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Abstract

Language features are inevitable in any programming language. Language
maintainers introduce new language features and enhancements to existing
features with their releases. For example, Virtual threads emerged as a pre-
view feature with the Java 19 release under project Loom. Developers may
need to migrate traditional thread usages with virtual threads. However, mi-
grating to new language features is not easy. It consumes time and resources
because it may require a steep learning curve to understand the required mi-
gration process. Developers may also be concerned about the after-effects of
the migration, mostly on the performance of the application.

Several studies have focused on mining refactoring patterns and automatic
migrations in different scenarios such as in the modification of libraries, and
frameworks. We found out that those studies do not align with the require-
ments of Loom migration because we do not have sufficient historical usage
in open-source repositories and proper documentation along with source code.
In this thesis, we present LOOMIZER, a transformation tool that is capable of
migrating traditional thread usages in a Java application to virtual threads.
LoOMIZER is based on Rascal. We apply LOOMIZER on various application
servers such as Open Liberty, Tomcat, Wildfly, and Undertow.

We demonstrate an empirical evaluation focusing on the performance changes,
specifically throughput, on those application servers after migration. We find
that the throughput improvement with virtual threads is not always notice-

able. In the presence of entirely blocking operations in the application de-
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ployed on the servers, we observe throughput improvement and deterioration
with different delays in the blocking operations compared to the servers be-
fore migration. Additionally, the presence of CPU-consuming operations and
blocking operations in the application limits the throughput improvement with
virtual threads in all the application servers except in Open Liberty. We dis-
cover that throughput improvement with virtual threads also depends on the
application server, the type of the application (whether I0-bound or CPU-
bound), the expected workload, and the delay in the blocking operations in

the application.
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Chapter 1

Introduction

GitHub has recently ranked Java as the 5th topmost used language for soft-
ware development [11]. Over the years, Java has offered several new language
features such as generics [16], functional interfaces [25], virtual threads [7],
and structured concurrency [8]. To address the evolving requirements of de-
velopers, language maintainers perform language releases that introduce new
language features and enhance existing ones. For example, Oracle has re-
leased a new Java version every year since Java 9 [9]. They have also issued
release notes 28] that contain information about new language features, re-
moved /deprecated features, and known issues in a particular release. Intro-
duced in Java 19 under project Loom [31], virtual threads are comparatively
lightweight threads that enable easily writing and monitoring high-throughput
concurrent applications [7]. Applications that follow the thread-per-request
model can benefit from virtual threads in terms of higher throughput and
scalability [7].

With the introduction of new language features such as Loom, developers
may want to upgrade their software applications to use them. This process
requires developers to get a good grasp on the new features, which may lead
them to go through a steep learning process. Therefore, developers typically
use automated tools to perform this migration. The general recipe for this
process consists of 3 main steps: mining refactoring patterns, detecting those
patterns, and applying code transformations.

To mine refactoring patterns, existing work (e.g., DAAMT [44], SEMD-



IFF [10], NEAT [38], PATTERIKA [3]) usually analyzes the source code with
specific code changes or proper replacement messages in code documentation
or using commit histories in source code repositories. While this approach is
effective, we cannot apply it to new language features such as Loom, because
such source code differences and replacement messages do not exist yet. Once
developers obtain refactoring patterns, they can locate the instances of iden-
tified patterns in their codebases using several existing tools [19]-[22]. While
TAPIR [20] and JELLY [21] support only Java script, COGNICRYPT [19] op-
erates on Java source code. HOTFIXER [22] is an existing code transformation
tool based on COGNICRYPT and SOOT [41], where code transformations hap-
pen at the bytecode level. Due to the nature of applying security patches to
a program at runtime, HOTFIXER is not suitable to use for source-level code
transformations to perform a codebase migration to use Loom.

To address the limitations of existing work, we present LOOMIZER, our
tool that is based on RASCAL [18], which can automatically detect and trans-
form platform threads to virtual threads in a given Java source code. RASCAL
offers exciting features such as source-to-source transformation [36], pattern
matching [29], and support for recent Java versions [34]. Therefore, LOOMIZER
enables code transformation at the source level, enabling developers to easily
use it for Loom migrations within their development environment. To en-
code migration patterns in LOOMIZER, we first manually extracted a set of
refactoring patterns by studying the JDK Enhancement Proposal for virtual
threads [7].

Migrating to Loom migration may impact the properties of software sys-
tems because of virtual threads and their benefits. Having a huge runtime
overhead from poor performance will lead to unsuccessful applications [6], af-
fecting business revenues. Therefore, a critical factor for developers to assess
is the effect of migrating their code to a new language feature on the perfor-
mance of their software system. Therefore, we have evaluated the effectiveness
of LOOMIZER by applying it to several application servers such as Open Lib-
erty [24], Tomcat [39], Wildfly [42], and Undertow [40]. We then validated the

preciseness of the applied transformations, as well as measured the effect of
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the applied transformations on the performance of those application servers.

The following are the contributions of this thesis.

e We present a set of manually mined refactoring patterns for virtual

threads.

e We propose LOOMIZER to automatically migrate platform threads to

virtual threads in a Java application.

e We apply migrations on several application servers using LOOMIZER. We

also manually validate the correctness of the applied transformations.

e We evaluate performance changes in the migrated application servers

using several experimental setups.

The remainder of the thesis is organized as follows. Chapter 2 describes the
background materials about Loom features (virtual threads) with the limita-
tion identified in platform threads. We explore several prior works and analyze
them to validate the feasibility of their use in our migration scenario under
Chapter 3. In Chapter 4, we discuss the refactoring patterns that we manu-
ally mined, the main components in LOOMIZER, and how LOOMIZER performs
migrations for each pattern considering data types. We also present a few ex-
amples of transformations completed with LOOMIZER. Chapter 5 contains the
experimental setups and results of experiments that we conducted to evaluate
performance impacts on migrated application servers. We also present a few
statistics, related to the number of transformations and time spent on each
server, we recorded with LOOMIZER applying on application servers. Lastly,

Chapter 6 provides the conclusions of our work with future directions.



Chapter 2

Background

This chapter includes information about traditional platform threads and their

limitations, as well as Project Loom.

2.1 Platform Threads

Figure 2.1 shows how a Java platform thread attaches to an OS thread with
1:1 mapping. Since each Java program needs at least one thread to execute
its main method [12], a platform thread typically runs code on its attached
OS thread [7]. To scale to a large number of requests, most applications will
follow a thread-per-request model. In that model, a thread can only handle
a particular request until it is completely processed [7]. Hence, the platform
thread, on which a request runs, captures the attached OS thread for the

duration of the request though the request endpoint contains a prolonged wait

Platform Threads

ENlEEE
¥ ¥ ¥

‘ 0S1 ’ [ 0S 2 ] ‘ 0S 3 ’ OSN

OS Threads

Figure 2.1: The Mapping of Platform Threads and OS Threads in Java.
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Figure 2.2: Scheduling multiple virtual threads to a single platform thread.

time [7]. Serving a higher number of incoming requests limits the number
of requests processed during a given time because each thread has to be idle
till the time defined in the request endpoint has elapsed before executing any
other requests. Therefore, developers cannot obtain a better throughput if the
request contains a high wait time and the application follows the thread-per-
request model under a higher load of requests.

If developers want to increase throughput, they have to improve concur-
rency (i.e., the number of requests processed at the same time). Since each
thread has to process only one request at a time, developers have to increase
the number of platform threads and, as a result, the number of attached OS
threads. However, the number of available OS threads is limited, which causes
a barrier to increasing the number of associated platform threads. Therefore,

scaling platform threads is limited.

2.2 Project Loom

In 2017, Java language maintainers initiated project Loom with the goal of
“drastically reducing the effort of writing, maintaining, and observing high-
throughput concurrent applications” [31]. To address the scalability issue
of platform threads, Loom provided virtual threads as a preview feature in
Java 19. Figure 2.2 shows that, compared to platform threads, virtual threads

are lightweight and may not attach to OS threads in 1:1 mapping during the
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3

Thread thread

Thread.ofVirtual () .unstarted(runnable) ;

Thread thread

Thread.ofVirtual() .name("thO1") .unstarted(runnable);

Figure 2.3: Creation of a Virtual Thread

lifetime of a request. Moreover, there might be many virtual threads for fewer
OS threads resembling M:N mapping [7]. There is a scheduler in the Java
Development Kit (JDK) to manage and assign virtual threads to platform
threads and it utilizes a work-stealing ForkJoin pool algorithm, where the idle
threads steal work from busy threads [7], and First In, First Out (FIFO) mode.
During the lifespan of a request, the scheduler may assign a virtual thread,
on which Java code runs, to different platform threads (i.e., carrier threads)
especially when there is a high wait time in the request. Unlike using platform
threads, the scheduler unmounts the virtual thread from its attached platform
thread during high wait time in the processing request [7]. The scheduler can
assign another busy virtual thread to that platform thread for execution be-
cause the platform thread is free. Once the high wait time has elapsed, the
scheduler assigns the virtual thread back to an available platform thread for
processing. With this approach, virtual threads on which the Java code runs
do not block processing of any other requests even under a higher number of
incoming requests. Therefore, virtual threads should scale better. There are
also situations where the scheduler cannot unmount the virtual thread from its
carrier thread as it is pinned to the platform thread [7]. Then, virtual threads
may not exhibit throughput improvement.

Virtual threads are different from platform threads in several aspects. Vir-
tual threads are comparatively lightweight and inexpensive while platform
threads are costly because the operating system has to allocate a large amount
of memory (MB) during thread initialization. Hence, developers should not
create pools of virtual threads [7]. Moreover, thread groups do not have a
meaning with virtual threads [7].

