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A B ST R A C T

This thesis extends Adaptive Logistic Basis (ALB) models to accommo­

date the exponential family of distributions. ALB models were introduced by 

Hooper (2001) as a flexible family of regression models for multi-dimensional 

data. For both ALB models and their extensions to exponential family of 

distributions, the model is expressed as a linear combination of logistic basis 

functions, parameterized using reference points in the covariate space. The 

method is adaptive, selecting simple or more complex models as appropriate. 

The number, location and, to some extent, shape of the basis functions are 

automatically determined from the data.

Various extensions of ALB models to the exponential family of distribu­

tions include the case where the conditional distribution of the response given 

the predictors is Poisson, the case where extra-Poisson variation is present, 

Poisson counts observed over time, and the case where the conditional variance 

of the response given the predictors is a smooth function of the conditional 

mean of the response given the predictors. The original ALB methodology 

(Hooper. 2001) employs squared error and absolute error loss functions. Gen­

eralizations for count data are achieved by introducing a log-link function 

and an appropriate likelihood or quasi-likelihood function. While the idea is 

straightforward, several technical complications arise in the implementation.

Accuracy, interpretability, and computational speed are important when 

comparing regression methods for multi-dimensional data. The comparative 

accuracy of various methods is generally dependent on the target function / .  

I will report results of experiments comparing ALB with Generalized Addi­

tive Models (GAM), Multivariate Adaptive Regression Splines (MARS), and 

Generalized Projection Pursuit, using both real and simulated data. ALB 

models are equivariant under linear transformations of the predictors. GAM 

and MARS are typically constructed from additive effects and low-order inter­

actions. Consequently. GAM and MARS tend to provide superior performance 

in examples exhibiting additive structure while ALB is superior in some ex-
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Conventions and notations:
Throughout the thesis, we will use lower-case letters to indicate random vari­
ables as well as their observed copies. Also, the following notations and 
acronyms will be used;

Symbol Meaning
I k ALB predictor, Ylk=i 4d/c(x)
Ok k-th logistic basis function
GAM Generalized Additive Models
GLM Generalized Linear Models
GPP Generalized Projection Pursuit model
WLS Weighted Least Squares criterion
WQL Weighted Quasi-Likelihood criterion
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Chapter 1 

Introduction

1.1 Background of the thesis

This thesis consists of various generalizations of Adaptive Logistic Basis (ALB) 

models, introduced by Hooper (2001) as a flexible family of regression models 

for multidimensional data. There is a vast literature on regression models. The 

main objective of regression analysis is to model the relationship between a re­

sponse variable and one or more predictor variables. Linear regression models 

assume that the relationship between the mean response and the predictors is 

linear in the parameters and that the response variable is normally distributed 

with constant variance. Generalized linear models extend these assumptions: 

the mean response is related to the linear predictor through a link function, 

and the normal distribution is extended to the exponential family of distri­

butions. This thesis focuses on extending ALB to accommodate exponential 

family of distributions. In the next two sub-sections I will summarize existing 

regression models and ALB models respectively.

1
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1.1.1 Background on regression models

Regression methods are used to model the relationship between a response 

variable and one or more predictors. The simplest regression model is the linear 

model, where the relationship between the mean response and the predictors 

is assumed to be linear in the parameters. The investigator starts with a 

tentative parametric model. Once the parameters are estimated, diagnostics 

are applied to see if the model should be modified.

Nonparametric regression provides a flexible alternative with the regres­

sion equation determined adaptively from the data. Hastie and Tibshirani 

(1987) contrast the two approaches, noting that residual and partial residual 

plots are used to detect departures from linearity and often suggest parametric 

fixes. An attractive alternative to this indirect approach is to model the re­

gression function non-parametrically and let the data decide on the functional 

form. Silverman (1985) states that nonparametric models give the data more 

of a chance to speak for themselves in choosing a model to be fitted. Altman 

(1992) defines nonparametric regression as a collection of techniques for fitting 

a curve when there is little a priori knowledge about its shape.

Nonparametric regression is often described as smoothing, especially in 

the case of a single predictor. The conceptual basis for smoothing is averaging 

the response values of observations having predictor values located in a neigh­

bourhood of a target value. Several examples of smoothers are the running 

mean smoother, the running line smoother, and various kernel smoothers in­

cluding the Gaussian, the Epanechinikov (1969) and the minimum variance

2
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kernel. To generalize these smoothers to several dimensions, one can use 

Euclidian distance to define the neighbourhoods, or an alternative distance 

involving the covariance matrix of the predictors.

Splines combine polynomial regression with local fitting by representing 

the fit as a piecewise polynomial. The regions defining the pieces are bounded 

by knots. The piecewise polynomials are chosen so that they join smoothly at 

the knots. The number of subregions and the lowest order derivative allowed 

to be discontinuous at knots controls the tradeoff between smoothness and 

flexibility of the approximation.

Nonparametric regression is reasonably well understood in one dimen­

sion. Many methods are difficult to generalize to higher dimensions because 

of "the curse of dimensionality” (Bellman, 1961); i.e . "local neighbourhoods” 

must be large if they are to contain an adequate number of data points. In 

response to the dimensionality problem, strategies that attempt to approx­

imate general functions in high dimensions based on adaptive computation 

have been devised. Adaptive computation adjusts its strategy to take into ac­

count particularities of the function to be approximated. Adaptive algorithms 

have been developed based on two paradigms: projection pursuit (Friedman 

and Stuetzle 1981; Friedman, Grosse and Stuetzle 1983; and Friedman 1985), 

and recursive partitioning (Morgan and Sonquist 1963; Breiman, Friedman, 

Olshen and Stone 1984).

Projection pursuit regression uses approximations of the form:
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The univariate functions f m are required to be smooth. The function and the 

coefficients of the linear combinations are jointly optimized to produce a good 

fit to the data based on some distance criterion. Diaconis and Shahshahani 

(1984) showed that any smooth function of n variables can be represented 

by this approximation for large enough M.  Also, for small to moderate M.  

many classes of functions can be closely fit by approximations of this form 

(Donoho and Johnstone. 1989). Disadvantages of projection pursuit are that 

there exist some simple functions that require large M  for good approximations 

(Huber. 1985). interpretation is difficult for large M.  and the approximation 

is computationally time consuming.

A recursive partitioning regression model is defined on subsets that form 

a partition (Rm)if of 3^:

f (x )  = gm{x)i if x  e  Rm-

The functions {gm)\! are taken to be of simple parametric form, the most com­

mon choice being a constant function (Morgan and Sunquist 1963: Breiman 

et al.. 1984). The partitioning is accomplished through the recursive split­

ting of previous subregions. The subregions are then recombined in a  reverse 

manner until an optimal set is reached based on a criterion that penalizes 

both for lack-of-fit and increasing number of regions. Recursive partitioning 

uses a forward stepwise algorithm. The basis functions produced by this al­

gorithm are step functions. Two ■weaknesses of recursive partitioning are a 

lack of continuity at subregion boundaries and an inability to capture simple 

relationships such as linear, additive or lower-order interactions. Breiman and

4
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Meisel (1976) and Friedman (1979) propose linear functions. Hansen, Kooper- 

berg and Sardy (1998) introduced the triogram method, a natural approach 

for modeling data when the domain of the prediction variables is a polygon 

region in the plane. The estimates are continuous, piecewise linear functions 

defined over adaptively selected triangulations in the plane.

