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Abstract

Children are at a high risk of infection since they have not yet developed mature

immunity. Childhood infectious diseases, such as measles, chicken pox and mumps,

remain epidemic and endemic around the world. Yet, their dynamics are still not

fully understood.SIR-type models have been proposed and widely applied to un-

derstand and control infectious diseases, and theSEIRmodel has been frequently

applied to study childhood infectious diseases. In this thesis, we improve the classic

SEIRmodel by separating the juvenile group and the adult group to better de-

scribe the dynamics of childhood infectious diseases. We perform stability analysis

to study the asymptotic dynamics of the new model, and perform sensitivity analysis

to uncover the relative importance of the parameters on infection.

The transmission rate is a key parameter in controlling the spread of an infectious

disease as it directly determines the disease incidence. However, it is essentially im-

possible to measure the transmission rate due to ethical reasons. We introduce an

inverse method for our new model, which can extract the time-dependent transmis-

sion rate from either prevalence data or incidence data in existing open databases.

Pre- and post-vaccination measles data sets from Liverpool and London are applied

to estimate the time-varying transmission rate.

The e↵ectiveness of vaccination has been widely discussed and studied in epi-

demiology. Outbreaks can still occur if the percentage of susceptible individuals who

take the vaccination is low or the vaccination itself is not suciently e↵ective. We

further extend our model by adding a vaccination term for all children to predict the

date and the infection number of a possible measles outbreak peak in the Province

of Alberta.
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Chapter 1

Introduction

1.1 Background information

Infectious diseases are diseases caused by pathogenic microorganisms, such as

bacteria, viruses, parasites, and fungi. They can be transmitted directly or indirect.

Direct transmission occurs when there is a physical contract between an infective

and a susceptible person. Examples of infectious diseases transmitted directly in-

clude chickenpox, influenza, measles. Indirectly transmission, on the contrary, occurs

when a susceptible individual comes into contact with a contaminated reservoir.

Such diseases can be viral in nature, like rotavirus disease or hantavirus pulmonary

syndrome; bacterial, such as cholera or legionellosis; or parasitic, such as schistoso-

miasis, cryptosporidiosis or giardiasis [14]. Most infectious diseases are acute. Acute

infectious diseases develop rapidly but only last for a short period of time. Symptoms

of an acute infectious disease are usually severe, for example, chicken pox causes red

skin rashes, fever, blisters and so on. Chronic infectious diseases on the other hand,

develop slowly and last for a long period of time with mild symptoms.

Infectious diseases are a challenge for public health. They have caused an enor-

mously high percentage of deaths. For instance, 75-200 million people were killed by
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the Black Death in Europe from 1346 to 1353 [10], more than 20,000 people died in

Canada during the typhus epidemic in 1847-48 [8], and more than 700 people were

killed during the SARS outbreak in southern China [27]. Uncovering the transmis-

sion mechanism of an infectious disease is of significant importance in controlling it

and ultimately getting rid of them.

In epidemiology, an infectious disease is said to be endemic when it always

prevails. An epidemic occurs when the incidence of a disease increases sharply in

a short period of time. An epidemic is restricted to a local region. However, if it

spreads to other countries or continents all over the world and a↵ects a substantial

number of people simultaneously, it is termed as pandemic. Examples of pandemics

in history include smallpox and tuberculosis, as well as HIV and HIN1 pandemic [11].

The study of the transmission and control of infectious diseases is called epidemiol-

ogy. Epidemiologists track the occurrence of infectious diseases using two measures:

incidence and prevalence. Incidence is the number of new cases of a disease in a

given area during a given period of time. It is determined by the length of the du-

ration and the dynamics of the disease itself which reflects the increase rate of new

patients. Prevalence is the number of total cases of a disease in a given area during

a given period of time.

Children are more susceptible to infectious diseases for a number of reasons in-

cluding immature immunity. Infectious diseases are a leading cause of death among

children. One of these diseases that kill many young people yearly is measles. Ac-

cording to the World Health Organization, approximately 122,000 people died in

the whole world from measles in 2012 - mostly children under the age of five [28].

Fortunately, most childhood infectious diseases like measles are vaccine-preventable.

Accelerated immunization activities have a major impact on reducing measles-

induced deaths. According to data from Alberta Health, before 1954, about 5000

measles cases were confirmed every year, and caused 400 cases of brain inflamma-
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tion. Since its two-dose vaccine regimen was introduced in 1996, measles cases have

reduced dramatically. In 1995, 2362 cases of measles were reported in Canada [30]

and in 2005, only 6 cases were reported [29]. Although vaccination has been e cient

in controlling most infectious diseases, outbreaks of a disease can still occur if the

vaccination rate is too low or the pathogen evolves to escape the vaccine-induced

immune. Actually, a high rate of vaccination, not necessarily a hundred percent, can

keep the number of patients low (no outbreak). What vaccination rate should the

government and the public health organizations strive to reach in order to prevent

disease outbreaks? What vaccination policies should the government make under

di↵erent situations? We introduce di↵erent vaccination strategies and explore those

questions in chapter 3.

In this thesis, we use mathematical models in terms of ordinary di↵erential

equations to study directly transmitted acute childhood infectious diseases.

1.2 Mathematical models

A mathematical model is a description of a real system using mathematical

concepts and language. Main roles of mathematical models areunderstandingand

prediction. Models can be used to understand how an infectious disease spreads and

how various factors a↵ect its dynamics [14]. Models can make reasonably accurate

predictions and allow early control decisions and the estimation of epidemic features

(like peak amplitude and time).

1.2.1 TheSIRmodel

A simple model, theSIRmodel, was first introduced and studied by Kermack

and Mckendrick (1927) [15] to describe infectious diseases with assumptions listed

below:
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•The population is divided into three groups: susceptible, infective, and re-

covered. We useS, I,andRto denote the fractions of these three groups,

respectively,

•The total population size remains constant, i.e.S+I+R= 1.

•The population is mixed homogeneously and every individual travels randomly

in the given region.

•People gain permanent immunity after recovery or vaccination.

A mathematical model was build on how individuals move between groups.

TheSIRmodel has two key transitions: S! IandI! R. First, individuals

move from groupSto groupIwhen susceptible individuals get infected via phys-

ical contacting with infectious individuals. The transmission strength depends on

many factors such as the level of susceptibles, the prevalence of infectives, the so-

cial network, and the success probability of transmission during a contact, etc. The

commonly used transmission term is SIwhose derivations can be dated back to

Kermack-McKendrick [15]. The transmission term SIis determined byS, Iand

the transmission rate . It is clear that more susceptibles and infectives will lead to

more patients. The transmission rate is a composite result of many factors such

as seasonality, the behavior of host (holidays, etc.), prevalence of pathogen, and vir-

ulence of pathogen. Second, individuals move from groupIto groupRonly when

they recover by their immune response or treatment. We assume that the parameter

⌫is the recovery rate.

With the above analysis, we obtain a flow diagram with transition terms on top

of black arrows which indicate the transition directions.
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Figure 1.1: A flow diagram demonstrating the relationships among Susceptible (S),
Infective (I) and Recovered (R).

According to the flow diagram in Fig 1.1, we obtain the followingSIRmodel:

dS

dt
= (t)S(t)I(t), (1.2.1)

dI

dt
= (t)S(t)I(t) ⌫I(t), (1.2.2)

dR

dt
=⌫I(t). (1.2.3)

This model is the most basic framework of theSIR-type model. With this model,

the disease will ultimately go extinct since there is no susceptible influx. If we are

interested in the endemic dynamics of an infectious disease, clearly the demogra-

phy is important. A common way of introducing vital rates into theSIRmodel is

to assume that there is a average lifespan of every individual, 1/years. Thus the

natural mortality rate is ·year 1. Again, we assume that the total population is

constant. With these assumptions, we obtain a generalizedSIRmodel

dS

dt
= S(t)I(t) S(t),

dI

dt
= S(t)I(t) ⌫I(t) I(t),

dR

dt
=⌫I(t) R(t).
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The birth rate is the same as the death rate since we assume that the total

population is constant.

1.2.2 TheSEIRmodel

For many diseases, individuals can not infect susceptibles immediately after they

get infected. It is not until human bodies are colonized by enough pathogens can

they infect other susceptibles as shown in Figure 1.2. They are neither susceptibles

nor infectives before the pathogen abundance reaches the threshold. Researchers call

this exposed period and classify these individuals in a new groupE. In fact, most

childhood infectious diseases have this exposed period.

Figure 1.2: The time-line of the infections, showing the dynamics of the pathogen
and labeling the infection classes: Susceptible (S), Exposed (E), Infective (I), and
Recovered (R).

In theSEIRmodel, the transition between susceptible and exposed is the fraction

of new individuals get infected over a unit time, therefore it is also SI.We assume

that the average duration from exposed to infective is 1/a, thus the transition term

from groupEto groupIisaE.

6



Figure 1.3: Flow diagram of theSEIRmodel explaining the transitions among
Susceptibles (S), Exposed (E), Infectives (I) and Recovered (R).

According to the flow diagram, we obtain theSEIRmodel as

dS

dt
= (t)S(t)I(t) S(t),

dE

dt
= S(t)I(t) aE(t) E(t),

dI

dt
=aE(t) ⌫I(t) I(t),

dR

dt
=⌫I(t) R(t).

Vaccination is considered as the most e↵ective way of controlling endemic infec-

tious diseases. The most common way of vaccination is pediatric vaccination, which

vaccinates newborn babies and young infants. We denote the vaccination ratep. Vac-

cinated newborn babies will be classified as recovered as they will built immunity

after vaccination. TheSEIRmodel with vaccination can be written as

dS

dt
= (1 p) (t)S(t)I(t) S(t),

dE

dt
= S(t)I(t) aE(t) E(t),

dI

dt
=aE(t) ⌫I(t) I(t),

dR

dt
=⌫I(t) R(t)+p.

7



1.3 Two existing algorithms to extract the transmission rate (t)

Studying the transmission rate can yield critical information on the disease

and can help determine which control strategy should be applied. However, the

transmission rate is essentially impossible to measure directly due to ethical and

economic reasons. Mathematical models are a powerful tool to estimate and study

the time-varying transmission rate.

1.3.1 The prevalence algorithm

An algorithm had been proposed recently by Pollicott et al. (2012) to extract

the time-dependent transmission rate (t) from the existing prevalence data using

a novel inverse method. We call it the prevalence algorithm. We recall the theorem

on the inverse problem below [19]:

Theorem 1: Given a smooth functionf(t),⌫>0, 0>0, andT>0, there exists

K>0 such that if 0<K, the system (1.2) has a solution(t)with (0) = 0

such thatI(t)=f(t) for 0tTif and only iff0(t)/f(t)> ⌫for 0tT.

This theorem is formatted into the following steps for extracting the transmission

rate:

Step 1Smoothly interpolate the infection data with a spline or trigonometric func-

tion to generate a smoothf(t). Check condition 1:f0(t)/f(t)> ⌫,where⌫is the

removal rate .

Step 2Compute the functionp(t)=(f00(t)f(t) f0(t)2)/(f(t)(f0(t)+⌫f(t))).Con-

dition 1 prevents a zero denominator.

