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Abstract

Language features are inevitable in any programming language. Language

maintainers introduce new language features and enhancements to existing

features with their releases. For example, Virtual threads emerged as a pre-

view feature with the Java 19 release under project Loom. Developers may

need to migrate traditional thread usages with virtual threads. However, mi-

grating to new language features is not easy. It consumes time and resources

because it may require a steep learning curve to understand the required mi-

gration process. Developers may also be concerned about the after-effects of

the migration, mostly on the performance of the application.

Several studies have focused on mining refactoring patterns and automatic

migrations in different scenarios such as in the modification of libraries, and

frameworks. We found out that those studies do not align with the require-

ments of Loom migration because we do not have sufficient historical usage

in open-source repositories and proper documentation along with source code.

In this thesis, we present Loomizer, a transformation tool that is capable of

migrating traditional thread usages in a Java application to virtual threads.

Loomizer is based on Rascal. We apply Loomizer on various application

servers such as Open Liberty, Tomcat, Wildfly, and Undertow.

We demonstrate an empirical evaluation focusing on the performance changes,

specifically throughput, on those application servers after migration. We find

that the throughput improvement with virtual threads is not always notice-

able. In the presence of entirely blocking operations in the application de-
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ployed on the servers, we observe throughput improvement and deterioration

with different delays in the blocking operations compared to the servers be-

fore migration. Additionally, the presence of CPU-consuming operations and

blocking operations in the application limits the throughput improvement with

virtual threads in all the application servers except in Open Liberty. We dis-

cover that throughput improvement with virtual threads also depends on the

application server, the type of the application (whether IO-bound or CPU-

bound), the expected workload, and the delay in the blocking operations in

the application.
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Chapter 1

Introduction

GitHub has recently ranked Java as the 5th topmost used language for soft-

ware development [11]. Over the years, Java has offered several new language

features such as generics [16], functional interfaces [25], virtual threads [7],

and structured concurrency [8]. To address the evolving requirements of de-

velopers, language maintainers perform language releases that introduce new

language features and enhance existing ones. For example, Oracle has re-

leased a new Java version every year since Java 9 [9]. They have also issued

release notes [28] that contain information about new language features, re-

moved/deprecated features, and known issues in a particular release. Intro-

duced in Java 19 under project Loom [31], virtual threads are comparatively

lightweight threads that enable easily writing and monitoring high-throughput

concurrent applications [7]. Applications that follow the thread-per-request

model can benefit from virtual threads in terms of higher throughput and

scalability [7].

With the introduction of new language features such as Loom, developers

may want to upgrade their software applications to use them. This process

requires developers to get a good grasp on the new features, which may lead

them to go through a steep learning process. Therefore, developers typically

use automated tools to perform this migration. The general recipe for this

process consists of 3 main steps: mining refactoring patterns, detecting those

patterns, and applying code transformations.

To mine refactoring patterns, existing work (e.g., DAAMT [44], SemD-
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iff [10], NEAT [38], Patterika [3]) usually analyzes the source code with

specific code changes or proper replacement messages in code documentation

or using commit histories in source code repositories. While this approach is

effective, we cannot apply it to new language features such as Loom, because

such source code differences and replacement messages do not exist yet. Once

developers obtain refactoring patterns, they can locate the instances of iden-

tified patterns in their codebases using several existing tools [19]–[22]. While

TAPIR [20] and Jelly [21] support only Java script, CogniCrypt [19] op-

erates on Java source code. Hotfixer [22] is an existing code transformation

tool based on CogniCrypt and Soot [41], where code transformations hap-

pen at the bytecode level. Due to the nature of applying security patches to

a program at runtime, Hotfixer is not suitable to use for source-level code

transformations to perform a codebase migration to use Loom.

To address the limitations of existing work, we present Loomizer, our

tool that is based on Rascal [18], which can automatically detect and trans-

form platform threads to virtual threads in a given Java source code. Rascal

offers exciting features such as source-to-source transformation [36], pattern

matching [29], and support for recent Java versions [34]. Therefore, Loomizer

enables code transformation at the source level, enabling developers to easily

use it for Loom migrations within their development environment. To en-

code migration patterns in Loomizer, we first manually extracted a set of

refactoring patterns by studying the JDK Enhancement Proposal for virtual

threads [7].

Migrating to Loom migration may impact the properties of software sys-

tems because of virtual threads and their benefits. Having a huge runtime

overhead from poor performance will lead to unsuccessful applications [6], af-

fecting business revenues. Therefore, a critical factor for developers to assess

is the effect of migrating their code to a new language feature on the perfor-

mance of their software system. Therefore, we have evaluated the effectiveness

of Loomizer by applying it to several application servers such as Open Lib-

erty [24], Tomcat [39], Wildfly [42], and Undertow [40]. We then validated the

preciseness of the applied transformations, as well as measured the effect of
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the applied transformations on the performance of those application servers.

The following are the contributions of this thesis.

• We present a set of manually mined refactoring patterns for virtual

threads.

• We propose Loomizer to automatically migrate platform threads to

virtual threads in a Java application.

• We apply migrations on several application servers using Loomizer. We

also manually validate the correctness of the applied transformations.

• We evaluate performance changes in the migrated application servers

using several experimental setups.

The remainder of the thesis is organized as follows. Chapter 2 describes the

background materials about Loom features (virtual threads) with the limita-

tion identified in platform threads. We explore several prior works and analyze

them to validate the feasibility of their use in our migration scenario under

Chapter 3. In Chapter 4, we discuss the refactoring patterns that we manu-

ally mined, the main components in Loomizer, and how Loomizer performs

migrations for each pattern considering data types. We also present a few ex-

amples of transformations completed with Loomizer. Chapter 5 contains the

experimental setups and results of experiments that we conducted to evaluate

performance impacts on migrated application servers. We also present a few

statistics, related to the number of transformations and time spent on each

server, we recorded with Loomizer applying on application servers. Lastly,

Chapter 6 provides the conclusions of our work with future directions.
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Chapter 2

Background

This chapter includes information about traditional platform threads and their

limitations, as well as Project Loom.

2.1 Platform Threads

Figure 2.1 shows how a Java platform thread attaches to an OS thread with

1:1 mapping. Since each Java program needs at least one thread to execute

its main method [12], a platform thread typically runs code on its attached

OS thread [7]. To scale to a large number of requests, most applications will

follow a thread-per-request model. In that model, a thread can only handle

a particular request until it is completely processed [7]. Hence, the platform

thread, on which a request runs, captures the attached OS thread for the

duration of the request though the request endpoint contains a prolonged wait

Text

TextPT 1 PT 2 PT 3 PT N

OS 1 OS 2 OS 3 OS N

Platform Threads

OS Threads

Figure 2.1: The Mapping of Platform Threads and OS Threads in Java.

4



Text

TextPT 1 PT 2 PT 3 PT N

OS 1 OS 2 OS 3 OS N

Platform Threads

OS Threads

VT 1 VT 2 VT 3 VT 4 VT 5 VT 6

Vir tual Threads

Figure 2.2: Scheduling multiple virtual threads to a single platform thread.

time [7]. Serving a higher number of incoming requests limits the number

of requests processed during a given time because each thread has to be idle

till the time defined in the request endpoint has elapsed before executing any

other requests. Therefore, developers cannot obtain a better throughput if the

request contains a high wait time and the application follows the thread-per-

request model under a higher load of requests.

If developers want to increase throughput, they have to improve concur-

rency (i.e., the number of requests processed at the same time). Since each

thread has to process only one request at a time, developers have to increase

the number of platform threads and, as a result, the number of attached OS

threads. However, the number of available OS threads is limited, which causes

a barrier to increasing the number of associated platform threads. Therefore,

scaling platform threads is limited.

2.2 Project Loom

In 2017, Java language maintainers initiated project Loom with the goal of

“drastically reducing the effort of writing, maintaining, and observing high-

throughput concurrent applications” [31]. To address the scalability issue

of platform threads, Loom provided virtual threads as a preview feature in

Java 19. Figure 2.2 shows that, compared to platform threads, virtual threads

are lightweight and may not attach to OS threads in 1:1 mapping during the
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1 Thread thread = Thread.ofVirtual().unstarted(runnable);

2

3 Thread thread = Thread.ofVirtual().name("th01").unstarted(runnable);

Figure 2.3: Creation of a Virtual Thread

lifetime of a request. Moreover, there might be many virtual threads for fewer

OS threads resembling M:N mapping [7]. There is a scheduler in the Java

Development Kit (JDK) to manage and assign virtual threads to platform

threads and it utilizes a work-stealing ForkJoin pool algorithm, where the idle

threads steal work from busy threads [7], and First In, First Out (FIFO) mode.

During the lifespan of a request, the scheduler may assign a virtual thread,

on which Java code runs, to different platform threads (i.e., carrier threads)

especially when there is a high wait time in the request. Unlike using platform

threads, the scheduler unmounts the virtual thread from its attached platform

thread during high wait time in the processing request [7]. The scheduler can

assign another busy virtual thread to that platform thread for execution be-

cause the platform thread is free. Once the high wait time has elapsed, the

scheduler assigns the virtual thread back to an available platform thread for

processing. With this approach, virtual threads on which the Java code runs

do not block processing of any other requests even under a higher number of

incoming requests. Therefore, virtual threads should scale better. There are

also situations where the scheduler cannot unmount the virtual thread from its

carrier thread as it is pinned to the platform thread [7]. Then, virtual threads

may not exhibit throughput improvement.