Loom exposes a set of APIs to create and use virtual threads. Figure 2.3

shows how to create a virtual thread with and without a name. Developers
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Thread thread

Thread.ofVirtual () .start (runnable) ;

Thread thread

Thread.startVirtualThread (runnable) ;

Figure 2.4: Creating and Starting a Virtual Thread

7 ThreadFactory threadFactory = Thread.ofVirtual().factory(Q);
8 Executors.newThreadPerTaskExecutor (threadFactory) ;

Executors.newVirtualThreadPerTaskExecutor () ;

Figure 2.5: Creating Virtual Threads for Each Task

can also create and execute a virtual thread using either statement depicted in
Figure 2.4. Figure 2.5 illustrates the creation of ExecutorService which can

create a thread per task in two ways.



Chapter 3

Related Work

In this chapter, we discuss prior work related to automatically mining code
refactoring patterns, and transforming code. We also explain the limitations

of existing work when applied to new language feature migration.

3.1 Mining Migration Patterns

Xi et al. [44] have introduced DAAMT (Deprecated API Assisted Migration
Tool). To detect instances of deprecated APIs, DAAMT generates refactoring
patterns only if there is proper documentation with complete replacement
messages. For Loom APIs, we do not have source code with documentation
that contains enough information related to API changes. Therefore, this
approach is not applicable to migrating existing codebases to use Loom.

When APIs of a framework change, client programs that use that partic-
ular framework should also be changed accordingly. SEMDIFF [10] suggests
changes in a client program by analyzing the modifications made to a frame-
work. Since Loom is a completely new framework, it does not have any code
changes referring to platform threads. Therefore, we will also not be able to
use SEMDIFF to mine refactoring patterns for Loom.

NEAT (No Example API Transformation) [38] generates refactoring pat-
terns for Android APIs without any code examples. To generate transforma-
tion rules, NEAT requires the affected library source code in which both the
deprecated API and the replacement API exist with information about both

APIs. However, Loom is a new language feature. It does not replace or depre-
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cate any previous API related to platform threads. Therefore, NEAT cannot
mine refactoring patterns for Loom migrations.

To address the difficulty in manually generating migration patterns, PAT-
TERIKA [3] uses historical commits to mine refactoring patterns utilizing Ab-
stract Syntax Trees (ASTs) and code differencing graphs. Since Loom is still a
new language feature, there are not enough historical commits in open-source
repositories, as a result, it becomes a barrier for us to use PATTERIKA.

If a developer needs to change the data type of a set of variables (e.g.,
int — long), they would also need to perform type changes in all their variable
references (e.g., method calls). Ketkar et al. [17] have proposed TC-INFER,
which extracts refactoring patterns by analyzing version histories of open-
source repositories with similar changes. Similar to PATTERIKA, the lack of
Loom changes in open-source repositories becomes the obstacle for T'C-INFER.

Loom is a new language feature. Hence, we cannot use existing work to
mine refactoring patterns for Loom migrations. Therefore, to bootstrap a
migration tool for Loom, we need to manually extract a set of refactoring

patterns by studying the JDK enhancement proposal [7] for virtual threads.

3.2 Code Transformation

After mining refactoring patterns for Loom, our next objective was automat-
ically detecting and migrating the extracted patterns. Several prior work
have focused on code transformation by developing Domain Specific Languages
(DSLs) to encode the mined patterns.

Moller et al. [20] present TAPIR, a tool that identifies the impacted loca-
tions in a JavaScript code due to library changes. JSFIX [23] is a transforma-
tion tool that brings out several semantic patches to complete transformations
along with an interactive process where the user has to answer various ques-
tions. JSFIX utilizes TAPIR to locate the impacted code. Since TAPIR
and JSFIX primarily work for JavaScript programs, we could not use them
to transform Java code automatically without human interference.

JELLY [21] is a static analyzer for pattern matching on JavaScript and

9



TypeScript programs. It uses Babel [1] to parse JavaScript code into an AST.
We would have had to re-purpose JELLY in order to use it for Loom migrations,
which may introduce complexities because of the advanced features of the work
(i.e., JELLY provides more functionalities such as call graph construction; not
only pattern matching) than developing a new tool for code transformation.

COGNICRYPT [19] detects misuses of cryptographic APIs using a DSL
called CRYSL. CRYSL has a pre-defined set of rules for several libraries such
as Java Cryptographic Architecture (JCA). CrRYSL also facilitates users to
define their rule files, which are then used to detect violations of those code
patterns. COGNICRYPT is useful for detecting refactoring patterns in Java
code and can be used for platform thread usage detection.

HOTFIXER [22] is a tool developed to hotfix vulnerabilities found using
CoGNICRYPT. It uses a patch adapter that depends on a custom-built version
of SooT [41]. The code fixes happen at the bytecode level. However, our goal
is to apply Loom transformations at the source level instead.

Most of these code transformation tools do not align with our goals for
Loom migrations, because of language restrictions or having support for lim-
ited use cases. Hence, we decided to explore the options available to de-
velop a tool for our requirements. We found that SOOT can only provide
output in Java/Android bytecode, Jimple, and Jasmine [41]. Our goal is to
migrate application servers and evaluate performance differences after migra-
tion. Therefore, we need to perform transformations at the source level rather
than obtaining the output of the migration in the byte code formats will make

it difficult to generate source code.
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Chapter 4

Migrating Java Programs to
Loom

In this chapter, we present LOOMIZER and how it performs migrations using

extracted refactoring patterns.

4.1 Refactoring Patterns

At first, we tried using existing work to mine refactoring patterns for Loom
APIs, but we faced several obstacles because Loom is a new language feature.
Hence, we resorted to manually extracting a set of refactoring patterns from
the JDK enhancement proposal for virtual threads [7]. Table 4.1 depicts the
patterns that we extracted and their corresponding transformations.

To create platform threads, developers use the public thread constructor
with a few arguments as illustrated in the first four patterns in Table 4.1.
Loom developers exposed a set of APIs for virtual threads instead of a pub-
lic constructor. Developers should not pool virtual threads because of their
lightweight and inexpensive nature that comes with comparatively less over-
head in creating many more virtual threads. As the last two patterns show,
developers may use Executors to assign a virtual thread per task using a
ThreadFactory that creates virtual threads.

As we have explained in Chapter 3, prior work about automatic code trans-
formation is not applicable to migration to Loom. To better understand how

to build an automatic migration tool for Loom, we first explored manually

11



Table 4.1: Patterns and their corresponding transformations

Pattern Transformation

new Thread(runnable); Thread.ofVirtual () .unstarted(runnable) ;

new Thread(runnable, string); Thread.ofVirtual () .name(string) .unstarted(runnable) ;
new Thread(threadGroup, runnable); Thread.ofVirtual () .unstarted(runnable);

new Thread(threadGroup, runnable, string); Thread.ofVirtual().name(string).unstarted(runnable);

ThreadFactory threadFac = Thread.ofVirtual().factory();

Executors.newFixedThreadPool (integer) ;
Executors.newThreadPerTaskExecutor (threadFac) ;

ThreadFactory threadFac = Thread.ofVirtual().factory();

Executors.newCachedThreadPool();
Executors.newThreadPerTaskExecutor( threadFac );

performing code transformations on Open Liberty using our extracted refac-
toring patterns. However, this was a tedious task, confirming the need for an

automated tool chain to support migrating existing codebases to Loom.

4.2 Loomizer

We developed LOOMIZER, a tool that automatically migrates platform threads
to virtual threads in Java software applications. LOOMIZER is based on the
RASCAL meta-programming language. We chose RASCAL because it provides
Java source-to-source transformation [34], [36] and pattern matching [29]. We
also found that several existing works [2] have utilized RASCAL in different
use cases. For example, TESTAXE [30] is an open-source tool for refactoring
code smells in Java test code. Therefore, we extended TESTAXE to develop
LooMIZER by building three main components: Driver, Main Program, and

Code Transformer.

4.2.1 Driver

The Driver is the starting point of LOOMIZER and it accepts the root directory
path to a Java source code, and recursively accesses each subfolder using a
glob() Python module [32]. It then executes our RASCAL main program
using the RASCAL standalone jar file [33]. To fix the format of the generated

code, Driver uses the Google Java code formatter [13].
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30

CompilationUnit unit;

try{
unit = parse(#CompilationUnit, code);
}
Figure 4.1: Parsing the Java code to CompilationUnit
list[Transformation] transformations = [

transformation("Loomizer", loomTransform)];

CompilationUnit transformedUnit;
for(loc f <- allFiles) {

try {
str content = readFile(f);
file = £f;
<transformedUnit> = applyTransformations(content, transformations);
if (unparse(transformedUnit) != "") {
writeFile(f, transformedUnit);
X
}
catch: {
continue;
3

Figure 4.2: Applying transformations to Java files

4.2.2 Main Program

The main program filters out all input Java files and reads the content of
each file using the readFile() function in RASCAL. Next, the main program
parses the file content to a parse tree that starts with a root node called
CompilationUnit, as shown in Figure 4.1. CompilationUnit is the root syntax
definition of a parse tree generated for any Java file, and it contains several
children syntax definitions (i.e., children nodes) representing each element in
a Java source code including keywords, variables, and literals. RASCAL al-
lows traversing through each node using switch and visit expressions. After
applying Loom transformations on a CompilationUnit using the code trans-
former, the main program writes the transformed source code back to the Java

file using the writeFile() function in RASCAL as illustrated in Figure 4.2.
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31 start syntax CompilationUnit = PackageDeclaration? Imports TypeDeclaration
%

Figure 4.3: The syntax definition of CompilationUnit in RASCAL.

