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Abstract

A number of interesting subjects relevant to optimality of design, cost effi-

ciency evaluation, and the adaptive treatment allocation for response-adaptive

repeated measurement designs have been reviewed and discussed. First we

introduce some optimal crossover designs, and compare those designs with

completely randomized trials and N-of-1 trials in terms of their relative de-

sign efficiency and cost saving, followed by a discussion of three statistical

models for repeated measurement designs. Then the response-adaptive design

in comparison with standard randomized clinical trials has been elaborated.

An adaptive treatment allocation scheme for a multiple-objective response-

adaptive repeated measurement design is presented in detail; and the simu-

lation study illustrates how the adaptive treatment allocation scheme works

efficiently to simultaneously achieve two objectives: increasing estimation pre-

cision and treatment benefit.
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Chapter 1

Introduction

Clinical trials are defined in simple terms by Piantadosi (2005)[16] as exper-

iments that allow researchers to test medical treatments on human subjects.

According to Byar et.al (1976)[3], “randomized clinical trials remain the most

reliable method for evaluating the efficacy of therapies.” The following chap-

ter will briefly review some classic clinical trials commonly applied in medical

research. The motivation as well as the organization of my thesis will also be

presented.

In a randomized clinical trial (RCT), which is more often called the com-

pletely randomized trial in the most statistical literatures, a group of patients

are randomly assigned to subgroups - for example, two treatment groups (1

and 2) - such that patients in group 1 are treated with intervention A, and

those in group 2, with intervention B. Such a design could achieve unbiased es-

timates of treatment effects because it eliminates (or at least greatly reduces)

the allocation bias in the assignment of treatment, from known or unknown

prognostic factors. Although it is recognized as the “gold standard” method

for providing evidence on efficacy, there are circumstances in which the design
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may fail due to lower power to detect the efficacy of treatment, a difficulty

in recruiting required number of subjects, or insufficient fiscal resources. To

deal with those situations, many other types of designs with some theoretical

as well as clinical advantages have been proposed and examined by clinical

investigators and researchers.

A repeated measurement design (RMD) is one of the alternatives. In a

RMD, multiple measurements are taken in sequence on the same experiment

unit, such as a patient in clinical trials, and the response measurements are

usually taken at different times in the trial. There are two general types of the

RMDs in clinical trials: parallel group designs and crossover designs (CODs).

In parallel group designs, the subgroups of patients defined by a treatment

receive a single therapy and are followed up over time. Table 1 shows an

example for a simple two-treatment, two-period parallel group design.

Period 1 Period 2

Seq.group 1 A A
Seq.group 2 B B

Table 1.1: 2-treatment 2-period 2-sequence

In CODs, all patients are given all of the treatments under investigation

in a trial. The simplest crossover design is the two-treatment trial with two

periods, in which patients are divided into two subgroups, and each patient

in group 1 receives intervention A first, and B second, while each in group

2 receives treatment B first and A second. The layouts of a crossover trial

with two periods and three periods are presented in Table 2 and Table 3,

respectively.

N-of-1 trials are single-patient, double-blind, randomized, and multi-crossover

trials, as Zucker (2010) [20] noted. In other terms, the combined N-of-1 trial
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Period 1 Period 2

Seq. group 1 A B
Seq. group 2 B A

Table 1.2: 2-treatment 2-period 2-sequence

Period 1 Period 2 Period 3

Seq. group 1 A B A
Seq. group 2 B A A

Table 1.3: 2-treatment 3-period 2-sequence

design is a special type of two-treatment repeated-crossover designs for small

clinical trials. For example, in a series of N-of-1 trials with six-week treatment

periods (one week as a treatment period), each patient undergoes 3 pairs of

treatment periods. Each pair of treatment periods includes a treatment A and

a treatment B. In the first treatment pair, the treatment allocation is blocked

randomized; while in the other two pairs, it is simply randomization. Table 4

gives the layout of a six-period N-of-1 trials design.

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

Seq. group 1 A B A B A B
Seq. group 2 B A B A A B

Table 1.4: 2-treatment 6-period 2-sequences

In our study, We would like to illustrate the optimality properties of the

designs that are commonly used in clinical trials and apply some evaluation

criteria, such as design efficiency in estimation of treatment effects and cost

efficiency comparison, in order to compare those designs. Because of the grow-

ing interest in N-of-1 trials and response adaptive designs and their attractive

characteristics, we also put them in our investigation.

The statistical models used for these clinical trials designs are similar, but
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the models for crossover trials data are usually more general and complex; we

will thus focus our discussion on such models without loss of generality. To this

end, this paper is organized as follows: Chapter 2 provides a review of the liter-

ature detailing current methods of analyzing repeated measures data. Chapter

3 investigates the statistical power and cost efficiency of these interesting de-

signs. Chapter 4 introduces a multiple-objective response-adaptive design and

an illustration of the use of an adaptive treatment allocation scheme. Chap-

ter 5 presents data analysis to generate optimal designs for three-period and

six-period crossover designs. Chapter 6 summarizes the general results of this

research and suggests a few ideas for future research.
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Chapter 2

Literature Review

This chapter is composed of two parts. The first part discusses the major issues

related to the designs that were introduced in Chapter 1. In the second part, we

describe a few general statistical methods commonly applied to those designs,

such as the linear mixed model and meta-analysis. Many more statistical

models for clinic trials, such as Bayesian hierarchical method, are not covered

here in any detail since they are beyond the scope of this thesis. So for the

purpose of this thesis, we will focus on the models that we overviewed. For

simplicity, we restrict our discussion to the two treatments throughout this

thesis.

2.1 General Clinical Trials Designs

We explained the basic definitions of the most common classes of clinical trial

designs in the previous chapter. It has been generally accepted that the COD,

without some limitations of their own, or when feasible, appears to be a more

practical approach than the RCT or parallel group design in clinical trials.
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Essentially, this is because it can offer improved efficiency compared to other

traditional designs when comparing different treatment effects. Because each

patient in a COD receives both treatments, with his or her own control, the

sample size required to yield equally precise estimation of the treatment dif-

ference is only half as many subjects as in a RCT. Moreover, since the within-

subject response measures are usually positively correlated, this allows the

sample size to be reduced further.

Consider a simple crossover trial AB/BA. Let µA and µB be the mean re-

sponse measures on patients taking treatments A and B, respectively. Assume

that both treatment effects are estimated with variance σ2 and that there are

no period or carryover effects. The variance for the estimate of treatment

effect difference, τ̂ = µ̂A − µ̂B, is then

var(τ̂) =
2σ2

m
− 2cov(µ̂A, µ̂B)

=
2σ2

m
(1− ρAB)

based on Piantadosi (2005)[16], where m is the number of subjects in each

sequence group, and ρAB is the response correlation on treatments A and B

(assumed to be the same for all individuals).

In RCTs or parallel group designs, ρAB is zero since different subjects form

the two-treatment groups A and B. In CODs, ρAB is generally expected to

be positive because the response measures on the two treatments come from

the same subject (Piantadosi, 2005)[16]. Therefore, the COD could be more

efficient than a RCT or parallel group design with a smaller variance. This

means that the COD has more power to detect a treatment difference with a

smaller sample size.
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However, a number of disadvantages do arise with CODs. Carryover effect

is one of the primary concerns. The treatment effect from one period may per-

sist in the following period; this is also called a residual effect. One potential

problem with carryover effects is that the design can not yield unbiased esti-

mates of the treatment effect. Although there are strategies to deal with such

difficulties, the most helpful approach is to prevent this effect in the designing

stage of a trial by providing a sufficiently long washout period between the

treatment periods.

N-of-1 trials have become very attractive to clinical researchers in recent

decades. Such a design takes advantage of the principal strength of crossover

trials, and emphasizes individual-focused assessment. According to Zucker

et.al (1997)[21], a RCT or COD can provide information regarding the relative

treatment efficacy for a study population, while an N-of-1 trial can provide

information regarding the relative treatment effectiveness for an individual

patient. In contrast to the standard trial design, the key advantages of the

N-of-1 trial design are that clinical investigators can use individual outcomes

to make individual patient treatment decisions and to obtain comparative

effectiveness estimates for the general population. On the other hand, they

share the similar limitations or shortcomings as usual CODs. For example,

such designs may often experience a high dropout, or they may be well suited

only to certain disease studies, whose conditions are chronic and stable, require

long-term medication and the proposed treatments have a quick onset of action

and cease to act soon after they are discontinued, but each aspect needs its

own suitability consideration.

In brief, a RCT is the traditional and classic design conducted in clinical

trial for its simple and reliable method to test two treatment effects. A COD
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can compete against a RCT by its sufficiently increased design efficiency with

a smaller sample size, but it also brings some concern of carryover effects. The

N-of-1 trial design takes the form of more like a COD, however, some condition

or randomization rule is more restricted/complicated in such a design. The

most important characteristic that makes the N-of-1 trials different from other

designs, is that they are collections of individual trials and intend to identify

individual treatment effect, rather than focus on the overall mean treatment

effect for a population, which is also the most powerful advantage of such a

design.

2.2 Linear Mixed Models for Repeated Mea-

sures Data

Let Yj = (y1j, y2j, ..., ypj)
′ denote the response vector for the jth patient; we

assume a general linear mixed model in matrix form is

Yj = Xjβ + Zjbj + εj (2.1)

where X and Z are design matrices for fixed effects and random effects, re-

spectively, β is the fixed effect vector, bj is the random effect vector, and εj is

the random error term.

Suppose that the random effects are normally distributed with

E

 bj

εj

 =

 0

0

 , Var

 bj

εj

 =

 V 0

0 R


8



then Yj follows a multivariate normal distribution, with variance,

Σ = ZVZ ′ + R

The traditional linear mixed model for repeated measurement designs is a

specific case of the above model, with the assumptions that the fixed effect

set β = (µ, π, τ, γ)′ comprises the mean treatment effect, period effect, treat-

ment effect, and first-order carryover effect due to treatment given in previous

period; and the random effect terms include random subject effects ζj and

random error effects εj. Assume that ζj and εj are each independent multi-

variate normal random vectors with mean zero and variance σ2
s11′ and σ2

eI,

respectively.

Many investigators have explored various analytic approaches for analyz-

ing the repeated measures data based on the traditional model. For example,

Grizzle (1965) [9] used the classical methods to estimate the treatment effects

for an AB/BA design, however, in which the carryover effects was omitted

from the model. In face of carryover effects, the unbiased estimate of treat-

ment effect contrast is not estimable unless the data from second period are

discarded.

Let Ȳi.k be the average response for all subjects in ith period from sequence

group k, where i=1,2, k=1,2, and let τ be the treatment effect contrast, i.e.

τ1-τ2=τ , subject to τ1+τ2=0.