Virtual threads are different from platform threads in several aspects. Vir-

tual threads are comparatively lightweight and inexpensive while platform

threads are costly because the operating system has to allocate a large amount

of memory (MB) during thread initialization. Hence, developers should not

create pools of virtual threads [7]. Moreover, thread groups do not have a

meaning with virtual threads [7].

Loom exposes a set of APIs to create and use virtual threads. Figure 2.3

shows how to create a virtual thread with and without a name. Developers
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4 Thread thread = Thread.ofVirtual().start(runnable);

5

6 Thread thread = Thread.startVirtualThread(runnable);

Figure 2.4: Creating and Starting a Virtual Thread

7 ThreadFactory threadFactory = Thread.ofVirtual().factory();

8 Executors.newThreadPerTaskExecutor(threadFactory);

9

10 Executors.newVirtualThreadPerTaskExecutor();

Figure 2.5: Creating Virtual Threads for Each Task

can also create and execute a virtual thread using either statement depicted in

Figure 2.4. Figure 2.5 illustrates the creation of ExecutorService which can

create a thread per task in two ways.
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Chapter 3

Related Work

In this chapter, we discuss prior work related to automatically mining code

refactoring patterns, and transforming code. We also explain the limitations

of existing work when applied to new language feature migration.

3.1 Mining Migration Patterns

Xi et al. [44] have introduced DAAMT (Deprecated API Assisted Migration

Tool). To detect instances of deprecated APIs, DAAMT generates refactoring

patterns only if there is proper documentation with complete replacement

messages. For Loom APIs, we do not have source code with documentation

that contains enough information related to API changes. Therefore, this

approach is not applicable to migrating existing codebases to use Loom.

When APIs of a framework change, client programs that use that partic-

ular framework should also be changed accordingly. SemDiff [10] suggests

changes in a client program by analyzing the modifications made to a frame-

work. Since Loom is a completely new framework, it does not have any code

changes referring to platform threads. Therefore, we will also not be able to

use SemDiff to mine refactoring patterns for Loom.

NEAT (No Example API Transformation) [38] generates refactoring pat-

terns for Android APIs without any code examples. To generate transforma-

tion rules, NEAT requires the affected library source code in which both the

deprecated API and the replacement API exist with information about both

APIs. However, Loom is a new language feature. It does not replace or depre-
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cate any previous API related to platform threads. Therefore, NEAT cannot

mine refactoring patterns for Loom migrations.

To address the difficulty in manually generating migration patterns, Pat-

terika [3] uses historical commits to mine refactoring patterns utilizing Ab-

stract Syntax Trees (ASTs) and code differencing graphs. Since Loom is still a

new language feature, there are not enough historical commits in open-source

repositories, as a result, it becomes a barrier for us to use Patterika.

If a developer needs to change the data type of a set of variables (e.g.,

int → long), they would also need to perform type changes in all their variable

references (e.g., method calls). Ketkar et al. [17] have proposed TC-infer,

which extracts refactoring patterns by analyzing version histories of open-

source repositories with similar changes. Similar to Patterika, the lack of

Loom changes in open-source repositories becomes the obstacle for TC-infer.

Loom is a new language feature. Hence, we cannot use existing work to

mine refactoring patterns for Loom migrations. Therefore, to bootstrap a

migration tool for Loom, we need to manually extract a set of refactoring

patterns by studying the JDK enhancement proposal [7] for virtual threads.

3.2 Code Transformation

After mining refactoring patterns for Loom, our next objective was automat-

ically detecting and migrating the extracted patterns. Several prior work

have focused on code transformation by developing Domain Specific Languages

(DSLs) to encode the mined patterns.

Møller et al. [20] present TAPIR, a tool that identifies the impacted loca-

tions in a JavaScript code due to library changes. JSFIX [23] is a transforma-

tion tool that brings out several semantic patches to complete transformations

along with an interactive process where the user has to answer various ques-

tions. JSFIX utilizes TAPIR to locate the impacted code. Since TAPIR

and JSFIX primarily work for JavaScript programs, we could not use them

to transform Java code automatically without human interference.

Jelly [21] is a static analyzer for pattern matching on JavaScript and
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TypeScript programs. It uses Babel [1] to parse JavaScript code into an AST.

We would have had to re-purpose Jelly in order to use it for Loom migrations,

which may introduce complexities because of the advanced features of the work

(i.e., Jelly provides more functionalities such as call graph construction; not

only pattern matching) than developing a new tool for code transformation.

CogniCrypt [19] detects misuses of cryptographic APIs using a DSL

called CrySL. CrySL has a pre-defined set of rules for several libraries such

as Java Cryptographic Architecture (JCA). CrySL also facilitates users to

define their rule files, which are then used to detect violations of those code

patterns. CogniCrypt is useful for detecting refactoring patterns in Java

code and can be used for platform thread usage detection.

Hotfixer [22] is a tool developed to hotfix vulnerabilities found using

CogniCrypt. It uses a patch adapter that depends on a custom-built version

of Soot [41]. The code fixes happen at the bytecode level. However, our goal

is to apply Loom transformations at the source level instead.

Most of these code transformation tools do not align with our goals for

Loom migrations, because of language restrictions or having support for lim-

ited use cases. Hence, we decided to explore the options available to de-

velop a tool for our requirements. We found that Soot can only provide

output in Java/Android bytecode, Jimple, and Jasmine [41]. Our goal is to

migrate application servers and evaluate performance differences after migra-

tion. Therefore, we need to perform transformations at the source level rather

than obtaining the output of the migration in the byte code formats will make

it difficult to generate source code.
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Chapter 4

Migrating Java Programs to
Loom

In this chapter, we present Loomizer and how it performs migrations using

extracted refactoring patterns.

4.1 Refactoring Patterns

At first, we tried using existing work to mine refactoring patterns for Loom

APIs, but we faced several obstacles because Loom is a new language feature.

Hence, we resorted to manually extracting a set of refactoring patterns from

the JDK enhancement proposal for virtual threads [7]. Table 4.1 depicts the

patterns that we extracted and their corresponding transformations.

To create platform threads, developers use the public thread constructor

with a few arguments as illustrated in the first four patterns in Table 4.1.

Loom developers exposed a set of APIs for virtual threads instead of a pub-

lic constructor. Developers should not pool virtual threads because of their

lightweight and inexpensive nature that comes with comparatively less over-

head in creating many more virtual threads. As the last two patterns show,

developers may use Executors to assign a virtual thread per task using a

ThreadFactory that creates virtual threads.

As we have explained in Chapter 3, prior work about automatic code trans-

formation is not applicable to migration to Loom. To better understand how

to build an automatic migration tool for Loom, we first explored manually

11



Table 4.1: Patterns and their corresponding transformations
Pattern Transformation

new Thread(runnable); Thread.ofVirtual().unstarted(runnable);

new Thread(runnable, string); Thread.ofVirtual().name(string).unstarted(runnable);

new Thread(threadGroup, runnable); Thread.ofVirtual().unstarted(runnable);

new Thread(threadGroup, runnable, string); Thread.ofVirtual().name(string).unstarted(runnable);

Executors.newFixedThreadPool(integer);
ThreadFactory threadFac = Thread.ofVirtual().factory();

Executors.newThreadPerTaskExecutor(threadFac);

Executors.newCachedThreadPool();
ThreadFactory threadFac = Thread.ofVirtual().factory();

Executors.newThreadPerTaskExecutor( threadFac );

performing code transformations on Open Liberty using our extracted refac-

toring patterns. However, this was a tedious task, confirming the need for an

automated tool chain to support migrating existing codebases to Loom.

4.2 Loomizer

We developed Loomizer, a tool that automatically migrates platform threads

to virtual threads in Java software applications. Loomizer is based on the

Rascal meta-programming language. We chose Rascal because it provides

Java source-to-source transformation [34], [36] and pattern matching [29]. We

also found that several existing works [2] have utilized Rascal in different

use cases. For example, TestAXE [30] is an open-source tool for refactoring

code smells in Java test code. Therefore, we extended TestAXE to develop

Loomizer by building three main components: Driver, Main Program, and

Code Transformer.

4.2.1 Driver

The Driver is the starting point of Loomizer and it accepts the root directory

path to a Java source code, and recursively accesses each subfolder using a

glob() Python module [32]. It then executes our Rascal main program

using the Rascal standalone jar file [33]. To fix the format of the generated

code, Driver uses the Google Java code formatter [13].

12



11 CompilationUnit unit;

12 try{

13 unit = parse(#CompilationUnit, code);

14 }

Figure 4.1: Parsing the Java code to CompilationUnit

15 list[Transformation] transformations = [

16 transformation("Loomizer", loomTransform)];

17

18 CompilationUnit transformedUnit;

19 for(loc f <- allFiles) {

20 try {

21 str content = readFile(f);

22 file = f;

23 <transformedUnit> = applyTransformations(content, transformations);

24 if (unparse(transformedUnit) != "") {

25 writeFile(f, transformedUnit);

26 }

27 }

28 catch: {

29 continue;

30 }

Figure 4.2: Applying transformations to Java files

4.2.2 Main Program

The main program filters out all input Java files and reads the content of

each file using the readFile() function in Rascal. Next, the main program

parses the file content to a parse tree that starts with a root node called

CompilationUnit, as shown in Figure 4.1. CompilationUnit is the root syntax

definition of a parse tree generated for any Java file, and it contains several

children syntax definitions (i.e., children nodes) representing each element in

a Java source code including keywords, variables, and literals. Rascal al-

lows traversing through each node using switch and visit expressions. After

applying Loom transformations on a CompilationUnit using the code trans-

former, the main program writes the transformed source code back to the Java

file using the writeFile() function in Rascal as illustrated in Figure 4.2.
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31 start syntax CompilationUnit = PackageDeclaration? Imports TypeDeclaration

*;

Figure 4.3: The syntax definition of CompilationUnit in Rascal.

