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ABSTRACT

This thesis is concerned with the theory of hysteresis operators and their coupling
with different differential equations. Firstly, the concept of hysteresis operators is
introduced and some of their most important properties are listed. Secondly, a
uniqueness theorem for an ordinary differential equation with non-Lipschitz hys-
teresis boundary curves is proved, using a simple theorem from ordinary differential
equations. Thirdly, a partial differential equation of parabolic type with hysteresis
is studied by a semigroup approach, as pioneered by A.Visintin, and asymptotic

stability of solutions is obtained via this approach.

Fourthly, a partial differential equation of parabolic type with hysteresis in the
source term is considered. Existence of periodic solutions of this equation is proved
using fixed point arguments.

Finally, a hyperbolic equation of first order with hysteresis is studied and an entropy

condition is derived.
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Introduction

0.1. What is hysteresis

The term hysteresis means to lag behind, and originates from ancient Greek.
When speaking of hysteresis, one usually refers to a relation between two scalar
time-dependent quantities u(¢) and w(t) that cannot be expressed in terms of a
single-valued function, but takes the form of loops like the one depicted in Fig.0.1.

w

FiGtre 0.1. Hysteresis diagram.

Hysteresis diagrams like the one depicted above arisc in different arcas of science
such as ferromagnetism, elastoplasticity, superconductivity, spin glasses, porous
media filtration, thermostats, plasticity and shape memory alloys; numerous other
examples can be added. Hysteresis diagrams are often related to each other by their
appearance and shape, that is, the notion of hysteresis is essentially 2 phenomeno-
logical one. Thus, any analysis of the formal structures and common features of
hysteresis that abstracts from the respective meanings of the involved quantities
has, by its very nature, to be a mathematical one.

It seems that the term hysteresis was first used by Ewing in 1882 in his study
of ferromagnetism. In 1887 Rayleigh proposed a model of ferromagnetic hysteresis,
equivalent to what we call today the Prandtl-Ishlinskii model of play type. Another
model was considered by Duhem around 1897. There were scveral other models
developed, e.g. the Preisach model in 1935.

The mathematical development has lagged considerably behind the physical
one. It was only in 1966 that hysteresis was given a first functional approach - due
to an engineering student, Bouc. In 1970 Krasnosel’skii and co-workers proposed

1
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a mathematical formulation of the Prandtl-Ishlinskii model in terms of hysteresis
operators, and later they conducted a systematic analysis of the mathematical
properties of these operators. In the 1980°s several applied mathematicians also
began to study hysteresis models, mainly in connection with applications.
Mathematically, a hysteresis relationship between two functions « and w that
are defined on some time interval [0,¢] and attain their values in some sets U and
IV, respectively, can be expressed as an operator equation with an operator F:

w = Flu]. (0.1.1)

Hysteresis operators are characterized by two main properties:
(i) Memory: at any instant ¢, w(t) depends on the previous evolution of x.
We also assume that

if u; = ua in [0,t], then [F(u,)|(t) = [F(u2)](t)(causality). (0.1.2)

(i) Rate independence: the output w is invariant with respect to changes of
the time scale, formally

Flu]oo = Fluo o] (0.1.3)

for all inputs u and all increasing functions ¢ mapping the considered time interval
onto itself.

When only (i) is fulfilled, we speak of a Volterra operator.

At any instant ¢, the output w(t) usually depends not only on u[fo.,]. but also
ou the initial state of the system. Hence, the initial value wy = w(0). or some
equivalent information, must be prescribed. Therefore we write Flu.wg).

For any such operator F(u,w,) it is also sensible to require the semigroup
property:

V(us wO) € Dom(]:)7v[t17t2] c (Ole-
setting w(ty) = [F(u, wo)] (¢;), then (G.1.4)
[F(u,wo)] (t2) = [F(ultr + ), w(ti))] (t2 = t1).

This has the following meaning: for any t, € (0,T), in order to evaluate Flu, wo)(ta)
for ¢2 > t, the information contained in F(u, wo)(¢) can replace that given by wy
and the evolution of u in [0,#,]. Among other things this implies that t = 0 is not
a privileged instant. Krasnosel'skii and Pokrovskii call such an operator determin-
istic. However, the semigroup property can also have other forms, depending how
the information on the initial conditions is represented.

The ratc independence property offers the possibility of graphical representa-
tion of the operator, see Figure 0.1.
Many hysteresis operators also satisfy other typical properties:

1) Piecewise monotonicity:

V(u,wo) € Dom(F),V[t1,t2] C [0,T),
if u is nondecreasing (resp. nonincreasing) in [t;, 2], (0.1.5)
then so is F(u, wo).
If u, F(u,wo) € W'1(0,T), then this can be described by a simple inequality:
du

d .
T [d—t}'(u,wo)] >0 a.c. in (0,7). (0.1.6)
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2) Order preservation:

V(u1, wio). (u2, wag) € Dom(F),Vt € (0,T],
if u; < usin [0,t], and wyg < wag, then (0.1.7)
Fluy, wio)(t) < F(ua, wag)(t).

The piecewise monotonicity property is especially natural for rate independent

operators, however, there also exist rate dependent operators which satisfy it. The
following example is due to P.Krejéi (see [37], p.62): Let

[F(u)](t) = tu(t) —/0 u(7)dr. (0.1.8)

Then for any u € WHH(0,T); w := F(u) € WH(0,T) and w(t) = [ 794 ()d7 in
[0,T, so (0.1.6) is clearly satisfied. It can be casily checked that this operator is
rate dependent.

>

7

FIGURE 0.2. The stop operator, G.

2h

f e e e Lol

The stop operator, depicted in Figure 0.2, is an example of a hysteresis operator
(i.e. an operator with memory, which is rate independent), which is piecewise
monotone and is not order preserving. The stop operator can be defined first for
any continuous, monotone input « as

min{h, u(t) — ug + wo} if u(t) is nondecreasing

0.1.9
max{—h,u(t) —uo + wo} if u(t) is nonincreasing, ( )

w(t) = G(u,wo) = {
where & > 0 and |wg| < h. Then the output w can be defined for any piecewise
monotone continuous input using the semigroup property (0.1.4) and then extended
to any continuous input by continuity, sce [12].

To sec that the stop operator is not order preserving, consider

Wip = wyg = h, ui(t) =0, us(t) = sint, for0<t<m.
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There also exist rate independent operators which are not piecewise monotone,
e.g. the operator

E(uywo) = —E(u, wo) = —[1 = G(u, wo)). (0.1.10)

where G is the stop operator defined above and £ is the play operator depicted in
Figure 0.3.

wW=E w=E

FIGURE 0.3. The play operator £ and the operator E=-¢.

Clearly £ is a rate independent operator, which also satisfies the semigroup
property and is not piecewise monotone, since £ is.

The play can be thought of as a piston with plunger, of length 2h (Figure 0.4).
The input is the plunger position u(t), the output is the position of the center of
the piston w(t). Figure 0.3 shows the rules of motion.

2h

.! h.'——!
u w
FIGURE 0.4. Play - a piston with plunger.

0.2. Definitions of hysteresis operators and their properties
0.2.1. Generalized play operator.
Let
7,7 : R — R be continuous nondecreasing functions with +, < 1. (0.2.1)

Now, given wg € R, we construct the hysteresis operator £(-,wq) as follows. Let u
be any continuous, piccewise linear function on R such that u is linear on (ti-1,ti]
for ¢ = 1,2,... We then define w:= £(u, wg) : Rt = R by

w(t) = { min{7(u(0)), max{7,(u(0)), wo}}  ift=0,

min{v(u(t)), max{~-(u(t)), w(ti—1)}} ift € (tim1,ti],i=1,2, ...
(0.2.2)
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Note that w(0) = wo only if +(u(0)) < wo < (u(0)). If wo lics outside this
interval, the actual initial value w/(0) of the operator is then obtained as a projection
of wq onto the closest hysteresis boundary curve, see (0.2.2). In the rest of the thesis
we do not distinguish between wo and w(0), keeping the previous remarks always
in mind.

As proved in Visintin [37], Section III.2, for any continuous piecewise lincar func-

tions u;, uz on RY, with the notation € := E(ug,wor), k = 1,2, we have the
following inequality:
max [61 - E'_)' S max {lfl(tl) - Eg(tl)l,m_w (max |u1 - UQI) } (02.3)
(21,22} [t1,23]

Y[ti,t2] C [0,T], T € R,

where for any continuous function f : R — R and any constant M > 0, |f],,(h)
denotes its local modulus of continuity:

Uy (k) s=sup{{f(y) = fly2)l 1,02 € (M M) |yy —y2| S R} VR >0,

(0.2.4)
myr(h) = max{|vly, (k). 7| (B)} Yh,M > 0, (0.2.5)

and
M := max{|ur(t)|: t € [0,T].k = 1,2} (0.2.6)

Hence &(-, wo) has a unique continuous extension, denoted by £(-, wg) again,
to an operator

£:C(R*) x R — C(R*). (0.2.7)

This operator is called a generalized play. see Figure 0.5.

W

x(/)/ Y.(u)

FIGURE 0.5. The generalized play.

cy
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The inequality (0.2.3) holds also for this extended operator, which is then
uniformly continuous on bounded sets. If ;, . are Lipschitz continuous, then £ is
also Lipschitz continuous.

THEOREM 0.1. The generulized play operator defined above is rate independent.
piecewise monotone and order preserving. If v, 4. are Lipschitz continuous, then
for any wq € R, £(-,wq) operates and is bounded from W'P(Q,T) to W1P(0,T) for
any p € [1,00]. It is also weakly continuous for any p € (1. ), weak star continuous
for p= .

Moreover, denoting by L the larger of the Lipschitz constants of 1. “ir, for any
(u, wo) € WH(0,T) x R,

<Ldu

— .e. 1 .T). 0.2.
< ot a.e. in (0,T) (0.2.8)

d
6, wo)

Proofs of the above properties and many others can be found in Visintin (37].
or in Brokate and Sprekels (3], where a different approach is taken, based on so
called memory sequences, which we will not explain here in dctail.

0.2.2. Generalized Prandtl-Ishlinskii operator of play type.

To define the generalized Prandtl-Ishlinskii operator of play type, let us assume
that we are given a measure space (P, A, i), where 4 is a finite Borel measure. For
p-almost any p € P, let (7,1, v,r) be a pair of functions R — R, satisfying (0.2.1),
and for each p € P let wyo € R, be a given initial value. Let £,(-,wy) be the
generalized play operator corresponding to the couple (4. ¥,r). Then the operator
defined as

‘S.‘u (‘.‘v{wpo}pe'p) = AEP(&flL'pﬂ)dl‘(/})

is a generalized Prandtl-Ishlinskii operator of play type. Intuitively, this operator
is a weighted superposition of generalized plays with boundary curves =, Ypre
Let us denote by M(P) the set of measurable functions P — R. If the family
{~ot7pri p € P} is equicontinuous, then by the estimate (0.2.3), £, is also strongly
continuous from C(R*) x M(P) to C(R*). If p is nonnegative, then &, is piccewise
monotone and order preserving and satisfies a theorem similar to Theorem 0.1.

0.2.3. Delayed relay operator.
For any couple p = (p1.p2) € R? with p; < pa, we introduce the delayed relay
operator

he : C°([0,T]) x {~1,1} = BV(0,T)u C%([0,T)), (0.2.9)

where C{([0,T)) denotes the space of functions right-continuous in [0,T’). For any
u € C°([0,T)) and any € = =1 or 1, hp(u,€) = w: [0,T] — {—1,1} is defined as
follows:
-1 ifu(0)<p
w(0)=4& ifpy<u(0)<p (0.2.10)
1 ifu(0) 2

for any t € (0,T), setting X, = {r € (0,T), u(r) = p; or pa}
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w(0) ifX, =0
w(t) =< -1 if X, #0 and u(max X,) = p; (0.2.11)
L if X: # 0 and u(max X;) = pa,
see Figure 0.6.
w
-

T

I Py | u
: o

-~ -1

Fictre 0.6. The relay operator.

The delayed relay operator is a rate independent, piecewise monotone. order
preserving and discontinuous hysteresis operator (in any sense).

Especially for applications to differential equations, it is convenient to extend
the delayed relay operator to a maximal monotone graph, that is to fill the jumps
in the corresponding graph with vertical segments.

So we introduce a multivalued operator, which we denote by k,. For any u €
Co([0,T]) and any £ € [-1,1)], w € k,(u,€) if and only if w is measurable in (0,7),

if u(t) # p1,p2, then wis constant in a necighbourhood of ¢
if u(t) = py, then w is nonincreasing in a neighbourhood of ¢t (0.2.12)
if u(t) = pa, then w is nondecreasing in a neighbourhood of t,

{-1} ifu(0)<p
(-1.¢] ifu(0)=p1
w(0) € ¢ {¢} if p1 < u(0) < p2 (0.2.13)
&1 ifu(0)=p,
{1} if u(0) > po,

{-1}  ifu(t)<p
w(t) € < [~1,1] if p; < u(t) < p2 (0.2.14)
{1} if u(t) > pa.
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The behaviour of k,, is outlined in Figure 0.7. Note that the graph of ko in the
(u, w)-plane includes the whole rectangle [p,pa] x [~1,1]. This operator is called
a completed delayed relay operator.

k,: C°0,T)) x [~1,1] — P(BV(0,T)) (here P denotes the power set) .

w
D e
' 1
........ .~
p. u
e ||
........ ...
o)
- -1

FIGURE 0.7. The completed delayed relay operator.