Friedman (1991) introduced the Multivariate Adaptive Regression Splines 

(MARS) approach to multivariate nonparametric regression. The main goal 

is to overcome the two limitations of recursive partitioning outlined above. 

MARS produces continuous models by replacing the step function by truncated 

power spline basis functions. To overcome the second limitation of recursive 

partitioning, MARS permits the recursive splitting of all basis functions in the 

model and not just those that are currently terminal.

The additive model,

E(y\x) = a  + Y ^ f j ( xj) 
i

is a special case of projection pursuit. A general algorithm to fit additive 

models is the backfitting algorithm. This is an iterative fitting procedure that 

updates the functions f j  by smoothing partial residuals y —o>—YLk^j f k against 

Xj. The cycle stops when the individual functions f j  converge.

A generalized additive model has the form:
p

g( y ( x) )  = a  +  Y ]  M xj ) , K x ) =  E { y \ x ), 
i

and represents an extension of the additive model to the exponential family. 

The local scoring algorithm is used to fit this model (Hastie and Tibshirani, 

1986).

5
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Finally, we discuss variable selection and shrinkage methods for linear 

regression models. Linear models are simple and often provide an adequate 

and interpretable description of how predictors affect the response. In general, 

there are two reasons why we are not satisfied with least square estimates: 

prediction accuracy and interpretation. We should clarify that our discussion 

here assumes that the true model follows a linear model. Departures from this 

assumption have motivated researchers to develop flexible models that give a 

better approximation to the true model without using too many parameters.

First we talk about prediction accuracy. The Gauss-Markov theorem as­

serts that, when the true model is a linear model, the least squares estimator 

has the smallest variance among all linear unbiased estimators. This result 

does not imply that we should necessarily restrict our search to unbiased esti­

mators. The mean squared error of an estimator can be decomposed into the 

sum of the variance of the estimator and the squared bias. There may well 

exist a biased estimator with smaller mean squared error. Such an estimator 

would trade a little bias for a larger reduction in variance. Mean squared error 

is closely related to  prediction accuracy. In fact, the expected prediction error 

at a new observation and the mean squared error differ only by an amount 

that equals the variance of the new observation. Shrinkage methods produce 

estimates that permit some bias to reduce the variance of the predicted values, 

and hence improve the overall prediction accuracy.

The second reason why we are not satisfied with least squares estimates 

is interpretation. With a large number of predictors, we often would like to

6
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select a smaller subset that exhibit the strongest effects.

Variable selection algorithms include forward selection, backward elim­

ination and stepwise selection. Forward selection starts with the intercept, 

then sequentially adds into the model the predictor that most improves the 

fit, stopping when no predictor produces a significantly better fit when added 

to the model. Backward elimination starts with the full model, then sequen­

tially deletes predictors that are not improving the fit. The algorithm stops 

when there are no further deletions that produce a significantly better fit. 

Stepwise selection considers both forward and backward steps at each stage 

and makes the "best" move.

Although subset selection techniques produce interpretable models with 

possibly lower prediction error than the full model, the discrete nature of the 

algorithm exhibits high variance. Shrinkage methods are more continuous 

alternatives to subset selection and do not suffer as much from high variance. 

We mention here two shrinkage methods: ridge regression and least absolute 

shrinkage and selection operator, or shortly "lasso” . Ridge regression shrinks 

the regression coefficients by imposing the Lo size constraint:

n p  p

3ridge =  argmin3y^(?/;- -  30 -  ^ X y ^ ) 2, subject to ^  3~ < $.
Z=1 j  =  1 j  =  l

The lasso shrinks the regression coefficients by imposing the L\ size constraint:

n p  p

jjlasso _  argmin;3 — Po — Xjj3j)2. subject to \3j\ < s.
i = 1 J=1 j = 1

Both methods use cross-validation to select an optimal value for s. Ridge 

regression is a  continuous process that shrinks the coefficients, and hence is

7
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more stable than subset selection. However, ridge regression does not set 

any coefficient to zero, and hence does not give an easily interpretable model. 

Because of the nature of the LASSO constraint, making s sufficiently small will 

cause some of the coefficients to be exactly zero. Thus, LASSO does a kind of 

continuous selection retaining the good features of both subset selection and 

ridge regression.

Least Angle Regression(LARS), a  model selection algorithm proposed 

by Efron. Hastie, Johnstone and Tibshirani (2004), is a useful and less greedy 

version of traditional forward selection methods. A modification in the LARS 

algorithm implements the LASSO. A different LARS modification implements 

another recent model selection method called Forward Stagewise Linear Re-

1.1.2 Summary of ALB m ethodology

Hooper (2001) introduced a flexible family of regression models called Adaptive 

Logistic Basis (ALB) models. The ALB methodology is summarized in this 

section.

Consider the problem of estimating a regression function /(x )  =  E{y\x},  

where y is a response variable and x  is a vector of d covariates. Estimators 

often approximate /  by a linear combination of basis functions:

Examples include tensor product splines (Gu, Bates, Chen and Wahba, 1989: 

Friedman. 1991), tliin-plate splines (Wahba, 1990) and ridge functions (Fried-

gression.

K

(1.1)

8
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man and Stuetzle. 1981). ALB models axe defined by logistic basis functions:
K

Ok(x) =  exp(a& +  (5'kx ) /  Y  exp(am +  /3mx). (1.2)
m =  1

Note that <?k(x) =  1. so approximation (1.1) does not require a constant 

term. The redundancy in the parameterization can be handled by dividing the 

numerator and denominator of (1.2), by exp(a/c +  ,3'Kx).  In other words, olk 

and can be set to zero. After removing redundancies, the effective number 

of parameters in approximation (1.1) is

p =  l  +  ( K - l ) ( d  +  2).

An alternative parameterization can be obtained by expressing the ba­

sis functions in terms of Euclidean distance from reference points £k in the 

covariate space:
K

ok(x) = exp(7fc -  r~ 2j|x -  f  J 2)/ Y  exp(7m -  r " 2|jx -  f j | 2).
m =  1

The two parameterizations can be related as follows. Starting with the linear 

parameterization and the constraints olk =  0 and 3k =  0, one could set

r  =  1

U =  (l/2)& (1-3)

~,k -  Qt +  (1/4)«A ||2,

obtaining ~iK — 0 and =  0. Conversely, starting with the reference point 

parameterization, one could set

** =  7 * - r - 2|Kfc||2 - ( 7 i f - r - 2| | ^ | | 2)

&  =  2 r - 2( C , - ^ ) ,

9
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obtaining a x  =  0 and 3k  =  0.

The method of estimation is adaptive, selecting simple or more complex 

models as appropriate. The number, location and (to some extent) shape of the 

basis functions are automatically determined from the data. ALB estimators 

/  are defined for a family of location measures, including the conditional mean 

and median. Suppose (x, y) is a random vector, choose q > 1 and let /  be a 

function minimizing E\y — / (x ) |9. It is assumed that the expectation is finite. 

Conditional mean and median functions are obtained by taking q =  2 and q = 

1, respectively. The ALB function is estimated as follows. Suppose we have a 

sample (x*. y,). i =  1. . . . ,  n. For given K,  an ALB estimator f x  is calculated 

by minimizing the training risk ( l /n )J2 \y i  ~  fxix-i)\q over {(4 -7X-:4 )- k =  

1,..., K }, with r  set to a convenient value. The parameter values defining f x  

are determined separately for different numbers K.  and a generalized cross- 

validation technique is used to select K .

