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ABSTRACT

A numerical analysis, which takes into account the
effects of bending, is used to determine the effects on shallow

elliptic paraboloid shells of various boundary conditibns,

.including elastic edge beams. A computer program was written

to solve the simultaneous linear equilibrium equations resulting
from thg analogue. The shells studied are square in planform,
and normal uniform loadings are considered. Boundary conditions
are handled by assigning values to stiffness parametérs defined
corresponding to displacements in each of the three co-ordinate

directions and to rotation about an axis along the edge.

The effects of idealized 5oundary éonditions 6ﬁf5trééé
resultants and deflections of the shell are presented. It is
shown that the idealized boundary conditions yieid results
differing significantly from the results of elastic edge beams
of practical shapes and sizes. Interactions of the shell surface
and the supporting edge members are discussed. The study treats
briefly the effects of varying curvature of a shell with

elastic edge beams of practical size.
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a,b

hg, hy, h

K1, K2, K3, K&

Mxx, Nyy
Mxy

Nxx, Nyy
Nxy

t

u, v, w

X, ¥, 2

NOMENCLATURE

shell dimensions, semi~spans in the
X and y dimensions, respectively.

shell dimensions, semi-spans in the
x and y directions, respectively. For
symmetrical shells, h = hy = hy.

edge beam stiffness parameters which
relate the beam's axial stiffness,
transverse bending stiffness, torsional
stiffness, and in-plane bending stiffness,
respectively, to the axial stiffness and
transverse bending stiffness of the shell
over a grid-length.

bending moments in the shell acting over
a grid-length.

twisting moments in the shell acting over
a grid-length.

membrane direct stress resultants in the
shell acting over a grid-length.

membrane shear stress resultants in the
shell acting over a grid-length.

thickness of the shell.
displacement components in the tangential
x, tangential y, and normal z directions,

respectively. :

Cartesian co-ordinates of the reference
systen.

xi
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CHAPTER I

INTRODUCTION

In the design of translational shells the designer is faced
with the problem of selecting edge members which are compatible with
his analysis. Generally, the assumptions used in the analysis for
the deformation characteristics of the supports are unrealistic and,
at present, there is little in the literature to guide him in choosing
the optimum area and shape of cross-section which will minimize the
stresses in the shell. It is the solution of this problem which forms

the purpose of this investigation,

The design of translational shells has been based generally
on stress resultants obtainea from a membrane analysis. This analysis
is known to give satisfactory results for uniformly distributed loads
over the shell surface in regions sufficiently remote from the edge
supports. However, the membrane analysis assumes that only in-plane
shear stresses are transferred to the edge members and that the edge
member has negligible stiffness in all directions except in the axial
direction which is considered rigid, assumptions of questionable

validity.

More general theories for the analysis of translational shells
%
have been presented (2) (9) . These theories formulate the governing

differential equation for the shell surface taking into account both

membrane and bending stress resultants.

* Numbers in brackets ( ) refer to list of references.



Unfortunately, a general solution of these equations is not
possible and solutions for only a few idealized boundary conditions

have been obtained by using numerical techniques (3) (1).

More recently matheméticél analogues or models have been
developed which permit simulation of the deformation characteristics
of both the shell sgrface and the supporting edge members (5) (6).
Thus this technique makes possible the study of actual edge members
having finite dimensions and finite stiffnesses, rather than idealized
boundaries. From such a study the designer may obtain some insight
into the interaétion of the shell surface and the supporting edge
members, The effects of varying the area and shape of rectangular
cross-sections of edge members on the magnifudes and distributions
of the stress resultants in the shell forms the major portion of this

thesis.

The results presented were obtained for elliptic paraboloid
shells using the analogue developed by Rajendram (5). A brief
description of this analogue and the computer program used is given

in Chapter II.

Chapter III contains a discussion of the ﬁariables'considered.
Four stiffness parameters were defined corresponding to displacements
in.each of the three co-ordinate directions and to a rotation about
én axis algng the edge. To evaluate qualitatively the effects of each
stiffness parameter on the behaviour of the shell, the parameters were
assigned valués of zero and infinity in all possible combinations. The

results from this series are presented in Chapter IV.
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The stiffness parameters were then evaluated for a series of
finite edge members of square cross-section where the dimensions were
varied to determine the effect of changing the cross-sectional area
and for another series where the cross-sectional area was kept constant
but the ratio of the dimensions was varied to determine the effect of
shape. In a third series, the rise of the shell was varied to determine
the effect of curvature. These results with edge members having finite

dimensions are presented in Chapter V.

A summary of the major conclusions is given in Chapter VI,
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CHAPTER II

METHOD OF ANALYSIS

2.1 Description and Application of the Analogue

An analogue consisting of rigid bars connecting deformable
elastic hinges was developed by Rajendram (5) to simulate the action
of shallow doubly-curved translational shells. A rectangular grid
of primary bars resists bending and in-plane direct stresses while
a secondary grid intersecting the primary grid at the grid midpoints
resists the in-plane membrane shear stresses. Changes in curvature
and in-plane extensions are considered to be concentrated at the grid
intersection points. Since compatibility of geometry is assured with
the analogue only equations of equilibrium are required. These yield
results for the shell surface which are identical to those obtained
by finite difference operators applied to the governing differential
equation for these shells. In a similar manner modifications can be
made to the analogue at the boundaries to simulate the presence of
elastic edge members. The equations of equilibrium for gridpoints
near their location will include in addition to the shell parameter
the edge beam stiffness parameters K1, K2, K3 and K4, which relate
the beam's axial stiffness, transverse bending stiffness, torsional
stiffness, and in-plane bending stiffness, respectively, to the

stiffness of the shell over a grid-length.



These equilibrium equations result in a set of linear,
algebraic, simultaneous equations in terms of the unknown midsurface
displacements, from which, by means of the established relationships,

the stress resultants in the shell are calculated.

2.2 Basic Assumptions of the Analogue

The analogue is restricted to doubly curved shells of
translation, of rectangular planform, in which the middle surface

of the shell is represented in Cartesian co-ordinates by the equation

- 2 2
Z—hxx/az.'.th/bz

The assumptions on which the analogue is based are given

below:

(1) ‘ The limitations of the theory of elasticity apply.

(ii) The shell is shallow. This leads to the result that the
curvatures of the shell in the x and y directions are
constants, 2hx/a2 and 2hy/b2, respectively. In addition,
thg distance between any two points,‘in the middle surface
of the shell, is approximately equal to the projected
length in the horizontal plane.

(iii) The effects of the normal shears on the equilibrium equations

are negligible.

(iv) The effects of the displacements in the tangential directions
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on the changes in curvature and twist are considered
negligible compared to the effect from the normal
displacements.

) The thickness of the shell is small compared to the
radius of curvature of the shell, and the displacements
are small compared to the thickness of the shell.

(vi) The loadings on the shell are concentrated at the primary
and secondary grid points, and act in the normal and
tangential directions.

(vii) The force effects that act over a grid length are
concentrated at the primary and secondary grid points.

(viii) The centroids of the edge beams are concentrated along

the edge of the shell at the middle surface.

2.3 Computer Program for Solving the Analogue

A computer program was written to generate and solve the
large number of equilibrium equations that are required to adequately
describe the behaviour of the shell. The large matrix, having a
sparse population of non-zero elements, was solved by the Gauss
elimination method, using a diagonal subscripting method (10) for

reasons of computing efficiency.

Within the restriction of requiring two-fold symmetry in
the shell, this program will solve a variety of structures, although,

for the purpose of this study, a specific shell with limited edge
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beam configurations was solved, Thus, besides the elliptic paraboloid
considered, such shells as parabolic cylinders, hyperbolic paraboloids,
and paraboloids of revolution can be handled, as well as plates, all
with elastic edge members. A further feature of the program is that
the edge beam stiffnesses can be varied over the length of the
members. Provision was made so that up to six loading conditions can

be applied to the shell in one computing run.

The imput to the program consists of the number of grid
lengths in the x and y diréctions; the shell dimensions a, b, hx, hy
and t; the material properties of the shell; the imposed movements
of the corners of the shell; the values of the edge beam stiffnesses;

and a code for identifying the loading cases to be considered.

Besides a listing of the input data, the computer output
consists of displacements, and the stress resultants from the
shearing forces, direct forces, bending moments and twisting moments,

in the x and y directions, at the primary and secondary grid points.