32 syntax MethodDeclaration = methodDeclaration: MethodModifier* MethodHeader
MethodBody ;

Figure 4.4: The syntax definition of MethodDeclaration in RASCAL.

4.2.3 Code Transformer

The code transformer replaces the detected patterns with the corresponding
replacements by modifying the syntax definitions in the parse tree of the input

Java program.

Parse Tree Representation

RASCAL enables pattern matching and code transformation through a
parse tree [34] that represents each element in a Java source code. CompilationUnit,
the root node of a parse tree generated for any Java code, contains three chil-
dren nodes: PackageDeclaration, Imports and TypeDeclaration as shown in
Figure 4.3. PackageDeclaration represents the package name that a Java file
may contain. Imports represents all import statements in the input file. Each
Java file may be either a Java class or an interface and its corresponding rep-
resentation in the parse tree is TypeDeclaration.

MethodDeclaration is the corresponding RASCAL parse tree syntax repre-
sentation for a Java method and it contains three children representations as
shown in Figure 4.4. Figure 4.5 depicts the construction of each child node
representing associated Java elements. Therefore, for the sample Java method

in Figure 4.6, we identify the following facts:

® public — MethodModifier
e void hello() — MethodHeader

e {System.out.println("Hello World! ");} — MethodBody

14



33 syntax MethodModifier = Annotation

34 | "public"

35 | "protected"

36 | "private"

37 | "abstract"

38 | "static"

39 | "final"

40 | "synchronized"

41 | "native"

42 | "strictfp"

43 5

44

45 syntax MethodHeader = methodHeader: Result MethodDeclarator Throws?

46 | TypeParameters Annotation* Result MethodDeclarator
Throws?

47 ;

48

49 syntax MethodBody = Block ";"*

50 [y

51 5

Figure 4.5: The syntax definitions of children nodes of MethodDeclaration in
RASCAL.

52 public void hello() {
53 System.out.println("Hello World! ");
54 }

Figure 4.6: The Java source code of a sample input method.
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55 case (MethodInvocation) ~<ExpressionName exp>.getId()~ => (MethodInvocation
) “<ExpressionName exp>.threadId()"

Figure 4.7: Replacing code in RASCAL.

56 case (MethodInvocation) ~Thread.currentThread().getId()~ : { insert((
MethodInvocation) “Thread.currentThread().threadId()™); }

Figure 4.8: Inserting code with code execution block in RASCAL.

Using the parse tree representation for Java and pattern matching tech-
niques in RASCAL including visit and switch statements, we detect mined

refactoring patterns by traversing through tree nodes.

Java Source-to-Source Transformation

RascAL facilitates two ways for code transformations either using => or :.
As Figure 4.7 shows, => allows replacing a statement with another statement
only if both of them are of the same type. Using : enables executing any code
block on the righthand side, whether it may or may not be a replacement.
The insert expression within a code block can replace the statement on the
lefthand side only if the replacement has the same type, as shown in Figure 4.8.

We identified that there are several situations where the patterns and
their corresponding transformations do not have matching data types to per-
form code transformations directly with either available operator. For ex-
ample, to create a platform thread using a public thread constructor, new
Thread (runnable) is of type ClassInstanceCreationExpression, while Thread.
ofVirtual() .unstarted(runnable) is a MethodInvocation. To choose a com-
mon parent node for both cases to perform the replacement, we need to con-
sider three types of statements: BlockStatement, StatementExpression, and
ReturnStatement. In LOOMIZER, as demonstrated in Figure 4.9, we have sep-
arate case expressions for each of the statement types so that we can detect
the patterns and perform transformations at the parent node level.

For new Thread(<ArgumentList args>), we need to identify the data types

of the arguments passed into the constructor to perform the relevant transfor-
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64
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66

67
68

case (BlockStatement) ~Thread <VariableDeclaratorId id> = new Thread(<
ArgumentList args>);” : {
BlockStatement blockstatementExp = (BlockStatement) ~Thread <
VariableDeclaratorId id> = new Thread(<ArgumentList args>);‘;
println("blockstatementExp: <blockstatementExp>");

}
case (ReturnStatement) “return new Thread(<ArgumentList args>);” : {
ReturnStatement returnSte = (ReturnStatement) “return new Thread(<
ArgumentList args>);’;
println("returnStatement : <returnSte>");
}
case (StatementExpression) ~<LeftHandSide id> = new Thread(<ArgumentList
args>)” : {
StatementExpression exp = (StatementExpression) ~<LeftHandSide id> = new
Thread (<ArgumentList args>);
println("statementExpr : <exp>");
}

Figure 4.9: Thread creation API in multiple syntax definitions

public class HelloClass {
String name = "Anne"; //"name" is a class variable
hello(name); //"name" <s an argument

public void hello(String name) { //"name"” is a parameter (method
parameter)
String prefix = "Hello World! "; // "prefiz" is a local wvariable
System.out.println(prefix + name);

}

Figure 4.10: Data types of variables in a Java code

mations. The arguments are references to variables, and parameters declared
in the Java source code itself and we cannot directly determine the data types
using the Rascal parse tree. Therefore, we have developed an approach to

identify the data types of arguments.

Identifying Data Types of Arguments

There are 3 types of variables [27] in a Java source code: class variables,
method parameters, and local variables as shown in Figure 4.10. The references

to these variables stand as arguments in the public thread constructor.

e (Class variables: are declared inside a class, outside methods, and blocks.

All objects in a class can access class variables. In LOOMIZER, we con-
17
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79
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85
86
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88

90

91
92

94
95
96
97
98
99
100
101
102
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104
105
106

o R . R NormalClass ClassBody
’CompﬂatlonUthTypeDeclaratlonHClassDeclarauon}—» ClassBody

Method Method ClassMember
’BlockStatementsH Block H MethodBody ‘% Declaration ‘ Declaration ‘ Declaration
}

FieldDeclaration|
[¢))

Declarator
Formal
Parameter (2)

Figure 4.11: Traversal through nodes to extract data types of variables or
parameters.

LocalVariable LocalVariable ’

BlockStatement Declaration

Method ‘
Statement 3)

syntax FieldDeclaration = fieldDeclaration: FieldModifier* UnannType
VariableDeclaratorList ";"+

syntax FieldModifier = Annotation
| "public"

| "protected"
| "private"

| "static"

| "final"

| "transient"
| "volatile"

’

syntax VariableDeclaratorList = variableDeclaratorList: {VariableDeclarator
n s n}+

syntax VariableDeclarator = variableDeclarator: VariableDeclaratorId ("="
VariableInitializer)? ;

Figure 4.12: The syntax definition of FieldDeclaration and its children nodes
in RASCAL.

case FieldDeclaration f: {
UnannType vType;
VariableDeclaratorId name;
f = top-down visit(f) {
case UnannType s: {

vIype = s;

}

case VariableDeclaratorId s: {
name = s;

}

}
classVariableNameTypeMap += (name : vType);

Figure 4.13: Extracting class variables by visiting FieldDeclaration.
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108 case FormalParameter f : {
109  UnannType vType;

110  VariableDeclaratorId name;
111 f = top-down visit(f) {

112 case UnannType s: {

113 vType = s;

114 }

115 case VariableDeclaratorId s: {

116 name = s;

117 }

118}

119  variableNameTypeMap += (name : vType);
120 }

Figure 4.14: Extracting parameters by visiting FormalParameter

121 syntax FormalParameter = VariableModifier* mds UnannType atype
VariableDeclaratorId vdid;

122 syntax VariableModifier = Annotation

123 | "final"

124 ;

Figure 4.15: Syntax Definition of FormalParameter and its children nodes

125 case LocalVariableDeclaration 1lvd: {
126 UnannType vType;

127  VariableDeclaratorId name;

128  1lvd = top-down visit(lvd) {

129 case UnannType s: {

130 vIype = s;

131 }

132 case VariableDeclaratorId s: {

133 name = s;

134 }

135}

136 variableNameTypeMap += (name : vType);
137 }

Figure 4.16: Extracting parameters by visiting LocalVariableDeclaration.
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Read the Java
class name of the
file;
set COUNT =0

Extract
“Superinterfaces” to
Yes identify the

Is javaclas
ame equal to the

data type of the implemented
variable? interfaces
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Read the file Does th

Java class

implements
"Runnable”
class

corresponds to the

No Data type of the

variable and parse.
COUNT +=1

Yes Return

"Runnable"

No

v

Extract “Superclass”
to read the super
classes extended,

<—— Change Data type to

SuperClass type

COUNT +=1
v

Yes B End

I

Figure 4.17: The main algorithm in LOOMIZER that figures out the class
hierarchy relationship between a given class and Runnable.
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sider both instance variables and static variables under class variables.
FieldDeclaration is the corresponding syntax that represents class vari-
ables in RASCAL. Figure 4.11 shows traversal through nodes using the
arrow keys starting from CompilationUnit to FieldDeclaration which is
labeled as @ Figure 4.12 depicts the construct of FieldDeclaration
using multiple children nodes and Figure 4.13 shows how the code trans-
former extracts the name and the data type of the variables and stores

them in a local map.

Method Parameters: are declared in the method signature as depicted
in Figure 4.10. MethodDeclaration in a parse tree represents a method,
and FormalParameter represents its parameters. FormalParameter comes
within MethodDeclarator and Figure 4.11 depicts the traversal path
to FormalParameter @ . We extract the data type and the name of
the parameter and store them in a separate local map as shown in
Figure 4.14, because FormalParameter contains a similar construct as
FieldDeclaration according to the RASCAL syntax definitions shown in

Figure 4.15.