0.2.4. Preisach operator.
The set of possible thresholds of delayed relay operators forms the so called Preisach
(half) plane

P={p=(ﬂl-/’2) eRzapl <P'.’}- (0'2‘15)

We denote by R the family of Borel mecasurable functions from P into {-1,1} and
by {€,} a generic element of R. We fix any finite (signed) Borel measure u over P,
and introduce the corresponding Preisach operator

H, : C°([0,T]) x R — L®(0,T) n C([0, T))
P10 = [ ol &(0u(e) Ve e 0.T]
P

This model has very nice geometric properties.

THEOREM 0.2. For any finite Borel measure u over P, the operator H, is
causal and rate independent, so it is a (possibly discontinuous) hysteresis operator.
If p 2 0, then H, is piecewise monotone and order preserving.

If p is a finite Borel measure over P and if

36> 0:p({(p1,p2) €EP:p1-p; < 6}) =0,
then M, : C%([0,T]) x R — BV(0,T).

€u={l if p1+p2 <0,

If ;
-1 ifp1+p2 >0,
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and

Si={z:p = [hp(u.€)T) : u € C°([0.T])},
then for € € S we have

Hu(.,€) : C°([0,T]) — C°([0,T))
and H, is strongly continuous if and only if
p(Rx{r})=p({{r} xR)=0. vreR.

Moreover H,, is Lipschitz continuous with Lipschitz constant equal to L if und only
if

sup u(N(B,¢)) < Le Ve > 0,
BEB

where for oy = 517';31, gy = &55"1 we define
N(B.€) = {(g1,02 + a) € RT x R: (01,92) € B.|a| < €}

and B := set of mazimal untimonotone graphs in P.
We introduce the notation:

Ri(A1.A2) :={p € P: A < pi < Ao}, =12
k(C) := 2sup{p(Ri(M.A2)): 0< A2 = A £¢,i= 1,2} V¢ eR.
If E(¢) < C¢ v¢>0 for some constant C > 0,
then, for any v € WH1(0,7T),
d
= < -

Hence My maps WP(0,T) into itself for any p € [1,00]. and is affinely bounded.
It is also weakly continuous for any p € [1.c), weak star continuous for p = .

du a.e. wn (0,T).

REMARK 0.1. Under some hypothesis M, is actually strongly continuous for
1 £ p < oc and Lipschitz continuous on bounded subsets of 1¥7!:1(0,T).

For the proof of Theorem 0.2, see [37], Chapter IV; for the proof of the above
remark see [4]; p.60-61.

There are also special relations between various types of hysteresis operators.
For example it is clear that the generalized play operator is a special case of the
generalized Prandtl-Ishlinskii operator of play type. The following theorem shows
a relation between the generalized play, the generalized Prandtl-Ishlinskii operator
of play type and the Preisach operator.

THEOREM 0.3. Let u be a nonnegative Borel measure over P. Assume that the
support of p is confined to the graph T of a curve with equation p; = p(p,), where

p:R — R is continuous and strictly increasing, p(p1) > p1 Vp € R. (0.2.16)
Denote by p; the projection of u onto the p;-azis, that is,
#i((2,0)) := p({(pr,p2 = p(p1)) 1@ < pi <b})  ¥(a,b) CR,i=1,2
define ¥(< 0) by the condition p(v) + ¢ = 0, and set
n(u) = p1((T,u)), ¥ 1= p2((—7,u)) Vu € R, (0.2.17)
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with the convention that p1;((3,a)) := —pi((a,8)) ifa < 3.
Then i and . fulfill (0.2.1), and the corresponding generalized play operator
&(-.0) is equivalent to the Preisach operator Hu(-,E%). Moreover,

w7H0) = —,."1(0) = 7. (0.2.18)

Conversely, let the curves i, . be absolutely continuous, and fulfil conditions
(0.2.1) and (0.2.18) (here the latter constitutes the definition of 7). Then the
corresponding generalized play is equivalent to a Preisach operator, whose measure
# 18 supported by the graph T of a curve with equation ps = p(p,).

A similar theorem holds also for a generalized Prandtl-Ishlinskii operator of
play type:

THEOREM 0.4. Let (I,v) be a finite measure space. For any T € I, let iy be a
finite nonnegative Borel measure over P, having support confined to a curve [y of
equation py = p-(p1) fulfillig (0.2.16). Assume that for any Borel set A C R? the
function T — p-(A) is v-measurable in I, and set p(A) = I pr(A)du(7).

Then for any T € I, H,, (-,€") is equivalent to the generalized pluy operator
E+(,0) corresponding to 4] and + defined in (0.2.17). Hence the averaged operator
Hu(-, &%) = f, Hy, (- €%)dv(T) is equivalent to the generalized Prandtl-Ishlinskii

operator &,(-,0) := J1 &-(-, 0)dv (7).

The proofs of theorems 0.3 and 0.4 can be found in [37].

The mathematical studies of hysteresis are mainly confined to two main areas.
The first one studies different models of hysteresis and their properties. Since 1970,
when Krasnosel’skii and co-workers proposed a mathematical formulation of the
Prandtl-Ishlinskii model in terms of hysteresis operators, Krasuosel'skii, Pokrovskii
and others conducted a systematic analysis of the mathematical properties of these
operators. In the period 1970-1980 they published a number of papers, which
formed the basis for the 1983 monograph [12] of Krasnosel’skii and Pokrovskii
(translated into English in 1989).

Most of the results about play and stop operators are due to Krasnosel’skii and
Pokrovskii, however properties of those operators were studied also by Krejéi [19].
[20], Brokate (3], Krejéf and Lovicar [22] and by Visintin [35].

Mathematical aspects of the Preisach model were dealt with by Krasnosel’skii
and Pokrovskii. Properties of the Preisach operator were analyzed by Brokate and
Visintin (5], using an approach different from that of Krejci [17].

Agreement between calculations based on the Preisach model and experimental
results on ferromagnetic materials is often poor. Nevertheless, this model allows a
qualitative understanding of many magnetic processes, and is widely used. Several
physically justified modifications have also been proposed, to get a better quan-
titative agreement with measurements. For instance, in [6] Della Torre proposed
replacing the relation M = H(H) by M = H(H + aM), where a is a positive con-
stant - this is known as the moving Preisach model. Here M is the magnetization
of the material and H is the applied magnetic field. See also [7], [30], [31], for
cxample. Several generalizations of the Preisach model are discussed in detail in
the recent monograph of Mayergoyz [28].

There are other hysteresis models which have been studied, e.g. the Duhem
model.
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So far only a few phenomena exhibiting hysteresis have been givenn a mathe-
matical formulation. Many open problems remain. For instance, we do not yet
have any satisfactory vectorial model of ferromagnetic hysteresis.

The other area of research is more closely related to applications and consists
of studying differential equations involving hysteresis operators of different types.

Ordinary differential equations coupled with hysteresis nonlinearities were stud-
ied e.g. by V.I.Borzdyko, [2], A.A.Vladimirov, M.A.Krasnosel'skii and V.V.Cher-
norutskii, [38]. This coupling leads to interesting mathematical problems in the
theory of nonlinear oscillations, see e.g. [11], [26], [27].

Hysteretic constitutive laws in continuum mechanics formulated in terms of
hysteresis operators lead in a natural way to partial differential equations coupled
with hysteresis operators, where the former represents the balance laws for mass.
momentum and internal energy.

These equations can be investigated by means of few fundamental methods:

(i) Formulation of the problem as a system of variational inequalities;

(ii) Formulation as a differential equation containing an accretive operator and
then application of the theory of nonlinear semigroups of contractions. This ap-
proach was used mainly by Visintin [36] and [37] and more recently also by Little
[23] and Little and Showalter [24]. See also [25] and [29].

(iii) Formulation as a fixed point problem, and usc of an appropriate fixed point
theorem;

(iv) Approximation, a priori estimates, and passage to the limit by means of
compactness techniques.

As long as the hysteresis operator has suitable continuity properties and does
not appear in the principal part of the differential equation, the existence theory
is not too difficult; in this case usually enough compactness can be extracted from
the equation.

Once the hysteresis operator occurs in the principal part of the differential
cquation, the mathematical analysis becomes counsiderably more difficult. Then the
necessary compactness has to be recovered from special structural properties of the
hysteresis operator. A.Visintin and P.Krejé have discovered that the analytical
property of strict monotonicity and the geometrical property of strict convexity of
the hysteresis loops have such a smoothing effect.

P.Krejéi obtained several important results for quasilinear and semilinear hy-
perbolic equations, sce e.g. [14], [16], [21]:

3211 d du

9 "9z \az) = i ; 2.
ot? 6:1:'7: (61-) g in (a,b) x (0,T); (0.2.19)
62u azu

9t~ 92 = ' ; 9.9
oz " gz TFW =g  in(ab)x(0,T); (0.2.20)

where F denotes a Prandtl-Ishlinskii operator of stop type. He studied asymptotic
behaviour of solutions of those equations and proved existence and uniquenes of
the periodic solution. His approach is essentially based on energy cstimates. He
observed that the strict convexity of the individual hysteresis loops implies the
continuity of the solutions and thus prevents the formation of shock waves, in
addition the theory of hysteresis potentials can be used to show that the speed
of propagation is finite. For a detailed description of his work, sce the recent
monograph [21].
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The mathematical theory of parabolic equations with hysteresis is closely con-
nected with the name of A.Visintin, who investigated them from several different
points of view. For the quasilinear PDE with hysteresis

-g—l: + é;—l: - Au= f(,z', t) in Q (0.2.21)
w(z, t) = [Flu(-, z); wo(c))](t) (z,t) eQ (0.2.22)

u=10 on 99 x (0, ) (0.2.23)

u(0,-) = uo(x) in (0.2.24)

where 2 C RY, ¥ > 1, Q bounded, Q = Q x (0,2c). A.Visintin obtained existence
and regularity results using the piecewise monotonicity of F as his main tool. To
obtain uniqueness results, a fundamental inequality due to M.Hilpert, see [8]. was
cmployed, using L! - techniques. A problem of this sort arises as a simplified model
of scalar ferromagnetism, for instance. The differential equation is obtained from
Maxwell’s equations by neglecting the displacement current term, assuming linear
relations between the electric field, the electric displacement and the electric current

density.
For the semilinear PDE with hysteresis
g—: —Au+ Flu) = f, in @, (0.2.25)

coupled with initial and boundary conditions, similar results hold without the piece-
wise monotonicity assumption. Assuming Lipschitz continuity of F, a uniqucness
result can be obtained. Oun the other hand, if 7 = H,,, the solution of the problem
may not be unique, sce [37], Section XI.5 and also [1]. This equation can represent
e.g. a distribution of thermostats.

Numerical treatment of equations containing hysteresis nonlinearities can be
found in [32], [33]. [34].

Of special interest, as far as applications are concerned, is the analysis of the
asymptotic behaviour and periodicity of solutions in time. To our knowledge there
are so far only two papers dealing with this problem, {10], (9] . In [10] they consider
the equation (0.2.21) with F a generalized play and their proof of asymptotic sta-
bility as well as of the existence of periodic solutions relies on the special propertics
of this operator. [9] deals with the question of asymptotic behaviour of solutions of
(0.2.25) also only in the special case when F is assumed to be a generalized play.

This thesis is organized as follows. In "Uniqueness theorem for a Cauchy prob-
lem with hysteresis”, the Cauchy problem for an ordinary differential equation cou-
pled with a hysteresis operator is studied. Under physically reasonable assumptions
on the forcing term, uniqueness of solutions is shown without assuming Lipschitz
continuity of hysteresis curves. The result is true for any kind of hysteresis operators
with monotone curves of motion.

In the second chapter "Semigroup approach to the question of stability for
a partial differential equation with hysteresis” the parabolic equation (0.2.21) is
studied and the asymptotic behaviour of the solution as ¢t — oo is investigated. A
semigroup approach is used to show stability in L}(2). Although this approach
gives us slightly weaker results than thosc in [10] in the case when the hystere-
sis operator is a generalized play, it enables us to get stability results also for the
Prandtl-Ishlinskii operator of play typc and for some discontinuous hysteresis op-
erators.
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In chapter three we consider the question of existence of periodic solutions
and asymptotic behaviour for a parabolic PDE with hysteresis in the source term,
(0.2.25). We prove existence of periodic solutions of (0.2.25) with a general hystere-
sis operator and give two different proofs of this result. We also prove an asymptotic
result for solutions of (0.2.25), using ideas due to P.Krejéi (see [37], p. 287).

In the fourth chapter we give a detailed introduction to the topic of hyperbolic
equations of first order of the form

ue + [é(u)], =0, u(0) = uq. (0.2.26)
We show how (0.2.26) can have a multiple solutions even if the data ¢ and ug are
smooth. We define a generalized solution of (0.2.26) and discuss various entropy

conditions, under which the generalized solution of (0.2.26) is unique. Then we
consider a hyperbolic equation with hvstercsls

ug + w +Z g ) eu = (0.2.27)
which was studied by Visintin, [37], using a semigroup approach. We sketch his

results and derive an entropy condition for (0.2.27), which solves an open problem
stated in Visintin’s book, [37].
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CHAPTER 1

Uniqueness theorem for a Cauchy problem with
hysteresis

1.1. Introduction

In this chapter we consider the question of uniqueness of solutions for the
Cauchy problem for an ordinary differential equation coupled with a hysteresis
operator without assuming that the operator is Lipschitz continuous. The equation
we consider is

— +Flu)=f in (0,T) (1.1.1)
u(0) = uq. (1.1.2)

The existence of a solution of (1.1.1)-(1.1.2) for c.g. f continuous is well known, sec
(5]. As pointed out by Visintin (see [4], p. 324). uniqueness was an open problem for
F not Lipschitz continuous, while it was known that Lipschitz continuity guarantees
uniqueness. Using simple techniques from the theory of differential equations, we
are able to prove uniqueness even in the non-Lipschitz case. This is doue first for
f = 0, then extended to the more general case. We show that under physically
reasonable assumptions on f we do have uniqueness. As was shown recently by
V.Chernorutskii and D.Rachinskii in [1], our assumptions are nccessary. In (1] they
constructed a specific continuous right hand side, oscillatory in every neighborhood
of 0, for which there is nonuniqueness.

