ) + λ2P (ρ, ζ) = Pζζ(ρ, ζ) +

1

ζ
Pζ(ρ, ζ), (3.118)

with the following boundary conditions:

P (ρ, ρ) =
1

2
λ2
(

1−
1

ρ

)

(3.119)

P (1, ζ) = 0. (3.120)

Proof. We start by taking of time derivative of integral transformation (3.114) and

substituting wt with its description in (3.115).

ũt = w̃t −

∫ ρ

a

P (ρ, ζ)
(

w̃ζζ +
1

ζ
w̃ζ − λ2w̃

)

ζdζ

= w̃ρρ +
1

ρ
w̃ρ − λ2w̃

−

∫ ρ

a

P (ρ, ζ)ζw̃ζζdζ −

∫ ρ

a

P (ρ, ζ)w̃ζdζ +

∫ ρ

a

P (ρ, ζ)λ2ζw̃dζ.

It follows that
∫ ρ

a

P (ρ, ζ)ζw̃ζζdζ =
(

P (ρ, ζ)ζw̃ζ

∣

∣

∣

∣

ρ

a

−

∫ ρ

a

(

P (ρ, ζ) + ζPζ(ρ, ζ)
)

w̃ζdζ

=ρP (ρ, ρ)w̃ρ(ρ)− aP (ρ, a)w̃ρ(a)−

∫ ρ

a

P (ρ, ζ)w̃ζdζ

−
(

Pζ(ρ, ζ)ζw̃

∣

∣

∣

∣

ρ

a

+

∫ ρ

a

(

Pζ(ρ, ζ) + ζPζζ(ρ, ζ)
)

w̃dζ

=ρP (ρ, ρ)w̃ρ(ρ)−

∫ ρ

a

P (ρ, ζ)w̃ζdζ

− ρPζ(ρ, ρ)w̃(ρ) + aPζ(ρ, a)w̃(a)

+

∫ ρ

a

(

Pζ(ρ, ζ) + ζPζζ(ρ, ζ)
)

w̃dζ,
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which results the following equation for ũt,

ũt =w̃ρρ +
1

ρ
w̃ρ − λ2w̃ − ρP (ρ, ρ)w̃ρ(ρ)

+ ρPζ(ρ, ρ)w̃(ρ)− aPζ(ρ, a)w̃(a)

−

∫ ρ

a

(

Pζ(ρ, ζ) + ζPζζ(ρ, ζ)− λ2ζP (ρ, ζ)
)

w̃dζ.

(3.121)

For calculation of ũρ, we take derivative of both sides of (3.114). The next step

is calculating ũρ.

ũρ(ρ) = w̃ρ(ρ)−
d

dρ

∫ ρ

a

P (ρ, ζ)w̃(ζ)ζdζ

= w̃ρ(ρ)− ρP (ρ, ρ)w̃(ρ)−

∫ ρ

a

Pρ(ρ, ζ)w̃(ζ)ζdζ.

(3.122)

We can use (3.122) to find the value of ũρ(ρ) at ρ = a

ũρ(a) = w̃ρ(a)− aP (a, a)w̃(a)−

∫ a

a

Pρ(a, ζ)w̃(ζ)ζdζ

= −aP (a, a)w̃(a).

(3.123)

But from (3.113) and the fact that ũ(a) = w̃(a), we have

ũρ(a) = −ℓaũ(a) = −ℓaw̃(a). (3.124)

So we obtain the relation between the observer parameter ℓa and the observer

kernel function P (ρ, ζ) as follows:

ℓa = aP (a, a). (3.125)

The next step is calculating ũρρ. To find ũρρ, we take derivative of (3.122):

ũρρ(ρ) =w̃ρρ(ρ)−
d

dρ

(

ρP (ρ, ρ)w̃(ρ)
)

−
d

dρ

∫ ρ

a

Pρ(ρ, ζ)w̃(ζ)ζdζ

=w̃ρρ(ρ)− P (ρ, ρ)w̃(ρ)− ρP (ρ, ρ)w̃ρ(ρ)

− ρw̃(ρ)
d

dρ
P (ρ, ρ) − ρPρ(ρ, ρ)w̃(ρ)

−

∫ ρ

a

Pρρ(ρ, ζ)w̃(ζ)ζdζ.

(3.126)

Now by substituting the equation for ũt, ũρ and ũρρ which are calculated in
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(3.121), (3.122) and (3.126) in (3.111), the equation (3.111) becomes:

w̃ρρ+
1

ρ
w̃ρ − λ2w̃ − ρP (ρ, ρ)w̃ρ(ρ) + ρPζ(ρ, ρ)w̃(ρ)− aPζ(ρ, a)w̃(a)

−

∫ ρ

a

(

Pζ(ρ, ζ) + ζPζζ(ρ, ζ)− λ2ζP (ρ, ζ)
)

w̃dζ

=ũρρ +
1

ρ
ũρ − ℓ(ρ)ũ(a)

=w̃ρρ(ρ)− P (ρ, ρ)w̃(ρ)− ρP (ρ, ρ)w̃ρ(ρ)− ρw̃(ρ)
d

dρ
P (ρ, ρ)

− ρPρ(ρ, ρ)w̃(ρ)−

∫ ρ

a

Pρρ(ρ, ζ)w̃(ζ)ζdζ

+
1

ρ
w̃ρ(ρ)− P (ρ, ρ)w̃(ρ)−

∫ ρ

a

1

ρ
Pρ(ρ, ζ)w̃(ζ)ζdζ

− ℓ(ρ)ũ(a).

(3.127)

Replacing ũ(a) with w̃(a) and rearranging (3.127) we arrive to the following

equation:
(

ℓ(ρ)− aPζ(ρ, a)
)

w̃(a)

+ 2
(

ρ
d

dρ
P (ρ, ρ) + P (ρ, ρ)−

1

2
λ2
)

w̃(ρ)

+

∫ ρ

a

(

Pρρ(ρ, ζ) +
1

ρ
Pρ(ρ, ζ)− Pζζ(ρ, ζ)−

1

ζ
Pζ(ρ, ζ) + λ2P (ρ, ζ)

)

w̃(ζ)ζdζ = 0.

(3.128)

From the equation 3.128 it would appear that the kernel function P (ρ, ζ) has to

satisfy the following PDE

Pρρ(ρ, ζ) +
1

ρ
Pρ(ρ, ζ) + λ2P (ρ, ζ) = Pζζ(ρ, ζ) +

1

ζ
Pζ(ρ, ζ)

ρ
d

dρ
P (ρ, ρ) + P (ρ, ρ) =

1

2
λ2.

(3.129)

The boundary condition introduced in (3.129) can be written as follows:

d

dρ
(ρP (ρ, ρ)) =

1

2
λ2. (3.130)

It is easy to see that the solution of (3.130) has a solution as follow:

P (ρ, ρ) =
1

2
λ2 +

c

ρ
, (3.131)

where c is a constant to be defined. It is easy to see that (3.128) also provide

the relation between output injection function ℓ(ρ) and kernel function P (ρ, ζ) as

follows:

ℓ(ρ) = aPζ(ρ, a). (3.132)
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An additional boundary condition comes by substituting ρ = 1 in (3.114):

ũ(1) = w̃(1)−

∫ 1

a

P (1, ζ)w̃(ζ)ζdζ, (3.133)

that results the following boundary condition:

P (1, ζ) = 0, (3.134)

which also means

P (1, 1) = 0. (3.135)

By using (3.135) in (3.131), we find the constant c,

c = −
1

2
λ2. (3.136)

Combining (3.129), (3.131), (3.136) and (3.134), the PDE equation that describes

the kernel function P (ρ, ζ) is obtain as follows:

Pρρ(ρ, ζ) +
1

ρ
Pρ(ρ, ζ) + λ2P (ρ, ζ) = Pζζ(ρ, ζ) +

1

ζ
Pζ(ρ, ζ),

with following boundary conditions:

P (ρ, ρ) =
1

2
λ2
(

1−
1

ρ

)

P (1, ζ) = 0.

The domain for kernel function P (ρ, ζ) is described by

a ≤ρ ≤ 1

a ≤ζ ≤ ρ.

Exponential stability of the target system (3.115)–(3.117) and invertibility of the

transformation (3.114) imply exponential stability of (3.111) [111].