Step 3Choose (0) and compute the integralP(t)=
Rt
0p(⌧)d⌧. Check condition

2: (0)<1/
RT
0e
P(s)f(s)ds,whereTis the time length of the infection data. Alter-

natively, choose (0) suciently small to satisfy condition 2.

Step 4Apply the formula (t)=1/[eP(t)/(0) eP(t)
Rt
0e
P(s)f(s)ds] to compute

8
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Figure 1.4: The transmission rate extracted from England&Walse and its modulus
of Fourier transform from 1948 to 1958. We use theSEIRmodel with the parameter
values⌫= 52/12/month,a= 52/12/month, =1/70/12/month, and the initial
value (0) = 140/year.

The modulus of Fourier transform of a discrete data set will peak at where

the data set has its strongest frequency. We can see that there are two dominant

frequencies: 1 and 3 per year. The first frequency is obviously from seasonality. The

second one reflects the three big holidays in UK: Christmas, Easter, and summer

vacation.

1.3.2 The incidence algorithm

Another algorithm was proposed by Haleder in 2011 [9]. The formula uses

incidence data instead of prevalence data. Also, no derivatives are needed, while

the prevalence algorithm needs both the first and the second derivatives. Thus the

incidence algorithm should be more stable numerically. We call it the incidence

algorithm. We extend it from theSIRmodel to theSEIRmodel.

We denote !(t) the number of new cases over a unit time, i.e.!(t)= SI. We

can rewrite theSEIRmodel as

10



dS

dt
= !(t) S(t),

dE

dt
=!(t) aE(t) E(t),

dI

dt
=aE(t) ⌫I(t) I(t),

dR

dt
=⌫I(t) R(t).

According to theSEIRmodel, we derive a formula to extract the transmission

rate (t) from incidence data.

Theorem 2: For theSEIRmodel, the time-dependent transmission function is

(t)=
!(t)

S(t)I(t)

where

S(t)=S(0)e t+

Zt

0
( !(s))e (ts)ds,

I(t)=I(0)e(⌫+ )t+a

Zt

0
(E(0)e(a+ )s+

Zs

0
!()e(a+ )(s )d)e(⌫+ )(ts)ds.

Its proof is similar to the proof of theorem 5 in chapter 2.

1.3.3 Connection between prevalence algorithm and incidence algorithm

We believe that prevalence and incidence formulas are the same formulas, but in

di↵erent forms. In this subsection, we prove this statement using theSIRmodel as

an example.

11



With !(t)=(t)S(t)I(t), theSIRmodel can be rewritten as

S0(t)= !(t), (1.3.1)

I0(t)=!(t) ⌫I(t), (1.3.2)

R0(t)=⌫I(t). (1.3.3)

From the prevalence algorithm, we know that

(t)=
eP(t)

1
0

Rt
0e
P(s)f(s)ds

, (1.3.4)

whereP(t)=
Rt
0p(t)dtandp(t)=

f00(t)f(t)f0(t)2

f(t)(f0(t)+⌫f(t)).Solving (1.3.2) by method of

constant variation, we can see thatf(t)=e⌫tf(0) +
Rt
0!(s)e

⌫(ts)ds,wheref(t)

is the smooth function from interpolation of discrete data ofI(t). If we plug the

above equation into (1.3.4), then (t) can be rewritten in incidence!(t). Instead of

plug it in directly, we use the relationship betweenI(t) and!(t) as equation (1.3.2)

to simplify the process . Take the derivate of (1.3.2) respect tot, we get

f00(t)=!0(t) ⌫f0(t)=!0(t) ⌫(!(t) ⌫f(t)) =!0(t) ⌫!(t)+⌫2f(t).

Equation (1.3.4) can be rewrite asf0(t)+⌫f(t)=!(t).

Therefore,

p(t)=
f00(t)f(t) f0(t)2

f(t)(f0(t)+⌫f(t))

=
(!0(t) ⌫!(t)+⌫2f(t))f(t) (!(t) ⌫f(t))2

f(t)!(t)

=
!0(t)f(t)+⌫!(t)f(t) !2(t)

f(t)!(t)

=
!0(t)

!(t)
+⌫

!(t)

f(t)
.
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Integratep(t) from 0 tot:

P(t)=

Zt

0
p(s)ds

=

Zt

0

!0(s)

!(s)
+⌫

!(s)

f(s)
ds

=

Zt

0

!0(s)

!(s)
ds

Zt

0

!(s) ⌫f(s)

f(s)
ds

=

Zt

0

!0(s)

!(s)
ds

Zt

0

f0(s)

f(s)
ds

=ln
!(t)

!(0)
ln
f(t)

f(0)

=ln
!(t)f(0)

!(0)f(t)
,

i.e.eP(t)=!(t)f(0)
!(0)f(t). Plug it into (1.3.4):

(t)=
eP(t)

1
0

Rt
0e
P(s)f(s)ds

=

!(t)f(0)
!(0)f(t)

1
0

Rt
0
!(s)f(0)
!(0)f(s)f(s)ds

=
!(t)

f(t)(!(0)f(0)0

Rt
0!(s)ds)

=
!(t)

f(t)(S(0)
Rt
0!(s)ds)

=
!(t)

(e⌫tf(0) +
Rt
0!(s)e

⌫(ts)ds)(S(0)
Rt
0!(s)ds)

=
!(t)

f(t)S(t)
.

This is consistent with the incidence algorithm.
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1.4 Outline

In chapter 2, we modify theSEIRmodel to theSEIRAmodel which better

describes childhood infectious diseases. We analyze its positivity, boundedness, and

stability. Next, we perform sensitivity analysis of the steady state, the peak value

and time of the disease outbreak with respect to all parameters. In the second part

of this chapter, we extend both the prevalence and incidence algorithms for the

SEIRAmodel and apply them to real pre-vaccination measles data from Liverpool

and London.

In chapter 3, we first consider pediatric vaccination. We perform qualitative and

sensitivity analysis again, but the emphasis will be focused on how vaccination rate

can a↵ect the dynamics ofI(t). We study how di↵erent transmission and vaccination

rates a↵ect the outbreak peak value, the outbreak peak time, and the endemic steady

state of an infectious disease. We also extract (t) from post-vaccination measles

data from London and Liverpool during the period 1974-1986. In the last part, we

consider a vaccination strategy for all susceptible kids to study the present measles

outbreak in the Province of Alberta.
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Chapter 2

TheSEIRAmodel

2.1 Derivation of theSEIRAmodel

Recall that when introducing theSEIRmodel, we divide the total population

into four compartments: susceptible, exposed, infective and recovered. This model

can be applied to all infectious diseases satisfying its assumptions. However, it is not

suitable to apply this model when considering childhood infectious diseases since,

in theSEIRmodel, adults who have never been infected nor vaccinated are also

considered as susceptible.

When studying childhood infectious diseases, we first classify the population as

the adult group (groupA) and the juvenile group. Then we divide the juvenile group

into susceptible (S), exposed (E), infective (I), and recovered (R). We modify the

SEIRmodel to theSEIRAmodel based on our new classification.

We used to consider natural death rate for every group. But children will not die

naturally. They die only because of some specific reasons like accidents or diseases

and their death rate is much lower than the natural death rate. Therefore, we ignore

nature death rate for the juvenile group. Instead, we consider growth rate as children

will grow up and no longer be susceptible. We assume that children will be moved
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to groupAin rateg, i.e. people under 1/gyears old will be considered as juvenile.

Transition terms betweenS, E, IandRare the same with it in theSEIRmodel.

Figure 2.1 presents the flow diagram of theSEIRAmodel.

Figure 2.1: TheSEIRAflow diagram.Ais adult group. Juvenile will be moved to
groupAin rateg. Flow of birth and death are omitted for clarity.

As a conclusion, we obtain theSEIRAmodel

dS

dt
=A(t) (t)S(t)I(t) gS(t), (2.1.1)

dE

dt
= (t)S(t)I(t) aE(t) gE(t), (2.1.2)

dI

dt
=aE(t) ⌫I gI, (2.1.3)

dR

dt
=⌫I(t) gR(t), (2.1.4)

dA

dt
=g(S(t)+E(t)+I(t)+R(t)) A(t), (2.1.5)

with all the parameters and their values for measles listed in table 2.1 (parameters

pandqare vaccination rate which we will use later).
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Parameter Value Description Units

p 0 -100% Pediatric vaccination rate
1/64 Natural death/birth Rate year-1

⇡1000 Transmission rate year-1

g 1/16 Growth rate year-1

⌫ 52 Recovery rate year-1

a 52 Rate at which exposed indi-
viduals become infective

year-1

q 0 -100% Vaccination rate for all chil-
dren

year-1

Table 2.1: Parameter description and values for measles

Values of rateaand⌫for measles are from Anderson and May [2, 23]. Rate

a= 52/yearand⌫= 52/yearmean that the average time duration of exposed and

infective are 1year/52 = 1week. We assume that the average life span is 80 years

and only kids under 16 are susceptible to measles. Therefore,g=1/16·year1

for growth rate and =1/64·year1for the natural death rate for the population

between 17 and 80 years old. Values ofpandqare mainly determined by vaccination

policy, which can be as low as 0 % if there is no vaccination or as high as 100% if

every individual is vaccinated. Value of transmission rate is time dependent and

usually considered as a sinusoid function. According to Tidd. et al. [24], we choose

= 1000year1on average.

2.2 Qualitative analysis

In this section we analyze positivity, boundedness, and stability of theSEIRA

model. Positivity describes the property that a system will stay positive if starts

with a positive initial value. An ODE systemdyi
dt =fi(y1,y2,...,yn)(n2N) has

positivity if81in, fi 0 when yi= 0 andyj 0, j6=i.Denote

S, E, I, R, Aasfiand the functions in the right hand side of the equal signs

in (2.1) asyi,for1i5, respectively. Thereforef1= y5 0,f2= y1y3
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0,f3=ay2 0,f4=⌫y3 0,f5=g(y1+y2+y3+y4) 0. Hence (2.1) has positivity.

Also, we notice thatS, E, I, R,andAsum to be one and their derivative sum to

be zero. Combining with positivity, we conclude that the solution of (2.1) will stay

in{(S, E, I, R, A):S 0,E 0,I 0,R 0,A 0,S+E+I+R+A=1}if the

system starts at a positive initial value.

Stability is a tool to study the endemic behavior of a system. To analyze the

stability of theSEIRAsystem (2.1), we have to figure out all the equilibria first.

Assuming that (S⇤,E⇤,I⇤,R⇤,A⇤) is an equilibrium, then it should satisfy

0=A⇤ S⇤I⇤ gS⇤, (2.2.1)

0= S⇤I⇤ (a+g)E⇤, (2.2.2)

0=aE⇤ (⌫+g)I⇤, (2.2.3)

0=⌫I⇤ gR⇤, (2.2.4)

0=g (g+ )A⇤. (2.2.5)

From (2.2.5), we know thatA⇤= g
g+ . From (2.2.3), we know thatE

⇤=⌫+g
a I

⇤.