1.2. Preliminaries

In this section we state a uniqueness theorem for the Cauchy problem without
the hysteresis operator, which will be useful in the sequel. The result is classical, a
detailed proof is given in [2], Section IIL6.

THEOREM 1.1. Let U(t,u) be e continuous real-valued function for tg < t <
to+a, |u—ug| < b, which is nonincreasing with respect to u (for fized t). Then the
tnitial value problem

“11_’: = U(t, u) (12.1)
u(tg) = ug (1.2.2)

has at most one solution on any interval [to,ty + €], e>0.

1.3. Main result

Using the theorem from the previous section, we prove a uniqueness theorem
for (1.1.1)-(1.1.2), when F is a generalized play operator.

16
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THEOREM 1.2. Suppose that F(u,wq) is a generalized play operator with hys-
teresis boundary curves v and 7. and f(t) = 0. Then the solution of the Cauchy
problem (1.1.1)-(1.1.2) is unique.

Proor. From (1.1.1) we have
du

yri —F(u). (1.3.1)
Suppose that initially w(0) = 0. Then
du
5(0) =0

and therefore all the points
S = {(v,w);w=0,a £ u<b, where v(a) =0 and ~.(b) =0}

arc equilibria. The solution of (1.1.1)-(1.1.2) with w(0) = 0 is unique, u(¢) = 0.

This can be proved as follows: Assume that for some ¢; > 0 we have w(t;) > 0 and

put to := max{t € [0,¢;], w(t) = 0}. Then in {to,t;] the function u is decreasing,

hence w is nomnicreasing, which is a contradiction. Similarly for w(t;) < 0.
Suppose now w(0) > 0 . Then at (uq, w(0))

‘(11—;‘(0) = —w(0) <0, (1.3:2)

thus u is decreasing on a right ncighborhood of ¢t = 0. We have three possibilities.
Either (uo,w(0)) lies inside the hysteresis region or on +. or on ~;. In the first two
cases F stays constant ou some interval [0, ¢;); from (1.3.1) we have v = —w(0)t+co
and since u(0) = ug, v = —w(0)t + up for t € [0,¢;], and u is decreasing until (u, w)
hits the hysteresis boundary +;. The second possibility is that (ug, w(0)) lies on 5.
Here we again have from (1.3.1) that u is decreasing and {«, w) moves on the curve
. Therefore u must satisfy the equation
2 ) =0
u(0) = ug

which by Theorem 1.1 has a unique solution and is approaching the equilibrium
(a.0) as t — oo. The case w(0) < 0 can be handled analogously, using the unique-
ness of solutions to the problem:
du
5 tr(w)=0
u(0) = u,.
a

REMARK 1.1. From the above analysis we are actua.lly-' able to prove more:
Except in the trivial case when w(0) = 0, solutions of (1.1.1)-(1.1.2) are stable and
they converge to points (a,0) or (b,0) as ¢t — oo, depending on the initial value
w(0).

REMARK 1.2. Using the same methods as above we can prove uniqueness for
(1.1.1)-(1.1.2) for F a generalized Prandtl-Ishlinskii operator of play type or any
other hysteresis operator with monotonc curves of motion. In this case all the points
(20,0), @ < ug < b, where mi(a) = ~-(b) = 0, and =1, - are here the hysteresis
boundary curves; are equilibria.
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THEOREM 1.3. Suppose there ezists un € > 0 such that f(t) > w(0) or f(t) <
w(0) on [0,¢). Then there exists at most one solution of (1.1.1)-(1.1.2) on [0, ¢).

Proor. By contradiction. Let there exist two different solutions on [0, ¢). We
can assume without loss of generality that w(0) = 0,ue = 0 and that ~.(«) is such
that +.(0) = 0 and that the point (0.0) is a point where the curve «.(u) is non-
Lipschitz. For 0 < t < ¢, the motions (u;(t), wi(t)), i = 1,2 must lic respectively on
one of the curves w = 7.(u) or w = 0, see Figure 1.1. This means that cach u,(t)
must satisfy either

= = (u) + £(2) (1.3.3)

SE

or
‘(’l_’t‘ = —w(0) + () = £(t) (1.3.4)

for 0 <t < e. But each of these has unique solution by Theorew 1.1, so we can
assume u; solves (1.3.3) and u» solves (1.3.4).

w

Figure 1.1. The two solutions in the proof of Theorem 1.3.

Look carefully at what this means for 0 < ¢t < e:

d.
for uy : —dl-lt-l' =~y (1) + f(t) 20 des f(t) 2 9e(e) >0
for u, : dd_utz =f(t)<0 ie. f(t)<0,
a contradiction. g

REMARK 1.3. As the above proof suggests, we can actually assume less than
f(t) has constant sign on [0, ¢). It suffices to have assumptions which will guarantec
that the solution pair (u(t), w(t)) will move cither on v.(u) or inside the hysteresis
region, on the line w = 0 (sce Figure 1.1 ). A little thought shows that we neced only
exclude the only other alternative to the motions depicted in Figure 1.1: in every
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interval (0,¢) the motion leaves +.(u) and returns to it via a horizontal segment,
see Figure 1.2,
In this case there would exist a sequence t, — 0, with

Qn = (u(t2n), w(t2n)) a minimum of u(t) on 4, and P, = (u(tan+1)-w(tane1)) a

maximum of u(t) on the horizontal segment, ts,41 < tan. Then we must have
f(tzn+1) = 1r(u(tan)) = f(t2n). (1.3.5)

This is the basically the case from the paper of V. Chernorutskii and D.Rachinskii,

(1], when nonuniqueness occurs. This can be excluded, for example, by assuming

that f exists on [0, €), is continuous at ¢t =0 and f (0) #0.

W

Y.(U)

cy

FIGURE 1.2. The case when nonuniqueness can occur.
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CHAPTER 2

Semigroup approach to the question of stability
for a partial differential equation with hysteresis

2.1. Introduction

This chapter considers the following evolution problem on Q = Q x (0, ),
where Q C RY, ¥ > 1, Q bounded :

% + %—l: - ADu = f(z,t) in Q (2.1.1)
w(z, t) = [Flu(-,z): wo(x))](t) (z,t) €Q (2.1.2)

u=0 on J x (0, xc) (2.1.3)

u(0,-) = uo(z) in Q. (2.1.4)

Here w represents a hysteresis operator, which we consider to be either a possi-
bly discontinuous generalized play or a possibly discontinuous generalized Prandtl-
Ishlinskii operator of play type, which includes some cases of possibly discontinuous
Preisach operators.

Existence and uniqueness for (2.1.1)-(2.1.4) have already been proven under
rcasonable hypotheses, sce e.g. Visintin's book [11].

Of special interest, as far as applications are concerned, is the analysis of the
asymptotic behaviour of solutions in time. To our knowledge there is so far only
onc paper dealing with this problem, [6]. They consider the case where F is a gen-
cralized play and their proof of asymptotic stability relics on the special properties
of this operator. In the present chapter, we are able, using a semigroup approach
combined with ideas from {10], to prove asymptotic stability of the solutions of
(2.1.1)-(2.1.4), when F is a generalized play or generalized Prandtl-Ishlinskii oper-
ator of play type, which is of more interest for applications. Our approach enables
us to deal with the continuous and the discontinuous case at the same time. As
far as we know, so far there does not seem to be any result about the asymptotic
behaviour of our system for the discontiruous case.

In Section 2.2 we recall a theorem of Wittbold [10]. Section 2.3 contaius the
maiu result of the paper together with its proof. The main result is first formulated
for an equation with zero right-hand side, then extended to the general case.

2.2. Preliminary results

In this section we state the theorem from [10] which inspired this chapter. For
completness we will also include the proof because of some misprints in the original.

21



2.2. PRELIMINARY RESULTS 22

THEOREM 2.1. (Wittbold [10]) Let 4 be an m- and T-accretive operator in
LYQ), ie.

R(I +A4)=LY(Q) YA>0 (2.2.1)

and N(T5tu = Ja) |l < JI(e — &), VA0, u.ieL'(Q)
(2.2.2)
where Jdu=(T+r4)"tu and R denotes the range.
(2.2.3)

Suppose that A710 = {0} and let ug € D(A). Then the following holds:
If there ezist a stationary subsolution and a stationary supersolution of

ueg + Au 30, u(0) = uo (2.2.4)
in L), then the solution u of (2.2.4) is stable, i.e. |Ju(z.t)|l, = 0 as t — <.

DEFINITION 2.1. A stationary supersolution of (2.2.4) is defined to be a func-
tion ¢ € L(Q) satisfying
ug <t a.e. on §? (2.2.5
and (I+r4)" e < a.c. on LVYA > 0. (2.2.6)
A stationary subsolution of (2.2.4) is defined in the same way with reversed in-
cqualities.
REMARK 2.1. Note thatif v € D(d) and A is single valued, then (2.2.5)-(2.2.6)
is equivalent to
v > ug a.e. on 2, (
0 a.e. on . (2.
2

v v

A

-

Also note that if A is an accretive operator, (2.2.7)-(2.2.8) imply (2.2.5)-(2.2.

Proofr. Without loss of generality we may assume that
ug > 0. Let v be a supersolution of (2.2.4) corresponding to ug € D(A).
We will first show that we can also always assume that v € D(A4).
The resolvent identity

-1

GI+A) " = (AT +4)7 = (@ = A)EL + A) " AL+ 4)

gives us

- _ A- _ -
AT+ 2A4)7 = p(I+pA)7 P = (—Vﬂ) Au(I +A4) 7T+ pA)7,

where we used the notation A = 1/A, u = 1/,

thus J{iv= J: (-f\f-v + A :\-#J,{‘v> VA, u > 0. (2.2.9)

The T-accretivity of 4 implies that J§{ is order preserving,
ie. u £ v= J{u < J{v. This is true because of the following :
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Suppose u < v, then u — v €0, so (¢ ~ v)*" = 0. From the T-accretivity of A we
get
A ANt
N(JI{u = J37e) |, £0,
which implies (Jitu - va)+ =0,
thus Jiu < Jite.

Since v is a stationary supersolution. we have Jv < v. Thereforefor A > it > 0
we get

Al

i A=pp 4 _A=p p
Xv+ T Jiv £ 3 L-i-xv—v
and (2.2.9) gives us now that Jv < J: v <vfor A >p >0as vis a supersolution.

Hence, by the dominated convergence theorem, w = ||-||; = limy_g+ J{lv exists and

w e D(A).
We will show that w is also a supersolution. The order preservation property
and (2.2.9) also give us

A=l 14 A-p
r <
A Jiv <

A- A
Jie = g2 (%u + ——A—“J;‘v) >3 (%qu + T#J_(‘v) =JM{e  (2.2.10)

a.c. on Q. VA, pu > 0.

Passing to the limit in the last incquality with A — 0% yields w > J j w. More-
over ug < v implies J{tug < J{v for any A > 0 (order preservation). As || - Il =
limy_o+ J{'ug = ug (because uq € D(4), sce e.g. [9], p.71), a passage to the limit
in the inequality shows us that ug < w and therefore w is also a supersolution.

As a consequence we may assume without loss of generality that v € D{(4),
so we may consider the solution of (2.2.4) corresponding to the initial value v, i.c.
S4(.)v, the semigroup motion through v.

We have, using (2.2.9). (2.2.4) and the order preservation property, the follow-
ing estimate

) 2

O = IR0 ) = 2 (502 e+

272 (508" + 2TEUN") = AU

ae.onf, Vu,A>0,n€ N

Applying this estimate with A = ;‘; and passing to the limit with n — co yields
SA(t)e > JH(S54(t)) a.c. on Q,¥t > 0,u > 0.
If we iterate this last inequality n times, we obtain for u = z
Sty > (J£)"SA () a.e. on 2,Vt,s >0
and thus, in the limit as n — oo

St > SA(s)S4(t)v = SA(t + s)v a.e. on ,Vt,s > 0. (2.2.11)
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Futhermore, since J3! is order preserving, v > ug > 0 actually implies
Jtv > Jdug > J$0. If we iterate this n times and evaluate at A = L t>0, we
obtain

(v 2 (72) w0 2 (11)"0

and thus as n —

S4(t)e > S (tue > SA(1)0=0 a.e. on Q,t > 0, (2.2.12)
where we used the fact that $*(¢)0 is the unique solution of (2.2.4) with 0 initial
condition and obviously 0 is such a solution. So by (2.2.11), (2.2.12)

St > S t+s)w>0 a.e. on ), forany ¢t >0
and these together imply that vee = || - ||; — lime—oe S*(t)v exists. It is well-known
that ve € A7'0 and thus, by assumption, v, = 0. Also by (2.2.12)

0 < u(t)=8%t)ue < S*(t)v a.c. on Q,Vt > 0, (2.2.13)
s0 [|S4(t)ull, — 0 as t — o, i.e. stability. a

2.3. A semigroup approach for a PDE with a hysteresis term

Counsider now the following PDE with hysteresis :
%(u-{-w)—Au:f inQx(0,T)=0@Q, (2.3.1)

where Q is a bounded subset of R, and the hysteresis relation w = E(u. wg)
represents a generalized play, defined in Introduction, with the only difference that
(0.2.1) is replaced with a more general assumption
“fr. 1 are maximal monotone (possibly multivalued) functions.
and inf v-(u) < sup vi(u), YueR (2.3.2)
and the hysteresis relation is assumed to hold pointwise in space :
w(z,t) = [E(u(z,.), wo(z)))(2) in [0,T]. a.e. in Q. (2.3.3)

As pointed out by Visintin {11], the system (2.3.1), (2.3.3) is formally equivalent
to
du

5 +EéE-Au=f in @
Jw .
5 6= 0 in @ (2.3.4)
§ € o(u,w) in Q,

where

+oco  if w < inf¥.(u)

R if we v (u)\n(u)

_ J{0} if supyr(u) < w <infy(u) n
B(u, w) = | R if w € 7i(u)\7e(w) (2.3.5)
~o00 if w > supyi(u)

R if w € yi(u) N ve(u).
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R:= [—20, +x], Rt = [0, +oc] and R~ := [—=c, 0].
We can write the Cauchy problem for (2.3.4) coupled with homogencous Dirichlet
boundary conditions as

O L aUsF in Q (2.3.6)

at
U(0) = Uo in Q (2.3.7)

where U = ( y ) F= < t )
.4( by ) =‘-1L’={< f‘_?” ),£€¢(D’)nfR}

D(A) = {U = ( ::. ) sinfy.(u) < w < sup(u) ae. on Q,U € L'(Q,R?),

and

u € WH(Q). A € L‘(Q)} (2.3.8)
We have the following theorem, sce [11], p.234 :

THEOREM 2.2. Assume that ~;,~, are mazimal monotone. satisfy (2.3.2), and
are affinely bounded, that is, there exist constants Cy.Ca > 0, such that Vv € R.Vz €
Fn(v)

=zl < Cille)|+ C2 (R=1r) (2.3.9)
Then the operator A defined above is m- and T-accretive in LY, R?).

