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Abstract

Inconsistent and collapse models of arithmetic are presented in the language and

semantics of the simple paraconsistent logic LP. I present a logic which extends LP

by the addition of a sensible conditional connective and quantifiers. This logic, called

A3, is specified as a Hilbert style axiom system and a Gentzen-style sequent calculus,

and these systems are shown to be equivalent. I show the sequent calculus to be

sound and complete for the A3 semantics and prove the elimination theorem. Finally,

I specify arithmetical axiom systems for the collapse models and show that these

axiom systems capture some salient properties of their associated models.
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Introduction

“. . . we can do everything you can do, only better, and we can do more.”

– Richard Routley [43, 927] –

“The resulting change in viewpoint cannot impoverish insight into the

nature of mathematical structures, but rather can only enrich it.”

– Robert K. Meyer & Chris Mortensen [25, 929] –

Formalised Arithmetics and Relevant Arithmetic

The study of formalised arithmetics – collections of axioms governing arithmetical

operations against a logic governing inferences from them – is very important for the

history of logic, as well as for philosophy and mathematics. It is important for two

related reasons. First, it played a major role in two of the major early traditions

in the foundations of mathematics, namely, logicism and formalism. In the logicist

tradition, it was to be by appeal to the analytic claims of logic alone that the rest

of the grand structure or artifice of mathematics was to be shown to consist only in

extensions of logic; that even the most abstract of set theoretic analyses were to be

justified by appeal to very simple and evidently correct axioms and inference forms.

The fact that much of this work was carried out not with axiomatic presentations of

arithmetic, but rather of a suitably strong set theory from which these claims where

to be justified1 is not essential to the program, so long as the chain of definitional

extensions from the axioms suffice to bring all of mathematics into one system, taking

1Presentations such as this are given in [15] and [45] where the Peano axioms are given among many
theorems of arithmetic following from the respective set theoretical axioms of each. This is what
Richard Heck has called “Frege’s Theorem” [19].
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its form largely or entirely from the underlying logic. The role of formalised arithmetic

in the school of formalism is structurally similar - i.e. it was to be by appeal to the

consistency of the basic systems of mathematical definitions that the work with other

kinds of numbers was to be justified. In either case, there was quite a lot of motivation

to develop a consistent, complete formalised arithmetic.

The second reason that formalised arithmetics are so important for logic, philos-

ophy, and mathematics, and their histories, is that these theories failed at their task.

The first of Gödel’s Incompleteness results [18] states, in short, that there is no con-

sistent, complete axiomatisation of arithmetic. Any axiomatic theory strong enough

to prove all truths about arithmetic must prove some contradiction. Since so much

of the motivation for both the logicist and formalist programs was to show that other

areas of mathematics was free from contradiction, this result was fairly devastating.

It was taken as being simply part of the landscape that the facts of arithmetic outrun

all finite, consistent axiomatic theories.

There are, of course, a number of possible responses to this fact. By far the

most popular has been to accept that true arithmetic just does in fact outrun finite

consistent axiomatic systems, though it is, of course, consistent. This is in spite

of Gödel’s second result which indicates that a consistency proof for arithmetic, if

it is consistent, cannot be given which does not rely on a stronger theory yet. So,

the consistency of other mathematical theories cannot be justified by appeal to the

consistency of arithmetic, since this is not provable. Perhaps the best take-away

message available given these results is that axiomatic theories just do not stand

up to the pressure placed on them by these approaches, and that the ideal of doing

mathematics in an entirely finitist (in Hilbert’s sense of the word) syntactic structure

is not attainable.

However there are other options available, and they have to do with taking differ-

ent approaches to Gödel’s results. In the logic used in Gödel’s proof, the properties

of inconsistency and triviality are identified. I shall distinguish these properties as

follows:
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� We shall call any theory trivial iff every sentence of its language is a theorem.2

� We shall call any theory inconsistent iff it is such that, for some sentence A,

both A and its negation ¬A are theorems. Call the conjunction of A and ¬A a

contradiction.

The general form of the inference rule which has the effect of identifying inconsis-

tency with triviality is:

A,¬A ` B (Explosion)

Where ¬ is negation and the comma is a kind of conjunction, C ` D states that

D follows from C or that C implies D. The A,B occurring above can be uniformly

replaced by any formulae whatsoever. This rule has been called ex contradictione

quodlibet, explosion, and Pseudo Scotus’ rule, among others – we stick to explosion.

It is clear that this rule ensures that inconsistent theories trivialize, since any contra-

diction will allow the derivation of an arbitrary sentence. With this in mind, we can

see the possibility for another approach to Gödel’s theorem. We may distinguish va-

rieties of “consistency” available for arithmetic theories, following the work of Robert

K. Meyer [23], ranging from full non-triviality to simply omitting particular sentences

- such as 0 6= 0 - as theorems, and consider how the second incompleteness result may

be stated with different versions of consistency. It may be the case that a strong

enough theory of arithmetic may be inconsistent, but non-trivial. If arithmetic is

consistent, then we would be capturing all the truths but not only the truths, and if

arithmetic is not consistent, then we may be able to capture all and only the truths,

where some of those truths are contradictory. In any case, what arithmetic certainly

is not is trivial, and so neither can our arithmetic theories be. However, to make

these distinctions at all it is necessary that we employ a logic which enables us to

distinguish inconsistent theories and trivial theories, and which therefore does not

validate explosion. Such logics are called paraconsistent - meaning “partially consis-

2Trivial theories are also standardly referred to as absolutely inconsistent, since they prove not just
some contradiction or other, but every contradiction.
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tent” – that is, they admit theories that are negation inconsistent but not absolutely

inconsistent.3

Paraconsistent logics have been used as the basis for formalised arithmetics only,

to my knowledge, in the work of Meyer who attempted to show that arithmetics

built onto a logic properly contained within classical logic could be made as strong

as arithmetic built onto classical logic and in the work of Chris Mortensen [28] who

developed a general approach to mathematics from a paraconsistent framework. The

upshot of this is that the reasoning forms encoded in the paradoxes of material im-

plication (where → is a conditional connective) - A,¬A ` B and A ` B → A - are

not necessary for elementary mathematical reasoning. This was to add to the moti-

vational program set out for Relevant logics (from which many of the most developed

paraconsistent logics originated) which claimed that these reasoning forms, and the

material implication, do not actually describe our common notion of entailment. If it

were shown that even in mathematics these forms of reasoning needn’t be appealed

to, it would better justify their philosophical claims, given the relative weakness of

the logics produced by the school. Some similar work in substructural logics has been

tried, but with a fairly different aim or methodology. See Chapter 11 of [41].

Much of the work I’ll appeal to here has been carried out in and in response to

a research program set out by Richard Routley to showcase the power and value of

paraconsistent logics, in particular as it applies to the case of mathematics. The idea

is to indicate that paraconsistent modes of reasoning are sufficient for all standard

reasoning and can subsume classical inference. However, as it applies to mathematics,

Routley’s program is somewhat more specific.

Routley’s Program and The Meyer-Mortensen Line

The program of paraconsistent mathematics, as first and best expressed by Richard

Routley in the central programmatic paper of the school, “Ultralogic as Universal”

3For a time, Graham Priest preferred the term transconsistent, as indicating that we were going
beyond a facile and limiting fear of inconsistency, however, paraconsistent – apparently Newton Da
Costa’s term, is without a doubt the most popular name.
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in [43], has two major aims. The first of these, called Classical Recapture is simply

that of showing that paraconsistent logics can, by appropriate theoretical extensions,

account for classical mathematical reasoning as well as classical logic can, but without

the questionable appeal to ill-defended principles of classical logic. The idea, in rough,

is that no actual mathematical reasoning relies upon explosion – even when working

with infinitesimals, which were inconsistent, no one would have accepted a proof

of some theorem simply stating that some infinitesimal was and was not equal to

0.4 So, it ought to be the case that by reasonable alterations to the extra-logical

theories laid on top of the logic, one can do without the principle of explosion, so

that paraconsistent logics can do the same work that classical logic does. In broad,

all the modes of reasoning invoked in mathematical activity are themselves actually,

or can be uniformly substituted for, paraconsistent modes of reasoning. This has

the advantage, for those already convinced that paraconsistent modes of reasoning

are preferable, of simply giving better justification for their contradiction-tolerant

epistemic approach. For those unconvinced by other arguments given in favour of

paraconsistent reasoning more generally, justification for paraconsistent mathematics

could be that of an argument from simplicity, of a kind. The conclusions one reaches in

a paraconsistent mode of inference are justified by a proper subset of the theorems of

classical logic - namely, those assumptions which give rise to explosion. However, this

variety of simplicity is bought at the expense of another kind of simplicity. Whatever

paraconsistent logic one appeals to, its propositional fragment will not be simpler

than the boolean algebra which characterises the propositional fragment of classical

logic. This is without considering the first order case which, depending on the logic,

will likely require more axioms or inference rules than classical first order logic.

However, recapture is only half of Routley’s program. Another part, broadening

(my term) is also called for. The idea is that by moving to a paraconsistent basis for

mathematical reasoning we also open the possibility of investigating structures out of

the reach of classical logics. This is the domain of inconsistent, but non-trivial and

4Some work has been done about inconsistency in science from a paraconsistent background. For
instance, consider [40].
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potentially rich, interesting theories, trivialized by classical consequence. These kinds

of structures are badly mishandled by classical logic in the same vocabulary. Their

potentially interesting features bulldozed over by explosion, leaving only useless and

trivial theories. Paraconsistent logics are unique in allowing for the study of such

theories, some of which, beyond simple interesting curiosities, may well provide for

new insights into open questions and problems. A similar motivational approach to

paraconsistent mathematics, set out clearly by Meyer & Mortensen [25, 928-929], es-

sentially just appeals to broadening. Their claim is not that relevant or paraconsistent

reasoning can or should uproot classical reasoning, but rather that classical reasoning

and classical mathematics are special cases of relevant reasoning, which allows one

to reason about a larger class of theories. This line develops from the observation

that negation consistent theories are a special case of non-trivial theories, and so a

logic which allows one to discuss negation inconsistent but non-trivial theories has

a broader scope than one which conflates the two. On their line, by allowing para-

consistent modes of reasoning into areas of mathematics which are currently studied

only through a classical lens, we can only gain more insight, and that this is reason

enough to be interested in the area.5

A very nice example of a project which has promise to get at both recapture and

broadening is that of naive set theory in depth relevant logic (see Brady [12] and

Weber [48] for some recent work in the area). This project has some promise to

ensure recapture by a detour through broadening. Naive set theory, the inconsistent

set theory originally given by Georg Cantor [13], given the right kind of logic, is a rich,

non-trivial, though inconsistent theory (it turns out that the axiom of comprehension

is extremely strong, and that the way to get a great deal of richness out of it, without

going overboard into triviality, is to weaken the logic in proportion). Interesting

results are coming out of this work, placing Naive Set Theory in a Depth Relevant logic

5As Meyer’s later work [24] indicates, he continued to be interested in this area for some time
afterwards, despite an unpleasant limitative result in [16]. In particular, he was interested in
re-evaluating Gödel’s theorems in light of the broadening afforded by paraconsistent modes of
inference. So, in this sense, his claim for broadening is stronger yet – that these central mathematical
limitative results may not be applicable to the more general structure afforded by paraconsistent
reasoning.
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as a strictly stronger theory than ZF, a standard classical set theory, for instance.6

Should this follow through, we would have an excellent case of a simpler set theory

(though in a more complicated logic) providing for more than that regularly appealed

to in standard mathematical practice. Other than this, however, most projects in the

area are involved in recapture at the apparent expense of broadening. The motivation

for this is clear, since if recapture can be completed then a response could be made

against some detractors of paraconsistent logics, those that reject these logics on the

grounds that they are too weak to account for most inferential practice. However, a

healthy and rich research program should not simply be built upon showing that one

can do what others have done with different tools, but should rather indicate that

these new tools allow one to do new things, and that these new things are interesting

in their own right. This is a way to win new adherents to the program – by showing

them that exciting things await them if they should come.

An example of Broadening by itself is in the application of paraconsistent model

theory to first order Peano arithmetic, hereafter PA. Non-standard models of PA have

garnered some attention in the last century, since PA proved to be an incomplete the-

ory for the standard model itself. However, one can also, given a paraconsistent

model theory, produce non-trivial models of PA which contain a wide variety of in-

teresting structures, all of which are proper extensions of classical PA models – thus

are inhabited by not just numbers but also what Meyer has called “alien intrud-

ers” [26], this name coming originally from Dedekind [47]. These are entities which

have all the properties ascribed by the Peano axioms, and yet which behave in odd

ways which natural numbers do not. These models, the inconsistent models of arith-

metic, have been used to some interesting ends in the philosophy of paraconsistent

logic (particularly in terms of claims made about finitist paraconsistent philosophy of

mathematics, as well as to provide the grounding of Graham Priest’s general notion

of “number” and his associated claim that arithmetic actually is inconsistent, after

a finite point), and have attracted the attention of Jeff Paris, who is generally very

6The primary justification for this claim being that it proves the principle of choice, which is inde-
pendent of ZF. However, it must be noted that these results are, as yet, unstable since they rely
on one unproved conjecture which is currently under investigation.
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much a classicalist (to the extent that, though he has studied these models, he does

so only with an explicitly classical and consistent metatheory). It would seem that

this is a very nice field and there are a handful of open or partially open questions

answers to which might well indicate that paraconsistent logics do actually provide

us with some things we cannot get in classical logic - and things we might well want

too. The semantics which have been used as the basis of the model theory used give

form to these Inconsistent models of arithmetic is that of the Logic of Paradox – LP.

One of the problems posed is whether or not Inconsistent models are axiomatizable.

It is claimed that the finite ones are, but no axiom system in the standard sense of

PA is given, and the question of the infinite among them is still unanswered.

I’m interested to see whether there is any suitable language and axiom system for

these models. The question is one of what kind of paraconsistent logic is up to the

task of being adequate to this class of models. Since the model theory used is that of

LP it seems reasonable to suspect that some arithmetical extension to LP, in the form

of PA itself or some variation on the same, might provide a syntax. However failing

that there are plenty of other potential logics in the region, either extensions of LP –

RM3, for instance, or A3, to be developed in this thesis – or similar enough to allow

for a straightforward translation of LP model theory. In addition there are plenty

of ways to get to formal arithmetical content (either PA or some sub-theory, a set

theoretic construction as per Frege’s Grundgesetze, a category theoretic construction).

I shall present the inconsistent and collapse models of arithmetic and develop a logic,

A3, which captures the LP semantics in a pleasing way. With this logic, I shall

specify some sets of axioms to capture the salient features of these models, pointing

in directions for future research.

8



Chapter 1

LP Semantics and collapse models

The class of inconsistent models of arithmetic developed by applying Dunn-Meyer

extensions or “collapses” to the natural numbers (henceforth referred to as “collapse

models of arithmetic” or just “collapse models”), as its description suggests, are

models of arithmetic: that is to say that any formula true in the standard model of

arithmetic is true in each collapse model, under translation of the standard model

into the language of the logic of paradox, hereafter LP. However, they are peculiar in

that they have this property while also including some extra, contradictory, claims

about the natural numbers. Notwithstanding, they are non-trivial: there are claims

in the language which are not true in these models. This is a peculiar admixture of

properties for many reasons. First, the standard model, which is classical, and so

consistent, is very widely accepted as the correct account, and so, at least in part,

because it is classical. Such wide acceptance seems much less likely for an inconsis-

tent model of the same phenomenon. So, this casts some doubt on the value of an

inconsistent theory which purports to be arithmetic at all. Second, it is still widely

doubted, though perhaps less than it has been in the past, that there can be non-

trivial, inconsistent models, or theories of them, let alone involving a mathematical

subject matter. Though this hard line appears to be ever weakening, it continues to

have force in convincing many in the logical community that paraconsistent logics

represent, at best, a futile endeavour. However, what is most interesting about these

collapse models is that they provide a potential inroad for the study of paraconsistent

9



logics with possibly valuable applications in number theory.1 These are interesting

mathematical structures which are simply not amenable to analysis within the seman-

tics of classical logic, which would bulldoze over the peculiar features of these models,

leaving only triviality in its wake. It is, largely, because of allowing inconsistency into

the model that it is a model of arithmetic - otherwise, it would simply be a collection

of cycles of equivalence classes or cycles of equivalence classes with a tail, and would

not express arithmetic fully. If we invoke real inconsistencies, we can compress the

information of infinite models of arithmetic into a finite space. This would be valu-

able, and simply couldn’t be carried out in a logic which conflates inconsistency and

triviality. So, if these models can provide some grist for logical and mathematical in-

vestigation, then it must speak in favor of paraconsistent logics that they are capable

of sustaining such investigation, while classical logic simply cannot. For, indeed, it

is not just the structure of the models which are peculiar – some similar structures

exist in classical mathematics in the form of modular arithmetics – but the semantic

properties of the model, which are thoroughly dialethic.2

In this chapter, I shall set out the semantics of the Logic of Paradox (LP), and

describe the kind of congruence relation, taking the closure of the standard model

1Perhaps most interesting is that there are collapse models which are finite models of Peano arith-
metic. A better working knowledge of the finite models may well provide means to study Peano
arithmetic, and perhaps the standard model of arithmetic, in terms of finite structures as opposed
to the usually infinite models - either denumerably, as in the case of the standard model, or non-
denumerably in some non-standard models. Priest in [34, 339] makes the claim that the collapse
result to be stated as Theorem 1.2 is “the ultimate downward Löwenheim-Skolem Theorem: arith-
metic has a model of every cardinality.” Berto [10] generalises this point to say that “one can
reduce a model with a denumerably infinite domain into one of any smaller size.” While these
are both very strong claims, it seems that we are given some tools to wrestle with infinities which
classical methods do not obviously allow us.

2The word dialethic is derived from ancient Greek and means something like “two truths”. It is
regularly used to refer to researchers, theories, and logics which aim to capture inconsistent facts in
a non-trivial way, where fact is taken seriously – that there really are true or correct contradictory
assertions. It seems that the term initiated with Richard Routley, who named one of the earliest
paraconsistent logic DL or “dialethic logic” in the appendix of [43]. This logic was originally called
dialectical logic as it purported to capture the logic invoked by the Hegelian dialectic, though this
conceit appears to have been abandoned early. See [42]. Probably, the most standard use is to refer
to a researcher who treats contradictions as real as a dialetheist, and it is certainly Priest [38] who
popularized this usage. I use the term only sparingly, favouring more precise terminology, with
the exception of the title, which refers to dialethic arithmetics. By this, I mean only arithmetics,
theories or models, which respectively contain or validate contradictions without being trivial.
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under which produces inconsistent, non-trivial models which retain all the facts of the

standard model. These models are variously called “collapses” [35] or “Dunn-Meyer

extensions” [29]. I shall first expound LP, then the collapse construction, and finally,

the basic kinds of the models themselves, some interesting results about them, and

how the basic models are made to produce more complex structures.

1.1 The Logic of Paradox

LP is a very simple three-valued paraconsistent logic most famously expounded and

studied by Graham Priest in [32].3 It operates on the basis of weakening the classical

negation symbol from a contradictory forming operator to a subcontrary forming

operator. That is, the LP negation ¬, when applied to a formula A, produces a

formula ¬A, which is in some cases true alongside A. A formula is valid on this

semantics just in case it is assigned a designated value by any valuation function.

The logic is many-valued, which is to say that it contains more than simple truth

and falsity as possible truth-values. Of the three possible values some are designated

as being “correct” in some way. Informally, sentences which are always assigned

designated values are the kind which one would like the system to prove, while those

which are possibly non-designated one wishes to avoid proofs of.

So, on an LP valuation it can be, though is not necessarily the case that A and

¬A are both designated, and thus are both correctly assertable. Beside this point, LP

is very similar to classical logic, up to having all the same theorems as classical logic

has. Its conjunction and disjunction are, algebraically speaking, meet and join, and

its conditional (to the extent that it has one) is defined as the material implication.

LP has been presented in a number of places, particularly in [32] and [39], however

the treatment in [36], where many of Priest’s general claims about the collapse models

are made, is of first order LP, which is necessary for the axiomatic developments in

this project. Thus, I shall follow the presentation given there, though I shall go into

more detail than is given there in order to clarify which extensions are required in

3LP, though not so called there, was first introduced in the work of Asenjo [4]. Credit goes to JC
Beall [9] for pointing out this fact.
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order to better highlight what is necessary to produce a sensible proof system for

models in this semantics.

1.1.1 LP Semantics

The language consists in the following:

� Variable symbols: x, y, z . . .

� Constant name symbols: a, b, c, . . .

� Function symbols: fn, fm . . .

� Predicate symbols: P n, Qn, Rn . . .

� Meta-variables: A,B,C . . .

� Sets: Φ,Ψ,Θ . . .

� Connectives: ∧,∨,¬,⊃,≡,→,↔

� Quantifiers: ∀,∃

� Arithmetical symbols: =,′ ,+, ·, 0

In general, lower case letters from the end of the Latin alphabet with or without

prime symbols4 are variables and lower case letters from the beginning of the alphabet

are name constants, also with or without prime symbols. The function letters are

restricted to occurrences of f with some number of prime symbols superscripted,

where the superscripted n indicates the arity of the function, that is, the number

of arguments it takes. The function symbols which are most often used shall be

provided by the language of arithmetic. Capital Latin letters from the end of the

alphabet are predicates while capital Latin letters from the beginning of the alphabet

are meta-variables ranging over formulae. Capital Greek letters are sets or sequences

of sentences, as need demands. The ambiguity between sets and sequences will be

disambiguated by context – they are almost universally sets. Capital Greek letters

which resemble capital Latin letters (eg. the capital Latin p and the capital ρ) will

be studiously avoided, in favour of the Latin. So, in the sequence Γ,∆, A, read A not

as the capital α, and thus as a set, but as the capital Latin a, and, thus, as a meta-

variable. The arithmetical language I shall deal with more later, but, as standard, 0

4For my purposes here, terms almost always denote numbers, 0 and its successors in an ω sequence.
A usual convention, which I employ, is that the letter x with n appended prime symbols may be
abbreviated xn.
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is a name constant, ′ is a unary function, + and · are binary functions, and = is the

identity predicate.

Definition 1.1. The set of terms is defined recursively by the following clauses:

1. If t is a name constant a, then t is a term.

2. If t is a variable x, then t is a term.

3. If t1, . . . tn are terms and fn is a function symbol, then fn(t1, . . . tn) is a term.

4. Nothing is a term save being so in virtue of clauses 1-3 of this definition.

Definition 1.2. The set of formulae is defined recursively by the following clauses:

1. If P n is a predicate letter, and t1, . . . tn are terms, then P n(t1, . . . tn) is a formula.

2. If A is a formula, then ¬A is a formula.

3. If A,B are formulae, then A ∗B is a formula, where ∗ ∈ {∧,∨,⊃,≡,→,↔}5

4. If A is a formula and x is a variable then ∀xA and ∃xA are formulae.

5. Nothing is a formula save by clauses 1-5 of this definition.

Definition 1.3. An LP interpretation is a tuple 〈D, I, v〉 such that:

� D, the domain, is a non-empty set of objects.

� I, the interpretation, is a function from non-logical expressions of the language

to domain objects and set-theoretical constructs of them.

– for every name constant a, I(a) ∈ D - the domain object called the name’s

“referent”.

5I include the → and ↔ here since they will be used in the latter chapters. These connectives are
not in LP, and it is their addition to LP which occupies most of the second chapter, and so they
have been included here so as to be available as formulae in the following work.
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– for every function fn, I(fn) ∈ DDn
.

– for every n-place predicate, P n, I(P n) is the pair 〈I+(P n), I−(P n)〉, of,

respectively, the extension and anti-extension of P . These are such that

I+(P n)∩ I−(P n) may be non-empty and I+(P n)∪ I−(P n) = {〈d1, . . . dn〉;

di ∈ D}. So I+(P n) ⊆ Dn and I−(P n) ⊆ Dn.

� v, the valuation, takes formulae to truth-values, non-empty subsets of {1, 0} and

variables to domain objects, ie. v(x) ∈ D. We shall often have to specify the

particular value assigned to a variable at a particular valuation – v[d/x](Ax).

This is the truth-value of Ax where d is assigned to x, that is v[d/x](x) = d.

However, all other variables which are not displayed are left alone under that

valuation – if x 6= y then v[d/x](y) = v(y).

So v does two distinct jobs; if A is a formula, then v(A) is a truth value and if x is

a variable, then v(x) is a domain object, and if Ax is a formula with a free variable,

then v(Ax) is a truth-value assignment for A with a particular domain object assigned

to x in all its instances in A.

I shall use lattice-theoretic notions to describe some facts about LP and related

logics. For this purpose, the ordering on the LP values is as follows:

Figure 1.

{0} {1, 0} {1}
≤ ≤

Definition 1.4. The function i is an extension of I and v, which assigns an element

of the domain to every term:

1. Where a is a name constant, i(a) = I(a).

2. Where x is a variable, i(x) = v(x).

3. Where fn is a function, and t1, . . . tn are terms, then

i(fn(t1, . . . tn)) = I(fn)(i(t1), . . . i(tn)).
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It follows that for every term t there is a d ∈ D such that i(t) = d. For atomic

formulae, v assigns values according to the following:

� Where A is a meta-variable, v(A) ⊆ P({1, 0})− {∅}.