Plug it into (2.2.2) we get

S⇤I⇤ (a+g)
⌫+g

a
I⇤=0

)(S⇤
(a+g)(⌫+g)

a
)I⇤=0

)S⇤=
(a+g)(⌫+g)

a
or I⇤=0

IfI⇤= 0, thenE⇤=⌫+g
a I

⇤= 0,R⇤=⌫
gI
⇤= 0,S⇤=gA

⇤=g+ .
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IfS⇤=(a+g)(⌫+g)
a ,then

I⇤=
A⇤ gS⇤

S⇤
=

ag

(a+g)(g+ )(⌫+g)

g
,

E⇤=
⌫+g

a
I⇤=

g

(a+g)(g+ )

g(⌫+g)

a
,

R⇤=
⌫

g
I⇤=

a⌫

(a+g)(g+ )(⌫+g)

⌫
.

Hence, there are two equilibria:

the disease-free equilibrium

(S⇤1,E
⇤
1,I

⇤
1,R

⇤
1,A

⇤
1)=(g+

,0,0,0,
g

g+
)

and the endemic equilibrium

(S⇤2,E
⇤
2,I

⇤
2,R

⇤
2,A

⇤
2)=(

(a+g)(⌫+g)

a
,

g

(a+g)(g+ )

g(⌫+g)

a
,

ag

(a+g)(g+ )(⌫+g)

g
,

a⌫

(a+g)(g+ )(⌫+g)

⌫
,
g

g+
).

Theorem 3 (Local stability): Assume that all the parameters are positive. We

conclude that

•When a < (a+g)(g+ )(⌫+g), the disease-free equilibrium is locally

asymptotic stable and the endemic equilibrium is not feasible ;

•Whena >(a+g)(g+ )(⌫+g), the endemic equilibrium is locally asymptotic

stable and the disease-free equilibrium is unstable .

Proof.We first calculate the Jacobian matrix of the SEIRAmodel. Since

S, E, I, R, Asum to be 1, there are only four free variables. To calculate

the Jacobian matrix, we only need to consider any four of them. We ignore
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the fourth equation (2.1.4) and obtain the Jacobian matrix as

J(S, E, I, A)=

0

B
B
B
B
B
B
B
@

I g 0 S

I (a+g) S 0

0 a (⌫+g) 0

0 0 0 (g+ )

1

C
C
C
C
C
C
C
A

.

••When a <(a+g)(g+ )(⌫+g),notice thatI⇤2can be rewritten as

I⇤2=
g

(a+g)(g+ )(⌫+g)
(a (a+g)(g+ )(⌫+g)),

thusI⇤2<0,R
⇤
2=

⌫
gI
⇤
2<0, andE

⇤
2=

⌫+g
a I

⇤
2<0, i.e. the endemic equilibrium

is not feasible whena <(a+g)(g+ )(⌫+g).

For the disease-free equilibrium, the Jacobian matrix is

J(S⇤1,E
⇤
1,I
⇤
1,A

⇤
1)=

0

B
B
B
B
B
B
B
@

g 0 g+

0 (a+g) g+ 0

0 a (⌫+g) 0

0 0  0 (g+ )

1

C
C
C
C
C
C
C
A

and

I J(S⇤1,E
⇤
1,I
⇤
1,A

⇤
1)=

0

B
B
B
B
B
B
B
@

+g 0 g+

0 +a+g g+ 0

0 a +⌫+g 0

0 0  0 +g+

1

C
C
C
C
C
C
C
A

.
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The characteristic equation is

(+g)(+⌫+g)(2+(a+2g+⌫)+(a+g)(⌫+g)
a

g+
)=0.

Therefore eigenvalues ofJ(S⇤1,E
⇤
1,I
⇤
1,A

⇤
1) are 1= g,2= (g+ ) and

3,4which are two solutions of

2+(a+2g+⌫)+(a+g)(⌫+g)
a

g+
=0.

) 3,4=
(a+2g+⌫)±

q
(a+2g+⌫)2 4((a+g)(⌫+g) a

g+ )

2

=
(a+2g+⌫)±

q
(a ⌫)2+4a

g+

2

We can see that 3, 4are always real and both 3, 4are negative if and

only if (a+g)(⌫+g) a
g+ >0.

According to stability theorem,

the disease-free equilibrium is stable

()all eigenvalues of its Jacobian matrix is negative

()(a+g)(⌫+g) a
g+ >0

()a <(a+g)(g+ )(⌫+g).

•When a >(a+g)(g+ )(⌫+g),notice thatS⇤2=
(a+g)(⌫+g)

a >0,A⇤2=

g
g+ > 0 if all parameters are positive. Also,I⇤2 =

g
(a+g)(g+ )(⌫+g)(a

(a+g)(g+ )(⌫+g))>0,andR⇤2=
⌫
gI
⇤
2>0,E

⇤
2=

⌫+g
a I

⇤
2>0, i.e. the

endemic equilibrium is feasible when all the parameters are positive anda >

(a+g)(g+ )(⌫+g).

Also, whena >(a+g)(g+ )(⌫+g),from the previous proof, we know

that the disease-free equilibrium is unstable.
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For the endemic equilibrium, once again, we calculate the Jacobian matrix:

J(S⇤2,E
⇤
2,I
⇤
2,A

⇤
2)=

0

B
B
B
B
B
B
B
@

I⇤2 g 0 S⇤2

I⇤2 (a+g) S⇤2 0

0 a (⌫+g) 0

0 0 0 (g+ )

1

C
C
C
C
C
C
C
A

.

=)

I J(S⇤2,E
⇤
2,I
⇤
2,A

⇤
2)=

0

B
B
B
B
B
B
B
@

+ I⇤2+g 0 S⇤2

I⇤2 +a+g S⇤2 0

0 a +⌫+g 0

0 0 0 +g+

1

C
C
C
C
C
C
C
A

.

From the above matrix, we can see that one eigenvalue of the characteristic

equation is 1= (g+ ), and the other three are the eigenvalues of matrix

M =

0

B
B
B
B
@

I⇤2 g 0 S⇤2

I⇤2 (a+g) S⇤2

0 a (⌫+g)

1

C
C
C
C
A
.

=)

I M =

0

B
B
B
B
@

+ I⇤2+g 0 S⇤2

I⇤2 +a+g S⇤2

0 a +⌫+g

1

C
C
C
C
A
,

and the characteristic equation is

3+( tr(M))2+(↵(M))+( Det(M)) = 0,

where
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tr(M)= (I⇤2+a+3g+⌫),

↵(M)=(I⇤2+g)(a+g)+(I
⇤
2+g)(⌫+g)+(a+g)(⌫+g) aS⇤2,

Det(M)= (I⇤2+g)(a+g)(⌫+g)+agS
⇤
2.

To study stability, we apply the third order Routh-Hurwitz stability crite-

rion. We first review the third order Routh-Hurwitz stability criterion.

Proposition 1(Third-order Routh-Hurwitz stability criterion):
Real parts of all solutions of a third-order polynomialP(s) =
a3s
3+a2s

2+a1s+a0= 0 are negative if the coe cients satisfy
a3>0,a2>0,a1>0,a0>0 anda2a1>a3a0.

Compare the characteristic equation with the third order Routh-Hurwitz

stability criterion and plug inS⇤2=
(a+g)(⌫+g)

a :

a3=1>0,

a2= tr(M)=I⇤2+3g+a+⌫>0,

a1=↵(M)=(I
⇤
2+g)(a+g)+(I

⇤
2+g)(⌫+g)+(a+g)(⌫+g) aS⇤2

=( I⇤2+g)(a+g)+(I
⇤
2+g)(⌫+g)+(a+g)(⌫+g) a(a+g)(⌫+g)

a

=( I⇤2+g)(a+2g+⌫)>0,

a0= Det(M)=(I⇤2+g)(a+g)(⌫+g) agS⇤2

= I⇤2(a+g)(⌫+g)+g(a+g)(⌫+g) agS⇤2

= I⇤2(a+g)(⌫+g)+g(a+g)(⌫+g) ag (a+g)(⌫+g)
a

= I⇤2(a+g)(⌫+g)>0,

a2a1=↵(M)⇤(tr(M))

=( I⇤2+g)(a+2g+⌫)(I
⇤
2+3g+a+⌫)

> I⇤2(a+g)(⌫+g)= Det(M)=a3a0.

Conditions of Routh-Hurwitz stability criterion are satisfied and the en-

demic equilibrium is asymptotically stable if all the parameters are positive

23



anda >(a+g)(g+ )(⌫+g).

To be short, theorem 3 can be rewritten as:

Assume that all the parameters are positive.

•When R01,limt!+1(S(t),E(t),I(t),R(t),A(t)) !Disease-free equi-

librium (DFE),

•When R0>1,limt!+1(S(t),E(t),I(t),R(t),A(t)) !Endemic equilib-

rium (EE),

whereR0=
a

(a+g)(g+ )(⌫+g)is the basic reproduction number.

Recall that whenR0 1, the disease can spread and whenR0<1, the disease

will finally disappear. Thus, stability conclusion of theorem 3 is consistent with

conclusion fromR0. We can rewriteR0as

R0=
⌫+g

·
a

a+g
·
+g
.

We know that SIis the number of new cases over a unit time. Hence the average

number for one infective individual is SI
I = S. Therefore, the number of sus-

ceptibles an infective individual can infect is the average number over a unit time

multiply by the average length of duration an infective indiidual stay infectious

which is S·1⌫+g. The fraction of the infected individuals who can finally become

infective is the possibility an exposed individual will become infective in a unit time

multiply by the time duration of an exposed individual stay exposed which isa·1a+g.

The expected fraction of susceptibles is +gwhich is the value of susceptibles at the

disease-free steady state. Therefore, S·1⌫+g·
a
a+g= ·+g·

1
⌫+g·

a
a+gis the average

number of susceptibles that one infective individual can infect in the duration of

infection.
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2.3 Sensitivity analysis

Sensitivity analysis studies the quantity of how uncertainty factors can a↵ect

important results. The normalized forward sensitivity index is defined as

S.I.=
p

X⇤
@X⇤

@p
(2.3.1)

whereX⇤is the quantity being considered, andpis the parameter whichX⇤depends

upon. Sensitivity indices can be positive or negative which indicate the nature of

the relationship, and it is the magnitude that ranks the strength of the relationship

as compared to the other parameters.

In this section, we calculate, analyze and compare the sensitivity indices of

outbreak peak value, time of outbreak peak, and steady state value ofI(t), with

respect to di↵erent parameters. When studying quantities like the peak value or

the peak time which do not have explicit formulas, we compute the approximation

values of their indices by calculating

S.I.=
p

X⇤(p)

X⇤(p+ p) X⇤(p p)

2 p
. (2.3.2)

We calculate S.I.with respect to one specific parameter by perturbing this param-

eter only and keeping the others unchanged. In our calculation in this section, we

take p= 1%p.

2.3.1 Sensitivity analysis of the outbreak peak value

The sensitivity indices of the amplitude of the outbreak peak show how the first

epidemic depends on the parameters as seen in Table 2.2.
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Parameter Sensitivity of peak Description

0.0099 Natural death/birth Rate
1.7200 Transmission Rate

g -0.0195 Growth Rate
⌫ -2.8204 Removal Rate
a 1.1102 Rate at which exposed indi-

viduals become infective

.