ALB has connections with two types of neural networks: radial basis 

functions and feed-forward back-propagation networks. If the 7 are set to 

zero, then /  is a radial basis function network (Moody and Darken, 1989). 

Radial basis functions are related to kernel regression estimators (Xu, Kryzak 

and Yuille 1994). In most applications of radial basis functions, the basis 

function parameters { t , ^ ,  are selected using only the covariates, and

the 4  are estimated by a least squares fit of the linear model. ALB shares 

the approximation properties of the radial basis functions (Ripley, 1996) but, 

by employing a richer family of basis functions and by using the response to

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



estimate all parameters, ALB typically uses far fewer basis functions. Under 

the linear parameterization, ALB can be represented much like a feedforward 

neural network with a single hidden layer (Cheng and Titterington, 1994), but 

with softmax applied to the hidden layer. The term “softmax” , introduced by 

Bridle(1990), describes the conversion of a set of outputs Zk into probabilities 

exp(zk)/  exP(~m)- The idea stems from multiple logistic regression. Softmax 

is normally applied to the final output layer of a  network. Hidden units are 

normally transformed individually, often with a sigmoidal function. Applying 

softmax to the hidden layer violates the “feedforward” property, but allows a 

spatial interpretation of the initial connection weights through the reference 

point parameterization.

ALB has the property of affine invariance, a result that one can easily 

prove using the linear parameterization. ALB possesses the universal approx­

imation property; i.e.. continuous functions /  can be approximated uniformly 

on compact sets as K  — co. ALB is expected to work best in comparison 

with other methods when /  is well approximated using a small number of 

basis functions.

1.1.3 Generalized Linear models and ALB models

Linear models approximate a regression function /(x )  =  E (y |x), where y  is 

a response variable and x  is a vector of d covariates, by a linear combination 

of the covariates. Suppose we have a sample of size n, (x,, y;). i — 1, . . . .  n. 

where x 1;. . . ,  x n represent the covariates at each observation and y i , . . . , y n
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represent the responses. In matrix notation the model can be written as:

E{yi\xi) = fix*

where 13 represents the vector of parameters and has dimension d. The vector 

of parameters is estimated by minimizing the squared error:

n

Y^iVi-p'xif.
i= 1

If the conditional distribution of yi given x* is normal with constant variance, 

then the least squares estimator is the maximum likelihood estimator.

Generalized linear models extend linear models in two ways. First, the 

conditional distribution of y  given x  is a member of the exponential family:

/y|x(y|x; 9, <j>) =  exp{(?/0 -  b(9))/a(<f>) +  c{y, ©)},

for some specific functions a(.), b(.) and c(.). The two parameters 0 and o  may 

be functions of x. Second, the linear predictor rj = f i x  can be any monotonic 

differentiable function of the conditional mean g =  E(y  |x):

V =

where g(.) is called the link function. There are special link functions for 

which there exists a minimal sufficient statistic for the canonical parameter 

9. These links are called canonical links and they occur when 9 = rj. We 

enumerate some distributions from the exponential family together with their 

corresponding canonical links: Normal distribution with the identity link, Pois- 

son distribution with the log link, Binomial distribution with the logit link,

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Gamma distribution with the reciprocal link. The maximum likelihood method 

is typically used to fit the model. One way to solve the maximum likelihood 

equations is using the iteratively reweighted least squares algorithm.

ALB methods can be applied in the context of generalized linear mod­

els (GLM). Suppose the conditional distribution of y given x  comes from an 

exponential family with distribution form p(y\x,p)  and a  specified monotonic 

differentiable function of the conditional mean p = E ( y |x) is approximated by 

an ALB function fa:

K

M  = / ( x ) ~  M x) = ^ 5 kok{x):
k =  1

where g(.) is the link function. The linear function rj = 3 'x  in GLM is thus 

replaced by the more flexible ALB function fx-

To estimate the above model, we can maximize the log-likelihood. Below 

we display the factors involved in the derivative of a single term of the log- 

likelihood:
d\ogp{y\x,p)  dlog(p(y|x,//)) dg~1( f)  d f  . .

89 dp d f  8 9 ’ { }

where here 9 denotes the vector of ALB parameters, and not the canonical pa­

rameter described on the previous page. We note that, on the right-hand side, 

the first derivative involves the exponential model, the second derivative in­

volves the link function, and the last derivative involves the ALB function. We 

will refer to the above equation when developing estimation for ALB models 

in the GLM context.

The work in Hooper (2001) provides a basis for much of our work, and 

is referenced throughout the remainder of the thesis as HOI. When extending
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ALB models to accommodate the exponential family of distributions, some 

results in HOI can be applied directly, while others require appropriate modi­

fication.

1.2 Overview of the thesis

In Chapter 2, we discuss ALB models for the case where the conditional distri­

bution of the response given the predictors is Poisson. We describe the model 

and the method of estimation and conduct a comparison between ALB mod­

els and GAM. We present functions where the performance of ALB models is 

substantially better than that of GAM, even if the sample size is large, and 

also functions where GAM has advantage over ALB. We derive approximate 

standard errors for the fit and present estimated coverage probabilities of a 

9-5% confidence interval for the mean using several simulation studies. We also 

discuss ALB models for Poisson counts observed over time.

In Chapter 3. we discuss ALB models for the case where there is more 

variation in the responses than that expected from Poisson sampling theory. 

We discuss the constant coefficient of variation case in Poisson over-dispersed 

data and illustrate the ALB model with simulated data and a real life exam­

ple. We discuss the case where the variance is a function of the mean. We 

summarize the ideas behind the heteroscedastic linear model, combine ALB 

and parametric variance function estimation to model heteroscedasticity, and 

use ALB to model the variance function.

In Chapter 4, we illustrate ALB models using two examples. We indicate
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ALB strengths and weaknesses in comparison to other models.

In Chapter 5. we give background on Projection Pursuit(PP) and the 

extension to the exponential family. Generalized Projection Pursuit (GPP). We 

compare predictive accuracy of ALB, GPP and GAM, for the case where the 

conditional distribution of the response given the predictors is Poisson using 

simulation studies on a variety of functions previously employed by researchers 

to test performance of other flexible regression methods such as Projection Pur­

suit, Automatic Smoothing Splines Projection Pursuit, Multivariate Adaptive 

Regression Splines. Additive Models.

Finally. Chapter 6 summarizes the main contributions of this thesis to the 

literature. Some possible future research is suggested to expand and improve 

on the strategies suggested in this thesis.
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Chapter 2 

ALB models for Poisson counts

2.1 Introduction

Classical linear models began with the work of Gauss and Legendre on astro­

nomical data, usually measurements of continuous quantities. The variability 

in the observations was largely the effect of measurement error. Gauss intro­

duced the Normal distribution of errors as a device for describing variability.

Another important direction in the history of statistics is the develop­

ment of methods for dealing with discrete events rather than with continu­

ously varying quantities. In the context of rare events, the basic distribution 

for counts of events is the Poisson distribution. This distribution has been 

applied to diverse kinds of events, such as annual number of traffic accidents, 

number of outbreaks of an infectious disease in a county, number of typograph­

ical errors on a page.

In this chapter, we discuss ALB models for the case where the conditional 

distribution of the response given the predictors is Poisson. The organization 

of this chapter is as follows. In Section 2, we describe the model and the 

method of estimation. In Section 3, we conduct a comparison between ALB
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models and GAM. We also present functions where the performance of ALB 

models is substantially better than that of GAM, even if the sample size is 

large. In Section 4. we derive approximate standard errors for the fit. In 

Section 5, we discuss ALB models for Poisson counts observed over time.