� Where P n is a predicate letter, and t1, . . . tn are terms, 1 ∈ v(P (t1, . . . tn)) if

〈i(t1), . . . i(tn)〉 ∈ I+(P ) and 0 ∈ v(P (t1, . . . tn)) if 〈i(t1), . . . i(tn)〉 ∈ I−(P ).

The most often used predicate in this work is =, the extension of which is defined

as follows:

� I+(=) is {〈d, d〉; d ∈ D}.

We shall, for the moment, leave the anti-extension of = open, except that for any

d and e which are distinct domain objects, 〈d, e〉 ∈ I−(=). This definition shall be

extended to give rise to a basic class of inconsistent models which are not collapse

models, to be introduced in this chapter.

To move on to v as it applies to complex formulae, for each kind of formula there

are two cases to consider - where 1 is in the value of that formula - read that the

formula is “true” or “at least true” - and where 0 is in the value of that formula - read

that it is “false” or “at least false”. The other cases are similar - ∨ can be defined

from ∧ in the usual way, and the conditional is just the material implication, defined

in terms of ¬,∨.

� 1 ∈ v(¬A) iff 0 ∈ v(A)

� 0 ∈ v(¬A) iff 1 ∈ v(A)

� 1 ∈ v(A ∧B) iff 1 ∈ v(A) and 1 ∈ v(B)

� 0 ∈ v(A ∧B) iff 0 ∈ v(A) or 0 ∈ v(B)

� v(A ∨B) = v(¬(¬A ∧ ¬B))

� v(A ⊃ B) = v(¬A ∨B)
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� 1 ∈ v(∀xAx) iff for all d, 1 ∈ v[d/x](Ax).

� 0 ∈ v(∀xAx) iff for some d, 0 ∈ v[d/x](Ax).

� v(∃xAx) = v(¬∀x¬Ax)

These cases of v indicate that LP is a truly dialethic logic6 - it can be the case

that for some predicate P , there is a d ∈ D such that d ∈ I+(P ) and d ∈ I−(P ), and

the valuation of Pa, where I(a) = d contains both 1 and 0 and is thus both true and

false - ie. v(Pa) = {1, 0}. That this is still a designated value is of most importance

in the LP definitions of validity, valid argument, and model.

Definition 1.5. A formula A is an LP-validity iff for any valuation v, 1 ∈ v(A).

A notion which I’ll make ample use of is that of sequents. A sequent is an ex-

pression of the form Γ ` ∆, where Γ, ∆ are sets of sentences, and it expresses that

the formulae of ∆ follow from those of Γ. The symbol ` or “turnstile” is a piece

of the meta-language used to indicate the conjunction of what occurs to the left of

it, or the “antecedent”, implies the disjunction of what occurs to the right of it, the

“succedent”. More informally: where G1, . . . Gn ∈ Γ and D1, . . . Dn ∈ ∆, Γ ` ∆ may

be read as G1 ∧ · · · ∧ Gn ` D1 ∨ · · · ∨Dn. If Γ = ∅, then the sequent, written ` ∆

expresses that at least one Di ∈ ∆ is a logical validity and, at least to begin with,

we shall not allow an empty succedent ∆. The advantage of using sequents is that

they explicitly invoke the notion of consequence, so that in reasoning with sequents

one reasons explicitly about acceptable inferences, not just acceptable formulae. This

is of particular value in non-classical and substructural logics, when these are con-

structed by rejecting certain classical inference forms, and so a sequent-system allows

one to make quite explicit the underlying principles allowing these inferences, and

thus one can trace the problem to its source, as it were. This will be more developed

in the next chapter, with the introduction of a sequent calculus for reasoning about

inconsistent models. To that end, the definition of valid sequent is as follows:

6There is another sense in which LP is dialethic in the original meaning of the word. There are, in
fact, two “truths” in LP in the sense that two values are taken as designated or correct - both {1}
and {1, 0}.
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Definition 1.6. A sequent Γ ` ∆ is valid in LP iff there is no valuation v such that

∀G ∈ Γ(1 ∈ v(G)) and ∀D ∈ ∆(1 /∈ v(D)).

This is the multiple conclusion variation of the definition, from which the single

conclusion version is easily obtainable – just restate the requirement so that if all

premises are distinguished, then so must the conclusion be.

Given these definitions, it is clear that the truth-values which contain 1 - namely

{1} and {1, 0} - are designated while {0} is not. With this the above criterion for

validity can be simply restated - A sequent is valid iff it cannot be the case that all

of its premises have designated values and all of its conclusions do not. So, there are

cases where a sequent can have all true premises - where 1 occurs in the valuation of

each formula - and yet have all false conclusions - where 0 occurs in the valuation of

each - so long as it is the case that some conclusions are designated but false - that

is, their values are {1, 0}. In this case, these conclusions are false, but also true, and

thus correct.

Now, this logic has some intriguing properties which make it particularly well

suited to interpreting classical theories in a paraconsistent framework. While it is

dialethic, it is also very strong in relation to Classical Logic - with the readings of the

connectives given above the set of validities is the same as that of classical tautologies.

The proof is given by Priest in [32, 223] and [32, 230] for the first order case. It is as

follows.

Theorem 1.1. A is a classical tautology iff A is an LP-validity.

Proof. The left-to-right direction is immediate since every two-valued valuation is a

three-valued valuation, since the values assigned to complex formulae the components

of which are assigned classical valuations are always classical, as per the definitions

of the connectives and quantifiers. For the right-to-left direction suppose that A is

a classical tautology and, for any LP valuation v, let v1 be a two-valued valuation

formed by identifying {1, 0} with {1} - so v1(A) = 1 iff 1 ∈ v(A) and v1(A) = 0

iff v(A) = {0}. This can be checked by appeal to the LP truth tables - which are

Kleene’s strong three-valued tables [21] except that the intermediate value is taken to
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be designated. Below are these truth tables, where {1, 0} is abbreviated as a Fraktur

i.

¬
1 0
i i
0 1

⊃ 1 i 0
1 1 i 0
i 1 i i
0 1 1 1

∧ 1 i 0
1 1 i 0
i i i 0
0 0 0 0

∨ 1 i 0
1 1 1 1
i 1 i i
0 1 i 0

By an obvious structural induction on formulae, it is clear that v(A)1 = 1 if

1 ∈ v(A), and thus that A is a classical tautology if it is an LP-validity.

So, counter-intuitively (A ∧ ¬A) ⊃ B is an LP-validity as is A ⊃ (¬A ⊃ B).

However, what fails are the sequent versions of these; A∧¬A 0 B. This is a result of

the fact that when v(C) = {1, 0} and v(D) = {0}, v(C ⊃ D) = {1, 0}, and yet C 0 D.

It is a result of this that LP is ill-suited to axiomatic developments of the usual sort.

This is due to the fact that basic conditional principles fail in LP - like Modus Ponens.

As a result, certain standard proof systems which rely on the conditional cannot be

given for LP. The standard proof theory given for LP is a tableaux system, given in

[39], which does not generally fit our project of axiomatising theories of arithmetic.

This is a point to be revisited in the next chapter, where I shall present a logic

which, I’ll argue, retains the spirit of LP while, at the same time opens the door for

syntactical presentations which better match our aims. However, before that, there

are two metatheoretical results about LP which are necessary for the development of

the collapse models themselves.

1.1.2 Some LP metatheory

Both of the extension lemma and the collapse theorem, taken from Priest [35], are

prime movers in the model-theoretic construction.

Definition 1.7. Given two interpretations, I and J , J is an extension of I iff for

every predicate P , I+(P ) ⊆ J+(P ) and I−(P ) ⊆ J−(P ).

The collapse models are extensions, given a type-lifting of arithmetic, so that the

numbers are taken as singleton sets. Then, they are interpretations which subtly alter

the meanings of certain parts of the arithmetical language.
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Lemma 1.1 (Extension). - If I, J are interpretations and J is an extension of I then

for any formula A of the language, vI(A) ⊆ vJ(A), where vI and vJ are valuations

based on the interpretations I and J , respectively.

Proof. By a structural induction on formulae. The base case is straightforward, and

in general we shall omit cases where vI = vJ , since these clearly follow. Suppose

that A is P n(t1, . . . tn). Since I+(P n) ⊆ J+(P n) and I−(P n) ⊆ I−(P n), then if

1 ∈ vI(P
n(t1, . . . tn)) then 1 ∈ vJ(P n(t1, . . . tn)) and if 0 ∈ vI(P

n(t1, . . . tn)) then

0 ∈ vJ(P n(t1, . . . tn)). The most drastic effect that J can have on the atomic formulae

is to change their values from {1} or {0} to {1, 0}, otherwise it leaves their values as

they were under I.

Case (¬): Suppose that vI(A) = {1}, then vI(¬A) = {0}. If vJ(A) = {1}, then

vJ(¬A) = {0}. If vJ(A) = {1, 0}, then v(¬A) = {1, 0}, and vI(¬A) ⊆ vJ(¬A) as

desired. Suppose that vI(A) = {0}, then vI(¬A) = {1}. If vJ(A) = vI(A) then

vJ(¬A) = vI(¬A). If vJ(A) = {1, 0}, then vJ(¬A) = {1, 0} and, in either case

vI(¬A) ⊆ vJ(¬A).

Case (∧): Suppose that vI(A) or vI(B) is {0}, then vI(A∧B) is also {0}. If vJ(A) =

{0} or vJ(B) = {0}, then vJ(A ∧ B) = {0}, as desired. If vJ(A) = vJ(B) = {1, 0}

then vJ(A ∧B) = {1, 0} and still vI(A ∧B) ⊆ vJ(A ∧B). If either vJ(A) = {1, 0} or

vJ(B) = {1, 0} then vJ(A ∧ B) = {1, 0} and vI(A ∧ B) ⊆ vJ(A ∧ B). If vI(A) = {1}

or vI(B) = {1}, then the case is completely straightforward, given that 1 must, then,

be in the value of whichever of A,B vI assigned to {1}, and thus its vJ -assignment

will also be designated.

Case (∨): Suppose that vI(A) = vI(B) = {0}, then vI(A ∨ B) = {0}. If vJ(A) =

{1, 0} or vJ(B) = {1, 0} then vJ(A ∨ B) = {1, 0} and vI(A ∨ B) ⊆ vJ(A ∨ B) as

desired. Suppose that vI(A) = {1} or vI(B) = {1}, then vI(A ∨ B) = {1}. If

one of vJ(A) or vJ(B) is {1, 0} while the other is {1}, then vJ(A ∨ B) = {1} and

vI(A ∨ B) ⊆ vJ(A ∨ B). If vJ(A) = vJ(B) = {1, 0} then vJ(A ∨ B) = {1, 0} and

vI(A ∨B) ⊆ vJ(A ∨B).

Case (⊃): Since v(A ⊃ B) = v(¬A ∨ B) for all v, then this case follows from that

for ¬ and that for ∨.
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Case (∀): Suppose that for all d, vI [d/x](Ax) = {1}, then vI(∀xAx) = {1}. J may

result in some d being such that vJ [d/x](Ax) = {1, 0} and thus vJ(∀xAx) = {1, 0}

and vI(∀xAx) ⊆ vJ(∀xAx). Suppose that for some d, vI [d/x](Ax) = {0}. Then

vI(∀xAx) is either {0} or {1, 0}. If the former, then for all d, vI [d/x](Ax) = {0}. J

may either leave all values or result in some d being such that vJ [d/x](Ax) = {1, 0}. If

vJ [d/x](Ax) for some d, then vJ(∀xAx) = {1, 0} and vI(∀xAx) ⊆ vJ(∀xAx). If for all

d vJ [d/x](Ax) = {0}, then vJ(∀xAx) = {0} and vI(∀xAx) ⊆ vJ(∀xAx). Suppose that

vI(∀xAx) = {1, 0}. Then for all d, 1 ∈ vI [d/x](Ax) and for some d, vI [d/x](Ax) =

{1, 0}. Then, vJ [d/x](Ax) = vJ [d/x](Ax), and thus vI(∀xAx) ⊆ vJ(∀xAx), since the

existence of one d such that vJ [d/x](Ax) = {1, 0} guarantees that vJ(∀xAx) = {1, 0}

if for all other d, 1 ∈ vJ [d/x](Ax), which is true by the hypothesis of the induction.

The effect of this lemma is most interesting given another result - Theorem 1.2 or

the collapse theorem - which gives way to the class of collapse models of arithmetic.

For this a definition of a collapsed interpretation is necessary. This is the result of

the closure of the interpretation under an equivalence relation on the domain which is

also a congruence relation on the interpretations of all functions - a quotient algebra

of the initial interpretation.

Definition 1.8. Given an interpretation A = 〈D, I, v〉 and an equivalence relation

∼ on D, which is a congruence for all functions7 of the language, define A∼ =

〈D∼, I∼, v∼〉, the collapsed interpretation, according to the following cases, where

[d] is the equivalence class of d ∈ D under an equivalence relation ∼, that is,

D∼ = {[d]; d ∈ D}:

� for every constant a, I∼(a) = [I(a)]

� for every n-place function f , I∼(f)([d1], . . . , [dn]) = [I(f)(d1, . . . , dn)]

7Where f is an n-place function letter and where di, ei ∈ D, if di ∼ ei for all 1 ≤ i ≤ n then
I(f)(d1, . . . , dn) ∼ I(f)(e1, . . . , en). [35, 225]
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� for every predicate P , 〈[d1], . . . , [dn]〉 ∈ I∼+ (P ) iff for all e1 ∼ d1, . . . , en ∼ dn such

that 〈e1, . . . , en〉 ∈ I+(P ) and the same for the anti-extension – 〈[d1], . . . , [dn]〉 ∈

I∼− (P ) iff for all e1 ∼ d1, . . . , en ∼ dn such that 〈e1, . . . , en〉 ∈ I−(P ).

The equivalence classes, made up of domain objects identified by ∼, may well

have inconsistent properties, as in the case of some collapses of the standard model

of arithmetic. This kind of maneuver was first presented by J. Michael Dunn in [14]

- the collapse theorem below is given there as his basic theorem, just as lemma 1.1

is a restatement of his preservation theorem. However, it was Robert K. Meyer and

Chris Mortensen who initially put this to use in research into relevant arithmetic -

particularly in [25], which was a precursor of Priest’s work in the area. As a result,

another name for a congruence relation inducing collapse which has been used is

“Dunn-Meyer extension”, introduced by Mortensen [29]. From this point on, I shall

use “collapse” to refer to the theorem and class of models developed by Priest in [35]

and [36].

It follows from the definition of a collapsed interpretation, and the type-difference,

that I+ ⊆ I∼+ and I− ⊆ I∼− since in each point in the above definition, I∼ is stipulated

to include I - if 〈d1 . . . dn〉 ∈ I+(−)(P ) 8 then it must also be in I∼+(−), since ∼ is an

equivalence relation and thus for all di, di ∼ di where 1 ≤ i ≤ n. So, collapses can be

viewed as extensions as per Definition 1.7, and thus Lemma 1.1 applies.

Theorem 1.2 (Collapse). For any formula, A, v(A) ⊆ v∼(A).9

Proof. By structural induction on A. All terms are interpreted under i∼ by equiva-

lence classes, and all predicates are type-lifted to take equivalence classes as arguments

under I∼+(−). The proof is quite short and obvious in view of the proof given for the

previous lemma.

For the basis, suppose that 1 ∈ v(P (t1, . . . , tn)) for a predicate P .

Then 〈i(t1), . . . i(tn)〉 ∈ I+(P ). Then for each of t1, . . . , tn there is something in each

8Read I+(−) as “either I+ or I−”.
9This is the theorem which Priest [34] has called the ultimate downward Löwenheim-Skolem theorem
– see footnote 2 of this chapter.
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of i(t1), . . . , i(tn) which is in the extension of P , namely di (1 ≤ i ≤ n). Thus

〈d1, . . . , dn〉 ∈ I∼+ (P ) and 〈i∼(t1), . . . , i
∼(tn)〉 ∈ I∼+ (P ). Thus, 1 ∈ v∼(Pt1, . . . , tn).

Case 1 (∧): Suppose that 1 ∈ v(A) and 1 ∈ v(B) and thus 1 ∈ v(A ∧ B). Then, by

the Extension lemma, 1 ∈ v∼(A) and 1 ∈ v∼(B) and thus 1 ∈ v∼(A ∧B).

Case 2 (¬): Suppose that 1 ∈ v(¬A). Then 0 ∈ v(A) and, by Extension, 0 ∈ v∼(A)

and thus 1 ∈ v∼(¬A).

Case 3 (∀): Suppose that 1 ∈ v(∀xAx). Then 1 ∈ v[d/x](Ax) for all d and by the

Extension lemma, 1 ∈ v∼[d/x](Ax). Thus 1 ∈ v∼(∀xAx).

The negative cases involving the anti-extension can be obtained from the above

by uniformly substituting “I−” for I+ and 0 for 1 (and conversely). All connectives

and the universal quantifier can be shown similarly, and the theorem easily follows.

10

The result of this theorem is that 1s and 0s, as they occur in the valuations of

propositions, are inherited across a collapse. The value of this is, as Priest puts

it, where � is semantic entailment in analogy to `, “in particular, if A � Σ then

A∼ � Σ: if we collapse a model of a theory, we therefore produce another model.”

[35, 226] The import of this last claim is in the fact that a Dunn-Meyer Extension

of a model of arithmetic is still a model of arithmetic - even though the properties

of the equivalence classes formed by such an extension may be inconsistent. We can

take a quotient algebra of 〈N, ′,+, ·〉 using a Dunn-Meyer extension, producing an

inconsistent model of the same. This will, essentially, have the result of identifying

distinct elements of N into equivalence classes, while still retaining the truth of their

non-identity. All of the inconsistent models with which we’ll be concerned here are

collapse models, though there is a class of inconsistent models not arising from a

collapse. It will be made clear that these models are, in general, non-trivial. That is to

say, not all n ∈ N fall into the same equivalence class, and thus not every formula over

the language of arithmetic is valid. So the fact that these models capture arithmetic

10The statement of this proof is adapted from [33] and [14].
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is not simply a trivial result of their validating every sentence in the language.

1.2 Taxonomy of extended and collapse models

Let L be the language of arithmetic - including the name constant 0, the singulary

function symbol ′ (successor), and the binary function symbols +, · (addition and

multiplication). Since it is useful to have a simple shorthand to indicate the pre-

decessor of a number, I shall follow Priest in using ′n to indicate the predecessor

of n, where convenient. In this language the numeral n is 0 followed by that many

(that is n) occurrences of ′. The standard model is just the usual linear well-ordering

with unique and successors and predecessors bottoming out at 0, but there are non-

standard models of arithmetic to which we shall appeal as well - these include natural

numbers and copies of the natural numbers in ordering patterns which can produce

peculiar results when collapsed.11

A Dunn-Meyer extension of a model in this language will have the following prop-

erties, by the definition. This very clear statement of the interpretations of the ele-

ments of the language of arithmetic is found in [31, 214], which makes it explicit that

the elements of the language are type-lifted to take equivalence classes of numbers

rather than simply numbers. An interesting case, of course, is that which involves

negation applied to our only predicate =. The equivalence class of a, produced by

a collapse, shall simply be written as a, while the members of the equivalence class,

standard numbers, shall be written with an overline, a.

I∼(0) = 0 I∼(′)(x) = x′

I∼(+)(x, y) = x+ y I∼(·)(x, y) = x · y

I∼+ (=) = {〈x, y〉;x ∼ y} I∼− (=) = {〈x, y〉 : x 6= y}

Since these are the only elements of the language, barring definitional extension,

these are all the salient facts about the collapse models generally - the other facts

about each model being determined by the specific closure operation which produces

11My reference material for the non-standard models of arithmetic are Richard Kaye’s Models of
Peano Arithmetic [20] and the seventeenth chapter of Computability and Logic, third edition [11].
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it. There is some variety in the kinds of closure operations which produce inconsistent

models - and for the remains of this chapter I shall set out the standard categories

into which they fall. This way, it becomes fairly natural to produce axioms which

capture the particular features of each.

Since the language only has one predicate, along with apparatus for term-formation,

every formula added will contain as subformulae either equations or the negation of

equations. Most any proper extension, that is, one where ∼ is not just the standard

=, will result in a contradiction of some equation with the negation of that equation,

since either the equation in question or its negation will be added to I∼+ or I∼− , re-

spectively. Those cases of formulae independent of arithmetic aside, most extensions

of arithmetic will produce an inconsistency and will be the result, at bottom - that

is, after breaking the formula into its components, either of adding some ordered pair

〈x, x〉 to I∼− (=) - saying that x 6= x - or of adding some ordered pair 〈x, y〉, where

x 6= y, to I∼+ (=) - that x ∼ y and thus x = y. The latter case is clearly involved in

collapse models produced by Dunn-Meyer extensions.

In [36], Priest sets out a general taxonomy of collapse models of arithmetic which

later on has been pruned by Paris and Pathmanathan in [30]. First I shall set out

each of a few categories of models and then state the general features that they have

in common.

1.2.1 Simple extended models

These are the former of the two kinds of extensions I sketched earlier - those resulting

from adding some ordered pair of the same number to I−(=). The nominal simple

extensions are the addition of 〈a, a〉 to I(=), for some a, so that a 6= a thus becomes

true in the model. These are, as the title I’ve given them suggests, extremely simple

and, while they are not collapse models they provide something of a nice counterpoint

to collapse models. Since a = a is valid on the Standard Model, this means that a = a

becomes a point of contradiction, or a glut - a = a∧ a 6= a is made correct. Given no

congruence, we are not guaranteed that any standard principles for the functions of

arithmetic hold, however, we are, in this instance, bound by the kind of model which
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Priest outlines, so we shall try to stick quite close to that presentation. Since x 6= y

must imply x′ 6= y′ if we are to capture the kinds of models Priest [35] describes, the

result is that for every b > a, b = b ∧ b 6= b. This is hard to depict but quite simple

- after the number for which identity is denied in the ordering, the model becomes

simply an ordering of gluts, depicted by writing the number in double vertical bars –

‖ ‖ – which do not interact with the segment of the model occurring before a in the

ordering.

Figure 2.

0 1
. . .−→ ‖a‖ ‖b‖ . . .−→

However, there is a decision point as to whether the numbers lower than a ought

to be similarly inflicted - since, as I’ll argue, the principles which would imply this

fail for some of the collapse models, we may have some reason to force them to fail

for these models as well. As such, it seems to be something like a decision point

in the construction of these models whether that is to be true - it is not decided

simply by the LP model theory. However, in either case these are hardly the rich

models we might be interested in studying. In the case where gluttiness is only

inherited up, the models are quite dull - one has a consistent tail isomorphic to an

initial segment of the standard model and after that a denumerably long glutty tail.

However, if the gluttiness is inherited in both directions, then no matter where one

introduces the glut, the entire model becomes straightforwardly glutty - simply a

copy of the standard model with the extra information that, where x ranges over

numbers, ∀x(x = x ∧ x 6= x). This might be an undesirable result, and the principle

which would produce the behaviour in the latter case – that x′ 6= y′ implies x 6= y – is

invalid on all collapsed models (which are not just equivalent to the standard model),

under the definition of I(=). So, I lean toward its rejection for the purposes of these

models, even though they are not the result of collapse. However, even if one does

reject the principle, one can produce basically the same effect in at least one model.

It is the limiting case - that where a = 0, so that the result is that 0 = 0∧ 0 6= 0 and
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thus, whether or not the gluttiness is inherited down the ordering, ∀x(x = x∧x 6= x)

- this is the only simple extended model which Priest discusses. [35, 226] In this

model, every equation and non-equation where the same term appears on both sides

of = will be true, as will be the standard stock of non-equations of distinct numerals

- those which are formed without appeal to binary functions +, ·. However, it is not

the case that the model verifies every equation between distinct numerals – ie. 0

with some number of applications of ′. The remaining discriminateness of the model

remains true for terms formed with the binary functions. A classical consequence

relation would validate every formula, trivially, however, the LP consequence relation

does not.

Consider some equation b + c = a, which is true of the standard model, where

d 6= d is introduced, where d < a. Then a 6= a will be true, and, thus, so will be

b + c 6= a, by Leibniz’s law. So, if the formula is a theorem of the standard model

and the term occurring on one side of the equation is glutty, then, the negation of

the formula will be provable. However the converse does not need to be the case – if

b+ c 6= a classically, the model does not, necessarily, verify b+ c = a as a result of the

forced gluttiness of a. Consider some a = b. If this is true on the standard model, and

a, b are glutty, then one can show a 6= b - but if a 6= b is true, it can still be the case

that a = b is simply false. These examples indicate that the gluttiness associated with

single elements of the number line does not, without a classical consequence relation

enforcing explosion, necessarily produce triviality.