32 syntax MethodDeclaration = methodDeclaration: MethodModifier* MethodHeader

MethodBody ;

Figure 4.4: The syntax definition of MethodDeclaration in Rascal.

4.2.3 Code Transformer

The code transformer replaces the detected patterns with the corresponding

replacements by modifying the syntax definitions in the parse tree of the input

Java program.

Parse Tree Representation

Rascal enables pattern matching and code transformation through a

parse tree [34] that represents each element in a Java source code. CompilationUnit,

the root node of a parse tree generated for any Java code, contains three chil-

dren nodes: PackageDeclaration, Imports and TypeDeclaration as shown in

Figure 4.3. PackageDeclaration represents the package name that a Java file

may contain. Imports represents all import statements in the input file. Each

Java file may be either a Java class or an interface and its corresponding rep-

resentation in the parse tree is TypeDeclaration.

MethodDeclaration is the corresponding Rascal parse tree syntax repre-

sentation for a Java method and it contains three children representations as

shown in Figure 4.4. Figure 4.5 depicts the construction of each child node

representing associated Java elements. Therefore, for the sample Java method

in Figure 4.6, we identify the following facts:

• public → MethodModifier

• void hello() → MethodHeader

• {System.out.println("Hello World! ");} → MethodBody

14



33 syntax MethodModifier = Annotation

34 | "public"

35 | "protected"

36 | "private"

37 | "abstract"

38 | "static"

39 | "final"

40 | "synchronized"

41 | "native"

42 | "strictfp"

43 ;

44

45 syntax MethodHeader = methodHeader: Result MethodDeclarator Throws?

46 | TypeParameters Annotation* Result MethodDeclarator

Throws?

47 ;

48

49 syntax MethodBody = Block ";"*

50 | ";"

51 ;

Figure 4.5: The syntax definitions of children nodes of MethodDeclaration in
Rascal.

52 public void hello() {

53 System.out.println("Hello World! ");

54 }

Figure 4.6: The Java source code of a sample input method.

15



55 case (MethodInvocation) `<ExpressionName exp>.getId()` => (MethodInvocation

) `<ExpressionName exp>.threadId()`

Figure 4.7: Replacing code in Rascal.

56 case (MethodInvocation) `Thread.currentThread().getId()` : { insert((

MethodInvocation) `Thread.currentThread().threadId()`); }

Figure 4.8: Inserting code with code execution block in Rascal.

Using the parse tree representation for Java and pattern matching tech-

niques in Rascal including visit and switch statements, we detect mined

refactoring patterns by traversing through tree nodes.

Java Source-to-Source Transformation

Rascal facilitates two ways for code transformations either using => or :.

As Figure 4.7 shows, => allows replacing a statement with another statement

only if both of them are of the same type. Using : enables executing any code

block on the righthand side, whether it may or may not be a replacement.

The insert expression within a code block can replace the statement on the

lefthand side only if the replacement has the same type, as shown in Figure 4.8.

We identified that there are several situations where the patterns and

their corresponding transformations do not have matching data types to per-

form code transformations directly with either available operator. For ex-

ample, to create a platform thread using a public thread constructor, new

Thread(runnable) is of type ClassInstanceCreationExpression, while Thread.

ofVirtual().unstarted(runnable) is a MethodInvocation. To choose a com-

mon parent node for both cases to perform the replacement, we need to con-

sider three types of statements: BlockStatement, StatementExpression, and

ReturnStatement. In Loomizer, as demonstrated in Figure 4.9, we have sep-

arate case expressions for each of the statement types so that we can detect

the patterns and perform transformations at the parent node level.

For new Thread(<ArgumentList args>), we need to identify the data types

of the arguments passed into the constructor to perform the relevant transfor-
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57 case (BlockStatement) `Thread <VariableDeclaratorId id> = new Thread(<

ArgumentList args>);` : {

58 BlockStatement blockstatementExp = (BlockStatement) `Thread <

VariableDeclaratorId id> = new Thread(<ArgumentList args>);`;
59 println("blockstatementExp: <blockstatementExp>");

60 }

61 case (ReturnStatement) `return new Thread(<ArgumentList args>);` : {

62 ReturnStatement returnSte = (ReturnStatement) `return new Thread(<

ArgumentList args>);`;
63 println("returnStatement : <returnSte>");

64 }

65 case (StatementExpression) `<LeftHandSide id> = new Thread(<ArgumentList

args>)` : {

66 StatementExpression exp = (StatementExpression) `<LeftHandSide id> = new

Thread(<ArgumentList args>)`;
67 println("statementExpr : <exp>");

68 }

Figure 4.9: Thread creation API in multiple syntax definitions

69 public class HelloClass {

70 String name = "Anne"; //"name" is a class variable

71 hello(name); //"name" is an argument

72

73 public void hello(String name) { //"name" is a parameter (method

parameter)

74 String prefix = "Hello World! "; // "prefix" is a local variable

75 System.out.println(prefix + name);

76 }

77 }

Figure 4.10: Data types of variables in a Java code

mations. The arguments are references to variables, and parameters declared

in the Java source code itself and we cannot directly determine the data types

using the Rascal parse tree. Therefore, we have developed an approach to

identify the data types of arguments.

Identifying Data Types of Arguments

There are 3 types of variables [27] in a Java source code: class variables,

method parameters, and local variables as shown in Figure 4.10. The references

to these variables stand as arguments in the public thread constructor.

• Class variables: are declared inside a class, outside methods, and blocks.

All objects in a class can access class variables. In Loomizer, we con-
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Figure 4.11: Traversal through nodes to extract data types of variables or
parameters.

78 syntax FieldDeclaration = fieldDeclaration: FieldModifier* UnannType

VariableDeclaratorList ";"+ ;

79

80 syntax FieldModifier = Annotation

81 | "public"

82 | "protected"

83 | "private"

84 | "static"

85 | "final"

86 | "transient"

87 | "volatile"

88 ;

89

90 syntax VariableDeclaratorList = variableDeclaratorList: {VariableDeclarator

","}+ ;

91

92 syntax VariableDeclarator = variableDeclarator: VariableDeclaratorId ("="

VariableInitializer)? ;

Figure 4.12: The syntax definition of FieldDeclaration and its children nodes
in Rascal.

94 case FieldDeclaration f: {

95 UnannType vType;

96 VariableDeclaratorId name;

97 f = top-down visit(f) {

98 case UnannType s: {

99 vType = s;

100 }

101 case VariableDeclaratorId s: {

102 name = s;

103 }

104 }

105 classVariableNameTypeMap += (name : vType);

106 }

Figure 4.13: Extracting class variables by visiting FieldDeclaration.
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108 case FormalParameter f : {

109 UnannType vType;

110 VariableDeclaratorId name;

111 f = top-down visit(f) {

112 case UnannType s: {

113 vType = s;

114 }

115 case VariableDeclaratorId s: {

116 name = s;

117 }

118 }

119 variableNameTypeMap += (name : vType);

120 }

Figure 4.14: Extracting parameters by visiting FormalParameter

121 syntax FormalParameter = VariableModifier* mds UnannType atype

VariableDeclaratorId vdid;

122 syntax VariableModifier = Annotation

123 | "final"

124 ;

Figure 4.15: Syntax Definition of FormalParameter and its children nodes

125 case LocalVariableDeclaration lvd: {

126 UnannType vType;

127 VariableDeclaratorId name;

128 lvd = top-down visit(lvd) {

129 case UnannType s: {

130 vType = s;

131 }

132 case VariableDeclaratorId s: {

133 name = s;

134 }

135 }

136 variableNameTypeMap += (name : vType);

137 }

Figure 4.16: Extracting parameters by visiting LocalVariableDeclaration.
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Figure 4.17: The main algorithm in Loomizer that figures out the class
hierarchy relationship between a given class and Runnable.

20



sider both instance variables and static variables under class variables.

FieldDeclaration is the corresponding syntax that represents class vari-

ables in Rascal. Figure 4.11 shows traversal through nodes using the

arrow keys starting from CompilationUnit to FieldDeclaration which is

labeled as 1 . Figure 4.12 depicts the construct of FieldDeclaration

using multiple children nodes and Figure 4.13 shows how the code trans-

former extracts the name and the data type of the variables and stores

them in a local map.

• Method Parameters: are declared in the method signature as depicted

in Figure 4.10. MethodDeclaration in a parse tree represents a method,

and FormalParameter represents its parameters. FormalParameter comes

within MethodDeclarator and Figure 4.11 depicts the traversal path

to FormalParameter 2 . We extract the data type and the name of

the parameter and store them in a separate local map as shown in

Figure 4.14, because FormalParameter contains a similar construct as

FieldDeclaration according to the Rascal syntax definitions shown in

Figure 4.15.