Local Variables: are declared inside a method. According to the parse
tree generated with RASCAL, LocalVariableDeclaration @ represents
local variables, as shown in Figure 4.11. We can identify the data type

and the name of the local variables as demonstrated in Figure 4.16.

We maintain local maps inside LOOMIZER so that we can refer to it when-

ever we need to find the data type of a particular argument. There are more

complex scenarios where the data type of variables is not as obvious (e.g.,

Thread, String, Runnable, ThreadGroup), which means it is a custom class

type defined in the application itself. This custom class may implement a

Java interface such as Runnable or extend another class which may finally im-

plement the Runnable runnable. Hence, we consider the data type as Runnable

for our transformations. To correctly find types of those custom data types,

we have implemented an algorithm to verify whether they are eventually of
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141

list[ArgumentList] argumentlist = [];
top-down visit(statement) {
case Argumentlist arglist : argumentList += arglist;

}

Figure 4.18: Extracting arguments from the statements

type Runnable, as shown in Figure 4.17. Following our examination of the
source codes of the application servers, we made a few assumptions to develop
this algorithm. Our algorithm assumes that the parent class files (extended
classes) will be present in the same package itself. It also assumes that the
data type can be found within five iterations. If the algorithm cannot find a
relationship with Runnable even after five iterations, it ignores that type and
relevant transformation. It is not a common scenario we have encountered in

our source codes.

Detection and Transformation of Refactoring Patterns

Patterns P1, P2, P3, and P4 use the public thread constructor to create
platform threads where the only difference is the number of arguments and
data types of the arguments. These patterns can be found in three types
of statements as depicted in Figure 4.9. Regardless of the statement type,
LOOMIZER extracts the argument list passed to the constructor as shown in
Figure 4.18. LOOMIZER then identifies the data type of each argument using

the following strategy:

e Find the argument name in the local maps created earlier for different

types of variables.

e Remove the this keyword from arguments, before finding them in local
maps (e.g., this in this.variableName). In that scenario, we remove the

prefix and only extract the argument name.

e Arguments may contain built-in methods such as x.toString(). In this

case, the type of the argument x is String.

e Arguments may be integer, boolean, or string (i.e., primitive data types).
22
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152

//statement expression
StatementExpression replacingExpression = (StatementExpression) ~<
LeftHandSide id> = Thread.ofVirtual() .unstarted(<ArgumentList lambdas>)

’

//return statement
ReturnStatement replacingExpression = (ReturnStatement) “return Thread.
ofVirtual() .unstarted (<ArgumentList lambdas>);";

//block statement

BlockStatement replacingExpression = (BlockStatement) ~Thread <
VariableDeclaratorId id> = Thread.ofVirtual() .unstarted(<ArgumentList
lambdas>) ;" ;

insert(replacingExpression) ;

}

Figure 4.19: Performing transformation of P1.

e Arguments may be method calls. We maintain a separate local map in
LOOMIZER to store the method names and their return types. Searching

through the map enables us to find the data type of such arguments.

e Arguments may contain a concatenation of multiple variable references.

LOOMIZER splits them and identifies the type of any.

Once LOOMIZER has identified the data type of all arguments to method

calls of interest, it applies the following pattern transformations:

Pattern P1: new Thread(runnable) If the type of the argument is Runnable,
LOOMIZER generates the replacement expressions according to the statement
type as demonstrated in Figure 4.19. To generate a replacement expression,
LOOMIZER constructs the required argument list. Because of the processing
required to generate the replacement expression, LOOMIZER does not use =>.

It instead uses the RASCAL operator : with an insert expression.

Pattern P2: new Thread(runnable, string) In this pattern, there are two
arguments: one is a Runnable and the other one is a String. If LOOMIZER
finds a match for this pattern, it arranges the arguments as needed for the re-

placement expression. In the replacement expression, we have to parse and use
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//statement expression

StatementExpression replacingExpression = (StatementExpression) ~<
LeftHandSide id> = Thread.ofVirtual() .name(<ArgumentList nameArgs>).
unstarted(<ArgumentList runnableArgs>)";

//return statement

ReturnStatement replacingExpression = (ReturnStatement) “return Thread.
ofVirtual () .name (<ArgumentList nameArgs>).unstarted(<ArgumentList
runnableArgs>);”;

//block statement

BlockStatement replacingExpression = (BlockStatement) “Thread <
VariableDeclaratorId id> = Thread.ofVirtual() .name(<ArgumentList
nameArgs>) .unstarted (<ArgumentList runnableArgs>);";

insert(replacingExpression) ;

Figure 4.20: Performing transformation of P2.

two ArgumentList objects for thread name and the runnable object separately
as illustrated in Figure 4.20, and generate distinct replacement expressions
depending on the statement type. We also use the insert function to apply

the generated replacement expression.

Pattern P3: new Thread(threadGroup, runnable) Thread groups are not
active with virtual threads [7]. Therefore, this pattern is similar to P1, because

the only argument that LOOMIZER needs to consider is runnable.

Pattern P4: new Thread(threadGroup, runnable, string) In this pattern
LOOMIZER does not consider the thread group argument. Therefore, it is also

similar to P2.

Pattern P5: Executors.newFixedThreadPool(integer) To create thread
pools with a fixed number of threads, LOOMIZER uses Java Executors. With
virtual threads, we should not create thread pools because they are lightweight
and inexpensive. With virtual threads, we can generate a thread per task.
Therefore, the transformation creates an instance of ThreadFactory, which is
capable of generating virtual threads. It then passes the threadFactory in-

stance to the new API exposed via virtual threads, as shown in Figure 4.21.
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172

173
174

case (MethodInvocation) “Executors.newFixedThreadPool(<ArgumentlList args>)

g

MethodInvocation methodInv = (MethodInvocation) “Executors.
newFixedThreadPool(<ArgumentList args>)‘;

list[ArgumentList] argumentList = [];

top-down visit(methodInv) {

case ArgumentList arglist : argumentList += arglist;

X

str variableNameForThreadFac = "threadFactory";

ArgumentList threadFactoryArgs = parse(#ArgumentLlist,
variableNameForThreadFac) ;

MethodInvocation replacingExpression = (MethodInvocation) ~Executors.
newThreadPerTaskExecutor ( <ArgumentList threadFactoryArgs> )~ ;

insert(replacingExpression) ;

}

Figure 4.21: Performing transformation of P5.

We do not need multiple instances of ThreadFactory within a single method.
Hence, LOOMIZER inserts the instance creation at the beginning of the method.
Figure 4.22 depicts the simple parsing implementation that we developed in
LOOMIZER to accomplish the insertion of thread factory instance creation.
We unparse the method body, remove the curly braces that wrap the method

body, and insert the expression at the top.

Pattern P6: Executors.Executors.newCachedThreadPool() Similar to P5,
we use the instance of ThreadFactory to generate the replacement expression.

Patterns P1-P6 represent the six patterns that LOOMIZER currently con-
siders for migrating platform thread usages to virtual threads. LOOMIZER ad-
ditionally transforms two more patterns that are not related to Loom, but are
essential for the compatibility with Java 19. This is because Java maintainers
deprecated the method for obtaining the identity of a thread and introduced
the method threadId() instead in Java 19 [26]. Similarly, when accessing the
identity of the current thread, we have to use the method threadId() instead

of getId() as shown in P8.

Pattern P7: thread.getId() To transform this pattern, LOOMIZER uses

its local maps to identify the data type of thread extracting only the variable
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184

VariableDeclaratorId vId = parse(#VariableDeclaratorId,
variableNameForThreadFac) ;

BlockStatement statementToBeAdded = (BlockStatement) ~ThreadFactory <
VariableDeclaratorId vId> = Thread.ofVirtual().factory();™;

//unparse method body
str unparsedMethodBody = unparse(methodB) ;

// replace first and last curly braces with empty strings
unparsedMethodBody = replaceFirst(unparsedMethodBody, "{", "");

185 ...

186
187
188
189
190
191
192
193
194

// construct the method body again
str methodBody = "{\n" + unparse(statementToBeAdded) + "\n" +
unparsedMethodBody + "\nl}";

MethodBody newBody = parse(#MethodBody, methodBody) ;

// insert new method body
insert (newBody) ;

Figure 4.22: Instantiation of a ThreadFactory instance.

name as depicted in Figure 4.23.

Pattern P8: Thread.currentThread().getId() Figure 4.24 shows the cor-
responding case statement and transformation for this pattern.

We have recreated the code examples in this chapter for the comprehen-
sibility of the readers. Therefore, they may not contain the exact code that
appears in the source code of LOOMIZER. Because these transformations in-
clude code insertions and replacements that affect the format of the code, we
have also integrated google-code-format [13] into LOOMIZER, similar to TES-
TAXE [30]. In addition to applying LOOMIZER on Java source code, when
working with Java 19 source code, we had to enable preview features because

virtual threads are a preview feature in Java 19.
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195 case (MethodInvocation) ~<ExpressionName exp>.getId()~ : {

196 MethodInvocation mi = (MethodInvocation) ~<ExpressionName exp>.getId();

197  MethodInvocation mi2 = (MethodInvocation) ~<ExpressionName exp>.threadld
(ON

198  println("methodInvocation : <mi> detected");

199  bool threadIdUseFound = false;

200 top-down visit(mi) {

201 case ExpressionName exp: {

202 for(VariableDeclaratorId vId <- variableNameTypeMap) {

203 str unparsedExp = trim(unparse(exp));

204 if (startsWith(unparsedExp, "this.")) {

205 unparsedExp = substring(unparsedExp, 5);

206 }

207 if (trim(unparse(vId)) == unparsedExp) {

208 if (trim(unparse( variableNameTypeMap([vId] )) == "Thread") {
209 threadIdUseFound = true;

210 break;

211 }

212 }

213 }

214 }

215}

216  if (threadIdUseFound) {

217 datetime transformedTime = now();

218 println("methodInvocation : <mi2> transformed : <transformedTime>");
219 insert ((MethodInvocation) ~<ExpressionName exp>.threadId());
220}

221 }

Figure 4.23: Detection and Transformation of P7.