The following theorem (Visintin, [11]) stems from the m-accretivity of the
operator A and from gencral results of the theory of nonlinear semigroups of con-
tractions, for details sec e.g. [1], [2], [3], [4], [9], or [12]. The integral solution (in
the sense of Benilan) is defined as follows:

DEFINITION 2.2. u is called an integral solution of the Cauchy problem:

du

g7 +A(u(t))s f in (0,T) (2.3.10)

u(0) = ug, (2.3.11)
where A : D(4) C B — B, B a (real) Banach space, is a (possibly nonlinear and
multivalued) m-accretive operator, if
(i) v : [0,T] — B is continuous,

(ii) u(t) € D(A) for any t € [0,T),
(iii) (2.3.11) holds and
i3
lu(tz) = olf < Jlu(ts) = e +2 [ (u(r) —v, f(7) = 2) dr (2.3.12)
4
Vv € D(A),Vz € A(v),V[t1,t2] C[0,T). (2.3.13)

Here the semi-inner product (.,.), : B2 — R is defined by

Vu,v € B. (2.3.14)

Avl? = )3
(u,v), = lim [[u + ’“lzli llulls
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THEOREM 2.3. The Cauchy problem (2.3.6)-(2.3.7) has one and only one in-
tegral solution U : [0.T] — L'(Q,R?), which depends continuously on the data ug,
wo, f. Moreover, if f € BV(0,T; L}(Q)) and ~Aug € LY(Q), then U is Lipschitz
continuous.

2.4. Main result

In this section we first state our main theorem, the proof of which will be very
similar to the proof of Theorem 2.1. Before proving it, however, we will prove two
lemmas which will be necded in the proof of the theorem.

THEOREM 2.4. Suppose all conditions of Theorem 2.2 are satisfied.
t.e. the operator A s m- and T-accretive in LY(Q,R?):

R(I + A4) = LY(Q,R?)
and IIT - 1207 < 1T - 0)F)1., (2.4.1)

where IE1. = [ (uta)l+ e(@iz

denotes the norm in L'(Q,R?). Suppose also that ug € D(A). Then there erists

Woo(T) dependent on z only, such that for the solution U = ( Z, ) of

o L 430 (2.4.2)

ot
r0)= ( 1o ) (2.4.3)

Wo

the following holds:

I-1}, = lim u(z,t) =0 and
t—co
-1 - ‘ijgo w(z,t) = weo(z).

0

w(z

LEMMA 2.5, A710 = {( ) ) , such that inf 4-(0) < w(z) < sup ‘,'1(0)}.

Proor. By direct computation.
Clearly ( :: ) € A~!0 if and only if the following is satisfied :

E-OLu=0
—f = 09
which implies £=10,

which is satisfied by any w(z), if inf v, (u(z)) < w(z) < sup 71(u(z)). We then must
have

-Au=0 on 2
u=20 on 99.

Obviously u = 0 is the unique solution of the above equation, so the assertion
follows. O
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LemMA 2.6. If ug € L>(Q) there exzist a stationary supersolution and a sta-
tionary subsolution of equation (2.3.6). Moreover, those can be chosen so that they

belong to D(A).
ProoF. We will show the existence of a stationary supersolution. The station-

ary subsolution can be found analogously. First note that by the last sentence of
Remark 2.1 we can look for solutions of

E—Au>0 a.c. on Q)
—-£2>0 a.e. on (2.4.4)

u > uy a.e. on )

w > wy a.e. on 0,

we can choose § = 0 and the second equation will be satisfied. From the first and
the third one we require

-Au >0 a.e. on Q (2.4.5)
u > ug a.e. on (. (2.4.6)
Since we only require ug € L>(Q). such u can be casily found, in fact ¢ = luoll
satisfies
-Au=0 a.c. on
u > ug a.e. on .

The fourth equation in (2.4.4) is satisfied by any w > wq. Then ( :: ) will be the

supersolution which we seck if we choose w such that inf~-(¢) < w < sup ~wi(u).
The last assertion in the lemma is obvious. a

PROOF oF THE MAIN THEOREM. Suppose first that uq € L>=(Q) . We will
write

JU < T3,
if and only if J{{“L] < Jj{“ U5 and Jf’ U < Jf" Us, where
(i) w=(i) a(0)=(atn)-(28)
We will first prove that the resolvent J { is order preserving in the above defined
scuse : Suppose Uy < U, i.e. u; < 4z and wy < w,, then
up —uz <0 w) -w; <0
i.c. (up —uz)t =0 (wr —wq)T =0.

Therefore by (2.4.1) we have

140, - T402) "), = / G TRU) |+ |(140 U, = T0)  dz < 0

from which it follows that a.c. on Q we have J;“Ul - J;\’“Ug <0,i=1,2,
ie. J{U) < J{U,; and J§ is order preserving.
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We may consider the solution of (2.4.2) corresponding to the initial value V.
ie. §*(.)V, the semigroup motion through V.. We have by the resolvent identity
and the order preservation property that

()Y = TV = GO+ 22RO 2 A0
a.e. on QVYu,A>0,n€e N.
Applying this estimate with A = £ and passing to the limit as n — oc vields:
St > J:S"(t)V a.e. on , Ve > 0,u > 0.
If we iterate this last inequality n times, we obtain for p = 2

SHOV 2 (J)"SH OV ae on Vs >0

aud thus, in the limit (n — o)

SHHOV > SA(s)SH )V = St +5)V a.e. on N, Vt, s > 0. (2.4.7)
Furthermore, since J3! is order preserving
V>020 implies JV > IR0, > Tt
and also
0
SHOV > S4(t) e > SH(t)0 = >>o. 2.4.8
( ) ot ( ) 0= ( ) ll.’o(.'r) = ( )

The last estimate together with the monotonicity in (2.4.7) implies that
Voo = [ [l; = lime—oc S*(t) exists and Voo € 4710, As (2.4.8) gives us
0 < Sy < SH )V a.c. on Q,Vt >0,
it follows that [|[S*(¢)Tf|, exists and S*(t)u — 0,54 (t)w — w(z) as
t — oo, we(r) < w(z).
The statement for arbitrary ug now follows from the density of L>(Q) in D(4)

and from the continuous dependence on initial conditions, see Theorem IX.2.5 in
(11]. a

THEOREM 2.7. Consider the equation (2.9.1) with a generalized Prandtl-Ishlinskii
operator of play type, where for p-almost any p € P, v, and Yor fulfill (2.3.2). With
the notation

Pon ={u € R: card(v,n(u)) > 1} p—ae inP,h=1,r,

we assume that

D={U=(:: ) Rx LY(P):

14

( uzf ) are such that infv,.(u) < w, < supypu(u),p — a.e. in ’P} #0
p

and

34 € A: p(A) =0, and ¥p',p" € P\A, (2.4.9)
ifp #p" then PipNPon=0 (h=1r). o

Then the conclusions of the previous theosrem remain true.
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The proof is analogous to the proof of Theorem 2.4. By Visintin [11], p.234,
the operator 4, under assumption (2.4.9) is m- and T-accretive in the space
LY R x LY(P)) coupled with the norm

iwn..= [ (lu(z)l+ [ Wwoleltant)) o

forall U = (u,w) € L1(Q, R x L} (P)).

In order to extend the stability results in Theorems 2.4 and 2.7 to equations
with a nonzero right hand side, we give two theorems with proofs, from which the
results immediately follow. The first one is proved for X a Hilbert space (and thus
A a maximal monotone operator) in (8], but we did not find the corresponding
version for an arbitrary Banach space anywhere else in the literature. Even though
the idea of the proof is similar, we present it here for completeness.

THEOREM 2.8. Assume that A : D(4) C X — X, X a Banach space, is an
m-accretive operator and f € LY(R*,X). Let S*(t): D(A) — D(A),t >0 be the
sermigroup gencrated by A. IfVr € D(A), S*(t)z converges strongly (weakly) as
t — o, then every integral solution =(t) of

0z
— = A= .t
o~ 423 f(z.0)

converges strongly (weakly) as t — oc.
Proor. Define f, : R* — X as follows

falt) = {g(t) t{°r a.c. t € (0.nT)
ort > nT,

where n € .V and T > 0 is a fixed number. For each n € N, denote by za(t), t2>0
the integral solution of the Cauchy problem

2008) (1) + A(zn(8)) 3 fult) >0

ot
z2(0) = 2(0).

Clearly, 2,(t) = $4(t)zn(nT) for all ¢t > nT. Now, from the assumption that
§4(t)z converges strongly (resp. weakly) we can see that for each n € N there
exists a p, € X such that

lm zn(t) = pa strongly (resp. weakly). (2.4.10)
We now note that
) - @l < Q) =@+ [ @) =g@)ds (2411
where u(t), resp. v(t) arc solutions of
%+.—1uaf %+Av3g
u(z,0) = u(0) v(z,0) = v(0)

respectively. This is a special case of a result from [9), p.42. (2.4.11) implies

LV
122 (t) = zm ()] < /mT IF(s)llds Vt>0,n> m, (2.4.12)
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and we get from (2.4.10) that

lPn = Pmll < /mn: I1£(s)llds. n > m.
Therefore, there exists a p € X, such that
Dn—p strongly in .X. (2.4.13)
On the other hand. since z, and z are integral solutions of
Zn 1)+ Azalt) 3 alt) S+ 4503 10
2a(0) = =(0) :(0) = =(0)

respectively, we have by (2.4.11) that

t
=) - sl < [ 17Cs)las, Ve 2 T (2.4.14)
nT
Now, using (2.4.10), (2.4.13), (2.4.14) and the following decomposition

() -p= [:(t) - :n(t)] + [:n(t) "'pn]+ [Pn —P]

we find that lim,_. z(¢) = p in the strong (resp. weak) topology. This completes
the proof.

NoTE 2.1. It is then a standard result that p € A~10 .

THEOREM 2.9. Let f(z,t) be such that
lim f(z.t) = foo in X, (f(z.t) = f) € L(R*, X), (2.4.15)
—2C

and let u be a solution of

3—1: + Au= f(z,t)

u{z,0) = uo(z),

where A is an m-accretive operator in X, and Vz € X, S*(t)z converges strongly

ast — oo0.
Then limg oo u(x,t) ezists and lim—oo u(z,t) = p+ s, where uq is such that
At = foo and p € A710.

PROOF. Note that u — uy satisfies the following equation :
7]
5 = o) + A = 1o} = f = f

and f - foo € L}(R™*, X'). We can therefore apply Theorem 2.8, which says that

tlim (t—uo)=p, pe A0 in L1(Q).
—0
and the statement follows. a

Applying the previous results to our hysteresis problem, we get
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THEOREM 2.10. Suppose that all conditions of either Theorem 2.4 or Theorem
2.7 are satisfied . Suppose also that fz,t) is a given right-hand side satisfying
(2.4.15) with X = L'(Q). Then for the solution of

g—;t-f- %% + Au = f(z,t)
the following s true: lim,_ o u(z,t) = ue(z), where use(z) is such that Au(z) =
fro and lim¢—. oo w(z,t) ezists in L1().

REMARK 2.2. All statements in this chapter remain true if we replace —Au
by a more general elliptic operator

Y9 du Y9
Au=— — | @tm— =
\u 1;1 7 (az 31',,,) +lz=; 31’1( ) +cu

Aim, b1 € Cl(ﬁ),c € L*(Q) and for some constant a > 0
N
Y Gmttm 2 allE)? Vi € R™ ace. in O,
I,m=1
with ¢ > 0 and some coefficient condition (sec e.g. [5]). which will guarantee the
uniquencss of the corresponding clliptic problem with Dirichlet boundary data..
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CHAPTER 3

About periodic solutions and asymptotic
behaviour of a PDE with hysteresis in the source
term

3.1. Introduction

In this chapter we consider the following model equation

Z_l; — Au+ }-(u) =f in Q. (311)

coupled with initial and boundary conditions:

where F : M (Q: C°([0,0))) — M (Q:C°([0,20))) is a continuous operator with
memory, M (£;C%([0,>))) denotes the Fréchet space of (strongly) measurable
functions Q@ — C%([0,>)) and f is a given function. Here we fix an open bounded
set @ C RY(V > 1) of Lipschitz class, denote by 99 the boundary of §, and set
Q:=02x(0,0).Z := 90 x (0, ).