These models are valuable really only to indicate that one can produce inconsistent

models of arithmetic without appeal to collapse, but they do not have much in the

way of inherent interest beyond that. They are included mainly as a limiting case -

though to provide an axiomatization of these models would be, perhaps, illuminating

for the rest of the project. As such, I include them here, even though they are unlike

the other models I shall be considering. Since they are introduced to be, at least

similar to the collapse models, I shall, from here on, stipulate that ‘a′ = b′ implies

a = b’ is not true of these models, so that they can be treated uniformly under the

same banner as the others. The logic to be developed to axiomatise these models will
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generally reject this principle, so the decision is made to retain some cohesion in the

subject matter I’ll consider here.

1.2.2 Cyclic models

This and all the remaining classes of models considered in this chapter are collapse

models, unlike the simple extended models. As such we must deal with two distinct

entities - numbers in a model and equivalence classes of those numbers. In general, we

shall most often be dealing with equivalence classes, usually using standard numbers

only to specify ∼ in order to define the classes on the particular model.

The cyclic models result of applications of Dunn-Meyer extensions to produce

models which are very similar to basic modular arithmetics, with a twist resulting

from the LP semantics. Their forms are those of closed loops. They are produced by

the closure of the standard model under the following equivalence relation ∼:

x ∼ y iff x ≡ y (mod n).

The results are quite simple - it is still the case that if a is distinct from b, but

a ∼ b then, by Theorem 1.2, a 6= b, but a ∼ b and so 〈a, b〉 ∈ I∼+ (=) and thus a = b.

So a = b ∧ a 6= b, as expected, and the model, quite familiar, looks like this, for

0 ≤ i ≤ n:

Figure 3.

0 1
. . .−→

i
. . .←−′n
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Consider the following simple class and model as a concrete example:

x ∼ y iff x ≡ y (mod 4):

Figure 4.

0 1

23

where [1] = {x;x ≡ 1 (mod 4)} = {1, 5, 9, . . . }, [2] = {2, 6, 10, . . . }, [3] =

{3, 7, 11, . . . }, and [0] = {0, 4, 8, . . . }. So, as a result of the construction, 3 = 3

is true, as is 3 = 7, and yet 3 6= 7 is also true, given the definition of 6=-clauses and

since 3 6= 7. So 3 = 7 is a glut, as is 3 = 11, however claims like 3 = 2 are still

straightforwardly false. The result being that these models, though inconsistent, are

so in a way that is regular and restricted. There are claims which are, on this model,

straightforwardly false, despite the fact that the model admits of some glutty claims.

These glutty claims, though inconsistent, fit into a regular structure which admits of

a concise and sensible presentation.

These are very similar to modular arithmetics, even in their method of construc-

tion. The only difference is the presence of gluts in the equivalence classes - but even

these are reasonable and are clearly results of the structure of the model. These are

at least sensible structures, despite having inherent contradictions. Here there is a

natural motivation to distinguish inconsistency and triviality – just because these

models are inconsistent, it clearly does not follow that they are somehow ill-defined,

and, on top of this, they capture some reasonable intuitions about their subjects.

Consider the inconsistent cyclic models as a gloss on the usual modular arithmetics.

The difference being that we actively treat the equivalences invoked as glutty, so that

there is a sense in which 1=13 on a standard 12 hour clock, just as it remains the case

that this is not actually true that 1=13 - both facts are encompassed in this simple

model, and we can reason about these facts in an interesting way.

Beside the general structure, a feature particularly of note is that it remains the

case here that each domain element has a unique successor (class) and a unique prede-
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cessor (class) - that is to say, for each equivalence class a there is only one equivalence

class b such that b = a′ and only one c such that c′ = a. For instance, in the above,

1 has a unique predecessor, 0 and a unique successor, 2. It is straightforwardly false

that 3′ = 1 and that 3 = 1′. The fully injective successor function of these models is

a feature which none of the other basic collapse models share. A result of these facts

is that the full complement of standard successor principles still apply.

x = y ` x′ = y′

x′ = y′ ` x = y

x 6= y ` x′ 6= y′

x′ 6= y′ ` x 6= y

These four principles, usually run together, are worth distinguishing in the case

of collapse models for reasons to be enumerated in the next chapter. Namely, that

some of these principles are independent of the others is shown by the fact that some

inconsistent models validate some but not all of them. However, for the purposes

of cyclic models, they are all valid, and successor is basically similar to what it is

classically.

1.2.3 Heap models

Heap models are essentially cyclic models but beginning with finite tails of standard

numbers, and then collapsing into a cycle with a first member which is the successor

of a standard number. They are formed by closures under equivalence classes of the

following structure, where n > 0:

x ∼ y iff ((x, y < n and x = y) or (x, y ≥ n and x ≡ y (mod k)))

So, every number occurring before n in the standard sequence occupies precisely

the same place and has most of the same properties, but from n onwards forms a

cycle of period k. The resulting model looks like this:
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Figure 5.

0 1
. . .−→ n . . .−→ i

. . .←−′(n+ k)

For example, consider the following equivalence:

x ∼ y iff ((x, y < 4 and x = y) or (x, y ≥ 4 and x ≡ y (mod 3)))

which produces the following:

Figure 6.

0 1 2 3 4

5

6

4 = {4, 7, 10 . . . } — 5 = {5, 8, 11 . . . } — 6 = {6, 9, 12 . . . }

So, for instance, 6 = 12 is true, as is 6 6= 12, since 6 6= 12, and yet 6 = 5 is

straightforwardly false, as is 3 = 4 and the like, for 0, 1, 2, 3, which operate similarly

to the classical numbers 0, 1, 2, 3 do. So, the cycle operates just as a cyclical model,

while the tail operates as the standard ordering.

An interesting features of these models is that n, the least member of the cycle,

has two predecessors, n− 1 and n+ k − 1 - so in the example 3′ = 6′ does not imply

that 3 = 6, since the succedent is simply false while the antecedent is a glut. Notice,

that (n − 1)′ = ((n + k) − 1)′ has a designated value - namely {1, 0} since (n − 1)

and ((n + k) − 1) must be distinct in N, so long as k > 0 - we have no negative

integers, and yet (n− 1)′ = n and ((n+ k)− 1)′ = n, by the construction. However,

(n − 1) = ((n + k) − 1) is assigned {0} - that it is just false can be read off of the

model.

So, this model invalidates the injectivity of the successor function, as every heap

model does. In each heap model there will be one number which has two predecessors
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- namely, the first number of the cycle, which is preceded by one standard number

and one number in the cycle - though even it has a unique successor. However, every

other number has a unique predecessor and a unique successor. The structure of

the model makes this fairly clear. Since every number < n is isomorphic to itself in

the standard model, it has a unique predecessor and a unique successor. For some

equivalence class i > n, its successor i′ will be in the cycle, as will all of its successors.

For some a, ia ∈ n, but the successor of no number in the cycle is properly outside of

the cycle - applications of the successor function never take one out of the cycle.

The fact that one of the standard successor principles fails will constrain the

available options regarding axioms in the development of syntaxes to capture these

models - however, in a way which proves fairly interesting in its own right. Beside

this, the heap models are quite simple and quite well behaved - something Priest

refers to in his defense of them as the potential model for the natural numbers as

they are generally used (with the first inconsistent number being very large - larger

than has been practically used yet).

A particular special case of these models is infinite. It involves a closure over

a classical non-standard model of arithmetic. This is that given by the following

congruence:

x ∼ y iff (x, y < ω and x = y) or x, y ≥ ω.

So, in this model all of N is as usual, and all non-standard numbers are identified

in one equivalence class, with the successor function essentially just looping back on

itself – ω′ = ω. In the following depiction, the occurrence of · · · ⇒ . . . is not meant

to represent a successor-sequence, but rather that there is a split in the model, and

that by moving along the order one arrives at a different chunk of the model with a

different successor principle.

Figure 7.

0 1 · · · ⇒ . . . ω
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This model may well have some philosophical interest associated with it, but it

is not particularly interesting here except as just another example of a heap model.

This sort of thing can be done with any finite number as well. Let the congruence

be:

x ∼ y iff (x, y < n and x = y) or x, y ≥ n

This produces a model where all numbers < n are standard and then the equiv-

alence class of n contains all numbers in the sequence from n on. The only notable

difference between this model and the ω-model given above is that this is finite –

simply consider the diagram given above but with n in the place of ω and a finite

successor sequence in place of the · · · ⇒ . . . .

1.2.4 Infinite collapse models and the general case

Unlike the basic cyclic and heap models displayed above, which are only finite, one can

have infinite collapse models produced by a variety of different collapses. Probably the

most interesting are those including Z-like sequences. These are sequences obtained

by taking a non-standard model of arithmetic, in the sense of [11] and others, and

taking their closure under equivalence relations which leave alone the part of the model

isomorphic to N and collapse parts of the densely-ordered sequence of Z-isomorphic

structures occurring afterwards. There are a number of possible results of the collapse

of a non-standard model of arithmetic, or perhaps even the collapse of a collapse

model, however anything more than a cursory glance at them is beyond the scope of

this work, and, as such, I shall do nothing more than to indicate that these models

exist. They may include a densely ordered sequence of structures isomorphic to Z

which result from the collapse of a segment of a non-standard model into a something

like a psuedo-cycle, the period of which is a non-standard number.

The classical picture of the non-standard models of arithmetic includes the se-

quence of natural numbers N, followed by a densely ordered sequence of Z-isomorphic

structures. This results of a few basic assumptions involving ordering principles and

the effect they have on numbers which are not the successors of anything in N. Essen-

tially, infinite collapse models can result of including some of these Z-like sequences,
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and collapsing others, or from collapsing the densely ordered sequence of Z-like se-

quences into some kind of cycle or pseudo-cycle. Even as an initial consideration in-

dicates, the options available for collapses of this kind are many and multi-faceted.So,

the infinite collapse models are still under investigation, for instance, by Paris and

Sirokofskich in [31], and while they are interesting, it is still very unclear whether a

decidability or axiomatisability result can be proven for them. However, it may be

hoped that insights gotten by the attempt to axiomatise the finite collapse models

may shed light upon the question beyond what has been shown already. In any case,

we shall not treat of these any further than this, which is set out to allow us to specify

the general case of the collapse models.

This survey covers the basic kinds of Dunn-Meyer extension available12 and as

such any collapse model will be either one of the above basic models or a composite

model constructed in some way out of the basic models. The general form is of

a possibly non-empty subsequence of N - some standard numbers - followed by a

possibly non-empty collection of disjoint Z-like sequences, followed by a possibly

non-empty collection of disjoint cycles, with some restrictions on the periods of the

cycles.13

Figure 8.

0, 1 . . . ⇒ . . .′ a, a, a′ . . .

. . .′ b, b, b′ . . .

⇒ d0
. . .−→

′dm

⇒ e0 . . .−→

′en ⇒

In the above diagram, the occurrences of ⇒ distinguish different non-standard

parts of the model, either cycles or Z-like sequences, each of which may have many

occurrences - there is a dense ordering of Z-like clumps among the a’s and b’s, and

there may be similarly many cycles of d’s and e’s, where the periods of the cycles

12Priest, in [35, 233] he considers another kind of model - the clique models, inspired by graph
theory. However, Paris and Pathmanathan show that an argument of Priest’s is flawed and that
such models cannot be produced, since their production would require an equivalence relation
which is not properly a congruence on successors. [30, 531-532]

13In the following diagram squares are used instead of circles for purely aesthetic reasons.
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occurring later are factors of the periods of cycles occurring earlier in the⇒-ordering.

The number of non-standard structures depends on the nature of the non-standard

model which is collapsed - ie, how many Z-sequences occur after N.

As a simple example of a collapsed model produced from a non-standard model

with only the standard numbers and one finite cyclic sequence occurring after it,

consider a congruence as follows:

x ∼ y iff (x, y ≤ n and x = y) or (x, y > n and x ≡ y (mod k))

or (x, y > ω and x ≡ y (mod j))

which results in the numbers in the finite sequence in a non-standard model of

arithmetic greater than n collected in a cycle of period k and all non-standard numbers

in a cycle of period j. So, the first sequence is a heap, followed by a finite cycle:

Figure 9.

0 1
. . .−→ n . . .−→

′(n+ k)

m0 . . .−→

′(m0 + j)

Priest introduces terminology with a background in cellular biology to describe

general collapse models. I shall not go into a lot of detail about the general case of

infinite collapse models, however, for ease of statement I shall introduce these terms

and present his general account of the structure of collapse models in these terms.14

� If i ∈ some model M , N(i), the nucleus of i, is defined as all those numbers

which both precede and succeed i – {x ∈ M ; i ≤ x ≤ i}. The period of a

nucleus, p, is such that i + p = i, as usual. Call any nucleus with a non-zero

period proper - so, any nucleus which forms a cycle is proper, be it a finite cycle

or a sequence isomorphic to Z - else it is improper. The result of this is that

every classical model is such that each number is in an improper nucleus - each

14I think that keeping these terms is probably best, at least for continuity’s sake, even if they are
potentially misleading given the biological background.
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improper nucleus is a singleton, whereas, any inconsistent model produced by

collapse must have at least one member with a proper nucleus.

� Let N be any proper nucleus, and i ∈ N . Then the chromosome of i is the

sequence . . .′′ i,′ i, i, i′, i′′ . . . (where not all members of the sequence need be

distinct). Again, these can either be finite cycles or infinite sequences isomorphic

to Z. The basic models containing these types of chromosome I have called cyclic

and Z-like, respectively, and these are the terms I shall continue to use for the

most part.

For the purposes of dealing with models involving multiple chromosomes, Priest

defines a simple ordering on nuclei, where N1, N2 are nuclei: N1 � N2 iff ∀i ∈ N1∀j ∈

N2(i ≤ j), which is an order such that N(0) � N(1) �, . . . . This ordering enforces

an interesting property with regard to the periods of the nuclei involved. If i ≤ j and

N(i) has period p then so must N(j). Since, if i ≤ j, then for some x, j = i + x,

and so p + j = p + i + x. Since p + i = i then p + j = i + x and thus p + j = j.

This holds not just when j ∈ N(i) and thus N(i) = N(j), but also when i, j have

separate nuclei. The result of which is that if p is the period of N(i) then it is also the

period of N(j). So, nuclei occurring later in the sequence must have periods which

are factors of those preceding, where that period is 0 in the case of a sequence of

improper nuclei. I shall consider in more detail later on the effect of alterations of ≤

on the properties of �.

With this information, Priest claims that:

The general structure of a collapse model of arithmetic is a linear

sequence of nuclei with periods inherited up the ordering. There are three

segments (any of which may be empty). The first contains only improper

nuclei. The second contains proper nuclei with linear chromosomes. The

final segment contains proper nuclei with cyclical chromosomes. [36, 1522–

1523]

So, after a finite tail similar to the natural numbers, each of which is an improper

nucleus, is a collection of distinct linear orderings, each with a non-standard proper
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period, followed by sets of cycles of numbers with decreasing standard proper periods,

each of which is a factor of the previous. Each of these segments may be empty -

producing simple models like those described in the previous sections, or something

slightly more complicated like that in this section where the second segment was

empty, and the third contained two cycles. But the result of this is that all collapse

models can be described as either simple models like those previously presented or

as a composition with parts like those, such as that given in the example presented

earlier in this section.

1.3 Open problems of the collapse models

Priest has developed and disseminated the collapse models with a handful of goals.

These include to promote interest in paraconsistent logic more generally, to develop

his favoured dialethic view in the philosophy of mathematics, and to forward the

broadening element of Routley’s program – though he doesn’t use this term. To the

first and last of these ends he has set out open problems and intellectual puzzles in

a variety of publications designed to attract the interest of researchers in different

areas. Many of the purely number-theoretic questions, posed in [35] and [36] have

been answered by Paris and his coauthors in [30] and [31] - while his claims about

dialethic philosophy of mathematics, developed in [38] alongside a suite of papers,

have been responded to - for instance in [46]. However, it is more a purely logical

investigation which I here attempt to make progress on. We know that, while classical

models of first order arithmetic are never finite, some inconsistent models are finite,

and that if an inconsistent model is finite, then its set of theorems is decidable. [38,

234] This is because the functions and predicates employed are computable given a

finite domain, so, since the truth tables are finite structures and the truth values

of quantified statements are equivalent to finite conjunctions (or disjunctions), each

conjunct of which is an application of the quantified predicate to one of the (finitely

many) domain objects.

Now, decidability implies axiomatisability, ie, that all the truths of the model can
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be stated by a finite set of formula schemata and finitary rules on the formulae.15 This

set of formulae is an axiomatisation of the model, and axiomatisability is a property

which Priest claims to hold of the finite collapse models in [37, 267], where states as a

problem, still open to my knowledge, whether any of the infinite models are axiomati-

sable. However, nowhere, again, to my knowledge, does he give an axiomatisation of

any of the models. The result he states simply relies on the fact that one can simply

enumerate the truths of the model and, in doing so, also enumerate axioms for it.

I am more interested to see whether a more concise list of axioms can be given for

the finite models – an axiom system comprising a proper subset of the true formulae

of the model. I would also like to give an axiom system which is clearly similar to

the standard classical arithmetical axiom system of Peano Arithmetic, since this is so

familiar a system, and since such an axiomatization would give us a natural ground to

compare the proof-theoretic features of the collapse models with those of the classical

axiom system. Such a ground for comparison may well give us a valuable framework

for translating classical arithmetic theorems into theorems of paraconsistent arith-

metic, supposing a one-to-one translation of the connectives and the elements of the

arithmetical language. This might provide us means to adjudicate some debates re-

garding paraconsistent and dialethic approaches to mathematics more generally, such

as that between Shapiro [46] and Priest [38] on the Gödel sentence, which turns on

the details of dialethic number theory. To this end, I shall give sensible axioms for

the finite collapse models similar to those of Peano Arithmetic (PA) in an extension

of LP, Arnon Avron’s 3-valued paraconsistent logic PAC or A3, to be developed in

the next chapter.

The finite collapse models, at least, should be axiomatisable, and perhaps the

development of a syntax for them may provide insight into whether it is possible to

do the same for the infinite models. However, even in the case of the finite models,

there are considerations to suggest that to give an axiom system for them is difficult.

In particular, it is a roadblock that each collapse model models PA, since each is

15This not to say that the truths of only that model are captured by the axiom system - ie. that
the model is categorical. This is not even true of Peano arithmetic, the fact of which is what gives
rise to non-standard models (and collapse models) in the first place.
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a collapse of the standard model, assuming again a one-to-one translation of the

components of the language of PA to similar components in LP. If the addition of the

Peano axioms to a maximally paraconsistent logic does produce a system in which a

proper subset of the theorems of classical PA are provable, then no non-trivial axiom

system can be given for the inconsistent models, since they would be trivialised under

classical consequence. This is a formidable concern, and I shall attempt to respond to

it later in this thesis. First, however, we need a better syntax to capture the essential

parts of LP as well as some basic arithmetical axioms to provide a groundwork to

talk about the special axioms needed for extensional and finite collapse models.
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Chapter 2

A3 and Peano Arithmetic

As shown in the previous chapter, collapse models of arithmetic exhibit a handful of

peculiar properties, and these delimit the choice of proof systems capable of express-

ing them. The results are two distinct sets of criteria. First, loosely grouped, are

those properties which limit the background logic in which an appropriate theory of

arithmetic may be couched. These have mostly to do with best capturing the basic

LP semantics. The models, though they are expressed in a more of less standard

language of arithmetic, are not profitably studied in a non-paraconsistent logic, since

they’re generated by appeal to inconsistency in a fundamental and natural way, as

considered in the previous chapter. While the form of any particular model may be re-

producible in classical terms, the semantic features of these models which make them

more interesting than standard modular arithmetics cannot be non-trivially treated

of in a logic admitting explosion. Namely, the clearly non-trivialising inconsistencies

resulting from the Dunn-Meyer extension cannot be dealt with in classical PA. Thus,

it is a paraconsistent logic needed to capture the interesting elements of these models,

and since the models are developed in the LP model theory, it is a natural starting

point to consider conservative extensions of LP (since any non-conservative extension

would yield classical logic, as is shown in [3]).

However, what is necessary is an extension of LP. As it stands, LP (with the

conditional defined as a material implication) does not lend itself to the kind of

syntax regularly used for axiomatic mathematical reasoning. This is because the

material implication in LP does not obey detachment, and as a result it does not
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validate most of the standard conditional inferences. Thus, the logic does not admit

of a usual Hilbert-style proof system. So, what is needed is a conservative extension

of LP resulting from the addition of a detachable conditional suited to it. That is, a

conditional which fully reflects the consequence relation. As such, the basis of a proof

system for these models should be a paraconsistent logic conservatively extending LP

with respect to treating conjunctions, disjunctions, negations, and atomic sentences

similarly, but with a conditional better suited to axiomatic reasoning. In particular,

this conditional must, as closely as possible, express the LP consequence relation in its

object language. I shall more fully detail these criteria and present a logic developed

by Arnon Avron, in semantic, axiomatic, and sequent calculus formulations, which

does this job nicely. His original name for this is PAC, but I shall, following tradition

in logical nomenclature and as a nod to Avron, call this logic A3.

The second set of criteria for expressing the LP models is that of how the Peano

axioms must be altered to account for the somewhat unusual properties exhibited by

the function symbols in such models. For instance, in some LP-models of arithmetic

the successor function is not injective. I shall detail these changes in the specifically

arithmetical part of the construction and indicate what kinds of additions can be made

to mitigate these alterations - in order to keep the theory as close to Peano Arithmetic

as possible. These alterations will, as I’ll show, nicely fit in with the peculiar elements

of A3’s consequence relation and conditional, particularly the failure of contraposition,

and will largely come down to the rejection of one variation on a Peano axiom for

successors, and its consequences.

With this completed, the axiomatic basis for these models will be presented, al-

lowing for the specifications necessary to account for particular classes of finite incon-

sistent models in the following chapter.

2.1 Proof System for collapse models

Proof systems have been presented for LP, most prominently a tableaux system pro-

duced by Priest and presented in [39]. However, it is difficult to specify a Hilbert-style
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axiom system for LP since its conditional is so degenerate. Recall that the LP condi-

tional connective is just the material conditional, A ⊃ B =Def ¬A ∨ B, resulting in

the failure of detachment. Hilbert systems are generally specified in terms of axioms

with the conditional as the main connective and detachment, so since this rule is

invalid in LP it is unclear to me how one would give a Hilbert style syntax for it.

These same issues, though perhaps without the same decisiveness, make it unclear

what kind of natural-seeming treatment of axiomatic systems of reasoning one could

give in LP. As if to match this intuition of mine, LP is most often employed purely

model theoretically, as a semantics which allows one to make distinctions which are

impossible in classical logic, as in the case of the papers on LP-models of arithmetic -

those of Priest and those of Paris and Pathmanathan and Paris and Sirokofskich. This

lack of a strong grounding in multiple proof systems – what Anderson and Belnap

referred to as the naturalness or substantiality of a system [2, 50] – has not hindered

LP, since it gives rise to so strong a paraconsistent model theory as to be generally

applicable in cases where classical logic is. The many-valued semantics of LP differs

from the bivalent classical semantics only in cases related to explosion, and so it is

great as the first paraconsistent logic to bring on the scene to study some paradoxical

or inconsistent phenomenon. For these purposes, a wide selection of proof systems is

not necessary, and so not missed.

However, it seems unsatisfying to have an axiomatisability result, such as that

stated for the collapse models in [36] and elsewhere, for purely model theoretic reasons

- i.e. to do with the size of the models. Axioms are proof theoretic objects, and the

claim that one can axiomatise a model or some system of information is a proof

theoretic claim. It is the claim that the information in the system can be represented

by strings of symbols, perhaps governed by some rules of inference, such that the list

of basic string-schemata and the list of rules are finite. The sense in which the finite

LP models are axiomatisable is that one can indeed provide a finite list of the true

claims of the models, each of which is an axiom. So they are clearly axiomatisable,

but it seems that we could want more in the way of explanatory clarity and parsimony.

Why is it the case that these statements come out true? In addition to this, exactly
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which basic assumptions operative in standard arithmetic fail to hold of these models?

What we’d like is an axiom system which lists some proper subset of the theorems,

preferably one which is small and elegant, with independent axioms and rules. We’d

also like this system to be as similar to Peano arithmetic as possible, allowing us

to make easy comparisons between them, allowing us to determine exactly what

alterations are necessary, and thus, which we can avoid making. As a general rule,

we’d like to keep as much of the classical system as possible, excising only those parts

which we must. So, we want an axiomatisability result for a system bearing some

resemblance to Peano arithmetic.

So, we need a logic that retains the elements of the LP semantics, but adds a

more effective conditional connective. Note that in falsifying detachment the LP ma-

terial conditional also fails to match the LP consequence relation. That is, ` A ⊃ B

may hold while A ` B does not. The conditions for the former allow more cases

than do the latter. Now, the standard deduction theorem holds for the LP material

conditional: A ` B only if ` A ⊃ B, but the other direction - which is generally as-

sumed, being a necessary condition for detachment, fails. The upshot of a deduction

theorem seems to be to give us some information about the relationship between the

metalinguistic construction of the consequence relation and an object language con-

nective - the conditional.1 It indicates that both constructs behave similarly, though

they belong to different languages and perform importantly different roles. Having

the tight match between these means that a consequence is valid just in case the

premise set, conjunctively aggregated, entails the conclusion set, disjunctively aggre-

gated. As such, the material conditional, though it has a truth-functional definition

in the LP semantics, does not capture the LP consequence relation, alongside with its

being nearly useless for the purposes of derivation. So, another conditional which can

be added to LP, and that does capture the consequence relation would be valuable.