Since the shells reported are square they have four-fold
symmetry, but the program handled the calculations on the basis of
two-fold symmetry, thus an indication of the accuracy in the
simultaneous solution of the equilibrium equations would be apparent
by comparing the symmetry of the calculated results. A 10 by 10
square grid, resulting in 382 simultaneous equations, was used
throughout and from which excellent symmetry was observed in all

cases.
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Using an IBM 7040 computer, approximately 18 minutes is
required for solving one shell, This is reduced to 1.5 minutes with

the more powerful IBM 360 MOD/67 computer.

Additional refinements to the program, for extending its

usefulness, can readily be made.

2.4 Comparison of Analogue with Existing Results

The membrane analysis (4) assumes that only in-plane shear
stresses are transferred to the edge member, and that the edge beam
has stiffness only in the axial direction, which is considered rigid.
Comparisons of the results obtained from the analogue are made with
those from the membrane solution in CHAPTERS IV and V, from which
it appears that in areas well away from the edge, the direct stress
resultants and the shearing stress resultants agree exactly between

the two methods.

To obtain some indication of the accuracy obtained from
the analogue, results were compared with those given by Abu-Sitta (1)

and in general there is éxcellent agreement. A discussion of the

comparison is given elsewhere by Simmonds (7). Some of the differences

that appear near the edge can possibly be accounted for by the

difference in the method of defining the edge beam displacements.

If the radius of curvature of the shell is made very large,
the analogue will approximate a plate. To obtain some further

indication of the accuracy of the results obtained from the analogue,
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three plates were analyzed, one plate having clamped edges, one
having simply supported edges, and another with supports at the
corner only. The results were compared with plate fheory (8),
for center deflection, moment at the center, and moment at the
mid-edge for the last case. Exact agreement existed for the
simply supported case, and a maximum difference of 1.7% occurred
for the clamped edge case. The largest difference occurred for
the plate supported at the corners, in which the analogue gave

a mid-edge moment that was 7% below that of the classical method,

and differences of 2.57 or less for deflection and moment at the

center.
2,5 Summary

It would appear that the solution of the analogue, using
the computér program developed, yields results that compare

favourably with those presented elsewhere.
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CHAPTER III

VARIABLES CONSIDERED IN THE ANALYSIS

3.1 Introductory Remarks

This chapter describes the shell and its supporting edge
member, and gives the reasons for the choice and range of the
parameters used in the study. Of the four series presented, three
involve edge beam configurations, and one involves the-

rise to span ratio of the shell.

3.2 Description of the Shell and the Supporting Edge Beams

Considerations are limited to elliptic paraboloid shells.
The dimensions used were chosen to enable comparison to be made

with the published results of Abu-Sitta (1).

As shown in FIGURE 3.1(a), the shell is square in planform,
and is symmetrical about both crowns, which are coincident with the
co-ordinate axes. The lengths of both edges are 2a = 2b = 8 ft.; rises
h = hy = hy at the edge are 0.64 ft., and the thickness t is 0.03575 ft.
The modulus of elasticity was set at 700,000 ksf, and Poissqn's ratio
was zero. The preceding shell configuration islreferred to as the

"standard shell" in the discussions that follow.

FIGURE 3.1(b) shows the supporting edge beam, which has its
axes normal and tangent to the shell, For calculating the stiffnesses
K1, K2, K3 and K4 the physical dimensions of the edge beam were used,

except for one series in which the stiffnesses were assigned zero or

10
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very large values. The numerical values of the stiffnesses are
given in TABLE 3.1. A square edge beam, with cross-sectional
dimensions of 4t, was selected to permit comparisons to be made
among the series. This edge beam configuration is referred to as

the "standard edge beam'".

A uniform loading of 100 psf, applied normal to the
surface of the shell, was used for all cases. The corner supports
were constrained against movement, although the analysis and the

computer program will handle such movements.

To facilitate positional description on the shell's
surface, reference is made to primary and secondary grid points which
relate to intersections and mid-points between intersections of the
square grid system, as shown in FIGURE 3.1(c). Thus x = 0.8a refers

to a primary grid-line and x = 0.85a refers to a secondary grid-line.

3.3 Parameters for Idealized Boundary Series

To evaluate»quélitatively the effects of each edge stiffness
parameter on the behaviour of the "standard shell", the four
stiffnesses wefe assiéned the limiting values of zero and infinity
in all possible combinations. The sixteen combinations include those
boundary conditions commonly known as roller, hinged or built-in.

Results from this series are presented in Chapter IV.
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TABLE 3.1

VALUES OF ELASTIC EDCE BEAM STIFFNESS PARAMETERS

SIZE OF EDGE BEAM SERIES

d=hb K1 K3 K2 = Kb
ot 0 0 0
2t 0.35 1.26 1.43
* 4t 1.43 19.3 22.9
6t 3.22. 97.7 116.
8t 5.72 | 308. 366.
10t 8.94 754. 894,
100t 894. 754. x 10% | 894. x 10%
1000t 894, x 10° 754. x 10° | 894. x 10°
SHAPE OF EDGE BEAM SERIES
d:b d b K1 K2 K3 Kb
1000:1 |126.¢ |.013t | 1.43 [ 22,900 [0.05 0.02
3:116.9 ¢t |2.3¢| 68.6 | 12.0 7.63
2:1 5.7 ¢ |2.8¢ 45.8 | 15.7 11.4
*1:1 4.0t 40| " 22.9 |19.3 22.9
1:2 2.8t |5.7¢] 11.4 | 15.7 45.8
1:3(2.3¢f6.9¢] 7.63 | 12.0 68.6
1:1000 | .013¢t |126.¢| 0.02 |0.05 22,900

* "Standard shell" with "Standard edge beam".

13
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3.4 Parameters for Size of Edge Beam Series

This series was chosen to allow qualitative evaluation
of the effects, on the "standard shell", of varying the cross-

sectional area of square edge beams.

The beam dimensions varied from Ot, (effectively a free
edge), through 2t, 4t, 6t, 8t, 10t and 100t, to 1000t (effectively
a built-in edge). Most of the discussion centres on the practical

range of edge beam sizes, from 4t to 10t.

TABLE 3.1 gives the numerical values of the stiffness
parameters for square edge members. It is noted that the bending
stiffnesses, K2 and K4, which are equal, increase much more rapidly
than the axial stiffness parameter K1. The torsional stiffness
parameter K3 is considered as a constant value of 0.8436K2. Therefore
this series is a study mainly of the effects of K1 for small edge
beams, and of the other stiffnesses for large edge beams. Results

of this series are included in CHAPTER V.

3.5 Parameters for Shape of Edge Beam Series

- To obtain further qualitative insight into the éffects of
boundary conditions, on the "standard shell", the shape of rectangular
edge beams was varied in this series. The cross-sectional area was
held at 16t2, equal to that of the "standard edge beam". The shape
factor is presented by the depth to width ratio (d:b). It was
assigned ratios of 3:1, 2:1, 1:1 ("standard edge beam"), 1:2, and

1:3. 1In addition, ratios of 1000:1 and 1:1000 are included to allow
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comparison to be made with the idealized boundary series. Numerical
values of the stiffness parameters appear in TABLE 3.1. Because the
beam's cross-sectional area is constant, this series is a study
mainly of the effects of varying the bending, and to a lesser extent,

the torsional stiffnesses. Results are given in CHAPTER V.

3.6 Rise to Span Ratio Series

In order to generalize the results of the shape and size
of edge beam series, the height hy = hy of the shell was varied in
this series. The standard edge member was used throughout. Results,
which are presented in CHAPTER V, are discussed in terms of the
ratio h/a (actually, rise to half-span ratio). Essentially this

series deals with the effect of curvature on the shell.