The existence and uniqueness of solutions of (3.1.1) is well known and we
present those results in the first section of this chapter.

We study the question of existence of periodic solutions of (3.1.1) as well as
asymptotic behaviour of solutions as ¢ — oc. To our knowledge there are so far
only two papers dealing with such problems, (1] and [5]. In (1] they investigated
the asymptotic behaviour (as ¢ — o) of both the solution of (3.1.1) and the cor-
responding memory term F(u). They showed that under some assumptions on the
hysteresis boundary curves there exists us € H}{Q)N W’lz'cp(Q). Vp € [1,c), such
that u(.,t) = ue weakly in Hg(Q), w(z,t) = F(u(r.t)) = —Auy strongly in
LP(Q),¥p € [1,20), and a.c. in Q as t — co. They assume F is a generalized play
operator and their proof of asymptotic stability relies on the specific properties of
this operator. The question of periodic solutions of (3.1.1) was considered by Xu
Longfeng in [5], but only in a special case, where F is assumed to be a specific type
of hysteresis operator. In this chapter we prove the existence of a periodic solution
of (3.1.1) with a gencral hysteresis operator. We give two different proofs of this
result. The idea of the first one is based on the ideas given in [5], but we have
different assumptions, which we think are more physically reasonable. The second
proof is based on a variation of ideas P.Krejé&i used in his papers, sce e.g. (3]. The
last section contains an asymptotic result for (3.1.1).

3.2. A parabolic problem

We denote by M (2; C%([0,T7])) the Fréchet space of (strongly) measurable func-
tions 0 — C°({0, T)), see e.g. the appendix in [7]. Let

F:M(QC%0,T)) - M(@C(0,7]) (3.2.1)

33
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be a causal and strongly continuous operator. We fix a relatively open subset I,
of 9Q, and set

Vi=H{ (2):={ve HY(Q):wv=00nT} (3.2.2)
where 7o denotes the trace operator. Thus if ['; = @, then V' = HY(Q); if T, = 99,
then V = Hg(). We identify the space L?(Q) with its dual L2(0). As V is a
dense subspace of L*(Q2), L*(R2) can be identified with a subspace of V'. So we get
VCL¥Q)=L3Q) c V', (3.2.3)
with continuous, dense and compact injections. We define the operator 4 : V' — V',

u ~ Au as follows :
vo(du,v),, = / Vu-Vede VeeV; (3.2.4)

Q

hence Au = —Au in D'(Q),
where D(Q2) = {¢; ¢ infinitely differentiable on © and with compact support in 0}

and D'(Q) = dual of D(Q2) = space of distributions on 2. We assume that
ug,wo € L3(Q), fe L*0,T:V"). (3.2.5)
ProsLeM 3.1. To find v € M (Q;C°([0, T))) N L?*(0,T; V) such that

F(u) € L*(Q) and
.//Q (_u% +Vu. v”‘*‘f(u)v> drdt =

- / ey udt+ / uo(z)e(z.0)dr  26)
vve L*0,T;V)n H! (0, T; 1(;)2(0)) \ v(-,T;2= 0, a.e. in Q.
INTERPRETATION. Equation (3.2.6) yields
%+ F= f in D'(0,T;V"). (3.2.7)

at
By comparing the terms of this equation, we see that % € L%(0,T;V’), thus
u € L}0,T; V)N HY(0,T; V') and (3.2.7) holds in V’ a.e. in (0,T). The functions
of this space admit time traces in L2(2). Hence, integrating by parts in (3.2.6) and
using (3.2.7), we get

u(z,0) = uo(z) in LZ2(Q) (in the sensc of traces). (3.2.8)
Let us now interpret (3.2.7) for V = H} (Q). Let T :=T/Ty, fix any
h e I3(Q), f2 € L*(T2 x (0,T)), (3.2.9)

and define f € L2(0,T; L*(2)) @ L*(0, T; V') by

v (f(t),v), :=/nf1(:r,t)v(:c)d:c+/r fa(o, t)yov(o)do
VveV, ae. in (0,T).

Then (3.2.6) corresponds to the differential equation

a%u -Au+Fu)=fi in D'(Q), a.c. in (0,T), (3.2.10)
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coupled with the boundary conditions

TFou = 0 on I‘L X (O. T), (32.11)
%‘i =f in D'(T x (0,T)). (3.2.12)

where -é;% denotes the exterior normal derivative.
The following theorem is proved in (7] :

THEOREM 3.1. Assume that (3.2.1)-(3.2.3) hold. Let F be affinely bounded,

in the sense that
3L e R*,3g € L*(Q);Vv € M(Q,C°([0,T))): (3.2.13)
”[-F(")](Iv')”c'ﬂ([o,r]) < L”U(If‘)”ca([o,rl) +9(z) ae. in Q.
Moreover, let
f=f+fo, AEL*Q), LeW'(0,T.V'), weV, welQ) (3.2.14)

Then Problem 3.1 has at least one solution such that

v € H'(0,T: L¥()) N L>=(0,T; V), (3.2.15)
F(u) € L*(Q:C[0,T})). (3.2.16)
If F has also the global Lipschitz continuity property
3L > 0;vt€ (0,T], Vi, va € L2(R;C°([0.¢])), (3.2.17)
I7(e1) = F(e2)ll caacoqgo.qy S Lllvr = vallaeq.cogo.n- (3.2.18)

then Problem 3.1 has only one solution satisfying (3.2.15).

3.3. Periodic solutions

We consider the question of existence of periodic solutions for (3.1.1) coupled
with suitable boundary conditions. Here f will be a given function w—periodic in
t.

We will make use of various subsets of the following assumptions:

(A1) Global Lipschitz continuity:

3R > 0:Vt € (0,00), Vui,va € L2(Q;CO([0,2])).
17 (1) = -7‘-("2)”1,1(9;@([0,;])) < Kflv - 7-'2”[,3(9;@([0,:]))

(A2) Monocyclicity:
If u(z,t) is w—periodic in ¢, then [F(u)|(z,t +w) = [F(u)|(z,t) forall t > w,z € Q.
(A3) Affine boundedness:

3K, € R*,3g € L*(Q); Vv € M(Q,C°([0,%)));
IF ()=, Mlcaqo.on < K1l llcoga oy + 9(z) 2e. in Q.
(A4) Saturation:
IF(u) < C,

where C is some positive constant.
(AS) 7 is odd, i.e. F(u) = —F(-u), for all u € L? (f; C°([0, T])).
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REMARK 3.1. The term monocyclicity was introduced by M.A.Krasnosel'skii
and A.V.Pokrovskii in {2]. The least § > 0 such that the identity

Fl)l(z.t +w) = [Fu)i(z,t)  (¢26)

holds is called a periodicity stabilization time of the output. If, for any periodic
input, this time does not exceed the value of one period, then the operator is
monocyclic. More details as well as the proof of the fact that the generalized play
operator, and therefore also the generalized Prandtl-Ishlinskii operator of play type,
is monocyclic can be found in [2]. The property (A4) is physically sensible for many
problems. (A3) is often satisfied in applications, especially to clastoplasticity.

Let w > 0 and let B be a Banach space. A measurable function u : Rt - Bis
called w-periodic if

u(t + w) = u(t)
for almost all t € R*. By L2 (0,; B) we denote the Banach space of all (classes
of) w-periodic functions u : (0,oc) — B for which ul(o..) € L*(0,w; B). The norm

is given by
!

el ll 20,00y = (/0“’ ”U(I,f)“%dt> "

We can similarly define other spaces of functions, w-periodic in t, for more details
see c.g. [6].

Define D = H!*(Q) N G, where G = {u e C3(Q),u=00n09.t¢ R} in
HL(Q).

We will prove the following theorem:

THEOREM 3.2. There ezists K’ > 0 such that if fel? (0,00, L? (Q)) s given
and F satisfies the assumptions (A1) and (A2) and at least one of the assumptions
(A3) with Ky < K, (A4), then there ezists u € D, which is periodic and satisfies
the equation (8.1.1) almost everywhere in Q for t > w.

REMARK 3.2. The operator —A in the cquation (3.1.1) can be replaced by any
symmetric and uniformly elliptic operator.

PRrOOF. To prove the Theorem we will need the following lemma, for the proof
see (6], Theorem III. 1.3.1.

LeMMaA 3.3. Suppose that f € L2 (0,00; L*(Q)).Then there exzists a unique
periodic solution of the equation

Ou . :
- Qu=f  ingQ, (3.3.1)

which satisfies the Dirichlet boundary condition
u=20 on X,
such that u € D. Morcover, there ezists a positive constant Ky such that
[ulp < K2lfl 12 (0 ,00:L3¢00))-

The main tool in our proof will be the homotopy version of the Leray-Schauder
fixed point theorem:
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THEOREM 3.4. Let B be a Banach space, T : Bx[0,1] — B a compact mapping
such that
(i) T(z,0) =0 for all z € B,
(1) there ezists a constant M such that |x|z < M for all (z,0) € Bx[0, 1] satisfying
z =T(z,0).
Then the mapping Ty of B into itself given by Tyz = T(z,1) has a fized point.

We introduce the Banach space B = L*(Q,C?[0,20)). It can be casily seen
from property (A3) or (A4) and property (A2) that for Vv € B

F(v) € L* (2.C°([0, <)) N L (2. C%([w, %)) .
For any ¢ € [0,1] and t > w we consider the equation

%—Au:—crf(u)+af, v € B.
By Lemma 3.3, the above equation has for any ¢ € [0,1] and any v € B a
unique solution z € D.
Let v € HY (0.00; H{ () N HL (0, 50; H2(Q)) be an extension of ¥ to (0, c0).
By interpolation, see e.g. [4], we have

D c HLQ) c L* (% CY0. %)) (3.3.2)

with continuous injections and the last one is also compact.
If we denote by T': T(v,0) = u, by the above it follows that T : B x [0.1] — B.
We shall show that all the assumptions of the Leray-Schauder theorem are
satisfied for the mapping T. Obviously. for Yv € B, T(v,0) = 0, so assumption
(i) is satisfied.
To show that T is a compact mapping: For Vo € [0, 1], v1, v2 € B, letting

T(vl,o‘) =Uuj
T(Uz,o‘) = ua,
we get
]
-a—t(ul —uz) = Ay —uz) = —o[F(v1) = Flv:)] Vt2>w. (3.3.3)

Multiplying the last equation by u, — u, and integrating over Q, we get after
integration by parts

10 )
35l =l + [ (V00 =)z =

— /n (w1 = w)(F(w) = Flun)ldz

After integrating this in ¢ over [w, 2w], we have
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{le12) = w22y = () = waMse }+ [ [ 1501 = walPtzat <
< ,g,/'”/n luy — ua|F(v1) = Fuo)|dzdt <

[T

;1.
< ey = U2||L=(n;u(..;.zu))“’%{/QS‘:P (F(w) - 7"(”2)]2‘11'} <

< Lut|ey = vaflgfler - U2”L2(Q,L=(‘.-,2..,))‘ (3.3.4)

Because u;, { = 1,2 are periodic in ¢ with period w, the difference of the first
two terms on the left-hand side of the last inequality is zero. Moreover, using the
Poincaré inequality to estimate the last term on the left-hand side we get

pmfluy — “2”22(9.1)(.;,2-.;)) < ‘“'%L”“l - uﬂ”L’(Q.L’(...-,'.’..;))”’-'l ~ v2f 5.
Thus
L3
Ky

We also get from the inequality (3.3.4) using equivalent norms on the space Hg (Q)
that

ey = wall L2 2020y ller = w2l - (3.3.5)

i
flur - “2”[,2(‘,.2.;;.#11(9) < LRw# oy = 1o . (3.3.6)

If we now multiply (3.3.3) by -é%-(ul ~ u2) and integrate over 2, we get

/n[a(l“a; uz] /[V(zn us)dx <

gﬂAvm%fmn@%FQ

After integrating in ¢ over [w,2w], using estimates similar to those used above,

dr.

we get

< Lutfvy — vl (3.3.7)
L3(02, LY (w,2w))

It follows from (3.3.5), (3.3.6) and (3.3.7) that

| 3501 =2

lur = w2|l grrqy < Rillor = v2llg (3.3.8)

and that T is completely continuous with respect to v because of the compact

imbedding (3.3.2).
Now, Vv € B, 01,02 € [0, 1], let

T(v,0;) = u!
T(v,02) = u2.
We have
7]

b—t(u1 —u?) - Ae! - u?) = (01 - @)[f - Fv)] VI>w.
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By Lemma 3.3 and the compact imbedding (3.3.2) we get the estimate

”u1 - u2”5 Sloy — 02| K [”f”um.l_v(.;,zu)) + ”7'-(1’)”1_2(0.1_2(.;.2.;))] .
Hence, T is uniformly continuous with respect to o. Now, T is completely contin-
uous with respect to v and uniformly continuous with respect to o, and thus T is
a compact mapping of B x [0,1] — B.
To show (ii): For Vo € [0, 1], let T(u,0) = u, i.c.
a
a—?—Au:—af(u)+a'f, vt > w.
Multiplying by u and integrating over 2, we get

19
——”"HZL’(O) +/ (Vu)dz < / F(u)udz + / fudz
After integrating the last incquality in ¢ over [w, 2w],and using the periodicity of u
in ¢ and the Poincaré inequality as before, we get
o2
Kllullz2a. 120020y < ”-ﬂlL’(Q,L’(u,'Ju)) ”u'”L’(Q.L%..:.Z..:)) (3.3.9)
el a2 2o IF (@ L2, 130 20) -

The last term in (3.3.9) can be now estimated by assumption (A4) by

”“”um.uu.un”f(“)”um.uu.zd)) < Cl”“”um.uw.zdn-
Then we have all together that

”u”LZ(Q_L!(J_z_,)) < C = constant.