Table 2.2: The sensitivity indices of the value of the outbreak peak respect to the
parameters values =1/64/12/month, = 55/month, g=1/16/12/month,⌫=
52/12/month, a= 52/12/monthand initial valuesS0=0.2, E0=0.002,I=
0.002,R0=0.006,A0=0.79.

The removal rate⌫has the strongest relationship to the magnitude of the outbreak

peak. The negative value tells us that a lower removal rate would lead to a more

severe epidemic. In contrast to the birth/death rate which has among the lowest

of sensitivity indices,⌫would thus be an important parameter to control in order

to reduce the harm of an outbreak.

Both transmission rate and rateahave strong positivity relationship to the

peak outbreak as higher would result in a higher level of groupEand highera

would move more exposed to infections.

The sensitivity index with respect to the human birth/death rateµis very

low in comparison to all the others. This makes sense, because the initial peak of

an epidemic occurs relatively quickly after the introduction of sick people, and the

birth and death of new susceptibles would take much longer time.

The growth rategis negative sensitive to the outbreak peak because a larger

growth rate will move infections to group A faster, thus reduces the outbreak peak.

Similarly with birth/death rate , growth rateghas a small influence on the peak

value.

In fact, parameters related to demography, such as birth/death rate and growth

rate, would have small influence on the outbreak level as the initial peak appears
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relatively quickly. Parameters which directly related to the inputs and outputs of

infections would have important influence on the initial peak. For instance, ratea

determines how fast exposed individuals will become infectious,⌫determines how

quickly infections will be moved to groupRand determines how many susceptibles

will be infected and both of them have strong relationship with the outbreak.

2.3.2 Sensitivity analysis of the outbreak peak time

Sensitivity indices of the outbreak peak time measure how the first epidemics

outbreak depends on di↵erent parameters as seen in the Table 2.3.

Parameter Sensitivity of peak time Description

-0.0011 Natural death/birth Rate
-0.7403 Transmission Rate

g 0.0027 Growth Rate
⌫ 0.3075 Removal Rate
a -0.2908 Rate at which exposed indi-

viduals become infective

Table 2.3: The sensitivity of the outbreak peak time respect to the parame-
ters with values =1/64/12/month, = 55/month, g=1/16/12/month,⌫=
52/12/month, a= 52/12/month.and initial valuesS0=0.2, E0=0.002,I=
0.002,R0=0.006,A0=0.79.

As outlined previously, we have the same reason that birth/death rate and

growth rateghave less influence on the outbreak time than the other three param-

eters.

We can see from Table 2.3 that the transmission rate has the largest influence

on the dynamics of the system. This suggests that is a more important quantity

to control to prevent outbreaks. The negative relationship tells us that a larger

transmission rate would lead to a quicker outbreak.

The relationship between rateaand the time of the maximum outbreak is

negative, because a higher contact rate (shorter latent period) will cause more new
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infections and the timing of the maximum would be attained earlier.

The removal rate still has important e↵ect on the outbreak time. The positive

relationship between⌫and the outbreak time is because patients will recover faster

with larger⌫thus postpones the outbreak time.

2.3.3 Sensitivity analysis of the endemic steady state

Endemic steady state determines the levels of groups of an endemic infectious

disease. It represents the expectation of the final size of all groups. In the table

below, we list sensitivity indices ofI⇤2respects to all parameters.

Parameter Sensitivity ofI⇤2 Description

1.3221 Natural death/birth Rate
0.6526 Transmission Rate

g -0.3260 Growth Rate
⌫ -1.6508 Removal Rate
a 0.0020 Rate at which exposed indi-

viduals become infective

Table 2.4: Sensitivity of the endemic steady state with respect to the parame-
ters with values =1/64/12/month, = 55/month, g=1/16/12/month,⌫=
52/12/month, a= 52/12/month.

The endemic level of infective individuals is most sensitive to the recovery rate⌫

and birth/death rate. The negative relationship with⌫is strong because recovery

is the main way that infectives leave the infected component. The relationship with

is positive as larger means more newborn susceptibles will possibly become

infective. Rateahas a weak but positive relationship withI⇤2as expected because

a largeraleads to the fact that more exposed will become infectives. Transmission

rate is also of great importance in controlling the endemic level of the infectives.

The positive relationship is obvious since larger means more susceptibles will get

infected.
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2.3.4 Numerical simulations

Sensitivity and stability were discussed previously and numerical simulations are

presented in the following diagrams.
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Figure 2.2: Fraction of infectives with di↵erent transmission rates and initial
valueS0=0.29,E0=0.003,I0=0.003,R0=0.003,A0=0.7 and parameters
a=52/12/month,⌫=52/12/month, g=1/16/12/month, =1/64/12/month. (a) The
first peak of fraction of infectives from time 0 to 6 the first outbreak ofI(t). (b)
Fraction of infections from time 200 to 600. We observe many outbreaks whose peak
values decay. There is a threshold 0that when (t)< 0, the disease will go to
disease-free, i.e. no more peaks after the first one and when (t)> 0,itwillhave
small peaks after the first peak. (c) Fraction of infections from time 3500 to 3750:
the disease finally goes to a steady state.
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Figure 2.2 shows the dynamics ofI(t) with transmission rate varying from 5

to 95 in di↵erent time intervals. The first figure (a) plots infectivesI(t) from time

0 to 6. During this time, the biggest peak appears quickly after the disease was

first introduced into the population. The larger is, the more severe the peak is.

The second figure (b) plots infectivesI(t) from time 200 to 600. We know that the

threshold for stability isR0=
a

(a+g)(g+ )(⌫+g)= 1. Using the values we choose in the

simulation, the threshold is 0= 21.7, i.e. when 0 21.7, the disease will always

exit and come back in peaks, and when 0<21.7,the disease will finally disappear.

We can see that when =5,20, infectivesI(t) has no more small peaks compare

to waning peaks when is larger than 21.7. The third figure (c) plotsI(t) from

time 3500 to 3750 when infetivesI(t) finally goes to its steady state. From (c) we

can see that when conditionR0<1 or <21.7( =5,20 in the figure) is satisfied,

the steady state ofI(t) is zero. WhenR0<1 or <21.7 is satisfied,I(t) finally

becomes a constant, the value of which depends on the transmission rate . When

is larger, the steady state will have a higher level.

In fact, the behavior ofI(t) can be much more complicated since parameters are

changing while we consider them as constant in the simulation. For instance, the

transmission rate for measles is usually considered as a periodic function driven

by seasonality and school holidays.

2.4 Two algorithms to extract the transmission rate (t)from pre-

vaccination data

We extend both algorithms to the SEIRAmodel. We first present the theoretical

results of the formulas of (t) based on prevalence data and incidence data. Then

proofs and steps of algorithms will be followed.
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2.4.1 The prevalence algorithm

The prevalence algorithm is used to extract the transmission rate (t) from

prevalence data set by solving the inverse problem.

Theorem 4: For theSEIRAmodel, the time-dependent transmission function (t)

satisfies the following di↵erential equation:

M 002+N(0)2 +P 02 L 4 Q 3=0, (2.4.1)

where

M =D= Hf3,

N=C=2Hf3,

P=B (2g+ )Hf3=2Hf0f2 2H0f3 (2g+ )Hf3,

Q= (A+(2g+ )H0f3 (2g+ )Hf0f2+g(g+ )Hf3)

= (H00f3 Hf00f2 2H0f0f2+2H(f0)2f+(2g+ )H0f3 (2g+ )Hf0f2+g(g+ )Hf3),

L= (H0f4+(g+ )Hf4 agf4).

Proof.Rewrite equation(2.1.3) asf0(t)+(⌫+g)f(t)=aE(t). Di↵erentiate both

sides:f00(t)+(⌫+g)f0(t)=aE0(t). Plugging (2.1.2) and (2.1.3) into the above

equation, we get
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f00(t)+(⌫+g)f0(t) =aE0(t)

(2.1.2)
= a((t)S(t)f(t) (a+g)E(t))

= a(t)S(t)f(t) (a+g)(aE(t))

(2.1.3)
= a(t)S(t)f(t) (a+g)(f0(t)+(⌫+g)f(t).)

Rewrite the above equation as

aS(t)=
f00(t)+(⌫+2g+a)f0(t)+(a+g)(⌫+g)f(t)

(t)f(t)
.

DenoteH(t),f00(t)+(⌫+2g+a)f0(t)+(a+g)(⌫+g)f(t), thenaS(t)= H(t)
(t)f(t).

Take first and second derivative of the above equation, we get

aS0(t)=(
H(t)

(t)f(t)
)0=

H0(t)(t)f(t) H(t)(0(t)f(t)+(t)f0(t)

(t)2f(t)2
,

aS00(t)=(
H0(t)(t)f(t) H(t)(0(t)f(t)+(t)f0(t)

(t)2f(t)2
)0

=
[H0f H(0f+ f0)]02f2 [H0f H(0f+ f0)](2f2)0

(2f2)2

=
H00f3 3+H0f3 02+H0f0f2 3 H0f3 02 H0f0f2 3 Hf3 002 2Hf0f2 02 Hf00f2 3

4f4

2(H0f3 02+H0f0f2 3 Hf3(0)2 Hf0f2 02 Hf0f2 02 H(f0)2f3)
4f4

=
[H00f3 Hf00f2 2H0f0f2+2H(f0)2f]3+[2Hf0f2 2H0f3]02+2Hf3(0)2 Hf3 002

4f4

=
A 3+B 02+C(0)2 +D 002

4f4
,

where A=H00f3 Hf00f2 2H0f0f2+2H(f0)2f,

B=2Hf0f2 2H0f3,C=2Hf3, D= Hf3.

SinceS+E+I+R+A= 1, i.e. S+E+I+R=1 A,

(2.1.5) becomesA0=g(S+E+I+R) A=g(1 A) A=g (g+ )A
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Take derivative of (2.1.1) respect to t: S00+( SI)0+gS0= A0,plugin(2.1.1)

and (2.1.5):

S00+( SI)0+gS0= A0= (g (g+ )A)=g (g+ )(A)

(2.1.1)
= g (g+ )(S0+ SI+gS) Multiplyato both sides of

the above equation and simplify:

aS00+(2g+ )(aS0)+g(g+ )(aS)+(aSI)0+(g+ )(aSI)=ag

Plug in the formula ofaS,aS0andaS00:

(
A 3+B 02+C(0)2 +D 002

4f4
)+(2g+ )(

H0(t)(t)f(t) H(t)(0(t)f(t)+(t)f0(t)

(t)2f(t)2
)

+g(g+ )(
H(t)

(t)f(t)
)+H0+(g+ )H=ag.

Multiply by 4f4and expand:

A 3+B 02+C(0)2 +D 002+(2g+ )H0f3 3 (2g+ )Hf3 02

(2g+ )Hf0f2 3+g(g+ )Hf3 3+H0f4 4+(g+ )Hf4 4=ag 4.