3.7 Method of Presentation of Results

Chapters IV and V present the numerical results of the
analyses. These consist of normal deflections, shearing forces
Nxy, direct forces Nxx, bending moments Mxx and twisting moments
Mxy, and are given for various locations in the shell. Results
are shown for a quarter of the shell only, in the form of plots,
tables and qualitative sketches. Because of symmetry, the effects
in the y co-ordinate direction are a mirror image of the effects
in the x direction, and will generally not be discussed, eliminating
references to Nyy, Myy, Nyx and Myx. The membrane solution is

included for reference purposes.
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Considering sign conventions, deflections are positive
downwards, positive moments cause compression at the top surface,
and direct forces are positive in tension. Shearing stresses Nxy
are positive when they form clockwise couples on elements of the
shell viewed from below. The twisting moments Mxy are positive,
using the right-hand rule, when the vector indicates tension on

the face of the element.
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CHAPTER IV

SHELLS WITH IDEALIZED BOUNDARY CONDITIONS

4.1 Introduction

To evaluate qualitatively the effects of each edge beam
stiffness parameter on the behaviour of the shell, the parameters
were assigned values of zero or infinity, in all possible
combinations. Each of the sixteen combinations is identified by
a letter, for example, Cases A, B, C, etc. To aid in the
evaluation, the two combinations resulting from varying a particular
stiffness parameter but keeping the others constant are paired in
TABLE 4.1. For example, under the heading of Axial Stiffness K1,
the first row shows that the stiffness parameter K1 is infinite
for Case A and zero for Case D, while the remaining three
stiffnesses are infinite. By using this table in conjunction with
the graphical results appearing in the remainder of the chapter,
the Qualitative effects of varying any single parameter is

quickly determined.

Only sixteen combinations of edge beam stiffnesses can
occur, and some of these compare directly with the classical
boundary conditions that permit ready analysis. 1Included in these
are the roller support (Case B); the hinged support (Case C); the

unrestrained, or free, edge (Case Q); the fixed, or built-in, edge

17



TABLE 4.1

VALUES OF EDGE BEAM STIFFNESS PARAMETERS

FOR IDEALIZED BOUNDARY SERIES

Axial Stiffness K1

L

Transverse Bend. Stiff. K2

Cases | K1| K2]K3 K4 ] Cases | K1 | K2 K3 | K4
AD 1,01 1 |1 1 AH 1 1,0 1 1
C,F |1,0] 1 |O 1 C,M 1 11,0 0 1
H,I |1,0] O0 |1 1 D,I 0 |1,0 1 1
M,K J1,0f 0 | O 1 K;F 0 |1,0 0 1
J,F 1,0 1 |1 0 J,P 1 {1,0 1 0
B,E [1,0] 1 | O 0 B,N 1 11,0 0 0
P,L }1,0] O {1 0 G,L 0 }J1,0 1 0
N,Q 1,0 O | O 0 E,Q 0 1,0 -O 0
Torsional Stiffness K3 In-plane Bending Stiff.K4
‘Cases | K1| K2| K3 K4 |l Cases | K1 | K2 | K3 | K4
A,C 1 1 {1,0 1 AH 1 1 1 1,0
H,M 1 o (1,0 1 C,B 1 1 0 |1,0
D,F 0 1 ]1,0 1 H,P 1 0 1 11,0
I,K 0 0 |1,0 1 M,N 1 0 0 {1,0
J,B 1 1 ]1,0 0 D,G 0 1 1 }j1,0
P,N 1 0 |1,0 0 F,E 0 1 0 1,0
G,E 0 1 41,0 0 I,L 0 0 1 |1,0
L,Q 0 0 {1,0 0 K,Q 0 0 0 1,0

Note: 1 = infinite stiffness; 0 = zero stiffness

18
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.(Case A); and the continuous edge (Case I). It is to be noted that

the usual definitions for hinged and roller supports, as used in

strength of materials, relate to simpler structural systems which

~do not involve the constraint represented by the axial stiffness

parameter K1,

4.2 Normal Deflections

Considering all the possible combinations of zero or
infinity for the four stiffness parameters K1, K2, K3 and K4, four
distinct groups are evident according to the magnitudes of the
deflections encountered. In TABLE 4.2, which gives the magnitudes
of the normal deflections at the crown, at the mid-edge, and of
the maximum deflection, the four groups are separated from each
other by solid lines. The deflections along the crown line of
the shell (the line extending from the crown to the edge along one
of the co-ordinate axes) are given in FIGURE 4,1, For compariscn,
the deflections for the shell with the standard edge member are

also given on the same figure.

The deflections for each case of the first group (Cases
I, K, F, M, D, H, A, and C) are close in magnitude to those of the
shell with built-in boundaries, Case A. In all of these cases the
stiffness K4 is infinite. It would appear that in each of these
cases the shell is supported at the edge primarily by in-plane

direct forces, and only small variations in deflection exist due



TABLE 4.2

NORMAL DEFLECTIONS FOR IDEALIZED BOUNDARY SERIES
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Edge Beam Crown Mid-edge Maximum Deflection

Case Stiffnesses * Deflection | Deflection

k1 |k2 | k3 | k4 |x 10,000 x 10,000 x 10,000 Location
I 0] o 1 1 .785a .694a .740a Note 1
K ofj o 0 1 .784a .784a .804a "
F 011 0 1 .841a 0 .915a "
M 1]0 0 1 .832a 0 .925a "
D 0f 1 1 1 .874a 0 .927a "
H 1] 0 1 1 .834a 0 .935a "
A 111 1 1 .86la 0 .937a "
C 111 0 1 .831a 0 .941a "
J 1] 1 1 0 1.56a 0 1.65a Note 1
P 1] 0 1 0 1.56a 0 1.65a "
B 1] 1 0 0 1.56a 0 1.70a "
N i1} 0 0 0 1.56a 0 1.70a "
G o1 1 0 3.32a 0 3.69a Note 2
E 0 1 0 0 3.67a 0 .4.37a "
L 0] 0 1 0 10.6a 25.2a 25.2a Mid-edge
Q 0} o 0 0 13.3a 35.4a 35.4a "
% 1 = infinite stiffness; O = zero stiffness.

Note 1: On diagonal, 0.3a from edge of the shell.

Note 2: On crown line, 0.3a from edge of the shell.
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to the effects of transverse forces (normal shear forces), in-plane
shearing forces and bending moments, if they exist, at the edge.
The smallest deflections of all the combinations occur for Cases
I and K, for which only in-plane direct forces are acting along

the edge.

The second group (Cases J, P, B, N) has deflections about
1.8 times greater than those of Case A. This group is characterized
by K1 = infinity and the shell is supported at the edge primarily by
in-plane shearing forces. Direct forces across the edge are zero.
The effect of transverse forces or bending moments induced at the

edge, on deflections in the shell, is very small.

The third group (Cases G, E) has deflections roughly 4
times the deflections of the built—in case. Here the edge of the
shell is supported by tfansverse forces, ie K2 = infinity and
K1 = K4 = 0. The effect on maximum deflection of eliminating
transverse bending moments at the edge (Case E) is now much greater

than it was for the previous groups considered.

The last group (Cases L, Q) has large deflections. For
both cases, at the edge of the shell, the shearing forces, the
transverse forces, and the direct forces across the edge are zero.
If the shell is prevented from rotating at the edge (Case L), the
crown deflection is 11 times greater than for the built-in shell,
Case A. For a free edge (Case Q), the crown deflection is 16 times

as great as for the built-in case.



In the twelve cases where the edge member can provide
either a membrane shearing force or direct force along the edge,
the maximum deflections are greater by not more than 13% of the
crown deflections, and occur along the diagonal of the shell a
distance of about 0.3a from the edges of the shell. However,
when only transverse forces can be resisted (ie membrane reactions.
are zero), the maximum deflections occur along the crown line, at
a point 0.3a from the edge, and are less than 19% greater than

the crown deflections.

For free edges, the shell's deflection pattern is
entirely different, with large downward deflections occurring

at the mid-edge, and the shell rising near the supports.

4.3 Direct Stress Resultants Nxx

Again, as in the case of normal deflections, the direct
stress patterns of the sixteen combinations can be distinctly
grouped according to the edge beam stiffness parameter values.
The Nxx ﬁatterns for these groups are shown in FIGURE 4.2 in the
form of sketches, and TABLE 4.3 provides the maximum and minimum

values.

Two major groups of Nxx patterns exist, for K4 = infinity
(sketches a, b, c¢) and for K4 = 0 (sketches d, e, f). These are

characterized by the existence, or non-existence, respectively,

of direct stresses across the edge x = a. Variations in Nxx within

23

each major group, reflecting the effects of the remaining stiffnesses,
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TABLE 4.3

DIRECT STRESSES Nxx FOR IDEALIZED BOUNDARY SERIES
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Edge Beam Sketch Minimum Maximum

. Case Stiffnesses * of Nxx Nxx Nxx

K1 K2 | K3 | R4 | #=*% lbs/ft lbs/ft
A 1 1 1 1 (a) ~665
H 1 0 1 1 (a) -672
c 1 1 0 1 (a) -674
M 1 0 0 1 (a) -674

D 0 1 1 1 (b) ~-652 + 66
F 0 1 0 1 (b) ~-661 + 48

I 0 0 1 1 (c) -677
K 0 o 0 1 (c) -673
J 1 1 1 0 (d) -995
P 1 0 1 0 (d) -1,010
B 1 1 0 0 (D) -1,024
N 1 0 0 0 (d) ~-1,024

G 0 1 1 0 (e) —i,OlO *% 1 + 2,500
-9,110

E 0 1 0 0 (e) -1,700 + 3,090
~10,500

L 0 0 1 0 () -1,370 + 1,420
~14,680

Q 0 0 0 0 (H -1,320 + 1,390
~14,600

% 1 Denotes infinite stiffness; O denotes zero stiffness.