By the compact imbedding (3.3.2), also
llullg < Ca.

So all assumptions of the Leray-Schauder fixed point theorem are satisfied, thus
there exists
ueD

such that T'(u, 1) = u. This is the w-periodic solution of (3.3.1).

If instead of (A4) we assume (A3), as was done by Xu Longfeng in [5], then we
get the same result, estimating the last term in (3.3.9) by assumption (A3), but we
need to assume also that the constant K in (A3) is small enough. This was done

in 5] only for a special kind of hysteresis operator.
]

THEOREM 3.5. Suppose that f € L2 (0,00,Lz(Q)) and F satisfies the assump-
tions (A1), (A2), (A4) and (AS5). Then there ezists :
v € H; (0,00,L%(R)) N L2 (0,00, H}(Q)), which is periodic and satisfies the equa-
tion (3.1.1) almost everywhere in Q for t > w.

We assume that Q = [0,7]".

PRoOOF. We use a variation of an approach used by P. Krej¢i in (3], based on
the classical Galerkin method. Put

PRI T .
sin £& 5t J=12, ..
wj(t) = {cOS ;_’rjt j=0 _,1 )
w ) ] LRI
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and Wik, ky(T.t) = wj(t)sink,z; sin kazo...sinkyry, j an integer, k;, i = 1,.... N
natural numbers. Fix an integer m > 1. We want to determine real numbers
Uik ks J = =Myom; ki =1,...,m: i = 1,...,V in order that the function

m m
um(z.t) = Z Z Ujky .k Wiky . kx (2, 8)

J=-mky, . kx=1

satisfies the system

2w 2w
/ / <aum —Aum) Wik, .. kxd.rdt-*—/ /f(um YWik,  kydzdt =
- (3.3.10)
/ </‘_flL)kl kdrdt
where j=—-m....om; k;=1,...,m:i=1,....N

We derive first some apriori estimates. In what follows we denote by C any

positive constant independent of m. Let us multiply (3.3.10) by —W_jk, ke (2—:})

and sum over j, kyq,...,kx. We obtain

/24/ Oum 2dxdt+/h/]-'( )au—'"dzdt-—/zd/fau—’"d:cdt
L o ot L STV ™ e L Jol e Y

because the term

2w 20 a "
/ /vum ( )drdt [ nE(Vum) =0,

where the last equality holds because of the w-periodicity of the function um, in ¢.
So we have

=—/-/fwﬂgﬁhﬂ+/./f%ﬂumS
L3I0 x(w.2.)) « Ja at o Jq~ Ot

=\ [l Qupm |
< (”f”.r_z(nx(w.z-u)) +I‘) ot

dum

at

L} (Qx(w,2w))

where we used the assumption (Ad).
Therefore
dum

—_— <C. 3.
= <cC (3.3.11)

L3(Q2x(w,2w))

By multiplying (3.3.10) by Wjk,...ky and summing over j, ki, ..., ky we get

2w au 2w 2w
/ / ( “ Aum) umd:rdt+/ /f(um)umdrdt=/ /fumd:zdt.

Now the first term on the left hand side of the last inequality is zero, again because
of the w-periodicity of um in ¢, and we get

2w
2 =
/ /Q(V"m) drdt £ (”f”IJ(Qx(wQu)) +I‘) lumll L3 x(w2w)y <
w

< Cllumll za (o 20 me ()
Therefore we have
"um”L’(uJu;Hf(ﬂ)) <C (3.3.12)
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Equation (3.3.10) is an algebraic onc in R2m+1m™ of the type

HU) =<k, (3.3.13)
where
U= {Ujk""k“"’j =-m,...,mk;=1,.., m;1 =12, ooy .‘V}
F= {//fwjk""'k'v:’j = =m....mk; = Li.mi=1, veey .'\'}

e=1.

Let us vary the value of € from 1 to 0. From the incqualities (3.3.11) and (3.3.12)
(which are independent of €) it follows that the equation (3.3.13) has no solution
on the boundary of a sufficiently large ball

- 2m m~ 2 2
B,(0) = {U e RE™I™ N i anl® < 0%},

Ik,

where p is independent of € € [0,1] . Thus, we can define the topological degree
a(Z(.) — €F, By(0),0) of the mapping Z(.) — ¢F with respect to B,(0) and the
point 0. Since F is an odd mapping, by assumption (A3) Z is also odd, hence
a(Z,B,(0),0) is different from 0. By a homotopy argument with respect to € we
conclude that there exists at least one solution u., of (3.3.10).

The whole sequence {¢,,m = 1,2, ...} is bounded in the space

{ueL? (w2, H3(Q)):u, € I? (w.2u; LQ(Q))}
It follows from the compact imbedding
L2 (0,c: H3(Q)) N H! (0.00: L*(9)) € L? (R; C°[0, <))
and the above that
U — U in L2 (0, 00; H} () N HY (0,00; L(Q))
Um — U in L2 (2; C%[0,)) .
Now because of the assumptions (A1) and (A2) this implies
Flum) = F(u) in L2 (Q; C8[w, 0)) ,

thus u is a weak periodic solution of our equation for ¢ > w.

3.4. An asymptotic result

We consider the model equation (3.1.1) coupled with initial and boundary con-
ditions, where F is a continuous operator with memory, and f is a given function.
Here we do not require F to be rate independent, but applications to hystcresis are
our main concern.

THEOREM 3.6. Let all the assumptions of Theorem 3.1 be satisfied for any
T €(0,) and f =0 in R* x Q. Suppose also that

wg, Aug € LZ(Q),

and F is piecewise monotonicity preserving (or, more briefly, piecewise monotone).
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Then there exist positive constants Cy,Ca, Ky such that, for any solution u of
(3.1.1) with zero Dirichlet boundary data. we have

&) - F @ eomsar o

This then implies that

Us = lim u(.,t) (3.4.2)
t—00
ezists and that the following estimate holds:

R _
ltee — (. t)lin < 521 Cat. (3.4.3)

ProoOF. By Theorem 3.1 we know that there exists a unique solution of (3.1.1)
such that

ue HY(0.T: L*(Q)) N L>=(0,T; V),
F(u) € L*(2:C°([0,T1)).

for any T € [0, 20). Combining results of Proposition X.1.4 and Proposition IX.1.2
in [7], we have the following regularity of the solution :

u € H? (0,T; L3(Q)) N W1 (0,T: H} (),
F(u) € H (0.T;L3(Q)),

for any T € [0, oc).
We can now formally differentiate the equation (3.1.1) with respect to ¢t and
get

gt“ -A (g’:) + % (F(u)) =0. (3.4.4)

Now we do the following things: We multiply (3.4.4) by % and get after
integration over 2:

égt. [/n (%)2411} +/n [v (%%)]Zdz <0, (3.4.5)

where we used the piecewise monotonicity property of the hysteresis operator. Let
L be the Lipschitz constant for F, and let A denote a constant which will be

specified later. Choosc o > %, multiply (3.4.5) by a and get

HISCEDELCI e

We now multiply (3.4.4) by £ W and again integrate over

%u 190 2 u
L(5) i3 [( 5)] 4= [ |7me| |5 e <
du ou|?
SL/Q at at2 /n(at2) / 3] 4
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where we used the piecewise Lipschitz continuity of the hysteresis operator with
Lipschitz constant L. The last inequality gives us:

10 ou\1? L2
= i) r< =
‘zat/:z[‘_(at)] dr < /n

Adding (3.4.6) and (3.4.7) gives us:

HICERLGIEE
<[ (515

ot
Using the equivalent norm in H(R), we have the following estimate for some
constant K:

Ee))_l; dz. (3.4.7)

|

2 2

S ETEO T PECTEYENT ST L
704 P S MANETY N 272
So we get all together:
19 du\? du\]?
- — —_ <
25t {/n{“(at) +[5(5)] }‘“}-
a 1 a L?\]|0u|’
<- = 7 ——— |5 pdzr <
s /Q{K[V( t)] +(K 4) ot } Ts

e e VRO

2 . . Y
Note that & - %- > 0, because of our condition on «. Therefore Gronwall's
lemma implies that:

[{o(%) + [ ()]} e
ceme [ {a(g_z;)“ +[v (g)]z} (2. 0)ds.

The estimate (3.4.1) now follows.
To show (3.4.2), note first that (3.4.1) implies

/(@-)zdr<Ce'C"
q \ ot =t

and using Holder's incquality we also have, since  is bounded,

/6u
o)

5|4z < Kye~ 2, (3.4.8)
du

ot

(3.4.8) iruplies that
€ L' (0,00; L} (),
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2 ([ wtee)

Therefore lim; o [, u(z, t)dr exists.
It also follows from (3.4.8) that for t < s
/ lu(z,s) — u(z,t)|dz < & (7€ ~e7Ca9) (3.4.9)
Q C2
Hence the system {u(.,¢t)},,, is fundamental in L!}(), which is a complete space.
Therefore we can conclude that
Use = limg— o0 u(.,t) exists and it also follows from (3.4.9) that

and also
€ LI(O,:x:).

-

R _
flus — uf., il < 'C;le it (3.4.10)

a
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CHAPTER 4

Entropy condition for a quasilinear hyperbolic
equation with hysteresis

4.1. Introduction
In this chapter we study a hyperbolic equation of first order of the form
ur + [o(u)], =0, u(0) = ug (4.1.1)

and the corresponding quasilinear hyperbolic equation with hysteresis
v
3] — 9
a(u+uf)+za—j-(bju)+ctt = f, (4.1.2)
Jj=1i IJ

where w = F(u) represents hysteresis.

It is well known that even for ¢ and uq smooth, (4.1.1) can have more than
one solution. We present a criterion - a so called entropy condition - which selects
a unique solution. We first explain the results of Kruzkov [3], whosc condition is
equivalent to the so called E condition introduced by Olejnik [4], which in turn
extends the classical entropy condition. In the first section we give an overview of
their results and a discussion aimed a providing a feeling for the type of problems
we wish to study.

It was expected, see (6], that the integral solution of (4.1.2), (for definition, sec
the end of section 2.3), for which existence was proved in [6] using the semigroup
approach, and which is unique by construction, fulfils a condition of the type intro-
duced by Kruzkov. To derive such an entropy condition for the integral solution of
(4.1.2) was posed as an open problem in Visintin’s book and we present a solution
to this problem in the last section.

4.2. Entropy conditions and uniqueness of solutions for a hyperbolic
equation of first order

We will study the equation
N
ue+ Y (8i(u)),, =0, fort >0,z € RY, (4.2.1)

where v = u(z,t), £ € R and denote by ¢ = (é1,.95) : R = R¥Y a continuous
function with ¢(0) = 0.
Consider first the case N = 1.

If ¢ is a smooth function, we can rewrite (4.2.1) as

uy + ¢l(u)u: =0

46
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Consider the characteristics, defined by the following equation: (for simplicity,
the projections of characteristics on the (z,¢) plane are still called characteristics)
j—f =o (u).

If u(z,t) solves (4.2.1), then along a characteristic

%u(r(t),t) = u,d—: +up = u 6 (u)+ u, =0,
so u is constant along characteristics and it follows that characteristics have constant
slope. In other words, the characteristics are straight lines with parametric velocity
o () along these lines.

Assume now for convenience that ¢ (u) > 0. If u(zr,0) = uo(z) and ug(z) is
decreasing - then therc are points z; < r; with o'(uo(rl)) > o'(uo(zg)) - and the
characteristics starting at (z;,0) and (z2,0) will intersect at a point P for ¢t > 0,

see Figure 4.1.
\\\\ dX —_ Q— Y
@ 0 (U(x,)) <=9 (uylx,)
N
AN

\\
U=U, ()N P %:uo(x,)

N\, rd
o
// p\

- AN
_ AN

X, X, x

FIGURE 4.1. Characteristics intersect.

At the point P a continuous solution is overdetermined, since different char-
acteristics meet there and each carries a different value of u. It turns out that
the solution must be discontinuous. (We also can easily see that when 6" (u) >0,
u(z,t) is globally defined and continuous if and only if ug(z) is nondecreasing and
continuous).

The above conclusion is independent of the smoothness properties of ¢ and
ug(z). No matter how smooth the initial data, the solution may still have disconti-
nuities. This is the most important feature of quasilinesr hyperbolic equations and
an essential difference from linear hyperbolic equations. It is this phenomenon that
leads to special difficulties.

For the reasons given above, we shall generalize the notion of solution for equa-

tions of the form (4.2.1):

DEFINITION 4.1. A bounded, measurable function u(z,t) is called a weak so-
lution of the initial value problem (4.2.1) with the initial condition u(z,0) = ug(z)
with bounded and measurable initial data ug (), provided that

T N
[) /R-“" (uft + Z éi(u)f:,)dl’dt + /RN ufdz =0 (422)

holds for all f € C§((0,20) x R¥).
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Note that if (4.2.2) holds for all f € C}((0, <) x RY), and if u is in C'((0.T) x
R¥), then u is a classical solution (this is easy to sce, using integration by parts).

In our effort to solve initial value problems which are not solvable classically,
we are led to extend the class of solutions. In doing this, we run the risk of losing
uniqueness. That this concern is well-founded follows from the next example.