• Local Variables: are declared inside a method. According to the parse

tree generated with Rascal, LocalVariableDeclaration 3 represents

local variables, as shown in Figure 4.11. We can identify the data type

and the name of the local variables as demonstrated in Figure 4.16.

We maintain local maps inside Loomizer so that we can refer to it when-

ever we need to find the data type of a particular argument. There are more

complex scenarios where the data type of variables is not as obvious (e.g.,

Thread, String, Runnable, ThreadGroup), which means it is a custom class

type defined in the application itself. This custom class may implement a

Java interface such as Runnable or extend another class which may finally im-

plement the Runnable runnable. Hence, we consider the data type as Runnable

for our transformations. To correctly find types of those custom data types,

we have implemented an algorithm to verify whether they are eventually of
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138 list[ArgumentList] argumentList = [];

139 top-down visit(statement) {

140 case ArgumentList argList : argumentList += argList;

141 }

Figure 4.18: Extracting arguments from the statements

type Runnable, as shown in Figure 4.17. Following our examination of the

source codes of the application servers, we made a few assumptions to develop

this algorithm. Our algorithm assumes that the parent class files (extended

classes) will be present in the same package itself. It also assumes that the

data type can be found within five iterations. If the algorithm cannot find a

relationship with Runnable even after five iterations, it ignores that type and

relevant transformation. It is not a common scenario we have encountered in

our source codes.

Detection and Transformation of Refactoring Patterns

Patterns P1, P2, P3, and P4 use the public thread constructor to create

platform threads where the only difference is the number of arguments and

data types of the arguments. These patterns can be found in three types

of statements as depicted in Figure 4.9. Regardless of the statement type,

Loomizer extracts the argument list passed to the constructor as shown in

Figure 4.18. Loomizer then identifies the data type of each argument using

the following strategy:

• Find the argument name in the local maps created earlier for different

types of variables.

• Remove the this keyword from arguments, before finding them in local

maps (e.g., this in this.variableName). In that scenario, we remove the

prefix and only extract the argument name.

• Arguments may contain built-in methods such as x.toString(). In this

case, the type of the argument x is String.

• Arguments may be integer, boolean, or string (i.e., primitive data types).
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142 //statement expression

143 StatementExpression replacingExpression = (StatementExpression) `<
LeftHandSide id> = Thread.ofVirtual().unstarted(<ArgumentList lambdas>)

`;
144

145 //return statement

146 ReturnStatement replacingExpression = (ReturnStatement) `return Thread.

ofVirtual().unstarted(<ArgumentList lambdas>);`;
147

148 //block statement

149 BlockStatement replacingExpression = (BlockStatement) `Thread <

VariableDeclaratorId id> = Thread.ofVirtual().unstarted(<ArgumentList

lambdas>);`;
150

151 insert(replacingExpression);

152 }

Figure 4.19: Performing transformation of P1.

• Arguments may be method calls. We maintain a separate local map in

Loomizer to store the method names and their return types. Searching

through the map enables us to find the data type of such arguments.

• Arguments may contain a concatenation of multiple variable references.

Loomizer splits them and identifies the type of any.

Once Loomizer has identified the data type of all arguments to method

calls of interest, it applies the following pattern transformations:

Pattern P1: new Thread(runnable) If the type of the argument is Runnable,

Loomizer generates the replacement expressions according to the statement

type as demonstrated in Figure 4.19. To generate a replacement expression,

Loomizer constructs the required argument list. Because of the processing

required to generate the replacement expression, Loomizer does not use =>.

It instead uses the Rascal operator : with an insert expression.

Pattern P2: new Thread(runnable, string) In this pattern, there are two

arguments: one is a Runnable and the other one is a String. If Loomizer

finds a match for this pattern, it arranges the arguments as needed for the re-

placement expression. In the replacement expression, we have to parse and use
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153 //statement expression

154 StatementExpression replacingExpression = (StatementExpression) `<
LeftHandSide id> = Thread.ofVirtual().name(<ArgumentList nameArgs>).

unstarted(<ArgumentList runnableArgs>)`;
155

156 //return statement

157 ReturnStatement replacingExpression = (ReturnStatement) `return Thread.

ofVirtual().name(<ArgumentList nameArgs>).unstarted(<ArgumentList

runnableArgs>);`;
158

159 //block statement

160 BlockStatement replacingExpression = (BlockStatement) `Thread <

VariableDeclaratorId id> = Thread.ofVirtual().name(<ArgumentList

nameArgs>).unstarted(<ArgumentList runnableArgs>);`;
161

162 insert(replacingExpression);

Figure 4.20: Performing transformation of P2.

two ArgumentList objects for thread name and the runnable object separately

as illustrated in Figure 4.20, and generate distinct replacement expressions

depending on the statement type. We also use the insert function to apply

the generated replacement expression.

Pattern P3: new Thread(threadGroup, runnable) Thread groups are not

active with virtual threads [7]. Therefore, this pattern is similar to P1, because

the only argument that Loomizer needs to consider is runnable.

Pattern P4: new Thread(threadGroup, runnable, string) In this pattern,

Loomizer does not consider the thread group argument. Therefore, it is also

similar to P2.

Pattern P5: Executors.newFixedThreadPool(integer) To create thread

pools with a fixed number of threads, Loomizer uses Java Executors. With

virtual threads, we should not create thread pools because they are lightweight

and inexpensive. With virtual threads, we can generate a thread per task.

Therefore, the transformation creates an instance of ThreadFactory, which is

capable of generating virtual threads. It then passes the threadFactory in-

stance to the new API exposed via virtual threads, as shown in Figure 4.21.
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163 case (MethodInvocation) `Executors.newFixedThreadPool(<ArgumentList args>)

`: {

164 MethodInvocation methodInv = (MethodInvocation) `Executors.
newFixedThreadPool(<ArgumentList args>)`;

165 list[ArgumentList] argumentList = [];

166 top-down visit(methodInv) {

167 case ArgumentList argList : argumentList += argList;

168 }

169 ...

170 str variableNameForThreadFac = "threadFactory";

171 ArgumentList threadFactoryArgs = parse(#ArgumentList,

variableNameForThreadFac);

172 MethodInvocation replacingExpression = (MethodInvocation) `Executors.
newThreadPerTaskExecutor( <ArgumentList threadFactoryArgs> )`;

173 insert(replacingExpression);

174 }

Figure 4.21: Performing transformation of P5.

We do not need multiple instances of ThreadFactory within a single method.

Hence, Loomizer inserts the instance creation at the beginning of the method.

Figure 4.22 depicts the simple parsing implementation that we developed in

Loomizer to accomplish the insertion of thread factory instance creation.

We unparse the method body, remove the curly braces that wrap the method

body, and insert the expression at the top.

Pattern P6: Executors.Executors.newCachedThreadPool() Similar to P5,

we use the instance of ThreadFactory to generate the replacement expression.

Patterns P1–P6 represent the six patterns that Loomizer currently con-

siders for migrating platform thread usages to virtual threads. Loomizer ad-

ditionally transforms two more patterns that are not related to Loom, but are

essential for the compatibility with Java 19. This is because Java maintainers

deprecated the method for obtaining the identity of a thread and introduced

the method threadId() instead in Java 19 [26]. Similarly, when accessing the

identity of the current thread, we have to use the method threadId() instead

of getId() as shown in P8.

Pattern P7: thread.getId() To transform this pattern, Loomizer uses

its local maps to identify the data type of thread extracting only the variable
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175 VariableDeclaratorId vId = parse(#VariableDeclaratorId,

variableNameForThreadFac);

176

177 BlockStatement statementToBeAdded = (BlockStatement) `ThreadFactory <

VariableDeclaratorId vId> = Thread.ofVirtual().factory();`;
178

179 //unparse method body

180 str unparsedMethodBody = unparse(methodB);

181

182 // replace first and last curly braces with empty strings

183 unparsedMethodBody = replaceFirst(unparsedMethodBody, "{", "");

184

185 ...

186

187 // construct the method body again

188 str methodBody = "{\n" + unparse(statementToBeAdded) + "\n" +

189 unparsedMethodBody + "\n}";

190

191 MethodBody newBody = parse(#MethodBody, methodBody);

192

193 // insert new method body

194 insert(newBody);

Figure 4.22: Instantiation of a ThreadFactory instance.

name as depicted in Figure 4.23.

Pattern P8: Thread.currentThread().getId() Figure 4.24 shows the cor-

responding case statement and transformation for this pattern.