%% Local minimums.

*%% See FIGURE 4.2 for sketches of Nxx Stress Distribution.l
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are shown by the individual sketches in FIGURE 4.2.

For K4 infinite, and if the shells edges are prevented
from deflecting in a direction normal to the shell's surface, by
either K1 or K2 being infinite (Cases A, H, C, M), direct stresses
parallel to and at the edge will be zero or very small (sketches
a and b), as expected. If, however, both K1 and K2 are zero, one
would predict the existence of direct stresses parallel to and at
the edges. This in fact happens, and the distribution of Nxx
stresses is almost uniform throughout the shell as shown in
sketch ¢ (Cases I, K). All these cases have maximum compressive
stresses almost identical in magnitude to those of the shell
having built-in boundaries (Case A), for which the value is

665 1bs/ft.

For K4 = 0, two Nxx patterns exist, and reflect the
effect of the edge beam's axial stiffness parameter Kl. 1If
K1 = infinity (Cases J, P, B, N), direct stresses are zero at
the edges, and the maximum compressive stress is 57% greater than
that of Case A. These cases would appear to be the ones most
closely approached in practice. If, however, K1 = 0, very large
compressive stresses appear near the corner support, and large
tensile stresses occur at the mid-edges. When the shell's edge
is supported b& transverse forces (Cases G, E), the maximum
compressive stress is 16 times that of Case A, and 22 times

greater if the shell's edge is unsupported (Cases L, Q). The
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tensile stresses appear to develop somewhat similarly to those
along the bottom edges of barrel shells, where the shell's edge

acts as a deep beam,

All cases yield identical compressive stresses of 625
1b/ft. at the crown, the value also given by the membrane analysis.
A sketch of the Nxx distribution for the membrane analysis is
given in FIGURE 5.5. Of the 16 combinations presented, Cases
J, P, B and N appear to most closely resemble the membrane
solution, but a marked difference occurs very near the edge that

is parallel to the direction of the stress considered.

4.4 Bending Moments Mxx

The bending moments Mxx along the crown of the shell at
y = 0, for various groups of edge beaﬁ stiffness combinations are
presented in FIGURE 4,3. TABLE 4.4 gives the maximum and minimum
values of the bending moments, which in all but a few cases occur

on or very near to the corner of the shell.

To describe the types of Mxx distribution patterns that
exist, qualitative sketches are given in FIGURE 4.4, In the
discussion that follows, only moments in the vicinity of the edge

x = a are considered, unless otherwise noted.

All bending moment distribution patterns can be grouped
into two main types. For those shells having torsionally stiff

edge beams (K3 = infinity), bending moments exist at the edge,
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TABLE 4.4

BENDING MOMENTS Mxx "FOR "IDEALIZED “BOUNDARY SERIES

Edge Beam
Case Stiffnesses (1) | Sketch | Minimum Maximum
(2) Mxx (3) Mxx (3)
K1l K2 K3 (K4

K 0 0 0] 1 (a) 0 1.47

F 0 1 0 1 (b) 0 2,02

c 1 1 0 1 (b) 0 2.17

M 1 0 0] 1 (b) 0 2.17

B 1 1 0] o (t) G 3.84

N 1 0 cl] o (b) 0 3.84

B 1 0 171 () -0.92 6.85

P 1 0 1}1¢ (c) -1.36 12.6

I 0 0 111 (d) -4.06 1.05

D 0 1 111 (e) -5.43 1.31

A 1 1 111 (e) -5.67 1.39

J 1 1 1|0 (e) -9.69 2.34

G 0 1 110 (e) -24.6 (4) 6.30 (4)
E 0 1 0 0 (v -4.25 12.3 (4)
L 0 0 1 0 (£) -36.6 89.8

Q 0] 0 0 0 (g) -51.3 25.7 (5)

(1) 1 Denotes

infinite stiffness; 0 denotes zero stiffness
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(2) See FIGURE 4.5 for sketches of Mxx distribution patterns.

(3) Occur near or at corner of shell, except as noted.

(4) Occurs on crown line y = 0.

(5) Occurs at mid-edge y = a.
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but when the edge is torsionally unrestrained (K3 = 0), they cannot
exist at the edge. Thus the primary effect of K3 on Mxx distributions
and magnitudes is recognized, and can be seen in FIGURE 4.4. Within
these two clearly defined Mxx distribution types, considerable
variations in magnitude and distribution occur in the shell,

depending on the variations in the remaining stiffnesses. These
variations are somewhat complex, and groupings do not appear as

clearly in moments as in other effects.

The mechanisms by which the shell derives support at the
boundaries greatly affect bending moments. Considering the Cases
A, D, I, H, M, C, F and K, wherein compressive stresses across the
edge are the main load carrying mechanism, the transverse bending
moments are low, ranging from -5.67 to 6.85 ft.lbs/ft. Case A,
the shell having built-in boundaries, has a range of -5.67 to
1.39 ft.lbs/ft. Within this group, for K3 = 0, maximum moments
are less than 2.17 ft.1lbs/ft. Changing K2 from 0 to infinity has
the effect, very roughly, of increasing the maximum moments by a
factor of abouﬁ 1.3 times. K1 has a lesser effect on moments. The
Mxx distribution patterns ?ary considerably, as can be seen in

FIGURE 4.4,

As previously stated, K4 has considerable effect on Mxx.
Thus, providedAKl = infinity, changing K4 from zero to infinity
increases the maximum bending moments by 1.7 times (Cases A-J,
M-N, B-C, H-P). Similarly, for K1 = zero, changing K4 has a

considerable effect, as shown by Cases D-G, E~-F, K-Q, and I-L,



where Mxx is increased from 4.8 times to 85 times, depending on
what other edge restraints are active. It is evident, therefore,
that in-plane forces, either Nxx or Nxy, must exist at the shell's
edge (ie K1 or K4 must be large) to keep maximum bending moments

within reasonable limits.

When transverse forces, but not in-plane forces, exist
at the edge (Cases E and G), the bending moments become large. If
in-plane and transverse forces cannot exist at the boundaries,

extremely large bending moments develop.

The sketches shown in FIGURE 4.4 indicate the complex Mxx
distribution patterns that arise. The type of distribution, and

to a generally much lesser extent the magnitudes within the types,

appear to depend on the combination of stiffnesses K2 and K3. Thus,

for all combinations with K2 = K3 = infinity (Cases A, D, J, G),
the Mxx distributions are of the type shown in sketch (b), whereas
sketch (a) is representative of the Mxx distributions in the
combinations having K2 = infinity and K3 = 0 (Cases B, C, E, F).
For K2 = K3 = 0 (Cases M, N, K, Q), the bending moments are small
(excluding Case Q.which has free boundaries), and of the

distribution type shown in ékepches (a), (e) and (£).

Rather complex Mxx patterns exist, shown in sketches (c)
(d) and (g), when K2 = 0 and K3 = infinity (Cases H, I, L, and P).
This results from the academic effect of framing at the corner a
torsionally stiff edge beam into the perpendicular edge beam, which
has no flexural stiffness. It appears that when K2 = 0, a

torsional restraint must exist at the corner support if the beam
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is to be torsionally restrained. Interestingly enough, this
problem became evident in the computer solutions, where round-off

error became excessive if K3, in order to approximate infinity,

was made excessively large, say 1015

obtained when K3 was set at 105.

, but reasonable results were

It was found that for most of the cases represented by
sketches (a) and (b), the maximum positive values of Mxx, which
occur near the corner but are not shown in the sketches, are at
most 117 greater than the maximum positive moment on the crown
line y = 0, shown in FIGURE 4.3 FIGURE 4.3 also indicates that
for cases where in-plane forces or transverse forces exist (all
Cases except Q and L), the positive bending moments peak within
a distance of about 0.2a from the edge, and rapidly diminish to

zero within 0.4a from the edge.