EXaMPLE 4.1. (see [5]): Consider the equation

u; + (UT‘) =0
= z

with the initial condition

(z) 1 ifr<0
ug(zr) =
° -1 ifz > 0.
For cach a > 1, this problem has a solution u, defined by
1 if2r < (1 -a)t
-« if (l-a)t<2r<0
ua(z,t) = .
! if0<2z< (a—-1)t
-1 if (e — 1)t < 2z.

Thus our problem has a continuum of solutions (see Figure 4.2).

2x = (a-1)t
e

FIGURE 4.2. Continuum of solutions in Example 4.1.

Equations of the above form arise in the physical sciences and so we must have
some mechanism to pick out the "physically relevant” solution. Thus, we are led
to impose an a-priori condition on solutions which distinguishes the "correct” one
from the others.

In the case of the equation when NV =1

ue + [@(u)], =0, with ¢ > 0,
there is a unique solution which satisfies the "entropy” condition
u(r +a,t) —u(z,t) < E
a -t

where E is independent of z, t and a.

Ya > 0,Vt > 0, (4.2.3)
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This condition implies that if we fix ¢ > 0 and let z increase from —oc to +oc,
then we can only jump down. as we cross a discontinuity - hence the reason for the
word “entropy”.

If we return to the previous example, then we sce that (4.2.3) is satisfied only

when e = 0.
It is worth noting that as the above shows, the loss of uniqueness occurs in the

class of piecewise smooth functions. Uniqueness was lost not because we admitted
as solutions functions which were unneccessarily "wild” from a regularity point of
view; it is deeper than that. The "good” and “"bad” shocks are indistinguishable

from the point of view of regularity.
Condition (4.2.3) is a bit strange when it is encountered for the first time.

Assume that 0" (u) > 0. Since the characteristics are straight lines. if (r,¢) is any
point with t > 0, we let y(z,t) denote the unique point on the r-axis which lies
on the characteristic through (z,¢). Since u is constant along characteristics, and

t6'(u) = z — y, we see that u must be given implicitly by
u(z.t) = uo(y(z.t)) = wo(z — to' (u(x, 1))).
Now if ug is a differentiable function, then we can invoke the implicit function
theorem and solve this last equation for u, provided that ¢ is sufficiently small. We
find
g (y)
I+ ug(y)o”(u)t

Thus if ug(y) = 0, then ur(z,t) =0, and if ug > 0, then

ur(z,t) =

‘

1 E
Ur S 7 .l,l,o - = —— < )
ugo”(u)t  o"t T t

where E'= &, p =inf¢", so (4.2.3) is quite natural.
So far we considered only the case ¢ (1) > 0. O.A.Olejnik (4] gives a uniqueness
condition for (4.2.1), .V = 1. now called an E condition, without any restriction on

¢ € C! as follows:
We consider the equation

ou  9o(u,z,t)
— 2 0. 2.
at o (42.4)
We introduce the notation
u(z +0,t) = uy(z,t)
u(z - 0,t) = u_(z,t)
- _,T,t
(u) = Qe =00y ).
Uy — U
Consider the straight line w = I(u) in the uw-plane, which joints the points

(u4,0(uy,z,t)) and (u_,é(u-,z,t)). We shall say that the generalized solution
u(z,t) of (4.2.4) satisfies condition E if at all points of discontinuity of u(z,t) (ex-
cept possibly a finite number of them), the following condition is satisfied: when
uy > u_, l(u) < ¢(u,z,t) forall win [u_, ui], while when uy < u_, u) > ¢(u, z,t)
forall u in [uy,u_).

It is easy to see that if the function ¢(x, z, ) is such that ¢y, # 0, then condition
E is identical with (4.2.3), namely u4 < u_ if dyy > 0, and ug > u_ if ¢,y < 0.
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We have the following

THEOREM 4.1. (Olejnik [4]): A weak solution of (4-2.4) with u(x,0) = ue(x).
which satisfies the condition E, is unique.

A different approach to the question of existence of a unique solution of (4.2.4),
N 2 1, was given by Kruzkov [3]. He defines a generalized solution of (4.2.4) as
follows:

DEFINITION 4.2. A bounded measurable function u(z, t) is called a generalized
solution of (4.2.4) with u(z.0) = ue(z) in Qr = [0,T] x RV if

1) for any constant k and any smooth function f(z,t) > 0 the following in-
cquality holds:

I/ (a0 = Kifet

+ [sign (u(z,t) — k)]
i=1
2) there exists a set £ of measure zero on [0,T] such that for ¢ € [0, T]\€ the
function u(z,t) is defined almost everywhere in R¥, and for any ball

K.={lz|<r}C RY

A

[oi(u(z,t),z.t) ~ O,'(k,l',t)]f:_} drdt > 0: (4.2.5)

lim lu(z.t) — ug(z)|dz = 0.
t—0  fp

Since the smooth function f > 0 is arbitrary, it is obvious that inequality (4.2.5)
for k = *sup |u(x,t)] implies (4.2.4). But Definition 4.2 also contains a condition
which characterizes the permissible discontinuities of solutions. This condition is
expecially casy to visualize when the generalized solution is a piecewise smooth
function in some neighborhood of the point of discontinuity; in this case, using
integration by parts and the fact that f was chosen arbitrarily, we obtain from
(4.2.5) that for any constant k, along the surface of discontinuity we have

[us ~ k| cos(v,t) +sign (w4 — k)(6(us,z,t) = 6(k, z,t)] cos (v, z) <
Slu- ~ k[ cos(v, t) +sign (u- - k)[6(u_,z,t) — o(k, z,t)] cos (v, z),
where v is the normal vector to the surface of discontinuity at the point (z,t) and
U+, u— are the one-sided limits of the gencralized solution at the point (z,t) from
the positive and negative side of the surface of discontinuity, respectively. It can
be shown that in the case N = 1 (4.2.6) is equivalent to condition E introduced
above (we just need to express cos(v,t), cos(v, z) by using (4.2.4) and choose k =

u € [u_,uql).
Kruzkov shows that there exists a unique generalized solution of (4.2.4) in the

sense of Definition 4.2.
Inspired by the results of Kruzkov, Crandall in his paper [1] treats the Cauchy

problem for the equation

(4.2.6)

N
u, + Z(é;(u)),, =0, t>0, rzeRY
i=1

from the point of view of semigroups of nonlinear transformations.



4.2. ENTROPY CONDITIONS AND UNIQUENESS Sl

The following notation will be used whenever it is meaningful:

é=(01,0v) : R=RY (4.2.7)
[o(v)], = i (0i(v(x))),, ifv:RY SR (4.2.8)
fe = (l;:l,...f,‘\.) if f:RY SR (4.2.9)
ab = Z\: a:b; if a,b e RY. (4.2.10)

i=1

Given 6;(v) with 0;(0) =0, i = 1,..., NV, he defines

N
Av =" (6i(v)),,, v € D(A)
=1

as the closure of A4 given in the next definition.

DEFINITION 4.3. 4q is the operator in LY(RY) defined by: ¢ € D(4o) and
w € Ag(v) if v, w € LY(RY), é(v) € LY{(RY) and

L. sign (@) = BH(o(e(2) - o(k) fule) + () f(e)bdr 20 (42.10)

for every k € R, and every f € C§°(R™) such that f > 0.

LEmya 4.2, (Crandall, (1]) Let 6 € C! and Aq be as given by Definition {.3.
If v € CH(RY), then v € D(Aq) and Aqv = {le(v)], }.

PROOF. Let v € C3(R"). Then since 6(0) = 0, o(v) € C}RY) C LYRY).
For @ € C'(R,R) and f € C§°(R*Y), integration by parts shows that

’ ) _ v(r) oo o
/R-" (® (v)[o(v)],) fdz = /RN </L & (s)o (s)ds):f(r)dl =

= —/RN (/kU(:) @'(s)::i'(s)ds) f{z)dr.

Next choose ®(s) = ®,(s — k), where

—s if s 5—%
By(s)={ (1) 2+ 3 iflsl < &
s if s 2%

and let p — oo to obtain
L BEn0(@) = DH((2) = 60 £ @) + (800 £ bz = 0.

This shows v € D(4o) and [é(v)], € Aov. Finally, asssume v € D(Ag) N L>(RY)
and w € Agv. Then using successively k = ||v]|_ + 1 and & = =(llv]l, + 1) in
(4.2.11) shows that w = [¢(v)], in the sensc of distributions. Hence Aqv = {w},
that is Ag is single-valued on bounded functions. The proof is complete, |
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The lemma shows that A extends 4g from C3(R™Y). Crandall then shows that
A = the closure of Ay is an m-accretive operator, thus generates a semigroup of
contractions S(t), and S(t)ug is the (unique) integral solution of (4.2.4). Then he
shows that this solution constructed by the method of semigroups satisfies indeed
the entropy condition introduced by Kruzkov:

THEOREM 4.3. (Crandall) Let S be the semigroup of contractions generated by
A Letu, v € D(A) and t > 0. Then if v € L>(RY)

T
L US0@) = K7+ sign(S(0 () = KOS 0)6(2)) = (B Yzt 3 0.

for every f(z,t) € C§°((0,T) x RY) such that f > 0 and every Kk € R and T > 0.
PROOF. Let v € LY(RY) N L=(RV) and u,(t) satisfy
€™ (ue(t) — uc(t — €)) + Ague(t) = 0 t>0
u(t) =v¢ t < 0.
Let u.(z,t) = u (t)(z). By the definition of Aq:

L\, {sign (uc(z.t) = k)(S(uc(z.t)) = 6(k)) fo(z, t)+
+e7 sign (ue(z,t) = k)](ue(z,t ~ €) — ue(z, ) f(z, H}dzr >0 (4.2.12)

for every k € R and non-negative f € C§°((0.T) x RY).
Let he(z,t) = [sign (uc(z,t) = k)](u(z. t) — k) = |u(z.t) - k|. Notice that

(ue(z,t =€) — uc(z,t))[sign (u(z,t) — k)] =
= (uc(z,t — €) - k)[sign(uc(z,t) - k)] - (ue(z,t) = k)[sign(ue(z,t) — k)] <
She(z,t —e€) = he(z,t). (4.2.13)
Using (4.2.13) and integrating (4.2.12) over 0 < ¢ < T yields

T
/0 A\, {[sign (ue(z,t) = k)](6(ue(z, 1)) — S(K)) fo(z, t) +
+e 7 he(z,t ~ €) = he(z,t)) f(z, t) }dzdt > 0.

(4.2.14)

Now

e! /T {(he(z,t — €) = he(z,t)) f(z,t)}dzdt =

0 RV
E—l

¢ T
= (/0 /RN he(z,t — €)f(z, t)dzdt -/T_c /RN hc(z,t)f(:r,t)d.rdt) +

T—c¢
-i-/0 /RN he(z, t)(E'l)(f(:r,t+ €) — f(z,t))dzdt

The first and the second integrals vanish for € small enough since f is in C§°((0, T') x
R¥). The convergence ue(z,t) — S(t)v(z) in L}(RY), uniformly in ¢ as ¢ — 0,
implies that the third term tends to

-
/ / [S(t)v(z) — k| fi(z,t)dzdt
1] RV
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as € | 0. So the Theorem follows letting € | 0 in (4.2.14). a
4.3. Quasilinear hyperbolic equation with hysteresis

Let b; and ¢ be given smooth functions. In this section we consider the equation

Y
b, — 0 .
a(u-&-w)+jz=;éz—j(bju)+cu=f in Q

and couple it with the hysteresis relation
w(z,t) = [E(u(z..), wo(x)] (2) in [0,T], a.e. in Q,

where £ is a generalized play operator, as considered in Section 2.3. This system
is formally equivalent to

+f+2} 18: (bju)+cu=f in Q
£ €o(u.uw) in Q,

where o(u,w) was defined in Section 2.3. To simplify the discussion. we assume
that {b; € C'l(S_?-)}j=1 ...... v Z;?':l bjvj = 0 ae. on 90 and ¢ € LX(N), where T
denotes a field normal to d9.

By introducing the following opecrators

{U ) € Rt infv-(u) < w < supv(u)}
{(¢ E) £ €o(U)NR} VU € D(4)
N

=Zax1
j=
R(U): = (B(u).0)

and by setting

4(6’

= (u,w). Uo := (uq,wo), F:=(r.0)
the Cauchy problem for the system (4.3.1) can be written in the form
U
at

+AO)+ RU)> F in Q (4.3.2)
U(0) = Uy.

This approach can be easily extended to the case in which & is replaced by a
generalized Prandtl-Ishlinskii operator of play type.
Then we have the following theorem (stated in Visintin [6]):

THEOREM 4.4. Let Q be an open subset of RY (N > 1) of Lipschitz class. Let
LY R?) be endowed with the norm

1Wlzscamer = [ (e + lu(@)) de
= (u,w) € LY(R?).

Define the operator R us
R(U):= (Bu,0) VU € D(R):={U € LY(%R?: Bu e L}(Q)},
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A is defined for

it ¥ mazimal monotone (possibly multivalued) functions:
R — P(R), such that inf 7 (u) < supv(u) Yu € R.

R := [—o0, +oc].

Also assume that 41, v, are affinely bounded, that is, there ezist constants Cy, s >
0, such that Vv € R.Vz € “h(v)

=l < Cillel| + C2 (R =1,r)
and for any (u,w) € R® we have
(+oc  if w < infve(u)
R ifw € v(u)\n(u)
{_0—} z.'f supvr(u) < w < inf v (u) (43.3)
R f w € yi(u)\ve(u)
- if w > supv(u)

(R if w € y(u) N y.(u).