2.2 Estimation

2.2.1 Estim ation of f x  using stochastic approximation

In the following, the conditional distribution of Y  given x  is assumed to be 

Poisson with mean /i, that is P (Y  =  y | X  =  x) =  e~^iiy jy\,  where \i > 0 is a 

function of x. In this case our ALB model takes the form:

E<y\x) =  n,

K

log (ju ) =  / k - ( x )  =  ^ 4 <£fc(x).
k= 1

In this subsection we consider the estimation of /  using a fixed number of 

basis functions. The estimation of /  follows HOI, but instead of minimizing a 

predictive risk corresponding to a constant variance assumption, we minimize 

the negative log-likelihood corresponding to a Poisson distribution. Further 

modifications needed are explained as we derive the estimation algorithm. We 

will use the reference point parameterization:

<4 (x) =  exp(7fc -  r “2||x - f  J 2)/ ^ e x p ( 7m -  r _2||x - f  J | 2)-
m=1

The reference points parameterization is easier to interpret than the linear 

parameterization. The location of Ok can be controlled by £k, the relative 

influence of Ok can be controlled by yx-, and the smoothness of ok can be
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controlled by r . This interpretation is useful when initializing parameter values 

for estimation. The roles of the parameters are actually not so clearly separated 

due to redundancies among the parameters. For example, r  can be fixed 

without limiting the generality of the parameterization, and smoothness can 

be controlled by adjusting the remaining parameters.

The log-likelihood of the conditional distribution of y given x  is:

l (0 \x ,y)  =  - n  +  y logn -  logy!, (2.1)

where 9 =  (<51:7 1 , . . . -Sk -.Ik -Ax )- The last term in the log-likelihood is

treated as a  constant. Our underhung aim is to minimize the negative log- 

likelihood for a given sample {(Xj, yi), i = 1, . . . ,  n}:

n

—l{9 \x i , . . . ,  xn,y i , . . .  ,y n) =  ^ ( / x *  -  y* log//*) +  const, (2.2)
i=i

where /x* =  /x(X j) =  exp( f x f c ) ) .

Let f x  denote the estimator that minimizes the negative log-likelihood 

and let 6 denote a parameter vector defining fx -  Since the parameters are 

not uniquely determined, 9 is not regarded as an estimator, but as one of the 

many equivalent parameterizations of fx -

For fixed K.  the log-likelihood can be maximized using stochastic ap­

proximation, which was introduced by Robbins and Monro (1951). Alternative 

non-stochastic optimization methods, such as Newton Raphson, are poten­

tially available. The stochastic approximation algorithm has been constructed 

so that the number of steps in the algorithm does not depend on the sam­

ple size, making this algorithm competitive for large data sets. Nevertheless,
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the number of iterative steps can always be increased for larger sample sizes.

The following brief review of the stochastic approximation algorithm follows

Benveniste, Metivier and Priouret (1990). Consider minimizing a function 

Q{9) using an iterative algorithm driven by a sequence of independent and 

identically distributed vectors zm,

9m = 9m—i -t- amH(0m_i, zm) (2-3)

In stochastic algorithms, the updating function H is defined so that — E{H (0.2)} 

is proportional to the gradient of Q(9). Let 9m =  9(tm), where tm — Yl'iLi ai- 

After an initial transient phase, the behavior of the above process is repre­

sented to a first approximation by that of the differential equation d9(t)/dt = 

E[}i{9(t), 2}]. The following conditions on the gain function:

y >  =  00, (2.4)

y '  <  (X), for some a  > 1

are sufficient for the convergence of the above sequence toward a local minimum 

for Q(9). provided that the sequence {9m} is bounded, (Kushner and Clark 

1978). An example of a gain function satisfying these conditions would be 

am = 1/m .

Initial parameter values are motivated by the following Proposition (HOI, 

Proposition 4):

Proposition 2.1 Set fy =  ^ I k  and define

A k =  {x : 11 x  -  £kf  -  Ck < ||x -  ^m||2 -  Cm for all m  #  k}.
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(i) We have Ak =  {x : o^.(x) > ©m(x) for all m  ^  k}. Each Ak is a convex 

set. possibly empty. The boundary between two neighbouring sets Ak and 

Am is a subset of a hyperplane orthogonal to — Zm-

(ii) I f  the Q are all equal, then {-4̂ .} forms a Dirichlet tessellation of 5^; 

i.e.. Ak consists of all x  nearest to Zk- I f  the Q differ substantially, then 

the spatial interpretation of the £k ^  êss clear: e.g.. it is possible that 

Zk t  A k.

(Hi) We have d<j>m/d~/k = <?k( 1 ~  4>k) for m  =  k, and —OkOm for m f ^ k ,  so 

increasing 7k increases the influence of Ok and diminishes that of other 

Qm-

(iv) Fix Cir£i: - • • • Zk -Zk - 5 T approaches 0. <?t(x) converges to the indica­

tor function of Ak: for all x  not on the boundary of Ak- ^5 r  approaches 

oc. <?fc(x) converges to 1 /K .

The covariates are first centered and scaled to have zero mean and unit 

standard deviation. This standardization is helpful when initializing para­

meter values. We note that for the Normal errors assumption, the response 

was also centered and scaled to have zero mean and unit standard deviation. 

However, this standardization no longer makes sense for Poisson errors as­

sumption. creating difficulties in the stochastic approximation algorithm. We 

address this issue later in this section. The initial 7k are set to zero. The initial 

£k are obtained as a spatially representative set of points in the covariate space 

(see below). The initial 6k are then defined as the logarithm of the average
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of the Hi values for x, in the region nearest to £k. The parameter r  is set to 

the average distance between nearest neighbors among the K  initial points £fc. 

This choice for r  yields a reasonable amount of overlap among neighboring 

basis functions.

A representative set of K  points £k can be obtained by minimizing

n

^ m in { | |x i  - f j 2 :k  = l , . . . , K } .  (2.5)
i=  1

The resulting points have been called K-means cluster centroids (MacQueen 

1967) and principal points (Flurv 1990). The latter term is more appropriate 

here, as we are not searching for clusters, but for a representative set of points. 

The initial £k can be calculated using a A'-means clustering algorithm (Har- 

tigan & Wong 1979). However, the above minimization need not be exact. 

We will simultaneously initialize both and 8k using a vector quantization 

algorithm (Kohonen 1995). Begin by generating randomly from

{ x i,. . .  ,x n} and set all Sk to one. Let P  denote the empirical distribution; 

i.e., the distribution conditioning on the data, of (xu,yu), with u distributed 

uniformly on {1 .... .n}. Then repeat the following steps for 3 0 0 0 iter­

ations. At the m th iteration, sample (x, y) from P, determine the point £k 

nearest x, replace by (1 — am)£k +  aTOx, and replace Sk by (1 — am)Sk +  amy. 

The gain is defined as am =  100\/A /(m  +100 V ^ ) , gradually lowered to zero. 

After the last iteration, each Sk is log-transformed. This algorithm produces 

approximate principal points and logarithms of y-averages, which serve as use­

ful starting values.