Collect terms with the same common factors of 4,3,2 0,(0)2,2 00:

(H0f4+(g+ )Hf4 agf4)4+(A+(2g+ )H0f3 (2g+ )Hf0f2+g(g+ )Hf3)3

+(B (2g+ )Hf3)02+C(0)2 +D 002=0.

i.e. L 4 Q 3+P 02+N(0)2 +M 002=0, (2.4.2)

where

33



M =D= Hf3,

N=C=2Hf3,

P=B (2g+ )Hf3=2Hf0f2 2H0f3 (2g+ )Hf3,

Q= (A+(2g+ )H0f3 (2g+ )Hf0f2+g(g+ )Hf3)

= (H00f3 Hf00f2 2H0f0f2+2H(f0)2f+(2g+ )H0f3 (2g+ )Hf0f2+g(g+ )Hf3),

L= (H0f4+(g+ )Hf4 agf4).

Notice thatN= 2M and rewrite equation(2.4.2) as

M 002 2M(0)2 +P 02 Q 3 L 4=0.

Divided by 4:

M
002 2(0)2

4
+P

02

4
Q

3

4
L
4

4

= M(2 3(0)2 2 00) P( 2 0) Q( 1) L

=0.

Lety= 1,y0= 2 0,y00=2 3(0)2 2 00.

(2.4.2) can be rewrite asMy00+Py0+Qy+L=0 with y= 1.

According to theorem 4, we obtain the prevalence algorithm to extract the

transmission rate from theSEIRAmodel.

Step 1Smoothly interpolate the infection data with a spline or trigonometric func-

tion to generate a smooth f(t). Check condition :f0(t)/f(t)> (⌫+g), where⌫is

the removal rate andgis the growth rate .

34



Step 2Calculate the functionH(t)=f00(t)+(⌫+2g+a)f0(t)+(a+g)(⌫+g)f(t).

Calculate M, N, P, Q, and L by pluggingH(t) into formulas (2.4.1).

Step 3Choose (0), 0(0),and interval [0,T], use an ODE solver to solve equation

M 002+N(0)2 +P 02 L 4 Q 3= 0 for (t) on interval [0,T].

2.4.2 The incidence algorithm

To extend the incidence algorithm to theSEIRAmodel, we first rewrite it in

terms of incidence!(t). With!(t)=SIandS+E+I+R+A= 1, theSEIRA

model can be rewritten as

dS

dt
=(A(t) !(t)) gS(t) (2.4.3)

dE

dt
=!(t) (a+g)E(t), (2.4.4)

dI

dt
=aE(t) (⌫+g)I(t), (2.4.5)

dR

dt
=⌫I(t) gR(t), (2.4.6)

dA

dt
=g (g+ )A(t). (2.4.7)

We can extend the incidence algorithm to the SEIRAmodel following the

theorem below:

Theorem 5: For theSEIRAmodel, the time-dependent transmission function is

(t)=
!(t)

S(t)I(t)
,
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where

S(t)=S0e
gt+

Zt

0
((A0e

(g+ )s+

Zs

0
ge(g+ )( s)d) !(s))eg(s t)ds, (2.4.8)

I(t)=I0e
(⌫+g)t+

Zt

0
a(E0e

(a+g)s+

Zs

0
!()e(a+g)( s)d)e(⌫+g)(s t)ds.(2.4.9)

Proof.First solving (2.4.7) with initial valueA(0) =A0by using method of variation

of constant. Assume that

dA

dt
= (g+ )A

)
dA

A
= (g+ )dt

)ln(A)= (g+ )t+C1

VA=e(g+ )t+C1=e(g+ )tC (C=eC1)

Then we assume that the solution of (2.4.7) is

A=C(t)e(g+ )t

)A0=C0(t)e(g+ )t+C(t)((g+ )e(g+ )t)

Plug it into (2.4.7):

A0=C0(t)e(g+ )t+C(t)((g+ )e(g+ )t)

=g (g+ )C(t)e(g+ )t

)C0(t)e(g+ )t=g

)C0(t)=ge(g+ )t

)C(t)=C(0) +

Zt

0
ge(g+ )sds

When t=0, A0=A(0) =A(t)|t=0=C(t)e
(g+ )t|t=0

=(C(0) +
Rt
0ge

(g+ )s)e(g+ )t|t=0

=C(0),

the solution of (2.4.7) with initial valueA(0) =A0is
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A(t)=C(t)e(g+ )t=(A(0) +

Zt

0
ge(g+ )sds)e(g+ )t

)A(t)=A0e
(g+ )t+

Zt

0
ge(g+ )(s t)ds. (2.4.10)

By using the same method, we can get the solutions forS(t),I(t) andE(t)with

initial valuesS(0) =S0,I(0) =I0andE(0) =E0:

S(t)=S0e
gt+

Zt

0
(A(s) !(s))eg(s t)ds (2.4.11)

I(t)=I0e
(⌫+g)t+

Zt

0
aE(s)e(⌫+g)(s t)ds (2.4.12)

E(t)=E0e
(a+g)t+

Zt

0
!(s)e(a+g)(s t)ds (2.4.13)

Plug (2.4.13) into (2.4.12) and plug (2.4.10) into (2.4.11):

S(t)=S0e
gt+

Zt

0
((A0e

(g+ )s+

Zs

0
ge(g+ )( s)d) !(s))eg(s t)ds (2.4.14)

I(t)=I0e
(⌫+g)t+

Zt

0
a(E0e

(a+g)s+

Zs

0
!()e(a+g)( s)d)e(⌫+g)(s t)ds(2.4.15)

Thus (t)= !(t)
S(t)I(t) withS(t) andI(t)in(2.4.14) and (2.4.15)

Now we turn the above theorem into an algorithm to extract time-dependent

transmission rate (t) using incidence data:

Step 1 Smoothly interpolate incidence data of infectious with a spline or trigono-

metric function to generate a smooth!(t) ( In fact, we only need!(t) to be contin-

uous, not necessary smooth). Assume that the time period for!(t)is[0,T]

Step 2 Divide [0,T]intonsmall intervals with middle points and end points
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ti=
T
ni, 0in.Calculate (ti)=

!(ti)
S(ti)I(ti)

with

S(ti)=S0e
gti+

Zti

0
((A0e

(g+ )s+

Zs

0
ge(g+ )( s)d) !(s))eg(s ti)ds,

I(ti)=I0e
(⌫+g)ti+

Zti

0
a(E0e

(a+g)s+

Zs

0
!()e(a+g)( s)d)e(⌫+g)(s ti)ds.

Step 3Repeatstep 2for 0in.

2.4.3 Numerical simulations

To test our two algorithms derived in the previous sections, we do simulations with

both fake and real measles data from England&Wales. Figure 2.3 plots (t) extracted

from fake prevalence dataf(t) = 103[1.4+cos(2⇡t/12)]. From (a) we can see that

it works in a short time. However, as shown in (b), it will have singularity finally.

Although we did not find an explicit formula for (t), we believe that singularity

is caused by a zero denominator, which is the reason in Pollicott et al. [19]. Our

formula needs higher order of derivatives which makes it more unstable and has a

higher possibility of singularity.
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Figure 2.3: The transmission rate (t) extracted from fake prevalence dataf(t)=
103[1.4+cos(2⇡t/12)] with initial value (0) = 56,0(0) = 1, and parameters
⌫= 52/12,a= 52/12,g=1/16/12,=1/64/12. (a) (t) from time 0 to 60.(b) (t)
from time 0 to 140.
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Figure 2.4 plots (t) from simulated incidence data set. Since (t)= !(t)
S(t)I(t),

the algorithm always works except whenS(t) orI(t) becomes zero. Equation (2.4.2)

indicates thatI(t) is always positive. In theory,S(t) might be zero or negative when

!(t) is too large so that all susceptibles are infected. While in reality, it is rarely

possible, thus the incidence algorithm will always work for real data. As long as we

pick reasonable simulated notification data, it will also work for a long time.
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Figure 2.4: (t) extracted from fake incidence dataf(t) = 104[2.7+1.5sin(2⇡t/12)]
with initial valueS0=0.25,E0=0.0009,I0=0.0001,A0=0.7, and parameters
⌫= 52/12,a= 52/12,g=1/16/12,=1/64/12. (a) (t) from time 0 to 40.(b) (t)
from time 0 to 144.
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Figure 2.5: Measles weekly notification data in England&Walse from 1948-67.

Figure 2.5 is the weekly notification data of measles in England&Walse. We
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convert it to be prevalence data and apply it with the prevalence algorithm. Figure

2.6 (a) plots the part of (t) before singularity happens and (b) plots the whole

(t), with singularity. The prevalence algorithm can only work for a short time.

The more disappointing result is that the transmission rate in figure 2.6 (a) is not

a reasonable estimation for (t). We know that both the data set and interpolation

can have errors. We believe that errors accumulated from complex calculation are

enough to disturb information of transformation rate.
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Figure 2.6: The transmission rate (t) extracted from measles data of Eng-
land&Walse with initial value(0) = 25/month, 0(0) = 10/month, and parame-
ters⌫= 52/12,a= 52/12,g=1/16/12,=1/64/12. (a) (t) from time year 1948
to 1949. (b) (t) from year 1948 to 1966.
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Figure 2.7: (a) Time-dependent transmission rate (t) of England&Walse from year
1948 to 1966. Figure (b), (c), (d) and (e) are time-dependent transmission rate every
three years from 1948 to 1952, 1953 to 1957, 1958 to 1962 and 1963 to 1966, respec-
tively. (t) is extracted with parameters =1/64/52/week, a= 52/52/week,⌫=
52/52/week, g=1/16/52/weekand initial valuesS0=0.2, E0=0.001,I0=
0.001,A0=0.78. (f) plots the modulus of Fourier transform of (t) in (a).
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Figure 2.8: Measles weekly notification data in Liverpool and London from 1944-86.

We then apply the incidence algorithm with real weekly measles incidence data

set from Liverpool and London. Figure 2.8 presents weekly notification data of those

two cities. London is a larger city and has a much higher level of patients.

Discrete Fourier transform (DFT) can convert the domain of equally spaced

discrete data to frequency domain. The panel(e) plots the modulus of Fourier trans-

form of corresponding(t) in Figure 2.9 (a). We can see two peaks with frequencies

1/year and 3/year which is consistent with common belief that measles is driven

seasonally as well as by school vacations. Also, the dominant frequencies are robust

with respect to initial values.
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Figure 2.9: (a) Time-dependent transmission rate (t) of Liverpool from year 1944
to 1966. (b), (c), (d) and (e) are time-dependent transmission rate every three
years from 1948 to 1952, 1953 to 1957, 1958 to 1962 and 1963 to 1966, respec-
tively. (t) is extracted with parameters =1/64/52/week, a= 52/52/week,⌫=
52/52/week, g=1/16/52/weekand initial valuesS0 =0.2,E0 =0.001,I0 =
0.001,A0=0.78.(f) plots the modulus of Fourier transform of (t) in (a).
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Figure 2.10: (a) Time-dependent transmission rate (t) of London from year 1944 to
1966. (b),(c),(d) and (e) are time-dependent transmission rate every three years from
1948 to 1952, 1953 to 1957, 1958 to 1962 and 1963 to 1966, respectively. (t)isex-
tracted with parameters =1/64/52/week, a= 52/52/week,⌫= 52/52/week, g=
1/16/52/weekand initial valuesS0=0.2,E0=0.001,I0=0.001,A0=0.78.(f)
plots the modulus of Fourier transform of (t) in (a).
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The incidence algorithm gives the same 1 and 3 per year dominant frequencies as

what Pollicott et.al [19] concluded, but we did not find the frequency of every two

years which is found in Pollicott et al. [19]

After simulations with data from Liverpool, London and England&Walse, we

conclude that

•Measles transmission is driven seasonally and by school holidays.