If this conditional connective were to properly capture the consequence relation, it

would obey detachment, as well as a number of other, standard, conditional proper-

1The claim which goes in both directions: ` A ⊃ B iff A ` B has been called the näıve validity
scheme by Zach Weber [49], and it is this which gives the strong metalinguistic connection which
I discuss here.
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ties, making a Hilbert style system feasible. Thus, it would be a conditional which

could be usefully identified with that in which arithmetical axioms are stated.

Now, every theorem of LP is a theorem of classical logic, and conversely (Theorem

1.1). So, in the usual sense of “extension” having to do with increasing the set of

a logic’s theorems, if the material implication of LP were to be uniformly replaced

with a detachable conditional connective, the result would be a reduction of LP in

terms of its conditional theorems.2 This is because the LP consequence relation is less

permissive than the material implication, a fact which will feature in the properties

of the new connective. Note, however, that the extension of LP by the proposed

conditional should be conservative, ie. the set of theorems and sequents stated in

LP’s language would remain unaltered, in the expanded language. This is a result

of the constraints we place on candidate logics - namely, that they feature the same

negation, conjunction, and disjunction as LP. The logic one aims to produce by

adding a conditional to LP should not include as theorems statements equivalent to

` (A∧¬A)→ B, where→ is the detachable conditional to be introduced. These are

not valid across the LP consequence relation, since A∧¬A 0 B is not a valid sequent.

This is in distinction to (A ∧ ¬A) ⊃ B, which, of course, is a theorem.

So, A ` B, if and only if it is not the case that at some valuation the value of A

is designated (either {1} or {1, 0}) and that of B non-designated ({0}). LP’s conse-

quence relation is nicely described by Arnon Avron in [5] and, in the same chapter,

he provides a conditional which captures it and begins to develop the resulting logic.

The consequence relation, to start with, fits the standard requirements of being a

relation between sets of sentences which is reflexive and transitive. In addition to

this, it also obeys thinning, contraction and permutation, trivially since it is defined

in terms of sets of formulae. In addition to these, it validates the law of excluded

middle. These are listed, with a short combinator name for each, to which I’ll refer

throughout the chapter:

Reflexivity (I): A ` A for every formula A

2It is a question which connective plays the role of the conditional in a logic - what is clear is that
the material conditional in unacceptable for this role in LP.
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Transitivity (B): If Γ1 ` ∆1, A and A,Γ2 ` ∆2 then Γ1,Γ2 ` ∆1,∆2

Thinning (K): If Γ1 ` Γ2 then A,Γ1 ` Γ2 and Γ1 ` Γ2, A

Contraction (W): If A,A,Γ1 ` Γ2 then A,Γ1 ` Γ2

and Γ1 ` Γ1, A,A only if Γ1 ` Γ2, A

Permutation (C): If Γ1, A,B,Γ2 ` ∆ then Γ1, B,A,Γ2 ` ∆

and if Γ ` ∆1, A,B,∆2 then Γ ` ∆1, B,A,∆2

Law of Excluded Middle (LEM): ` A,¬A

What the consequence relation does not allow is any form of explosion. In par-

ticular, while LEM is valid, the dual to LEM is not. This occurs directly below and,

at least for the basic sequent calculus to be developed in this chapter, is not even a

well-formed sequent.

A,¬A `

This sequent, in the presence of unrestricted K in the succedent allows for the

derivation of A,¬A ` B - a most blatant statement of explosion, and one which, with

the standard rules, allows for the proof of ` A → (¬A → B) and ` (A ∧ ¬A) → B.

Since the rejection of these is characteristic of paraconsistent logic, any treatment

of such a logic in terms of sequents must either reject A,¬A ` or must place some

restrictions on K in the succedent. I shall, however, leave open the possibility that

we may stipulate a different formula as producing this behaviour. Perhaps something

like f where f ` holds. I shall refer to f as an “absolutely inconsistent” formula,

since it produces absolute inconsistency.3

3It is a question which I’ll consider somewhat in the third chapter whether any other formula
behaves as an absolute inconsistency. That is, whether any other formula trivialises to the right,
since arbitrary contradictions do not. Some have proposed that we may, on a case by case basis
introduce specific principles, depending on what we take to be seriously bad things to derive. Now,
we may want to distinguish between a formula’s being bad to be derived and its being inconsistent,
indeed, that is just another way to state the driving motivation behind paraconsistency. As it
stands, in the logic to be developed there are no absolutely false formulae, which may occur in the
antecedent of a sequent with an empty succedent. So, there is some flexibility as to whether we
may simply add some absolutely false formulae, depending on what we desire to use the logic to
study. We shall return to this point in the third chapter.
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This is a shortened form of the statement of the LP consequence relation given

by Avron in [5] and [6], though he does not refer to it as such. In [5, 17], he argues

as follows towards the most natural conditional for the LP semantics - I replace the

occurrences of ⊃ (the horseshoe) as the material conditional by occurrences of→ (the

arrow) as the detachable conditional to be introduced, since I would like to use the

former to refer specifically to the material conditional in LP and the latter to refer

to the new conditional, and I alter the symbols to match those used so far in this

thesis. Note that statements like A→ 0 are shorthand for “that conditional with the

antecedent A and a consequent which has the truth value {0}”. The language of LP,

as I have defined it, does not contain constants for the truth values, nor can they be

defined. However, for these purposes, it is sufficient to treat these terms as shorthand

for formulae taking those values.

The condition A,A → B ` B implies that A → 0 = 0 if A ∈

{{1}, {1, 0}} (ie, A is designated). The conditions A ` B → A, (re-

lated to K), and ` A→ A, (related to I), imply that A→ B is designated

in all other cases. The conditions ¬(A → B) ` A and ¬(A → B) ` ¬B

imply respectively that 0 → A = 1 and A → 1 = 1. The condition

A,¬B ` ¬(A → B) implies that if A is designated and B = i then

A→ B cannot be 1. Since it cannot be 0, it must be i. [5, 17]

This reasoning narrows the possibilities to a single conditional:

v(A→ B) =

{
1 if v(A) = 0
v(B) else

or

→ 1 i 0
1 1 i 0
i 1 i 0
0 1 1 1

The logic which results from adding this conditional to LP is given by Avron in [5],

I call it A3 and it differs from LP semantically only in that its conditional is identified

to be the above connective instead of the material implication. I shall leave off giving

A3 a distinct semantic definition, and instead simply point out that it results by

taking the semantics of LP (as in the last chapter) and adding the above conditional
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to it. That is, A3’s conjunction and disjunction are the same as the LP conjunction

and disjunction - namely, they are, respectively, meet (least upper bound) and join

(greatest lower bound) - and its negation is also the same - a subcontrary forming

operator where v(¬A) = v(A) if v(A) = {1, 0}. As I’ll go on to show, the extension

to the first order can be carried out in A3 as in LP. So, A3 meets the basic condition

required, and is conservative over LP.

However, we do not simply wind up with a conditional obeying all the standard

conditional principles of classical logic. For instance, in the LP semantics it is not

generally the case that if A ` B then ¬B ` ¬A. Suppose that v(A) = {1} and

v(B) = {1, 0}, validating the former. Then v(¬A) = {0} and v(¬B) = {1, 0},

invalidating the latter. As such, a conditional which captures the LP consequence

relation should not validate contraposition which, as we’ll see, the A3 conditional

does not. In fact, this is probably the most notable feature of A3, as nearly all other

properties of the classical conditional hold for its conditional. The strength of A3

lends an intuitive clarity to the claim that it is strongly maximal, as shown in [3].

That is, any extension to A3 would have to be the result of the addition of some

formula which would allow the proof of explosion. This provides some grounds for

hope that a formal theory of arithmetic in A3 may well be strong enough to closely

resemble axiomatic arithmetics as presented in classical logic.4

It is interesting to note that one can define a conditional connective in A3 which

does contrapose, let us ⇒ for this connective. This definition is given by A ⇒ B iff

(A→ B) ∧ (¬B → ¬A), and this corresponds with the conditional of the logic RM3,

which can also be produced by the addition of a conditional to the LP semantics. Its

truth table is:

4In fact, A3 is far too strong for the purposes of näıve set theory, another mathematical theory
which paraconsistent logics are uniquely suited to - for which non-triviality demands either rejecting
detachment or contraction in order to avoid Curry’s paradox. However, for our purposes here no
such things are required, none of the Peano axioms, even induction, being nearly so strong as
comprehension, and so not giving rise to any obvious paradoxes. They do not, to my knowledge,
give rise to trivialising paradoxes. In fact, one property of A3 which Avron [6] claims is that there
is no right-trivialising formula native to A3. A formula such as this could, of course, be added as
a primitive, perhaps, as a means to prove expressive completeness.
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→ 1 i 0
1 1 0 0
i 1 i 0
0 1 1 1

Which admits of the proof of contraposition, but not of thinning, that is 0 A ⇒

(B ⇒ A).5 The definability of this arrow in A3 puts into our hands three conditional-

like connectives. There is the conditional→ defined by Avron, to be used throughout

this thesis, the RM3 conditional, as well as the material implication ⊃ (though this

admittedly rather less conditional-like than the others, especially in LP).

2.1.1 A3 - A Hilbert style axiom system

I shall use the standard abbreviation ↔; A ↔ B is defined as (A → B) ∧ (B → A).

Given (A4), A ↔ B easily yields A → B, B → A, and in the cases of the axioms

stated with ↔, I shall usually just help myself to these easy results when presenting

axiomatic proofs.

A1 A→ (B → A)

A2 (A→ (B → C))→ ((A→ B)→ (A→ C))

A3 ((A→ B)→ A)→ A

A4 (A ∧B)→ A (A ∧B)→ B

A5 A→ (B → (A ∧B))

A6 A→ (A ∨B) B → (A ∨B)

A7 (A→ C)→ ((B → C)→ ((A ∨B)→ C)))

A8 ¬(A ∨B)↔ (¬A ∧ ¬B)

A9 ¬(A ∧B)↔ (¬A ∨ ¬B)

A10 ¬¬A↔ A

5It is also interesting to note that one can define the A3 → in RM3 by (A⇒ B) ∨B.
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A11 ¬(A→ B)↔ (A ∧ ¬B)

A12 A ∨ ¬A

Rule of Inference

MP A and A→ B imply B

This clearly matches the motivational work done up to this point. Present are

axioms for a standard conjunction and disjunction (A4)-(A7). These and the A3

negation obeys the de Morgan equivalences, double negation, counterexample, and the

law of excluded middle (A8)-(A12). In addition to this (A1-3) account for standard

properties of the conditional and (MP) is the rule. However, there is no principle

from which contraposition can be derived, and even though counterexample (A11) in

conjunction with the de Morgan laws does allow the proof of (A→ B)→ (¬A ∨B),

the converse cannot be shown. So this conditional is not equivalent to the material

implication.6

This axiom system is shown to be adequate to the propositional A3 semantics

in [6]. However, A3 is not given a first order treatment by Avron. A first order

version of the logic is necessary for arithmetical axioms resembling those of Peano

6It is interesting to note that A → ¬¬A has to be included as an axiom. Usually this is avoided
by including a version of contraposition, (A → B) → (¬B → ¬A), which allows the proof of
double negation introduction. However, along with the rest of A3, the addition of any version of
contraposition would simply produce classical logic. To see that this holds at least of the displayed
version of contraposition, consider the following proof:

(1) ` (A ∨ ¬A)→ (¬B → (A ∨ ¬A))

(2) ` A ∨ ¬A

(3) ` ¬B → (A ∨ ¬A)

(4) ` (¬B → (A ∨ ¬A))→ (¬(A ∨ ¬A)→ ¬¬B) (Contraposition)

(5) ` ¬(A ∨ ¬A)→ ¬¬B

Where (5) is equivalent, by some simple transformations involving two applications of de Morgan
laws, double negation elimination, and exportation to A → (¬A → B). Of course, a more direct
proof of the conditional form, A → (¬A → B), can be given with (¬B → A) → (¬A → B),
prefixing, and an instance of K. This proof takes just five lines, and similar proofs involving other
versions of contraposition can be given with the aid of double negation rules, as above. Thanks to
Hassan Masoud for discussion on this point.
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arithmetic. So, the logic shall need to be extended, and the proofs given by Avron for

the propositional A3 also extended to include the quantifiers and the rules governing

them. But first, the reasons adduced in this section so far justify a theorem, which

it is at least worth stating. The proof of this theorem will be omitted here as proofs

of other theorems in the remainder of this chapter provide obvious grounds for the

theorem.

Theorem 2.1 (Deduction). ` A→ B iff A ` B in A3.

To extend A3 to the first order is quite simple. The only potential concern being

to ensure that the addition of the quantifiers is conservative. This just amounts to

ensuring that no version of explosion can result from the quantifier axioms and their

inference rules. However, the positive fragment of classical logic is equivalent to A+
3 ,

the positive fragment of A3, when the material conditional⊃ is identified with A3’s→.

So it is only the negative parts of A3 which need be considered. The negative part of

the logic can be specified by adding utterly standard negated-quantifier equivalences,

and these do not offer any obvious way to collapse the logic into classical logic. So,

the following axioms and rule should suffice without going overboard:

A13 ∀xAx→ Ay - where y is a variable and y is free for x in A.

A14 ∀x(A→ Bx)→ (A→ ∀xBx) where x is not free in A.

A15 ∀x(A ∨Bx)→ (A ∨ ∀xBx) where x is not free in A.

A16 Ay → ∃xAx

A17 ∀x(Ax→ B)→ (∃xAx→ B) where x is not free in B.

A18 (∀x¬Ax)↔ (¬∃xAx)

A19 (∃x¬Ax)↔ (¬∀xAx)

Rule

Gen Ay implies ∀xAx
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(A13) is standard, as are (A14) and (A15), which simply state that the universal

quantifier interacts with the conditional and disjunction in a natural way. (A16) and

(A17) put back into our hands some usual formulae which rely on contraposition

involving the existential quantifier, and (A18) and (A19) give the usual interaction

between the universal and existential quantifiers.7 The definition of proof and theorem

in A3 are just as in standard Hilbert style systems.

While a Hilbert system makes it quite obvious what the inferential properties of

the logic are, it is not the most user-friendly method for producing derivations in

the logic itself. Since our interest in this topic involves a bit of proving of particular

arithmetical theorems in the object language, having a proof system which is more

easy to work with, such as a Gentzen system, or sequent calculus, is valuable.

2.1.2 LA3 – A Gentzen system for A3

There are two axioms, one, I, enforcing the reflexivity of the consequence relation,

and the other a form of the law of excluded middle:

A ` A (I) ` A,¬A (LEM)

In addition to these are the full-strength complement of structural rules. These

are simply Cut and K since the antecedent and succedent of a sequent are sets, hence

Gentzen’s rules C and W are excluded, since they could not be formulated.

Structural Rules

Γ ` ∆, A A,Π ` Θ
Cut

Π,Γ ` ∆,Θ

Γ ` ∆
K `

A,Γ ` ∆
Γ ` ∆ ` K

Γ ` ∆, A

We may also place a restriction on the K rules to the effect that one may not

introduce a formula by K which already occurs in the premise. This is to avoid

potential for proofs with the same end-sequent as premise which, though harmless,

are a possible irritation in proofs about the system, or in designing a proof-search

method.
7I am following Brady [12] in this format for the quantifier axioms, and the equivalence theorem
given below bears out these choices.
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In addition to these there are logical rules. First are the rules for →,∧ and

∨ which are the standard sequent rules for those connectives. Next, the negative

rules, of which there are one set per connective. Unlike the classical sequent rules

for negation, what are here included are rules which allow one to enforce standard

equivalences between some formulae and a negated formula which has as its main

connective one of the other operations (for instance, there is a separate set of rules to

produce formulae like ¬(A→ B) and ¬(A∧B)). Note that the negation rules do not

allow one to simply produce the negation of an atomic formula by moving it across

the turnstile - this would lead to explosion trivially in the presence of unrestricted K.

Instead, the only way to introduce the negation of an atomic formula is by one of the

axioms - one can either introduce ¬A ` ¬A or ` A,¬A and then manipulate these

to produce more complicated negated formulae. Finally, the quantificational rules

simply follow the same pattern. The negation-free form of each is standard, while the

negated form of each enforces the interdefinability conditions explicitly set out in the

Hilbert presentation by (A18) and (A19).

Logical Rules

Γ ` ∆, A B,Π ` Θ
(→`)

A→ B,Γ,Π ` ∆,Θ

Γ, A ` B,∆
(`→)

Γ ` ∆, A→ B

A,B,Γ ` ∆
(∧ `)

A ∧B,Γ ` ∆

Γ ` ∆, A Γ ` ∆, B
(` ∧)

Γ ` ∆, A ∧B
A,Γ ` ∆ B,Γ ` ∆

(∨ `)
A ∨B,Γ ` ∆

Γ ` ∆, A,B
(` ∨)

Γ ` ∆, A ∨B
A,Γ ` ∆

(¬¬ `) ¬¬A,Γ ` ∆

Γ ` ∆, A
(` ¬¬)

Γ ` ∆,¬¬A
A,¬B,Γ ` ∆

(¬ →`)
¬(A→ B),Γ ` ∆

Γ ` ∆, A Γ ` ∆,¬B
(` ¬ →)

Γ ` ∆,¬(A→ B)

¬A,¬B,Γ ` ∆
(¬∨ `)

¬(A ∨B),Γ ` ∆

Γ ` ∆,¬A Γ ` ∆,¬B
(` ¬∨)

Γ ` ∆,¬(A ∨B)

¬A,Γ ` ∆ ¬B,Γ ` ∆
(¬∧ `)

¬(A ∧B),Γ ` ∆

Γ ` ∆,¬A,¬B
(` ¬∧)

Γ ` ∆,¬(A ∧B)

Ay,Γ ` ∆
(∀ `) ∀xAx,Γ ` ∆

Γ ` ∆, Ay
(` ∀) (*)

Γ ` ∆,∀xAx
Ay,Γ ` ∆

(∃ `) (*)∃xAx,Γ ` ∆

Γ ` ∆, Ay
(` ∃)

Γ ` ∆,∃xAx
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¬Ay,Γ ` ∆
(¬∀ `) (*)¬∀xAx,Γ ` ∆

Γ ` ∆,¬Ay
(` ¬∀)

Γ ` ∆,¬∀xAx

¬Ay,Γ ` ∆
(¬∃ `) ¬∃xAx,Γ ` ∆

Γ ` ∆,¬Ay
(` ¬∃) (*)

Γ ` ∆,¬∃xAx

Now, there are the usual limitations placed on the use of the ` ∀ and ∃ ` and this

is extended to ¬∀ ` and ` ¬∃. These rules are marked by (*). In order to introduce

∀xAx in the succedent the variable y must not occur free in the lower sequent of

the application of the rule. The same goes with the introduction of ∃xAx in the

antecedent, of ¬∀xAx in the antecedent, and of ¬∃xAx in the succedent. Again,

theorem and proof are defined as usual for Gentzen style systems.

I shall generally refer to all the rules which introduce a ¬ as the negative rules,

and all the others as the positive rules. Notice that the positive rules are all similar

to rules in some sequent calculi for classical logic and it is a natural result that the

positive fragment of the logic, LA+
3 coincides with some such calculus LK+.8 I shall

often make use of this fairly obvious claim in the rest of this thesis.

Theorem 2.2. Axioms can be restricted to literals – atomic formulae or the negations

of atomic formulae – without a change in the set of theorems of LA3.

Proof. The proof is by cases on the main connective of the formula and the axiom

instance, either of reflexivity (I) or law of excluded middle (L). So, (I -∧) is the case

involving the proof of A ∧ B ` A ∧ B and (L -∧) is the case involving the proof of

` A ∧B,¬A ∧B.

(I -∧)

A ` A
A,B ` A

B ` B
A,B ` B

A,B ` A ∧B
A ∧B ` A ∧B

(I -∨)

A ` A
A ` A,B

B ` B
B ` A,B

A ∨B ` A,B
A ∨B ` A ∨B

(I -→)
A ` A B ` B
A,A→ B ` B
A→ B ` A→ B

(I -¬∧)

¬A ` ¬A
¬A ` ¬A,¬B

¬B ` ¬B
¬B ` ¬A,¬B

¬(A ∧B) ` ¬A,¬B
¬(A ∧B) ` ¬(A ∧B)

8Note, LK+ may or may not be as Gentzen’s original system, which included C and W, since it
operated with sequences not sets. For the purposes of this work, suppose that LK is a system like
Gentzen’s but taking sets as the data type, and thus including analogues to all of the positive rules
of LA3.
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(I -¬∨)

¬A ` ¬A
¬A,¬B ` ¬A

¬B ` ¬B
¬A,¬B ` ¬B

¬A,¬B ` ¬(A ∨B)

¬(A ∨B) ` ¬(A ∨B)

(I -¬ →)

A ` A
A,¬B ` A

¬B ` ¬B
A,¬B ` ¬B

A,¬B ` ¬(A→ B)

¬(A→ B) ` ¬(A→ B)

(I -∀)
Ay ` Ay
∀xAx ` Ay
∀xAx ` ∀xAx

(I -∃)
Ay ` Ay
Ay ` ∃xAx
∃xAx ` ∃xAx

(I -¬¬)
A ` A
¬¬A ` A
¬¬A ` ¬¬A

(I -¬∀)
¬Ay ` ¬Ay
¬Ay ` ¬∀xAx
¬∀xAx ` ¬∀xAx

(I -¬∃)
¬Ay ` ¬Ay
¬∃xAx ` Ay
¬∃xAx ` ¬∃xAx

(L-∨)

` A,¬A
` A,¬A,B

` B,¬B
` B,¬B,A

` A,B,¬(A ∨B)

` A ∨B,¬(A ∨B)

(L-∧)

` A,¬A
` A,¬A,¬B

` B,¬B
` B,¬B,¬A

` A ∧B,¬A,¬B
` A ∧B,¬(A ∧B)

(L-→)

A ` A
A ` B,A

` B,¬B
A ` B,¬B

A ` B,¬(A→ B)

` A→ B,¬(A→ B)

` A,¬A
` ¬¬A,¬A

(L− ¬¬) ` ¬¬A,¬¬¬A

(L-∀)
` Ay,¬Ay
` Ay,¬∀xAx
` ∀xAx,¬∀xAx

(L-∃)
` Ay,¬Ay
` ∃xAx,¬Ay
` ∃xAx,¬∃xAx

We shall show that A3 is equivalent to LA3 before going on. This requires first a

definition of a translation τ from sequents to formulae.

Definition 2.1. The translation τ(Γ ` ∆) of a sequent Γ ` ∆ is
∧

(Γ) →
∨

(∆)

where
∨

and
∧

are such that:∧
() = (A→ A)∧
(A) = A∧
(An, An−1, . . . A1) = (An ∧

∧
(An−1, . . . A1))∨

(A) = A∨
(A1, . . . Am−1, Am) = (

∨
(A1, . . . , Am−1) ∨ Am)
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The statement of this definition reflects that there can be no empty succedents as∨
() is undefined. This will need to be altered in the case that we desire to introduce

an absolute inconsistency. However, this shall be dealt with in the final chapter.

Theorem 2.3. A3 and LA3 are equivalent – for any formula A, A is provable in LA3

iff it is provable in A3.

Lemma 2.1. If A is provable in A3 then it is provable in LA3.