Once the initial values are selected, the negative log-likelihood (2.2) is
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minimized using stochastic approximation. At each iteration, an observation

(x, y) is randomly sampled with replacement from P  and the parameter vector

6 is updated as in expression (2.3). According to equation (1.4), the gradient

of the log-likelihood can be written as

dl(0 \x,y) t , d f K 
— a e —  = ( v - » ) w -

The components of the gradient of f x  have already been derived in HOI, 

equation (10). Therefore, the components of the gradient of the log-likelihood 

(2.1) follow easily:

dl{6 \x, y)
<94

d l{6 |x, y) 
djk  

dl(d\x, y)

= (</-A*)<4-(x),

= (y ~  m)<4(x)(4 -  //f(x)), (2.6)

= (y-^)d>fc(x)(4-/ic(x))(x-^),
d£k

for k = 1, . . . ,  K .  Consequently, the updating formulae for the parameters at 

the m th  iteration are given by:

4  Sk + asm{y -  fi)<j>k(x) ,

7fc 7k Tfl'mfe- /t)^-(x)(4 -  //c(x)) ,

& f̂c + 4 .(y - i“)'pfc(x)(4-/x(x))(x-Cfc)-

We now explain why these formulae need to be modified. These formulae 

work in some situations, but present problems for large counts. The variation 

of the quantity (y—fj) is larger for Poisson counts than for the constant variance 

case, since Var(y|x) =  ji. If we use the above updating formulae, perturba­

tions in parameter values can be large when fi is large, sometimes resulting
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in convergence to a poor local optimum of the log-likelihood. Recall that, 

for constant variance models, the response variable was standardized prior to 

using stochastic approximation. However, standardization of Poisson counts 

does not make sense. Instead of transforming the response variable prior to 

using stochastic approximation, we stabilize the magnitude of perturbations 

by scaling the updating functions and by setting an upper bound on the per­

turbations. In the following, we present the modified updating formulae for 

the parameters at the m th iteration, and then justify the choice of the scaling 

constant and the upper bound on the perturbations. Set

h t(x ,y ,e )  = (2.7)

where [i =  exp(//fyx)). We use the following updating formulae for the para­

meters at the m th iteration:

4  «- Sk + admhk(x.y,9)inin{y/]I/c ,as0/a sm} ,

Ik — 9) min{fy^/c, a0/a l l}{5k -  jfy(x)} - (2.8)

€k ^- +  ^ 4 .(x,?/,0 )m in{fy^/c,4 /a^ } { 4 . - /* (x )} (x

where

c =  s  / £ ( * - « »

’ V ( " - 1) ’
is the unconditional standard deviation. We note that:

{asm^ Q k { x )  as ii —» 0, or m —*■ oo
_

ao^O fc(x) as [i —* oo, m  fixed. 

Now we can see that the above choice for the scaling constant makes equations

(2.7) and (2.8) look more similar to the constant variance case, where the

response was standardized.
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Two more scaling constants were tried: c =  5Z \ f y j n  an(i c = \ / Y l  Vi/n - 

These last two choices do not solve the problem for large counts. A closer 

look a t the last two choices indicates that they do not reflect variability in 

fii. The first choice, the unconditional standard deviation, reflects variability 

in fXi. This explains why the choice of the unconditional standard deviation 

solves the problem of large counts, while the other two choices fail. We now 

justify the upper bounds on the perturbations. We note that all three ratios 

under the min expression, asQ/asm. Gq / and a^/a^  are equal. The stochastic 

approximation algorithm aims to gradually decrease the perturbations, and 

by imposing this upper bound we ensure that the magnitude of perturbations 

for all m, is no larger than in the first iteration.

A natural question is whether the modifications to the updating func­

tions for the Poisson version of ALB are still resulting in convergence of the 

log-likelihood toward a local optimum. To prove this, we return to the more 

general setting used to review the stochastic approximation algorithm, de­

scribed earlier in this section. Recall that we considered minimizing a func­

tion Q{9) using an iterative algorithm driven by a sequence of independent 

and identically distributed vectors zm, labeled earlier as equation (2.3):

9m = 9m— i -f- fl7nH(0m_i, Zm).

When the updating function H is defined so that — E{H(0, z)} is proportional 

to the gradient of Q{9), conditions (2.4) are sufficient for the convergence of the 

above sequence toward a local minimum for Q{9), provided the sequence {9m} 

is bounded. (Kushner and Clark 1978). In the light of the above modifications
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to the updating functions, we need to prove the following in order to ensure 

convergence of the log-likelihood toward a local optimum:

Theorem 2.2 Consider minimizing a function Q(9) using an iterative algo­

rithm driven by a sequence of independent and identically distributed vectors 

Zm?

6 m =  6 m - \  +  amHi(0m_i,2m) x min{H2(0m-i,2m),ao/am}, (2-9)

where H =  Hi x Ho is defined so that — E{H.(9. z)} is proportional to the 

gradient of Q{9). and sup Ho (0, z) < oo. I f  the sequence {9m} is bounded.
8 ,z

then conditions (2.4) are sufficient for the convergence of the above sequence 

toward a local minimum for Q{9).

P r o o f. Let M =  sup H2(0, z). From the conditions (2.4), it follows that there 
e.-

exists an integer mM such that

<2o /  am > M, for any m > ra_\j.

Therefore, for any m > m.\j the sequence (2.9) becomes:

9 m  ~  @ m —1 *t“ & m H l ( ^ 7 n — i ,  Z m )  X  H 2 ( $ 7 n —1> ~ m ) -

Since, {9m] is boimded, and H =  H], x H2 is defined so that — E{H(0, z)}  is 

proportional to the gradient of Q(9), we can conclude that for a large enough 

m, the conditions (2.4) are sufficient for the convergence of the above sequence 

toward a local minimum for Q(9), (Kushner and Clark 1978). The result 

therefore holds even with the above modifications on the updating functions. 

□
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Back to our application, where Q is the negative log-likelihood, we note 

that the j t h  component of Hi is

for the derivatives taken with respect to £. We have Ho =  y/Jt/c. H =

Hi x Ho is then proportional to the gradient of Q{6 ). Now we justify that

sup Ho(6 . z) < oc. Since we are sampling from a finite dataset, we can assume 
9 , :

that 2 is in a compact set. Although in our applications we did not set any 

bounds on {9m}. it is safe to assume that 6 is in a compact set; for example, in 

our applications, we noticed that Sm was always between 0 and the logarithm 

of the largest response count. In addition to (8 . z) being in a compact set, 

H2(0 , 2) is a continuous function. Thus, sup Ho(0,2) <  00.

The implementation of stochastic approximation involves choosing the 

number of iterations and the form of the gain function. The choices described 

below were made in HOI. The number of iterations is set at M  =  SOOOOVAk 

The gains are positive numbers approaching zero; more precisely,

on the following considerations. The constant controls the initial gain while 

cg controls how rapidly the gains approach zero. If initial gains are too large, 

then large initial perturbations of the reference points are more likely to result 

in convergence to a poor local optimum of the log-likelihood. If initial gains

tt7. _ dQ(6 ) /d 8
1 — CJ rn '■

where Cj = 1 for the derivatives taken with respect to 5 and 7 , and Cj = r 2/ 2

with Qq =  0.2-5, and cg = 0.01. The constants were chosen empirically based
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axe too small or the gains decrease too quickly, then perturbations may be too 

small for the process to reach an optimum. If the gains decrease too slowly, 

then the variance of the process may remain too high. The gain function for 8 

is asm =  a |j, and the gain function for 7 is =  a^ /2 . The specification of M  

and the gain functions is somewhat ad hoc but has been found to work well. 