4.5 Shear Stress Resultants Nxy

The shear stress resultants Nxy, also referred to as
shear forces, are presented in FIGURE 4.5 for the line x = 9.5
or y = 9.5. Maximum calculated values of Nxy are given in

TABLE 4.,5.

It is to be noted that the shear resultants are defined
at secondary grid points, which are midway between the primary
grid points. Thus the Nxy resultants plotted in FIGURE 4.5 are

a half-grid spacing removed from the edge of the shell. Since
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TABLE 4.5

SHEARING STRESSES Nxy FOR IDEALIZED BOUNDARY SERIES

Edge Beam Maximum
Case Stiffnesses * Calculated | Theoretical Shear
Shear at Edge
K1 |K2 K3 |K4 1bs/ft lbs/ft
K 010 011 -46 Zero
I 010 111 -61 "
F 01]1 01 ~67 "
D 0}l1 1)1 -87 "
A 111 1]1 -155 Not Zero
H 110 111 -176 "oon
¢ 1)1 0o -175 oo
M 110 011 ~-175 "on
J 111 1]0 -1524 Not Zero
P 1| o 1o ~1789 moon
B 1]1 0] 0 -1786 oo
N 1410 0] O -1786 " "
G .0 1 1}{0 -2480 Zero
E (VN I 0] O -2820 "
Q 0| O 0} 0 ~2858 "
L 01]0 110 -3011 "

* 1 denotes infinite stiffness; 0 denotes

zero stiffness
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the shearing forces generally increase toward the edge, and
generally increase rapidly toward the cbrner of the shell, the
calculated values do not give a clear indication of the actual
maxmimum values of Nxy. This is expecially true for Cases G, L,
E and Q, in which the shearing forces are known to be zero at
the edge because the axial stiffness (K1) of the edge beam is
zero, yet the indicated values 0.05a from the edge are very high.

Thus the maximum value of Nxy is not known.

Four distinct behaviour groups are evident. The first
group (Cases K, I, F, D), for which the in-plane bending stiffness
of the edge beam (K4) is infinity, and for which K1 is zero,
exhibit very low shearing stresses, which diminish to zero along
the edges. The maximum magnitude of Nxy is in the order of half
that of the shell having built—-in edges, Case A. Shearing stresses
for this group are not significant because the main load carrying
mechanism of the shell consists of in-plane compressive forces

across the edge.

If, in the preceding group, the stiffness Kl is made very
large (Cases A, C, H, M), the maximum Nxy stresses are roughly
doubled, but still very low (155 lbs/ft. for Case A). Nxy stresses
along the edge are not zero. Again, the direct stresses agting

across the edge predominate and shearing stresses are insignificant.

When direct stresses across the edges cannot exist

(K4 = 0), but K1 = infinity, in-plane shearing stresses along the

36.



edge become the significant support mechanism. Thus, for Cases
J, P, B, and N, tﬁe maximum calculated values of Nxy increase
tenfold over Case A. This group appears to represent most
closely the type of edge member that is practical to construct,
as will be shown in CHAPTER V. The membrane analysis, also
shown on FIGURE 4.7, yields results similgr to this group,
except very near the corner, where it indicates much higher

Nxy values.

When both K1 and K4 are zero (Cases G, E, Q, L), in-plane
forces cannot be transmitted to the edge member, and the maximum
value of Nxy is increased by a factor of 16 to 19 times that of

Case A, cleariy an undesirable situation.

The torsional stiffness (K3) and the transverse bending
stiffness (K2) of the edge beam, which considerably affect
bending moments near the shell's boundaries, have little effect

on the shearing stresses.

4.6 Twisting Moments Mxy

Twisting moments Mxy along x = .95a or y = .95a are given
in FIGURE 4.6. Mxy moments are defined at the same locations as
shearing forces, and the same uncertainties exist regarding
locatiéns and magnitudes of maximum values. The magnitudes of
twisting moments are generally in the same order, or less, than

bending moments. Four behaviour groups are evident in FIGURE 4.6

and in TABLE 4.6, which contains maximum calculated values of Mxy.
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TABLE 4.6

TWISTING MOMENTS Mxy FOR IDEALIZED BOUNDARY SERIES

Edge Beam Calculated Mxy Maximum Mxy
Case Stiffnesses * at x=y=0,95a **|of Opposite Sign
K1 | K2 K3 | K4 ft.lbs/ft ft.lbs/ft

D 0 1 1 1 -1.38 0

A 1 1 1 1 -1.62 0

F 0 1 -0 1 -2.39 0

J 1 1 1 0 -2.47 0

C 1 1 0 1 -2.68 0

M 1 0 0 1 -2.68 0

H 1 0 1 1 -2.79 0

B 1 1 0 0 -4.,42 0

N 1 0 0 0 -4,.42 0

P |1 ] o0 1| o ~4.86 0

I 0 0 1 1 +1.31 0

K 0 0 0 1 +1.55 0

G 0 1 1 0 +1.02 -2.64

E 0 1 0 0 +2.11 -4.26

L 0 0 1 0 ~-33.9 +9.70

Q 0 0 0 0 -61.4 +14.7

1 Denotes infinite stiffness; 0 denotes zero stiffness.

These are also the maximum calculated values, except for
Cases G and E.
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The main group (Cases D, A, H, C, M, P, B, N, J and F)
has Mxy moments that diminish from a maximum negative value at
the corner to zero within 0.35a from the corner. In this groﬁp,
transverse and in-plane forces act at the edge and large twisting

moments do not develop.

The second group (Cases K, I) reveals twisting moments
similar in magnitude but reversed in sign to the first group. For
these cases the shearing and transverse forces are zero at the
edge, the primary support mechanism of the shell being direct

forces across the edge.

In the third group (Cases E, G), only transverse forces
are present at the edge, with the resulting twisting moments

extending over the complete shell.

The last group (Cases Q, L) has very large Mxy magnitudes,
and the distribution is similar, but reversed in sign, to the

third group.

The effects on Mxy of changing individual stiffness
parameters can be seen by taking the stiffness combination
relationships given in TABLE 4.1 and applying them to TABLE 4.6.
This shows, for example, that changing K3 from infinity to O
for the stiffness combinations A-C, D-F and D-J has the effect
of increasing Mxy moments by about 1.8 times. Other effects

become apparent in a similar manner.
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.4.7 Summary

In the preceding sections only idealized values of the
stiffness parameters were considered, ie zero or infinity. Since
values were assigned arbitrarily in all combinations without
regard to the physical problems of obtaining these combinations,
the effects of each parameter is exaggerated thus making
interpretation easier. It would appear that the four stiffness
parameters can be ranked in order of predominance on their effect

on shell behaviour.

If K4 = infinity, ie no outward in-plane movement
permitted at the edge, then the load is carried almost solely by
membrane action as direct stress, that is arching to the edges,

with little or no bending for uniformly distributed loads. The

values assigned to the other parameters are relatively unimportant.

If K4 = 0 the next important parameter is Kl. Again the
load is carried predominantly by membrane action, this time as

in-plane shearing stress but deformations are somewhat greater.

If both K1 and K4 are zero, the load is carried by beam
action and bending moments are important. For K2 = infinity, the
effect of K3 is small and restricted to the immediate vicinity of
the edge. For K2 = 0, deflections and stresses become large, as

the shell is unsupported at the edges.
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CHAPTER V

SHELLS SUPPORTED BY ELASTIC EDGE BEAMS

5.1 Introduction

To obtain qualitative insight into the behaviour of shells
with boundaries consisting of elastic edge beams, the stiffness
parameters were evaluated for three series of shells. In omne series
the effect on the shell of varying the size of the square edge beam
from a free edge condition through to an infinite stiffness condition
was evaluated. In a second series the shape of the edge beam of
constant area was varied from a deep narrow shape through to a wide
shallow shape to determine the effect on the shell. For a third
series, the edge beam was held to a constant shape and size, and the
effects of varying the rise of the shell was evaluated. The
discussions that follow deal more with the practical range of size
and shape factors, but the limiting conditions are also presented
to allow comparisons to be made with the idealized boundary condition
series presented in CHAPTER IV. All three series include the "standard
shell" having the "standard edge beam', which are defined in CHAPTER
IIT, to allow conclusions drawn from one series to be qualitatively

extended into ‘another series.

The results are presented in the order of normal deflectioms,

direct stress resultants, bending moments and shearing stresses.
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5.2 Normal Deflections for Shells Supported by Elastic Edge Beams

The magnitudes of the normal deflections at the crown, the
mid-edge, and the maximum upward deflection near the corner, for all

shells discussed in this chapter, are given in TABLE 5.1.