The domain of the PDE equation describing the integral kernel function is de-

picted in Fig. 3.7. Boundary conditions are shown at each boundary. The rela-

tion between observer parameters ℓ(ρ) and ℓa with bottom boundary and point at

ρ = ζ = a are given as well. The observer parameter ℓa can be obtained from

87



ρ

ζ

1

1

a

a

P (1, ζ) = 0
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2(1− 1
ρ
)

Figure 3.7: Domain of the observer kernel function, P (ρ, ζ)

(3.125) and the boundary condition (3.119) as follows:

ℓa =
1

2
λ2
(

a− 1
)

. (3.137)

To complete the design we need to find the observer output injection parame-

ter ℓ(ρ), given in (3.132). For that, however, we need the kernel function P (ρ, ζ)

which requires solving the PDE equation (3.118). Since we do not have an analyti-

cal solution, we proceed with a numerical approach. The process of development of

a numerical method to solve (3.118) and to calculate the observer parameters are

discussed in detail in the next chapter.
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3.6 Summary

In this chapter we considered the observer design problem for the PCR-LOC mi-

crochip described using partial differential equations. In the first place, we proposed

an extension of the backstepping approach to observer design for two dimensional

parabolic PDE systems. The extension is made possible thanks to the introduction

of a conformal transformation that significantly affects the boundary conditions and

that reduces the two-dimensional problem to one in one-dimension that has a sim-

pler solution. We showed that the use of the conformal transformation technique,

significantly reduces the calculation burden and makes it possible to design a PDE

backstepping boundary observer in a complex cylindrical domain structure.

Simulating the PDE observer is not trivial and needs developing numerical tech-

niques to solve for the kernel function and to calculate the coupled PDE system

consisted of main system and the observer. The next chapter addresses the devel-

opment of the numerical techniques and simulation of the PDE observer.
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Chapter 4

Simulation

4.1 Introduction

The process of simulation of the PDE observer and controller designs are neither

as simple nor as well developed as their ODE counterparts. A brief introduction of

available numerical methods for PDE equations can be found in a paper by Tadmor

[113]. To be able to simulate the results of PDE backstepping boundary observer

design discussed in Chapter 3, some preliminary results are necessary:

• Full definition of the observer, requires the solution of observer kernel function

P (ρ, ζ) and hence arriving to ℓ(ρ) and ℓa.

• Simulation of the interconnected system, composed of the PCR model and the

PDE backstepping boundary observer requires the development of a numerical

technique.

• A precise characterization experiment in addition to a customized signal pro-

cessing technique is required to verify the simulation results.

In this chapter, the required steps to evaluate the PDE backstepping boundary

observer design are presented and the results are discussed in detail.

4.2 Observer Kernel Calculation

At the first step, we need to calculate the observer kernel function which defines the

observer parameters. To this end, we use the Finite Difference (FD) method. To

90



proceed, we first uniformly discretize the domain space to N points (N−1 sections),

∆ρ = ∆ζ = h =
(1− a)

N − 1
. (4.1)

Let matrix P̄(N)×(N) stands for discretized P (ρ, ζ),

P̄ij = P (ρ̄i, ζ̄j), 1 ≤ i, j ≤ N

where each element P̄ij of the matrix P̄ corresponds to the P (ρ̄i, ζ̄j) and, ρ̄i =

1− (i− 1)h and ζ̄j = 1− (j − 1)h are the elements of the discretized ρ and ζ axes,

ρ̄ = [1 (1− h) (1− 2h) · · · (1− (N − 1)h)]1×N

ζ̄ = [1 (1− h) (1− 2h) · · · (1− (N − 1)h)]1×N .

From (4.1), it is clear that (1− (N − 1)h) = a.

The partial derivatives can be calculated using central-difference approximation

as follows:

Pρ(ρ̄i, ζ̄j) ≃
1

2h

(

P (ρ̄i+1, ζ̄j)− P (ρ̄i−1, ζ̄j)
)

Pρρ(ρ̄i, ζ̄j) ≃
1

h2

(

P (ρ̄i+1, ζ̄j)− 2P (ρ̄i, ζ̄j) + P (ρ̄i−1, ζ̄j)
)

Pζ(ρ̄i, ζ̄j) ≃
1

2h

(

P (ρ̄i, ζ̄j+1)− P (ρ̄i, ζ̄j−1)
)

Pζζ(ρ̄i, ζ̄j) ≃
1

h2

(

P (ρ̄i, ζ̄j+1)− 2P (ρ̄i, ζ̄j) + P (ρ̄i, ζ̄j−1)
)

.

(4.2)

The central-difference approximation has an error of O(h2) [44]. Substituting

the partial derivatives in (3.118) with their approximations in (4.2) and representing

them as the elements of matrix P̄ , we have

(1 +
h

2ρ̄i
)P̄i+1,j + (1−

h

2ρ̄i
)P̄i−1,j + λ2h2P̄i,j =

(1−
h

2ζ̄j
)P̄i,j−1 + (1 +

h

2ζ̄j
)P̄i,j+1. (4.3)

Equation (4.3) can be rearranged to arrive to the following equation to calculate

P̄i,j+1,

P̄i,j+1 = β1P̄i+1,j + β2P̄i−1,j + β3P̄i,j + β4P̄i,j−1, (4.4)

where 2 ≤ i ≤ j ≤ N − 1 and the coefficients β1, β2, β3 and β4 are as follows:

β1 =
(1 + h

2ρ̄i
)

(1 + h
2ζ̄j

)
β2 =

(1− h
2ρ̄i

)

(1 + h
2ζ̄j

)

β3 =
λ2h2

(1 + h
2ζ̄j

)
β4 = −

(1− h
2ζ̄j

)

(1 + h
2ζ̄j

)
.

(4.5)
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Boundary conditions (3.119) and (3.120), define boundary points in P̄1,j and P̄i,i

as follows:

P̄1,j = 0 (4.6)

P̄i,i =
1

2
λ2(1−

1

1− (i− 1)h
), (4.7)

where 1 ≤ i, j ≤ N . A most important decision here is to define out of boundary

values in such a way that numerical calculations are stable. Instability in numerical

calculation of the kernel function was reported in [8, 10, 14]. By properly defining

the out of boundary values, the numerical calculation can be rendered stable [62].

This idea can be summarized as follows:

P̄i+1,i = P̄i,i =
1

2
λ2(1−

1

1− (i− 1)h
). (4.8)

P̄ can be calculated using the recurrence equation (4.4) and the predefined values

(4.6), (4.7) and (4.8). The first point to calculate is P̄2,3 followed by P̄3,4 and

continued up to P̄N−1,N . Then start again with calculation of P̄2,4 followed by

P̄2,5 and continued upto P̄N−2,N . This calculation should be repeated until all the

unknown elements of P̄ are defined (in total there are (N − 1)(N − 2)/2 unknown

elements in matrix P̄ ). We calculated the approximate kernel function P̄ using

MATLAB and depicted the results in Fig. 4.1. After that all elements of P̄ are

fully known, we can numerically calculate discretized ℓ(ρ). Let ℓ(ρ̄i) stands for value

of ℓ(ρ) at discretized points ρ̄i on ρ axis. We use backward difference to calculate

the output injection function ℓ(ρ̄i). It is straight forward to see that

ℓ(ρ̄i) =
a

h

(

P̄i,N − P̄i,N−1

)

, 1 ≤ i ≤ N − 1 (4.9)

For ℓ(ρ̄N ), we write:

ℓ(ρ̄N ) = ℓ(a) =
a

h

(

P̄N,N − P̄N,N−1

)

. (4.10)

Referring to our technique to define the out of boundary values which is stated

in (4.8), for P̄N,N−1 we have:

P̄N,N−1 = P̄N−1,N−1. (4.11)
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Figure 4.1: Approximate kernel P̄ (ρ, ζ)

Using boundary condition (3.119) and (4.11) into (4.10), we have

ℓ(ρ̄N ) =
a

h

(1

2
λ2(1−

1

ρ̄N
)−

1

2
λ2(1 −

1

ρ̄N−1
)
)

=
aλ2

2h

( 1

ρ̄N−1
−

1

ρ̄N

)

=
aλ2

2

( −1

(1− (N − 1)h)(1 − (N − 2)h)

)

=
−λ2

2(a+ h)
.

(4.12)

We summarize (4.9) and (4.12) as follows:

ℓ(ρ̄i) =



















a
h
(P̄i,N − P̄i,N−1) 1 ≤ i ≤ N − 1

−λ2

2(a+h) i = N.

(4.13)

The observer output injection function ℓ(ρ) for different values of λ is calculated

and depicted in Fig. 4.2. Fig. 4.2 illustrates the fact that to have an observer

with faster dynamics, a larger output injection gain is needed. The bouncing values

of ℓ(ρ) close to the activation boundary (ρ = 0.25) is due to the error in numerical

calculations. Because of the stable numerical calculation, this fluctuation is bounded

and does not increase in magnitude as the discretization steps become smaller.
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Figure 4.2: Observer parameter ℓ(ρ) for different values of λ

4.3 Developing the Numerical Technique

4.3.1 Introduction

We chose the compact difference scheme as the core of our technique. The well-

known compact difference scheme has been proved to be capable of resulting in

accurate and stable solutions while providing lower computational cost with using

minimal stencil width [76, 89, 70]. We step-by-step present how to develop a Sixth-

Order accurate discretization technique for a selected PDE backstepping boundary

observer which is designed for a thermal system.

4.3.2 Proposed Approach

Interconnection between the observer and the thermal system is depicted in Fig. 4.3.