If the assumption of no carryover effects or equal carryover effects is valid,

the unbiased estimate of τ can be given by

τ̂ = {(Ȳ1.1 − Ȳ2.1) + (Ȳ2.2 − Ȳ1.2)}/2

9



Seq.group AB Seq.group BA

mean mean
Period 1 µ+ π1 + τ1 Ȳ1.1 µ+ π1 + τ2 Ȳ1.2

Period 2 µ+ π2 + τ2 + γ1 Ȳ2.1 µ+ π2 + τ1 + γ2 Ȳ2.2

Table 2.1: The layout of design AB/BA

Also let γ1 and γ2 be the carryover effects of treatment τ1 and τ2 on the first

period, respectively; and γ1 6= γ2, then estimation of τ is using the first period,

τ̂ = Ȳ1.1 − Ȳ1.2

Brown (1980)[2] also discussed this model. One way to deal with such

situations, he noted, is combining additional treatment sequences to the design

AB/BA; that is, using the design AB, BA, AA, and BB, which was proposed

by a few earlier investigators, e.g.Cochran and Cox (1957)[8]. Wallenstein

(1979) described another approach for valid estimation with carryover effects

in the design AB/BA. The baseline measures preceding each treatment period

are required.

On the other hand, the disturbance of carryover is mainly restricted to two-

period crossover designs. As Laska et al.(1983)[12] noted, when the number of

periods is greater than 2, there is little penalty due to the presence of carryover;

even the baseline observations add little value to the statistical power.

The model (2.2) has also prompted numerous discussions about the com-

parative efficiency and cost-savings of various designs. For example, Brown

(1980)[2] presented a simple procedure to evaluate the cost efficiency of a two-

treatment COD with sequences AB and BA relative to RCT for the case in

which there is no carryover effect. The cost can be separated into two com-
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ponents: let S0 be the cost of recruiting a new subject, and S1 be the cost of

treating and measuring a recruited subject in a given period. Also suppose

that these costs S0 and S1 are the same for both COD and RCT.

Then the total costs for a COD is Sco, with n subjects in each sequence

group,

Sco = 2nS0 + 4nS1

and the total costs for a RCT is Scr, with m subjects in each treatment group,

Scr = 2mS0 + 2mS1

Thus R, defined as R=Sco/Scr, is the relative cost of these two trial de-

signs when the treatment effects are estimated to be equally precise. Note

that the estimates of variance of the treatment effects in these two cases are

Var(τ̂co) = σ2
e/n and Var(τ̂cr) = 2(σ2

s + σ2
e)/m, respectively. The ratio of the

variances is therefore expressed as Var(τ̂co)/Var(τ̂cr) = mσ2
e/2n(σ2

s + σ2
e), and

the relationship between required sample size is n = (m/2)(σ2
s/σ

2
s + σ2

e). The

relative cost, shown in Brown(1980)[2], can thus be expressed as

Rco/cr =
1 + 2S1/S0

2(1 + S1/S0)
(

1

1 + σ2
s/σ

2
e

)

Without considering carryover effects, the method of cost efficiency evalu-

ation favors CODs. However, if comparing a four-sequence crossover trial to

a RCT, it shows that although the a four sequences design is necessary for

a two-treatment two-period COD to have an unbiased estimate of treatment

difference in the presence of carryover, its economical advantage as a crossover
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is defeated (Brown 1980)[2].

Carriere and Huang (2000)[5] extended the discussion on two- and three-

period CODs with various model assumptions, and explored the cases for which

there is a negative within-subject correlation. Using the same defined relative

cost, R, they made a cost efficiency evaluation for those interest designs. They

emphasized in their clear discussion that crossover trials performed better

than other independent group designs in terms of efficient estimation and cost

savings, especially in cases of large recruiting cost (small S1/S0) and large

σ2
s/σ

2
e .

2.3 Linear Mixed Models for N-of-1 trials

A much simple form of linear mixed model is usually used for N-of-1 trials

data. Recall that N-of-1 trials design can be seen as a special individual-

focused clinical crossover trials.

Considering a situation where the outcome depends only on treatment, the

model (2.1) can be written as,

yj = µ+ ζj + εj (2.2)

where µ is the average treatment effect, µ + ζj specify the individual treat-

ment effect due to subject j, and εj specifies other sources of errors between

outcomes. The model (2.3) may be regarded as a special case of the model

(2.1) with Xj = Zj = 1, β = µ and bj = ζj. If ζj is assumed to be a constant

12



across subjects, Equation (2.3) can be further simplified as

yj = µ+ εj (2.3)

The only source of variation in response comes from the within-subject vari-

ance, ε2
w. Such a model is called a fixed effect model.

Rather than assuming that the treatment effect is fixed, we allow that the

individual treatment effect depends on many patient-specific characteristics ,

i.e, ζj has a normal distribution with mean 0 and variance ε2
b . A random effect

model can thus be obtained by

yj = (µ+ ζj) + εj

= µj + εj (2.4)

The method of the random effect analysis is to decompose the variance into

two component parts: between-subject variance ε2
b and within-subject variance

ε2
w.

Another common method used for N-of-1 trials is the summary meta-

analysis. The approach first fits a model to the individual-patient data from

each subject separately, then combines the individual treatment effect esti-

mates, yj, using a meta-analytical approach. There is no essential difference

between meta-analysis and the linear mixed model in terms of methodologies.

However, meta-analysis provides another way to pool individual treatment ef-

fects in estimating the average treatment effects. Note that in meta-analysis,

each subject’s trial is treated as an independent study.

If we assume that all the studies share the true treatment effect, µ, then

13



the observed effects yj for individual study will be distributed about µ, only

with a within-study variance ε2
w; and the resulting model will have a same

form as Equation (2.4) for the fixed effect model analysis.

However, there is generally no reason to assume that each study has exactly

the same true mean effect in meta-analysis. Therefore, a random effect model

that makes allowance for an additional between-studies variance is preferable.

By the same token, in N-of-1 trials each single subject can have a different

effect, µj; thus we are back to Equation (2.5) for the random effect model.

In meta-analysis, each observed treatment effect, yi is weighted by the

inverse of its estimated variance, then a weighted average treatment effect is

obtained by

µ̂ =
n∑
j=1

ωjyj/
n∑
j=1

ωj (2.5)

The difference between the fixed and random effect model analysis for meta-

analysis is that the variance in random effect model includes one more com-

ponent, ε2
b , the between-subject variance. Therefore the weights, wj, used in

the formulation, would have a corresponding change in the two models.

Linear mixed models and meta-analysis should provide identical results

since they share the same model (2.1),Yj = Xjβ + Zjbj + εj. The generalized

least squares estimate for β is given by β̂ =
(∑n

1 X
′
jΣ
−1Xj

)−1 (∑n
1 X

′
jΣ
−1yj

)
,

where Σ is a known variance-covariance of Yj. Since the meta-analytic method

is a specific case of linear mixed model with assumption of Xj = Zj = 1, the

least squares estimate becomes β̂ =
(∑n

1 σ
−2
j

)−1 (∑n
1 σ
−2
j yj

)
. When substitut-

ing σ2
j with 1/wj, we have the same formula for the mean or average treatment

effect as Equation (2.6).
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Chapter 3

Optimal Design and Cost

Efficiency Comparison

In this chapter, we introduce some general optimal crossover trials, describe

how to calculate an information matrix for such designs using Carriere and

Reinsel’s method (1992)[7], and present the analytical formulae for the in-

terest quantities used in the analysis of precise estimation and cost efficiency

comparison. The optimal design here means, a design by which we can acquire

a best linear unbiased estimator (BLUE) for treatment effect difference with

minimal variance over all possible assignments of N patients to the 2p possible

sequence groups. In general, optimal designs differ for the various models.

3.1 Common Optimal Crossover Designs

For p=3, there are a total of eight possible sequence groups available in

crossover designs: AAA, ABA, AAB, ABB and their duals. The dual of a

treatment sequence is defined as a new treatment sequence whose treatment

15



order is inverse of the original sequence’s, for example, BAB is the dual of

ABA. The design ABB /BAA is optimal over a class of tree-period designs

under the traditional model (Laska and Meisner, 1985[13]). In addition, Car-

riere (1994)[4] describe a nearly optimal three-period design consisting the

sequences ABB, AAB and their duals. In such a design, the sequence groups

ABB and BAA have a higher allocation proportion of patients than treatment

sequences AAB and BBA so that it remains competitive efficiency with various

model assumptions.

As Laska and Meisner (1985)[13] discussed, for p=4, the design with the

two sequence groups ABBA, AABB and their duals is optimal. For p=6, there

are three designs available can achieve the most efficiency of estimating the

treatment effects, (1) AABBBA, ABBAAB and their duals; (2) ABBAAB,

ABBBAA and their duals; (3) the combination of sequences groups (1) and

(2).

As we see when the period is extending, the possible sequences rapidly in-

crease (total 2p available). However, it is not necessary to apply all of them in

a practical setting. For instance, the most common treatment sequences used

in N-of-1 trials include only eight groups if we strictly follow its initial treat-

ment plan. Since the treatment allocation rule requires each pair of treatment

periods to consist of two different interventions, some sequences like AAABBA

or AAAABA may be less likely given in N-of-1 trials. Also in clinical setting,

such sequence groups repeating the same treatment on patients may be ethi-

cally debatable if the treatment efficacy is unknown. In such cases, we need to

consider the issues arising from balancing the statistical optimality and clinical

suitability.

We will examine the following designs in detail in terms of different effi-
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ciency criteria.

Design I ABB/BAA
Design II ABB,AAB /BAA,BBA
Design III ABBA,AABB and their duals
Design IV ABBAAB,AABBBA and their duals
Design V ABABAB,ABBAAB,ABABBA,ABBABA and their duals

Table 3.1: Two-treatment multiple-period competing designs

3.2 Information Matrix

Recall the traditional linear mixed model (2.1), we can rewrite it using the

following form:

yijk = µ+ πi + τd(i,k) + γd(i−1,k) + ζjk + εijk

with ζjk ∼ N(0, σ2
s) and εijk ∼ N(0, σ2

e). Here, yijk denotes the responses of

subject j from treatment sequence group k in period i, µ is the mean effect,

πi is the ith period effect, where i=1,2, . . . ,p. d(i, k) denotes the treatment

given in period i of sequence k, k=1,2, . . . ,2p, then τd(i,k) is the direct effect

of treatment used in period i from sequence k, and γd(i−1,k) is the carryover

effect in period i-1 of sequence k.