5.2.1 Size of Edge Beam Series

Normal deflections along the crown line are shown in FIGURE
5.1, and the normal deflections along the edge in FIGURE 5.2. The
magnitude and pattern of the normal deflections for shells with very
large edge beams or no edge beams are identical to those of Cases A
(built-in boundaries) and Q (free edges) respectively, which are
discussed in CHAPTER IV. The standard shell with the standard edge
beams (See CHAPTER III for description) deflects similarly to Case G
(K1 = K4 = 0, K2 = K3 = infinity) in the central region of the shell,
with the crown deflection larger by 1% for the standard shell.
However, at the mid-edge, where Case G does not deflect, the standard
shell deflects 53% more than at the crown, and deflects upward near

the corner support to 42% of the crown deflection.

For the practical range of edge beam sizes considered, K1
and K2 are the only stiffnesses that have any significant effect on
the general deflection behaviour. For b = d = 10t (the cross-sectional
dimensions of the edge beam), the deflection magnitude in the central
region of the shell is similar to that of Cases J, P, B and N, but
approaches that of Cases G and E when b = d = 4t. This appears to
indicate that as the size of the beam is decreased the effect of K2

becomes increasingly important relative to KI1.
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NORMAL DEFLECTIONS FOR SHELLS SUPPORTED BY FLASTIC EDGE BEAMS

A

Crown Mid-Edge Maximum #*
Deflection | Deflection Upward
Deflection
x 10,000 x 10,000 x 10,000
Size of Edge Beam |d = b = 1000t 0.86a 0 0
Series 100t 0.86a 0 h;
10t 1.75a 0.54a 0]
8t 1.91a 0.90a 0
6t ?.253 1.81a 0.14a
Standard 4t 3.37a 5.18a 1.43a
2t 8.48a 21,6a 16.8a
ot 13.3a 35.4a 20.0a
Shape of Edge Beam {d:b = 1.000:1 2.28a 0.30a 0
Series 3:1 2.86a 3.15a 0.27a
2:1 3.01a 3.74a 0.60a
Standard 1:1 3.37a 5.18a 1.43a
1:2 3.90a 7.19a 2.69a
1:3 4,28a 8.62a 3.71a
1:1000 2.12a 3.15a 2.16a
Variation of h/a = 0.24 1.93a 3.95a 1.74a
Rise to Span Ratio 0.20 2.46a 4.40a 1.61a
Series Std. 0.16 3.37a 5.18a 1.43a
0.12 5.35a - 6.81a 1.02a
0.08 10.9a 11.2a 0.08a
0.04 41,6a 33.5a 0
0.000025 3270a 1460a 0

* Occurs near the corner of the shell
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5.2.2 Shape of Edge Beam Series

Normal deflections of the shell along the crown line and
along the edge are also given in FIGURES 5.1 and 5.2.' For the
five practical depth:width (d:b) ratios studied, the normal deflections
decrease as d:b increases. This effect is more pronounced at the
shell's edge. For instance, with d:b = 3:1 the shell's mid-edge
deflects only slightly more than the centre, but for d:b = 1:3 the
mid-edge deflects twice as much as the centre. This indicates the
primary effect, on deflections, of transverse forces along the edges,
for.these particular shell and edge beam configurations. There is
no significant effect on deflections that can be attributed to K3 or

K4 in the range of édge beam sizes presented.

5.2.3 Variation of Rise to Span Ratio Series

The deflection behaviour of the standard shell with standard
edge beam is fairly typical of the deflection behaviour of the shells
in this series. The deflections (see TABLE 5.1) increase hyperbolically
as the rise to span ratio (h/a) decreases, but the deflection pattern
does not alter except for the very shallow shells. In the latter
case, the stiffness of the shell relative to the stiffness of the
edge beam decreases, resulting in a decreasing edge-of-shell/centre-
of-shell deflection ratio. When h/a is assigned a very small value,
that is the éhell becomes a plate, the central deflection is 1000
times larger than for the standard shell having the same edge beam

size.
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. 5.3 Direct Stress Resultants for Shells Supported by Elastic

Edge Beams

Direct stress resultants Nxx for three locations in the
shells are given in TABLE 5.2 These are the Nxx stresses at the
corner, at the mid-edge x = 0, and the maximum Nxx value along the
crown line x = 0. For the practical cases studied the Nxx
distribugion patterns are qualitatively similar, but the magnitudes
vary considerably and are discussed further below. In all cases,
except where the shell height was varied, the compressive stress at
the crown was 625 1bs/ft. To give a clearer picture of the direct
stresses, qualitative sketches are presented in FIGURES 5.3, 5.4
and 5.5. The membrane analysis is also given in FIGURE 5.5 for

comparison purposes.

5.3.1 Nxx - Size of Edge Beam Series

The shell with built-in boundaries has an Nxx distribution
pattern varying only slightly from uniform except along the edge
y = a, where the direct stress is zero. As the size of the square
edge member decreases to finite dimensions, the stress distribution
becomes more complex as shown in FIGURE 5.3, and when the edge
member size diminishes to a free edge condition, high stresses

develop along the edge y = a, especially at the corner.

Maximum compressive Nxx stresses along the line x = 0 are
106%, 169% and 212% of the crown value of 625 lbs/ft. for the
built-in, the standard, and the free edge cases, respectively. At

the mid-edge y = a the compressive stresses, which are small, reverse
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DIRECT STRESSES Nxx FOR SHELLS SUPPORTED BY ELASTIC EDGE BEAMS

Nxx at | Max. Nxx | Nxx at Nxx at

Crown along y=0 } y=a,x=0 | Corner

lbs/ft. lbs/ft. lbs/ft. | 1bs/ft.
Size of Edge Beam |d = b = 1000t -625 -665 0 0
Series 100t " -666 0 0

10t " ~969 -18 -671

- 8t " -975 -23 -1071

6t " -987 -9 -1875

Standard 4t " -1053 +101 -3742

2t " -1251 +701 -8521

0t " -1324 +1391 —14560

Shape of Edge Beam{d:b = 1000:1 -625 -1059 +866 -2927
Series 3:1 " ~-1031 +105 -3760

2:1 " -1036 + 99 -3758

Standard 1:1 " -1053 +101 -3742

1:2 " -1091 +133 ~3704

1:3 " -1120 +164 -3673

1:1000 " -707 -189 ~1413

Variation of | h/a = 0.24 ~-418 -746 +123 -2504

Rise to Span Ratio 0.20 -500 -876 +118 | -2999
Series Std. 0.16 -625 ~-1053 +101 -3742

0.12 -830 ~1338 + 59 -4977

0.08 -1244 -1926 - 44 -7429

0.04 -2612 -3530 - =260 | -14520
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when the edge member dimension decreases below 6t, and become large
tensile forces for the free edge case, in the case considered 1391
lbs/ft. Decreasing the size of the edge member becomes even more
noticeable in its effect on Nxx in the vicinity of the corner. Here

compressive stresses of 23 times the crown value are obtained as the

shell is forced to pick up the total load for the free edge condition.

The shells with edge beams of practical sizes have similar
stress behaviour to a hypothetical case between thé group having
edge beams with large axial stiffnesses (Cases J, P, B, N) and the
group with edge beams having large transverse bending stiffnesses
(Cases G and E), which are presented in CHAPTER IV. Actually, the
shells of this series behave very closely to Cases J, P, B and N,

except near the corner where they behave more like Cases G and E.

5.3.2 Nxx - Shape of Edge Beam Series

As shown in TABLE 5.2, changing the shape, of the constant
area edge beams, within a practical range, has no significant effect
on Nxx stresses. Changing the d:b ratio of the edge beams from 3:1
to 1:3 increases the maximum compressive stress in the shell's

interior region by only 9% and decreases them at the cornmer by 3Z.

Within the practical range of d:b ratios, the in-plane
stiffness parameter K4 has no apparent effect. This appears
reasonable since the in-plane stiffness of the shell overwhelms the

stiffness of the edge beam.
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The shape of the edge member in a practical situation would

probably be adjusted more in consideration of‘other effects, such as
bending stresses, rather than Nxx stresses. This is discussed in

later sections.