It is clear that, the PDE backstepping observer estimates the heat distribution in

the whole domain just by measuring the input actuation signal and the temperature

of the actuation boundary layer. In this work, we only discretize the spatial domain

for the chosen interconnected PDE problem. The resulting finite dimensional linear

system can be easily and accurately simulated in temporal domain using available

simulation tools, i.e MATLAB.
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Figure 4.3: Interconnection between the PDE observer and the thermal system

One should note here that if temporal discretization be desired as well, the

choosing of a right time discretization step has a great importance. Beside the

spatial discretization, the stability of the calculation totally related to the chosen

temporal discretization method. Some methods imply a maximum time step to

result in stable calculation while some other methods, i.e Crank-Nicolson method,

unconditionally result in stable calculation.

We begin with discretization of the spatial domain (a ≤ ρ ≤ 1) by defining N

equidistant computational grids ρj with step size h as follows,

ρj = a+ (j − 1)h , h =
1− a

N − 1
, j = 1, · · · , N (4.14)

Next, we define Û(j) to be the restriction of û(ρ, t) to ρ = ρj

Û(j) = û(ρj , t) , j = 1, · · · , N (4.15)

Similarly, Ûρ(j) and Ûρρ(j) are restrictions of ûρ(ρj , t) and ûρρ(ρj , t) to ρ = ρj,

Ûρ(j) = ûρ(ρj , t) , Ûρρ(j) = ûρρ(ρj , t) , j = 1, · · · , N (4.16)

The indices j = 2, · · · , N − 1 correspond to the points in the interior of the com-

putational domain. The indices j = 1 and j = N correspond to the points on the

boundary of the computational domain where we can apply the Dirichlet and the

Neumann conditions to get

Û(1) = û(a) (4.17)

Ûρ(1) = ûρ(a, t) = uin(t) + ℓa (u(a)− û(a)) (4.18)

Û(N) = û(1, t) = 0. (4.19)
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collecting all the computational grids in a vector, ρ̄,:

ρ̄ =























ρ1

ρ2

ρ3
...

ρN























=























a

a+ h

a+ 2h
...

a+Nh























(4.20)

we define discrete solution vectors Û , Ûρ and Ûρρ to be the vectors consisted of all

Û(j), Ûρ(j) and Ûρρ(j),

Û =





















û(ρ1)

û(ρ2)

...

û(ρN )





















, Ûρ =





















ûρ(ρ1)

ûρ(ρ2)

...

ûρ(ρN )





















, Ûρρ =





















ûρρ(ρ1)

ûρρ(ρ2)

...

ûρρ(ρN )





















(4.21)

From (4.17), (4.18) and (4.19), it is clear that Û(1) = û(a), Û(N) = û(1) and

Ûρ(1) = ûρ(a).

4.3.3 Compact Finite Difference Scheme

To reduce the accumulation of errors in calculation of the distributed variables over

very long periods of time and far distances, the numerical algorithm must be highly

accurate. High-order compact finite difference scheme have been introduced for this

purpose.

Generally, high-order finite difference schemes can be classified into two main cat-

egories: explicit schemes and Padé-type or compact schemes [77]. Explicit schemes

compute the numerical derivatives directly at each grid by using a large stencils,

while compact schemes obtain all the numerical derivatives along a grid line using

smaller stencils and solving a linear system of equations. Experience has shown that

compact schemes are much more accurate than the corresponding explicit scheme of

the same order [77]. In this paper, the compact finite difference scheme of six-order

is chosen as the core method which can yield excellent accuracy with minimum sten-

cil width. We begin by developing the formulation for first derivatives for interior

points of discretized spatial domain.
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First Derivatives of Interior Points

To evaluate the first derivatives at the interior nodes, we assume that they can be

obtained by solving the following tridiagonal system

αf ′

i−1 + f ′

i + αf ′

i+1 = b
fi+2 − fi−2

4h
+ a

fi+1 − fi−1

2h
(4.22)

where i = 2, · · · , N − 1 and the unknown coefficients α, a and b are obtained by

matching the Tylor expansion up to O(h4). α-family of fourth-order tridiagonal

schemes (4.22) is obtained with

a =
2

3
(α+ 2) , b =

1

3
(4α − 1) (4.23)

Also, the truncation error of (4.22) is − 4
5!(3α − 1)h4f (5). Choosing α = 0 gives

the explicit fourth-order scheme for the first derivative while by choosing α = 1
3 the

scheme becomes sixth-order accurate [77], in which case a = 14
9 and b = 1

9 . So we

have the following formula

1

3
f ′

i−1 + f ′

i +
1

3
f ′

i+1 =
1

h
(−

1

36
fi−2 −

14

18
fi−1 +

14

18
fi+1 +

1

36
fi+2) (4.24)

to calculated the interior points.

First Derivatives of Boundary Points

For nearby boundary grids, the approximation formula for the derivatives of a non-

periodic problems can be derived by one-sided schemes [43, 76].

Lets consider that, we are going to discretize the spatial domain in N points. At

boundary point 1, a sixth-order formula is [43]:

f ′

1 + αf ′

2 =
1

h
(c1f1 + c2f2 + · · · + c7f7) (4.25)

where α = 5, c1 =
−197
60 , c2 =

−5
12 , c3 = 5, c4 =

−5
3 , c5 =

5
12 , c6 =

−1
20 and c7 = 0.

At boundary point 2, the sixth-order formula is [43]:

αf ′

1 + f ′

2 + αf ′

3 =
1

h
(c1f1 + c2f2 + · · ·+ c7f7) (4.26)

where α = 2
11 , c1 =

−20
33 , c2 =

−35
132 , c3 =

34
33 , c4 =

−7
33 , c5 =

2
33 , c6 =

−1
132 and c7 = 0.

At boundary point N − 1, the sixth-order formula is [43]:

αf ′

N−2 + f ′

N−1 + αf ′

N =
1

h
(c1fN + c2fN−1 + · · ·+ c7fN−6) (4.27)
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where α = 2
11 . The remaining coefficients are those given for point 2 with the

opposite signs.

At boundary point N , the sixth-order formula is [43]:

αf ′

N−1 + f ′

N =
1

h
(c1fN + c2fN−1 + · · ·+ c7fN−6) (4.28)

where α = 5. The remaining coefficients are those given for point 1 with the opposite

signs.

Matrix Representation of the Compact Difference Scheme of the Six-

Order

Now everything is ready to describe the relation between Ûρ and Û in matrix form

using the relation given for the first derivatives at interior and boundary points.

The relation between Ûρ and Û can be given as the following matrix equation:

E · Ûρ =
1

h
F · Û (4.29)

where matrix E and F are calculated using (4.24)– (4.28) as follows,

E =











































1 5 0 · · · 0

2
11 1 2

11 0

0 1
3 1 1

3 0
...

. . .
. . .

. . .
. . .

. . .

... 0 1
3 1 1

3 0

0 2
11 1 2

11

0 · · · 0 5 1











































N×N

(4.30)
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and

F =

























































− 197

60
− 5

12
5 − 5

3

5

12
− 1

20
0 · · · 0

− 20

33
− 35

132

34

33
− 7

33

2

33
− 1

132
0

− 1

36
− 14

18
0 14

18

1

36
0 0

0 − 1

36
− 14

18
0 14

18

1

36
0

...

. . .
. . .

. . .
. . .

. . .
. . .

. . .

... 0 − 1

36
− 14

18
0 14

18

1

36
0

0 0 − 1

36
− 14

18
0 14

18

1

36

0 1

132
− 2

33

7

33
− 34

33

35

132

20

33

0 · · · 0 1

20
− 5

12

5

3
−5 5

12

197

60

























































N×N

(4.31)

By multiplying both sides of (4.29) to E−1, we have,

Ûρ =
1

h
E−1 F Û

.
= AÛ (4.32)

The same 6 order first degree compact scheme can be used again to calculate the

second order derivatives which results:

Ûρρ = AÛρ = A2 Û (4.33)

4.3.4 Main Results

State-Space Description of The Spatially-Discretized PDE Backstepping

Boundary Observer

To this end, the first and second derivatives of estimated heat distribution in dis-

cretized spatial domain is calculated in matrix form in (4.29)–(4.33). The next step

is to collect the inputs in an input vector and address the boundary conditions and

internal interconnection in matrix form.

First, we form the input vector using the observer inputs:

Ui =







uin

u(a)






(4.34)

Recalling (4.19), the boundary condition (3.119) implies following condition to vector

Û :

Û(N) = û(1) = 0
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In addition, recalling (4.18), the boundary condition (3.120) can be transformed to

the following matrix equation for vector Û :

Ûρ(1) = Ui(1) + ℓaUi(2)− ℓa Û(1)

=
[

1 ℓa

]

· Ui +
[

−ℓa 01×(N−1)

]

· Û
(4.35)

The discrete representation of observer output injection function ℓ(ρ) is as follows:

ℓ̄ =





















ℓ(ρ1)

ℓ(ρ2)

...

ℓ(ρN )





















N×1

(4.36)

where ℓ̄(1) = ℓ(a) and ℓ̄(N) = ℓ(1).