Let τ = (τA − τB)/2 and γ = (γA − γB)/2, with constraints τA + τB =

γA + γB = 0. Equivalently, τ = τA = −τB and γ = γA = −γB. Then we have

the following model:

yijk = µ+ πi + Id(i,k)τ + Id(i−1,k)γ + ζjk + εijk (3.1)
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where

Id(i,k) =


1 if d(i, k) =A

−1 if d(i, k) =B

,

and

Id(i−1,k) =


0 if i = 1

1 if i > 1 and d(i− 1, k) =A

−1 if i > 1 and d(i− 1, k) =B

Both the random subject effect ζjk and the random error εijk are assumed

to be independently, identically distributed with mean zero and variance σ2
s

and σ2
e , respectively. Further, ζjk and εijk are mutually independent, for all

responses from different subjects. Then the covariance-variance structure of

the p-vectors yjk is considered as,

cov(yijk, yi′j′k′) =


σ2
s + σ2

e if i 6= i′, j = j′ and k = k′

σ2
s if i 6= i′, j = j′ and k 6= k′

0 otherwise

or in matrix form,

cov(yjk) = Σ = σ2
eIp + σ2

s1p1
′
p (3.2)

and the correlation coefficient between yijk and yi′jk is

ρ =


σ2
s

σ2
s+σ2

e
if i 6= i′

1 if i = i′
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Define N =
∑

k nk, and y.k =
∑nk

j=1 yjk, where j=1,2,...,nk, then,

Σ−1 = σ−2
e

{
Ip −

ρ

1 + (p− 1)ρ
1p1

′
p

}

We can also have the model (3.1) in matrix form:

yjk = Xkβ + 1pζj + εjk (3.3)

where β = (µ, π2, ..., πp, τ, γ)′ is a vector of unknown parameters and Xk is a

p×(p+2) design matrix for sequence k. For instance, if p=6 and the treatment

sequence group k, is ABABAB, then the corresponding design matrix is,

Xk =



1 0 0 0 0 0 1 0

1 1 0 0 0 0 −1 1

1 0 1 0 0 0 1 −1

1 0 0 1 0 0 −1 1

1 0 0 0 1 0 1 −1

1 0 0 0 0 1 −1 1


For the dual balanced designs, by dual lemma (Laska and Meisner, 1985)[13],

the sufficient conditions for optimal designs are X∗k = −X∗k′ and nk = nk′ ,

where k and k′ are dual sequences, and X∗k refer to the columns that may be

negatives on the corresponding columns of their dual sequences, such asXτ
k and

Xγ
k . For the remaining columns in Xk, like Xπ

k = (Xπ2
k , X

π3
k , ..., X

πp
k ), they are

same for all sequence groups. Therefore we can also have
∑k

1 nkX
π
kΣ−1X∗k = 0

for all k.

Using the above notations, Carriere and Reinsel (1992)[7] gave a best un-
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biased estimator of treatment effect differences, βτ,γ = (τ, γ)′, based on gener-

alized least squares methods,

β̂τ,γ =

(
k∑
1

nkX
∗′
k Σ−1X∗k

)−1( k∑
1

X∗
′

k Σ−1y.k

)

and

cov(β̂τ,γ) =

(
k∑
1

nkX
∗′
k Σ−1X∗k

)−1

Note that the information matrix for β̂τ,γ is,

I(τ, γ) =

(
k∑
1

nkX
∗′
k Σ−1X∗k

)

Recall that d(i, k) denotes the treatment used in the ith period of the kth se-

quence. Denote aik=1 when d(i, k)=A and -1 when d(i, k)=B, the information

matrix for each sequence k can also be given as,

I(τ, γ) =

∑
nk
σ2
e

 p− ct2k gk − ctk t̃k

gk − ctk t̃k (p− 1)− ct̃2k


=

∑
nk
σ2
e

 I11 I12

I21 I22

 (3.4)

as shown in Carriere and Reinsel (1992)[7], where c=ρ/[1+(p−1)ρ], gk=
∑p−1

i=1 aikai+1,k,

tk=
∑p

i=1 aik, and t̃k=
∑p−1

i=1 aik. So the optimal design giving the minimum of

variance of treatment effect, var(τ), is the one that maximizes the informa-

tion matrix value given in Equation (3.4). With this procedure, we can assess

any dual balanced designs in regard to their efficiency in estimating treatment

effect, τ .

20



According to the above information matrix, we have

var(τ̂) =
σ2
e∑
nk

I22

D

where I22= (p− 1)− ct̃2k and D= I11I22 − I2
12. Note that var(τ̂) is dependent

on the value of ρ.

3.3 Efficiency of Estimating Treatment Con-

trast

Suppose in a dual balanced design, we have nk=
1
s
N subjects in the treatment

sequence k, where k=1,2, . . . ,s sequences, and N=
∑
nk. Also suppose the

repeated measures model has the random subjects effects under a completely

symmetric covariance structure, cov(yjk)=σ
2
eIp + σ2

s1p1
′
p.

Design I

Design I is the optimal trial within the class of three-period RMDs. Given

c=ρ/(1 + 2ρ), g=(0, 0)′, t=(−1, 1)′, t̃=(0, 0)′,

var(τ̂) =
σ2
e

n1 ∗ D
I22

+ n2 ∗ D
I22

=
σ2
e

N
× 1 + 2ρ

3 + 5ρ

Design II

To give illustration but simplify calculation, we consider the case with equal

number of subjects included in each sequences for design II, that is, nk=
1
4
N .
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Note that the nearly optimal design thus actually has smaller var(τ̂) than the

following estimate,

var(τ̂) =
σ2
e

n1 ∗ D
I22

+ n2 ∗ D
I22

=
σ2
e

N
× 1 + 2ρ

3 + 5ρ− ρ2

Design III

Design III is optimal for p=4. We have c=ρ/(1 + 3ρ), g=(−1,−1, 1, 1)′,

t=(0, 0, 0, 0)′, t̃=(−1, 1, 1,−1)′, thus var(τ̂) for the design ABBA, AABB /

BAAB, BBAA is given by,

var(τ̂) =
σ2
e∑4

k=1 nk ∗
D
I22

=
σ2
e

4N

Note that the variance estimation of τ do not depend on ρ in this case.

Design IV

For this six-period optimal RMD, given c=ρ/(1+5ρ), g=(−1, 1,−1, 1)′, t=(0, 0, 0, 0)′,

and t̃=(1,−1,−1, 1)′, we have

var(τ̂) =
σ2
e∑4

k=1 nk ∗
D
I22

=
σ2
e

6N

Again, the estimate of var(τ) is not dependent upon ρ.
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Design V

There are usually eight different sequence groups available in N-of-1 trials.

Due to calculation simplicities, we still consider the cases of dual balanced

designs. Therefore, we can obtain that g=(−5,−1,−3,−3,−5,−1,−3,−3)′,

t=(0, 0, . . . , 0)′, and t̃=(1, 1,−1,−1,−1,−1, 1, 1)′ with c=ρ/(1 + 5ρ); further,

the estimate of var(τ) is

var(τ̂) =
σ2
e∑8

k=1 nk ∗
D
I22

=
σ2
e

N
[
6− 11(1+5ρ)

5+24ρ

]
In addition, we have the estimate of var(τ) for a RCT, or also called com-

pletely randomized design, shown in previous chapter, var(τ̂cr) = 2(σ2
s+σ2

e)/m,

where 2m=N . The relative efficiency of two designs is defined as the ratio of

their unbiased estimators’ variance. Therefor we can evaluate the relative ef-

ficiency among designs with their estimates of variances. For example, under

the assumption of estimating the treatment effect equally precise, the relative

efficiency between design I and completely randomized design is defined as

var(τ̂designI)/var(τ̂cr).

Table 3.2 summarizes the comparison of three optimal CODs, i.e. Design

I, III, IV, to RCT, in terms of design efficiency. All of the optimal designs

are under the traditional linear mixed model with the equicorrelated covari-

ance structure. Besides the optimal CODs, two more designs of interest are

included: 1) Design II, i.e. the nearly optimal design ABB, AAB and their

duals; 2) Design V, i.e. the N-of-1 trial design with eight different sequence

groups.
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The entries are the ratios for such design comparisons, which represent

the relative efficiency between designs, with smaller values meaning higher

efficiency. As it shows in Table 3.2, for each COD compared with RCT, the

ratio values get smaller as ρ increases; and for each level of ρ, the values

also become smaller as the number of periods is bigger. It concludes that

1) a design with the period extending becomes more efficient. For example,

the four-period optimal COD is more efficient than the three-period optimal

COD; and 2) the relative efficiency is enhanced with ρ being larger. Therefore,

a design with ρ= 0.8 is more efficient than itself when ρ=0.2. Note that the

results from Design I and II are almost the same for their very close formula of

the estimate of var(τ). For Design III and V, the similar results suggest such

two designs have comparative design efficiency, or in other words, the N-of-1

design with additional period or treatment sequence information, could not

improve efficiency compared to the four-period optimal COD.

Design Period var(τ̂CO)/var(τ̂CR)

ρ=0.2 ρ=0.5 ρ= 0.8

I ABB/BAA 3 0.070 0.045 0.019

II ABB, AAB/BAA, BBA 3 0.071 0.048 0.020

III ABBA, AABB/BAAB, BBAA 4 0.050 0.031 0.013

IV ABBAAB, AABBBA 6 0.033 0.021 0.008
BAABBA, BBAAAB

V ABABAB, ABBAAB, ABABBA 6 0.053 0.033 0.013
ABBABA and their duals

Table 3.2: Relative efficiency of competing designs
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3.4 Cost Efficiency Comparison

Table 3.3 presents the results of relative cost (R) between each repeated mea-

surement design and RCT. Note that the comparison is for the average patients

in the population and no individual patient efficiency evaluation is possible.

We assume that all of the conditions related to R=Sco/Scr, discussed in chap-

ter 2, are satisfied here. For each pair of compared designs, let the ratio of

S1/S0=1/10,1/4,1,4,10, respectively, as well as the ratio of σ2
s/σ

2
e=1/4,1,and

4, respectively. Similarly as before in Table 3.2, the smaller values of entries

(R) in Table 3.3, the more cost efficient or larger cost saving between designs.

Especially, a value of 1, means the compared design has same cost as a RCT.

In Table 3.3, none of the values is even close to one. For each COD in

comparison to RCT, the value of relative cost becomes smaller as the ratio of

σ2
s/σ

2
e is large or the ratio of S1/S0 is small. The findings suggest that the cost

efficiency favors crossover trials, especially when the designs have large recruit-

ing cost (small S1/S0) and large σ2
s/σ

2
e . In general, the cost saving increases

as the period of an optimal design extends. This is because the optimal design

efficiency can be improved with more periods, under the assumption of other

conditions, such as the total number of subjects, N , the values of S1, S0, and

ratio of S1/S0 keep the same. Note that design I and II have almost the same

values if we round the numbers at the second decimal points; however, Design

V have a comparable cost saving only when the the ratio of S1/S0 is less than

1, compared to Design II.

In summary, the multi-period crossover designs achieve great efficiency

and cost savings. With additional information on periods, the optimal designs

increase both efficiency and cost savings. As Carriere and Huang (2000)[5]
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Design I Design II Design III Design IV Design V
(t2p3s2) (t2p3s4) (t2p4s4) (t2p6s4) (t2p6s8)

S1/S0 σ2
s/σ

2
e = 1

4 , 1, 4

1/10 0.083 0.054 0.022 0.084 0.056 0.024 0.070 0.044 0.017 0.050 0.031 0.013 0.077 0.049 0.020
1/4 0.098 0.064 0.026 0.099 0.067 0.029 0.088 0.055 0.022 0.069 0.043 0.017 0.107 0.067 0.027
1 0.140 0.091 0.037 0.141 0.095 0.041 0.137 0.086 0.034 0.121 0.076 0.030 0.186 0.117 0.047
4 0.182 0.118 0.048 0.184 0.124 0.053 0.186 0.117 0.047 0.173 0.108 0.043 0.266 0.167 0.067
10 0.197 0.128 0.052 0.199 0.134 0.058 0.204 0.128 0.051 0.191 0.120 0.048 0.295 0.186 0.074

Table 3.3: Relative cost efficiency of competing designs

noted, large recruiting cost ( small S1/S0) and large σ2
s/σ

2
e are important

factors to determine the cost effectiveness of crossover trials.
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Chapter 4

Response-Adaptive Repeated

Measurement Design

This chapter briefly introduces the key characteristics of the response-adaptive

designs. Then a randomized treatment allocation scheme to construct a multiple-

objective response-adaptive repeated measurement design (RARMD) is re-

viewed in the second section, followed by application of such an allocation

scheme for three, four, and six-period two-treatment repeated measurement

designs.