223 case (MethodInvocation) “Thread.currentThread().getId()™ : {

224  println("methodInvocation : detected");

225  insert((MethodInvocation) ~Thread.currentThread().threadId() );
226 }

Figure 4.24: Detection and Transformation of P8.
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Chapter 5

Evaluation

In this chapter, we present an empirical evaluation to observe the benefit
of migrating to Loom for several application servers in two main scenarios:

serving [O-bound applications and serving CPU-consuming applications.

5.1 Experimental Setup

5.1.1 Application Servers

To execute and host software applications, developers use various application
servers as the runtime environment. In this thesis, we automatically migrate
platform thread usages to virtual threads for the following Java-based applica-
tion servers: IBM Open Liberty [24], Apache Tomcat [39], Wildfly (formerly
known as JBoss) [42], and Undertow [40].

Using virtual threads may improve application throughput. Therefore, we
want to observe throughput values before and after migrations. For that, we
have built two versions of each application server: one with the original source
code cloned from the master/main branch (e.g., integration branch in Open
Liberty) in its repository and the other with the migrated source code resulting

from LOOMIZER.

5.1.2 WRK Benchmarking Tool

To evaluate throughput changes before and after migration, we utilize the
WRK load driver [43]. The driver generates a large number of requests on mul-

tiple cores. We can fine-tune the number of threads, connections, and duration
28



for a test to generate the required load of requests. For example, the com-
mand wrk -t25 -c100 -d30s http://127.0.0.1:8080/index.html runs WRK
with a total number of 25 threads (-t25), and a total number of 100 HTTP
open connections (-c100), for 30 seconds(-d30s). At the end of test execution,
WRK produces an output that contains the total number of requests that
reached the endpoint and the total number of requests processed per second

(i.e., throughput).

5.1.3 Machine Setup

We ran all performance tests on a Ubuntu 22.04.3 LTS server with x86-64 ar-
chitecture and 64 CPU cores. Depending on the objective of each experiment,
we used CPU affinity to limit the number of CPU cores assigned. Due to
the heavy load generated by WRK, the CPU on which WRK runs, comes to
immediate saturation. Therefore, to configure the WRK load driver for heavy
loads, we have to monitor the application status, CPU, and memory con-
sumption. To achieve that, we utilized Nigel’s performance Monitor for Linux
(NMON) data collector and visualizer [14] which records all CPU, memory,
and disk-related metrics with all the processes-related information.

To observe any prolonged pause times caused by stop-the-world events,
we employed IBM’s Garbage Collection (GC) and Memory Visualizer [15] to
analyze GC logs collected throughout all the experiments because stop-the-
world pauses the entire execution and may impact performance. We restricted
external interference to our performance tests by terminating all the running
Java, WRK, and NMON processes before each test execution. Furthermore,
we limited all other variables that might change for different tests (e.g., de-
fine a custom heap size instead of using default values). We then analyzed
the collected GC logs for each experiment to adjust heap sizes based on the
recommendations given by the IBM GC and Memory Visualizer.

To maintain the stability of the data, we had 20 test runs per experiment
and calculated the median value using the output of all test runs. We modified
a publicly available Python parser [35] to generate a CSV file using the WRK

output files so that we can use the CSV file to compute the median values.
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We have also applied a warm-up load for 5 minutes before the real load test
which runs for 3 minutes to allow the Just-In-Time (JIT) compiler to process
any hot code paths.

For the repeatability of the tests, we wrote separate shell scripts for each
application server. Each shell script contains a set of tasks: killing Java and
other processes, starting up the server, executing the WRK command, writing
the output to a file, and terminating the server. We have made Loomizer,
including our refactoring patterns, experiment scripts, and data available [37].

Once we have all the data including median throughput before and after

migrations, we compute the percentage of throughput improvement as:

TA —TB

1
= >>< 00%

Throughput Improvement = <

Where:

TA : Throughput After Migration

TB : Throughput Before Migration

5.2 Research Questions

According to the JDK Enhancement Proposal [7], virtual threads are bene-
ficial in several scenarios. It also suggests that we can observe application
throughput improvement in the following two conditions (hereafter, referred

to as JEPrules):

e the number of concurrent tasks is high

e the workload is not CPU-bound

To understand the throughput differences of Loom migrated application
servers, we conducted an empirical evaluation by answering the following re-

search questions constructed based on JEPrules.
RQ1: How efficient is LOOMIZER?

RQ2: Does Loom migration improve throughput for applications with mostly

[O-bound operations?
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RQ3: Does Loom migration improve throughput for applications with a mix

of both I0-bound and CPU-bound operations?

5.3 Deployed Applications

We developed a Spring Boot Java application [4] with endpoints deployable
on each application server to accept requests generated from the WRK load
driver. We included several blocking operations in the application to evaluate
how virtual threads improve application throughput during wait times. Our
application contains a sleep operation within a for loop that runs 5 times act-
ing as an IO-bound scenario. Later during our experiments, we have modified
this delay to observe the throughput improvement with varying delays.

Each application server requires the deployed application to have differ-
ent dependencies and plugins so they can be successfully deployed. Hence,
we created clones of the application, added those dependencies and plugins
accordingly, and built their WAR files separately.

To answer RQ2 and RQ3, we will use the following types of applications:

Scenario 1 (S1): Application with mostly I0-bound tasks Under this
scenario, our deployed application is not CPU-bound. According to JEPrules,
we might need more concurrent tasks to benefit from using virtual threads.
However, we cannot identify the number of concurrent tasks processed using
WRK. Hence, we consider throughput to be more than a few thousand (i.e.,
at least, about 2,500 or more requests per second) as an alternative proxy
for serving a large number of concurrent tasks. To obtain a higher value for
throughput, we need to adjust the number of threads/connections in WRK
configurations. To achieve that, we used 50 ms as the lowest delay in the sleep

operation in the application.

Scenario 2 (S2): Application with a mix of both I0-bound and CPU-
bound operations According to JDK enhancement proposal [7], the work-

load should not be CPU-bound and the presence of 10 blocking operations
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Table 5.1: Code migration patterns and their occurrences in the source code
of the application servers

Patterns Open Liberty Tomcat Wildfly Undertow
new Thread(Runnable) 23 19 2 3
new Thread(Runnable, String) 19 3 1 0
Executors.newCachedThreadPool () 3 0 1 0
Executors.newFixedThreadPool (int) 9 1 19 11
new Thread(ThreadGroup, Runnable) 1 0 0 0
new Thread(ThreadGroup, Runnable, String) 1 4 0 0
Total Migrations 56 27 23 14

in an application is mandatory to observe application throughput improve-
ment with virtual threads because virtual threads are not faster than platform
threads. Hence, we wanted to observe the impact of virtual threads on ap-
plications with both 1I0-bound and CPU-bound operations. Therefore, we
modified our application by introducing two CPU-consuming algorithms: re-
versing a long text and counting the number of occurrences of a letter in a long
text. With these modifications, our application becomes a mix of CPU-bound
and IO-bound tasks, because the application contains both blocking operations
and CPU-consuming operations. Since we might not observe an application
throughput improvement when the system under test is merely CPU-bound,
under this scenario, we maintain higher CPU utilization across all the applica-
tion servers to observe the impact of virtual threads with blocking operations
and CPU-consuming operations. To achieve that, we started our experiments
with 0 ms, at which the CPU utilization of all running CPU cores is nearly
100%. When choosing the appropriate WRK configuration, we also managed
to achieve higher CPU utilization at 25 ms. WRK did not have to produce a

much higher load of incoming requests to increase CPU utilization.

5.4 How efficient is Loomizer? (RQ1)

In this section, we assess the advantage of using LOOMIZER over manual mi-
gration, which includes manually searching all usages of platform threads in a
source code and converting them to support loom APIs. Figure 5.1 and Fig-

ure 5.2 illustrate two example transformations applied on Open Liberty and
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v & 2mm dev/com. ibm. tx.jta/src/com/ibm/tx/jta/impl/TxRecoveryAgentImpl.java (5

1. @@ -438,7 +438,7 @ public void initiateRecovery(Failurescope fs) throws RecoveryFailedException {

238 final Thread t = AccessController.doPrivileged(new 238 final Thread t = AccessController.doPrivileged(new
privilegedactioncThread>() { privilegedactioncThread>() {

439 @override 139 @override

aa0 public Thread run() { 20 public Thread run() {

a1 return new Thread(_recoveryManager, "Recovery Thread"); 441 + return Thread.ofVirtual().name("Recovery

Thread").unstarted(_recoveryManager) ;

22 ) 452 }

443 1 443 s

a4a 424

@

Figure 5.1: An example transformation applied on Open Liberty source code

v Fomm java/org/apache/tomcat/util/net/NioEndpoint.java (3

L. @@ -285,7 +285,7 @@ public void startInternal() throws Exception {

2 28

286 // start poller thread 286 // start poller thread

287 poller = new Poller(); 287 poller = new poller();

288 - Thread pollerThread = new Thread(poller, gethame() + "-Poller”); 288 4 Thread pollerThread = Thread.ofVirtual().name(gethame() + "-
poller”).unstarted(poller);

289 pollerThread. setPriority(threadpriority); 289 pollerThread. setPriority(threadpriority);

200 pollerThread. setbaemon(true); 29 pollerThread. setpaenon(true);

201 pollerThread. start(); 201 pollerThread. start();

Figure 5.2: An example transformation applied on Tomcat source code

Tomcat using LOOMIZER. Table 5.1 depicts the number of Loom transforma-
tions completed using LOOMIZER on each application server with the number
of performed transformations of each pattern in each server code base. Over-
all, LOOMIZER has applied 56 transformations on the Open Liberty source
code and 27 on the Tomcat source code. Hence, if we used manual migration
instead of LOOMIZER, we have to spend a lot of time locating instances (i.e., 8
patterns) in large code bases. Moreover, if we find another pattern, we do not
have to go through each LOC in the code base again to locate usages, instead,
we can define the pattern in LOC to automate the process.