We have recreated the code examples in this chapter for the comprehen-

sibility of the readers. Therefore, they may not contain the exact code that

appears in the source code of Loomizer. Because these transformations in-

clude code insertions and replacements that affect the format of the code, we

have also integrated google-code-format [13] into Loomizer, similar to Tes-

tAXE [30]. In addition to applying Loomizer on Java source code, when

working with Java 19 source code, we had to enable preview features because

virtual threads are a preview feature in Java 19.
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195 case (MethodInvocation) `<ExpressionName exp>.getId()` : {

196 MethodInvocation mi = (MethodInvocation) `<ExpressionName exp>.getId()`;
197 MethodInvocation mi2 = (MethodInvocation) `<ExpressionName exp>.threadId

()`;
198 println("methodInvocation : <mi> detected");

199 bool threadIdUseFound = false;

200 top-down visit(mi) {

201 case ExpressionName exp: {

202 for(VariableDeclaratorId vId <- variableNameTypeMap) {

203 str unparsedExp = trim(unparse(exp));

204 if (startsWith(unparsedExp, "this.")) {

205 unparsedExp = substring(unparsedExp, 5);

206 }

207 if (trim(unparse(vId)) == unparsedExp) {

208 if (trim(unparse( variableNameTypeMap[vId] )) == "Thread") {

209 threadIdUseFound = true;

210 break;

211 }

212 }

213 }

214 }

215 }

216 if (threadIdUseFound) {

217 datetime transformedTime = now();

218 println("methodInvocation : <mi2> transformed : <transformedTime>");

219 insert((MethodInvocation) `<ExpressionName exp>.threadId()`);
220 }

221 }

Figure 4.23: Detection and Transformation of P7.

223 case (MethodInvocation) `Thread.currentThread().getId()` : {

224 println("methodInvocation : detected");

225 insert((MethodInvocation) `Thread.currentThread().threadId()`);
226 }

Figure 4.24: Detection and Transformation of P8.
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Chapter 5

Evaluation

In this chapter, we present an empirical evaluation to observe the benefit

of migrating to Loom for several application servers in two main scenarios:

serving IO-bound applications and serving CPU-consuming applications.

5.1 Experimental Setup

5.1.1 Application Servers

To execute and host software applications, developers use various application

servers as the runtime environment. In this thesis, we automatically migrate

platform thread usages to virtual threads for the following Java-based applica-

tion servers: IBM Open Liberty [24], Apache Tomcat [39], Wildfly (formerly

known as JBoss) [42], and Undertow [40].

Using virtual threads may improve application throughput. Therefore, we

want to observe throughput values before and after migrations. For that, we

have built two versions of each application server: one with the original source

code cloned from the master/main branch (e.g., integration branch in Open

Liberty) in its repository and the other with the migrated source code resulting

from Loomizer.

5.1.2 WRK Benchmarking Tool

To evaluate throughput changes before and after migration, we utilize the

WRK load driver [43]. The driver generates a large number of requests on mul-

tiple cores. We can fine-tune the number of threads, connections, and duration
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for a test to generate the required load of requests. For example, the com-

mand wrk -t25 -c100 -d30s http://127.0.0.1:8080/index.html runs WRK

with a total number of 25 threads (-t25), and a total number of 100 HTTP

open connections (-c100), for 30 seconds(-d30s). At the end of test execution,

WRK produces an output that contains the total number of requests that

reached the endpoint and the total number of requests processed per second

(i.e., throughput).

5.1.3 Machine Setup

We ran all performance tests on a Ubuntu 22.04.3 LTS server with x86-64 ar-

chitecture and 64 CPU cores. Depending on the objective of each experiment,

we used CPU affinity to limit the number of CPU cores assigned. Due to

the heavy load generated by WRK, the CPU on which WRK runs, comes to

immediate saturation. Therefore, to configure the WRK load driver for heavy

loads, we have to monitor the application status, CPU, and memory con-

sumption. To achieve that, we utilized Nigel’s performance Monitor for Linux

(NMON) data collector and visualizer [14] which records all CPU, memory,

and disk-related metrics with all the processes-related information.

To observe any prolonged pause times caused by stop-the-world events,

we employed IBM’s Garbage Collection (GC) and Memory Visualizer [15] to

analyze GC logs collected throughout all the experiments because stop-the-

world pauses the entire execution and may impact performance. We restricted

external interference to our performance tests by terminating all the running

Java, WRK, and NMON processes before each test execution. Furthermore,

we limited all other variables that might change for different tests (e.g., de-

fine a custom heap size instead of using default values). We then analyzed

the collected GC logs for each experiment to adjust heap sizes based on the

recommendations given by the IBM GC and Memory Visualizer.

To maintain the stability of the data, we had 20 test runs per experiment

and calculated the median value using the output of all test runs. We modified

a publicly available Python parser [35] to generate a CSV file using the WRK

output files so that we can use the CSV file to compute the median values.
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We have also applied a warm-up load for 5 minutes before the real load test

which runs for 3 minutes to allow the Just-In-Time (JIT) compiler to process

any hot code paths.

For the repeatability of the tests, we wrote separate shell scripts for each

application server. Each shell script contains a set of tasks: killing Java and

other processes, starting up the server, executing the WRK command, writing

the output to a file, and terminating the server. We have made Loomizer,

including our refactoring patterns, experiment scripts, and data available [37].

Once we have all the data including median throughput before and after

migrations, we compute the percentage of throughput improvement as:

Throughput Improvement =

(
TA− TB

TB

)
× 100%

Where:

TA : Throughput After Migration

TB : Throughput Before Migration

5.2 Research Questions

According to the JDK Enhancement Proposal [7], virtual threads are bene-

ficial in several scenarios. It also suggests that we can observe application

throughput improvement in the following two conditions (hereafter, referred

to as JEPrules):

• the number of concurrent tasks is high

• the workload is not CPU-bound

To understand the throughput differences of Loom migrated application

servers, we conducted an empirical evaluation by answering the following re-

search questions constructed based on JEPrules.

RQ1: How efficient is Loomizer?

RQ2: Does Loom migration improve throughput for applications with mostly

IO-bound operations?
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RQ3: Does Loom migration improve throughput for applications with a mix

of both IO-bound and CPU-bound operations?

5.3 Deployed Applications

We developed a Spring Boot Java application [4] with endpoints deployable

on each application server to accept requests generated from the WRK load

driver. We included several blocking operations in the application to evaluate

how virtual threads improve application throughput during wait times. Our

application contains a sleep operation within a for loop that runs 5 times act-

ing as an IO-bound scenario. Later during our experiments, we have modified

this delay to observe the throughput improvement with varying delays.

Each application server requires the deployed application to have differ-

ent dependencies and plugins so they can be successfully deployed. Hence,

we created clones of the application, added those dependencies and plugins

accordingly, and built their WAR files separately.

To answer RQ2 and RQ3, we will use the following types of applications:

Scenario 1 (S1): Application with mostly IO-bound tasks Under this

scenario, our deployed application is not CPU-bound. According to JEPrules,

we might need more concurrent tasks to benefit from using virtual threads.

However, we cannot identify the number of concurrent tasks processed using

WRK. Hence, we consider throughput to be more than a few thousand (i.e.,

at least, about 2,500 or more requests per second) as an alternative proxy

for serving a large number of concurrent tasks. To obtain a higher value for

throughput, we need to adjust the number of threads/connections in WRK

configurations. To achieve that, we used 50 ms as the lowest delay in the sleep

operation in the application.

Scenario 2 (S2): Application with a mix of both IO-bound and CPU-

bound operations According to JDK enhancement proposal [7], the work-

load should not be CPU-bound and the presence of IO blocking operations
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Table 5.1: Code migration patterns and their occurrences in the source code
of the application servers
Patterns Open Liberty Tomcat Wildfly Undertow

new Thread(Runnable) 23 19 2 3
new Thread(Runnable, String) 19 3 1 0
Executors.newCachedThreadPool() 3 0 1 0
Executors.newFixedThreadPool(int) 9 1 19 11
new Thread(ThreadGroup, Runnable) 1 0 0 0
new Thread(ThreadGroup, Runnable, String) 1 4 0 0

Total Migrations 56 27 23 14

in an application is mandatory to observe application throughput improve-

ment with virtual threads because virtual threads are not faster than platform

threads. Hence, we wanted to observe the impact of virtual threads on ap-

plications with both IO-bound and CPU-bound operations. Therefore, we

modified our application by introducing two CPU-consuming algorithms: re-

versing a long text and counting the number of occurrences of a letter in a long

text. With these modifications, our application becomes a mix of CPU-bound

and IO-bound tasks, because the application contains both blocking operations

and CPU-consuming operations. Since we might not observe an application

throughput improvement when the system under test is merely CPU-bound,

under this scenario, we maintain higher CPU utilization across all the applica-

tion servers to observe the impact of virtual threads with blocking operations

and CPU-consuming operations. To achieve that, we started our experiments

with 0 ms, at which the CPU utilization of all running CPU cores is nearly

100%. When choosing the appropriate WRK configuration, we also managed

to achieve higher CPU utilization at 25 ms. WRK did not have to produce a

much higher load of incoming requests to increase CPU utilization.

5.4 How efficient is Loomizer? (RQ1)

In this section, we assess the advantage of using Loomizer over manual mi-

gration, which includes manually searching all usages of platform threads in a

source code and converting them to support loom APIs. Figure 5.1 and Fig-

ure 5.2 illustrate two example transformations applied on Open Liberty and
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Figure 5.1: An example transformation applied on Open Liberty source code

Figure 5.2: An example transformation applied on Tomcat source code

Tomcat using Loomizer. Table 5.1 depicts the number of Loom transforma-

tions completed using Loomizer on each application server with the number

of performed transformations of each pattern in each server code base. Over-

all, Loomizer has applied 56 transformations on the Open Liberty source

code and 27 on the Tomcat source code. Hence, if we used manual migration

instead of Loomizer, we have to spend a lot of time locating instances (i.e., 8

patterns) in large code bases. Moreover, if we find another pattern, we do not

have to go through each LOC in the code base again to locate usages, instead,

we can define the pattern in LOC to automate the process.