Take any Up := (uq,wq) € LY(Q:R?), such that Uy € D(A) a.e. in Q, and any
f €LY Q% (0,T)). Then the Cauchy problem (4.3.2) has one and only one integral
solution U : [0.T] — L*(Q,R?), (see definition 2.2) which depends continuously on
the data ug, wo, f. Morcover, if f € BV(0,T;LY(Q)) and Rugy € LY(Q), then U is
Lipschitz continuous.

o(u,w) = J

A similar statement is true for a generalized Prandtl-Ishlinskii operator of play
type. It was conjectured (sec [6]), that the integral solution from Theorem 4.4 fulfils
a condition of the type introduced by Kruzkov. The next Theorem establishes this

in a precise form.

THEOREM 4.5. Let the ussumptions of Theorem 4.4 hold and let F = (f,0) =
(0.0). Assume also that the hysteresis operator is symmetric around w = u. Let
Aol’ = A(U) + R(U) on D(A¢), and let S(t) = (51(t), Sa(t)) be the corresponding
semigroup of contractions.

Let ve D(4) and t 2 0. Then if v = (v1,v2) € L=(Q) x L>(Q):

T T
/ / [S1(t)er(z) — k| fe(z, t)dzdt +/ / [Sa(t)va(z) — k| fe(z, t)dxdt +
0o Ja 0o Ja

T N P
*) k 2 bilSi(0ei(@) = Kl f(2,0) = eSi(0n(z) = Kls(2.) ~

hi
— [sign(S1(t)vi(z) — k)]k (Z 'ai—jbj + c) (=, t)} dzdt > 0
j=1

for every f(z,t) € C$°((0,T) x Q) such that f > 0 and every k €R and T > 0.

REMARK 4.1. The hystcresis operator can be also discontinuous, e.g. the relay
operator, as long as the boundary curves -, v, satisfy the symmetry relation given
above.
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PrOOF. Let v € D(Ao) NL™(Q,R?) and u(t), w, (t) satisfy:

u (t)— u(t-()
- biuc(e t
+£'(*:)ZJ“1 a); (bjue(t)) + cuc(t) = } for ¢ >0, (4.3.4)
w :L' [4 6—0

w(t)

( u(t) ) =v  fort<O. (4.3.5)

If k € R is any constant, then we have

N N
- (z; %b,k + ck) (Z 7—b; + c) (4.3.6)
J:

We get from the second equation in (4.3.4) that

we(t) — we(t — e).
€

€=

which we can put into the first equation in (4.3.4). Adding the resulting equation
with (4.3.6) gives us

uc(t) = ue(t — ¢ + we(t) — U-c(t —€) Z b [b; (ue(t - k)] +
3

€

+ [c(ue(t) — k)] + & (Z—b +(_) =0.

Let ue(z,t) = u(t)(z) and w(z,t) = we(t)(z). Multiply the last equation by
[sign(u(z,t) — k)] and integrate over  to get:

[] {[Sign(u((z,t) — k) [lu(-’l‘,t - EZ - u(z,t) + we(zr,t —€) - w!(x.t)J 3

€

N
— [sign(uc(z,t) - k)] [Z ai f(ue(z,t) — k)] + [c(uc(z. t) — k)+

(S we) e =s

As before, let he(z,t) = (ue(z,t) — k)[sign (u(z,t) — k)] = luc(z,t) — k|. Recall
that

(ue(z,t — €) — ue(z,))[sign (u(z, t) k)] =
= (ue(z,t — €) ~ k)[sign (uc(z,t) = k)] = (ue(z, t) k)sign (ue(z,t) - k)] <
< h,(r,t —€) = h(z,t). (4.3.7)
Also

(we(z,t — €) — we(r,¢t))[sign (uc(z,t) - k)] <
S (welz,t — €) — we(z, t))[sign (we(z,t) - k). (4.3.8)
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This last inequality is true because of the following: The only way it could fail
would be if either:
sign(ue(z,t) — k) = 1,sign(we(z.t) — k) = ~1, and we(z,t —e€) ~we(r,t) >0, so

u z,t) >k, we(z, t) <k and we(z.t — €) > w(z.t)
or
sign(u(z.t) - k) = —Lsign(w(z.t) - k) =1, and we(L,t —¢€) —w(r,t) <0, so

ue(r,t) < k, we(z, t) >k, and we(z,t - €) < w,(z,t)
It can be easily scen from Figures 4.3a and 4.3b that these situations are not possible

because of the properties of the hysteresis operator; thus (4.3.8) must be true.

"

(a) (b)
FIGURE 4.3. Possible situations in the proof of (4.3.8).

If we introduce the notation g.(x,t) = (w(z.t) - k)[sign (we(z.t) — k)] =
[we(x,t) — k|, then, similarly, we get
(we(z,t — €) = we(z,t))[sign (uc(z,t) — k)] <
S (we(z, t — €) — we(z,t))[sign (w(z,t) — k)] =
= (we(z.t — €) — k)[sign (we(z,t) — k)] - (we(z,t) - k)[sign (we(z,t) - k) <
S gc(z,t =€) = ge(a, t). (4.3.9)

Therefore
(}"t(r»t—f) —h((.'t,t)) (g((l',t—f)—gt(l',f)) _
A e e e a
= ign(uc(e, ) = K] |32 5[5 (ue(a) = B + etz ) - £)}+
j=1
AP
+k Z aT,-b’ +c dz >0
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Now we can multiply by any f > 0, f(z.t) € C§°((0.T) x Q) and integrate over
[0.T] to get the following inequality:

T
0< 6‘1/0 /Q{[(h((:t,t— €) — he(z, t)] flx,t)} dxdt +

T
+ [0 [ fladat = 0 = gule, ) £z ) dde -

T N 2
_/O‘ [) {; Ebj(luc(l‘,t) — k) f(x, t)+ clu((_l;?t) - klf(I,t)-f—

~
+[ sign (uc(z,t) - k)]k (Z %b,‘ + c) f(l',t)} drdt. (4.3.10)
j=1 77
Now

T
-1 —
€ /0 A {[he(z,t — €) = he(z, )] f(z,t)} drdt =

= —¢! (/;/Q {he(x.t —€) f(x,t)} drdt —/TT_(/Q {h((x,t)f(x.t)}drdt> +

+/0T—£/Q {he(x, e (.t + ) = f(z.8))} duat.

The first and the second integrals vanish for e small enough, since f is in
C3°((0,T) x Q). The convergence ue(z.t) — Si(t)vi(zx) in LY(Q), uniformly in ¢ as
€ — 0, implies that the third term tends to

T
/ / [S1(t)ei(x) — k| fe(x, t)dzdt as €| 0.
0o Ja

By a similar argument, using the convergence w.(z,t) — Sa(t)va(z) in LY(Q), we
have that

T-¢
/ / {ge(z,t)e™ (f(z, t +€) - f(z,¢t))} dzdt tends to
0 )

T
/ / [S2(t)v2(z) — k|fe(z,t)dzdt as €] 0.
o Ja
If we now let € | 0 in (4.3.10), we get

T T .
/0- /{; [S1(t)vi(z) ~ k| fi(z,t)dzdt +/0‘ A [S2(t)va(z) = k|fe(z,t)dzdt +

T N 5
+/; /Q {J; bj|S1(t)ui(z) — klgjf(z,t) — IS (t)v1(z) - k|f(z, t)—

—[sign(S1(t)vi(z) = k))& (i: a%b,’ + c) f(=z, t)} dzdt > 0,
=1

which is the claim of our theorem. a
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General Discussion and Conclusions

In this thesis we studied various differential equations with hysteresis nonlinearities.

In the introductory chapter we defined some basic hysteresis operators and
listed their most important properties. For a more detailed discussion regarding
definitious of hystcresis operators and many of their other properties, the reader
should consult the monograph of M. A.Krasnosel'skii and A.V.Pokrovskii [5], as well
as recent books by A.Visintin [7], M.Brokate and J.Sprekels [1]. and P.Krejéi |6],
and other references given therein.

In the first chapter we studied an ordinary differential equation

‘(‘1_‘: +F(w)=f  in(0.T) (5.0.1)
u(0) = uq. (5.0.2)

The existence of a solution for f continuous, and uniqueness for F Lipschitz contin-
uous, is well known (sec [8]). We presented a proof of the uniqueness of the solution
of (5.0.1)-(5.0.2), assuming that f is continuous and f(t) > w(0)or f(t) < w(0)in a
right neighborhiood of t = 0, without the assumption of a Lipschitz condition on F.
Our proof was based on a well-known theorem from ordinary differential equations.
V.Chernorutskii and D.Rachinskii in (2] showed that for a special f, oscillatory in
every neighborhood of 0, there exists more than one solution of (5.0.1)-(5.0.2).

The question of uniqueness of solutions of (5.0.1)-(5.0.2) is closely related to
the uniqueness problem for a PDE with hysteresis in the source term:

O putFu)=f i Q. (5.0.3)

at
u(0) = ug, : (5.0.4)

coupled with appropriate boundary conditions. If F is (globally) Lipschitz contin-
uous in C([0,T]), then the solution of (5.0.3)-(5.0.4) is unique, sce [7]. On the
other hand, if F is discontinuous, then the solution may not be unique, see the
counterexample given in Visintin [7], Section XI.5.

The question of uniqueness for (5.0.3)-(5.0.4) with F continuous, but not Lip-
schitz continuous, remains an open problem even in the case f = 0 and F a con-
tinuous generalized play. Different techniques would be needed here.
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In the second chapter we studied the parabolic partial differential equation with
hysteresis:

du Buw

5+ E — Au= f(z.t) in Q (5.0.5)
w(z.t) = [F(u(-, z): wo(z))](t) (z.t)e Q@ (5.0.6)

u=0 on 9N x (0, x) (5.0.7)

u(0.-) = uo(x) in Q. (5.0.8)

Existence and uniqueness for (5.0.3)-(5.0.8) was proved by Visintin (see [7]), us-
ing a semigroup approach and also by means of approximation by implicit time
discretization, a priori estimates and passage to the limit using compactness.

Asymptotic behaviour of solutions of (5.0.5) was first considered by N.Kenmochi
and A.Visintin in [3]. They proved the asymptotic stability of solutions of (5.0.3)
for  a generalized continuous play. We used a semigroup approach, which enabled
us to consider the continuous and discontinuous cases at the same time, to prove
asymptotic stability of solutions of (5.0.3) in L!-spaces for F a generalized play or
generalized Prandtl-Ishlinskii operator of play type.

In [3] N.Kenmochi and A.Visintin also studied the question of existence of
periodic solutions of (5.0.5) and they proved existence and uniqueness of periodic
solutions if f is periodic in t and F is a continuous generalized play operator. The
same result can be proved for F a gencralized Prandtl-Ishlinskii opcrator of play
type, using a similar approach, i.c. using a fixed point argument cormbined with
our asymptotic result for (5.0.5).

In the third chapter we studied the equation

Z_lt‘ -Du+Flu)=f in Q, {5.0.9)
w(z,t) = [F(u(-, 2); wo(2))](2) (z.t) € Q (5.0.10)
u(0,-) = ug(z) in Q, (5.0.11)

coupled with some boundary conditions. Existence of solutions of (5.0.9) as well as
uniqueness for F Lipschitz continuous was proved by A.Visintin (see [7]).
N.Kenmochi and A.Visintin in {4] considered the question of asymptotic behaviour
of solutions of (5.0.9) in the case when Fis a generalized play operator. Their proof
of asymptotic stability strongly depends on the specific properties of the generalized
play. :

We established results about asymptotic behaviour of solutions of (5.0.9) for
a general hysteresis operator F at the end of chapter 3, which are true for some
general hysteresis operators with properties often satisfied in applications.

Another idea for investigating the stability of (5.0.9) would be to try the idea of
A.Ljapunov to consider functions or functionals which are decreasing along solutions
of the equation.

Assume that F is a hysteresis functional with boundary curves 4;, v, and a
single family of inside hysteresis curves, i.e. the pair (u,w) increases or decreases
inside the hysteresis loop on the same curve.
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For (5.0.9) a Ljapunov functional may be defined as follows:
V:H;(Q) x L2(Q) - R such that (5.0.12)

Vi, ) =%/Q(Vu)2dx+/n/u:f(s)dsd1. (5.0.13)

Since F(s) is a multivalued operator, we specify the meaning of fu': F(s)ds, for
a given z € § as:

/uuf(s)ds=/u:' -,'1(5)(1s+/uu’ -,'r(s)ds-i-‘/u:‘ va(s)ds. (5.0.14)

(sce Figure 5.4),

FIGURE 5.4. The hysteresis curves +,, +» and ~a.

where 51, ¥+, ¥2 are hysteresis curves, on which the pair («, w) would move from
(uo,wo) to (u,w) if w first increases only and then w decreases only. Note that,
depending on (u,w) and the hysteresis curves, we may have 7, v, or 42 empty.
Then

iV(u,w):/VuVutd:z:+/~,',~(s)u,d:r=/u,(—Au-}-}‘(u))dr:
dt Q 0 Q
-/ (~Au+ F(u))’dz <0, (5.0.15)
Q

where
r if we v,
i=<q1 ifwemv (5.0.16)
2 if w € 7,.

So V' is actually a Ljapunov functional. We are still working on the details of
this approach.

The third chapter was also concerned with the question of the existence of
periodic solutions of (5.0.9) for f periodic in time. We gave two different proofs of
an existence result under quite gencral and physically reasonable assumptions on
F. We used a Galerkin method and a fixed point argument, which guarantee only
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existence of periodic solutions. The question of uniqueness of periodic sclutions of
(5.0.9) remains open, except for a very special result obtained by Xu Longfeng [9].
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