Table 5.2 depicts the number of LOC in each original application server
and time LOOMIZER spent on each server during migration. We noticed that
the time taken to finish the migrations of each application server varies greatly.
LOOMIZER has taken approximately 26 hours to complete automatic migration
of Open Liberty, but around an hour for Undertow. We compared the time
spent by LOOMIZER on migrations of each application server and the number of
LOC in the source code of each application server before migration. According
to data in Table 5.2, when the number of LOC is higher, LOOMIZER spends
more time to complete. LOOMIZER is based on Rascal and it parses each Java

file to a parse tree. CompilationUnit is the root node in a parsed Java file
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Table 5.2: Number of LOC in Application Server vs Time spent on Migrations

Application Server LOC Time (hours)
Open Liberty 11,670,792 25.9
Tomcat 238,691 2.60
Wildfly 1,354,663 4.30
Undertow 234,867 0.91

according to the Java grammar [34] in Rascal and we need to start from it to
traverse through every other element. Parsing each and every file in a Java
application that contains many modules and a larger number of LOC, and
traversal through each node to accomplish pattern matching, will be time-
consuming and that should be the reason for LOOMIZER spending more hours
with Open Liberty and comparatively fewer hours with Undertow.

We have also manually validated the accuracy of the transformations ap-
plied using LOOMIZER on each application server. From that, we observed
that, LOOMIZER has transformed all the transformations correctly. Moreover,
LooMIZER does not report any false positives; no any irrelevant detection

other than platform thread usages.

LOOMIZER is efficient over manual migration because it automat-
ically detects and transforms platform threads to virtual threads

using a set of refactoring patterns.

5.5 Does Loom migration improve through-
put for applications with mostly I0-bound
operations? (RQ2)

In this section, we describe the experimental setups used in the WRK load
driver and with the application servers.

We start our experiments with 50 ms as the lowest delay and progres-
sively increase it to 100 ms, 200 ms, 500 ms, 1,000 ms, 1,500 ms, 2,000 ms,
2,500 ms, and 3,000 ms. In these experiments, we do not consider less than

1% throughput improvement because of the variation in the sample values.
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Table 5.3: Delay vs Throughput Before and After Migration in Open Liberty
Delay Before Migration (requests/s) After Migration (requests/s)

50 ms 4,808.88 5,369.84
100 ms 4,880.39 5,620.73
200 ms 4,525.66 5,307.71
500 ms 3,862.34 4,369.40
1,000 ms 2,919.46 3,150.22
1,500 ms 2,144.84 2,267.47
2,000 ms 1,648.66 1,717.53
2,500 ms 1,328.87 1,369.43
3,000 ms 1,103.73 1,127.75

As discussed earlier under S1, we have to maintain a higher throughput
as our common objective. Hence, WRK requires a higher amount of threads
and connections in its configuration to produce the target throughput. Due to
the heavy number of threads and connections in WRK it leads to immediate
saturation of the CPU core on which WRK runs. Therefore, we increased
the number of CPU cores assigned to WRK and also employed more than
one instance of WRK to maximize the load of requests depending on the

application server.

5.5.1 Open Liberty

Configuration

We deployed the application on Open Liberty by placing the generated war file
inside the apps directory in the built Open Liberty. We assigned two CPU cores
for the Open Liberty application server to run on because it should increase
concurrent tasks. After fine-tuning with IBM GC and memory visualizer, we
defined the maximum and minimum heap sizes as 2,560 MB and 256 MB
to limit external interference. We also conducted the performance tests with
all delays under the same configuration. We then generated a throughput of
about 5,000 requests/s at 50 ms with a single instance of WRK and 2 CPU

cores assigned.
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Delay vs Throughput Improvement in Open Liberty
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Figure 5.3: Delay vs Throughput Improvement in Migrated Open Liberty
Server

Results

In Open Liberty, we observed that throughput decreases with increasing de-
lay at a slightly constant rate according to values shown in Table 5.3. We
calculated the throughput improvement using the equation described previ-
ously. Figure 5.3 shows that at 50 ms delay, throughput improvement is about
10% and keeps increasing with increasing delay till 200 ms. The maximum
throughput improvement is approximately 17% at 200 ms delay in the block-
ing operation. More increments to delay do not further increase throughput
improvement. Throughput improvement decreases with increasing delay after
500 ms. At all delays starting from 50 ms to 3,000 ms, we observed through-
put improvements. At 3,000 ms, throughput improvement is nearly 2.18%.
Overall, the throughput improvement at 3,000 ms is about one-fourth of the

throughput improvement at 50 ms.
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Discussion

Open Liberty produces much higher throughput compared to other application
servers [5]. Since having a slightly constant rate of decrement over varying
delays, throughput is in the thousands even at a 3,000 ms delay in the blocking
operation and displays throughput improvement. Regardless of the delay, we
only observed throughput improvements after migration, which means that the
benefit of virtual threads is promising in the presence of blocking operations.
After 200 ms, throughput improvement decreases because the overhead (e.g.,

having many threads in the blocked state) of virtual threads increases.

5.5.2 Tomcat

Configuration

We placed the generated WAR file for our deployed application in a folder
called webapps/output/build under the build directory for Tomcat.

With the same WRK configuration used for Open Liberty, we could not
observe a similar amount of throughput with Tomcat at 50 ms. For S1, since
we have to maintain a higher throughput, we changed the WRK configuration
for Tomcat by introducing more instances and adjusting the number of CPU
cores allocated to the Tomcat server. When we have four WRK instances and
each WRK instance contains four CPU cores assigned, we could observe a
higher throughput value without saturating the CPU cores assigned to WRK
under the heavy load of requests. Moreover, we had to employ three CPU
cores on which the Tomcat server runs because a single CPU core could not
handle that much of incoming requests.

For this experiment, we limited the maximum heap size to 1,080 MB after
analyzing the collected GC logs, because the longer pause time may suspend
the execution of other threads. This suspension may impact performance

raising scalability concerns.
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Table 5.4: Delay vs Throughput Before and After Migration in Tomcat

Delay Before Migration (requests/s) After Migration (requests/s)

50 ms 3,011.97 2,985.46
100 ms 1,359.44 1,389.59
200 ms 668.18 667.51
500 ms 244.90 246.39
1,000 ms 106.65 106.42
1,500 ms 59.74 60.44
2,000 ms 36.88 36.75
2,500 ms 22.32 22.51
3,000 ms 13.31 14.04

Delay vs Throughput Improvement in Tomcat
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Figure 5.4: Delay vs Throughput Improvement in Migrated Tomcat Server
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Results

Unlike Open Liberty, with the introduction of a 100 ms delay, throughput
drops drastically to half of that of 50 ms in Tomcat as shown in Table 5.4.
Throughput drop decreases with increasing delay. Figure 5.4 shows that at
lower delays, we observed a fluctuation between -1% and 2%. At a delay of

3,000 ms, we observed a maximum throughput improvement of 5.4%.

Discussion

Observing a considerable throughput improvement at higher delays means
that the benefits of virtual threads are promising. Throughput improvement
was not prominent at lower delays because having many virtual threads might
have introduced a considerable overhead that decreased the benefits of virtual

threads.

5.5.3 Wildfly

Configuration

We placed the application war file into standalone/deployments in the built
Wildfly directory to perform deployment on Wildfly.

Though we observed more than 2,500 requests/sec throughput with Open
Liberty and Tomcat at 50 ms, we could not easily achieve the same goal for
Wildfly. To achieve that, we had to employ 10 WRK instances where each
instance has 3 CPU cores to produce our target throughput. We also assigned
16 CPU cores to the Wildfly server because the heavy load of requests from
WRK could not be handled with fewer CPU cores. To minimize external
interference, we set the minimum and maximum heap sizes as 256 MB and

1,080 MB, respectively.

Results

We observed that throughput at 50 ms is approximately 3,500 requests/sec
and drops more than half at a 100 ms delay as depicted in Table 5.5. With the

drop, we observed that we cannot increase the delay beyond 2,500 ms because
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Table 5.5: Delay vs Throughput Before and After Migration in Wildfly

Delay  Before Migration (requests/s) After Migration (requests/s)

50 ms 3,458.03 3,447.77
100 ms 1,473.74 1,468.64
200 ms 657.20 662.94
500 ms 206.71 205.06
1,000 ms 76.74 76.93
1,500 ms 34.47 35.17
2,000 ms 15.41 15.41
2,500 ms 4.26 4.27

Delay vs Throughput Improvement in Wildfly
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Figure 5.5: Delay vs Throughput Improvement in Migrated Wildfly Server
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it produces zero throughput at a 3,000 ms delay. At lower delays, we observed a
fluctuation in throughput improvement of less than + 1%, which we can ignore
due to variation in sample values, and the maximum throughput improvement
of slightly above 2% at 1,500 ms as depicted in Figure 5.5. Later, there is
a drop in throughput improvement with increasing delay to 2,000 ms and

showing near-equal throughput values before and after migration at 2,500 ms.