4.1 Background

In general, the designs we discussed in previous chapters, such as RCTs,

crossover designs or N-of-1 trials use some similar randomization strategies.

For example, in a traditional RCT testing two treatments, patients are equally

assigned to the two treatment groups with simple (50-50) randomization. Such

an equal allocation scheme is made and fixed in advance of the initiation of
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the trial and randomization tends to balance the known or unknown factors

among treatment groups and thus guarantees the validity of a statistical infer-

ence from the study. For this reason, RCTs are generally considered the most

reliable methods to compare treatment effects. However, such clinical trials

may cause concern about ethical problems when being applied in practice.

That is because half patients have to be exposed to the inferior or unbeneficial

treatment group.

In contrast, a response-adaptive design may overcome such a dilemma with

a flexible allocation scheme. A response-adaptive design can be defined as

a design that makes use of the accumulating information for assigning the

best treatment to the most patients in a clinical trials. During the trial, the

treatment allocation scheme is adjusted in order to minimize the number of

patients assigned to inferior treatment in the trial while providing meaningful

statistical inferences.

The adaptive allocation procedures modify the probability of assigning a

new patient to a particular treatment based on previously observed responses

of patients and allow more patients to be allocated to the potentially benefi-

cial treatment. In addition, these modifications may potentially help reduce

the sample sizes required in the trial. Thus the RARMD can offer signifi-

cant ethical advantages and cost saving over traditional RCTs because of the

advantages of unequal treatment allocation.

In a typical RARMD, one adjusts the treatment allocation to fulfill a single

objective such as maximizing the number of patients assigned to the better

treatment group (Zelen,1969; Wei and Durham,1978), reducing the sample size

in a trial (Armitage,1975), or increasing estimation precision of a treatment

effect (Kushner,2003). Recently, Liang and Carriere (2009)[15] developed a
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multiple-objective RARMD, not only potentially preventing exposing patients

to inferior treatment, but also enhancing precision of estimates of parame-

ters. In the following section, we will review the adaptive treatment allocation

scheme to construct a multiple-objective RARMD.

4.2 Review of Adaptive Treatment Allocation

Scheme

Consider a multiple-objective RARMD with two treatments, in which we desire

a randomized allocation scheme to simultaneously serve a dual objective as

precision estimation and minimizing patients to unfavorable treatment. We

can use a function of the information matrix and an evaluation function to

measure the two goals, respectively.

Liang and Carriere (2009)[15] defined a selection criterion as follows,

Φ = λ
∆(̂Ikj+1)

∆(̂Ik
A

j+1)
+ (1− λ)

fj,k
fj,kB

(4.1)

where Îkj+1 represents the estimated information matrix, given the information

of the first j patients’ responses, and the assumption that the (j+1)th patient

will be given treatment sequence k. ∆(.) can be any optimality criterion,

for instance, the determinant, the trace or the maximum eigenvalue of the

information matrix, Îkj+1. And fj,k is an evaluation function for treatment

sequence k based on the responses of the first j patients. kA denotes the

treatment sequence that maximizes ∆(.), and kB denotes the the treatment

sequence that maximizes fj,k. k
A and kB are not necessarily the same.
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In Equation (4.1), the first part
∆(̂Ikj+1)

∆(̂Ik
A

j+1)
works to find a treatment sequence

which could maximize the information matrix, while the second part
fj,k
f
j,kB

intends to detect a treatment sequence which perform best given the first j

patients’ data. Thus a lagrange coefficient λ, a constant between zero and one,

can weight and balance the two objectives. For example, if λ takes one, the

resulting treatment sequence will achieve most precise estimation but sacrifice

the ethical advantages. If λ is set to zero, we may only concern the efficacy of

the treatment sequences (Liang and Carriere, 2009)[15]. Therefore, By giving

a value of λ prior to the trial, we can choose a treatment sequence, satisfying

the two objectives to a degree and maximizing the value of Φ, as the best

treatment sequence for the incoming (j + 1)th patient.

4.3 Application of Adaptive Allocation Scheme

This part examines the adaptive treatment allocation scheme when it is ap-

plied to the two-treatment repeated measurement designs with dichotomous

or continuous outcomes.

Recall the model (3.3) for a repeated measurement design,

yjk = Xkβ + 1pζj + εjk

A self and mixed carryover effects model based on the above model for a

multiple-objective RARMD can be written as

yijk = µ+ πi + τdk(i,j) + Iijkγdk(i−1,j) + (1− Iijk)δdk(i−1,j) + ζjk + εijk (4.2)
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where yijk is the response variable for observation on subject j in ith period

from sequence group k, dk(i, j) is the treatment given to subject j in period i

for sequence k, and Iijk is a 0,1 dummy variable where it gives a value of 1 if

dk(i, j) = dk(i− 1, j) or a 0, otherwise.

In the fixed effects set β=(µ, π, τ, γ, δ)′, µ is the overall mean, π is the

period effect, and τ is the direct treatment effect, for its coefficient is 1 if given

treatment A, or -1 if B. γ is defined as the self carryover effect with coefficient,

taking 1 if treatment A precedes treatment A and -1 if treatment B precedes

treatment B; and δ is the mixed carryover effect with coefficient, equaling 1 if

treatment A precedes treatment B and -1 if treatment B precedes treatment

A. Both γ and δ have coefficients as zero in the first period.

The random subject effect ζjk and random error εijk are still assumed to

be independently and multi-normally distributed, with N ∼ (0, σ2
s) and N ∼

(0, σ2
e), respectively.

4.3.1 Adaptive Allocation Scheme for Repeated Mea-

surement Design with Dichotomous Responses

If the response in a multiple-objective RARMD is dichotomous, for exam-

ple, success or failure, patients’ responses can be assumed to be indepen-

dent and identically distributed with the Bernoulli distribution. Suppose

δti = (δti1, ..., δtiJ) is the treatment t given in period i, where t= A or B,

such that δtij=1 if the jth patient receiving treatment t in period i and δtij=0

otherwise, and ytij is the corresponding response. Then mti = ΣJ
j=1δtij denotes

the number of patients receiving treatment t in period i, while Sti = ΣJ
j=1ytijδtij

represents the number of success in period i for treatment t.
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After j patients have been treated in the trial, the likelihood function is

Lj = ΠtΠ
p
i=1ΠJ

j=1[ν
ytij
ti (1− νti)1−ytij ]δtij

= ΠtΠ
p
i=1[νSti

ti (1− νti)mti−Sti ] (4.3)

where νti = (νA1, νA2, ..., νAp, νB1, ..., νBp)
′ is the probability of success on pe-

riod i for treatment A or B.

For example, in a trial with two periods, Equation (4.3) becomes

Lj ∝ νSA1
A1 (1− νA1)mA1−SA1 × νSA2

A2 (1− νA2)mA2−SA2

×νSB1
B1 (1− νB1)mB1−SB1 × νSB2

B2 (1− νB2)mB2−SB2

where νA1 is the success probability of treatment A in the first period, SA1

is the number of patients receiving treatment A with good results, mA1 is

the total number of patients receiving treatment A, therefore the first term in

above equation represents the likelihood of success for treatment A in the first

period, the second term then represents the likelihood of success for treatment

A in the second period, and so on.

The log-likelihood function follows

log(Lj) =
∑
t

p∑
i=1

[Stilogνti + (mti − Sti)log(1− νti)]

Equivalently, if we set l=1,2,...,2p, then Sl=SA1, ..., SAp, if l=1,..,p, and Sl=SB1, ..., SBp,

if l=p+ 1,...,2p. The above equation can be written as below,

log(Lj) =

2p∑
l=1

[Sllogνl + (ml − Sl)log(1− νl)]
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where Sl denotes the lth element of S, S = (SA1, ..., SAp, SB,P+1, ..., SB,2p)
′, the

set of success number with treatment A and B in each period. For instance,

SB,p+1 means the number of success for treatment B in period 1. νl and ml are

the corresponding success probability and number of patients, respectively, i.e.

ν = (νA1, ..., νAp, νB,P+1, ..., νB,2p)
′ and m = (mA1, ...,mAp,mB,P+1, ...,mB,2p)

′.

Then the expected information matrix up to the jth patient, is a l× l diagonal

matrix,

Ij = Diag[E(
Sl
ν2
l

+
ml − Sl
(1− νl)2

)]

Under the assumption that (j+ 1)th patient will be given treatment sequence

k, the estimated information matrix is then

Ij+1 = Diag[E(
S ′l
ν2
l

+
m′l − S ′l
(1− νl)2

)]

as shown in Carriere and Liang (2010)[6], where S ′l=Sl+Diag(ν×dk), ν=(ν1, ...ν2p),

and dk is an indicator variable set of ν for the kth treatment sequence. As an

example, d=(1,0,1,0,1,0) corresponds to the sequence ABA in a three-period

RARMD. For a dichotomous response case, an evaluation function fj,k can be

defined as the average number of success for treatment sequence k,

fj,k =
dk × S
nk

where nk=dk×m, the number of patients in sequence k, and m=(m1, ...,m2p)
′,

the vector of the number of patients in each period for treatment A and B.
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4.3.2 Adaptive Allocation Scheme for Repeated Mea-

surement Design with Continuous Responses

If a multiple-objective RARMD based on Model (4.2), has continuous re-

sponses, recall that the covariance-variance structure of the yjk, Σ, is given

in Equation (3.2),

cov(yjk) = Σ = σ2
eIp + σ2

s1p1
′
p

For example, in a six-period case, then cov(yjk) = σ2
eI6+σ2

s161
′
6. Suppose there

are four different sequence groups available in the trial, that is, k={ABAABA,

ABBBAA, BABBAB, BAAABB }. The design matrix Xk for β=(µ, π, τ, γ, δ)′,

given the treatment sequence k, can be defined as follows,

XABAABA =



1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 −1 0 1

1 0 1 0 0 0 1 0 −1

1 0 0 1 0 0 1 1 0

1 0 0 0 1 0 −1 0 1

1 0 0 0 0 1 1 0 −1



XABBBAA =



1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 −1 0 1

1 0 1 0 0 0 −1 −1 0

1 0 0 1 0 0 −1 −1 0

1 0 0 0 1 0 1 0 −1

1 0 0 0 0 1 1 1 0
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XBABBAB =



1 0 0 0 0 0 −1 0 0

1 1 0 0 0 0 1 0 −1

1 0 1 0 0 0 −1 0 1

1 0 0 1 0 0 −1 −1 0

1 0 0 0 1 0 1 0 −1

1 0 0 0 0 1 −1 0 1



XBAAABB =



1 0 0 0 0 0 −1 0 0

1 1 0 0 0 0 1 0 −1

1 0 1 0 0 0 1 1 0

1 0 0 1 0 0 1 1 0

1 0 0 0 1 0 −1 0 1

1 0 0 0 0 1 −1 −1 0


Therefore, the estimated information matrix based on the responses of the first

j patients, Ij, is

Îj =
∑

nkX
′

kΣ̂
−1Xk (4.4)

or in our six-period example, it becomes (
∑
nkX

′

k[σ̂
2
eI6 + σ̂2

s161
′
6]−1Xk), where

nk is the number of patients assigned to treatment sequence k, k=1,2,...,s.