Proof. For the left to right direction, I show that each A3 axiom has a proof in LA3,

and that MP and UG are admissible in LA3. The proof is by cases on the axioms

and rules of A3:

Case: A1

A ` A
A,B ` A
A ` B → A

` A→ (B → A)

Case: A2

A ` A
A ` A

B ` B C ` C
B,B → C ` C

A,A→ B,B → C ` C
A→ (B → C), A→ B,A ` C
A→ (B → C), A→ B ` A→ C

A→ (B → C) ` (A→ B)→ (A→ C)

` (A→ (B → C))→ ((A→ B)→ (A→ C))

Case: A3

A ` A
A ` A,B
` A,A→ B A ` A

(A→ B)→ A ` A
` ((A→ B)→ A)→ A

Case: A4

A ` A
A,B ` A
A ∧B ` A

` (A ∧B)→ A

B ` B
A,B ` B
A ∧B ` B

` (A ∧B)→ B

Case: A5

A ` A
A,B ` A
A,B ` A,B
A,B ` A ∨B

A ` B → (A ∨B)

` A→ (B → (A ∨B))
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Case: A6

A ` A
A ` A,B
A ` A ∨B

` A→ (A ∨B)

B ` B
B ` A,B
B ` A ∨B

` B → (A ∨B)

Case: A7

A ` A C ` C
A,A→ C ` C

A,A→ C,B → C ` C

B ` B C ` C
B,B → C ` C

B,A→ C,B → C ` C
A ∨B,A→ C,B → C ` C

A→ C,B → C ` (A ∨B)→ C

A→ C ` (B → C)→ ((A ∨B)→ C)

` (A→ C)→ ((B → C)→ ((A ∨B)→ C))
Case: A8

¬A ` ¬A
¬A,¬B ` ¬A
¬(A ∨B) ` ¬A

¬B ` ¬B
¬A,¬B ` ¬B
¬(A ∨B) ` ¬B

¬(A ∨B) ` ¬A ∧ ¬B
` ¬(A ∨B)→ (¬A ∧ ¬B)

¬A ` ¬A
¬A,¬B ` ¬A

¬B ` ¬B
¬A,¬B ` ¬B

¬A,¬B ` ¬(A ∨B)

¬A ∧ ¬B ` ¬(A ∨B)

` (¬A ∧ ¬B)→ ¬(A ∨B)

` (¬(A ∨B)→ (¬A ∧ ¬B)) ∧ ((¬A ∧ ¬B)→ ¬(A ∨B))

Case: A9

¬A ` ¬A
¬A ` ¬A,¬B

¬B ` ¬B
¬B ` ¬A,¬B

¬(A ∧B) ` ¬A,¬B
¬(A ∧B) ` ¬A ∨ ¬B

` ¬(A ∧B)→ (¬A ∨ ¬B)

¬A ` ¬A
¬A ` ¬A,¬B

¬B ` ¬B
¬B ` ¬A,¬B

¬A ∨ ¬B ` ¬A,¬B
¬A ∨ ¬B ` ¬(A ∧B)

` (¬A ∨ ¬B)→ ¬(A ∧B)

` (¬(A ∧B)→ (¬A ∨ ¬B)) ∧ ((¬A ∨ ¬B)→ ¬(A ∧B))

Case: A10

A ` A
¬¬A ` A
` ¬¬A→ A

A ` A
A ` ¬¬A
` A→ ¬¬A

` (A→ ¬¬A) ∧ (¬¬A→ A)

Case: A12
` A,¬A
` A ∨ ¬A

Case: A11

A ` A
A,¬B ` A

¬B ` ¬B
A,¬B ` ¬B

A,¬B ` A ∧ ¬B
¬(A→ B) ` A ∧ ¬B

` ¬(A→ B)→ (A ∧ ¬B)

A ` A
A,¬B ` A
A ∧ ¬B ` A

¬B ` ¬B
A,¬B ` ¬B
A ∧ ¬B ` ¬B

A ∧ ¬B ` ¬(A→ ¬B)

` (A ∧ ¬B)→ ¬(A→ B)

` (¬(A→ B)→ (A ∧ ¬B)) ∧ ((A ∧ ¬B)→ ¬(A→ B))

55



Case: A13
Ay ` Ay
∀xAx ` Ay
` ∀xAx→ Ay

Case: A14

A ` A Bx ` Bx
A,A→ Bx ` Bx

A,∀x(A→ Bx) ` Bx
A,∀x(A→ Bx) ` ∀xBx
∀x(A→ Bx) ` A→ ∀xBx

` ∀x(A→ Bx)→ (A→ ∀xBx)

Case: A15

A ` A
A ` A,Bx

Bx ` Bx
Bx ` A,Bx

A ∨Bx ` A,Bx
∀x(A ∨Bx) ` A,Bx
∀x(A ∨Bx) ` A,∀xBx
∀x(A ∨Bx) ` A ∨ ∀xBx

` ∀x(A ∨Bx)→ (A ∨ ∀xBx)

Case: A16
Ay ` Ay
Ay ` ∃xAx
` Ay → ∃xAx

Case: A17

Ax ` Ax B ` B
Ax,Ax→ B ` B

Ax,∀x(Ax→ B) ` B
∃xAx,∀x(Ax→ B) ` B
∀x(Ax→ B) ` ∃xAx→ B

` ∀x(Ax→ B)→ (∃xAx→ B)

Case: A18

¬Ax ` ¬Ax
∀x¬Ax ` ¬Ax
∀x¬Ax ` ¬∃xAx
` ∀x¬Ax→ ¬∃xAx

¬Ax ` ¬Ax
¬∃xAx ` ¬Ax
¬∃xAx ` ∀x¬Ax
` ¬∃xAx→ ∀x¬Ax

` (∀x¬Ax→ ¬∃xAx) ∧ (¬∃xAx→ ∀x¬Ax)

Case: A19

¬Ax ` ¬Ax
¬Ax ` ¬∀xAx
∃x¬Ax ` ¬∀xAx
` ∃x¬Ax→ ¬∀xAx

¬Ax ` ¬Ax
¬Ax ` ∃x¬Ax
¬∀xAx ` ∃x¬Ax
` ¬∀xAx→ ∃x¬Ax

` (∃x¬Ax→ ¬∀xAx) ∧ (¬∀xAx→ ∃x¬Ax)

Applications of MP can be reproduced in the following form:

` A ` A→ B
` B

This can be altered to something like the following, relying on Cut:

` A
` A→ B

A ` A B ` B
A,A→ B ` B

A ` B
` B

UG is obvious given the rule (` ∀), as below.
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` Ax
` ∀xAx

Lemma 2.2. If A is provable in LA3 then it is provable in A3.

Proof. By induction on the complexity of an LA3 derivation.

All positive theorems of LK are positive theorems of LA3, so I shall only provide

proofs for those formulae involving negations, as the proofs of positive theorems to

be given in LA3 are just those to be given between LK and a similar axiomatization

of classical logic.

For the purposes of these proofs, I shall introduce a couple of obvious derived rules,

where HS abbreviates “Hypothetical Syllogism”9 and C is the name of the combinator

the principle type scheme of which the rule resembles:

A→ B B → C
HS

A→ C
A→ (B → C)

C
B → (A→ C)

These are valid in the positive fragment of classical logic, and is thus valid in A3.

I shall also appeal to a number of other theorems of the positive fragment of

classical logic, which I’ll call K+. This is axiomatised by (A1)-(A7) and (MP). They

are listed here, and their proofs in A3 are all fairly obvious.

` ((A ∧B)→ C)→ ((B ∧ A)→ C) A-∧-comm.10

` ((A ∧B)→ C)→ (A→ (B → C)) Exportation

` (A→ (B → C))→ ((A ∧B)→ C) Importation

` (A→ B)→ ((B → C)→ (A→ C)) Suffixing

` (A→ B)→ ((C → A)→ (C → B)) Prefixing

In a similar vein, I shall attempt to make the proofs shorter by, in some cases,

appealing to obvious consequences of the positive implicational fragment of A3 as

simply instances of prefixing or suffixing, where appropriate, instead of proving the

specific formulae. This makes for much shorter and more surveyable proofs.

Base: Axioms. I shall omit the case of A ` A since its translation, A → A, is

obviously provable. This leaves just ` A,¬A and τ(` A,¬A) is
∨

(A,¬A). This is

A ∨ ¬A, which is an instance of (A12).

9This rule has also been called “rule syllogism”, as in [44].
10This is an abbreviation of “Antecedent ∧-commutativity”.
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Induction: This falls into several subcases, one for each LA3 rule. I shall present

both of the ¬∧ cases in close to full detail, and do the same for one half of each of

the other negative rules. I shall omit the classical cases and the other half of the

negative rules. The former are the same as to be given for LK and an axiom system

for the positive fragment of classical logic comprising (A1)-(A7) and (A13), (A14).

The cases for the other half of the negative rules are all similar enough to cases given

as to be easily reproducible.

Case (¬¬ `): This rule permits an inference from τ(Γ, A ` ∆) to τ(Γ,¬¬A ` ∆). In

order to show that if τ(Γ, A ` ∆), or (G∧A)→ D, is provable then so is τ(Γ,¬¬A `

∆), or (G∧¬¬A)→ D, it suffices to show that ((G∧A)→ D)→ ((G∧¬¬A)→ D) is

provable, since an application of (MP) would allow us to make the necessary inference.

(1) ((G ∧ A)→ D)→ ((A ∧G)→ D) A-∧-comm.

(2) ((A ∧G)→ D)→ (A→ (G→ D)) Exportation

(3) ¬¬A→ A A10

(4) (¬¬A→ A)→
[
(A→ (G→ D))→ (¬¬A→ (G→ D))

]
Suffixing

(5) (A→ (G→ D))→ (¬¬A→ (G→ D)) MP 3,4

(6) ((A ∧G)→ D)→ (¬¬A→ (G→ D)) HS 2,5

(7) (¬¬A→ (G→ D))→ ((¬¬A ∧G)→ D) Importation

(8) ((A ∧G)→ D)→ ((¬¬A ∧G)→ D) HS 6,7

(9) ((¬¬A ∧G)→ D)→ ((G ∧ ¬¬A)→ D) A-∧-comm.

(10) ((A ∧G)→ D)→ ((G ∧ ¬¬A)→ D) HS 8,9

(11) ((G ∧ A)→ D)→ ((G ∧ ¬¬A)→ D) HS 1,10
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Case (¬∃ `): If τ(G,¬Ay ` ∆) then τ(G,¬∃xAx ` ∆). Suppose that (G ∧ ¬Ay)→

D is provable in A3, and we shall show that (G ∧ ¬∃xAx) → D is also provable.

Again, relabeling is appealed to.

(1) (G ∧ ¬Ay)→ D Assumption

(2) ((G ∧ ¬Ay)→ D)→ ((¬Ay ∧G)→ D) A-∧-comm.

(3) ((¬Ay ∧G)→ D)→ (¬Ay → (G→ D)) Exportation

(4) ((G ∧ ¬Ay)→ D)→ (¬Ay → (G→ D)) HS 2,3

(5) ¬Ay → (G→ D) MP 1,4

(6) ∀y¬Ay → ¬Ay A13

(7) ∀y¬Ay → (G→ D) HS 5,6

(8) ∀x¬Ax→ (G→ D) Relabeling

(8) ¬∃xAx→ ∀x¬Ax A18

(9) ¬∃xAx→ (G→ D) HS 7,8

(10) (G ∧ ¬∃xAx)→ D Importation & A-∧-comm.

The other negated quantifier cases can be easily worked out appealing to the

non-negated quantifier cases, either the classical theorem used above or (A↔ B)→

((C → (A∨D))→ (C → (B ∨D))) for the succedent cases. The remaining cases are

similar, which completes the proof.

Now, the proofs for soundness, completeness and cut elimination in [6] only apply

to the propositional part of A3, so I shall have to provide an extension of those

proofs into the first order. In the case of soundness, one need only indicate that the

extra rules all preserve designation, within the first order semantic structure. The

completeness proof, adapted directly from Avron, is somewhat more involved so I’ll

present it all. I shall give a proof of the cut elimination theorem in the style of

Gentzen, in close to full detail.
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2.1.3 First-order A3 Soundness

Theorem 2.4 (Soundness). Any sequent provable by LA3 is a valid entailment of the

A3 semantics.

Proof. The propositional part of this proof is given in [6], and involves checking the

rules against the definitions of the valuations in A3. I shall omit it here with the

exception of two rules, to show the general structure of the cases. The first order part

is classical except for the cases of the ¬∃ and ¬∀ rules. This is because the class of

positive theorems for the propositional A3 is the same as the set of positive classical

theorems, and the positive quantifier rules are the same as in the classical case. Since

the positive quantifier rules are sound for the classical case, they are also sound for

A3. On this note, I shall also omit the details for the proofs involving only classical

values since they are standard for proofs of this kind.

Case 1 (` ¬ →): Suppose that both of the two upper sequents, Γ ` ∆, A and

Γ ` ∆,¬B, of the rule are valid. There are a couple of subcases. First, either all

G ∈ Γ are designated or one of them isn’t.

Case 1.0 Some sentence G ∈ Γ is non-designated. Then both upper sequents are

valid, and so is the end-sequent. This is simply a special case of validity for a sequent.

Case 1.1 Every sentence G ∈ Γ is assigned a designated value. Then either A

or some D ∈ ∆ must be designated, since Γ ` ∆, A, and one of some D ∈ ∆ or ¬B

must be designated, since Γ ` ∆,¬B. If some D ∈ ∆ is designated then the sequent

is obviously valid. So, I shall only consider the case when A,¬B are designated, since

if both are non-designated then there must be some element of ∆ that is designated,

and since the rule requires a shared context, if some D ∈ ∆ is designated in one

premise then it is designated in both premises and the end-sequent.

Case 1.1.0 Suppose v(¬B) = {1}. Then v(B) = {0}. If A is designated, then

v(A→ B) = {0} and thus v(¬(A→ B)) = {1} and the end-sequent is valid for having

a designated formula in the succedent. Suppose that A is not designated, then some

D ∈ ∆ must be, assuming the right premise is valid, and thus the end-sequent is

valid.
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Case 1.1.1 If v(¬B) = {1, 0}, then v(B) = {1, 0}. A must be designated, and

so v(A) = {1} or {1, 0}. Suppose that v(A) = {1}. Then v(A → B) = {1, 0} and

v(¬(A → B)) = {1, 0}. Suppose that v(A) = {1, 0}. Then v(A → B) = {1, 0} and

v(¬A→ B) = {1, 0}. So, v(¬(A→ B)) = {1, 0} and the end-sequent is valid.

This case exhibits the general structure of the cases, and for the remaining cases

I shall omit labeling the various subcases. Reinserting them is not difficult.

Case 2 (¬ →`): Suppose that the upper sequent is valid. Then either the values

of all of A,¬B, and all G ∈ Γ are designated, or one of them is not. Suppose

that all of A,¬B and all G ∈ Γ are designated. Then so must be some D ∈ ∆.

Suppose that v(¬B) = {1}; then v(B) = {0} and v(¬(A → B)) = {1}. Suppose

that v(¬B) = {1, 0} = v(B), then v(¬(A → B)) = {1, 0}, and the end-sequent is

valid. Suppose that one of A,¬B, or some G ∈ Γ is non-designated. Suppose that

some G ∈ Γ is non-designated; then both the upper sequent and the end-sequent are

valid. Suppose that v(A) = {0}; then v(¬(A → B)) = {0}, and the end-sequent is

valid. Suppose that v(¬B) = {0}; then v(B) = {1} and v(¬(A → B)) = {0}, and

the end-sequent is valid.

Case 3 (¬∃ `): Suppose that v(¬Ax) = {1} or {0}. In the former case, v(Ax) = {0},

and v[d/x](Ax) = {0}, and since the valuation v[d/x] was an arbitrary choice, it is

true for all d that v[d/x](Ax) = {0} and thus v(∃xAx) = {0} and v(¬∃xAx) =

{1}. The latter case, where v(¬Ax) = {0} is obvious, since it deals also with a

classical truth value. Suppose that v(¬Ax) = {1, 0}; then v(Ax) = {1, 0}. Thus

1 ∈ v(∃xAx), since, for some d, 1 ∈ v[d/x](Ax). However, since d was chosen

arbitrarily, for any d, v[d/x](Ax) = {1, 0}, so 0 ∈ v[d/x](Ax) and thus 0 ∈ v(∃xAx)

and so v(∃xAx) = {1, 0} = v(¬∃xAx). Thus, in any case, if the upper sequent is

valid, then the lower sequent will be since Ax and ∃xAx always retain the same truth

value. So if some G ∈ Γ is non-designated then both sequents are valid, and if some

D ∈ ∆ is designated then both sequents are valid. Finally, if ¬Ax is a non-designated

formula in the antecedent while all G ∈ Γ are designated. Thus the end-sequent is

valid because ¬∃xAx is non-designated.
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Case 4 (` ¬∃): Suppose that the values of all G ∈ Γ are designated and no value

of D ∈ ∆ is designated. Then, for the upper sequent to be valid v(¬Ax) must be

designated. The other cases are straightforward. Suppose that v(¬Ax) = {1, 0};

since there is a d such that 1 ∈ v[d/x](¬Ax) then 1 ∈ v(∃xAx). Similarly, since

0 ∈ v[d/x](¬Ax), therefore, 0 ∈ v(∀x¬Ax), and thus 0 ∈ v(¬∃xAx). The case in

which v(¬Ax) = {1} is equivalent to a similar case in classical logic appealing to only

two values.

Case 5 (¬∀ `): Once again I shall omit the cases where the value of Ax is classical,

since these are obvious. Suppose that v(¬Ax) = {1, 0}; then v(Ax) = {1, 0} and,

since there is an d such that v[d/x](Ax) = {0}, 0 ∈ v(∀xAx). Thus 1 ∈ v(¬∀xAx),

¬∀xAx is designated, and the end-sequent is valid.

Case 6 (` ¬∀): Suppose that v(¬Ax) = {1, 0}; then for some d, 0 ∈ v[d/x](Ax)

so 0 ∈ v(∀xAx) and thus 1 ∈ v(¬∀xAx). Since d is arbitrarily chosen, for any d,

1 ∈ v[d/x](Ax) and so 1 ∈ v(∀xAx) and 0 ∈ v(¬∀xAx). So v(∀xAx) = {1, 0} as

desired. Suppose that v(¬Ax) = {1}; then v(Ax) = {0} and v(∀xAx) = {0}, so

v(¬∀xAx) = {1}. If v(¬Ax) = {0} then, for the upper sequent to be valid it must be

the case that some D ∈ ∆ is designated or some G ∈ Γ is non-designated, and this

valuation will also validate the end-sequent.

This completes the proof of soundness.

With this, the first order apparatus is shown to be sound for first order A3. These

arguments essentially support the claim that the standard equivalences between the

universal and existential quantifier hold in this logic. This fact is part of the definition

of the first order A3 semantics, and, as seen, the rules do enforce it.

2.1.4 First-order A3 Completeness

Theorem 2.5 (Completeness). If Γ 0 ∆ in LA3 then there is an A3 model which

assigns a designated value to each G ∈ Γ and assigns a non-designated value to each

D ∈ ∆.
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Proof. This is following Avron [6], though omitting those elements of his proof which

have to do with eliminating cut. He gives a Schütte style proof of cut elimination of

which the completeness is only a part. Since I am interested to provide a constructive

proof of cut elimination, I shall not appeal to it here. The proof given there is for

the propositional fragment of LA3, and I extend this to the first order version given

above.

First, there are two definitions. In these, and below, S is a finite set of sequents,

{Γ0 ` ∆0,Γ1 ` ∆1, . . . ,Γn ` ∆n} where n ∈ N. So,
⋃n

i=1 Γi is the union of antecedents

of sequents in S, where (0 ≤ i ≤ n).

Definition 2.2. An S-proof of a sequent Γ ` ∆ is a proof in which the members of

S may be used as extra axioms of the sequent calculus.

Definition 2.3. A sequent Γ∗ ` ∆∗ is saturated iff it has the following properties:

1. There is no S-proof of Γ∗ ` ∆∗.

2. If A ∈
⋃n

i=1 Γi ∪
⋃n

i=1 ∆i then A ∈ Γ∗ ∪∆∗.

3. If A→ B ∈ Γ∗ then A ∈ ∆∗ or B ∈ Γ∗.

4. If A→ B ∈ ∆∗ then A ∈ Γ∗ and B ∈ ∆∗.

5. If ¬(A→ B) ∈ Γ∗ then A ∈ Γ∗ and ¬B ∈ Γ∗.

6. If ¬(A→ B) ∈ ∆∗ then A ∈ Γ∗ or ¬B ∈ ∆∗.

7. If A ∧B ∈ Γ∗ then A ∈ Γ∗ and B ∈ Γ∗.

8. If A ∧B ∈ ∆∗ then A ∈ ∆∗ or B ∈ ∆∗.

9. If ¬(A ∧B) ∈ Γ∗ then ¬A ∈ Γ∗ or ¬B ∈ Γ∗.

10. If ¬(A ∧B) ∈ ∆∗ then ¬A ∈ ∆∗ and ¬B ∈ ∆∗.

11. If A ∨B ∈ Γ∗ then A ∈ Γ∗ or B ∈ Γ∗.

12. If A ∨B ∈ ∆∗ then A ∈ ∆∗ and B ∈ ∆∗.

13. If ¬(A ∨B) ∈ Γ∗ then ¬A ∈ Γ∗ and ¬B ∈ Γ∗.

14. If ¬(A ∨B) ∈ ∆∗ then ¬A ∈ ∆∗ or ¬B ∈ ∆∗.

15. If ¬¬A ∈ Γ∗ then A ∈ Γ∗.

16. If ¬¬A ∈ ∆∗ then A ∈ ∆∗.
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17. If ∀xAx ∈ Γ∗ then for every y occurring in Γ∗ ` ∆∗, Ay ∈ Γ∗.

18. If ∀xAx ∈ ∆∗ then for some y, Ay ∈ ∆∗.

19. If ¬∀xAx ∈ Γ∗ then for some y, ¬Ay ∈ Γ∗.

20. If ¬∀xAx ∈ ∆∗ then for every y occurring in Γ∗ ` ∆∗, ¬Ay ∈ ∆∗.

21. If ∃xAx ∈ Γ∗ then for some y, Ay ∈ Γ∗.

22. If ∃xAx ∈ ∆∗ then for every y occurring in Γ∗ ` ∆∗, Ay ∈ ∆∗.

23. If ¬∃xAx ∈ Γ∗ then for every y occurring in Γ∗ ` ∆∗, ¬Ay ∈ Γ∗.

24. If ¬∃xAx ∈ ∆∗ then for some y, ¬Ay ∈ ∆∗.

For the following, Γ ` ∆ is a sub-sequent of Π ` Θ iff Γ ⊆ Π and ∆ ⊆ Θ. A

saturated sequent includes every subformula of each complex formula occurring in it,

so that one can derive from it every complex formula occurring in it. In addition to

this, no sub-sequent of a saturated sequent is provable, else there would be a trivial

S-proof for it. Namely, to use repeated applications of K to derive all the extra

formulae. So, it cannot be the case that a sub-sequent of a saturated sequent is an

instance of either axiom.

We show that if Γ ` ∆ does not have an S-proof, then there is a model of S

which does not model Γ ` ∆. This inference is valid supposing contraposition in the

metatheory. This rule is invalid in LA3, however, there are some researchers in non-

classical logic willing to appeal to classical inference patterns in the metatheory of

non-classical logics, Avron being among them, and I shall also commit this somewhat

hypocritical move, recognizing unhappily that it is such. I could not find a suitable

completeness proof method for A3 or LA3 which did not appeal to contraposition,

though I remain hopeful that there is such a method.

Lemma 2.3. If Γ ` ∆ has no S-proof then it can be extended to a saturated sequent

Γ∗ ` ∆∗.

Proof. Suppose that Γ ` ∆ has no S-proof. It is a simple matter to check that adding

extra formulae to Γ and ∆ in accordance with the properties of a saturated sequent

listed above will not produce a provable sequent. For instance, suppose ∆ is A→ B,
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and that ` A → B is not provable. The sequent resulting from the addition of A to

the antecedent and B to the succedent, A ` A → B,B, will not be provable. For

this addition to render the sequent provable, it would have to be the case that A is

absolutely false, and there is no such formula, or that B itself were provable, however

if this were the case then ` A → B would be provable by appeal to K. There is

one tricky point in those rules with multiple upper-sequents. It cannot be the case

that for any formula A, it occurs in both Γ and ∆, since A ` A is an instance of the

axiom, and thus Γ ` ∆ could be derived by some applications K, and would thus have

a trivial S-proof. As such, in those cases where there are two possibilities, choose the

one that does not produce a sequent of that form. Similarly, in the case of sequents

where A and ¬A both occur in the succedent.

Lemma 2.4. If Γ∗ ` ∆∗ is saturated then there is a model of S which does not

validate Γ∗ ` ∆∗ – that is, all G ∈ Γ∗ are assigned designated values, and no D ∈ ∆∗

is designated.

Proof. First, we choose a valuation v which assigns values to literals occurring in

Γ∗ ` ∆∗ in the following way:

v(P ) =


{1} if ¬P ∈ ∆∗

{1, 0} if P /∈ ∆∗,¬P /∈ ∆∗

{0} if P ∈ ∆∗

I shall show that if a formula C ∈ Γ∗ then 1 ∈ v(C) and that if C ∈ ∆∗ then

v(C) = {0}. This way, the construction of v entails that Γ∗ 0 ∆∗, as desired. This is

shown by induction on the structure of C.

Base: C is a literal, either P or ¬P . If P ∈ Γ∗ then P /∈ ∆∗, since otherwise a

subsequent of Γ∗ ` ∆∗ would be P ` P , which is an axiom. If P ∈ ∆∗ then ¬P /∈ ∆∗

and if ¬P ∈ ∆∗ then P /∈ ∆∗ for similar reasons regarding ` P,¬P . So, if P ∈ Γ∗

then 1 ∈ v(P ) since either ¬P ∈ ∆∗ and thus v(P ) = {1} or ¬P /∈ ∆∗ in which

case v(P ) = {1, 0}, since P /∈ ∆∗ by hypothesis. If P ∈ ∆∗ then v(P ) = {0} and if

¬P ∈ ∆∗ then v(¬P ) = {0}.