To include the boundary conditions in the matrix equation, we partition off

(4.32) to separate the actuation boundary:

Ûρ =





A11×N

A2(N−1)×N



 · Û =







Ûρ(1)

A2 · Û






(4.37)

The equation (4.37) can be rewritten in the following form:

Ûρ =







01×N

A2






· Û +







1

0(N−1)×1






· Ûρ(1) (4.38)

Substituting (4.35) into (4.38) and rearranging the result, we have

Ûρ =













01×N

A2






+







1

0(N−1)×1






·
[

−ℓa 01×(N−1)

]






· Û

+













1

0(N−1)×1






·
[

1 ℓa

]






· Ui

(4.39)

Now the second derivative Ûρρ can be easily described by state vector Û and input

vector Ui using (4.33) and (4.39). we obtain,

Ûρρ = A ·













01×N

A2






+







1

0(N−1)×1






·
[

−ℓa 01×(N−1)

]






· Û

+A ·













1

0(N−1)×1






·
[

1 ℓa

]






· Ui

(4.40)
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The term 1
ρ
ûρ can be written in discrete form as:











1
ρ1

. . .

1
ρN











· Ûρ (4.41)

The term ℓ(ρ)(u(a) − û(a)) in discrete form becomes,

(

ℓ̄ ·
[

0 1
]

1×2

)

· Ui −

(

ℓ̄ ·
[

1 01×(N−1)

]

1×N

)

· Û (4.42)

Finally by using the (4.39), (4.40) and (4.42) in the observer PDE (3.118), we arrive

to the finite dimensional estimation of observer described in (3.118)–(3.120),

Ût = Ad Û +Bd Ui. (4.43)

where

Ad =











A+











1
ρ1

. . .

1
ρN





















·













01×N

A2






+







1

0(N−1)×1






·
[

−ℓa 01×(N−1)

]







− ℓ̄ ·
[

1 01×(N−1)

]

(4.44)

and

Bd =











A+











1
ρ1

. . .

1
ρN





















.







1

0(N−1)×1






.
[

1 ℓa

]

+
(

ℓ̄ ·
[

0 1
])

(4.45)

The same technique derived in this section can be more easily apply to describe the

finite dimensional estimation of original system (3.31)–(3.35).

4.4 Simulation Results

In the spatial-discretization techniques that we developed in previous section, we

only dealt with the normalized system. Both the spatial and the temporal variables
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Table 4.1: The parameter values used in the PDE observer simulation

Parameter Symbol Value Unit

Inner radius of the cylinder a 0.25 mm

Outside radius of the cylinder rout 1 mm

Thermal diffusivity in domain κ 6.08 × 10−7 m2/s

Cylinder height z 2 mm

were being scaled in the normalization process. From these arguments one could

conclude that to apply the given design technique to the actual system, the afore-

mentioned scaling factors should be considered in the equations. Consequently, the

temporal and the spatial variables should be rescaled to their original spaces. To

rescale the spatial and the temporal variables, we need to know some physical pa-

rameters of the actual system. Table 4.1 shows the physical parameters considered

for the simulation.

The input signal is considered as a unit step signal with an amplitude of−114.7063

and an offset of zero which is delayed for one second. The negative sign in the input

signal’s amplitude implies that the heat flux flow on the actuation boundary is from

the outside to the inside. In fact, the values of the input signal is in accordance to

applying one watt power to the system. The simulation process is defined for a

duration of 2 seconds with 25 points time steps, which results in 0.08-second tem-

poral resolution. Similarly, the same number of the discretization points, N = 25,

are chosen for the discretization of the spatial variable ρ. The initial condition is

given by u0(ρ) = cos(52πρ
2).

By considering the defined initial condition and by applying the defined input

signal, The evolution of heat distribution during the time is simulated and is depicted

in Fig. 4.4

As you see, the temperature started to increase after that the input pulse applied

at time = 1s.

The Fig. 4.5 shows the temperature changes at the actuation boundary.

As it is visible, the initial temperature falls before the input pulse is applied to

the system which cause subsequent increase in the temperature at the boundary.
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Figure 4.4: Heat distribution in the domain

For the observer system, we used a decay rate faster than the original system by

choosing λ = 9. The output injection function, ℓ(ρ), is numerically calculated for

the chosen decay rate and is depicted in Fig. 4.6.

Fig. 4.7, shows the result of the simulation for the interconnected structure

composed of the observer and the system, originally shown in Fig. 4.3. It is clear

that at first, the observer struggled to follow the heat distribution generated by the

initial condition. But it quickly converged to the heat distribution in the system

and later it provided a fair estimation of the heat-distribution in the system when

input pulse applied to the system.

Finally, to evaluate the performance of the designed observer, we calculated the

L2-norm of the estimation error and depicted it in Fig. 4.8.

Specifically, the L2-norm of the estimation error exponentially converged to zero

and the small peak in the estimation error caused by the step input is well damped

later.

4.4.1 Verifying with Experimental Results

We used the experimental data that originally collected during the thermal charac-

terization of the PCR-LOC microchip to verify the PDE observer. The temperature
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Figure 4.5: Temperature evolution at the actuation boundary

characterization of a microfluidic chip is a challenging task due to the difficulty in

the measuring of the temperature without causing significant perturbation [53].

One way of the temperature measurement in the microfluidic systems is by us-

ing the thermochromic liquid crystals (TLCs) [53, 23, 97]. The temperature changes

are detected by color changes in the TLCs. The color change effects are caused by

the interference and the diffraction of the reflected and the scattered light. The

TLC color change bandwidth can be customized, but there exists a trade-off be-

tween resolution (sensitivity) in the temperature measurement and the range of the

temperatures that can be measured [97]. The temperature fluctuations are in the

range of 1–2◦C. We choose to employ a TLC that changes color over a tight range

to ensure a sufficient resolution in the temperature measurement. Color changes in

R58C3W TLC is shown in Fig. 4.9. The left figure is when the temperature is out of

the bandwidth and the right figure shows the TLC when the temperature is within

its bandwidth

In our experiment we used R58C3W TLC (Hallcrest Glenview, IL, USA) with

maximum sensitivity at 58◦C, corresponding to annealing stage of PCR process in

our experiment. The TLC has a milky white color at a room temperature and

turns red as the temperature reaches the lowest temperature of its color change
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Figure 4.6: Observer parameter ℓ(ρ) for λ = 9

range, green at the second temperature threshold, and blue at the third. When the

temperature rises above the color range of the TLCs (about 70◦C for the TLCs used

here), its color returns to the original milky white. Temperature/hue curve for the

R58C3W TLC are measured using precise characterization experiments and then

extrapolated and the result is depicted at Fig. 4.10.

We used SPZ-50 optical microscope and L-150R60 fiber optical illuminator with

ring light in addition to a 3.1MP CCD camera to perform the experiment and to

record the color changes of the TLC during PCR cycling.

The video was originally recorded in RGB color space. To achieve meaningful

data from the sequence of the images, we calculated the mean R, G and B val-

ues for the image region describing TLC in each frame of the captured video and

transformed them to a HSV color space.

We used Blaze Video Decompiler included in Blaze Media software package to

extract the frames from the recorded WMV video file.

There have been several approaches to transform RGB to HSV color space

[49, 101]. For the purpose of this study, a simplified version of the Hay and

Hollingsworth’s formulation is used and implemented using the MATLAB function
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Figure 4.7: Heat distribution estimated by the observer

“rgb2hsv” .

V = max(R,G,B)

S =
V −min(R,G,B)

V

H =
1

6



























(G−B)
1

S
if R > B,G

2 + (B −R)
1

S
if G > R,B

4 + (R−G)
1

S
if B > R,G

(4.46)

where R, G, B, H, S and V are red, green, blue, hue, saturation and intensity

values, respectively.

Finally, we used TLC calibration curves to map the hue variations to temperature

variations. The results are depicted in Fig. 4.12.

The top graph shows the input current applied to heater ring. A PI controller

closed in a loop with the heater temperature reading and receiving cycling reference

signal, provided this signal to the heater. Bottom graph presents the observer results

compared to the TLC mapped hue readout from inside the chamber. TLC has a

very limited bandwidth and only provided valid hue change for temperature from

about 50◦C to 70◦C. For temperatures out of this range it has a constant milky color

The TLC temperature reading within its bandwidth (about 50◦C to 70◦C) veri-
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Figure 4.8: Time history of the L2-norm of the estimation error

fies the accuracy of the observer.

4.5 Summary

In this chapter, the PDE backstepping boundary observer designed in chapter 3 is

fully defined after the calculation of the observer kernel function P (ρ, ζ). Moreover,

to enable the simulation of the PDE backstepping boundary observer, a systematic

discretization approach for numerical solution of interconnected PDE control system

is developed and presented.