Table 5.2 depicts the number of LOC in each original application server

and time Loomizer spent on each server during migration. We noticed that

the time taken to finish the migrations of each application server varies greatly.

Loomizer has taken approximately 26 hours to complete automatic migration

of Open Liberty, but around an hour for Undertow. We compared the time

spent by Loomizer on migrations of each application server and the number of

LOC in the source code of each application server before migration. According

to data in Table 5.2, when the number of LOC is higher, Loomizer spends

more time to complete. Loomizer is based on Rascal and it parses each Java

file to a parse tree. CompilationUnit is the root node in a parsed Java file

33



Table 5.2: Number of LOC in Application Server vs Time spent on Migrations

Application Server LOC Time (hours)

Open Liberty 11,670,792 25.9
Tomcat 238,691 2.60
Wildfly 1,354,663 4.30
Undertow 234,867 0.91

according to the Java grammar [34] in Rascal and we need to start from it to

traverse through every other element. Parsing each and every file in a Java

application that contains many modules and a larger number of LOC, and

traversal through each node to accomplish pattern matching, will be time-

consuming and that should be the reason for Loomizer spending more hours

with Open Liberty and comparatively fewer hours with Undertow.

We have also manually validated the accuracy of the transformations ap-

plied using Loomizer on each application server. From that, we observed

that, Loomizer has transformed all the transformations correctly. Moreover,

Loomizer does not report any false positives; no any irrelevant detection

other than platform thread usages.

Loomizer is efficient over manual migration because it automat-

ically detects and transforms platform threads to virtual threads

using a set of refactoring patterns.

5.5 Does Loom migration improve through-

put for applications with mostly IO-bound

operations? (RQ2)

In this section, we describe the experimental setups used in the WRK load

driver and with the application servers.

We start our experiments with 50 ms as the lowest delay and progres-

sively increase it to 100 ms, 200 ms, 500 ms, 1,000 ms, 1,500 ms, 2,000 ms,

2,500 ms, and 3,000 ms. In these experiments, we do not consider less than

1% throughput improvement because of the variation in the sample values.
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Table 5.3: Delay vs Throughput Before and After Migration in Open Liberty

Delay Before Migration (requests/s) After Migration (requests/s)

50 ms 4,898.88 5,369.84
100 ms 4,880.39 5,620.73
200 ms 4,525.66 5,307.71
500 ms 3,862.34 4,369.40
1,000 ms 2,919.46 3,150.22
1,500 ms 2,144.84 2,267.47
2,000 ms 1,648.66 1,717.53
2,500 ms 1,328.87 1,369.43
3,000 ms 1,103.73 1,127.75

As discussed earlier under S1, we have to maintain a higher throughput

as our common objective. Hence, WRK requires a higher amount of threads

and connections in its configuration to produce the target throughput. Due to

the heavy number of threads and connections in WRK, it leads to immediate

saturation of the CPU core on which WRK runs. Therefore, we increased

the number of CPU cores assigned to WRK and also employed more than

one instance of WRK to maximize the load of requests depending on the

application server.

5.5.1 Open Liberty

Configuration

We deployed the application on Open Liberty by placing the generated war file

inside the apps directory in the built Open Liberty. We assigned two CPU cores

for the Open Liberty application server to run on because it should increase

concurrent tasks. After fine-tuning with IBM GC and memory visualizer, we

defined the maximum and minimum heap sizes as 2,560 MB and 256 MB

to limit external interference. We also conducted the performance tests with

all delays under the same configuration. We then generated a throughput of

about 5,000 requests/s at 50 ms with a single instance of WRK and 2 CPU

cores assigned.
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Figure 5.3: Delay vs Throughput Improvement in Migrated Open Liberty
Server

Results

In Open Liberty, we observed that throughput decreases with increasing de-

lay at a slightly constant rate according to values shown in Table 5.3. We

calculated the throughput improvement using the equation described previ-

ously. Figure 5.3 shows that at 50 ms delay, throughput improvement is about

10% and keeps increasing with increasing delay till 200 ms. The maximum

throughput improvement is approximately 17% at 200 ms delay in the block-

ing operation. More increments to delay do not further increase throughput

improvement. Throughput improvement decreases with increasing delay after

500 ms. At all delays starting from 50 ms to 3,000 ms, we observed through-

put improvements. At 3,000 ms, throughput improvement is nearly 2.18%.

Overall, the throughput improvement at 3,000 ms is about one-fourth of the

throughput improvement at 50 ms.

36



Discussion

Open Liberty produces much higher throughput compared to other application

servers [5]. Since having a slightly constant rate of decrement over varying

delays, throughput is in the thousands even at a 3,000 ms delay in the blocking

operation and displays throughput improvement. Regardless of the delay, we

only observed throughput improvements after migration, which means that the

benefit of virtual threads is promising in the presence of blocking operations.

After 200 ms, throughput improvement decreases because the overhead (e.g.,

having many threads in the blocked state) of virtual threads increases.

5.5.2 Tomcat

Configuration

We placed the generated WAR file for our deployed application in a folder

called webapps/output/build under the build directory for Tomcat.

With the same WRK configuration used for Open Liberty, we could not

observe a similar amount of throughput with Tomcat at 50 ms. For S1, since

we have to maintain a higher throughput, we changed the WRK configuration

for Tomcat by introducing more instances and adjusting the number of CPU

cores allocated to the Tomcat server. When we have four WRK instances and

each WRK instance contains four CPU cores assigned, we could observe a

higher throughput value without saturating the CPU cores assigned to WRK

under the heavy load of requests. Moreover, we had to employ three CPU

cores on which the Tomcat server runs because a single CPU core could not

handle that much of incoming requests.

For this experiment, we limited the maximum heap size to 1,080 MB after

analyzing the collected GC logs, because the longer pause time may suspend

the execution of other threads. This suspension may impact performance

raising scalability concerns.
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Table 5.4: Delay vs Throughput Before and After Migration in Tomcat

Delay Before Migration (requests/s) After Migration (requests/s)

50 ms 3,011.97 2,985.46
100 ms 1,359.44 1,389.59
200 ms 668.18 667.51
500 ms 244.90 246.39
1,000 ms 106.65 106.42
1,500 ms 59.74 60.44
2,000 ms 36.88 36.75
2,500 ms 22.32 22.51
3,000 ms 13.31 14.04
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Figure 5.4: Delay vs Throughput Improvement in Migrated Tomcat Server
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Results

Unlike Open Liberty, with the introduction of a 100 ms delay, throughput

drops drastically to half of that of 50 ms in Tomcat as shown in Table 5.4.

Throughput drop decreases with increasing delay. Figure 5.4 shows that at

lower delays, we observed a fluctuation between -1% and 2%. At a delay of

3,000 ms, we observed a maximum throughput improvement of 5.4%.

Discussion

Observing a considerable throughput improvement at higher delays means

that the benefits of virtual threads are promising. Throughput improvement

was not prominent at lower delays because having many virtual threads might

have introduced a considerable overhead that decreased the benefits of virtual

threads.

5.5.3 Wildfly

Configuration

We placed the application war file into standalone/deployments in the built

Wildfly directory to perform deployment on Wildfly.

Though we observed more than 2,500 requests/sec throughput with Open

Liberty and Tomcat at 50 ms, we could not easily achieve the same goal for

Wildfly. To achieve that, we had to employ 10 WRK instances where each

instance has 3 CPU cores to produce our target throughput. We also assigned

16 CPU cores to the Wildfly server because the heavy load of requests from

WRK could not be handled with fewer CPU cores. To minimize external

interference, we set the minimum and maximum heap sizes as 256 MB and

1,080 MB, respectively.

Results

We observed that throughput at 50 ms is approximately 3,500 requests/sec

and drops more than half at a 100 ms delay as depicted in Table 5.5. With the

drop, we observed that we cannot increase the delay beyond 2,500 ms because
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Table 5.5: Delay vs Throughput Before and After Migration in Wildfly

Delay Before Migration (requests/s) After Migration (requests/s)

50 ms 3,458.03 3,447.77
100 ms 1,473.74 1,468.64
200 ms 657.20 662.94
500 ms 206.71 205.06
1,000 ms 76.74 76.93
1,500 ms 34.47 35.17
2,000 ms 15.41 15.41
2,500 ms 4.26 4.27
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Figure 5.5: Delay vs Throughput Improvement in Migrated Wildfly Server
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it produces zero throughput at a 3,000 ms delay. At lower delays, we observed a

fluctuation in throughput improvement of less than ± 1%, which we can ignore

due to variation in sample values, and the maximum throughput improvement

of slightly above 2% at 1,500 ms as depicted in Figure 5.5. Later, there is

a drop in throughput improvement with increasing delay to 2,000 ms and

showing near-equal throughput values before and after migration at 2,500 ms.

Discussion

At higher delays, we observed throughput improvement, which means virtual

threads may improve application throughput at higher delays in the blocking

operations with Wildfly. Further increasing delay may introduce additional

overhead from virtual threads and lead to diminishing returns depicting near-

zero throughput improvement after 1,500 ms.

5.5.4 Undertow

Configuration

The Undertow server does not work as a standalone server, unlike other appli-

cation servers. It should be embedded within the Java application. We built

the Undertow server from its migrated and original source code and put the

path to the built version in the pom.xml build file of the sample application.