We tried to find a theoretical justification for the choice of the gain function 

for 8, asm =  a£j, but could not. This choice is made on empirical grounds. 

In the following we justify the choice of the gain function for 7 ,  =  a ^ / 2.

Fixing 8 k ,  we choose the gain function for 7  such that the perturbations of 7 k  

and have effects of similar magnitude on 6k (x).

Set

wk =  exp (7  ̂ -  r " 2||x — f j 2).

Write hk =  hk(x. y. 6 ) minjfyTZ/c- as0/a sm}. After some manipulations, we ob­

tain that the perturbations of 7k  and have the following combined effect on

W k -  

w k  « -  u \ .e x p { a ^/?,fc( 4  -  f K )  +

{ 2 a ' m h k ( 8 k  -  f K )  ~  (<4 A ( 4  -  / k ) ) 2 } t - 2 | | x  -  ^ . | | 2 } .

The approximations below follow Hooper (1999). Recall that the parameter r  

is set to the average distance between nearest neighbors among the K  initial 

points If x  is midway between two reference points that are a distance of r  

apart, then we could replace ||x — £fc|| by r/2.  If is small, then (a^hkiSk — 

I k ))2 ~  0 compared to other terms. With these crude approximations, the
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exponent in the above equation becomes a^hkiSk —fx)+<4nhk{8k —fx ) /^ -  The 

choice a,  ̂=  a ^ / 2, makes the two terms equal and therefore the perturbations 

in 7fc and E,k will have effects of similar magnitude on b/c(x).

The theory of stochastic approximation indicates that, after an initial 

transient phase, the training process typically converges toward a local opti­

mum (Benveniste et al. 1990). There is no guarantee that a global optimum 

will be found, and replication of the process can produce varying results, but 

the algorithm typically yields reasonable results. As in HOI, the quality of the 

estimator is improved and variation under replication is reduced by restarting 

the process; i.e.. replicate the first 10% of the process ten times, minimizing 

the negative log-likelihood each time, then continue the process with the most 

promising vector of parameter values.

Finally, we note that, although the sequence converges in theory, we 

need to force the algorithm gains to approach zero at a faster rate after M /2 

iterations. When the minimum of the two quantities in the updating functions 

is a o / a m , this may produce bias in the estimate fx -  In such situations, we 

increase the number of iterations by one to correct eventual bias in the estimate

Ik -

2.2.2 Selection of K  using Akaike Information Criterion

Once f x  is estimated for fixed K,  we need a criterion to select an optimal value 

for K.  We will use the Akaike Information Criterion (Akaike, 1973). The basic 

idea of Akaike Information Criterion (AIC) is to correct the log-likelihood of 

a fitted model for the effective number of parameters. Using AIC, we select K
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to minimize:

AIC ( K )  = - 1(0 k ) + p ,

where
n

- 1(0 k)  =  ^(exp(/A -(x i)) -  y j x i ^ i ) )  +  const
i=  1

is the negative log-likelihood evaluated at the maximum likelihood estimator, 

and p = 1 +  (K  — l){d + 2) is the effective number of parameters. Therefore, 

AIC is equivalent to:

n

AIC(K) =  ^ ( e x p t f e tx ,) )  -  y J K(xi)) + ( K - l ) ( d  + 2). (2.10)
2 = 1

A straightforward search is used to minimize (2.10). The AIC(A) is evaluated 

for successive values of K. starting with K  =  1. The search stops when 

the minimum AIC remains unchanged for m  consecutive values of K .  The 

estimate K  therefore involves the calculation of K  + m  estimates f x -  The 

stopping value m = 3 is adequate in most situations.

Many regression methods select from a large set of potential basis func­

tions using forward selection and/or backward elimination strategies. ALB 

regression adopts a different approach. While K  is selected by sequentially 

calculating fx -  parameters are optimized separately for each K .  The para­

meters and basis functions determining f x  play no role in the calculation of 

I k + 1-

Computational speed is an important aspect when dealing with regres­

sion methods for high-dimensional data. Computation is reasonably fast for 

ALB models, particularly for large datasets. The computation time increases
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Table 2.1: Time (in seconds) to calculate / ,  including selection of K .  The first 
time corresponds to the Poisson version of ALB. while the second time, listed 
in parentheses, corresponds to the original HOI version.

k 1 5
d

10 20
i 3(2) 5(3) 6(5) 9(8)
2 4(4) 6(6) 9(8) 14(13)
5 9(9) 15(15) 22(22) 43(38)

10 24(23) 40(39) 64(56) 94(88)

with K  and d. but increases very slowly with n. Table 2.1 lists ALB model 

estimation times for a 850 MHz PC. In this table, the first time corresponds 

to the Poisson version of ALB, while the second time, listed in parentheses, 

corresponds to the original HOI version. Each value includes the total time 

needed to obtain } k for K  =  1, . . . ,  K  +  3. The sample size was n =  1000. 

The time is roughly linear in d, with intercept and slope depending on K,  

and roughly linear in K'2. with slope depending on d. The sample size n 

has relatively little effect on time because of the sampling technique used in 

the training algorithm. The number of iterations M  is proportional to \f~K. 

M  =  SOOOOv^- each iteration requires the evaluation of I\ distances, and 

each distance calculation time is proportional to the number of predictors d. 

We note that times for the Poisson version of ALB are slightly larger than for 

the original version, due to more complex updating functions and increase in 

the number of iterations. Times increase slowly with n because of increased 

overhead (data input and transformation, centering and scaling of the predic­

tors, calculation of the AIC criterion for the Poisson version of ALB, or GCV
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criterion for the original HOI version) and a tendency to select larger K.

2.2.3 Illustrations with simulated and real data

In this section, we illustrate the method using simulated and real data sets. 

E x am p le  2 .2.1 The first example is one dimensional (d = 1) and target 

function is an ALB function. A sample of size 1000 was generated with each 

predictor x  generated from a Uniform(—3,3) distribution. The reference point 

parameterization was used to specify fx -  fy =  1, £2 =  0, £3 =  —1, 71 =  7 2  =  

73 =  0, <5i =  1. <52 =  5. $3 =  1 and r  =  1. For each x, a response y was 

generated from a Poisson distribution with mean exp(/(x)). The estimate /  

is a linear combination of the K  =  3 basis functions plotted in Figure 2.2. A 

superimposed plot of the fitted function, exp( /)  and the true function, exp(/)  

versus the predictor variable x  displayed in Figure 2.1(a) shows an almost 

perfect fit. A plot of the difference between the fitted values exp(/) and the 

true mean function exp( /)  versus the predictor x  is also displayed in Figure 

2.1(b). The values of the difference between the fitted values and the true 

mean are in the range -0.4 to 0.4.

E x am p le  2.2.2 The second example is 4-dimensional and the target function 

is an ALB function with three basis functions. The reference point parameter­

ization was used to specify fx'- £1 =  (1, 0, 0, 0), £> =  (0, 1, 1, 2), £3 =  (1, 0, 1, 0), 

71 =  1,72 =  0 ,73 =  0.5. <5i = A. 62 = 0.5, £3 =  2.5 and r  =  1. A sample of size 

1000 was generated with each predictor vector x  generated uniformly on the 

hypercube (—3 .3)4. and for each x  a response y was generated from a Poisson 

distribution with mean exp(/(x)). The estimate /  is a linear combination of
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Figure 2.1: (a) Superimposed plot of the fitted function, exp(/)  and the true 
function. exp(/) versus the predictor variable, (b) Difference exp(/) — exp(/)  
versus the predictor variable.
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Figure 2.2: Basis functions for the ALB estimate, K  =  3.
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Figure 2.3: Difference /  — /  versus / .

the K  =  3 basis functions.