Case 1: Suppose that C is A → B. If C ∈ Γ∗, then A ∈ ∆∗ or B ∈ Γ∗. So either

v(A) = {0} or 1 ∈ v(B). If the former then 1 ∈ v(A → B), as with the latter.
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In either case Γ∗ � ∆∗ as desired. Suppose that A → B ∈ ∆∗. Then A ∈ Γ∗ and

B ∈ ∆∗. Then 1 ∈ v(A) and v(B) = {0}, and thus v(A→ B) = {0}, as desired.

Case 2: Suppose that C is A ∧ B, and A ∧ B ∈ Γ∗. Then A ∈ Γ∗ and B ∈ Γ∗, and

thus 1 ∈ v(A) ∩ v(B) and so 1 ∈ v(A ∧ B), as desired. Suppose that A ∧ B ∈ ∆∗,

then A ∈ ∆∗ or B ∈ ∆∗, and so v(A) = {0} and so v(A ∧B) = {0}, as desired.

Case 3: Suppose that C is A ∨B. This is dual to the previous case.

Case 4: Suppose that C is ¬(A→ B) and is in Γ∗. Then A ∈ Γ∗ and ¬B ∈ Γ∗ and

so 1 ∈ v(A) and so in v(¬B), and thus 1 ∈ v(¬(A → B)), as desired. Suppose that

¬(A → B) ∈ ∆∗. Then either A ∈ ∆∗ and v(A) = {0} or ¬B ∈ Γ∗ and 1 ∈ v(¬B).

In either case v(¬(A→ B)) = {0}, as desired.

Case 5: Suppose that C is ¬(A∧B) and ¬(A∧B) ∈ Γ∗, then ¬A ∈ Γ∗ or ¬B ∈ Γ∗.

In the former case, 1 ∈ v(¬A), and in the latter 1 ∈ v(¬B), and in either case

1 ∈ v(¬(A ∧ B)). Suppose that ¬(A ∧ B) ∈ ∆∗, then ¬A ∈ ∆∗ and ¬B ∈ ∆∗, so

v(¬B) = {0} = v(¬A), so v(A) = {1} = v(B), and thus v(¬(A ∧B)) = {0}.

Case 6: Suppose that C is ¬(A ∨B). This is dual to the previous case.

Case 7: Suppose that C is ¬¬A and ¬¬A ∈ Γ∗, then A ∈ Γ∗ and thus 1 ∈ v(A), as

desired. Suppose that ¬¬A ∈ ∆∗; then A ∈ ∆∗ and v(A) = {0} as desired.

For the quantificational cases, we shall restrict the domain D to that part of the

domain occurring in Γ∗ ` ∆∗, ie. D∗ = {i(x);x occurs free in Γ∗ ∪∆∗}. The objects

d∗ ∈ D∗ are then the suitably restricted domain elements. In the following cases, the

domain is always D∗.

Case 8: Suppose that C is ∀xAx, and ∀xAx ∈ Γ∗, then for any y, Ay ∈ Γ∗, and

1 ∈ v[d∗/y](Ay), and since d∗ was arbitrarily chosen, thus 1 ∈ v(∀xAx), as desired.

Suppose that ∀xAx ∈ ∆∗. Then, for some y occurring in Γ∗ ` ∆∗, Ay ∈ ∆∗. So for

some d∗, v[d∗/y](Ay) = {0} and so v(∀xAx) = {0}, as desired.

Case 9: Suppose that C is ¬∀xAx and ¬∀xAx ∈ Γ∗, then, for some y occurring in

Γ∗ ` ∆∗, ¬Ay ∈ Γ∗ and for some d∗ 1 ∈ v[d∗/y](¬Ay), and so 1 ∈ v(∃x¬Ax) and thus

1 ∈ v(¬∀xAx), as desired. Suppose that ¬∀xAx ∈ ∆∗. Then, for any y, ¬Ay ∈ ∆∗

and so v[d∗/y](¬Ay) = {0} so, 1 ∈ v[d∗/y](Ay) and so v(¬∀xAx) = {0} since d∗ was
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arbitrarily chosen.

Case 10: Suppose that C is ∃xAx and ∃xAx ∈ Γ∗, then for some y occurring in

Γ∗ ` ∆∗, Ay ∈ Γ∗ and thus for some d∗ 1 ∈ v[d∗/y](Ay) and thus 1 ∈ v(∃xAx), as

desired. Suppose that ∃xAx ∈ ∆∗, then, for any y, Ay ∈ ∆∗ so v[d∗/y](Ay) = {0}

and since d∗ was arbitrarily chosen v(∃xAx) = {0}, as desired.

Case 11: Suppose that C is ¬∃xAx and ¬∃xAx ∈ Γ∗. Then for any y, ¬Ay ∈ Γ∗

and 1 ∈ v[d∗/y](¬Ay), so 1 ∈ v(∀x¬Ax) and thus 1 ∈ v(¬∃xAx). Suppose that

¬∃xAx ∈ ∆, then for some y occurring in Γ∗ ` ∆∗, ¬Ay ∈ ∆∗ and thus for some d∗,

v[d∗/y](¬Ay) = {0} and v(∀x¬Ax) = {0} and thus v(∃xAx) = {0}, as desired.

All that is left of the lemma is to show that v models S.

Suppose, Γi ` ∆i ∈ S. Γi ⊆ Γ∗ and ∆i ⊆ ∆∗ cannot both hold since, in that case

Γ∗ ` ∆∗ would have a trivial S-proof consisting of some number of applications of

thinning. Thus either for some A ∈ Γi, A ∈ ∆∗ or for some A ∈ ∆i, A ∈ Γ∗. If the

former, then v(A) = {0} and so v models Γi ` ∆i, and if the latter then 1 ∈ v(A)

and thus v models Γi ` ∆i, as desired. Since Γi ` ∆i was chosen arbitrarily, v models

S, and yet does not model Γ∗ ` ∆∗.

So, by lemma 2.3 any sequent without an S-proof can be saturated, and by lemma

2.4, all saturated sequents are invalidated by at least one model. So, if Γ ` ∆ is valid

in the A3 semantics, then there must be an S-proof of it from S in LA3.

2.1.5 LA3 Cut Elimination

Cut is a very useful structural rule, but that it can be eliminated indicates that the

proof system is well defined, and that the subformula property holds. If LA3 is to

do much of the work which classical logic does, then it is a question of its suitability

whether cut can be eliminated from it. This is why I provide a proof of this theorem

here. Avron [6] has proven the elimination theorem for the propositional part of

LA3 using a semantic argument in the vein of Schütte. I shall extend this theorem
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to the first-order case, however using a syntactical proof in line with that originally

presented by Gentzen in [17]. This proof provides an effective procedure for removing

cuts from proofs, and is constructive.11

Theorem 2.6 (Elimination). Every LA3 proof can be transformed into an LA3 proof

of the same end-sequent involving no applications of cut. The only logical rules applied

in the new proof also occur in the given proof.

Proof. I present a demonstration of cut elimination using Gentzen’s technique as

presented in [17].

The proof is by induction on the number n of applications of the cut rule in a

given proof. If n > 0 there must occur in it an earliest cut, which has no other cut

occurring between it and the leaves of the proof. Consider the part of the given proof

which terminates with some sequent Γ,Π∗ ` ∆∗,Θ, where Π∗ is Π and ∆∗ is ∆ but

the cut formula excised - this is the “given subtree of the proof”, or “given part”.

Suppose we can alter this given part to obtain another proof in LA3 of the same

sequent without the last use of cut. Call this the “resulting part”. The replacement

of the given part of the proof by the resulting part produces a new proof the same

sequent with n− 1 cuts.

Lemma 2.5. Given a proof in LA3 of the end-sequent Γ,Π∗ ` ∆∗,Θ with cut as the

final step and no other application of cut, another proof can be found which does not

feature an application of cut.

In the stated lemma, Γ∗ is Γ but with the cut formula removed as a result of a

cut. Due to Lemma 2.2 we may assume that all formulae instantiated in the axioms

are literals.

Definition 2.4. The left rank ρl of an application of the cut rule is the greatest

number of sequents located consecutively one above another at the bottom of any

branch terminating with the left premise of the cut, namely Γ ` ∆, containing the

11Part of the project of paraconsistent mathematics, as expressed to me by Zach Weber in personal
correspondence, which I am interested to take on, is a general move to constructive and direct
proof methods. As such, I would prefer a proof of this kind over the semantic kind given by Avron.
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cut formula A in the succedent. The right rank ρr is similarly defined, but with the

right premise Π ` Θ. The rank ρ = ρl + ρr which is always ≥ 2.

Definition 2.5. The grade γ of the cut is the number (≥ 0) of occurrences of logical

symbols (→,∧,∨,¬,∀,∃) in A, the cut formula.

The proof is by induction on the grade γ of the cut. Nested in this is another

induction on the rank ρ. If one can directly eliminate cuts on atomic formulae, as per

cases 1-8, and one can always replace cuts on complex formulae with cuts on atomic

formulae when the rank is 2 as per cases 9-19, and one can always transform cuts of

rank > 2 for cuts of rank 2 as per cases 20-22, then one can eliminate all cuts. In

each case, I shall present the general form as the following, in keeping with what I

have specified as the left and right premises:

Γ ` ∆ Π ` Θ
Γ,Π∗ ` ∆∗,Θ

Base: Where ρ = 2, and the cut is to be completely eliminated.

Case 1: Suppose that the left premise of the cut is an instance of the axiom

A ` A and the cut formula is A. Then the proof is of the following form, where Π is

the same as Π∗, since ρ = 2.

A ` A A,Π ` Θ

A,Π∗ ` Θ

If this is the case then the right premise of the cut is sufficient to establish the

result, and the application of the cut is eliminable.

Case 2: The right premise of the cut is an instance of A ` A and the cut formula

is A. This is symmetric to case 1.

Case 3: The left premise is an instance of ` A,¬A and the cut formula is A, and

the right premise is A ` A. The proof is of the following form, where, again, the cut

can clearly be eliminated:

` A,¬A A ` A
` A,¬A
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Case 4: The left premise is an instance of ` A,¬A and the cut formula is ¬A

and the right premise is ¬A ` ¬A. The proof is of the following form, where cut is

clearly eliminable:

` A,¬A ¬A ` ¬A
` A,¬A

Case 5: The left premise is an instance of ` A,¬A, the cut formula is A. Since

ρ = 2, the inference culminating in A,Π ` Θ must be a result of either appeal to the

reflexivity axiom or to thinning. The former possibility is that of case 3. Suppose

that A,Π ` Θ follows from Π ` Θ by thinning as such:

` A,¬A
Π ` Θ
A,Π ` Θ

Π∗ ` Θ,¬A

So, the right premise must be the result of applying thinning to Π ` Θ, and as

such, one can produce the same end-sequent, without appeal to cut, by thinning on

the right premise as follows, where Π must be the same as Π∗ since ρ = 2:

Π ` Θ
Π ` Θ,¬A

Case 6: The left premise is an instance of ` A,¬A, the cut formula is ¬A, and

is the result of thinning applied to Γ ` ∆. This case is similar to case 5.

Case 7: Suppose that the left premise of the cut is a result of thinning. The

proof given is of the form of that on the left:

Γ ` ∆
Γ ` ∆, A A,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

Γ ` ∆
Γ,Π∗ ` ∆∗,Θ

The proof on the right can be given as a result of some applications of thinning.

As before ∆∗ is ∆ and Π∗ is Π.

Case 8: The right premise of the cut is the result of thinning. This is similar to

case 7.

Induction Step (γ): Where γ > 0, ρ = 2, and γ is to be reduced.
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Case 9: The cut formula is A ∧ B, and thus occurs in both the succedent of the

left and the antecedent of the right premise, and is a result of an application of ` ∧

in the left, and an application of ∧ ` in the right premise. The proof is of the form:

Γ ` ∆, A Γ ` ∆, B

Γ ` ∆, A ∧B
A,B,Π ` Θ

A ∧B,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

This proof can be rewritten to include two applications of cut, each on immediate

subformulae of A ∧B, and thus each of a lower grade than that given:

Γ ` ∆, A A,B,Π ` Θ

Γ,Π∗, B ` ∆∗,Θ Γ ` ∆, B

Γ∗,Π∗ ` ∆∗,Θ

Γ,Π∗ ` ∆∗,Θ

The move here is just a shift in where cut is applied, removing any need to apply

the conjunction rules as in the original proof. In the given proof the logical rules are

applied first so that one cuts out the complex formula, whereas in the resulting proof

we perform two cuts, one on each subformula of the given cut formula. In the above,

note that the ∗s occurring above actual refer to different cut formulae. In the given

proof, Π∗,∆∗ are Π,∆ with A∧B erased from each. However, in the resulting proof,

the Π∗ occurring in the second line is Π with A cut out, whereas that in the third

line is with B cut out as well. This is a standard convention, and most often the cut

formula of the cut occurring directly above the sequent wherein a starred set occurs

is the formula which has been cut out. In general, it is fairly obvious which formulae

have been cut out and when.

Case 10: The cut formula is A ∨ B and is thus a result of an application of ` ∨

in the left premise, and of ∨ ` in the right premise. The proof is of the form:

Γ ` ∆, A,B

Γ ` ∆, A ∨B
A,Π ` Θ B,Π ` Θ

A ∨B,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

and it can be altered to the following, with lower grade cuts on proper subformulae

of A ∨B:
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Γ ` ∆, A,B A,Π ` Θ

Γ,Π∗ ` ∆∗,Θ, B B,Π ` Θ

Γ,Π∗ ` ∆∗,Θ∗

Γ,Π∗ ` ∆∗,Θ

Case 11: The cut formula is A → B and is thus a result of the application of

`→ in the left, and of →` in the right premise. The proof is of the form:

A,Γ ` ∆, B

Γ ` ∆, A→ B

Π ` Θ, A B,Π ` Θ

A→ B,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

which can be altered to:

Π ` Θ, A A,Γ ` ∆, B

Γ∗,Π ` ∆,Θ∗, B B,Π ` Θ

Γ∗,Π∗ ` ∆∗,Θ

Γ,Π∗ ` ∆∗,Θ

Case 12: The cut formula is ¬¬A and is thus a result of the application of ` ¬¬

in the left, and of ¬¬ ` in the right premise. The proof is of the form:

Γ ` ∆, A

Γ ` ∆,¬¬A
A,Π ` Θ

¬¬A,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

to be altered to:

Γ ` ∆, A A,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

Case 13: The cut formula is ¬(A ∧ B) and is thus the result of the application

of ` ¬∧ in the left, and of ¬∧ ` in the right premise.

Γ ` ∆,¬A,¬B
Γ ` ∆,¬(A ∧B)

¬A,Π ` Θ ¬B,Π ` Θ

¬(A ∧B),Π ` Θ

Γ,Π∗ ` ∆∗,Θ

again, for a grade reduction:

Γ ` ∆,¬A,¬B ¬B,Π ` Θ

Γ,Π∗ ` ∆∗,Θ,¬A ¬A,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

Case 14: The cut formula is ¬(A ∨ B) and is thus the result of the application

of ` ¬∨ in the left, and of ¬∨ ` in the right premise.
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Γ ` ∆,¬A Γ ` ∆,¬B
Γ ` ∆,¬(A ∨B)

¬A,¬B,Π ` Θ

¬(A ∨B),Π ` Θ

Γ,Π∗ ` ∆∗,Θ

for a grade reduction alter the above proof to:

Γ ` ∆,¬B
Γ ` ∆,¬A ¬A,¬B,Π ` Θ

¬B,Γ,Π∗ ` ∆∗,Θ

Γ,Π∗ ` ∆∗,Θ

Case 15: The cut formula is ¬(A→ B) and is thus the result of the application

of ` ¬ → in the left, and of ¬ →` on the right.

Γ ` ∆, A Γ ` ∆,¬B
Γ ` ∆,¬(A→ B)

A,¬B,Π ` Θ

¬(A→ B),Π ` Θ

Γ,Π∗ ` ∆∗,Θ

For grade reduction, alter the above proof to the following:

Γ ` ∆,¬B
Γ ` ∆, A A,¬B,Π ` Θ

¬B,Γ,Π∗ ` ∆∗,Θ

Γ,Π∗ ` ∆∗,Θ

Again, in this case, Π∗ and Π are identical, so the altered proof does have the

same endsequent as the given proof.

Case 16: The cut formula is ∀xAx and is thus the result of the application of ` ∀

on the left, and of ∀ ` on the right. The proof below on the left is the given proof,

the proof on the right results.

Γ ` ∆, Ay

Γ ` ∆,∀xAx
Az,Π ` Θ

∀xAx,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

Γ ` ∆, Ay Ay,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

That this does case does not fail due to a problem involving the restriction placed

on variable replacement is assumed here. Gentzen gives a separate lemma to establish

this result, which I omit here, as it is fairly intuitive, though non-trivial.

Lemma 2.6. An LA3 sequent or application of a logical rule remains the same sequent

or an application of same rule if we uniformly replace a free variable which is not the

eigenvariable of the logical rule by another free variable, provided that the new variable

is not the eigenvariable of the logical rule.
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The proof of this lemma, given by Gentzen [17, 300], can be easily reproduced

here. The rules ∃ ` and ` ∀, which were those rules sensitive to variables in Gentzen’s

system of LK are just the same here, and the restrictions on the new rules closely

match the restrictions on the original rules. The classical means of deriving the end-

sequents of the new rules, say ¬∀ ` simply involves applying ` ∀, then applying

¬ `. This does the same job as the rule ¬∀ `, which essentially just invokes that

∃x¬Ax→ ¬∀xAx. The other rules are similar, and those rules which are not sensitive

to the particular eigenvariable of the premise are no problem in any case.

Case 17: The cut formula is ∃xAx and is thus the result of the application of

` ∃ on the left, and of ∃ ` on the right.

Γ ` ∆, Az

Γ ` ∆,∃xAx
Ay,Π ` Θ

∃xAx,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

Γ ` ∆, Ay Ay,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

Case 18: The cut formula is ¬∀xAx and is thus the result of the application of

` ∃ on the left, and of ∃ ` on the right.

Γ ` ∆,¬Az
Γ ` ∆,¬∀xAx

¬Ay,Π ` Θ

¬∀xAx,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

Γ ` ∆,¬Ay ¬Ay,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

Case 19: The cut formula is ¬∃xAx and is thus the result of the application of

` ¬∃ on the left, and of ¬∃ ` on the right.

Γ ` ∆,¬Ay
Γ ` ∆,¬∃xAx

¬Az,Π ` Θ

¬∃xAx,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

Γ ` ∆,¬Ay ¬Az,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

Thus, any proof featuring a cut on a complex formula can be altered to a proof with

cuts on less complex formulae when ρ = 2 and in both premises the cut formula is

the principle formula of the logical rule. It remains to be shown that any higher rank

cut can be altered to one with a cut of lower rank than that given, with a minimum

of 2. The cuts which occur on atomic formulae at ρ = 2 can be eliminated, by the

same kind of procedures applied in the base cases.

Induction Step (ρ): ρ > 2, and is to be reduced (or outright eliminated, case 21).

77



There are two categories into which these cases may fall. First is that where the

ρr > 1, and second is that where ρr = 1, necessitating that ρl > 1. These cases are,

essentially, symmetrical. As such, I shall present only the first of these, since the

other cases are easily reproducible.

Case 20: Suppose the inference resulting in the right premise is an application

of K. The principal formula A of K must not be the cut formula C, since ρr > 2, and

A can occur in either the antecedent or the succedent. An example of this kind of

proof, with K ` applied, on the left below is that given, that on the right resulting,

where the applications of the cut and K are permuted.

Γ ` ∆
Π ` Θ
A,Π ` Θ

Γ, A,Π∗ ` ∆∗,Θ

Γ ` ∆ Π ` Θ
Γ,Π∗ ` ∆∗,Θ

Γ, A,Π∗ ` ∆∗,Θ

The resulting proof features a cut of ρr of 1 fewer than that in the given proof, and

so the cut can be eliminated according to the inductive hypothesis. The case involving

an application of ` K can be solved in just the same way, but with A occurring in

the succedent.

Case 21: Suppose that the cut formula C occurs in either the antecedent of the

left premise or the succedent of the right premise. In this case, we can just use some

applications of K to derive the desired end-sequent from one of the premises. If C

occurs in the antecedent of the left premise, Γ, then, as below, we may use K on the

left premise to arrive at the end-sequent. This is allowed since the occurrence of C

in Π can be thought of as moved from Π to Γ, where there is already an occurrence,

since we do not distinguish location in Γ ∪ Π. In the case where C occurs in Θ, we

may use K to get the same end-sequent from the right premise.

Γ ` ∆ Π ` Θ
Γ,Π∗ ` ∆∗,Θ

Π ` Θ
Γ,Π∗ ` ∆∗,Θ

Given this case, I shall assume for all the remaining cases that the cut formula

does not occur in the antecedent of the left premise or in the succedent of the right

premise.
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Case 22: Suppose the inference resulting in the right premise is an application

of a logical rule with one premise. The principal formula of the application of such a

rule will occur either in the succedent of the resulting sequent, as in the case of `→,

or in the antecedent, as in the case of ¬¬ `,∧ `,¬∨ ` and the antecendent quantifier

and negated-quantifier rules.

Case 22.0: Suppose that the logical rule resulting in the right premise of the cut

is `→. Then the given proof is as follows:

Γ ` ∆

A,Π ` Θ, B

Π ` Θ, A→ B

Γ,Π∗ ` ∆∗,Θ, A→ B

Given Case 21, we may assume that neither A → B nor B are the cut formula,

as they appear in the succedent of the right premise, but A may be the cut formula.

Case 22.0.0 Suppose that A is the cut formula, we may need to reintroduce A

by K after the application of the cut before applying `→ again. However, we may

well do this, as below:

Γ ` ∆ A,Π ` Θ, B

Γ,Π∗ ` ∆∗,Θ, B

A,Γ,Π∗ ` ∆∗,Θ, B

Γ,Π∗ ` ∆∗,Θ, A→ B

The cut in the resulting proof has a ρr of one fewer than that given, and so it can

be eliminated.

Case 22.0.1 Suppose that A is not the cut formula, then we may simply permute

the application of cut and `→:

Γ ` ∆ A,Π ` Θ, B

Γ, A,Π∗ ` ∆∗,Θ, B

Γ,Π∗ ` ∆∗,Θ, A→ B

This cut is also clearly of ρr of one fewer than that given.

Case 22.1 Suppose that the principal formula of the logical rule resulting in the

right premise occurs in the antecedent of the right premise. These cases are all very
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similar, so we shall only present one case (¬¬ `) since the proofs of the others follow

the same pattern.

Case 22.1.0 Suppose that the rule resulting in the right premise is ¬¬ `. Then

the principal formula is ¬¬A, and it may either be the cut formula or not, and the

A occurring the antecedent of the right premise of the cut may be the cut formula or

not (the case in which A is not the cut formula is covered by the other cases).

Case 22.1.0.0 Suppose that ¬¬A is the cut formula. Then the proof is as follows:

Γ ` ∆

A,Π ` Θ

¬¬A,Π ` Θ

Γ,Π∗ ` ∆∗,Θ

We may perform two cuts, each of lower rank than that given. The first is clearly

of ρr of one fewer than that given, while for the second cut, the occurrence of the cut

formula in Π has been removed, so the ρr at the second cut is 1, and so is lowered

from whatever it was in the given proof.

Γ ` ∆

Γ ` ∆ A,Π ` Θ

Γ, A,Π∗ ` ∆∗,Θ

Γ,¬¬A,Π∗ ` ∆∗,Θ

Γ,Π∗ ` ∆∗,Θ

Case 22.1.0.1 Suppose that ¬¬A is not the cut formula. Then the given proof

is as on the left below. We may simply permute the application of cut with the

application of ¬¬ `, as on the right below. Clearly the cut of the resulting proof is

of one lower ρr than the given.

Γ ` ∆

A,Π ` Θ

¬¬A,Π ` Θ

Γ,¬¬A,Π∗ ` ∆∗,Θ

Γ ` ∆ A,Π ` Θ

Γ, A,Π∗ ` ∆∗,Θ

Γ,¬¬A,Π∗ ` ∆∗,Θ

Case 22.1.0.2 Suppose that A is the cut formula. This case is covered under Case

22.1.0.1, with one minor alteration. In the resulting proof, ¬¬A must be reintroduced

by K after the cut.

Case 23: Suppose that the inference figure resulting in the right premise is a two

premise rule, namely, one of →`, ∨ `, ` ∧, ` ¬ →, ` ¬∨, ¬∧ `.
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Case 23.0: Suppose the rule is →`:

Γ ` ∆

Π ` Θ, A B,Φ ` Ω

A→ B,Π,Φ ` Θ,Ω

Γ, (A→ B)∗,Π∗,Φ∗ ` ∆∗,Θ,Ω

where (A → B)∗ is either A → B or nothing, depending whether it is not or is the

cut formula, respectively. There are then two sub-cases:

Case 23.0.0: Suppose that the cut formula occurs in both Π and Φ:

Case 23.0.0.0: Suppose that the cut formula is not A→ B. In this case, we may

prove the desired endsequent by the following:

Γ ` ∆ Π ` Θ, A

Γ,Π∗ ` ∆∗,Θ, A

Γ ` ∆ B,Φ ` Ω

Γ, B∗,Φ∗ ` ∆∗,Ω

A→ B,Π∗,Γ,Φ∗ ` ∆∗,Θ,Ω

with two instances of cut, each of which can be eliminated, since each has a lower

rank than that initially given.