Discussion

At higher delays, we observed throughput improvement, which means virtual
threads may improve application throughput at higher delays in the blocking
operations with Wildfly. Further increasing delay may introduce additional
overhead from virtual threads and lead to diminishing returns depicting near-

zero throughput improvement after 1,500 ms.

5.5.4 Undertow

Configuration

The Undertow server does not work as a standalone server, unlike other appli-
cation servers. It should be embedded within the Java application. We built
the Undertow server from its migrated and original source code and put the
path to the built version in the pom.xml build file of the sample application.
Similar to starting up the server before each test execution, with Undertow,
we started the application using the mvn command to expose the endpoints.
Similar to the Wildfly server, to obtain our target of around 2,500 request-
s/sec throughput at 50 ms, we fine-tuned the setup. Eight WRK instances and
four CPU cores in each instance could produce the target throughput. Since
the application with an embedded Undertow server on a single CPU core could
not handle many incoming requests, we employed 26 CPU cores for that. To
limit external interference, we set maximum and minimum heap sizes as with

other application servers.
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Table 5.6: Delay vs Throughput Before and After Migration in Undertow
Delay  Before Migration (requests/s) After Migration (requests/s)

50 ms 2,382.43 2,375.09
100 ms 1,097.68 1,097.59
200 ms 478.27 477.89
500 ms 133.59 133.78
1,000 ms 24.35 24.67

Delay vs Throughput Improvement in Undertow
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Results

After fine-tuning the setup, we observed about 2,382 requests/sec at 50 ms.
With increasing delay, throughput drops and reaches near 24 requests/sec
at 1,000 ms as depicted in Table 5.6. Hence, we observed that throughput
is zero for delays greater than 1,000 ms. Though we achieved the target
throughput at 50 ms using a setup that consumes the highest number of cores,
we could not perform experiments beyond 1,000 ms because of the throughput
drops. As demonstrated in Figure 5.6, throughput improvement increases
with increasing delay showing a throughput deterioration of 0.3% at 50 ms.
At 1,000 ms, we observed the maximum throughput improvement which is

about 1.3% compared to the original Undertow server.

Discussion

Though we employed many CPU cores for this experiment to observe the target
throughput at 50 ms, due to the drop in throughput over the delay, we could
not observe non-zero throughput after 1,000 ms. Throughput improvement
with the Loom migrated Undertow server indicates that virtual threads may

improve application throughput during higher wait times.

Loom migration improves throughput for applications with mostly
IO-bound operations by 1%-17%. The improvement depends on
the application server (e.g., functions that use threading mecha-
nisms) and the delay in the blocking operations because block-
ing operations are the key to improving throughput using virtual
threads.

5.6 Does Loom migration improve through-
put for applications with a mix of both I10-
bound and CPU-bound operations? (RQ3)

According to JEPrules, we cannot observe throughput improvement with vir-

tual threads when the workload is CPU-bound. Hence, under this research
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question, we explore the throughput improvement, when we have both blocking
and CPU-consuming operations in an application (i.e., S2). In this scenario,
We maintain higher CPU utilization instead of higher throughput. Maintain-
ing higher CPU utilization with CPU-consuming tasks is not very challenging,
hence, we do not need a heavy load of requests as used with S1. Because of
that, we employed only one instance of WRK with two CPU cores. We also
assigned only one CPU core for the application server because it easily leads
to higher CPU utilization rather than having many. At 0 ms (no delay) in the
blocking operation, we could observe that CPU utilization of CPU cores, on
which each application servers run, is close to 100%. Hence, in selecting WRK
configurations, we also considered the CPU utilization at 25 ms.

Similar to the previous experiments, we ignore the throughput improve-

ment of less than 1% considering the variation in the sample values.

5.6.1 Open Liberty

Configuration

We started our experiments setting 0 ms as the lowest delay at which we do
not have blocking operations in the application. Hence, we assumed that the
scenario would become CPU-bounded at 0 ms because the application consists
of only CPU-consuming operations. Then, we incrementally changed the delay
to 25 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1,000 ms, 1,500 ms, 2,000 ms and
2,500 ms.

Results

Table 5.7 depicts throughput is in thousands for delays from 0 ms to 200 ms
which implies there are higher concurrent tasks. As demonstrated in Fig-
ure 5.7, we observed about 20% throughput improvement at 0 ms, though we
expected it would become CPU-bound at 0 ms and show throughput deteri-
oration according to JEPrules. For 50 ms, 100 ms, and 200 ms delays in the
blocking operations, we discovered throughput improvement of around 5-6%.
After 1,500 ms, the throughput difference between the original and migrated

source codes is approximately zero.
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Table 5.7: Delay vs Throughput Before and After Migration in Open Liberty
Delay Before Migration (requests/s) After Migration (requests/s)

0 ms 1,349.92 1,619.36
25 ms 1,288.50 1,312.04
50 ms 1,183.20 1,258.98
100 ms 1,082.19 1,155.37
200 ms 949.86 1,015.45
500 ms D77.28 594.20
1,000 ms 306.19 298.05
1,500 ms 205.28 202.46
2,000 ms 154.12 152.15
2,500 ms 122.20 122.07

Delay vs Throughput Improvement in Open Liberty
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Table 5.8: Delay vs Throughput Before and After Migration in Tomcat

Delay Before Migration (requests/s) After Migration (requests/s)

0 ms 1,404.82 1,159.77
25 ms 1,374.18 1,399.46
50 ms 795.90 796.00
100 ms 398.34 398.49
200 ms 198.99 199.09
500 ms 79.34 79.43
1,000 ms 39.70 39.68
1,500 ms 26.43 26.43
2,000 ms 19.62 19.76
2,500 ms 15.55 15.55
Discussion

Ideally, at 0 ms, the situation would become CPU-bound because we do not
have waiting times set in our application. The reason for our observation of
higher application throughput improvement at 0 ms is having blocking oper-
ations in the Open Liberty source code itself with higher concurrent tasks. It
directs our scenario to become a mix of 10-bound and CPU-bound instead
of solely CPU-bound at 0 ms. We only observed throughput improvements
at lower delays till 200 ms due to blocking operations in the application and
Open Liberty server resulting in higher wait times in requests. Unlike S1, we
could not observe a longer range of delays where throughput improvement is

present with S2.

5.6.2 Tomecat

Configuration

Choosing WRK configurations for this experimental setup was easier com-
pared to S1 because we do not have to generate a heavy load with WRK to
observe a higher CPU utilization. We could observe near 100% and 99% CPU

consumption at 0 ms and 25 ms delays in the application.
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Delay vs Throughput Improvement in Tomcat
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Figure 5.8: Delay vs Throughput Improvement in Migrated Tomcat Server

Results

At 0 ms, the throughput after Loom migrations is lower than before migration;
throughput deterioration, as shown in Table 5.8. The system under test is
CPU-bound at 0 ms because Tomcat and the deployed application do not
contain blocking operations. It proves that throughput improvement with
virtual threads is not prominent with merely CPU-bound applications. The
maximum throughput improvement visible is also nearly close to 1.8%; less
than 2%, which is at 25 ms as depicted in Figure 5.8. We observe a fluctuation
around zero for all other delays displaying almost equal throughput before and

after migration at 2,500 ms.

Discussion

At 0 ms, the CPU core is almost saturated, and virtual threads cannot improve
application throughput because virtual threads are not faster than platform
threads [7]. That is why we do not see any throughput improvement at 0 ms.

Throughput at 25 ms is in the thousands, hence, there is a higher number of
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Table 5.9: Delay vs Throughput Before and After Migration in Wildfly
Delay Before Migration (requests/s) After Migration (requests/s)

0 ms 438.25 438.23
25 ms 120.53 120.54
50 ms 62.25 62.25
100 ms 31.41 31.41
200 ms 15.68 15.68
500 ms 6.17 6.17
1,000 ms 2.98 2.98

concurrent tasks which results in a throughput improvement at 25 ms. Though
there are higher wait times in the application, it does not show any throughput
improvement greater than 1% after 25 ms, probably due to the lack of enough

concurrent tasks.

5.6.3 Wildfly

Configuration

Though we observed nearly 100% CPU utilization at 0 ms with Wildfly, the
maximum CPU utilization at 25 ms was about 57%. Increasing the number
of WRK instances or WRK configuration did not increase CPU utilization
further at 25 ms. In this experiment also, we could not observe non-zero
throughput for larger delays; after 1,000 ms, because of the huge throughput

fall observed with the introduction of a delay.

Results

As depicted in Figure 5.9, there was a fluctuation between £ 0.02 % at lower
delays. At 200 ms onwards, throughput improvement is almost zero; through-

put before and after migration is equal.

Discussion

Our results suggest that we cannot see application throughput improvement
with virtual threads deploying S2 application on the Wildfly server. With S2,
we focused on maintaining higher CPU utilization than higher throughput in

choosing WRK configurations. Table 5.9 depicts that throughput at 0 ms is
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Delay vs Throughput Improvement in Wildfly
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Figure 5.9: Delay vs Throughput Improvement in Migrated Wildfly Server

about 440 requests/s. Therefore, we might not have enough concurrent tasks
required to observe the benefit of virtual threads though the CPU is not fully
utilized. At 0 ms, we observe throughput deterioration because the system
is CPU bounded and according to JEPrules, virtual threads cannot improve

application throughput when the workload is CPU bounded.
5.6.4 Undertow
Configuration

Similar to Wildfly, we could observe almost 100% CPU utilization at 0 ms,
however, at 25 ms, the maximum CPU utilization was 57%. We could not
experiment with more than a 1,000 ms delay in the application because it

resulted in zero throughput.