A plot of the difference /  — /  versus /  is shown in Figure 2.3. The 

differences range from -.3 to .6. Smaller differences axe observed for larger 

values of / .

Functions in three or more dimensions are difficult to visualize. HOI 

proposed a technique to visualize an ALB model in higher dimensions. Using 

the linear parameterization
K

Sk(x) = exp(a* +  & x )/ ^ 2  exP(d'm +  /?mx )
m = 1

and dividing the numerator and denominator by exp(d/c +  Qk ) ,  the estimate 

f x  can be expressed as:
K  K

f x  = hexpi&k ~  &k +  0 k ~  P k) 'x ) /  exp(dm -  a K + 0 m ~  Pk)'x)-
1 m = l
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There exist r  =  min(d, K — 1) vectors b i , . . . ,  b r in 3^. spanning the subspace 

that is spanned by the contrasts 81 — 3k- - • - • 3 k - i  — 3k-  The estimate f x  

can thus be expressed as a function of r linear combinations b^x , . . . ,  b rx. To 

visualize f x -  directions in the covariate space that best represent variation 

in f x  axe identified by carrying out a principal components analysis of the 

gradient sum-of-products matrix G =  ^  g(xi)g(x.i)'. where g(x) represents the 

gradient of /a '(x). The gradient vectors g(xi) he in the contrast subspace, so 

the rank of G  is at most r. Let e\ , . . . ,  eT be the eigenvalues of G in decreasing 

order and b i , . . . .  b r a set of corresponding eigenvectors of length one. Then, 

for j  = 1, . . . , r .  Gbj  =  e_,bj, which gives b^Gbj =  ejb'jbj, or equivalently, 

^b 'jg^X i)^ (x i)b j  = ej. We conclude that ^ { b ^ (X j)}2 =  ej. and therefore 

the first eigenvector bj maximizes the sum of squared gradients ^ { b '^ x ) } 2. 

If the first two eigenvalues are such that (ei +  eo)/(ei +  . . .  +  er ) ~  1, then a

05 o-

Q.
"O
C  CM.C  CM.

First principal gradient component First principal gradient component

Figure 2.4: Contour plots of (a) /  and (b) /  as functions of two linear combi­
nations (principal gradient components) of the original predictors.
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plot of Jk  versus (b^x, b ,x) accounts for nearly all of the variation in f x ,  and 

therefore f x  can be visualized in a three-dimensional plot.

Back to the second example, the two contour plots in Figure 2.4 show /  

and /  as functions of the two principal gradient components. We can see that 

f x  captures most of the curvature of the function / .  We note that we did not 

use the mathematical functions when generating the contour plots. We used 

the values of the function evaluated at the 1000 data points in the sample, 

and interpolated them onto an evenly spaced grid of the two predictors. The 

contour plots of the mathematical functions are smoother than what appears 

in Figure 2.4. Although the plots are not smooth, they still give indication that 

the estimate captures most of the curvature of the true regression function. 

E x am p le  2.2.3 The third example is 2-dimensional and the target function

CM-

~acu
Q-O
T3

0-0 -

CM- CM.

2 2-2 1 . 0  1 
First predictor

•2 1 0 1 
First predictor

Figure 2.5: Contour plots of (a) /  and (b) /  as functions of the two original 
predictors.
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is not an ALB function:

/(x )  =  sin(xia:2) +  2.

A sample of size 1000 was generated with each predictor vector x  generated 

uniformly on a hvpercube (—2, 2)2 and for each x  a response y was generated 

from a Poisson distribution with mean exp(/(x)). The estimate /  is a linear 

combination of the K  = 10 basis functions. Contour plots displayed in Figure 

2.5 show /  and /  as functions of the two original predictors. The estimate f x  

captured most of the curvature of the function / .

E x am p le  2 .2 .4  The real data used in the fourth example are from the But­

terfly Monitoring Scheme, which provides important information on butterfly 

population ecology and is based on transect counts at sites throughout Britain. 

At each site, an observer records all butterflies seen within prescribed limits

r—>

CO

o '

\JJ — —■7Z O

CM
o'

O
50. 1501 100 

Day number

c\f

o.

o-

0 50_ 100_ 150
Day number

Figure 2.6: Butterfly transect count data, (a) ALB fit with counts superim­
posed versus Day number, (b) Basis functions for the ALB estimate.
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along a fixed route (Pollard and Yates. 1993). The counts and Day number are 

recorded in 26 weeks from the beginning of April until the end of September, 

provided that weather conditions meet specified criteria. Figure 2.6(a) presents 

the ALB fit with the counts superimposed, for the Green-veined white species 

in site number 89. year 1998. The estimate /  is a linear combination of the 

K  =  5 basis functions plotted in Figure 2.6(b).

A plot of the deviance residuals versus the fitted values and a normal 

probability plot of the deviance residuals are displayed in Figure 2.7. Several 

definitions for residuals are possible. Pierce and Schafer (1986) discuss the be­

havior of different types of residuals and argue that deviance residuals are most 

useful, being nearly normally distributed and a natural choice for likelihood

0 5 10 15 , 20 25 30
Fitted values Suantiles of Standard^Norma?

Figure 2.7: Butterfly transect count data, (a) Deviance residuals versus fitted 
values, (b) Normal probability plot of deviance residuals.

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



based methods. Deviance residuals are calculated based on the formula:

Ro{y, n) = sign(y -  /t){2[y logy -  y log/i -  y +  £]}1/2,

where y log y =  0. for y = 0, a correction motivated by

lim ylogy = 0. 
y— o

A plot of the deviance residuals versus the fitted values in Figure 2.7(a) indi­

cates that the residuals are uniformly spread within a band around zero, in a 

range from -2 to 2. In Figure 2.7(b), a normal probability plot of the residuals 

indicates no serious departures from normality.

2.3 Predictive Accuracy

In this section we investigate the predictive accuracy of ALB models for Pois- 

son data. A measure of prediction error based on the deviance residuals is used. 

The prediction error is useful for comparing predictive performance between 

models. Simulation studies were performed to compare predictive performance 

of ALB models and Generalized Additive models(GAM). We discuss examples 

where ALB models perform better than GAM and also examples where GAM 

performs better than ALB.

2.3.1 A measure o f prediction error

In order to assess predictive accuracy, we fit the model on a data set (x*. iji), i =

1 . . . .  n  and then evaluate the fit using an independent sample of responses 

y*-,i= 1, —  n generated under the same distribution. In other words, (x*. yi), i
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1... , , n  is the training set used to obtain the fit fx, and (xz, y*),i =  1, .- - , n 

is the test set used for assessing predictive accuracy. The conditional distri­

butions of yi and y* given x z are the same. The closeness of y* and fx is a 

measure of goodness of fit.

For estimation based on maximum likelihood, it is natural to consider 

the deviance as a measure of closeness between the observed data and the fit:

n

D(y. ft) = 2 ^ ~2{yi log yi -  yt log fli -  yt + &),
i —1

where y  =  (yx, . . . ,  yn).

Let y * =  (y*.. . . ,  y*) be random with y*|xz ~  Poisson(jx(xi)).i =  1 , . . . .  n. 