•The transmission rate is synchronized in di↵erent cities.

•Seasonality is more important than school holidays in a↵ecting the transmis-

sion rate, especially in large cities.

From the mathematical calculations and simulation results in this chapter, we

agree with Hadeler [9] that the incidence algorithm has advantages over the preva-

lence in many aspects.

First, it is better to use incidence rather than prevalence data. The notification

data is the new cases over a unit time. It is exactly what we need in incidence

algorithm. For the prevalence algorithm, the prevalence data is converted from noti-

fication data. In this thesis, the prevalence data is converted from weekly notification

data with the method we mentioned in the first chapter.

Second, the incidence algorithm is more stable. The incidence algorithm will

always work (no singularity) as long asI(t) andS(t) are not zero since the formula for

is(t)= !(t)
S(t)I(t). However, the prevalence algorithm for theSEIRAmodel involves

until the fourth order derivatives of the smooth function from the interpolation of

the prevalence data. It works for a short time and singularity will happen finally.

Third, incidence algorithm has less challenge in dealing with the problem of

estimating the initial values. It is dicult to evaluate the initial value of (t), (t).

Both of them have great a↵ects on the dynamics of (t). While the only challenge
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for the incidence algorithm is to estimateS(0) which can be estimated based on the

vaccination policy in the past decade since initial values of the other groups have

weak influence on (t).

2.5 Conclusion

In this chapter, we modify theSEIRmodel to be theSEIRAmodel to better

describe the dynamics of childhood infectious diseases. We analyze the boundedness,

positivity and stability of this model. It has positivity and is bounded byS+E+

I+R+A= 1. Thus, the solution will always be positive if starts with a positive

initial value. Also, there are two equilibria, one disease-free equilibrium and one

endemic equilibrium. When the basic reproduction numberR0<1, the disease-

free equilibrium is locally asymptotically stable and the endemic equilibrium is not

feasible, i.e. the steady state is negative. WhenR0>1, the disease-free equilibrium

is unstable and the endemic equilibrium is locally asymptotically stable.

From sensitivity analysis, we know that transmission is the most important in

preventing and ameliorating the magnitude of an outbreak while birth and removal

rate are most important in controlling the endemic level.

We extend both the prevalence algorithm and the incidence algorithm for the

SEIRAmodel. We verify that the prevalence algorithm is more unstable than the in-

cidence data. From Fourier transform of the transmission rate of Liverpool, London,

England&Walse extracted from the incidence data, we conclude that the transmis-

sion of measles is driven by seasonality and school holidays, whereas seasonality is

more dominant, especially in large cities. Also, cycles of the transmission rate is

synchronized in di↵erent cities, i.e. frequencies of 1 and 3 per year are the dominant

frequencies in di↵erent cities.
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Chapter 3

TheSEIRAmodel with vaccination

Vaccination is the process that a vaccine stimulates the immune system of an

individual to build immunity against a pathogen. Vaccination can ameliorate both

mortality and morbidity. The e↵ectiveness of vaccination has been widely studied

and verified since the first work of Edward Jenner on smallpox [16].

Di↵erent vaccination strategies are used to deal with di↵erent situations. Pediatric

vaccination is an e cient way in preventing dangerous human infectious diseases.

Much work has been focused on the vaccination of newborn babies or infants to

reduce the prevalence of diseases like measles, mumps,rubella,etc. Mathematical

treatment of vaccination is straight forward and only needs a single addition to the

SEIRAmodel. Note thatpis used to denote the fraction of the newborns who are

successfully vaccinated. We obtain the followingSEIRAmodel with vaccination:
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dS

dt
=(1 p)A(t) S(t)I(t) gS(t), (3.0.1)

dE

dt
= S(t)I(t) aE(t) gE(t), (3.0.2)

dI

dt
=aE(t) ⌫I(t) gI(t), (3.0.3)

dR

dt
=⌫I(t) gR(t)+pA(t), (3.0.4)

dA

dt
=g(S(t)+E(t)+I(t)+R(t)) A(t). (3.0.5)

However, it is not cost-e↵ective to control rare infectious diseases by pediatric vac-

cination. Therefore, another vaccination policy, random vaccination are conducted

for rare infectious diseases or an potential outbreak which target to vaccinate all

unvaccinated individuals, not only the newborns.

It is dicult for a disease to spread as long as the fraction of susceptibels is kept

in a low level. Therefore, it is more reasonable that we should vaccinate less if the

fraction of susceptibles is lower, and vice-versa. The vaccination policy with vacci-

nation quantity depends on the level of susceptibels is called wildlife vaccination. It

was first used to prevent the spread of animal infectious disease since animals are

easier to control. But we believe that this model is also reasonable with human pop-

ulations nowadays, especially in developed countries and cities with high education

rate.

3.1 Qualitative analysis

In this section, we analyze positivity, boundedness and stability of the equation

system 3. Using the same symbols to analyze positivity,f1= (1 p)y5 0,f2=

y1y3 0,f3=ay2 0,f4=⌫y3+py5 0,f5=g(y1+y2+y3+y4) 0. Therefore
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system (3) has positivity. Also, boundedness property is the same as it in chapter

2. Combining positivity and boundedness, we conclude that the solution of (3) will

stay in{(S, E, I, R, A):S 0,E 0,I 0,R 0,A 0,S+E+I+R+A=1}

if starts at a positive initial value.

The same with the situation in the previous chapter, there are two equilibria for

the vaccinatedSEIRAmodel:

the disease-free equilibrium

(S⇤1,E
⇤
1,I

⇤
1,R

⇤
1,A

⇤
1)=(

(1 p)

g+
,0,0,

p

g+
,
g

g+
)

and the endemic equilibrium

(S⇤2,E
⇤
2,I

⇤
2,R

⇤
2,A

⇤
2)=(

(a+g)(⌫+g)

a
,
g(1 p)

(a+g)(g+ )

g(⌫+g)

a
,

ag(1 p)

(a+g)(g+ )(⌫+g)

g
,

a⌫(1 p)

(a+g)(g+ )(⌫+g)

⌫
+
p

g+
,
g

g+
)

The calculation of equilibria is almost the same, we will not present the details

again. The local stability of these two equilibria are shown below:

Assume that all parameters are positive.

•When a(1 p) <(a+g)(g+ )(⌫+g), the disease-free equilibrium is lo-

cally asymptotically stable and the endemic equilibrium is not feasible ,

•When a(1 p) >(a+g)(g+ )(⌫+g), the endemic equilibrium is locally

asymptotically stable and the disease-free equilibrium is unstable .

The basic reproduction ratio isR0=
a (1p)

(a+g)(g+ )(⌫+g). It can be rewritten as

R0=⌫+g·
a
a+g·a+g·(1 p). The first three terms have the same meanings as in

chapter 2. When considering vaccination, the level of susceptibles will be‘discounted’

byp⇥100% because newborns who have vaccination are no longer considered as
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susceptible.

3.2 Sensitivity analysis

Sensitivity indices have been discussed in the previous chapter. In this chapter,

we focus on the sensitivity indices respect to the vaccination ratepwho has weak

relationships with both the outbreak peak value and time. Butphas a strong rela-

tionship with the endemic level of the infected sincepdirectly determines the influx

of the system.

3.2.1 Sensitivity analysis of the outbreak peak value

Parameter Sensitivity of peak

p -0.0137 Vaccination Rate
0.0137 Natural death/birth Rate
0.8629 Transmission Rate

g -0.0152 Growth Rate
⌫ -1.3635 Removal Rate
a 0.5124 Rate at which exposed indi-

viduals become infective

.

Table 3.1: Sensitivity of the value of the outbreak peak to the parameters with
the parameter valuesp=0.5, =1/64/12/month, = 150/month, g=
1/16/12/month,⌫= 52/12/month, a= 52/12/monthand initial valuesS0=
0.0998,E0=0.0001,I=0.0001,R0=0.11,A0=0.79.

Comparing sensitivity analysis with it in the second chapter, we can see that

the absolute value of sensitivity indices respect to all parameters are smaller, but

vaccination does not change ranks of their importance. The vaccination ratephas a

negative relationship with the outbreak peak since more pediatric vaccination will

result in less infectives.
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3.2.2 Sensitivity analysis of the outbreak peak time

Parameter Sensitivity of the peak time

p 0.0056 Vaccination Rate
-0.0056 Natural death/birth Rate
-1.1359 Transmission Rate

g 0.0071 Growth Rate
⌫ 0.5821 Removal Rate
a -0.4484 Rate at which exposed indi-

viduals become infective

Table 3.2: Sensitivity of the outbreak peak time to the parameters with parameter
valuesp=0.5, =1/64/12/month, = 150/month, g=1/16/12/month,⌫=
52/12/month, a= 52/12/monthand initial valuesS0=0.0998,E0=0.0001,I=
0.0001,R0=0.11,A0=0.79.

From table 3.2, we can see that the vaccination ratepis the least important

to control in preventing outbreaks. The rank of sensitivity indices with respect to

di↵erent parameters is not changed.

3.2.3 Sensitivity analysis of the endemic steady state

Parameter Sensitivity ofI⇤2 Description

p -1.4076 Vaccination Rate
1.1261 Natural death/birth Rate
0.4077 Transmission Rate

g -0.1295 Growth Rate
⌫ -1.4061 Removal Rate
a 0.0017 Rate at which exposed indi-

viduals become infective

Table 3.3: Sensitivity of the endemic steady state to the parameters with parameter
valuesp=0.5, =1/64/12/month, = 150/month, g=1/16/12/month,⌫=
52/12/month, a= 52/12/month.

Table 3.3 shows that the vaccination ratephas the greatest importance in

determining the endemic level of infectives. The negative relationship is because
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more vaccination will reduce the fraction of susceptibles. Infectives will be less with

less susceptibles.

3.2.4 Numerical simulation

Sensitivity and stability properties of the vaccinatedSEIRAmodel were discussed

previously and numerical simulation is presented in the following diagrams. When

considering a specific disease, parameters,g,⌫,aare constant or vary in a small

range whilep(t) and(t) is time and locally dependent. The vaccination ratep(t)is

mainly determined by the government policy and the transmission rate is determined

by many factors like social structure, levels of susceptibles and infectives. Thus, in

the following figures, we present the outbreak value, the outbreak time and the

steady state ofI(t)withp(t) varies from 0 to 1 and (t) varies from 0 to 100 per

month.