With the assumption that the (j + 1)th patient taking the treatment se-

quence k, the above estimated information matrix will become,

Îkj+1 = Îj +X
′

kΣ̂
−1Xk (4.5)

For continuous outcomes, we can assume the sequence group offering the
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best treatment will be the one with the largest values of an evaluation function

fj,k. To choose the treatment sequence for the (j + 1)th patient, we maximize

the selection criterion Φ, Equation (4.1),

Φ = λ
∆(̂Ikj+1)

∆(̂Ik
A

j+1)
+ (1− λ)

fj,k
fj,kB

Eventually, the total n patients could be assigned by repeating the same

procedure.

4.4 Simulation Results

We use a simulation study to investigate the adaptive treatment allocation

scheme in various RARMDs with dichotomous and continuous responses, re-

spectively. The number of simulations to be performed in each case is L=1000

with different seeds. Some parameter setting refers to Carriere and Liang

(2010)[6], where it is appropriate. In each simulation, suppose that λ=1,0.9,0.7,0.3,

and 0, and the total number of patients in a trial, N=12(10), 40, 80, and 100,

respectively.

4.4.1 Three-Period Repeated Measurement Design

In a two-treatment three-period RMD, eight different treatment sequences

are available. We consider two parameter sets in the case of dichotomous out-

comes: 1) treatment A and B have equal performance in all treatment periods,

i.e. νl= 0.5, l=1,...,6; and 2) there is some treatment difference between the

two treatments. Let ν1=0.5, ν2=0.6, ν3=0.7, ν4=0.4, ν5=0.3, ν6=0.2. Note

that ν1, ν2 and ν3 are the success probabilities of treatment A on period 1, 2
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and 3, respectively; while ν4, ν5 and ν6 are the success probabilities for treat-

ment B on period 1, 2 and 3, respectively. Table 4.1 and 4.2 give the estimated

number of patients allocated to the treatment sequences for each parameter

set. For a simulation with continuous responses, we assume that σ2
s=2, σ2

e=1,

and µ=100. Two sets of parameters are: 1) π=τ=γ=δ=0 (no treatment dif-

ference); and 2) π=τ=γ=2.5, δ=-2.5 (unequal treatment effects). Table 4.3

and 4.4 show the simulation results for the two situations, respectively.

4.4.2 Four-Period Repeated Measurement Design

For p=4, a total of 24 (16) treatment sequences are available to compose

a design. To simplify the computation, we arbitrarily choose six sequences

(ABAA, ABBA, AABA/ BABB, BAAB, BBAB) in simulation because both

the design ABAA, ABBA and their duals, and the design ABBA, AABA and

their duals are optimal under the self and mixed carryover effects model, as

Kunert and Stufken (2008) [10] noted.

As in the two-treatment three-period simulations, we first study simula-

tions with dichotomous outcomes, in which two parameter sets are defined:

1) νl= 0.5, l=1,...,8; and 2) ν1=0.5, ν2=0.6, ν3=0.7, ν4=0.8, ν5=0.5, ν6=0.4,

ν7=0.3, and ν8=0.2, where ν1, . . . ν4 are the success probabilities of treatment

A on period 1, 2, 3 and 4, respectively; while ν5, . . . ν8 are the success probabil-

ities for treatment B on period 1, 2, 3, and 4, respectively. Then in simulations

with continuous responses, suppose that σ2
s=2, σ2

e=1, and µ=100. We also set

parameters as follows: 1) π=τ=γ=δ=0; and 2) π=τ=γ=2.5, δ=-2.5.

Table 4.5, 4.6, 4.7, and 4.8 present the four simulation results, respectively.
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4.4.3 Six-Period Repeated Measurement Design

For p=6, we consider a case made up of four different treatment sequences.

The design consisting of the sequences ABAABA, ABBBAA and their duals is

optimal under the self and mixed carryover effects model, according to Kunert

and Stufken (2008) [10]. Two parameter sets are similarly defined in both cases

of dichotomous and continuous responses: one is in the absence of treatment

effects, and the other one is for unequal treatment effects. Table 4.13 and 4.14

summarized the detail of parameter sets for dichotomous, continuous outcomes

in various designs. Table 4.9, 4.10, 4.11, and 4.12 correspond to the results

from the simulations for six-period designs.

4.4.4 Conclusion

Continuous Responses

Recall that when λ = 0, the multiple-objective RARMD only concerns itself

with the objective of assigning more patients to a better treatment sequences;

and when λ = 1, the design only works for achieving a highly precise estimation

rather than taking ethical advantages. For 0 < λ < 1, the RARMD provides

a balanced method of performing the two tasks. Therefore, in a design with

presence of treatment effect difference and predefined 0 < λ < 1, a treatment

sequence with better performance should have more patients assigned, and the

differences between the expected numbers of patients of the available sequences

achieve most pronounced when λ taking 1.

Table 4.14 gives an example of the expected mean vector E(yjk) for each

treatment sequence in various designs when treatment differences are present.

For example, in the two-treatment three-period design with a particular pa-
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rameter setting, µ = 100, π2 = π3 = τ = γ = 2.5 and δ = −2.5, treatment

A has a better effect than treatment B because of τ = (τA − τB)/2 = 2.5;

π2 = π3 = 2.5 indicates that both the second- and third-period effects are

2.5 units higher than the first-period effect; γ = (γA − γB)/2 = 2.5 indi-

cates that self carryover effect of AA increases an overall mean effect by 2.5

units, while the effect of BB reduces the overall mean effect by 2.5 units;

similarly, δ = (δA − δB)/2 = −2.5 indicates that the mixed carryover effect

of AB decreases an overall mean effect by 2.5 units, while the effect of BA

adds an extra 2.5 units to the overall mean effect. If we also assume that

a response with higher value represents a better treatment result and that

all outcomes are nonnegative, the evaluation function, fj,k, can be defined as

a monotonic function of the average of the summation of all responses from

a specified treatment sequence. Incorporating the given parameter informa-

tion, we have the expected mean vectors in descending order: AAA, BAA,

AAB/ABA/BBB, and ABB/BAB/BAA. Therefore, we expect AAA is the

best treatment sequence with most patients assigned into, followed by BAA,

then AAB/ABA/BBB, ABB/BAB/BBA last. AAB, ABA, or BBB have sim-

ilar treatment performance, then their expected numbers of patients allocated

would be approximately equal. So do ABB, BAB or BBA. The simulations

with four- and six-period RARMDs take similar approaches to estimating the

expected mean vectors E(yjk). According to the values of E(yjk) for these

sequence groups, shown in Table 4.14, we expect that ABAA and AABA have

equal best performances, followed by BAAB, ABBA, and both BABB and

BBAB last for p=4; while ABAABA is the best, followed by BAAABB and

ABBBAA, and BABBAB last for p=6. The results from Table 4.2, 4.6, and

4.10 confirm such conclusions.
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When treatment effects are absent, i.e. π=τ=γ=δ=0, we expect the de-

sign will assign an approximately equal number of patients to each treatment

sequence if λ = 0; and the results from Table 4.3, 4.7 and 4.11 are as expected.

Meanwhile, if λ = 1, the design is aimed to maximize the information matrix to

improve the estimation precision; and we observe that the sequences which are

components of a optimal design under the traditional model with first-order

carryover effects stand out from the rest, regardless of whether treatment dif-

ference exists or not. Such sequences are ABB/BAA for p=3, ABBA/BAAB

for p=4, and ABBBAA/BAAABB for p=6.

Dichotomous Responses

Table 4.1, 4.2, 4.5, 4.6, 4.9, 4.10 present the simulation results in the case of

dichotomous responses. The expected outcomes for each treatment sequence

in various period designs are summarized in Table 4.13. We use the product

of all success probabilities from a given treatment sequence to determine the

evaluation function; also, we assume some treatment sequences with larger

values of the product will have better treatment performance.

For example, in the designs with p=3, shown in Table 4.13, the val-

ues of expected outcomes in descending order is AAA, BAA, ABA, BBA,

AAB, BAB, ABB and BBB; for p=4, the descending order is ABAA, AABA,

BAAB/ABBA, BBAB, BABB; for p=6, it is ABAABA, BAAABB, ABBBAA,

and BABBAB. We expect the estimated numbers of patients in the available

treatment sequences in each design therefore would follow such order when

the design has unequal treatment effects and λ taking 1 or 0 < λ < 1. The

simulation results from Table 4.2, 4.6, 4.10 confirmed such conclusion.

The adaptive designs with dichotomous responses have assignment results
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similar to that of continuous responses when λ = 0: 1) Without treatment

difference each treatment sequence will receive approximately equal proportion

of patients; and 2) With some treatment difference present, the treatment

sequence performing best will have most patients allocated. However, when

λ = 1, the result is different from that for continuous response case: the

expected numbers of patients in each sequence are also approximately equal,

rather than some sequences standing out; it suggests that these sequences

when maximizing the information matrix take the same weights in the case

of dichotomous responses. We are unable to make clear explanation for such

difference, but suggest that it is partly because the optimal designs we used

for dichotomous response here are based on reviewed literature for continuous

responses.
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N λ NAAA NAAB NABA NABB NBBB NBBA NBAB NBAA

12 1 1.328 1.404 1.494 1.761 1.317 1.416 1.508 1.772
12 0.9 1.476 1.519 1.502 1.499 1.491 1.51 1.484 1.519
12 0.7 1.515 1.493 1.491 1.535 1.454 1.517 1.491 1.504
12 0.3 1.51 1.442 1.471 1.522 1.543 1.48 1.516 1.516
12 0 1.406 1.425 1.464 1.441 1.529 1.559 1.578 1.598

40 1 3.847 4.191 5.131 6.831 3.85 4.188 5.128 6.834
40 0.9 4.997 4.969 4.82 5.267 4.752 5.125 4.978 5.092
40 0.7 4.795 4.871 5.273 4.991 5.012 5.042 5.107 4.909
40 0.3 4.963 5.015 5.035 4.64 5.068 5.134 5.278 4.867
40 0 4.954 5.113 5.207 4.945 4.983 5.006 4.824 4.968

80 1 7.633 8.671 10.059 13.637 7.619 8.685 10.073 13.623
80 0.9 10.633 9.671 10.086 9.589 10.487 9.638 10.384 9.512
80 0.7 9.769 10.769 10.348 10.27 8.897 9.482 10.199 10.266
80 0.3 10.128 11.042 9.996 9.953 9.753 9.756 9.464 9.908
80 0 10.107 9.658 9.692 9.506 10.16 9.709 10.813 10.355

100 1 9.636 10.927 12.847 16.59 9.644 10.919 12.839 16.598
100 0.9 11.918 12.614 12.691 12.494 12.224 12.54 12.662 12.857
100 0.7 13.899 12.359 12.27 11.769 12.849 12.89 12.114 11.85
100 0.3 12.042 12.682 12.54 13.421 11.683 12.605 11.67 13.357
100 0 12.603 13.878 10.272 11.696 11.577 12.871 13.316 13.787