The compact finite difference method is used as the core technique for discretiza-

tion which is known to be able to provide reliable and accurate approximations with

low amount of calculation effort. The performance of the designed observer is eval-

uated through inspection of the L2-norm after simulation. In addition, the PDE

backstepping boundary observer experimentally verified by implementing a TLC

sensor inside the reaction chamber and recording and mapping the color change of

the TLC sensor.
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Figure 4.9: Color change in R58C3W TLC
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Figure 4.10: Temperature/hue curve for the R58C3W TLC
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Figure 4.12: Experimental results
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Chapter 5

Implementation

5.1 Introduction

In this chapter, we implement our PDE backstepping boundary observer on the

PCR-LOC microchip with a controller previously designed using the classical meth-

ods. The controller used a simplified model in which nonlinear terms related to the

interfacing circuit are compensated.

5.1.1 Experimental Setup

The experimental setup is composed of the PCR mircochip, interfacing circuit, Data

Acquisition (DAQ) and power supply modules as shown in Fig. 5.1. The DAQ, USB-

6009 by National Instrument, is linked and powered by a laptop computer via a USB

serial link. The computer is running real-time control application under Simulink.

Interfacing circuit is connected to Platinum heater via a two-wire connector

where it applies actuation signal and at the same time it measures the temperature

by sensing platinum heater electric resistance. Interfacing circuit performs required

signal conditioning for heater ring actuation and sensing and also for the temperature

sensor installed on Heatsink attached to PCR microchip. The conditioned signals

are converted to digital values using a DAQ device (National Instrument USB-6009)

and are passed to computer via DAQ devices USB connection. Actuation signal

comes in the opposite direction where it is converted to analog electric current by
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Figure 5.1: Experimental setup

DAQ and it is passed through the heater ring by the electric interfacing circuit.

The electric power for the experiment is provided by an external power supply

unit feeding +24V and ±9V to the interfacing module. The interfacing module is

connected to the DAQ through three lines, two analog to digital converter (ADC)

input channels and one digital to analog converter (DAC) output channel.
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Figure 5.2: Wheatstone bridge circuit

5.2 Interfacing Circuit

The interfacing circuit is present in the form of a printed circuit board (PCB) con-

verting control action signal from DAQ to electric current passing through the thin-

film heater on the PCR chip and simultaneously measures the voltage across the

heater and handed it DAQ after proper signal conditioning. The control application

uses this information to calculate the temperature of the heater in real-time. The

interfacing circuit also holds appropriate circuit for measuring the ambient temper-

ature through a solid-state temperature sensor implanted in heatsink.

The core part in interfacing circuit that enables the simultaneous actuation and

measurement for collocated control at the boundary is a Wheatstone bridge. The

Wheatstone bridge in our design is depicted in Fig. 5.2.

The heater ring has a nominal electrical resistance, Rh, of 70Ω at room temper-

ature, 22◦C. Actuation signal is being applied to the heater ring through changing

the bridge current, Ib. The Wheatstone bridge resistors R1, R2 and R3 are designed

such that about 99% of the bridge current pass through the heater ring. For the

electrical current in each leg of the Wheatstone bridge, I1 and I2, we have:

I2(R1 +Rh) = I1(R2 +R3), (5.1)
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or
I2
I1

=
R2 +R3

R1 +Rh
≈ 100. (5.2)

For the bridge current, Ib, we have:

Ib = I1 + I2. (5.3)

Using (5.2) in (5.3) we arrive to:

Ib = I2(1 +
R1 +Rh

R2 +R3
) = I1(1 +

R2 +R3

R1 +Rh
), (5.4)

which results in:

I1 =
R1 +Rh

R1 +R2 +R3 +Rh
Ib

I2 =
R2 +R3

R1 +R2 +R3 +Rh
Ib.

(5.5)

The electrical resistance change in the heater ring is measured through measuring

the difference voltage on the Wheatstone bridge balanced nodes, V2 and V1. For the

bridge output voltages we have

V2 − VR = I2Rh

V1 − VR = I1R3

(5.6)

Next, by subtracting equations in (5.6), we can eliminate VR and arrive to:

V2 − V1 = VD = I2Rh − I1R3, (5.7)

where VD is defined as the difference voltage across the bridge balanced nodes. Using

(5.5) in (5.7), we arrive to

VD = V2 − V1 =
Rh(R2 +R3)−R3(R1 +Rh)

R1 +R2 +R3 +Rh
× Ib. (5.8)

The equation (5.8) describes the relation between the bridge difference voltage,

the bridge current and the heater electric resistance. The heater resistance itself is

related to heater temperature. The next equation describes the relation between

electrical resistance in the heater ring and the heater ring temperature which is a

simplified form of the CallendarVan Dusen equation:

Rh(T ) = (1 + α(T − 22))Rh(22) (5.9)
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where α = 0.00385 ohm/ohm/◦C is the temperature coefficient of the electrical re-

sistance for the platinum, according to IEC6075 standard, and T is the temperature

of the heater ring in ◦C.

We calibrate the Wheatstone bridge through connecting a 50k potentiometer in

parallel with R3. We tune the potentiometer so that the Wheatstone bridge fully

balanced and we have zero difference voltage on the bridge output in the laboratory

ambient (the temperature is 22◦C or Rh = Rh(22) = 70Ω).

The calibrated Wheatstone bridge implies VD = 0. Using (5.8) we have,

Rh(22)(R2 +R3)−R3(R1 +Rh(22)) = 0, (5.10)

or
R2

R3
=

R1

Rh(22)
(5.11)

Using (5.11) in (5.8), we arrive to the difference voltage equation for the cali-

brated Wheatstone bridge,

VD =
R2(Rh(T )−Rh(22))

R1 +R2 +
R2Rh(22)

R1
+Rh(T )

× Ib, (5.12)

which can also be re-ordered for Rh(T ),

Rh(T ) =
VD(R1 +R2 +

R2
R1

Rh(22)) +R2Rh(22)Ib

R2Ib − VD
. (5.13)

The left sides of (5.9) and (5.13) are equal. We arrive to the following results de-

scribing the relation between the heater ring temperature and the difference voltage

on the Wheatstone bridge,

VD =
R2Rh(22)(α(T − 22))

R1 +R2 +Rh(22)(
R2
R1

+ 1 + α(T − 22))
× Ib (5.14)

T =
VD(R1 +R2 +Rh(22)(

R2
R1

+ 1))

αR2Rh(22)Ib − αVDRh(22)
+ 22. (5.15)

By considering the values of the known parameters in (5.14), we can have an

approximate relation,

VD ≈ 3.32 × 10−2 × (T − 22) × Ib, (5.16)

which means that for heater temperature change between ambient temperature

(22◦C) up to 200◦C (maximum safe temperature for PDMS) with maximum bridge

current of 200mA, we can expect VD varies from 0 upto 1.18 volt.
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This result leads us to select a gain and bias for amplification section of the

interfacing circuit. The full design of the interfacing circuit is illustrated in Fig. A.1,

available at appendix A.

By selecting a gain of 4.2373 and an offset of 2.5v (provided by the DAQ device),

we can have a differential voltage span in ±2.5v when heater temperature spans

between 22◦C and 200◦C. This full-scale output voltage is perfect for our DAQ

device which has an analog voltage input setting for the range of ±2.5v.

We chose AD620 instrumentation amplifier, by Analog Devices, as the main

amplification stage in the interface circuit design. The gain of the AD620 can be

easily adjusted by a resistor, RG connected to its pin 1 and pin 8. The datasheet of

AD620 suggests a gain calculation as follows:

RG =
49.4kΩ

G− 1
. (5.17)

Therefore, for G = 4.2373, we calculate RG = 15.2596kΩ. This resistance can

be realized through connecting a 18kΩ resistor and a 100kΩ resistor in parallel (the

gain would be G = 4.2384).

5.3 Controller Setup

The thermal control system for the PCR-LOC microchip must fulfil very tight spec-

ifications associated with the real-world application. These specifications are listed

below:

• The heater temperature must not pass the 200◦C. This constraint is due to

melting points of the PDMS layer which has a direct contact with the heater

ring.

• The controller should satisfy a maximum ±1◦C on overshoot or undershoot

for the chamber’s temperature transients. This constraint is required by the

DNA amplification protocol.

• The transient time between each temperature stage must be minimized. This

is to prevent degradation of the amplification process and to speed-up the

overall process duration.
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In addition, a distinct property of a PCR-LOC thermal management system is

the fact that the thermal cycling is predefined by PCR protocol. In other words,

the set-point’s trend is available for the whole process time.

From the system properties and the required control specifications, MPC control,

also known as receding horizon control, is a good candidate for controlling the PCR-

LOC microchip. MPC has the advantage of using a moving time horizon window

that has the ability to perform real-time optimization considering both the controlled

variables and the fulfilment of the constraints [87, 22, 103].

Moreover, MPC’s natural description in discrete form, makes it suitable for the

computer simulation and embedded system implementation. However, we cannot

ignore the fact that the MPC algorithm is based on numerically solving a constrained

optimization problem at each step which requires huge amount of computational

resources.