Results

We observed a throughput improvement of less than 0.4% at 0 ms, which is

negligible because of the fluctuation of sample data. Till 200 ms, there is
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Table 5.10: Delay vs Throughput Before and After Migration in Undertow
Delay Before Migration (requests/s) After Migration (requests/s)

0 ms 298.56 299.60
25 ms 119.44 119.45
50 ms 60.53 60.52
100 ms 31.11 31.05
200 ms 15.68 15.68
500 ms 6.17 6.17
1,000 ms 2.98 2.98

Delay vs Throughput Improvement in Undertow
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fluctuation + 0.3%, around zero as shown in Figure 5.10. After that, the

throughput improvement remains stable at zero.

Discussion

At 0 ms, throughput was about 300 requests/s with the Undertow server as
depicted in Table 5.10. Since our focus is on higher CPU utilization in S2,
the incoming load of requests is also comparatively smaller; the number of
concurrent tasks might also be low. Even though we increase the delay in the
application, due to not having enough concurrent tasks and having limited
hardware support resulting from busy CPUs, we cannot observe the benefit of

virtual threads in terms of throughput.

The S2 application with non-zero delay in blocking operations does
not benefit much from virtual threads except with Open Liberty.
The presence of blocking operations in the Open Liberty source
code itself and in the application would be the reason for displaying
a higher throughput improvement at delays starting from 0 ms to
200 ms with Open Liberty.

5.7 Discussion

As mentioned in the JEPrules that we discussed earlier, there are two condi-
tions that make us observe the benefits of virtual threads by improving ap-
plication throughput. When we use an application that contains merely sleep
operations, out of those two conditions, we have to satisfy one; the number
of concurrent tasks should be more than a few thousand because the CPU is
not bounded when the application is merely sleeping. Hence, under S1, we
decided to maintain a higher throughput (around 2,500 requests/sec at 50 ms)
for all the experiments conducted with each application server using the S1
application. We observed that throughput decreases with increasing delay.
Throughput improvement increases with increasing delay until the maximum

throughput improvement in each application server with fluctuations as shown
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Delay vs Throughput Improvement in Application Servers
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Figure 5.11: Delay vs Throughput Improvement in all Servers

in Figure 5.11.

We also observed that having a higher throughput does not always im-
prove the application throughput with virtual threads. The overhead of virtual
threads is comparatively low because virtual threads are lightweight. When
we consider many number of virtual threads, there might be a considerable
overhead of virtual threads. Hence, Different factors including the potential
overhead of virtual threads, and the wait time (i.e., delay in the blocking
operation) set in the blocking operation decide throughput improvement/de-
terioration compared to platform threads, though the number of concurrent
tasks is high and the CPU is not bounded.

With each application server, we noticed a maximum throughput improve-
ment at a certain delay. The delays at which a particular application server
shows throughput improvement changes from server to server. Hence, the
application throughput improvement relies on the application server as well.
Additionally, with increasing delay, throughput improvement decreases be-

cause of diminishing returns, as a result of having a large number of virtual
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Figure 5.12: Delay vs Throughput Improvement in all Servers (with the ap-
plication which contains both I0-bound and CPU-bound tasks)

threads in the blocked state with higher delays.

When we experimented with the S2 application, we observed that except
for Open Liberty, any other application server did not show much throughput
improvement at 0 ms. When there is no delay in the application and we deploy
the application on Open Liberty and Tomcat, both report throughput in the
thousands. At 0 ms, we observed a throughput improvement only with Open
Liberty because of the blocking operations (sleep operations) in the source
code of Open Liberty. Tomcat, Wildfly, and Undertow application servers do
not have blocking operations in their source code itself. Hence, at 0 ms, the
system under test with the S2 application deployed on Open Liberty is not
solely CPU bound; instead a mix of both CPU bound and IO bound. Other
application servers are still CPU-bound at 0 ms because they do not have
blocking operations, which is why they do not report throughput improvement
with virtual threads at 0 ms.

Even in the presence of blocking operations, due to having busy CPUs and
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a lower number of concurrent tasks, throughput improvement in the migrated
application servers except in Open Liberty and Tomcat was not noticeable.
Considering all these facts and observations, we found various factors (e.g.,
the type of application (whether merely sleeping or CPU-bound), the appli-
cation server, the expected real-time load of requests, and the delay in the
application) that decide the ability of virtual threads to improve application
throughput.

Overall, though we satisfied JEPrules with virtual threads, we could not
always observe throughput improvement with S1. Hence, developers of a par-
ticular software application should decide whether they need to migrate their
application to support virtual threads or not analyzing the consequences on

the performance of their application.

5.8 Limitations

LOOMIZER does not currently support several complex scenarios that may
require handling carefully with available RASCAL syntax for Java, for exam-
ple, the arguments can be lambda expressions with a code block execution or
anonymous implementation of Runnable interface. In those cases, the common
scenario of having a code block becomes the barrier that makes it harder to
encode and transform. Additionally, LOOMIZER does not work for cases such
as if a variable refers to a custom class defined outside the package because
it requires retrieving the content from the particular file, which may need to

manipulate the file path using imports statements.

5.9 Threats to Validity

We manually extracted refactoring patterns from JDK enhancement proposal [7].
Hence, there might be patterns that we may have missed. Since we performed
an empirical evaluation to provide an overview of the effects of Loom migra-
tions using a set of patterns, the conclusions might not drastically change. In
addition, we migrated the Undertow application server to support Java 19 and

to Loom, we assume that it may not have broken any functionalities.
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Chapter 6

Conclusion

With the evolving nature of language features, language maintainers intro-
duce new language features from time to time to make the language feasible
for consumers in developing their software applications. Virtual threads are
one of the language features introduced with Java 19. Manual migration; man-
ually extracting refactoring patterns, then, identifying their occurrences and
transforming; might not be an easy task. There are several studies focused
on automatic migration with different use cases and languages. Any of those
work could not be used to mine refactoring patterns because loom is a new fea-
ture and we cannot find sufficient commit usages in open-source repositories.
Hence, we presented a set of migration patterns that we manually extracted
using JDK enhancement proposal [7]. In detecting and transforming according
to the migration patterns, we found several research work relatable. However,
none of the tools proposed in those were capable of satisfying our require-
ments due to limitations in languages and use cases. Therefore, in this thesis,
we presented LOOMIZER, a tool that is capable of automatically detecting and
transforming traditional thread usages to loom APIs. We migrated several
application servers such as Open Liberty, Tomcat, Wildfly, and Undertow us-
ing LOOMIZER. We also measured and analyzed the time spent by LOOMIZER
on each application server migration. We observed that LOOMIZER spends
more time on Open Liberty and Open Liberty is the largest code base out of
those four servers in terms of the number of lines of code. LOOMIZER does the

parsing of each Java file to a rascal syntax element and due to Open Liberty
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having a larger number of lines of code, it may have taken more time for Open
Liberty.

Developers may be concerned about the changes in performance after mi-
gration because performance is one of the most important factors that decide
the success of the application [6]. We evaluate the performance changes in the
migrated application servers by conducting several experiments. We developed
two spring boot applications to deploy on each application server; one has
solely blocking operations and the other one has CPU-consuming operations
along with blocking operations. The first application simulates an I0-bound
application while the second one is a mix of both CPU-bound and 10-bound
operations. We employed the WRK load driver to generate a load of requests.
We considered two scenarios to conduct our empirical evaluation; one with the
IO-bound application maintaining higher (more than a few thousand) through-
put, and the other one with the other application that contains both blocking
and CPU-consuming operations maintaining higher CPU utilization. We per-
formed our experiments for several delay points in the blocking operations.
In the first experimental scenario, we observed throughput improvements af-
ter migration in several delays in all application servers. The point at which
maximum throughput improvement happens is different from server to server.
Overall, we observed throughput improvement with the merely sleeping ap-
plication (S1) deployed on every application server. However, in the other
scenario, when we do not have a delay in the blocking operation, the appli-
cation only contains CPU-consuming tasks, which of course makes it merely
CPU-bound. In Open Liberty, we observed that there was a throughput im-
provement at that point of delay (no delay in the application) and then, we
figured out that there were blocking operations in the server source code itself,
which may have affected the throughput improvement. That means, in Open
Liberty, when we do not have a delay in the application, the system under
test is not solely CPU-bound as we assumed, because of the blocking opera-
tions in the server. With S2, though there are blocking operations, we could
not observe a considerable throughput improvement in any application server

except with Open Liberty. The combination of both blocking operations in
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the Open Liberty server and the application may result in more benefit from
virtual threads than any other servers.

In conclusion, only having virtual threads and satisfying JEPrules does
not improve application throughput, instead, the application server, the type
of the application, the load generated with the load driver, and the delay in
the blocking operation are some factors that decide the ability to improve the
application throughput according to our observations. Therefore, we cannot
conclude whether the virtual threads are beneficial in each software application
and developers should assess the performance of their systems considering the
properties and requirements of their applications.

Moreover, we observed that although LOOMIZER migrated the API usages
properly, there is still more involved work to change the thread model in the
underlying codebase because the main intent of virtual threads is to employ
thread-per-request model. This more involved change is beyond the scope of
traditional, automated API migration tools. While we could measure through-
put improvement a couple of cases, the current implementation of Loomizer
shows that traditional API migration is not sufficient to reap the benefits of
using virtual threads in application servers.

Further, researchers can extend LOOMIZER to support many language
features as a future advancement while addressing any limitations found in
LooMIZER and introducing any other patterns/corner cases that may have

been missed in developing LOOMIZER.
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