Similar to starting up the server before each test execution, with Undertow,

we started the application using the mvn command to expose the endpoints.

Similar to the Wildfly server, to obtain our target of around 2,500 request-

s/sec throughput at 50 ms, we fine-tuned the setup. Eight WRK instances and

four CPU cores in each instance could produce the target throughput. Since

the application with an embedded Undertow server on a single CPU core could

not handle many incoming requests, we employed 26 CPU cores for that. To

limit external interference, we set maximum and minimum heap sizes as with

other application servers.
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Table 5.6: Delay vs Throughput Before and After Migration in Undertow

Delay Before Migration (requests/s) After Migration (requests/s)

50 ms 2,382.43 2,375.09
100 ms 1,097.68 1,097.59
200 ms 478.27 477.89
500 ms 133.59 133.78
1,000 ms 24.35 24.67
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Figure 5.6: Delay vs Throughput Improvement in Migrated Undertow Server
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Results

After fine-tuning the setup, we observed about 2,382 requests/sec at 50 ms.

With increasing delay, throughput drops and reaches near 24 requests/sec

at 1,000 ms as depicted in Table 5.6. Hence, we observed that throughput

is zero for delays greater than 1,000 ms. Though we achieved the target

throughput at 50 ms using a setup that consumes the highest number of cores,

we could not perform experiments beyond 1,000 ms because of the throughput

drops. As demonstrated in Figure 5.6, throughput improvement increases

with increasing delay showing a throughput deterioration of 0.3% at 50 ms.

At 1,000 ms, we observed the maximum throughput improvement which is

about 1.3% compared to the original Undertow server.

Discussion

Though we employed many CPU cores for this experiment to observe the target

throughput at 50 ms, due to the drop in throughput over the delay, we could

not observe non-zero throughput after 1,000 ms. Throughput improvement

with the Loom migrated Undertow server indicates that virtual threads may

improve application throughput during higher wait times.

Loom migration improves throughput for applications with mostly

IO-bound operations by 1%–17%. The improvement depends on

the application server (e.g., functions that use threading mecha-

nisms) and the delay in the blocking operations because block-

ing operations are the key to improving throughput using virtual

threads.

5.6 Does Loom migration improve through-

put for applications with a mix of both IO-

bound and CPU-bound operations? (RQ3)

According to JEPrules, we cannot observe throughput improvement with vir-

tual threads when the workload is CPU-bound. Hence, under this research
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question, we explore the throughput improvement, when we have both blocking

and CPU-consuming operations in an application (i.e., S2). In this scenario,

We maintain higher CPU utilization instead of higher throughput. Maintain-

ing higher CPU utilization with CPU-consuming tasks is not very challenging,

hence, we do not need a heavy load of requests as used with S1. Because of

that, we employed only one instance of WRK with two CPU cores. We also

assigned only one CPU core for the application server because it easily leads

to higher CPU utilization rather than having many. At 0 ms (no delay) in the

blocking operation, we could observe that CPU utilization of CPU cores, on

which each application servers run, is close to 100%. Hence, in selecting WRK

configurations, we also considered the CPU utilization at 25 ms.

Similar to the previous experiments, we ignore the throughput improve-

ment of less than 1% considering the variation in the sample values.

5.6.1 Open Liberty

Configuration

We started our experiments setting 0 ms as the lowest delay at which we do

not have blocking operations in the application. Hence, we assumed that the

scenario would become CPU-bounded at 0 ms because the application consists

of only CPU-consuming operations. Then, we incrementally changed the delay

to 25 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1,000 ms, 1,500 ms, 2,000 ms and

2,500 ms.

Results

Table 5.7 depicts throughput is in thousands for delays from 0 ms to 200 ms

which implies there are higher concurrent tasks. As demonstrated in Fig-

ure 5.7, we observed about 20% throughput improvement at 0 ms, though we

expected it would become CPU-bound at 0 ms and show throughput deteri-

oration according to JEPrules. For 50 ms, 100 ms, and 200 ms delays in the

blocking operations, we discovered throughput improvement of around 5-6%.

After 1,500 ms, the throughput difference between the original and migrated

source codes is approximately zero.
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Table 5.7: Delay vs Throughput Before and After Migration in Open Liberty

Delay Before Migration (requests/s) After Migration (requests/s)

0 ms 1,349.92 1,619.36
25 ms 1,288.50 1,312.04
50 ms 1,183.20 1,258.98
100 ms 1,082.19 1,155.37
200 ms 949.86 1,015.45
500 ms 577.28 594.20
1,000 ms 306.19 298.05
1,500 ms 205.28 202.46
2,000 ms 154.12 152.15
2,500 ms 122.20 122.07
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Figure 5.7: Delay vs Throughput Improvement in Migrated Open Liberty
Server
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Table 5.8: Delay vs Throughput Before and After Migration in Tomcat

Delay Before Migration (requests/s) After Migration (requests/s)

0 ms 1,404.82 1,159.77
25 ms 1,374.18 1,399.46
50 ms 795.90 796.00
100 ms 398.34 398.49
200 ms 198.99 199.09
500 ms 79.34 79.43
1,000 ms 39.70 39.68
1,500 ms 26.43 26.43
2,000 ms 19.62 19.76
2,500 ms 15.55 15.55

Discussion

Ideally, at 0 ms, the situation would become CPU-bound because we do not

have waiting times set in our application. The reason for our observation of

higher application throughput improvement at 0 ms is having blocking oper-

ations in the Open Liberty source code itself with higher concurrent tasks. It

directs our scenario to become a mix of IO-bound and CPU-bound instead

of solely CPU-bound at 0 ms. We only observed throughput improvements

at lower delays till 200 ms due to blocking operations in the application and

Open Liberty server resulting in higher wait times in requests. Unlike S1, we

could not observe a longer range of delays where throughput improvement is

present with S2.

5.6.2 Tomcat

Configuration

Choosing WRK configurations for this experimental setup was easier com-

pared to S1 because we do not have to generate a heavy load with WRK to

observe a higher CPU utilization. We could observe near 100% and 99% CPU

consumption at 0 ms and 25 ms delays in the application.
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Figure 5.8: Delay vs Throughput Improvement in Migrated Tomcat Server

Results

At 0 ms, the throughput after Loom migrations is lower than before migration;

throughput deterioration, as shown in Table 5.8. The system under test is

CPU-bound at 0 ms because Tomcat and the deployed application do not

contain blocking operations. It proves that throughput improvement with

virtual threads is not prominent with merely CPU-bound applications. The

maximum throughput improvement visible is also nearly close to 1.8%; less

than 2%, which is at 25 ms as depicted in Figure 5.8. We observe a fluctuation

around zero for all other delays displaying almost equal throughput before and

after migration at 2,500 ms.

Discussion

At 0 ms, the CPU core is almost saturated, and virtual threads cannot improve

application throughput because virtual threads are not faster than platform

threads [7]. That is why we do not see any throughput improvement at 0 ms.

Throughput at 25 ms is in the thousands, hence, there is a higher number of
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Table 5.9: Delay vs Throughput Before and After Migration in Wildfly

Delay Before Migration (requests/s) After Migration (requests/s)

0 ms 438.25 438.23
25 ms 120.53 120.54
50 ms 62.25 62.25
100 ms 31.41 31.41
200 ms 15.68 15.68
500 ms 6.17 6.17
1,000 ms 2.98 2.98

concurrent tasks which results in a throughput improvement at 25 ms. Though

there are higher wait times in the application, it does not show any throughput

improvement greater than 1% after 25 ms, probably due to the lack of enough

concurrent tasks.

5.6.3 Wildfly

Configuration

Though we observed nearly 100% CPU utilization at 0 ms with Wildfly, the

maximum CPU utilization at 25 ms was about 57%. Increasing the number

of WRK instances or WRK configuration did not increase CPU utilization

further at 25 ms. In this experiment also, we could not observe non-zero

throughput for larger delays; after 1,000 ms, because of the huge throughput

fall observed with the introduction of a delay.

Results

As depicted in Figure 5.9, there was a fluctuation between ± 0.02 % at lower

delays. At 200 ms onwards, throughput improvement is almost zero; through-

put before and after migration is equal.

Discussion

Our results suggest that we cannot see application throughput improvement

with virtual threads deploying S2 application on the Wildfly server. With S2,

we focused on maintaining higher CPU utilization than higher throughput in

choosing WRK configurations. Table 5.9 depicts that throughput at 0 ms is
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Figure 5.9: Delay vs Throughput Improvement in Migrated Wildfly Server

about 440 requests/s. Therefore, we might not have enough concurrent tasks

required to observe the benefit of virtual threads though the CPU is not fully

utilized. At 0 ms, we observe throughput deterioration because the system

is CPU bounded and according to JEPrules, virtual threads cannot improve

application throughput when the workload is CPU bounded.

5.6.4 Undertow

Configuration

Similar to Wildfly, we could observe almost 100% CPU utilization at 0 ms,

however, at 25 ms, the maximum CPU utilization was 57%. We could not

experiment with more than a 1,000 ms delay in the application because it

resulted in zero throughput.