The advantage of the MPC technique for practical applications comes from the

fact that measured disturbances, unmeasured disturbances, delay, sampled-data

structure, constraints on system’s input and output can be easily incorporated in

the thesis process.

The major drawbacks of the MPC control is the requirement for a precise model

and extensive calculation power demand. The later is due to associated optimization

which prevent the implementation in fast systems. Consequently, the MPC control

has primarily been applied to systems with slow dynamics.

5.3.1 Inputs and Output Assignment for the Controller

The next step in designing the MPC controller is to identify the measured and

unmeasured disturbances, inputs and outputs. The inputs and outputs of the plant

should also be grouped in a certain way to be used in the MPC controller design. The

diagram in Fig. 5.3 illustrates the input and output assignments of the PCR-LOC

model.

Full description of the input and output assignment for each category are as follows:

Measured disturbances

Ths, heatsink temperature, and cte, constant value, are measured disturbances.

116



PCR-LOC
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Tch, Th

UnmeasuredDisturbances

ManipulatedV ariable
Ih

MeasuredDisturbances
Ths, cte

Figure 5.3: Input/output assignment of PCR-LOC model for MPC controller design

The controller cannot adjust them, but uses them for feed-forward compensa-

tion. The constant value, cte is required to deliver the set-point offset.

Manipulated variables

The controller adjusts Ih, the heater current, in order to achieve its goals.

Unmeasured disturbances

No unmeasured input was considered in our modeling approach.

and the plant outputs are grouped as follows:

Measured outputs

The chamber temperature, Tch, which is provided by the observer is the first

measured output. The second measured output is the heater temperature, Th.

The controller uses these inputs to adjust the feedback.

Unmeasured outputs

The controller estimates these based on available measurements and the plant

model. The controller can also hold unmeasured outputs at set-points or within

constraint boundaries. There is no unmeasured output in our model.

In addition to input and output assignment, the MPC parameters and their

associated limitation should be fully defined. In our design, the parameters and

constraints which are used in the MPC controller are listed in Table 5.1.

5.3.2 Simulation Results

The block diagram in Fig. 5.4 shows the Simulink design used for the simulation of

the thermal management system for PCR-LOC microchip.
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Table 5.1: The parameters of MPC Controller

Parameter Chosen Value or Range

Heater temperature 22◦C ≤ Th ≤ 190◦C

Chamber temperature 22◦C ≤ Tch ≤ 96◦C

Heater current 0 ≤ Ih ≤ 200mA

Sampling time TS = 0.1s

Prediction horizon 25

Control horizon 6

u(t)

y(t)

r(t)

cte

1
Ths

22

Th

Tch

Saturation

PDE Observer

Th

Ih

Ths

Tch

PCRLOC

Ih

Ths

cte

Th

MPC Controller

MPCmv

mo

ref

md

Inverse 
Input Nonlinearity

f(u)

Ih

Heater Temperature

RBTh

Heater Current

RBIh

Gain

−K−

From
Workspace

RBRef

33.71

Chamber Temperature

RBTch

Figure 5.4: MPC control of PCR-LOC, Simulink model

The MPC controller is designed based on the lumped model calculated previously

for this device. The PDE backstepping boundary observer is also used to calculate

the chamber temperature which is required by MPC controller. The numerical

calculation and the simulation of PDE backstepping boundary observer is discussed

in detail in the chapter 4. Here, we only focus on MPC controller simulation and

the effect of changing MPC weights in final control results.

The results of the MPC control is shown in Fig. 5.5. It is clear that the MPC

supervisory control has used the control action on heater current to take the heater

temperature close to its constraints so that the transient of chamber temperature

speed up as much as possible. The MPC also presents excellent convergent results
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for the chamber temperature.

The next simulation, depicted in Fig. 5.6, shows the effect of choosing different

weights for plant outputs on MPC controller performance. In addition to affect

control performance, it also affect the rendering of the design constraints.

In Fig. 5.6, we kept the chamber temperature weight at one and assigned the

weights of 0.5, 0.1 and 0 to the heater temperature. As the weight for heater tem-

perature decrease in comparison to the chamber temperature, the MPC controller

performance in tracking the reference chamber temperature improves while the ful-

filment of the constraints are no longer guaranteed. Therefore, it is very important

to make a logical compromise in choosing the weights in the implementation phase.

5.4 Implementation Results

As explained in section 5.3, the heater and chamber temperatures are considered as

measured outputs subject to proper constraint on them to prevent destroying the

DNA sample. The chamber temperature is weighted 10 times more than the heater

temperature.

The heater current is considered as a manipulated variable with the constraints

on its maximum and minimum. The heatsink temperature is considered as a mea-

sured disturbance.

We selected a prediction horizon of 25 steps and a control horizon of 6 steps.

The simulation of the designed MPC controller on the full PDE model reveals that

the MPC controller can provide very good tracking performance as well as keeping

the important variables within the required constraints.

Figure 5.7 illustrates interconnection of the MPC controller, the PDE observer

and the hardware setup that is used for the implementation. In this block diagram,

the interconnection between the MPC controller, the PDE Backstepping boundary

observer, the supervisory thermal cycling generator and the hardware setup is il-

lustrated. The design and the implementation of the MPC controller is performed

using MPC Control Toolbox in MATLAB.

The next diagram shows the block diagram in Simulink which is used for the

implementation of the thermal management system.
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Figure 5.5: MPC control of PCR-LOC, simulation results
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Figure 5.8: MPC control of PCRLOC, Simulink model for implementation
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A switching mechanism is used in the implementation which allows the thermal

management system controls the microchip in the open-loop mode for 40s before

switching it to the closed-loop control mode. This technique is specially helpful in

settling down the initial conditions and in preventing undesired control actions at

the system start-up.

The results of the implementation are shown in Fig. 5.9.

5.5 Summary

In this chapter, detailed design of the interfacing circuit which is used to implement

the PDE backstepping boundary observer is presented. The PDE backstepping

boundary observer designed in chapter 3 was put in work with an MPC controller

on the the PCR-LOC system.

The measurement of the heater temperature is estimated by the PDE backstep-

ping boundary observer. The complete design is successfully implemented on the

PCR-LOC device and the results are presented. The simulation and implementa-

tion results verifies the designed observer. The designed and tested setup including

the microchip and the interfacing circuitry has the potential of being used as a lab-

oratory setting to test and evaluate various control techniques on the PCR-LOC

microchip.
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Figure 5.9: MPC implementation, tracking PCR temperatures
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Chapter 6

Extension to Controller Design

6.1 Introduction

Controller design for distributed parameter system is a challenging problem. The

early attempts to exploit the infinite dimensional characteristic of the PDE systems

goes back to 1970’s. In [104] a modal analysis was first applied to design controller

for PDE systems. The problem of designing high performance controllers for systems

with distributed parameter nature followed by works in the area of optimal control

by Curtain and Zwart [34] and Bensoussan et al. [13], non-linear control by Orlov

and Utkin [100] and Christofides [26], using backstepping approach by Krstić and

Smyshlyaev [69], and Lyapunov methods by Orlov [99] and Coron et al. [29]. A

review of the distributed parameter control literature can be found in [88].

Referring to work of Krstić and Smyshlyaev [69], this theory goes in parallel with

the work on observer design presented in chapter 3. In this chapter, we provide the

theoretical foundation for such extension.

The closed-loop interconnection of the PDE Backstepping boundary controller

with the PDE system is illustrated in Fig. 6.1. Clearly, the PDE Backstepping

boundary controller not only needs temperature information at the boundaries but

also needs temperature information in all the points in the domain. The PDE Back-

stepping boundary observer designed in chapter 3 can provide these information.
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PDE Thermal System

PDE Backstepping

Control

+uin(t)

u(ρ, t)

uρ(a, t) u(a, t)

Figure 6.1: Interconnection of a closed-loop PDE system with PDE backstepping
controller

6.2 PDE Backstepping Boundary Controller Design

We refer again to the normalized and transformed system that we used for observer

design in Chapter 3. The normalized and transformed system in cylindrical coordi-

nate system is given by:

ut = uρρ +
1

ρ
uρ, (6.1a)

where a ≤ ρ ≤ 1 and boundary conditions are as follows:

u(1) = 0 (6.1b)

uρ(a) = δU (6.1c)

u(a) = Measurement. (6.1d)

We look for an integral transformation of the following form:

w(ρ) = u(ρ)−

∫ ρ

1
P (ρ, ζ)u(ζ)ζdζ, (6.2)

along with feedback control

uρ(a) = aP (a, a)u(a) −

∫ 1

a

Pρ(a, ζ)ζu(ζ)dζ, (6.3)

that transforms (6.1) into the following exponentially stable target system with

desired dynamics:

wt = wρρ +
1

ρ
wρ − λ2w (6.4a)

w(1) = 0 (6.4b)

wρ(a) = 0. (6.4c)
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The function P (ρ, ζ) is the kernel of the integral equation proposed in (6.2).