Table 4.1: Estimated numbers of subjects for each treatment sequence in the
case of dichotomous responses:p=3, no treatment difference
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N λ NAAA NAAB NABA NABB NBBB NBBA NBAB NBAA

12 1 1.332 1.455 1.449 1.73 1.522 1.391 1.595 1.526
12 0.9 1.478 1.566 1.482 1.497 1.524 1.464 1.539 1.45
12 0.7 1.585 1.511 1.479 1.451 1.416 1.485 1.518 1.555
12 0.3 1.854 1.478 1.587 1.272 1.236 1.476 1.344 1.753
12 0 1.945 1.316 1.533 1.195 1.146 1.439 1.326 2.1

40 1 4.621 4.484 4.876 6.019 4.619 4.487 4.923 5.971
40 0.9 6.862 4.56 5.496 3.778 3.493 4.997 4.617 6.197
40 0.7 9.458 4.11 5.088 2.705 2.42 4.271 3.409 8.539
40 0.3 11.882 3.502 5.577 1.802 1.705 4.023 2.889 8.62
40 0 12.22 3.008 5.718 1.63 1.443 3.906 2.288 9.787

80 1 9.104 8.879 9.973 12.044 9.091 8.892 9.986 12.031
80 0.9 18.208 8.071 10.102 6.273 5.636 9.605 6.816 15.289
80 0.7 25.797 5.835 10.623 3.094 2.822 7.624 4.512 19.693
80 0.3 28.857 4.905 11.551 2.117 1.709 7.614 3.745 19.502
80 0 29.109 4.798 9.74 1.745 1.49 6.757 3.473 22.888

100 1 11.501 11.27 12.339 14.89 11.512 11.259 12.328 14.901
100 0.9 24.505 9.317 12.792 7.07 6.604 11.248 8.084 20.38
100 0.7 33.667 6.512 12.517 3.436 2.761 9.203 4.488 27.416
100 0.3 35.999 6.161 12.643 2.158 1.844 10.017 4.201 26.977
100 0 38.363 5.334 11.807 1.818 1.5 8.305 3.381 29.492

Table 4.2: Estimated numbers of subjects for each treatment sequence in the
case of dichotomous responses:p=3, unequal treatment effects
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N λ NAAA NAAB NABA NABB NBBB NBBA NBAB NBAA

10 1 1 1.007 1.472 1.521 1 1.007 1.487 1.506
10 0.9 1.045 1.165 1.405 1.385 1.032 1.18 1.397 1.391
10 0.7 1.216 1.269 1.27 1.287 1.194 1.204 1.284 1.276
10 0.3 1.221 1.245 1.264 1.258 1.255 1.233 1.251 1.273
10 0 1.226 1.258 1.271 1.264 1.246 1.262 1.22 1.253

40 1 1.005 5.995 5.973 7.027 1.007 5.993 5.974 7.026
40 0.9 4.249 4.877 5.383 5.689 4.222 4.931 5.334 5.315
40 0.7 4.783 5.01 5.047 4.955 4.73 5.241 5.053 5.181
40 0.3 4.9 4.744 5.119 5.009 5.108 4.96 5.07 5.09
40 0 5.099 4.8 4.868 4.938 4.964 5.342 4.841 5.148

80 1 1.008 12.997 11.858 14.137 1.01 12.996 11.854 14.14
80 0.9 9.008 10.523 10.392 10.049 9.634 9.779 10.319 10.296
80 0.7 9.608 10.794 9.969 10.062 9.671 10.257 9.413 10.226
80 0.3 10.13 10.391 10.156 9.819 9.934 9.889 10.048 9.633
80 0 10.201 9.859 10.168 10.047 10.273 9.839 9.86 9.753

100 1 1.006 16.438 14.619 17.937 1.005 16.441 14.631 17.923
100 0.9 11.454 12.594 12.418 12.759 11.678 12.792 13.278 13.027
100 0.7 12.523 12.857 12.454 12.197 11.744 11.921 12.979 13.325
100 0.3 12.019 13.053 12.231 12.114 12.54 12.578 13.03 12.435
100 0 11.984 12.743 12.626 12.546 12.04 13.228 12.779 12.054

Table 4.3: Estimated numbers of subjects for each treatment sequence in the
case of continuous responses:p=3, no treatment difference
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N λ NAAA NAAB NABA NABB NBBB NBBA NBAB NBAA

10 1 1 1.003 1.482 1.515 1 1.003 1.483 1.514
10 0.9 1.167 1.067 1.636 1.142 1.012 1.006 1.111 1.859
10 0.7 1.945 1.106 1.152 1.028 1.09 1.019 1.026 1.634
10 0.3 2.175 1.097 1.108 1.011 1.089 1.012 1.015 1.493
10 0 2.211 1.115 1.094 1.018 1.09 1.01 1.013 1.449

40 1 1.016 5.984 5.964 7.036 1.017 5.983 5.963 7.037
40 0.9 10.293 3.753 5.618 2.727 4.184 2.163 2.687 8.575
40 0.7 13.685 3.817 4.403 2.037 4.022 2.008 2.014 8.014
40 0.3 14.154 4.003 3.992 1.85 3.974 1.853 1.85 8.324
40 0 14.917 3.893 3.757 1.845 3.76 1.802 1.862 8.164

80 1 1.012 12.994 11.854 14.14 1.009 12.997 11.847 14.147
80 0.9 25.222 7.334 9.704 4.191 8.137 3.788 4.025 17.599
80 0.7 29.321 7.672 8.103 3.449 7.824 3.386 3.34 16.905
80 0.3 30.168 7.561 7.936 3.201 7.692 3.288 3.439 16.715
80 0 30.391 7.904 7.507 3.394 7.828 3.035 3.265 16.676

100 1 1.009 16.415 14.627 17.949 1.008 16.415 14.631 17.946
100 0.9 32.989 9.271 11.101 4.997 10.293 4.433 4.993 21.923
100 0.7 37.076 9.706 9.933 3.995 9.667 3.933 4.19 21.5
100 0.3 37.089 9.549 9.944 3.965 9.963 3.958 4.174 21.358
100 0 38.49 9.421 9.333 3.898 9.544 3.943 4.08 21.291

Table 4.4: Estimated numbers of subjects for each treatment sequence in the
case of continuous responses:p=3, unequal treatment effects
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N λ NABAA NABBA NAABA NBABB NBAAB NBBAB

12 1 1.958 1.822 2.208 1.923 1.871 2.218
12 0.9 2.063 1.909 2.012 2.103 1.903 2.01
12 0.7 2.009 2.036 1.964 2.037 1.96 1.994
12 0.3 1.975 1.955 2.016 1.992 2.041 2.021
12 0 1.943 1.947 1.937 1.983 2.117 2.073

40 1 6.007 6.005 7.988 6.007 6.005 7.988
40 0.9 6.547 6.67 6.764 6.541 6.645 6.833
40 0.7 6.364 6.939 6.583 6.705 6.83 6.579
40 0.3 6.538 6.828 6.796 6.622 6.668 6.548
40 0 5.985 6.409 6.648 6.752 7.161 7.045

80 1 11.979 12.028 15.993 11.979 12.028 15.993
80 0.9 13.373 12.965 13.666 13.245 13.194 13.557
80 0.7 14.038 13.492 12.317 13.889 13.671 12.593
80 0.3 14.269 12.593 13.621 13.925 12.689 12.903
80 0 12.622 13.389 13.349 12.412 13.57 14.658

100 1 14.926 15.037 20.037 14.926 15.037 20.037
100 0.9 16.105 16.532 17.379 15.824 16.646 17.514
100 0.7 15.978 16.638 17.364 16.094 16.712 17.214
100 0.3 15.871 18.063 14.401 17.891 16.865 16.909
100 0 15.525 16.978 16.046 16.89 16.957 17.604

Table 4.5: Estimated numbers of subjects for each treatment sequence in the
case of dichotomous responses:p=4, no treatment difference
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N λ NABAA NABBA NAABA NBABB NBAAB NBBAB

12 1 2.114 1.764 2.118 2.056 1.791 2.157
12 0.9 2.183 1.842 2.08 2.045 1.881 1.969
12 0.7 2.211 1.839 2.087 1.9 1.992 1.971
12 0.3 2.651 1.902 2.211 1.489 2.021 1.726
12 0 2.764 1.886 2.252 1.377 2.059 1.662

40 1 7.16 5.549 7.335 7.11 5.563 7.283
40 0.9 8.308 5.536 7.589 5.581 7.005 5.981
40 0.7 11.036 5.074 8.015 4.13 6.643 5.102
40 0.3 14.298 5.164 9 2.578 5.652 3.308
40 0 14.496 5.461 9.041 2.125 5.745 3.132

80 1 13.832 11.36 14.808 13.832 11.36 14.808
80 0.9 20.293 10.103 15.346 9.781 14.466 10.011
80 0.7 29.602 9.218 16.155 5.605 12.401 7.019
80 0.3 33.789 9.462 18.839 3.039 10.187 4.684
80 0 35.203 8.56 20.139 2.813 8.499 4.786

100 1 17.278 14.203 18.521 17.275 14.204 18.519
100 0.9 27.096 11.576 20.133 11.251 17.635 12.309
100 0.7 38.128 10.083 22.809 5.831 14.832 8.317
100 0.3 46.182 10.395 24.85 2.707 11.189 4.677
100 0 46.044 8.827 26.297 2.376 12.263 4.193

Table 4.6: Estimated numbers of subjects for each treatment sequence in the
case of dichotomous responses:p=4, unequal treatment effects
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N λ NABAA NABBA NAABA NBABB NBAAB NBBAB

10 1 1.208 2.383 1.409 1.208 2.383 1.409
10 0.9 1.627 1.731 1.634 1.659 1.706 1.643
10 0.7 1.707 1.624 1.68 1.67 1.689 1.63
10 0.3 1.675 1.648 1.618 1.732 1.643 1.684
10 0 1.618 1.675 1.656 1.716 1.652 1.683

40 1 3.668 10 6.332 3.668 10 6.332
40 0.9 6.727 6.667 6.618 6.518 6.999 6.471
40 0.7 6.697 6.298 6.694 6.823 6.739 6.749
40 0.3 6.777 6.51 6.674 6.852 6.582 6.605
40 0 7.111 6.612 6.465 6.861 6.439 6.512

80 1 6.966 20 13.034 6.966 20 13.034
80 0.9 13.136 13.183 13.669 12.187 14.251 13.574
80 0.7 13.897 13.082 13.55 12.129 13.666 13.676
80 0.3 13.408 13.587 13.663 12.383 13.694 13.265
80 0 12.259 13.09 13.565 13.579 14.261 13.246

100 1 8.617 25 16.383 8.617 25 16.383
100 0.9 16.348 17.564 16.411 16.578 16.799 16.3
100 0.7 16.434 17.272 17.138 16.173 16.31 16.673
100 0.3 16.24 16.441 17.315 16.822 17.439 15.743
100 0 16.83 16.032 16.783 16.455 16.628 17.272

Table 4.7: Estimated numbers of subjects for each treatment sequence in the
case of continuous responses:p=4, no treatment difference
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N λ NABAA NABBA NAABA NBABB NBAAB NBBAB