Results

We observed a throughput improvement of less than 0.4% at 0 ms, which is

negligible because of the fluctuation of sample data. Till 200 ms, there is
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Table 5.10: Delay vs Throughput Before and After Migration in Undertow

Delay Before Migration (requests/s) After Migration (requests/s)

0 ms 298.56 299.60
25 ms 119.44 119.45
50 ms 60.53 60.52
100 ms 31.11 31.05
200 ms 15.68 15.68
500 ms 6.17 6.17
1,000 ms 2.98 2.98
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Figure 5.10: Delay vs Throughput Improvement in Migrated Undertow Server
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fluctuation ± 0.3%, around zero as shown in Figure 5.10. After that, the

throughput improvement remains stable at zero.

Discussion

At 0 ms, throughput was about 300 requests/s with the Undertow server as

depicted in Table 5.10. Since our focus is on higher CPU utilization in S2,

the incoming load of requests is also comparatively smaller; the number of

concurrent tasks might also be low. Even though we increase the delay in the

application, due to not having enough concurrent tasks and having limited

hardware support resulting from busy CPUs, we cannot observe the benefit of

virtual threads in terms of throughput.

The S2 application with non-zero delay in blocking operations does

not benefit much from virtual threads except with Open Liberty.

The presence of blocking operations in the Open Liberty source

code itself and in the application would be the reason for displaying

a higher throughput improvement at delays starting from 0 ms to

200 ms with Open Liberty.

5.7 Discussion

As mentioned in the JEPrules that we discussed earlier, there are two condi-

tions that make us observe the benefits of virtual threads by improving ap-

plication throughput. When we use an application that contains merely sleep

operations, out of those two conditions, we have to satisfy one; the number

of concurrent tasks should be more than a few thousand because the CPU is

not bounded when the application is merely sleeping. Hence, under S1, we

decided to maintain a higher throughput (around 2,500 requests/sec at 50 ms)

for all the experiments conducted with each application server using the S1

application. We observed that throughput decreases with increasing delay.

Throughput improvement increases with increasing delay until the maximum

throughput improvement in each application server with fluctuations as shown
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Figure 5.11: Delay vs Throughput Improvement in all Servers

in Figure 5.11.

We also observed that having a higher throughput does not always im-

prove the application throughput with virtual threads. The overhead of virtual

threads is comparatively low because virtual threads are lightweight. When

we consider many number of virtual threads, there might be a considerable

overhead of virtual threads. Hence, Different factors including the potential

overhead of virtual threads, and the wait time (i.e., delay in the blocking

operation) set in the blocking operation decide throughput improvement/de-

terioration compared to platform threads, though the number of concurrent

tasks is high and the CPU is not bounded.

With each application server, we noticed a maximum throughput improve-

ment at a certain delay. The delays at which a particular application server

shows throughput improvement changes from server to server. Hence, the

application throughput improvement relies on the application server as well.

Additionally, with increasing delay, throughput improvement decreases be-

cause of diminishing returns, as a result of having a large number of virtual
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Figure 5.12: Delay vs Throughput Improvement in all Servers (with the ap-
plication which contains both IO-bound and CPU-bound tasks)

threads in the blocked state with higher delays.

When we experimented with the S2 application, we observed that except

for Open Liberty, any other application server did not show much throughput

improvement at 0 ms. When there is no delay in the application and we deploy

the application on Open Liberty and Tomcat, both report throughput in the

thousands. At 0 ms, we observed a throughput improvement only with Open

Liberty because of the blocking operations (sleep operations) in the source

code of Open Liberty. Tomcat, Wildfly, and Undertow application servers do

not have blocking operations in their source code itself. Hence, at 0 ms, the

system under test with the S2 application deployed on Open Liberty is not

solely CPU bound; instead a mix of both CPU bound and IO bound. Other

application servers are still CPU-bound at 0 ms because they do not have

blocking operations, which is why they do not report throughput improvement

with virtual threads at 0 ms.

Even in the presence of blocking operations, due to having busy CPUs and
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a lower number of concurrent tasks, throughput improvement in the migrated

application servers except in Open Liberty and Tomcat was not noticeable.

Considering all these facts and observations, we found various factors (e.g.,

the type of application (whether merely sleeping or CPU-bound), the appli-

cation server, the expected real-time load of requests, and the delay in the

application) that decide the ability of virtual threads to improve application

throughput.

Overall, though we satisfied JEPrules with virtual threads, we could not

always observe throughput improvement with S1. Hence, developers of a par-

ticular software application should decide whether they need to migrate their

application to support virtual threads or not analyzing the consequences on

the performance of their application.

5.8 Limitations

Loomizer does not currently support several complex scenarios that may

require handling carefully with available Rascal syntax for Java, for exam-

ple, the arguments can be lambda expressions with a code block execution or

anonymous implementation of Runnable interface. In those cases, the common

scenario of having a code block becomes the barrier that makes it harder to

encode and transform. Additionally, Loomizer does not work for cases such

as if a variable refers to a custom class defined outside the package because

it requires retrieving the content from the particular file, which may need to

manipulate the file path using imports statements.

5.9 Threats to Validity

Wemanually extracted refactoring patterns from JDK enhancement proposal [7].

Hence, there might be patterns that we may have missed. Since we performed

an empirical evaluation to provide an overview of the effects of Loom migra-

tions using a set of patterns, the conclusions might not drastically change. In

addition, we migrated the Undertow application server to support Java 19 and

to Loom, we assume that it may not have broken any functionalities.
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Chapter 6

Conclusion

With the evolving nature of language features, language maintainers intro-

duce new language features from time to time to make the language feasible

for consumers in developing their software applications. Virtual threads are

one of the language features introduced with Java 19. Manual migration; man-

ually extracting refactoring patterns, then, identifying their occurrences and

transforming; might not be an easy task. There are several studies focused

on automatic migration with different use cases and languages. Any of those

work could not be used to mine refactoring patterns because loom is a new fea-

ture and we cannot find sufficient commit usages in open-source repositories.

Hence, we presented a set of migration patterns that we manually extracted

using JDK enhancement proposal [7]. In detecting and transforming according

to the migration patterns, we found several research work relatable. However,

none of the tools proposed in those were capable of satisfying our require-

ments due to limitations in languages and use cases. Therefore, in this thesis,

we presented Loomizer, a tool that is capable of automatically detecting and

transforming traditional thread usages to loom APIs. We migrated several

application servers such as Open Liberty, Tomcat, Wildfly, and Undertow us-

ing Loomizer. We also measured and analyzed the time spent by Loomizer

on each application server migration. We observed that Loomizer spends

more time on Open Liberty and Open Liberty is the largest code base out of

those four servers in terms of the number of lines of code. Loomizer does the

parsing of each Java file to a rascal syntax element and due to Open Liberty
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having a larger number of lines of code, it may have taken more time for Open

Liberty.

Developers may be concerned about the changes in performance after mi-

gration because performance is one of the most important factors that decide

the success of the application [6]. We evaluate the performance changes in the

migrated application servers by conducting several experiments. We developed

two spring boot applications to deploy on each application server; one has

solely blocking operations and the other one has CPU-consuming operations

along with blocking operations. The first application simulates an IO-bound

application while the second one is a mix of both CPU-bound and IO-bound

operations. We employed the WRK load driver to generate a load of requests.

We considered two scenarios to conduct our empirical evaluation; one with the

IO-bound application maintaining higher (more than a few thousand) through-

put, and the other one with the other application that contains both blocking

and CPU-consuming operations maintaining higher CPU utilization. We per-

formed our experiments for several delay points in the blocking operations.

In the first experimental scenario, we observed throughput improvements af-

ter migration in several delays in all application servers. The point at which

maximum throughput improvement happens is different from server to server.

Overall, we observed throughput improvement with the merely sleeping ap-

plication (S1) deployed on every application server. However, in the other

scenario, when we do not have a delay in the blocking operation, the appli-

cation only contains CPU-consuming tasks, which of course makes it merely

CPU-bound. In Open Liberty, we observed that there was a throughput im-

provement at that point of delay (no delay in the application) and then, we

figured out that there were blocking operations in the server source code itself,

which may have affected the throughput improvement. That means, in Open

Liberty, when we do not have a delay in the application, the system under

test is not solely CPU-bound as we assumed, because of the blocking opera-

tions in the server. With S2, though there are blocking operations, we could

not observe a considerable throughput improvement in any application server

except with Open Liberty. The combination of both blocking operations in
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the Open Liberty server and the application may result in more benefit from

virtual threads than any other servers.

In conclusion, only having virtual threads and satisfying JEPrules does

not improve application throughput, instead, the application server, the type

of the application, the load generated with the load driver, and the delay in

the blocking operation are some factors that decide the ability to improve the

application throughput according to our observations. Therefore, we cannot

conclude whether the virtual threads are beneficial in each software application

and developers should assess the performance of their systems considering the

properties and requirements of their applications.

Moreover, we observed that although Loomizer migrated the API usages

properly, there is still more involved work to change the thread model in the

underlying codebase because the main intent of virtual threads is to employ

thread-per-request model. This more involved change is beyond the scope of

traditional, automated API migration tools. While we could measure through-

put improvement a couple of cases, the current implementation of Loomizer

shows that traditional API migration is not sufficient to reap the benefits of

using virtual threads in application servers.

Further, researchers can extend Loomizer to support many language

features as a future advancement while addressing any limitations found in

Loomizer and introducing any other patterns/corner cases that may have

been missed in developing Loomizer.
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