Figure 3.1 plots the peak value ofI(t) with varyingp(t) and (t). We can see

that the vaccination ratephas little impact on the outbreak maximum value since

newborn babies during the outbreak is negligible. In fact, we can ignore demography

when considering outbreaks. The transmission rate (t) still has an important e↵ect

on the peak value ofI(t).
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Figure 3.1: The peak value ofI(t)with (t) varying form 0 t0 100 per month
and the vaccination ratep(t) from 0 to 1. Parameters are⌫= 52/12/month, =
1/64/12/month, a= 52/12/month, g=1/16/12/monthand initial values are
S0=0.25,E0=0.002,I0=0.002,R0=0.046,A0=0.7.
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Figure 3.2: The peak time ofI(t)with (t) varying form 0 t0 100 per month
and the vaccination ratep(t) from 0 to 1 with parameters⌫= 52/12/month, =
1/64/12/month, a= 52/12/month, g=1/16/12/monthand initial valuesS0=
0.25,E0=0.002,I0=0.002,R0=0.046,A0=0.7.
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Figure 3.3: Steady state value ofI(t)with (t) varying form 0 t0 100 per month
and vaccination ratep(t) from 0 to 1. Parameters are⌫= 52/12/month, =
1/64/12/month, a= 52/12/month, g=1/16/12/month.

Figure 3.2 plots the peak time ofI(t) with varyingp(t) and(t). The vaccination

ratephas little e↵ect on the peak time. The relationship between and the peak

time is complicated. When is small,I(t) decreases directly and finally goes to

zero. Thus peak time is zero. When is extremely large, outbreaks come quickly.

Thus, there is an optimum value for which can postpone the outbreak most. In

the figure, we can see that the optimum value is around 25 per month.

Figure 3.3 plots the endemic steady state ofI(t). The red line which is the

threshold condition for stabilityR0= 1 separates the area of‘Disease-free’and

‘Endemic’where the solution goes to the disease-free equilibrium and the endemic

equilibrium. The disease-free zone is always zero and the endemic zone gradually

increases with(t) gets larger andp(t) smaller. This makes sense because a larger

transmission rate (t) leads to more infected kids and a smaller vaccination rate
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leads to more susceptible kids.

Figure 3.4 plots how sensitivity indices of steady stateI(t) change when the

vaccination ratep(t) varies. From (a) we can see how sensitivity indices ofI(t) change

when vaccination rate varies from 0 to 0.87. In figure 3.4, interval for the vaccination

ratepis not from 0 to 1 since ifpis too large, the endemic equilibrium will no longer

be feasible, i.e. it is meaningless to study endemic steady state. Sensitivity ofI(t)

respect to all parameters become larger asp(t) becomes larger, except for growth

rateg. The curve forgstops before wherepis 0.3 and continues as a dashed line

which is the absolute value sensitivity indices tog.Aspincreases,gdecreases to

zero and becomes negative. Growth rategcan a↵ects final size of infectives in two

direction. In one hand, largergwill move infectives to the adult group faster thus

reduce fraction of infetives. In the other hand, largergwill increase the population

of adults, which will result in a larger population of infectives and susceptibles.

When g is small, the first e↵ect is dominant and when g is large, the second e↵ect

is dominating.

In (b), we zoom in the area where two curves intersects for a better view. Sensi-

tivity respect to (t) increases faster and finally surpasses birth rate. This means

that in areas where the vaccination ratep(t) is low, birth rate and recovery rate

⌫have a larger influence on the steady state. While in areas where the vaccination

ratep(t) is high, (t) becomes more important than but still less important than

⌫in controlling the endemic steady state.
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Figure 3.4: Sensitivity of di↵erent parameters with varying vaccination ratep. (a)
plots figures of parameters ,,g,⌫,andawith varying vaccination ratep.The
dashed line is the S. I of⌫and it is dashes means it is negative sensitive. (b) zooms
in the part of (a) where S.I. of surpasses S.I. of .Parameters used plotting
(a) and (b) are =1/64/12/month, = 150/month, g=1/16/12/month,⌫=
52/12/month, a= 52/12/month.

3.3 Two algorithms to extract the transmission rate (t)from post-

vaccination data

In this chapter, we considered vaccination and extended theSEIRAmodel to

the vaccinatedSEIRAmodel. In this section, we extend our extracting algorithm

to both the prevalence and the incidence algorithm. We first states the theoretical

results without repeating the details of proofs and the steps of the algorithms.

3.3.1 The prevalence algorithm

For the vaccinatedSEIRAmodel with time dependent vaccination ratep(t), the

time-dependent transmission function (t) satisfies the following di↵erential equa-

tion :

M 002+N(0)2 +P 02 L 4 Q 3=0, (3.3.1)
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where

H=f00(t)+(a+2g+⌫)f0(t)+(a+g)(⌫+g)f(t),

M = (1 p)Hf3,

N= 2(1 p)Hf3,

P=(1 p)(2Hf0f2 2H0f3 (2g+ )Hf3) p0Hf3,

Q= (1 p)(H00f3 Hf00f2 2H0f0f2+2H(f0)2f+(2g+ )H0f3 (2g+ )Hf0f2

+g(g+ )Hf3) p0H0f3+p0Hf0f2 gp0Hf3,

L= (1 p)(H0f4+(g+ )Hf4 ag(1 p)f4) p0Hf4.

Formulas of coe cients seem quiet di↵erent from the previous one. In fact, the

formula presented above combines the situation when 0<p1 and whenp= 1.

From (3.0.1) we can see that whenp= 1,dSdtis independent ofA(t) which degenerate

to the case of theSEIRmodel. We present formula for both cases whenp= 1 and

when 0p<1.

•when p(t)=1, the di↵erential equation of (t)is

P 0 L 2 Q =0

This is a Bernoulli equation which is the same as the result of theSEIR

model. By lettingy(t)= 1
(t), the Bernoulli equation can be rewritten as a

first order linear di↵erential equationPy0(t)+Qy(t)+L=0with

P= Hf,

Q= (H0f Hf0+gHf),

L= Hf2.
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•when 0p(t)<1, the di↵erential equation of the time-dependent transmis-

sion rate (t)isM 002+N(0)2 +P 02 L 4 Q 3=0with

M = Hf3,

N=2Hf3,

P=2Hf0f2 2H0f3 (
p0

1 p
+2g+ )Hf3,

Q= (H00f3 Hf00f2 2H0f0f2+2H(f0)2f+(
p0

1 p
+2g+ )H0f3

(
p0

1 p
+2g+ )Hf0f2+g(

p0

1 p
+g+ )Hf3),

L= (H0f4+(
p0

1 p
+g+ )Hf4 ag(1 p)f4).

Formula (3.3.1) covers both situations. When 0p(t)<1, 1 p(t)6= 0,

all the coe cients in the theorem divided by 1 pyields the same result as

in the case of 0p<1. Whenp= 1, plugging 1 p= 0 into the formulas

in the theorem yieldsM =0,N=0,P= p0Hf3,Q= p0(H0f Hf0+

gHf)f2,L= p0Hf4.Both situation consistent with formula (3.3.1).

3.3.2 The incidence algorithm

For the vaccinatedSEIRAmodel with time-dependent vaccination ratep(t), the

time-dependent transmission rate is (t)= !(t)
S(t)I(t)whereS(t) andI(t) are

S(t)=S0e
gt+

Zt

0
((1-p(s))(A0e

(g+ )s+

Zs

0
ge(g+ )( s)d) !(s))eg(s t)ds

I(t)=I0e
(⌫+g)t+

Zt

0
a(E0e

(a+g)s+

Zs

0
!()e(a+g)( s)d)e(⌫+g)(s t)ds

The only di↵erence between this formula and the incidence formula in chapter 2

is shown in bold.
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3.3.3 Numerical simulations

In the precious chapter, we have presented two algorithms to extract(t) and their

numerical simulations on fake and real pre-vaccination data. When we did simulation

with post-vaccination data of London and Liverpool, the prevalence algorithm still

only worked for a short time. Thus we only present (t) extracted from the incidence

algorithm of two cities, Liverpool and London.

Figure 3.5 presents (t) extracted from post-vaccination measles weekly noti-

fication data of Liverpool from year 1974 to 1986 using the incidence algorithm.

Liverpool is a relatively smaller city compare to London. The population of Liver-

pool is less then 1/10 of London. Therefore, there are more noises with the weekly

data. For example, we find three consecutive data as 8,0,43. This situation is rare

when there is no new patients in one week and 43 new patients in the following

week. Term!(t) is the function from interpolating the notification data. However,

with data sequence with zeros as ‘ 8, 0, 43’,!(t) will be negative locally. In this

case, we replace 0 with a small positive number to make!(t) positive. For instance,

in the case of 8,0,43, we replace 0 with 4 to make!(t) positive. We also observe

frequencies pf one and three per year in the modulus of Fourier transform in (f).

Figure 3.6 presents (t) extracted from post-vaccination measles weekly notifi-

cation data in London from year 1974 to 1986 by the incidence algorithm. We cut

(t) into smaller parts, zoom in and plot them in (b), (c), (d), (e). Figure 3.6 (f)

plots modulus of Fourier transform of (t) in London. We can see two peaks at 1

and 3 as well which reflects cycles of one and three times per year.

59



1974 1976 1978 1980 1982 1984 1986
0

500

1000

β
(t
)

Time(year)

β(t) of Liverpool from year 1974 to 1985
(a)

1974 1974.5 1975 1975.5 1976 1976.5 1977
0

500

1000

β
(t
)

Time(year)

β(t) of Liverpool from year 1974 to 1976
(b)

1977 1977.5 1978 1978.5 1979 1979.5 1980
0

500

1000

β
(t
)

Time(year)

β(t) of Liverpool from year 1977 to 1979
(c)

1980 1980.5 1981 1981.5 1982 1982.5 1983
0

500

1000

β
(t
)

Time(year)

β(t) of Liverpool from year 1980 to 1982
(d)

1983 1983.5 1984 1984.5 1985 1985.5 1986
0

500

1000

β
(t
)

Time(year)

β(t) of Liverpool from year 1983 to 1985
(e)

0 1 2 3 4 5 6
0

50

100

150

200

250

Frequency (per year)

S
p
ec
tr
u
m

Modulus of Fourier transform of β(t)
(f)

Figure 3.5: (a) Time-dependent transmission rate (t) of Liverpool from year 1974 to
1985. (b),(c),(d) and (e) are time-dependent transmission rate every three years from
1974 to 1976, 1977 to 1979, 1980 to 1982 and 1983 to 1985, respectively. (t)isex-
tracted with parameters =1/64/52/week, a= 52/52/week,⌫= 52/52/week, g=
1/16/52/weekand initial valuesS0=0.25,E0=0.001,I0=0.001,A0=0.7.The
panel (f) is the Fourier transform of transmission rate in as shown in (a).
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Figure 3.6: (a) Time-dependent transmission rate (t) of London from year 1974
to 1985. (b), (c), (d) and (e) are time-dependent transmission rate every three
years from 1974 to 1976, 1977 to 1979, 1980 to 1982 and 1983 to 1985, respec-
tively. (t) is extracted with parameters =1/64/52/week, a= 52/52/week,⌫=
52/52/week, g=1/16/52/weekand initial valuesS0=0.15, E0=1 e-05, I0=1 e-
04,A0=0.7.The panel (f) is the Fourier transform of transmission rate as shown in
(a).
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Although the dominant frequencies for pre-vaccination is the same with post-

vaccination, the dominant is stronger in the pre-vaccination situation. This is be-

cause we use two data sets, the measles notification data and the vaccination rate

data, to extract the transmission rate while only one data set is used in the pre-

vaccination situation.