10 1 1.232 2.354 1.414 1.232 2.354 1.414
10 0.9 2.132 1.207 2.105 1.294 1.995 1.267
10 0.7 2.386 1.19 2.364 1.123 1.807 1.13
10 0.3 2.49 1.226 2.47 1.093 1.615 1.106
10 0 2.463 1.221 2.552 1.071 1.607 1.086

40 1 3.668 10 6.332 3.668 10 6.332
40 0.9 10.888 3.114 11.001 3.229 8.558 3.21
40 0.7 11.575 3.588 12.048 2.666 7.51 2.613
40 0.3 12.085 3.459 12.353 2.406 7.225 2.472
40 0 12.607 3.533 12.457 2.394 6.688 2.321

80 1 6.952 20 13.048 6.952 20 13.048
80 0.9 23.051 6.519 23.273 5.063 16.535 5.559
80 0.7 24.438 6.215 25.581 4.574 14.728 4.464
80 0.3 24.197 6.842 25.325 4.662 14.662 4.312
80 0 26.176 6.401 24.852 4.303 13.852 4.416

100 1 8.633 25 16.367 8.633 25 16.367
100 0.9 29.387 7.981 29.875 6.491 20.081 6.185
100 0.7 30.454 8.314 31.945 5.241 18.394 5.652
100 0.3 31.585 8.543 31.792 5.535 16.802 5.743
100 0 32.607 8.224 31.487 5.226 17.011 5.445

Table 4.8: Estimated numbers of subjects for each treatment sequence in the
case of continuous responses:p=4, unequal treatment effects
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N λ NABAABA NABBBAA NBABBAB NBAAABB

12 1 2.948 3.073 2.924 3.055
12 0.9 3.026 2.961 3.032 2.981
12 0.7 3.037 2.942 3.021 3
12 0.3 2.897 3.069 2.947 3.087
12 0 2.928 3.024 2.991 3.057

40 1 9.603 10.397 9.603 10.397
40 0.9 9.921 10.106 9.925 10.048
40 0.7 10.221 9.831 10.14 9.808
40 0.3 10.2 9.539 10.712 9.549
40 0 9.988 10.16 10.067 9.785

80 1 19.344 20.656 19.344 20.656
80 0.9 20.322 19.733 20.284 19.661
80 0.7 19.829 20.348 20.078 19.745
80 0.3 18.978 19.703 20.72 20.599
80 0 19.459 20.531 18.966 21.044

100 1 24.145 25.855 24.145 25.855
100 0.9 25.343 24.578 25.411 24.668
100 0.7 24.545 25.698 24.777 24.98
100 0.3 25.126 25.7 24.661 24.513
100 0 24.472 24.493 23.918 27.117

Table 4.9: Estimated numbers of subjects for each treatment sequence in the
case of dichotomous responses:p=6, no treatment difference
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N λ NABAABA NABBBAA NBABBAB NBAAABB

12 1 2.902 3.201 3.025 2.872
12 0.9 2.983 3.212 2.97 2.835
12 0.7 2.924 3.179 3.079 2.818
12 0.3 2.993 3.553 2.964 2.49
12 0 3.017 4 2.868 2.115

40 1 9.814 10.171 9.835 10.18
40 0.9 9.951 10.519 9.88 9.65
40 0.7 10.359 11.462 10.018 8.161
40 0.3 9.551 16.137 8.575 5.737
40 0 9.325 16.024 9.446 5.205

80 1 19.611 20.389 19.611 20.389
80 0.9 19.671 22.223 19.162 18.944
80 0.7 20.201 26.47 18.406 14.923
80 0.3 18.141 39.469 15.137 7.253
80 0 21.764 35.313 14.757 8.166

100 1 24.457 25.543 24.457 25.543
100 0.9 24.853 28.212 23.967 22.968
100 0.7 24.243 35.309 22.313 18.135
100 0.3 24.716 50.929 16.135 8.22
100 0 26.732 44.863 19.196 9.209

Table 4.10: Estimated numbers of subjects for each treatment sequence in the
case of dichotomous responses:p=6, unequal treatment effects
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N λ NABAABA NABBBAA NBABBAB NBAAABB

10 1 1 4 1 4
10 0.9 1.99 2.999 1.982 3.029
10 0.7 2.422 2.544 2.456 2.578
10 0.3 2.446 2.505 2.512 2.537
10 0 2.548 2.493 2.476 2.483

40 1 5 15 5 15
40 0.9 9.601 10.595 9.287 10.517
40 0.7 9.289 10.285 9.87 10.556
40 0.3 10.086 9.484 9.869 10.561
40 0 9.936 10.078 10.08 9.906

80 1 9 31 9 31
80 0.9 19.874 20.629 19.954 19.543
80 0.7 20.027 20.257 19.281 20.435
80 0.3 19.555 20.35 19.834 20.261
80 0 19.08 20.783 20.919 19.218

100 1 12 38 12 38
100 0.9 25.377 24.921 23.846 25.856
100 0.7 23.188 26.153 24.881 25.778
100 0.3 25.88 25.146 24.968 24.006
100 0 24.064 26.18 24.438 25.318

Table 4.11: Estimated numbers of subjects for each treatment sequence in the
case of continuous responses:p=6, no treatment difference
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N λ NABAABA NABBBAA NBABBAB NBAAABB

10 1 1 4 1 4
10 0.9 2.357 2.753 1.774 3.116
10 0.7 3.471 2.096 1.653 2.78
10 0.3 3.752 2 1.468 2.78
10 0 3.848 1.948 1.493 2.711

40 1 5 15 5 15
40 0.9 13.858 8.611 6.287 11.244
40 0.7 16.073 7.32 5.027 11.58
40 0.3 16.838 7.255 4.744 11.163
40 0 16.63 7.306 4.818 11.246

80 1 9 31 9 31
80 0.9 30.034 15.625 10.479 23.862
80 0.7 33.541 15.096 9.034 22.329
80 0.3 35.176 13.643 9.536 21.645
80 0 34.812 14.127 8.657 22.404

100 1 12 38 12 38
100 0.9 38.609 19.641 13.332 28.418
100 0.7 43.851 16.706 11.522 27.921
100 0.3 42.006 17.201 11.243 29.55
100 0 44.521 17.299 10.423 27.757

Table 4.12: Estimated numbers of subjects for each treatment sequence in the
case of continuous responses:p=6, unequal treatment effects
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Design Parameter Treatment sequence Expected responses

Two-treatment νA1 = 0.5,νB1 = 0.4 AAA (0.5, 0.6, 0.7)′

three-period νA2 = 0.6,νB2 = 0.3 AAB (0.5, 0.6, 0.2)′

νA3 = 0.7,νB1 = 0.2 ABA (0.5, 0.3, 0.7)′

ABB (0.5, 0.3, 0.2)′

BBB (0.4, 0.3, 0.2)′

BBA (0.4, 0.3, 0.7)′

BAB (0.4, 0.6, 0.2)′

BAA (0.4, 0.6, 0.7)′

Two-treatment νA1 = 0.5,νB1 = 0.5 ABAA (0.5, 0.4, 0.7, 0.8)′

four-period νA2 = 0.6,νB2 = 0.4 ABBA (0.5, 0.4, 0.3, 0.8)′

νA3 = 0.7,νB3 = 0.3 AABA (0.5, 0.6, 0.3, 0.8)′

νA4 = 0.8,νB4 = 0.2 BABB (0.5, 0.6, 0.3, 0.2)′

BAAB (0.5, 0.6, 0.7, 0.2)′

BBAB (0.5, 0.4, 0.7, 0.2)′

Two-treatment νA1 = 0.40,νB1 = 0.80 ABAABA (0.4, 0.75, 0.6, 0.65, 0.4, 0.8)′

six-period νA2 = 0.50,νB2 = 0.75 ABBBAA (0.4, 0.75, 0.65, 0.5, 0.75, 0.8)′

νA3 = 0.60,νB3 = 0.65 BABBAB (0.8, 0.5, 0.65, 0.5, 0.75, 0.3)′

νA4 = 0.65,νB4 = 0.50 BAAABB (0.8, 0.5, 0.6, 0.65, 0.4, 0.3)′

νA5 = 0.75,νB5 = 0.40
νA6 = 0.80,νB6 = 0.30

Table 4.13: Expected response for each treatment sequence in the case of
unequal treatment effects with dichotomous outcomes
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Design Parameter Treatment Expected responses
Set sequence

Two-treatment µ = 100 AAA (102.5, 107.5, 107.5)′

three-period π2 = π3 = τ = γ = 2.5 AAB (102.5, 107.5, 97.5)′

δ = −2.5 ABA (102.5, 97.5, 107.5)′

ABB (102.5, 97.5, 97.5)′

BBB (97.5, 97.5, 97.5)′

BBA (97.5, 97.5, 107.5)′

BAB (97.5, 107.5, 97.5)′

BAA (97.5, 107.5, 107.5)′

Two-treatment µ = 100 ABAA (102.5, 97.5, 107.5, 107.5)′

four-period π2 = π3 = π4 = 2.5 ABBA (102.5, 97.5, 97.5, 107.5)′

τ = γ = 2.5 AABA (102.5, 107.5, 97.5, 107.5)′

δ = −2.5 BABB (97.5, 107.5, 97.5, 97.5)′

BAAB (97.5, 107.5, 107.5, 97.5)′

BBAB (97.5, 97.5, 107.5, 97.5)′

Two-treatment µ = 100 ABAABA (102.5, 97.5, 107.5, 107.5, 97.5, 107.5)′

six-period π2 = . . . = π6 = 2.5 ABBBAA (102.5, 97.5, 97.5, 97.5, 107.5, 107.5)′

τ = γ = 2.5 BABBAB (97.5, 107.5, 97.5, 97.5, 107.5, 97.5)′

δ = −2.5 BAAABB (97.5, 107.5, 107.5, 107.5, 97.5, 97.5)′

Table 4.14: Expected response for each treatment sequence in the case of
unequal treatment effects with continuous outcomes
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Chapter 5

Data Analysis

In this chapter, we use some published N-of-1 trials data under the traditional

linear mixed model and self and mixed carryover effect model, respectively, to

compare the efficiency in estimating treatment effect.

Introduction

The following data were from a series of 58 N-of-1 trials that compare amitripty-

line(AMT) therapy and the combination of AMT and fluoxetine(FL) for treat-

ing fibromyalgia syndrome. Each N-of-1 trial had six treatment periods with

three sets of treatment pair. For each paired treatments, one period is on

AMT, another is on AMT+FL. The treatment assignment was block random-

ized in the first pair, and simply randomized with the start medication in the

other two pairs. The Fibromyalgia Impact Questionnaire (FIQ) score, as the

main interest responses variable, was collected once at the end of each six 1-

week treatment periods. In the following analysis we only used the data from

the 46 patients who completed at least two treatment periods.
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The Models

To investigate the efficiency for estimation of the treatment effect under dif-

ferent models, we reanalyze the data from this series of N-of-1 trials in various

scenarios. For example, if we use the results only from the first period, the

analysis would mirror a completely randomized trial. Or if we analyze the re-

sponse from the first three periods with their treatment allocation information,

this would correspond to a standard three-period crossover design.