The parameter λ defines the observer convergence speed. The close loop system is

illustrated in Fig. 6.1. We extend the standard PDE backstepping control design

and obtain the following result:

Theorem 9. Consider the PDE system defined by (6.1) in cylindrical coordinate

system along with the integral transformation (6.2) and feedback control (6.3) that

transform the closed-loop PDE system into (6.4), where P (ρ, ζ) is the kernel of the

integral transformation with a ≤ ρ ≤ ζ ≤ 1. The kernel function can be calculated

by solving the following PDE equation:

Pρρ(ρ, ζ) +
1

ρ
Pρ(ρ, ζ) + λ2P (ρ, ζ) = Pζζ(ρ, ζ) +

1

ζ
Pζ(ρ, ζ), (6.5a)

with the following boundary conditions:

P (ρ, ρ) =
1

2
λ2
(1

ρ
− 1
)

(6.5b)

P (ρ, 1) = 0. (6.5c)

(6.5d)

Proof. We start by taking of time derivative of integral transformation (6.2) and

substituting ut with its description in (6.1a).

wt = ut −

∫ ρ

1
P (ρ, ζ)

(

uζζ +
1

ζ
uζ

)

ζdζ

= uρρ +
1

ρ
uρ

−

∫ ρ

1
P (ρ, ζ)ζuζζdζ −

∫ ρ

1
P (ρ, ζ)uζdζ.

It follows that
∫ ρ

1
P (ρ, ζ)ζuζζdζ =

(

ζP (ρ, ζ)uζ

∣

∣

∣

∣

ρ

1

−

∫ ρ

1

(

P (ρ, ζ) + ζPζ(ρ, ζ)
)

uζdζ

=ρP (ρ, ρ)uρ(ρ)− P (ρ, 1)uρ(1)−

∫ ρ

1
P (ρ, ζ)uζdζ

−
(

ζPζ(ρ, ζ)u

∣

∣

∣

∣

ρ

1

+

∫ ρ

1

(

Pζ(ρ, ζ) + ζPζζ(ρ, ζ)
)

udζ

=ρP (ρ, ρ)uρ(ρ)− P (ρ, 1)uρ(1)−

∫ ρ

1
P (ρ, ζ)uζdζ

− ρPζ(ρ, ρ)u(ρ) + Pζ(ρ, 1)u(1)

+

∫ ρ

1

(

Pζ(ρ, ζ) + ζPζζ(ρ, ζ)
)

udζ.
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Using (6.1b), we arrive to the following equation for wt,

wt =uρρ +
1

ρ
uρ

− ρP (ρ, ρ)uρ(ρ) + P (ρ, 1)uρ(1)

+ ρPζ(ρ, ρ)u(ρ)

−

∫ ρ

1

(

Pζ(ρ, ζ) + ζPζζ(ρ, ζ)
)

udζ,

(6.6)

For calculation of wρ, we take derivative of the both sides of (6.2).

wρ(ρ) = uρ(ρ)−
d

dρ

∫ ρ

1
P (ρ, ζ)u(ζ)ζdζ

= uρ(ρ)− ρP (ρ, ρ)u(ρ) −

∫ ρ

1
Pρ(ρ, ζ)ζu(ζ)dζ.

(6.7)

We can use (6.7) and (6.4c) to find the value of uρ(ρ) at ρ = a

uρ(a) = wρ(a) + aP (a, a)u(a) +

∫ a

1
Pρ(a, ζ)ζu(ζ)dζ

= aP (a, a)u(a) −

∫ 1

a

Pρ(a, ζ)ζu(ζ)dζ.

(6.8)

The next step is the calculation of wρρ. To find wρρ, we take derivative of (6.7):

wρρ(ρ) =uρρ(ρ)−
d

dρ

(

ρP (ρ, ρ)u(ρ)
)

−
d

dρ

∫ ρ

1
Pρ(ρ, ζ)ζu(ζ)dζ

=uρρ(ρ)− P (ρ, ρ)u(ρ) − ρP (ρ, ρ)uρ(ρ)

− ρu(ρ)
d

dρ
P (ρ, ρ) − ρPρ(ρ, ρ)u(ρ)

−

∫ ρ

1
Pρρ(ρ, ζ)ζu(ζ)dζ.

(6.9)

Now by substituting the equation for wt, wρ and wρρ which are calculated in

(6.6), (6.7) and (6.9) in (6.4a), the equation (6.4a) becomes:

uρρ +
1

ρ
uρ − ρP (ρ, ρ)uρ(ρ) + P (ρ, 1)uρ(1) + ρPζ(ρ, ρ)u(ρ)

−

∫ ρ

1

(

Pζ(ρ, ζ) + ζPζζ(ρ, ζ)
)

udζ

=uρρ − P (ρ, ρ)u(ρ) − ρP (ρ, ρ)uρ(ρ)− ρu(ρ)
d

dρ
P (ρ, ρ)− ρPρ(ρ, ρ)u(ρ)

−

∫ ρ

1
Pρρ(ρ, ζ)ζu(ζ)dζ

+
1

ρ
uρ − P (ρ, ρ)u(ρ) −

∫ ρ

1

1

ρ
Pρ(ρ, ζ)ζu(ζ)dζ

− λ2u(ρ) +

∫ ρ

1
λ2P (ρ, ζ)u(ζ)ζdζ.

(6.10)
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Rearranging (6.10) we arrive to the following equation:

P (ρ, 1)uρ(1) +
(

2P (ρ, ρ) + 2ρ
d

dρ
P (ρ, ρ) + λ2

)

u(ρ)

+

∫ ρ

1

(

Pρρ(ρ, ζ) +
1

ρ
Pρ(ρ, ζ)− λ2P (ρ, ζ)− Pζζ(ρ, ζ)−

1

ζ
Pζ(ρ, ζ)

)

ζudζ

=0.

(6.11)

From the equation 6.11 it would appear that the kernel function P (ρ, ζ) has to

satisfy the following PDE

Pρρ(ρ, ζ) +
1

ρ
Pρ(ρ, ζ)− λ2P (ρ, ζ) = Pζζ(ρ, ζ) +

1

ζ
Pζ(ρ, ζ)

ρ
d

dρ
P (ρ, ρ) + P (ρ, ρ) = −

1

2
λ2

P (ρ, 1) = 0.

(6.12)

The first boundary condition introduced in (6.12) can be written as follows:

d

dρ
(ρP (ρ, ρ)) = −

1

2
λ2. (6.13)

It is easy to see that the solution of (6.13) has a solution as follow:

P (ρ, ρ) =
c

ρ
−

1

2
λ2 , (6.14)

where c is a constant to be defined. The constant value in (6.14) can be defined by

substituting ρ = 1 in the last boundary condition in (6.12):

P (1, 1) = 0. (6.15)

By using (6.15) in (6.14), we find the constant c,

c =
1

2
λ2. (6.16)

Combining (6.12), (6.14) and (6.16), the PDE equation that describes the kernel

function P (ρ, ζ) is obtain as follows:

Pρρ(ρ, ζ) +
1

ρ
Pρ(ρ, ζ) + λ2P (ρ, ζ) = Pζζ(ρ, ζ) +

1

ζ
Pζ(ρ, ζ),

with following boundary conditions:

P (ρ, ρ) =
1

2
λ2
(1

ρ
− 1
)

P (ρ, 1) = 0.
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The domain for kernel function P (ρ, ζ) is described by

a ≤ρ ≤ 1

ρ ≤ζ ≤ 1.

Equations (6.3) and (6.5b) define the feedback control law as follow:

uρ(a) =
1

2
λ2(1− a)u(a) −

∫ 1

a

Pρ(a, ζ)ζu(ζ)dζ, (6.17)

The domain of the PDE equation describing the integral kernel function is de-

picted in Fig. 6.2. Boundary conditions are shown at each boundary.

ρ

ζ

1

1

a

a

P (ρ, 1) = 0 P (1, 1) = 0

P (a, a) = 1
2λ

2( 1
a
− 1)

P (ρ, ρ) = 1
2λ

2(1
ρ
− 1)

Figure 6.2: Domain of the controller kernel function, P (ρ, ζ)

To complete the design we need to fully define the feedback control, given in

(6.3). For that, however, we need the kernel function P (ρ, ζ) which requires solving

the PDE equation (6.5a). Since we do not have an analytical solution, we proceed

with a numerical approach similar to the one that we used for numerical calculation

of the observer kernel.

6.2.1 Stability of the Closed-Loop System

In previous section, we designed a PDE Backstepping boundary controller based on

an integral transformation that transforms the original system to an exponentially
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stable target system. To show that the stability of the target system (6.4) implies

the stability of the closed-loop plant (6.1) with feedback control (6.17), we need to

show that the transformation (6.2) is invertible. We write an inverse transformation

as follows:

u(ρ) = w(ρ)−

∫ ρ

1
K(ρ, ζ)w(ζ)ζdζ, (6.18)

where K(ρ, ζ) is the transformation kernel.