Case 23.0.0.1: Suppose that the cut formula is A → B. Then another cut can

be applied to the endsequent of the proof given in case 23.0.0.0 to remove A → B

from the antecedent as follows:

Γ ` ∆ A→ B,Π∗,Γ,Φ∗ ` ∆∗,Θ,Ω

Π∗,Γ∗,Φ∗ ` ∆∗,Θ,Ω

Π∗,Γ,Φ∗ ` ∆∗,Θ,Ω

again, this cut can be eliminated, since it must be of lower ρ than the original, since

ρr is one fewer than before, while ρl has not changed.

Case 23.0.1: Suppose that the cut formula does not occur in both Π and Φ. It

must occur in one or the other, else the right rank of the cut is equal to 1.

Case 23.0.1.0: Suppose that the cut formula occurs in Π but not Φ.

Γ ` ∆ Π ` Θ, A

Γ,Π∗ ` ∆∗,Θ, A B,Φ ` Ω

A→ B,Γ,Π∗,Φ ` ∆∗,Θ,Ω
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where the cut may be eliminated.

Case 23.0.1.0.0: Suppose that the cut formula is A → B. Then we introduce

another cut with Γ ` ∆ to remove A → B, to produce the desired sequent. The

procedure is similar to that of case 23.0.0.1.

Case 23.0.1.0.1: Suppose that the cut formula is not A→ B. Then, the proce-

dure is similar to that of case 23.0.0.0.

Case 23.0.1.1: Suppose that the cut formula occurs in Φ but not Π. Then the

proof can be altered to the following:

Π ` Θ, A

Γ ` ∆ B,Φ ` Ω

Γ, B,Φ∗ ` ∆∗,Ω

A→ B,Π,Γ,Φ∗ ` ∆∗,Ω,Θ

where the cut may be eliminated. There are, as above in case 23.0.1.0, two sub-cases,

each of which is treated in a way essentially similar to the way in which they are

treated above.

Case 23.1: Suppose that the rule is ∨ `:

Γ ` ∆

A,Π ` Θ B,Π ` Θ

A ∨B,Π ` Θ

Γ, (A ∨B)∗,Π∗ ` ∆∗,Θ

which can be altered to produce:

Γ ` ∆ A,Π ` Θ

A,Γ,Π∗ ` ∆∗,Θ

Γ ` ∆ B,Π ` Θ

B,Γ,Π∗ ` ∆∗,Θ

A ∨B,Γ,Π∗ ` ∆∗,Θ

where both applications of the cut can be eliminated, by the induction hypothesis.

Case 23.1.0: Suppose that the cut formula is A ∨ B. Then a cut involving

the end-sequent of the second proof presented in 23.1 can be altered to produce the

following:

Γ ` ∆ A ∨B,Γ,Π∗ ` ∆∗,Θ

Γ∗,Π∗ ` ∆∗,Θ

Γ,Π∗ ` ∆∗,Θ
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where the cut can be eliminated.

Case 23.1.1: Suppose that the cut formula is not A ∨ B and must, therefore,

occur in Π. Then, in a procedure similar to 23.0.0.1, the end-sequent of the second

proof given in 23.1 is the desired sequent.

Case 23.2: Suppose that the rule is ` ∧.

Γ ` ∆

Π ` Θ, A Π ` Θ, B

Π ` Θ, A ∧B
Γ,Π∗ ` ∆∗,Θ, A ∧B

which can be altered to the following, in which both cuts are of lower rank than that

given, and thus can both be eliminated:

Γ ` ∆ Π ` Θ, A

Γ,Π∗ ` ∆∗,Θ, A

Γ ` ∆ Π ` Θ, B

Γ,Π∗ ` ∆∗,Θ, B

Γ,Π∗ ` ∆∗,Θ, A ∧B

Case 23.3: Suppose that the rule is ` ¬ →.

Γ ` ∆

Π ` Θ, A Π ` Θ,¬B
Π ` Θ,¬(A→ B)

Γ,Π∗ ` ∆∗,Θ,¬(A→ B)

This proof can be altered to the following:

Γ ` ∆ Π ` Θ, A

Γ,Π∗ ` ∆∗,Θ, A

Γ ` ∆ Π ` Θ,¬B
Γ,Π∗ ` ∆∗,Θ,¬B

Γ,Π∗ ` ∆∗,Θ,¬(A→ B)

in which the cuts may be eliminated.

Case 23.4: Suppose that the rule is ` ¬∨.

Γ ` ∆

Π ` Θ,¬A Π ` Θ,¬B
Π ` Θ,¬(A ∨B)

Γ,Π∗ ` ∆∗,Θ,¬(A ∨B)

which can be altered to the following, in which each cut is of a lower rank than that

given, and thus each can be eliminated:

Γ ` ∆ Π ` Θ,¬A
Γ,Π∗ ` ∆∗,Θ,¬A

Γ ` ∆ Π ` Θ,¬B
Γ,Π∗ ` ∆∗,Θ,¬B

Γ,Π∗ ` ∆∗,Θ,¬(A ∨B)
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Case 23.5: Suppose that the rule is ¬∧ `

Γ ` ∆

¬A,Π ` Θ ¬B,Π ` Θ

¬(A ∧B),Π ` Θ

Γ,¬(A ∧B)∗,Π∗ ` ∆∗,Θ

which may be altered to the following, where both cuts may be eliminated, but where,

as in case 23.1, there remain two sub-cases:

Γ ` ∆ ¬A,Π ` Θ

Γ,¬A∗,Π∗ ` ∆∗,Θ

Γ ` ∆ ¬B,Π ` Θ

Γ,¬B∗,Π∗ ` ∆∗,Θ

¬(A ∧B),Γ,Π∗ ` ∆∗,Θ

Case 23.5.0: Suppose that the cut formula is ¬(A ∧ B). The proof is similar to

that given in 23.1.0.

Case 23.5.1: Suppose that the cut formula is not ¬(A∧B). The proof is similar

to that given in 23.0.0.1.

The remaining cases are those where ρ > 2, the right rank is 1, and therefore the

left rank > 1. These transformation of these cases are, generally, little more than the

duals of cases 20-23, the biggest change coming about because the rules governing the

truth functional connectives (except the rules for ¬¬) tend to have one upper sequent

when introducing the formula on one side of the turnstile and two upper sequents

when introducing it on the other side. It is perhaps worth flagging that there is some

extra work to be done for the arrow rules when ρl > 1. However, those proofs are still

just the same as given for LK in [17], so they are omitted. Thus, cuts can always be

traded for cuts of lower ranks until one reaches cuts on ρ = 2, at which point the cut

formulae can be reduced in grade until they are literals, at which point they can be

directly eliminated. This process of separately reducing rank and grade may need to

be repeated in some sequence for a given proof, however the process will eventually

produce a cut free proof of the same end-sequent as the given proof.

Note the following rule, ` ¬, is one of the two standard sequent negation rules.
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A,Γ ` ∆
` ¬

Γ ` ∆,¬A

Corollary 2.1. ` ¬ is an admissible rule.

That is, whenever there is a proof in LA3 of A,Γ ` ∆, there is a proof of Γ ` ∆,¬A.

So, ¬ ` is admissible.

The result of this is that LA3 could just as well be stated without ` A,¬A and

with ` ¬ as an additional rule, as the instances of LEM are evidently provable by

` ¬ from the appropriate instances of the reflexivity axiom.

This completes my treatment of LA3 - at least all the facts about LA3 which I’ll

be appealing to and relying upon for justification in what follows. The soundness

and completeness theorems I have presented in order to justify the kind of reasoning

which leaps back and forth from the syntax to the semantics and conversely. This will

make certain arguments considerably simpler and seems a valuable asset in justifying

this logic as natural. The cut elimination proof I have presented because of the value

in seeing that LA3 is syntactically well-formed - also because, as stated, the first order

proof, like the first order extension of the logic, is novel. However, the next part of

this work is to consider the alterations necessary to the standard arithmetical axioms

to account for the unusual facts about the collapse models.

2.2 Arithmetical Axioms for collapse models

The collapse models, though a result of a congruence on the standard model, are

fairly unusual in some crucial respects. The major one being the behaviour of the

operations, and most particularly that of successor (′). All of the alterations necessary

here are made in order to match the axioms to the facts about operations congruent

to this under various collapses. To start, a fairly standard presentation of the Peano

axioms with the LA3 conditional, where, as standard, x 6= y =Def ¬x = y. Given that

UG is an inference rule of A3, we may leave universal quantifiers tacit in the axioms

and in the theorems, since we can always introduce those quantifiers by repeated

85



appeals to UG. As such, I shall omit quantifiers except in cases where it makes an

important difference to have them inside a formula (as in the case of inferences by

mathematical induction).

Peano Axioms

` x = y → (z = y → x = z)

` x′ = y′ ↔ x = y

` 0 6= y′

` x 6= 0→ ∃y x = y′

` x+ 0 = x

` x+ y′ = (x+ y)′

` x · 0 = 0

` x · y′ = (x · y) + x

and finally the schema of mathematical induction,

` (A0 ∧ ∀x(Ax→ Ax′))→ ∀xAx (MI1)

To allay any concerns about the usefulness of the weak induction principle in

LA3, below a proof that it is equivalent to a sequent form of induction, namely

A0,∀x(Ax → Ax′) ` ∀xAx (MI2), is given. This is an easy consequence of the

deduction theorem and its converse, the fact of which is clearly carried out in the

proof system (see (*) below).

The extent to which this shortens proofs is astounding and makes the presentation

much easier.

So, we have a system of first order LA3 plus the standard suite of Peano Axioms.

This system I shall call LA#
3 , analogous to Meyer’s system R#, and it proves many

of the same basic theorems which classical Peano Arithmetic (PA). In fact, since

LA3’s positive fragment is equivalent to the positive fragment of classical logic and

since they both have the same Peano Axioms, PA+ and LA#+
3 are equivalent. The

difference between them is only in those theorems containing negations. However, as

I’ll show in the next chapter, many of these can be proven in LA#
3 , giving it a solid set

of arithmetical theorems. Among others, there may be proofs available in A#
3 of all

the theorems necessary to produce the glutty Gödel sentence G, however I have not

proved each of these theorems as of writing. To show this would be to show that many

proofs in elementary formal number theory do not rely on inconsistency-trivialising
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principles, and may be worth it in its own right. The upshots of considering the

proofs necessary to express G are many – first, G would be the first explicit glut

to occur “naturally” in the language of LA#
3 , using only predicates definable in the

language of arithmetic, and, second, it would better couch Priest’s discussion of G in

paraconsistent number theory [38, 48–50] which takes for granted that the syntax of

LP can be arithmetized. Though this is somewhat tangential to the goal of providing

adequate syntaxes for the inconsistent models, it is a subject which the development

of this theory may well provide some insight into.

Back to the axioms – as discussed in the last chapter, the standard principle

x′ = y′ → x = y is false in some of the collapse models. Thus there must be a

different theory to deal with these models specifically. First, x′ = y′ ↔ x = y will

need to be split into its component parts:

` x = y → x′ = y′ ` x′ = y′ → x = y

and, since contraposition fails for this conditional, it is also necessary to explicitly

state the contraposed forms of these:

` x 6= y → x′ 6= y′ ` x′ 6= y′ → x 6= y.

Out of this range of successor axioms we simply reject ` x′ = y′ → x = y,

however all the others are valid on all the collapse models. So, all of the others must

be included, in order to ensure that the information we can get about successors is as

robust as possible. Since they are not derivable from the other axioms it is necessary

to explicitly include each of these axioms individually - this claim seems obvious,

though I present no proof it here. It is, perhaps, interesting to note that one of the

potential uses for the inconsistent models which is suggested by Paris, [30, 536], is

to produce new independence proofs for the Peano axioms in classical logic. As it

stands, however, I’ll have to rely on the fact that it is intuitively clear that none of

the above can be inferred from the other axioms.

The addition and multiplication axioms do not present any obvious problem, how-

ever it may be an interesting exercise to consider a version of Presburger’s arithmetic

to determine whether the classical axiomatisability result, perhaps as presented in
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[11, 219], can be adapted to the same theory based on LA3. However, this aside, I

don’t see a reason to alter any of these axioms, since the behaviours they produce

which might cause problems are avoided by the alteration to the successor axiom

presented above.

Transitivity of = will clearly produce no problem, and x 6= 0 → (∃x)(x = y′)

remains true in all models since even in models in which a, distinct from 0, is identified

with 0 under collapse, the consequent remains true since in such a model 0 and a must

occur in a cycle such that a− 1 is the predecessor of 0. The same considerations hold

in the case of x′ 6= 0. In models with a classical tail which includes, minimally, 0 this

will be true, and in those cyclic models where 0 and a are identified (a− 1)′ = 0 but

also (a − 1)′ 6= 0, so that the formula is still assigned a designated value, {1, 0}. In

fact, it will be by introducing extra axioms which explicitly exploit this feature that

I’ll attempt to capture the simple cyclic models, as well as those cycles occurring in

larger, more complicated models.

So, the basic axiom system I’ll be using throughout will look the same as that

above with ` x′ = y′ ↔ x = y replaced with:

` x = y → x′ = y′

` x 6= y → x′ 6= y′

` x′ 6= y′ → x 6= y

It is to this basis that I shall add extra axioms designed to govern the specific

differences which occur in the particular collapse models. Call this variant system

on LA#
3 , LA#

3∗. In the next chapter, I shall present some proofs in LA#
3 to indicate

its general suitability as an arithmetical theory and to consider what theorems follow

from the undesirable axiom above which are still, however, true in the collapse models.

Beyond this, I shall present natural extensions to LA#
3∗ for each of the basic classes of

finite inconsistent models, and attempt to show that they capture at least the salient

properties of their respective models.
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Chapter 3

Formal Number Theory in LA
#
3

and LA
#
3∗

In the course of the second chapter, we introduced the systems A#
3 and A#

3∗, and in

this chapter, I shall present some proofs of these systems to indicate that they are a

good match for formal reasoning about the inconsistent models of arithmetic as well

as for formal arithmetics more generally. The core of this chapter is to provide some

grounds that this formal system is a good match for arithmetical reasoning and, in

particular, the finite collapse models, and alongside this we shall consider some more

general points about how these theories match up to PA. One of the first things to

note regarding the more general point is that A#
3 shares a positive fragment with PA -

any valid negation-free sequent of PA is a valid sequent of A#
3 .1 This is fairly obvious,

considering that we already know that the positive fragment of LA3 is equivalent to

the positive fragment of LK, and that all the arithmetical axioms of PA are simply

reproduced in A#
3 . So, I shall be appealing freely to positive theorems and sequents

of PA, confident that their proofs in A#
3 require little more than straightforward

translations of the PA proofs into this formalism. This provides a good starting point

to arguing that A#
3 is a plausible candidate for studying PA and the standard model

of arithmetic from a paraconsistent basis. Namely, we can rest assured that, at very

1Of course, this is not the case with A#
3∗, which does not include the injectivity of ′. In the case of

this system, a bit more groundwork is necessary to indicate which theorems of PA are also theorems
of A#

3∗
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least, we only stand to lose theorems with negations, and it is not clear which of those

we do actually lose. As well as this, with one alteration, it indicates that the kind

of construction necessary for an arithmetization of the syntax of A#
3 may possibly be

carried out. This would allow us to better couch discussion about the Gödel sentence

as a glut of sufficiently strong mathematical systems, such as carried out in the third

chapter of [38]. This kind of approach to the incompleteness theorems has, among

others, been discussed by Berto in [10, 203–213] and Meyer in [24]. To assess these

claims about the incompleteness theorems from a paraconsistent viewpoint, it must

be the case that we can actually carry out the arithmetisation of the syntax of a

paraconsistent logic.2 A theory like A#
3 is, at least, a plausible candidate for a system

for which this kind of construction can be given. Otherwise, until one has shown

that such a construction can be carried out in a formal paraconsistent arithmetic,

it must remain in doubt whether or not one can, in fact, produce something like a

Gödel sentence at all, which would in turn shed doubt on the philosophical arguments

presented by Priest [38] and others on the topic of the Gödel sentence in paraconsistent

logic. Of course, one can always make stipulations in order to get the right kind of

expressibility, as we may have to, but the question is whether such stipulations do

not simply result in classical arithmetic. I shall come back to this point as a final

note to this chapter.

The first question, then, is of the recapture of the negative sequents of PA in A#
3 .

Because these theorems are of general importance for the collapse models as well as

for the standard model, we shall consider this in some detail before moving on to

considering the adequacy of various extensions of A#
3∗ to the task of axiomatising

the collapse models. With this information, we shall be closer to determining the

adequacy of A#
3 for PA – how substantial differences between A#

3 and PA actually

are – though a thorough consideration of this question is another major research

project in its own right.

Since A3 does not validate the rule form of disjunctive syllogism3 (` A and `
2Perhaps in something like the construction given by Mendelson in the textbook [22]
3What has been called, in the tradition of Relevant Logic, the rule γ, following Ackermann [1].
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¬A ∨ B does not imply ` B) A#
3 is likely susceptible to the same argument as is

given for R#4 to indicate that its set of theorems is properly contained in that of PA.

Given that this is the case, it is quite likely that A#
3 will also be strictly weaker, in

the sense of having a smaller set of theorems, than PA, and as such will fail to fully

capture classical formal arithmetic. However, A#
3 still quite closely approaches to PA,

and even more so if we take on an addition, in the form to be discussed below, of

some limited trivialising formulae. Given that all theorems of PA provable without

appeal to formule involving negations are theorems of A#
3 the question then is which

of the negative sequents do the systems have in common. That is, how much of the

negative part of PA is recaptured in A#
3 ? This is of some general importance for

the inconsistent models of arithmetic as well as for the general value of A#
3 as an

arithmetical theory.

3.1 Negative sequents of PA

So, it is the negative formulae of A#
3 which differ from PA - and the standard format

for reductio ad absurdum (RAA) style reasoning in natural deduction-style systems,

which can be presented axiomatically as (A → B) → ((A → ¬B)) → ¬A) or

(A → (B ∧ ¬B)) → ¬A, is obviously invalid in A3. It is not obvious how the

inferences allowed by this principle are to be recovered, and it seems that there

are a number of possibilities, depending on the formulae in question. First, there

is a standard dodge of altering RAA inferences from the irrelevant (and potentially

explosive) format as those given above to the principle of consequentia mirabilis (CM)

5 – (A→ ¬A)→ ¬A, which is valid in A3:

` A,¬A ¬A ` ¬A
A→ ¬A ` ¬A

` (A→ ¬A)→ ¬A
4This is Meyer’s system of relevant arithmetic given in [23] and elsewhere.
5This principle is what Whitehead and Russell call reductio ad absurdum or Abs (∗2·01) [45, 100],
and in classical logic it is equivalent to (A → (B ∧ ¬B)) → A, which is the explosive version of
RAA - however, note that these are not equivalent in A3, and so I shall distinguish them, as here,
by using “RAA” and “CM” or “consequentia mirabilis.”
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This is a straightforward theorem, which can be applied in many in the same

ways as in relevant logics which involve this rule but would invalidate the explosive

RAA. In fact, this theorem is also useful in showing that, for instance, the Russell

set in the presence of unrestricted comprehension produces a contradiction of the

usual conjunctive form.6 However, in other cases, there are more straightforward

solutions just invoking the LA3 rules and axioms, allowing for more constructive

proofs of classical theorems than are given in terms of classical RAA. Often, all that

is required is an instance of LEM and some negated-connective rules, indicating that

LEM really is very strong, as is the negation in LA3, despite the lack of the usual

negation rules. Often even these are not required. Consider the following proof of

∀x.x 6= x′:

0 6= 0′ ` 0 6= 0′

∀x.0 6= x′ ` 0 6= 0′ ` ∀x.0 6= x′

` 0 6= 0′
` x 6= x′ → x′ 6= x′′

` ∀x(x 6= x′ → x′ 6= x′′)
SsMI` ∀x.x 6= x′

This proof illustrates a standard dodge which I’ll employ to shorten the proofs

in the following sections. I shall treat the arithmetical axioms and some derivable

theorems as sequents when useful - so, for example, I may use x = y, x = z ` y = z

or x = y ` y = z → x = z instead of introducing ` x = y → (y = z → x = z)

and then analyzing the formula with cuts, as this kind of procedure tends to quickly

expand proof trees beyond clarity or surveyability. Given that ` A → B iff A ` B,

the conjunction and disjunction rules, and cut, these transformations are trivial, and

do not introduce anything other than succinctness and clarity of the presentation.

So, the above is one case where a negative theorem of PA can be given in LA3#

without the use of RAA.7 Of course, this same proof could be reproduced in PA

without RAA. I should be interested to see whether any of the negative formulae

provable in PA by RAA are provable without appeal to it. Some evidence that this

holds is that many of the basic of these formulae are provable in R#, which also

6Otherwise, one is left with a theorem of the form R ∈ R↔ R /∈ R, which is, perhaps, not as explicit
or disturbing as R ∈ R ∧R /∈ R. At very least [27] distinguishes these two formulae.

7The same holds for LA3#∗ , since no appeal is made to the axiom distinguishing these.
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invalidates the standard form of RAA. However, since this system is also inadequate

for PA, this conjecture is not as strong a starting point as we might like. However,

what this conjecture indicates is that at least all the arithmetical formulae proved

in PA Kleene [21] are provable in R#, and so long as these proofs do not require

contraposition, they should also be provable in LA#
3 . It is worth going through a

few more of these proofs to see the standard steps that are made, since many more

complex results simply follow from the basic ones to be outlined here.

Now, probably one of the most standard uses of RAA is to justify negative exis-

tentials - one supposes that an object matching the proposed description exists, shows

that this leads to inconsistency, and thus infers that nothing of the supposed type can

exist, after all. There are some proofs of this kind which can also be reproduced in

LA#
3 without appeal to CM. Consider the following proof of ∀z¬z < 0, where x < y

shall be defined ∃z(z 6= 0 ∧ x + z = y). Given this definition, the desired theorem is

` ∀z¬∃x(x 6= 0 ∧ z + x = 0). The proof features an interesting inference involving

→, where counterexample is used involving another theorem of the system, namely

the left premise of the fourth line:

` z + x = 0→ x = 0

` z + x = 0,¬z + x = 0 x = 0 ` x = 0

z + x = 0→ x = 0 ` ¬z + x = 0, x = 0

z + x = 0→ x = 0 ` ¬z + x = 0,¬¬x = 0

z + x = 0→ x = 0 ` ¬(z + x = 0 ∧ ¬x = 0)

` ¬(z + x = 0 ∧ ¬x = 0)

` ¬∃x(z + x = 0 ∧ ¬x = 0)

` ∀z¬∃x(z + x = 0 ∧ ¬x = 0)

This theorem gives us grounds to believe that the subject matter of A#
3 is N,

which is a nice thing to know, and the proof is straightforward, showcasing how the

negation rules of A3 do recapture some of the work which the negation symbol does

in PA. A similar proof can be constructed showing that ∀y¬y < y
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` x+ y = y → 0 = x

` x+ y = y,¬x+ y = y 0 = x ` 0 = x

x+ y = y → 0 = x ` ¬x+ y = y, 0 = x

` ¬x+ y = y, 0 = x

` ¬x+ y = y,¬¬0 = x

` ¬(x+ y = y ∧ ¬0 = x)

` ¬∃x(x+ y = y ∧ ¬0 = x)

` ∀y¬∃x(x+ y = y ∧ ¬0 = x)

This is a principle provable in LA#
3 which may prove problematic on collapse

models involving cycles, and thus should be avoided in LA#
3∗. For instance, it is not

the case that the left premise of the second application of cut - ` x+ y = y → 0 = x

is true. Any improper nucleus will have some period p such that p + y = y ∧ p 6= 0

where, in the case of heap models, the right-most conjunct, p 6= 0, is not glutty but

simply true. This formula can, however, be proved in A#
3 as follows:

` 0 + y = y 0 + y = y, x+ y = y ` 0 + y = x+ y

x+ y = y ` 0 + y = x+ y 0 + y = x+ y ` 0 = x

x+ y = y ` 0 = x

` x+ y = y → 0 = x

Of course, this is a proof that could be given in PA using LK as the background

logic. However, this proof should not be valid in A#
3∗ and so it is necessary that the

right premise of the second application of cut in this proof be rejected in that system.