5.3.3 Nxx - Variation of Rise to Span Ratio Series

The maximum and minimum Nxx stress resultants at key
locations in the shell for varying h/a ratios are presented in
TABLE 5.2. The magnitude of Nxx at the crown is as predicted by
membrane theory, except for slight variations for the very shallow
shells with h/a less than 0.04. It is to be noted that for this
series-having a square edge beam configuration, the maximum
compressive stresses, which occur at the corner, are almost exactly
6 times as large as the compressive stresses at the crown. There
ié a slight decrease in this ratio for the shallowest shell studied

in which h/a = 0.16.

5.4 Bending Stresses Mxx

TABLE 5.3 gives the calculated values of the bending
moments Mxx at seven key locations in the shell, fbr all three
series of edge member and shell configurations. The key locations
are identified in FIGURE 5.6. Locations 3,5 and 7 are "fixed
locations" at the mid-edge x = a, corneryand mid-edge y = a,
respectively. Locations 1, 2, 4 and 6 are "floating locations",

that is they shift positions as the parameters are varied. For
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Location (See FIG. 5.6) 1 =* 2 4 5 7
Size of d=b= 1000t -0.03 11.25 j-5.15|-5.68 0.00 0.00} 0.00
Edge Beam 100t ~-0.04 |1.26 |-5.18 | -5.68 0.00 0.001] 0.00
Series 10t -0.12 }2.15 |-7.39 | -7.39 0.07 } -0.08 ] 0.16
8t -0.14 1 2.04 |-6.12 [ -6.29 | 0.14 {-0.23]0.33
6t -0.27 1 2.02 [-3.69 | -5.27 0.331-0.831}0.88
Std. 4t -1.00 | 2.67 1.39 | -7.40 1.34 |-4.07 ] 3.39
2t -5.89 §3.96 3.96 | -9.45 12.5 | -26.51} 16.4
ot -9.65 0 0 0 -51.3| 25.7
Shape of d:b=1000:1 -0.32]16.15 |-0.01 ] -0.01 0.00 0.05] 0.05
Edge Beam 3:1 ~-0.51 {3.09 |-0.121-2.35 0.15 {-1.601] 1.56
Series 2:1 | -0.64 |2.92 0.21}~3.88 0.37 1 -2.30] 2.09
1:1 ~-1.00 | 2.67 1.39 | -7.40 1.341-4.071) 3.39
1:2 -1.54 | 3.63 3.63 | -11.5 3.57 1| -6.77 ] 5.22
1:3 ~1.99 | 5.14 5.14 | -13.7 5.66 | -8.891 6.50
1:1000 -0.50 10.88 0.01]-0.31 1.04 | -10.1¢ 1.43
Variation h/a = 0.24 -1.10{2.58 | 2.58-8.69 | 1.43|-3.95| 3.08
of Rise to 0.20 -0.98 | 2.07 2.07 | -8.06 1.391-4.011 3.20
Span Ratio Std. 0.16 -1.00 | 2.67 1.39 ] -7.40 1.34 | -4.07} 3.39
Series 0.12 | -0.933.43 | 0.50|-6.60 | 1.27 | -4.11] 3.73
0.08 -0.89 }4.57 §-0.53 | -5.37 1.13 | -4.02} 4.55
0.04 ~-0.75]8.86 |-0.18 | -3.71 0.74 | -2.96] 8.20

* Bending Moments are ft.lbs/ft.
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each series, bending moments at the key locations indicated are
plotted, in FIGURES 5.7, 5.8 and 5.9. These figures show the
trends in the magnitude of Mxx as the parameters are varied, and

are discussed in the following sections.

5.4.1 Mxx -~ Size of Edge Beam Series

The values of Mxx at seven key locations, which are
generally local maximum or minimum values in the shell, are
presented in FIGURE 5.7 for this series, in which the size of

the square edge beam was varied.

For large edge beams, the bending moments are generally
small, whereas for the shell with a free edge, the bénding
moments become high at a few locations. As shown in FIGURE 5.7
by the dashed vertical line, there exists a size of square edge
beam, with side dimensions. of approximately 7t, for which the greatest

value of Mxx at any location in the shell is a minimum.

For the shell with this optimum edge beam size Mxx has a
maximum value of about -5. ft.lbs/ft. and occurs along the edge
X = a. Decreasing the size of the edge beam to 4t, ie the standard
edge beam size, the largest bending moment increases by 40% to
~-7.40 ft.1lb/ft. Decreasing the size of the edge beam beyond 4t
results in rapidly increasing bending moments, a highly undesirable

situation.
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It should be noted that for all cases except those having
very small edge beams (dimensions of 3t or less) the largest bending

moments occur along the edge x = a.

The negative bending moment at the mid-edge x = a is a
maximum for the shell with edge beams of approximately 10t dimensions.
It would appear that for an edge beam of this size the torsional
stiffness K3 is sufficiently large to induce a substantial moment,
yet the in-plane bending stiffness K4 is not large enough to overwhelm
the other stiffnesses, which happens in the limit, as discussed in

CHAPTER 1IV.

It would also appear that for shells with edge beams of at
least 4t dimension, but not much larger, the Mxx stresses are similar
in magnitude and distribution to those of Cases P, J and G as
presented in CHAPTER IV. TFor these cases the edge beam has infinite
axial stiffness, but the in-plane bending stiffness is zero. When
the size of the edge beam becomes very large, the Mxx stress éituation

approaches that of the shell with built-in boundaries, Case A.

5.4.2 Mxx - Shape of Edge Beam Series

In this series, for which the shape of the rectangular edge
beams of constant area was varied, key values of bending moments Mxx

are given in TABLE 5.3 and are present graphically in FIGURE 5.8.

For the shells with edge beams of large d:b ratios, that is.
the edge beams are deep but narrow, the bending moments are generally

very small. As the d:b ratio decreases to unity (the "standard shell"
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with "standard edge beams'"), maximum and minimum Mxx values of
+2,.67 and —7.4Q ft.1lbs/ft. result. Upon decreasing d:b further,
that is the edge beam becomes wide but shallow, bending moments
rapidly increase at all locations. Thus this latter configuration

of edge beam is highly undesirable from bending moment considerations,

For the shell being considered, there is an optimum d:b
edge beam ratio, approximately 2.5, for which the maximum bending
moments, both negative and positive, have the lowest value
(3.0 ft.1lbs/ft.). This situation is shown by the dashed vertical
line in FIGURE 5.8. For d:b decreasing from this value of 2.5,

Mxx moments rapidly increase along the edge x = a.

For shells with edge beams in the practical size range
the relative flexural stiffness, K4, of the beam is small compared
to the corresponding stiffness of the shell and therefore has
little effect in preventing in-plane deflections of the shell's
edge. In other words, varying the shape of the edge beam does
little to vary the effective value of K4. The value of K1 in
this series, since the size of the edge beam is kept constant,
is not varied. Thus changing the shape of the edge beam effectively

varies only K2 and K3.

From TABLE 4.4 it would appear that the most favorable
condition for moment occurs when K2 is large and K3 is small, ie
Cases F, C and B. As d:b is increased from unity the value of K2
is increased and K3 is decreased, which results in decreasing

moments.



5.4.3 Mxx - Variation of Rise to Span Ratio Series

The variable under consideration in this series is the
rise h, in terms of h/a, for shells having the "standard edge
beam". Bending moments for the same seven key locations considered
in sections 5.4.1 and 5.4.2 are given in TABLE 5.3, and are plotted

in FIGURE 5.9.

Decreasing the h/a ratio (rise to span ratio) below 0.16
(the "standard shell") results in rapidly increasing positive
bending moments along the line y = 0, at a point about 0.2a from
the edge. The location of the positive bending moment moves toward

the crown as the shell becomes shallower,

Surprisingly, the negative bending moments along the edge
x = a near location 4 (see FIGURE 5.9), decrease until the shell
approaches the configuration of a plate, at which the moments
bécome very large. This is borne out by the deflection of the
shell, which in the vicinity of the cormer is upward, and more so
for the shells of iarge h/a ratios. Thus there is a lesser change
in the curvature for the shells aléng the edges, and would appear

to explain the smaller moments for the shallower shells.

As.shown by the vertical dashed line in FIGURE 5.9, for
a ratio of h/é of approximately 0.075, the range of positive and
negative bending‘moments is a minimum. For this case the absolute
maximum moment has a value of 5 ft.lbs/ft. The extreme shallowness

of the shell for which this occurs is interesting, since for the



63

7 L .
[ .
. |
See FIGURE 5.6
4 | | for locations in shell
| ol
| —
|
|

| 1 1 1 !
.04 .08 al2 0.{i6 0.20 024

\

Ft. Lbs. fFt. .
w
|

MOCMENTS

Mxx BENDINGS
I
] i 1 H

/5tandcrd Shell
[~

FIGURE 5.9 BENDING MOMENTS Mxx FOR SHELLS SUPPORTED BY
ELASTIC EDGE BEAMS, VARIATION OF RISE TO SPAN RATIO SERIES




shells having idealized boundary conditions, shallow shells

apparently have larger bending moments.