Theorem 10. Given the direct transformation (6.2) and the inverse transformation

(6.18), the integral kernels P (ρ, ζ) and K(ρ, ζ) satisfy

K(ρ, ζ) = −P (ρ, ζ)−

∫ ζ

ρ

P (ρ, γ)K(γ, ζ)γdγ, (6.19)

Proof. Substituting (6.18) in (6.2), we get

w(ρ) =w(ρ) −

∫ ρ

1
K(ρ, ζ)w(ζ)ζdζ

−

∫ ρ

1
P (ρ, ζ)

[

w(ζ)−

∫ ζ

1
K(ζ, γ)w(γ)γdγ

]

ζdζ

=w(ρ) −

∫ ρ

1
K(ρ, ζ)w(ζ)ζdζ

−

∫ ρ

1
P (ρ, ζ)w(ζ)ζdζ +

∫ ρ

1

∫ ζ

1
P (ρ, ζ)K(ζ, γ)w(γ)γζdγdζ

(6.20)

Recalling the following formula for changing the order of integration:
∫ ρ

1

∫ ζ

1
f(ρ, ζ, γ)dγdζ =

∫ ρ

1

∫ ρ

γ

f(ρ, ζ, γ)dζdγ (6.21)

Using (6.21) in (6.20), we arrive to:
∫ ρ

1
K(ρ, ζ)w(ζ)ζdζ +

∫ ρ

1
P (ρ, ζ)w(ζ)ζdζ −

∫ ρ

1

∫ ρ

γ

P (ρ, ζ)K(ζ, γ)w(γ)γζdζdγ = 0,

which can be written as
∫ ρ

1
ζw(ζ)

[

K(ρ, ζ) + P (ρ, ζ)−

∫ ρ

ζ

P (ρ, γ)K(γ, ζ)γdγ
]

dζ. (6.22)

Since (6.22) has to hold for all w(ζ), we have

K(ρ, ζ) = −P (ρ, ζ)−

∫ ζ

ρ

P (ρ, γ)K(γ, ζ)γdγ. (6.23)

Calculation of the inverse transformation kernel K(ρ, ζ) follows the same steps

that are use in calculation of the kernel P (ρ, ζ). Exponential stability of the target

system (6.4) and invertability of the transformation (6.2) imply exponential stability

of the closed-loop system [111].
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6.3 Analysis and Discussion

In this chapter, we design a boundary controller capable of changing the dynamics

of the PDE system (6.1).

Backstepping design is a valid approach but in this case the results of this ap-

proach lead to very aggressive control actions due to controllers attempt to speed up

the distributed parameter systems dynamics. The PDE backstepping approach is

primary powerful in stabilization and it is not a suitable controller for our case due

to the number of constraint involved in thermal control problem of the PCR-LOC

microchip. A proper approach in this case should be able to directly incorporate

input constraints.

The design work-flow presented in this chapter can be used as a guide line in

PDE backstepping boundary control design in cylindrical coordinate system. The

class of PDE systems defined in cylindrical coordinate system are mostly connected

to the systems that feature circular symmetry in their structural design.
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Chapter 7

Summary and Future Work

In this project, we had the unique opportunity to adopt, develop and implement dis-

tributed parameter system’s control results on an important application in medical

devices. An important future of this project was the successful implementation of a

PDE backstepping boundary observer in a real world application. A quick look at

the literature on the distributed parameter systems analysis and control reveals that

the available results hardly get to the simulations step let alone the implementation.

We tackled the observer design problem by resorting the use of a conformal trans-

formation that converted the original two-dimensional problem into an equivalent

problem in one-dimension for which a solution is calculated. Our approach is novel

and can be extended to many classes of the PDE systems with different application.

The advanced thermal management system, including the PDE backstepping

boundary observer and a MPC controller were implemented through Simulink DAQ

toolbox and an interfacing circuit. The control loop designed to execute the exper-

iment under an update rate of 0.1 second.
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7.1 Directions for Future Works

The results of this thesis can be generalized and extended to many applications.

The important directions for future work would be as follows:

• Extension to non-harmonic functions

Harmonic functions, i.e. solutions of Laplace’s equation, has been the central

point of interest in conformal mapping. Bazant in [11] noted that there are

some other equations that are also conformally invariant. For example, steady-

states of various nonlinear diffusion equations, the advection-diffusion equa-

tions for potential flows and Nernst-Plank equations for bulk electrochemical

transport. The extension of our results to non-harmonic functions can open

doors for various applications.

• Integration with distributed MPC

A framework for MPC control of distributed parameter systems is recently

developed by Dubljevic. MPC control considered for parabolic PDEs with

boundary actuation [39] and state and actuation constraints [40, 38]. These

results need that the measurement of the PDE states be available. The PDE

backstepping boundary observer can provide an estimation of the spatially

distributed PDE states

• Extension to new applications

A very nice extension of this work could be its application in controlling and

optimizing the efficiency of industrial burners. In [115] it was shown that

conformal mapping has potential application in analysis and active control of

flame formation. Employing our method in PDE backstepping boundary ob-

server design has the potential of pushing the current technology for industrial

burners one step forward.
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Appendix A

Interfacing Circuit Schematic &

PCB
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[111] A. Smyshlyaev and M. Krstić. Adaptive control of parabolic PDEs. Princeton

University Press, 2010.

[112] C. Sozzi, E. Alessi, L. Boncagni, C. Galperti, C. Marchetto, S. Nowak, W. Bin,

A. Botrugno, A. Bruschi, S. Cirant, et al. A real-time system for data acquisi-

tion, elaboration and actuator’s control for magnetohydrodynamics instabili-

ties in the ftu tokamak. In the 51st IEEE Annual Conference on Decision and

Control (CDC), pages 4353–4358. IEEE, 2012.

[113] E. Tadmor. A review of numerical methods for nonlinear partial differential

equations. Bulletin of the American Mathematical Society, 49, 2012.

148



[114] Y. Tanaka, M. Slyadnev, A. Hibara, M. Tokeshi, and T. Kitamori. Non-contact

photothermal control of enzyme reactions on a microchip by using a compact

diode laser. Journal of Chromatography A, 894(1):45–51, 2000.

[115] Y. Wang, G. Haller, A. Banaszuk, and G. Tadmor. Closed-loop lagrangian

separation control in a bluff body shear flow model. Physics of Fluids, 15:2251,

2003.

[116] J. West, B. Karamata, B. Lillis, J. P. Gleeson, J. Alderman, J. K. Collins,

W. Lane, A. Mathewson, and H. Berney. Application of magnetohydrody-

namic actuation to continuous flow chemistry. Lab on a Chip, 2(4):224–230,

2002.

[117] P. Wilding, M. Shoffner, and L. Kricka. PCR in a silicon microstructure. Clin

Chem, 40(9):1815–8, 1994.

[118] I. Yaz, V. Bakke, and E. Yaz. Receding window observer and dynamic feedback

control of discrete infinite dimensional systems. In Proceedings of the 30th

IEEE Conference on Decision and Control (CDC), pages 3031–3032. IEEE,

1991.

[119] D. Yoon, Y. Lee, Y. Lee, H. Cho, S. Sung, K. Oh, J. Cha, and G. Lim. Precise

temperature control and rapid thermal cycling in a micromachined PCR chip.

Journal of Micromechanics and Microengineering, 12:813–823, 2002.

[120] C. Zhang and D. Xing. Miniaturized PCR chips for nucleic acid amplification

and analysis: latest advances and future trends. Nucleic acids research, 2007.

[121] Y. Zhang and P. Ozdemir. Microfluidic DNA amplification–A review. Analyt-

ica Chimica Acta, 638(2):115–125, 2009.

149


	Introduction
	Motivation
	Background
	Research Goals and Methods
	Thesis Contributions
	Applications
	Thesis Outline

	Modeling
	Introduction
	Microchip Structure
	Modeling Framework
	Analytical Formulation
	Solution of the Analytical Model
	Model Verification

	Optimization of the PDE Model
	Effect of Variation in the PDE Model Parameters
	Optimization

	Summary

	Observer Design
	Introduction
	Preliminaries
	Normalizing the PDE system
	Overview of Mathematical Background

	PDE Backstepping Boundary Observer Design
	Transforming the Model Structure
	Motivation
	Background Material: Conformal Mapping 
	Mapping the System Domain

	Observer Design for the Transformed System
	Summary

	Simulation
	Introduction
	Observer Kernel Calculation
	Developing the Numerical Technique
	Introduction
	Proposed Approach
	Compact Finite Difference Scheme
	Main Results

	Simulation Results
	Verifying with Experimental Results

	Summary

	Implementation
	Introduction
	Experimental Setup

	Interfacing Circuit
	Controller Setup
	Inputs and Output Assignment for the Controller
	Simulation Results

	Implementation Results
	Summary

	Extension to Controller Design
	Introduction
	PDE Backstepping Boundary Controller Design
	Stability of the Closed-Loop System

	Analysis and Discussion

	Summary and Future Work
	Directions for Future Works

	Interfacing Circuit Schematic & PCB
	Bibliography