The proof of 0 + y = x+ y ` 0 = x is given on the next page

These are some straightforward examples of theorems, many of which are tradi-

tionally given by means of proof by contradiction which do not need to be proved this

way. This is something of a trick resulting of the fact that, in LA#
3 , CM is proven by

appeal to LEM and the → rules, and that the same kind of move can be done with

the negated connective rules. The general form is of a cut, such that the instance of

the cut theorem occurring in the succedent of a premise of the application of cut is

a theorem, the main connective of which is a conditional. Then, with this formula

occurring in the antecedent of a premise of the cut allows one to prove some negated

conjunctive formula by means of counterexample. This seems to be a generally useful

trick available to us. This gives us a bag of tricks with which to avoid explosive RAA

style reasoning, while still getting us some desirable negative theorems. The only
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kind of arithmetical proof which these cannot get us around would be such that, for

some formula ¬A, say the negation of a theorem A, A ` holds in classical PA and K

allows for an immediate proof of some desired formula. I have come across examples

of theorems such that a move like this would make the proof immediately obvious -

however, in none of these cases is it also clear that no other kind of proof is available.

One of these is a theorem necessary to get the correct kind of multiplication proper-

ties off the ground, namely ¬x = 0 → (y · x = 0 → y = 0). This theorem is part of

the construction of the arithmetisation of classical logic given in Mendelson [22, 156],

and it seems to be necessary for results which are necessary for the construction. As

such, it is a desirable theorem for one of our stated purposes.

3.1.1 Absolutely false formulae

One potential method for proving ¬x = 0 → (y · x = 0 → y = 0) in an easy way

follows a move used by Meyer and Mortensen [26] which is to introduce some right-

trivializing formulae, perhaps just one. This is a novelty for LA3, which does not

admit of empty succedent sequences otherwise - there is no definable absolutely false

formula in A3. This formula ought to be something which there are independent

reasons to dislike, beyond simply disliking arbitrary contradictions. That is, it is a

formula which we are to take as evidence that we’ve done something seriously wrong,

even under the assumption that we can correctly prove some contradictions, and that

this bad formula ought to trivialise, as evidence of our doing something seriously

wrong in proving it. For an example, suppose we introduce as another axiom in the

arithmetic language either 0′ = 0 ` , which holds in the cyclic models, or ¬0 = 0 ` ,

which holds in the heap models with some improper nuclei. This would clearly invoke

something like a restricted version of explosion, given unrestricted K. This special case

would have the benefit of getting some short and simple proofs of desirable theorems

back into our hands, and, perhaps, allow us to finish up the construction to the

proof predicate and the Gödel sentence. It is an option left to us by the adoption of

paraconsistent modes of reasoning is that we may still have the choice of taking some

formulae as seriously bad, which we would desire to trivialise. This is acceptable, if we
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can show that, despite this addition, we can still have non-trivial gluts, like G, then

we may still have some motivational ground to stand on. This would have us accept

some formulae as seriously bad, while not requiring us to also admit that an arbitrary

contradiction is seriously bad. This would give us a way to consider claims made

by some paraconsistent or dialethic philosophers of mathematics, while still retaining

the spirit of the program. Those presented above are obvious candidates for these

kind of sentences. Meyer [23] discusses claims like these as possible measures of the

consistency of an arithmetical system, of which negation consistency and triviality

are distinct degrees of inconsistency, and that things like 0 6= 0 ` are somewhere in

between.

However, for our purposes, it is most interesting to note that these make certain

proofs in A#
3 either possible or much easier. For instance, 0 6= 0 ` can be made use

of to easily prove the following base cases of a case-based inductive derivation (in the

style exhibited in [22]) showing that ` ¬x = 0 → (y · x = 0 → y = 0). After these

are proven, the induction step is straightforward, and so shall be omitted.

` 0 = 0
0 · x = 0 ` 0 = 0

¬x = 0, 0 · x = 0 ` 0 = 0

¬x = 0 ` 0 · x = 0→ 0 = 0
` ¬x = 0→ (0 · x = 0→ 0 = 0)

¬0 = 0 `
¬0 = 0 ` y = 0

y · 0 = 0,¬0 = 0 ` y = 0

¬0 = 0 ` y · 0 = 0→ y = 0

` ¬0 = 0→ (y · 0 = 0→ y = 0)

The addition of 0 6= 0 ` , as stated, would seem to serve to get us derivations,

at least simpler derivations, which are not clearly available in A#
3∗. The problem

is whether by adding, say 0 6= 0 ` , we do not undo the paraconsistency of the

arithmetic part of the theory - whether it’s the case that any old contradiction in the

language of arithmetic implies 0 6= 0 and thus triviality. One interesting possibility

here is that introducing 0 6= 0 ` can be done without reducing the system to classical

arithmetic by rejecting ` x′ 6= y′ → x 6= y - since this is pretty clearly a principle

necessary to reduce any arithmetical contradiction to 0 6= 0 , as it allows us to strip

successor-symbols off of numbers standing in the 6= relation. This principle is, by

dint of nothing more than basic visual similarity, related to ` x′ = y′ → x = y, which

is clearly unacceptable for collapse models, so its rejection may provide some reason
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to reject ` x′ 6= y′ → x 6= y, in addition to the reassurance that extra work done by

0 6= 0 ` does not simply buy us back classical formal arithmetic.

This kind of move would, in general, be in keeping with the program of para-

consistent mathematics. It need not be the case that no contradictions trivialise,

but only that not all contradictions trivialise, and that none of the contradictions

which do trivialise are theorems. Instead, what we are free to do is to choose which

contradictions to accept and which to reject, within the confines of the model.8

In the case of proper heap models, where the classical tail contains at least one

member, it is straightforwardly false that 0 6= 0, and to prove this would be to fail to

capture an important fact about the model. In this case it would be sensible to take

0 6= 0 as a sign of failure, and thus allow it to trivialise, like all contradictions do in

a classical context. However, in the case of a cyclic model 0 6= 0 ` would be totally

unacceptable. It is a feature of cyclic models that 0 6= 0 is true, since 0 is collapsed

into an equivalence class with classically distinct numbers. So, even in the case of

collapse models, this axiom is motivated in some models, but not in others. The job

of trivialisation, on this account, is to mark out what is unacceptable on a model, and

it is coherent to claim that not every contradiction trivialises, but that some may,

given some extra-logical facts at our disposal. So, depending on the task at hand

(ie. the model under consideration), we are free to specify the stopping points - the

formulae which will indicate that the system has gone awry, and it is not necessarily

the case that any claim of the form A ∧ ¬A is such a formula.

In any case, even if we cannot recapture all of PA with A#
3 , we can recapture quite

a lot of it, and even more if we take the dodge discussed above. A#
3 is a fairly robust

theory which captures some essential parts of formal arithmetic. This gives us some

ground to consider A#
3∗ and the simple extended and collapse models of arithmetic.

8This is related to a point made by Beall in a number of places that it is not a matter of logic whether
a contradiction is bad or not, but that it is rather a matter of other principles of reasoning. His
general account is presented in [7]. On his picture, we must rely on extra-logical claims to tell us
what contradictions are acceptable or not, but that logic does not decide the point for us. My point
here is along these lines.
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3.2 Axioms for inconsistent models of arithmetic

The inconsistent models of arithmetic come in a variety, and each kind will require

some distinct extra axioms in order to capture their specific properties. I shall propose

to build these model-specific axioms on the background of the basic system of A#
3 ,

in the case of simple cyclic models, and A#
3∗, in the case of any model including

something like a heap, where improper nuclei directly interact with proper nuclei

by a finite number of applications of the successor function. So, the following are

additional principles for axiom systems for the individual kinds of finite model. In

each case, these are given as schemata, where specific terms are input in order to

capture the particular equivalence relations which give structure to the models. I

shall set out the axioms, give some justification for why the axioms I propose are

sensible, and finally state some interesting features of the proof systems produced by

the addition of these axioms.

One general point relevant to all of the following developments is what kind of

order principles are derivable in A#
3∗, as these principles will hold for all the proof sys-

tems developed here. This will give us at least some background information about

the ordering relation of the models, with the possibility that the extra axioms intro-

duced in the cases of the specific models allowing us to derive more order properties.

To this end, we shall take x < y to be defined as before (∃z(¬z = 0 ∧ z + x = y)),

and define x ≤ y as x = y ∨ ∃z(¬z = 0 ∧ z + x = y). This is at least a fairly

standard definition, matching that used in [22], and very similar to that used in [21].

According to the following two results, ≤ in A#
3∗ is at least a pre-order. This matches

the models, and in particular satisfies Priest’s claims regarding the order-types of the

parts of collapse models.

` x = x
` x = x,∃z(¬z = 0 ∧ z + x = x)

` x = x ∨ ∃z(¬z = 0 ∧ z + x = x)

This proof establishes that x ≤ x. The proof of transitivity is presented by cases

on the next two pages, due to space.
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These proofs establish that ≤ is a pre-order, however, different collapse models

have different features as regard potential symmetry conditions which would flesh out

these two conditions. The structural features of the proper nuclei of the classes of

models dictate the options. First, ≤ cannot be anti-symmetric in any of the models

involving non-trivial cycles. This would have the effect of collapsing the cycle to a

point.

Consider the following heap model:9

Figure 10.

0 1 2 3 4

56

3 ≤ 5 and 5 ≤ 3 are both clearly true, and yet if 3 = 5 were true it would simply

result in all the members of the loop consisting of 3 . . . 5 to be equivalent to the

point 3. So anti-symmetry of ≤ cannot hold here. As we’ll see, however, symmetry -

x ≤ y → y ≤ x - does generally hold for the cyclic models, meaning that the ordering

is an equivalence relation. However, the heap models provide less obvious means to

proving other ordering principles. This involves a principle indicating that if some

numbers occur in the cycle, then they are symmetrically ordered with respect to each

other. We shall come back to this when discussing heap models.

In the following sections, we shall consider the basic classes of finite inconsistent

models of arithmetic as described in the first chapter, set out the additions to A#
3 or

A#
3∗ necessary to capture their salient features, and provide some proofs that at least

some of those features considered by Priest [35] are provable in the appropriate class

of axiom systems.

9The argument is obviously applicable to cyclic models as well.
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3.2.1 Simple extended models – SEn

These simple models are obtained by adding, for some n, 〈n, n〉 to I−(=). The

axiomatization should be simple, though this model is difficult to depict. We should

only need to add ` n 6= n to A#
3∗. Axioms of this form shall be called SEn, where

n is the non-identity in question. So, SE0 is ` 0 6= 0 and the associated model is

that where ` 0 = 0 ∧ 0 6= 0, and, due to the fact that ` x = y → x′ = y′ and

` x 6= y → x′ 6= y′, it follows that ` ∀x(x = x ∧ x 6= x). In general, every ancestral

successor of n shall admit of a proof that it is equal to itself and a proof that it is

not equal to itself. This matches what is said in Priest’s paper about these models

(note that there seems to be a decision as to whether the ancestral predecessors of n

are affected by this alteration to the model). The result is that the model obtained

by adding 〈0, 0〉 to I−(=) is that given above.

As described, these models are essentially just the same as the standard model but

with a single glutty sentence (namely n = n ∧ n 6= n) leading into a chain of glutty

sentences up the ordering. A possible issue is whether to use A#
3 or A#

3∗ for these

models. This decision point is just the issue considered in the first chapter, stated

in slightly different terms. If it is to be the case that the predecessors are trivialized

as well then the full-strength successor axioms will be correct - so A#
3 is the correct

choice. If not, then we must remove some of these principles, and something like A#
3∗

is desirable, depending on just which successor principles we may wish to rid ourselves

of.

These models do not have many other particularly interesting features. They

are essentially just the standard model with some least glutty element such that all

elements later than that element are also glutty. The result is that they are non-

trivial, but not adding anything remotely interesting to the standard model. As such,

we shall not treat of the SEn models any further than to say what we have. That the

axiom schema, and the functionality of ′,+, · captures the salient properties of these

models is pretty clear, as the only other salient properties of the models are those

which should be captured by the rest of the Peano-style axioms included in A#
3∗. So,
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we shall move on to the Collapse models.

3.2.2 Cyclic models – Cn

These are very similar to modular arithmetics induced by equivalences such as x ∼ y

iff x ≡ y (mod n), resulting in simple cycles. The difference between cyclic models

and modular arithmetics is just that the structure is describable in terms of inconsis-

tent facts, as a result of the meanings of = and 6= on the LP semantics. This model

is a quotient algebra of the standard model of natural numbers and each number on

the above graph is an equivalence class such that t = {x;x = t (mod n)}. A#
3 is

appropriate here since every number in the cycle, that is every number, has a unique

successor and a unique predecessor, so we may have the full suite of successor axioms

displayed in the previous chapter. The salient features of these models seem to be

captured by adding to A#
3 only:

` n = 0 (Cn)

where into n is substituted the period of the cycle. This axiom allows the following

straightforward proof, which comes in handy, where the final line is just a cut on Cn:

n = 0 ` x+ 0 = x+ n

x+ 0 = x x+ 0 = x, x+ 0 = x+ n ` x+ n = x

x+ 0 = x+ n ` x+ n = x
n = 0 ` x+ n = x
` x+ n = x

Cn, naturally, provides the proof of an explicit contradiction: ` ¬∀y¬y′ = 0 ∧

∀y¬y′ = 0, where n′ is the period:

` n′ = 0
` ∃yy′ = 0

` ¬∀y¬y′ = 0 ` ∀y¬y′ = 0

` ¬∀y¬y′ = 0 ∧ ∀y¬y′ = 0

The functionality of the successor function – ` x = y → x′ = y′ – will ensure that

the rest of the simple true equations of the cycle involving only ′ will be provable

from this axiom. It is nothing more than a proof involving a single cut on Cn and

an instance of x = y → x′ = y′ to get that ` n′′ = 0′, and the other instances of

basic equations involving ′ are just as straightforward. Theorems involving +, · do not
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obviously cause any other problems. So, it seems at least intuitively plausible that

LA#
3∗+ Cn ought to provide all the right atomic theorems about its associated model

in the restricted language involving only that the operations ′, +, and · behave as

should be expected, since the axioms involving +, · are unchanged from the usual. As

a result, the classical principles generally lost are those related to the loss of injectivity

of ′ - like right cancellection of + as discussed in the previous section.

It is interesting to note that it is a fairly intuitive result of the structure of cyclic

models that the ordering relation on their members satisfies symmetry - x ≤ y → y ≤

x. Consider the above example of Cn. To say that x ≤ y is essentially to say that

x, y are in the cycle, i.e. that they are in the model. It is the case that for any object

in the cycle it is strictly less than everything else in the cycle (including itself), since

one only produces another member of the cycle by taking the sum of a member of the

cycle with any other member of the cycle (including the period of the cycle, which is

an identity for addition, alongside 0). The proof is quite straightforward, relying on

functionality of addition and on Cn. The proof is on the next page.

So, on the Cn family of models, ≤ is an equivalence relation. That is, every element

of a Cn is structurally equivalent to every other member. So ′ (something like the

image of ≤) behaves in a somewhat strange way, and this is likely to be matched in

the behaviour of ≤. What is of potential interest here, and after we have considered

axioms for heap models, is whether the weakness of the ordering within chromosomes,

such as a cycle in a cyclic model affects any changes in the ordering over nuclei (�)

should we move on to consider the general framework and infinite models. Priest [36]

claims that � is a partial order, but this is something which almost certainly will not

fall out of this axiom system in any obvious way – of course � only comes in with

the infinite models, as in the finite models it is indistinguishable from ≤. This is a

result of the fact that the only nuclei occurring in a finite model are either cycles or

improper nuclei (the initial tail of standard natural numbers) - so � could hold either

between two improper nuclei, where it would be indistinguishable from ≤, or it could

hold between an improper nucleus and a cycle, that is, between the final member of

the initial tail and the cycle as occurring in a heap model.
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In any case, there is no clear way to extend these facts about ≤ in cyclic models

to get information about � in the general framework for infinite models. However,

the information given about ≤ is at least correct, and we have some justification

to think that the axiom systems including Cn capture the salient features of the

cyclic models. What is wanted, however, is a decidability result which I do not have

and thus cannot present here. A potential way to prove completeness of an axiom

system of this kind for its associated cyclic model would seem to rely on a proof that

` ∀x(x = 0 ∨ x = 1 ∨ · · · ∨ x = n). I don’t know whether formulae of this kind are

generally provable, but it is under investigation.

3.2.3 Heap models – Hn
k

This class of models is characterized by a finitely long ‘tail’ – in the diagram equivalent

to 〈0, . . . , p−1〉 – followed by a single cycle of some finite period n, induced by quotient

algebras with defining equivalence relations like x ∼ y iff (x, y < n ∧ x = y) ∨ (x, y ≥

n∧x ≡ y (mod k)). This is also the class of models which necessitate the introduction

of A#
3∗ in that they feature some element with two distinct predecessors - namely, the

first element of the cycle which is preceded by the last improper nucleus and the

penultimate member of the cycle (where the ultimate member of the cycle is just the

first member over again).

Given this consideration, much the same as in the previous case we can specify

one obvious additional axiom. This extra axiom states an identity between the first

number in the cycle n and itself plus the period of the cycle – n + k. Note that k is

a standard number, since it is a member of the collapsed equivalence class k. This is

worth noting only to indicate that it is irrelevant and that one can just as easily write

n+ k, as I shall be from now on. There are two possibilities in a finite heap model: k

can occur either in the tail of improper nuclei or in the proper nuclei, ie. a cycle. If k

is an improper nucleus then its behaviour is no different from k, as the only numeral

occurring in k is k. On the other hand, if k occurs in the cycle, then n+ k will have

the same result as n+ k (without the troublesome mixing of type levels), since n+ k

and n + l where k ∼ l will have the same result. As such the schemata we seek to
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add to A#
3∗, where k is written instead of k, and where, by stipulation, n > 0:

` n = n+ k (Hn
k)

The name Hn
k indicates the first member of the cycle, n, while k denotes the cycle

of the cycle. In each such model, this particular statement will contradict whatever

statement specifies the next number in the sequence - suppose that k = n = 5, and

so we add H5
5 to A#

3∗. We shall have a theorem ` 10 6= 5, given the definition of 6=,

and the axiom shall produce ` 10 = 5. As in the above example ` x = y → x′ = y′

should ensure that the rest of the equalities of the cycle will fall into place, as well

as allow the proof of the right equalities up the improper nuclei. What must be done

is to ensure that the cycle does not trivialize, or interact with the improper nuclei in

any problematic ways. Part of this is to ensure that the ordering is of the appropriate

kind. It should be a linear order for the improper nuclei in the tail, but should act

as does the ordering on a cycle when applied to members of the proper nucleus. In

essence there are two ordering relations which meet in the last improper nucleus in

the tail and its successor in the cycle.

So, the kind of principle we would like, where ′n is the last improper nucleus, is

∀x∀y(x, y ≥ n → (x ≤ y → y ≤ x)), as well as something for the improper nuclei

which specifies a linear ordering. Perhaps a simple way of stating that x is in the

cycle, as would be useful in the above antecedent, is that x + k = x, where k is

the period of the cycle as introduced in Hn
k . This would enforce the claim that the

cycle occurring after the finite tail does behave like a cycle in the cyclic models, and

give us some ground for the claim that we’ve captured the heap models. A similar

theorem which expresses something very similar, but with a much shorter proof is

` n ≤ x → x < x. Since x ≤ x is a theorem as a trivial result of ` 0 + x = x, if

x < x is true, it must be because some y 6= 0 is such that y + x = x. In the heap

models, this is clearly true for any x in the cycle, since the period k should be such

that ` k+x = x. This is just what ` n ≤ x→ x < x expresses, however we must add

another condition to Hn
k in order to prove one of the cases of this theorem. Namely,

it must be stated:

` n = n+ k ∧ k 6= 0
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With this in tow, the theorem is easily provable, and this addition to the axiom

is hardly a major addition. It essentially stipulates that the cycle is in fact a cycle

and not just a point. The salient parts of the proof of ` n ≤ x→ x < x are stated on

the following page. This gives us some indication that the cycle in a heap model does

behave like a cycle, especially since it is essential to the proof that the x in question

be in the cycle, we could not simply derive ` x < x.

There is much left undone for an appropriately thorough treatment of these mod-

els, however, the beginning is in place, and the axiom system is simple enough to

give us an easy means to continue work on these models. As we have started to do

here, we must ensure that the binary functions behave as expected in the tail and

cycle. If the successor function works as it should, then it is plausible that the binary

functions which operate in terms of recursive definitions in terms of successor will

behave as expected. What remains to be seen is that this is the case, and that there

are no strange and undesirable side effects. However, there is very much left in order

to do this in a satisfactory way.

All of the finite inconsistent models are just like these models or are composed

of models similar to these. The axiom systems for the other models should simply

involve adding to LA#
3∗ some instances of SEn, Cn, or Hn

k . There are a handful of

possibilities for such composition, but they have been put aside for the purposes of this

chapter. This task may well be complicated by having to deal with the interactions of

various proper nuclei, but at least in the finite case this seems feasible. Along the lines

of these necessary alterations, axiomatisablity results for the former kinds of models

should provide an obvious generalisation for any finite collapse model composed of

other finite collapse models. This may not be the case if we consider infinite models

which can have multiple proper nuclei. In this case, we must show that, under the

right kind of axiom system, � can be defined to have the right properties, and that

the elements of different lots don’t interact in ways we do not want. This would seem

to require typing the language to reflect the different lots a number may fall into and

restating parts of the arithmetical axiom system with these types in mind to be sure

that one cannot get from one lot to another by means of successor. Perhaps the way
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forward on this front is to define � as allowing us to move through different types,

each type answering either to an improper nucleus or to a sequence of proper nuclei

(the classical tail of a heap-like model).

In any case, these are little more than speculation, as we have not considered the

infinite models in anything more than a cursory glance in the first chapter, designed

to provide a complete picture of the collapse models. Clearly, there is very much

left to do in the way of completing the work on the finite models, let alone the

infinite models. However, it is also clear that just these problems provide the way

forward for the program, hopefully giving rise, eventually, to adequacy results for the

axiom systems we have presented. In the meantime, however, if one is convinced that

this topic is worth considering, then one ought also to be convinced that the open

problems are interesting and that answers to them would be valuable and worth the

effort required to find them.
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Conclusions

I have, in this thesis, attempted to provide a sensible axiom system for the finite

collapse models of arithmetic and, in so doing, to set out a logic which is generally

well suited to doing mathematics in a paraconsistent framework. A3 is a powerful and

versatile system, differing from classical logic in a minimal way while still rejecting

explosion. In general, I would like to claim that most any logical work which can be

done with LP can also be done with A3, except those topics where the failure of modus

ponens in LP is particularly appealed to - such as in some philosophical work of JC

Beall [8]. These projects aside, A3 is a logic which captures the best elements of LP

while avoiding what is, generally, considered most unpleasant about it - invalidating

modus ponens and other standard conditional principles. In particular, A#
3 seems the

basis of a solid toolset for studying mathematical subject matter from a paraconsistent

perspective, whether that subject matter be dialethic or not.

A3’s strong points come in the form of, first, intuitive correctness. Admitting the

deduction theorem and modus ponens are pretty fundamental notions for a condi-

tional connective, and having a connective which behaves in the ways specified by

these principles opens the way for a logic otherwise very much like LP to be used

to investigate conditional claims in a natural way. Second, A3 is simple: it can be

specified in a many-valued semantics and some natural proof systems are available for

it, at least two of which are presented in this work.10 A very simple signed tableaux

system can easily be presented, just following the truth table definitions of A3’s con-

nectives. This is in distinction to some other proposals for a conditional connective

10There is a third if one considers the sequent calculus which replaces the axiom ` A,¬A with the
rule (` ¬).
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to be added to LP, which require a presentation in terms of a ternary accessibility

relation in a relational semantic structure. While these proposals are very interest-

ing, and allow for a lot of flexibility in the specification of similar connectives, their

semantics is much less simple than that which can be given for A3, and this sim-

plicity is a virtue, at least in terms of trying to disseminate the logic. Third, A3, at

least in the propositional part, has shown to be maximally paraconsistent, that is,

no non-conservative extension of A3 would reject explosion. This ought to give one

confidence that A3 captures paraconsistent reasoning in as ‘lossless’ a way as possi-

ble. On this grounds, if someone who is only familiar with classical or intuitionist

modes of reasoning should find themselves interested in paraconsistent reasoning, A3

is a great logic for such a person. In the same note, it is a good choice for an initial

application of paraconsistent logic to some area where it has not been used.

These benefits I claim for this logic. I am much less sure about exactly what can

be done with A#
3 or A#

3∗, however, these initial results are at least intriguing, if not

promising, and there is a great deal of ground left to cover. Some of this ground,

at least, may well provide insight into the paraconsistent approach to mathematics

beyond simple arithmetical theories. In any case, there are a number of potential

directions for future research which are opened up by this thesis, the first of which,

perhaps, is to provide proofs that the appropriate extensions of A#
3∗ actually do ax-

iomatise their associated collapse models. Beyond this, there are natural extensions

into related areas of classical mathematics which may be amenable to a paraconsis-

tent treatment on the basis of A3. However, this initial presentation serves to set out

the background of the logic, and give some initial indication of what can be done in

it.
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1–14.

[9] , LP+, K3+, FDE+, and their ‘Classical Collapse’, The Review of Sym-

bolic Logic 6 (2013), no. 4, 742–754.

116



[10] Francesco Berto, There’s Something about Gödel: The Complete Guide to the
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