5.5 Shearing Stress Resultants Nxy

It must be noted, as was discussed in CHAPTER IV, that
the location and the values of maximum shearing stress resultants
Nxy, which in most cases must occur along the shell's edge at the
corner, are not obtained ﬁsing this model., The reason for this is
tﬁe method of defining the location of the u and v displacement
components at points that are at best one-half grid spacing

removed from the edge.

The Nxy stress patterns are similar for all the variations
of size or shape of edge beam presented in this chapter. The
variations in magnitude are slight, except in the immediate
region of the-corner support, for all shells having edge beams of

practical dimensions.

5.5.1 Nxy - Size of Edge Beam Series

The maximum shearing stress resultants Nxy, which occur
in the shell at x = y = .95a,for the shell with varying sizes of
square edge beams, are presented in FIGURE 5.10, and the maximum

calculated values are given in TABLE 5.4,

64
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SHEARING STRESSES Nxy FOR SHELLS SUPPORTED BY ELASTIC EDGE BEAMS

Nxy at x=y=0.95a *

Membrane Theory
Nxy at x=a,

1lbs/ft. Y=0.95a 1bs/ft
Size of Edge ﬁeam d = b = 1000t - 148 (Max -155) -2445
Series 100t - 148 (Max -158) "
10t -1070 (Max -1167) "
8t ~1324 "
6t ~-1683 "
Standard 4t -2097 "
2t -2429 "
ot -2858 "
Shape of Edge Beam d:b = 1000:1 -2191 =2445
Series 3: -2311 "
2: ~-2249 "
Standard 1: -2097 "
1: -1894 "
1: -1760 "
1:1000 - 736 "
Variation of | h/a = 0.24 -1298 -1630
Rise to Span Ratio 0.20 ~-1614 -1955
Series Std. 0.16 -2097 -2445
0.12 -2911 -3250
0.08 -4531 -4890
0.04 -9195 -9777

* Nxy at this location is also maximum calculated value, unless noted.




The maximum calculated values of Nxy occur at the
secondary grid-point nearest to the corner when d = b = 10t or

larger, and occur at the next nearest secondary grid-point when

d = b = 8t or less. For the standard shell, the maximum calculated

value for Nxy is -2097 lbs./ft.

When the square edge beam has dimensions of less than
10t, for the shell configuration used in this study, the maximum
calculated shearing stress decreases linearly with the side
dimension of the beam, which indicates the dependence of shearing
stresses near the edge on the size of the edge beam. For these
cases, in which full fixity of the edge is not approached, there
is no significant change in the magnitude of Nxy in the central
region of the shell. The "standard shell's" shearing stress
pattern is similar to that of a hypothetical case having edge
beam stiffness properties between those of Cases J, P, B, N and

G, E, Q, L.

By comparing Nxy values in TABLE 5.4 with those in TABLE
4,5, it would aépear that the "standard shell's" edge beam has
sufficient axial stiffness to make Nxy stresses compare closely
in magnitude to those of Cases J, P, B and N. For the "standard
shell", the '"standard edge beams" cross-sectional area is 1/7th
that of half the shell's cross—sectional area, and appears to be
sufficient to create a condition close to axial fixity, at least

as far as Nxy stresses are concerned.
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A comparison was made between the results of the "standard
shell" and results obtained using a membrane analysis. This
comparison reveals the membrane solution hés Nxy magnitudes not
exceeding the '"standard shell" Nxy magnitudes by more thén 20%
except within a distance of 0.05a from the corner. At the corner
the membrane solution yields mathematically infinite shearing

stresses which obviously cannot exist.

5.5.2 Nxy - Shape of Edge Beam Series

The maximum calculated values of the shearing stress
resultants Nxy for this series are given in TABLE 5.4 and are

plotted in FIGURE 5.10.

In the interior region of the shell the value of Nxy
does not vary signifiéantly for those shells having edge beams
of practical shape. Within a distance of not more than 0.2a from
the corner, the variation in magnitude of Nxy becomes moré‘
pronounced. Next to the cornmer, at x =y = .95a, which is also
the point where the maximum calculated Nxy stresses occur, the
magnitude decreases linearly with an increase in the width of the
edge beam. This would appear to indicate the importance of making
thé edge beam wide in relation to its depth if Nxy stresses in the
shell were the only consideration. The shallower but wider edge
beam, in allowing greater deflection of the shell's edge, picks
up more of fhe load in the midspans, thus lowering the Nxy stresses

at the corner.
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5.5.3 Nxy — Variation of Rise to Span Ratio Series

The maximum calculated shearing stresses for this series
are presented in TABLE 5.4, and occur at the location x = y = .95a,
The shearing stress distributions near the edge of the shell, for
all h/a values, are similar to that of the standard shell with the
standard edge beam, for which the Nxy stresses are presented in

FIGURE 4.5.

Variation of the h/a ratio is actually a variation of the
curvature of the shell, commonl? described by the curvature factor,
az/h_ A study of the maximum calculated Nxy values indicates a
linear relationship between Nxy and the curvature factor. The

membrane solution also yields a similar linear relationship.

Thus, decrease in curvature results in increasing shearing

stresses.
5.6 Summary

In this chapter, the stiffness parameters were evaluated
for shells having elastic edge beams. The effects on the shell,

but not the effects on the edge beams, have been discussed.
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Over their total range of values, the stiffness parameters

have a complex interacting effect. However, within the normal range

of values, the following practical conclusions can be made.

The in~plane bending stiffness K4 is effectively zero, as
the in-plane stiffness of the shell overwhelms that of the edge
beam. The torsional stiffness K3 is also relatively insignificant
in its effect on the shell, even in the immediate vicinity of the

edge where its greatest influence exists.

The axial stiffness K1 and the transverse bending stiffness
K2 have significant effect on the behaviour of the shell, in the
limit as well as in the practical range of values. In preventing
in-plane shearing deformations at the edge, K1 has the greatest
effect, and by preventing normal deflections along the edge, K2 has

a lesser but also significant effect.

It would appear desirable, from deflection and stress
considerations, to make the edge beam of elliptic paraboloid
shells as large as possible, and to make the beam deep compared
to its width. The shallower the shell, the more severe generally

are the stress effects on the shell.



CHAPTER VI

SUMMARY AND CONCLUSION

The behaviour of elliptic paraboloid shells under uniform

normal loading with idealized boundary conditions is significantly

different from the behaviour exhibited by shells with elastic edge

beams of practical dimensions.

When in-plane outward movement of the shell's edge is

prohibited (K4 = infinity), the load is carried solely by membrane

action, that is arching to the edge, with little or no bending for

uniformly distributed loads. This condition cannot be realized in

practical situations except for continuous shells,

It
stresses or
movement of

K1 is large

is significant which mechanism, either tangential shear
transverse edge forces, is acting in preventing normal
the shell's edge. In the former case, the axial stiffness

and there is relatively little bending in the shell,

whereas in the latter case, significant bending stresses are induced

by the transverse forces developed by the large bending stiffness K2.

Thus it is not sufficient to know that the edge of the shell is

prevented from deflecting, one must know how the edge of the shell

is prevented from deflecting.

Practical shells can be considered unrestrained in outward

in-plane movement at the edge, but generally the edge bean has

sufficient area to be considered stiff, relative to the shell, in the

axial direction. Thus the load is carried predominantly by membrane
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action. Practical edge beams are also usually stiff enough to carry
part of the load by beam action, in which case significant bending
stresses result in the shell, caused by the transverse forces at the

edge.

The torsional stiffness K3 of the elastic edge beams is
generally not significant in its effect, especially when in-plane
direct or shear forces exist at the boundary. In practical situations

it could probably-be ignored.

Edge beams that are deep compared to their width result in
more favorable stress conditions. It is also important that the edge
beams have sufficient cross-sectional area to create a membrane stress
condition in the shell. Edge beams designed as arches, with dimensions

based on the tangential shear forces arrived at by the membrane
analysis, would appear to be near the lower size limit if stresses

in the shell are to be kept low.
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