Dominant frequencies in London have less noise than those in Liverpool because

London is a much larger cite in population and it is less sensitive to unexpected

factors. The fact that vaccination does not change the dominant frequencies in both

cities strengthens our belief that transmission of measles is driven by seasonality

and school holidays. Again, we prove that transmission cycles are synchronized in

di↵erent cities.

3.4 Case study: the current Alberta measles outbreak in 2014

Measles is well controlled in Alberta. During the last decade, from 2001 to 2011,

only total of 25 measles cases all over Alberta. Figure 3.7 presents number and rate

of measles cases of Alberta from 1990 to 2001 [31]. There were two outbreak since its

two-dose vaccine regimen was introduced in 1996. An outbreak is unlikely to happen

when the pool of un-vaccinated kids are small. But after more than 10 ‘peaceful’

years in Alberta, vaccination rate is lagging and more susceptibles will possibly lead

to an measles outbreak. This year, 31 cases were confirmed which is huge compared

to the number last decade [32].
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Figure 3.7: Cases and rate of measles in Alberta, 1990 to 2011.

In this section, we use ourSEIRAmodel to predict the possible measles outbreak

and expected date in Alberta. Everyone who is not vaccinated is at high risk, thus,

when there is a potential outbreak, the government would try to vaccinate all un-

vaccinated individuals, especially school kids. In this sense, we we use the wildlife

model. We add an additional vaccination term for all kids to make our model more

realistic. We assume that the vaccination rate for all kids who are not vaccinated nor

never get infected (groupS)q, i.e. except for newborn babies vaccination, hospitals

should vaccinateq⇥100% more kids every year. Thus, we modify our model as

dS

dt
=(1 p)A(t) S(t)I(t) gS(t) qS(t),

dE

dt
= S(t)I(t) aE(t) gE(t),

dI

dt
=aE(t) ⌫I(t) gI(t),

dR

dt
=⌫I(t) gR(t)+pA(t)+qS(t),

dA

dt
=g(S(t)+E(t)+I(t)+R(t)) A(t).
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With above model, we test the dynamics of I(t)withdi↵erentq. We fix pediatric

vaccination rate asp=0.8. Other parameters are the default values for measles as

shown in table 2.1. The population of Alberta is 4082571, 2014 [6]. Thus the initial

value ofIis about (30 confirmed cases)/(Alberta population)⇡0.75 e-05. We choose

initial values of bothI(t) andE(t) as 0.5 e-05, which is smaller than the fraction of

the total confirmed cases. The vaccination rate for newborn babies can be as high as

85% nowadays, but the average rate over the past decade is not as high. Therefore,

we assume that the average vaccination rate is 72 %. As we assumed previously, the

fraction of susceptibles is 20 % and the fraction of groupAis 80 %. Thus, we pick

the initial value ofS(t) as 20%⇥(1-72%)=0.056 andR(t) as 0.144.

For the transmission rate (t), we follow Tiddet al.(1993) and set

(t)=0(1 +1 (t))

where

(t)=1.5(0.68 +cos2⇡t)/(1.5+cos2⇡t)

Here, 0= 1000 year
1or 2.74 day1, and 1can vary between 0.2 and 0.28.

This formula is more accurate in modeling school year e↵ect than a simple sinusoid

function.

Figure 3.8 predicts the outbreak peak and time of measles cases with di↵erent

q. From the figure, we can see that whenqis small (less than 5%), there are two

outbreaks and the second one is more severe. Asqbecomes larger(greater than 5%),

the first outbreak is more severe. Recall that when we simulate the behavior ofI(t)

in chapter 2 as shown in figure 2.2, peaks are decaying. However, the second peak

is more severe whenq<5%. This is because the value of the transmission rate

is a function instead of a constant. Severe outbreak happens when vaccination can

not o↵set the high level of the transmission rate during school days.
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Figure 3.8: Fraction of infectivesI(t)withdi↵erent vaccination rate with parameters
=1/64/365/day, a= 52/365/day,⌫= 52/365/day, g=1/16/365/dayand initial
valuesS0=0.056,E0=0.144,I0=0.5 e-05,R0=0.5 e-05.

Obviously, the higher the vaccination rate is, the less severe the outbreak will be.

However, the government and hospitals need to spend a lot of money if they peruse

a very high vaccination rate. If a lower vaccination rate can lead to a similar result

with a high vaccination rate, our money will be more worth spending if we control

it at the lower level. For instance, if both 90% and 95% can prevent an outbreak,

then 90% is a more reasonable rate to control.

Figure 3.9 plots vaccination rate versus both outbreak peaks ofI(t). We can see

thatI(t) decreases faster with small vaccination rateq.Also, the second outbreak

is more sensitive toqsince vaccination has longer time to a↵ect the outbreak peak

than the first outbreak.

65



From the figure, can see that ifqis greater then 35%, both the first and second

outbreak is prevented.
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Figure 3.9: The outbreak peak ofI(t) asqvaries from 0 to 40% per year with
parameters =1/64/365/day, a= 52/365/day,⌫= 52/365/day, g=1/16/365/day
and initial valuesS0=0.056,E0=0.144,I0=0.5 e-05 ,R0=0.5 e-05 .

The dashed lines is figure 3.9 is when the maximum value of outbreaks is the

initial value.

Table??lists the predicted outbreak peaks and dates. We further confirm our

guess that outbreak amplitude is more sensitive with smaller vaccination rate. We

can see that it is more ecient whenqis smaller. For example, whenqincreases

from 0 to 5%, the first outbreak decreases by 389, and whenqincreases from 35%

to 40%, the first outbreak decreases by 7.

From table 3.4 we can see more clearly how measles cases will decrease as
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vaccination rateqincreases. The outbreak will not change afterqis larger than 35%

sinceI(t) will decrease as soon as the pathogen was introduced.

Change of the vaccination rate First peak deduction Second peak deduction

0%! 5% 389 835
5%!10% 218 407
10%!15% 118 94
15%!20% 64 16
20%!25% 36 5
25%!30% 22 3
30%!35% 12 0
35%!40% 7 0
40%!45% 1 0
45%!50% 0 0

Table 3.4: The quantitative impact of vaccination rate on the measles cases.

Over all, we would suggest that the government should control the vaccination

rate at least greater than 5%, it is better that they can increaseqto 35%. The

government should not bother to increaseqto be greater than 35%.

3.5 Conclusion

In this chapter, we consider pediatric vaccination. Again, we analyze the bound-

edness, positivity and stability of this model. It has the same positivity and bound-

edness properties. Also, there are two equilibria, one disease-free equilibrium and

one endemic equilibrium. When the basic reproduction numberR0<1, the disease-

free equilibrium is locally asymptotically stable and the endemic equilibrium is not

feasible, i.e. the steady state is negative. WhenR0>1, the disease-free equilibrium

is unstable and the endemic equilibrium is locally asymptotically stable. The only

di↵erence with chapter 2 is that the threshold here isR0=
a (1p)

(a+g)(g+ )(⌫+g)=1.

From sensitivity analysis, we know that the transmission rate is more important

in controlling the endemic level of infectives at where pediatric vaccination rate is
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higher while it is among the lowest in controlling an outbreak time and amplitude.

We extend both the prevalence algorithm and the incidence algorithm for the

SEIRAmodel. We verify that the dominant frequencies are not a↵ected by vac-

cination which strengthens our common belief that the transmission of measles is

driven by seasonality and school holidays.

The Alberta measles study suggested that vaccination rate of 35% per year is

the optimum rate in preventing an outbreak as well as money saving.
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Chapter 4

Discussion

4.1 Concluding remarks

In this thesis, we presented an infectious disease model that could better describe

the childhood infectious diseases. Mathematical and numerical investigations have

revealed a number of biologically and mathematically significant results.

Stability analysis shows that whenR0 1, theSEIRAsystem goes to the

endemic equilibrium and whenR0<1, it goes to the disease-free equilibrium where

R0=
a (1p)

(a+g)(g+ )(⌫+g)is the basic reproduction number.

Sensitivity analysis proves the importance of quarantining patients to prevent an

epidemic outbreak while birth and removal rate are the most important factors in

controlling the endemic level of patients which indicts the importance of medication

treatment. The transmission rate is more important in controlling the endemic level

of infectives at where pediatric vaccination rate is higher while it is among the lowest

in controlling an outbreak time and amplitude.

Studying the inverse method of extracting the transmission rate proves the ad-

vantages the incidence algorithm has over the prevalence algorithm. The dominant
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frequencies of 1 and 3 per year is not a↵ected by vaccination which strengthens our

belief that the transmission of measles is driven by seasonality and school holidays,

and seasonality is more dominant, especially in large cities. Also, cycles of the trans-

mission rate is synchronized in di↵erent cities, i.e. di↵erent cities have the dominant

frequencies.

Case study of measles outbreak in the province of Alberta verifies the e ciency

of wildlife vaccination. For measles outbreak in Alberta, we would suggest that the

government should control the vaccination rate at least greater than 5% per year,

and it is better to increase it to 35% per year.

4.2 Future directions

Estimating the initial values

Estimating of the initial value is a great challenge. From the inverse method,

we can see that initial value of (t) and 0(t) can, to a huge extent, determine the

behavior of the transmission rate. Initial value ofS(t) will not a↵ect the pattern of

the transmission rate, but the level of the transmission rate (t). It is a challenge

to estimate it since it is depended on the vaccination policy during the past decade.

Data processing

Real disease data sets are used to test whether a mathematical model is reasonable

or to extract information from the model. In practice, errors exist both in the data

itself or in the process of manipulating data. If errors or the e↵ect of errors are mini-

mized, we can obtain better and more accurate results. More work should be put on

how to minimize errors or to derive a better algorithm which will generate less errors.

Multi schedules vaccination
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Vaccination is e cient in preventing an endemic outbreak. However, successful vac-

cination may fail to develop successful immunity. In many countries, especially de-

veloped countries, program of multi doses vaccination are conducted. Double-dose

measles vaccination are introduced in Canada.

According to Alexander et al. (2006) [1], the population can be classified as

Susceptible (S), Vaccinated (S⌫), Infectious (I), and Booster Vaccinated (V)who

are immune for life. Therefore the system can be expressed as

dS

dt
=(1 p) SI S ⇠S+µS ⌫,

dS⌫
dt
=p+⇠S (1 ↵)S⌫I (+⇢+µ)S⌫,

dI

dt
= SI+(1 ↵)S⌫I ( )I,

dV

dt
=⇢S ⌫+ I V.

wherepis pediatric vaccination rate, is death/bith rate,↵is represents the e-

ciency of the vaccine,µis the waning rate following the pediatric vaccination ,1/

is infectious period, and⇢and⇠are the rates of booster vaccine to previously vac-

cinated and susceptible ratio, respectively.
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