For these N-of-1 trials, there are total eight different treatment sequences

available. Due to the characteristics of randomization order, we can mirror the

standard CODs with at most three treatment periods and RCT. Therefore,

two three-period CODs are considered : 1) the design ABB/BAA, denoted

as COD(2,3,2), where (2,3,2) means two treatments, three periods, and two

sequences. We chose this design because its dual balanced design is optimal

over the class of three-period designs under the traditional linear mixed model;

2) the design ABB,ABA/BAA,BAB, denoted as COD(2,3,4). Since it is one of

optimal designs for estimation the treatment difference (τ) under the self and

mixed carryover effect model, and the four treatment sequences are available

to group from the N-of-1 trials, we include this design in our analysis.

Suppose that all models under investigation have random subject effects

with an equicorrelated covariance structure. First, recall that the traditional

linear mixed model, which is defined as Model I in this chapter, is given in

Equation 3.1,

yijk = µ+ πi + Id(i,k)τ + Id(i−1,k)γ + ζjk + εijk (I)
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here we assume that each treatment has a carryover effect which is the same

regardless of the treatment in the next period.

An alternative of the traditional model for the crossover designs with car-

ryover effect, is called the self and mixed carryover effect model. Throughout

this chapter we define this model as Model II. Instead of assuming that the

carryover effect of a treatment does not interact with the direct effect of the

treatment in the following period, Model II assumes that each treatment has

two different carryover effects for every treatment in the next period. Model

II is introduced in chapter 4,

yijk = µ+ πi + τdk(i,j) + Iijkγdk(i−1,j) + (1− Iijk)δdk(i−1,j) + ζjk + εijk (II)

Because we assume that the carryover effect of a treatment on itself is different

from the carryover effect on other treatments, we call it as the self carryover

effect in the former case, and mixed carryover effect in the latter case.

Finally, when the assumptions of no period and carryover effects are valid,

we consider a simple linear mixed model as Model III, in which the response

only depends on the treatment effect and random subject effects. Model III is

also reviewed in chapter 2,

yj = µ+ ζj + εj (III)

Results

Table 5.1 presents results of the analysis that mirror RCT and CODs under

the traditional linear mixed model (I), self and mixed effect model (II), and
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Design
Model

I II III
τa (SE) P value τ (SE) P value τ (SE) P value

RCT -5.25 (4.59) 0.2590

ABB/BAAb -1.64 (3.13) 0.6022 1.72 (5.24) 0.7435 -2.42 (3.30) 0.4638

ABB/BAA, -4.06 (2.77) 0.1456 -4.80 (4.60) 0.2981 -6.37 (2.65) 0.0184
ABA/BABc

N-of-1 trials -4.95 (2.12) 0.0203 -4.07 (4.58) 0.3749 -6.07 (1.84) 0.0011

aτ=FIQ score on AMT+FL - FIQ score on AMT
bThe number of patients in this design, NCOD(2,3,2)=22
cThe number of patients in this design, NCOD(2,3,4)=41

Table 5.1: Mean treatment effect difference

Model (III) omitting period and carryover effects. For the analysis of RCT and

N-of-1 trials under Model III, the same results are reported by Zucker (2010).

In a two-treatment three-period repeated measurement design based on Model

I, for estimation of τ , the design ABB/BAA with an equal number of subjects

in each sequence is optimal. However, in our example, the total subjects

in the design ABB/BAA is NCOD(2,3,2)=22 and NCOD(2,3,4)=41 in the design

ABB,ABA/BAA,BAB, thus we did not see an expected smaller standard error

of τ in the design ABB/BAA.

These results are summarized below:

1. In the COD(2,3,2) with ABB/BAA, the carryover effect is marginal

significant in Model I with P-value 0.0405 (not shown).

2. For the COD(2,3,4) with ABB,ABA/BAA,BAB, the carryover effect is

significant with P-value 0.0149 (not shown) in Model I.

3. Under Model II, both COD(2,3,2) and COD(2,3,4) do not find the

carryover or periods effects significant.
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4. The N-of-1 trials design under both model I and II, has not significant

period or carryover effect terms.

5. Based on the Model (III), both COD(2,3,4) and N-of-1 trials design

have found that the treatment effect is significant.

Under Model(II), all results lead to the same conclusion: the treatment

effect is not significant and all the estimates of τ have almost the same standard

errors. The findings suggest that there is little to be gained by using N-of-1

trials design with the self and mixed carryover effect model when it is compared

to RCT and COD(2,3,4) with sequences ABB,ABA/BAA,and BAB.

Mean Responses Analysis

Recall that Model III in matrix form is given by Equation (2.1),

yj = Xjβ + Zjbj + εj

and β is a vector of fixed effects that are assumed to be the same for all

subjects; Xjβ thus represents an overall mean. The bj is the subject-specific

effect vector and has a normal distribution. Combining these two terms, the

mean response for the jth subject is

E(yj|bj) = Xjβ + Zjbj

A same patient’s results from the N-of-1 trial and the COD(2,3,4) are

collected in Appendix A. An illustration of the mean responses analysis for

this patient is then presented in Table 5.2. Model III has intercepts that vary
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Patient 101
Responses Predicted Responses E(yj |bj)
yj N-of-1 trial COD(2,3,4)

trt 1 29.28571, 39.33036, 29.25595 41.95 46.34
trt 2 51.86012, 11.9494, 57.38095 35.88 39.97

Table 5.2: A single patient’s response profile

randomly among subjects; it also allows the mean value of the intercept to

differ in the two treatment groups.
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Chapter 6

Conclusions

This thesis provides a general review on some topics of interest in clinical trial

designs. In the first part, we provided the basic introduction to the common

clinical trials, and focused our discussion on the repeated measurement designs

such as crossover trials and N-of-1 trials.

Crossover trials are appealing in clinical trials as they allow evaluation of

each patient’s outcomes on all of the treatments under investigation. Since

each patient is used as its own control, variability is reduced because the

within-subject difference is usually smaller than the between-subject differ-

ence. This reduction in variability enables the clinical researchers and in-

vestigators to use a relatively small number of patients to detect treatment

differences. To appreciate its increased efficiency, we compared some optimal

crossover trials with three, four and six periods to the completely random-

ized design and N-of-1 trial design using different evaluation criteria, such

as the relative design efficiency and cost efficiency comparison. In brief, the

three-period optimal crossover trials performed very competitively with var-

ious model assumptions. Three linear mixed models used for these designs
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are also under examination: 1) the tradition model with first order carryover

effects; 2) the self and mixed carryover effects model; 3) simple linear mixed

model omitting carryover effects.

The combined N-of-1 trial design is a special case of multi-crossover de-

sign but it emphasizes the single-patient assessment. It borrows as much

strength as it can from a usual crossover trial and possesses the advantages

of the single patient trial design. In an N-of-1 trial, the treatment tests are

patient friendly and easy to implement. Individual patient responses are used

to guide the patient-physician treatment decisions and each patient personally

benefits from evidence based prescribing. The efficacy, side effect, and other

individual-specific characteristics data from the trial can be combined to pro-

vide information with regard to the efficiency of treatments for an individual

patient. Much attention has been given to the N-of-1 design because of its

individual benefits and ethical advantages. However, current methods in use

need improvement to fully interpret N-of-1 trial data. In this thesis, we only

reviewed the linear mixed model analysis regarding N-of-1 trials.

In general, additional data increase efficiency. The example in Chapter

Five shows that the N-of-1 trial design increased efficiency of estimation com-

pared with the RCT and the COD with ABB, ABA/BAA, BAB under the

simple linear mixed model. However, a question raised relates to the trade-off

between increasing the periods for a more precise estimation if choosing N-of-

1, and increasing the cost efficiency if choosing the COD (2, 3, 4). Under the

usual linear mixed model with carryover effects, an N-of-1 design gains little

statistical power to test treatment differences, even with increased treatment

periods.

As we discussed before, each design has its particular advantages and dis-
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advantages when applied in clinical setting. The most attractive offer of the

COD is its competitive efficiency over the RCT, but with the concern of car-

ryover effects. N-of-1 trials give priority to individual patient evaluation or

treatment, making individual estimates of treatment effect as their primary

purpose. When we analyze data from N-of-1 trials by using the linear mixed

model, we develop the estimates of the overall mean treatment effect of a pop-

ulation, but fail to appreciate its merits of being individual trials, therefore,

such design efficiency or cost saving comparison for N-of-1 trials may lead to

less important consideration in clinical investigation.

Another way of comparing these clinical trial designs to each other is from

the view of randomization application. The RCT, COD and N-of-1 trial are

standard randomized designs, which usually employ a simple randomization

allocating subjects to each treatment group equally. To achieve a high statis-

tical power for the comparison of treatment effects, this is often the best ap-

proach. However, the equal treatment allocation may pose ethical infeasibility

or concerns in some clinical settings. To cope with such situations, alternative

designs such as response-adaptive designs have been advocated. Such designs

can adjust the treatment allocation rule based on patient responses already

accrued in the trial, and assign more patients to the better treatment groups.

In that respect, a multiple-objective RARMD for clinical trials has been

reviewed in the last part of the thesis. We discussed the adaptive treatment al-

location scheme and the statistical models used for such designs. A simulation

study presented an illustration of the use of the adaptive treatment allocation

scheme.

To incorporate a variety of patient-specific characteristic information and

strengthen its advantage as a single patient trial, the N-of -1 trial design re-
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quires more complicated analytical approaches. One possible way to better ap-

preciate the attractive properties is to use the Bayesian hierarchical method.

Therefore studying this method or searching for an optimal solution to the

N-of-1 trial will be the focus of my future research.

Though methodological research on response-adaptive designs for clinical

trials has developed rapidly, they have rarely been used in practice. According

to Simon (1977)[18], adaptive treatment allocation methods have some inherit

limitations, and most published methods have important deficiencies; both

reasons render the adaptive design difficult in application. Such limitations

or defects, for example, could be possible delays in observing or reporting

responses, and difficult to make appropriate evaluation or decision rules to

choose good treatment sequences. Exploring in depth such topics in the field

of clinical trials also interest me as there is much room for improvement of

current methods.
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Appendix: SAS outputs for the

example in Chapter 5

1. The results for a same patient from N-of-1 trial and crossover

design, respectively.

N-of-1 Trial

Solution for Fixed Effects

Effect trt Estimate Standard Error DF tValue Pr > |t|
Intercept 42.2547 1.928 0 21.92 .

trt 1 6.0729a 1.8387 193 3.3 0.0011
trt 2 0 . . . .

Solution for Random Effects

Effect patid Estimate Std Err Pred DF tValue Pr > |t|
Intercept 101 -6.3509 5.1089 193 -1.24 0.2153

patid 101 -0.02273 0.5635 193 -0.04 0.9679

Crossover design with ABB,ABA/BAA,BAB

Solution for Fixed Effects

Effect trt Estimate Standard Error DF tValue Pr > |t|
Intercept 41.5703 2.0738 0 20.05 .

trt 1 6.3703b 2.6513 86 2.4 0.0184
trt 2 0 . . . .

Solution for Random Effects

Effect patid Estimate Std Err Pred DF tValue Pr> |t|
Intercept 101 -1.5988 4.6401 86 -0.34 0.7313

patid 101 -0.00003 0.02508 86 0 0.9989

atrt1=AMT, trt2=AMT+FL, and τ= trt2-trt1.
bSee a.
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