In the light of the above ideas, we consider the following quantity of interest 

as a measure for the prediction error:

PE =  E{D(y*, fx)}. (2.11)

The expectation in the expression above refers to conditional expectation, 

given the values of x,-. i = 1 , . . . , n ,  taken with respect to the sampling dis­

tribution of fx and y*. The fit fx is calculated based on the training data 

(xj, yi), i = 1, . . . .  n. The prediction error estimated in this way is similar to a 

mean predictive squared error, and under many replications of the data, it is 

a measure of how good the fit is.

We note that with simulation studies, the true mean fx is known and 

therefore a lower bound on the estimated prediction error can be obtained by 

using the true mean y  instead of the estimated mean fi when evaluating the 

prediction error.
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2.3.2 Simulation studies

In the following simulation studies we investigate the predictive performance 

of ALB models for Poisson data. A comparison between ALB models and 

GAM in terms of predictive performance is conducted.

In each example, we generated a set {x1; . . . , x n} of predictor vectors 

from the uniform distribution on a hypercube (a, b)d. W ith this set of predic­

tors fixed, we then generated 100 independent sets {y i , . . .  ,y n} of responses, 

where yi has a Poisson distribution with mean //(x^) =  exp(/(xj)). The ALB 

estimate fi was calculated for each sample and a measure of prediction error 

was evaluated over the independent sample of the remaining 99n observations. 

Averages of the prediction error over the 100 samples are reported in Table 2.2. 

The same measure was evaluated for GAM estimates. Details on smoothers 

used to fit GAM are given at the end of this section. Since the true mean y  

is known, a lower bound on the prediction error is also provided. The lower 

bound is obtained by replacing jx with y  in equation (2.12), and it is different 

for different sample sizes. Averages of K  are also reported to check whether 

over-estimation of K  occurs with increased sample size. Various examples were 

chosen to investigate how comparative performance depends on the function 

/ ,  the dimensionality d and the sample size n. Some examples have several 

values of d to demonstrate the adverse effects of nuisance variables.

E x am p le  2.3.1 Adaptive estimators should detect real structure where it 

exists and ignore spurious structure caused by random variation. The first 

example focuses on this goal by examining performance when the underlying
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regression function /  is constant. We would hope that, in most samples, ALB 

selects K  =  1. Indeed, ALB selected K  — 1 with frequencies 96, 98, 98, 92, 

99, 90 and 96. Table 2 2 shows that accuracy improves with increased sample 

size. The accuracy deteriorates as d increases because of effects of nuisance 

variables.

E x am p le  2.3.2 A sample of size n  was generated with each predictor vector 

x  generated uniformly on the hypercube (—3 ,3)d. The function is a linear 

function of the first covariate:

f{ x )  = l  + Xi/A.

ALB selects k  = 2 in most samples, as expected. ALB and GAM prediction 

error measures are very close. Accuracy improves with increased sample size. 

The accuracy deteriorates as d increases because of effects of nuisance variables. 

E x am p le  2.3.3 In the third simulated study the function is an ALB function 

of the first covariate. A sample of size n  was generated with each predic­

tor vector x  generated uniformly on the hypercube (—3 .3)d. The reference 

point parameterization was used to specify Jk - =  1, £2 =  0, £3 =  — 1, 

7i  = 72  =  73  =  0. =  1. =  5, <53 =  1 and r  =  1. The underlying regres­

sion function /  is bell-shaped, and therefore three basis functions would be 

needed to estimate it. ALB selects k  = 3 in most samples, as expected. A 

comparison of the average prediction error for ALB and GAM indicates that 

ALB performs better, as expected, since the underlying regression function is 

an ALB function. When adding four nuisance variables, {d =  5) the accuracy 

deteriorates affecting ALB more than GAM, especially for the smaller sam-
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pie size, n =  50. Methods that fit each axis separately, such as GAM, are 

expected to perform better with this example. However, the affine invariance 

property of ALB indicates that a rotation of the coordinate axes would create 

higher-order interactions, adversely affecting GAM but not ALB.

E x am p le  2 .3 .4  A sample of size n was generated with each predictor vector 

x  generated uniformly on the hypercube (—1, l ) d. The function is not an ALB 

function:

_  2sin(7r(a:i + 1)/2)
I{  } ( s i /2  +  1)

The prediction errors for the two methods are very close, especially with larger 

sample sizes, n  =  100 and n =  200. For a smaller sample size, n  =  50, GAM 

performs slightly better. When adding four nuisance variables, (d =  5) the 

accuracy deteriorates affecting ALB more than GAM, especially for the smaller 

sample size, n =  50. Methods that fit each axis separately, such as GAM, are 

expected to perform better with this example. However, the affine invariance 

property of ALB indicates that a rotation of the coordinate axes would create 

higher-order interactions, adversely affecting GAM but not ALB.

E x am p le  2.3.5 A sample of size n was generated with each predictor vector 

x  generated uniformly on the hypercube (—1, l)d. The target function is an 

additive function of the first two covariates:

f fx) -  1 5 i2 +  1 +  1)/2)! W -  1.51, +  1.5 M 2 + 1 )  ■

GAM performs better than ALB, as expected since the underlying regression 

function is an additive function. The difference in the prediction errors is 

smaller as n increases: .11 for n  =  50, .05 for n = 100 and .03 for n =
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200. When adding three nuisance variables, (d =  5) the accuracy deteriorates 

affecting ALB more than GAM, especially for the smaller sample size, n =  50. 

Methods that fit each axis separately, such as GAM, are expected to perform 

better with this example. However, the affine invariance property of ALB 

indicates that a rotation of the coordinate axes would create higher-order 

interactions, adversely affecting GAM but not ALB.

Example 2.3.6 A sample of size n was generated with each predictor vector 

x generated uniformly on the hypercube (—3 ,3)4. The target function is an

ALB function defined on a 3-dimensional projection of SB4; ie., /(x ) =  f x { z)

where K  =  5, z = (ci, 22, - 3/ ,

zi = y/3(xi +  x2 4- x z +  x4 -  2) 

zo = \/3(a:i + Xo — x$ — Xa) 

zz = VZ(xi - x o  + X z~  Xa)

The reference point parameterization is used to specify Jk- f i =  (1,0,0)', 

& =  (-1 ,0 ,0 )', & =  (0,1,0)', £4 =  (0,0,1)', & =  (0,0,0)', 71 =  72 =  73 =  

74 =  7 5  =  0, <5j =  5o = .5, Sz = d4 =  3.5, <fy =  0 and r  =  1. The function /  can 

be expressed as an ALB function of x  and has interactions of all orders among 

the four covariates. The performance of ALB is substantially better than that 

of GAM. GAM has difficulty modeling higher order interactions, even when 

n is large. With n = 50, there are not enough degrees of freedom for GAM 

to model three-way interactions. W ith n  =  200, there are not enough degrees 

of freedom for GAM to get all three-way interactions. In further simulations, 

the average prediction error for GAM remains roughly constant as n  increases
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Table 2.2: Performance measures: prediction error averages from 100 repli­
cated samples of size n for Poisson version of ALB models, Generalized Ad­
ditive model together with the corresponding lower bound of the prediction 
error.

No. d n k lower bound ALB GAM
1 1 50 1.04 1.2124 1.2424 1.2829

1 100 1.02 1.1990 1.2080 1.2271
1 200 1.02 1.2061 1.2113 1.2209
5 50 1.08 1.2161 1.2634 1.4159
5 200 1.01 1.2083 1.2139 1.2649
10 100 1.10 1.2049 1.2439 1.4049
10 200 1.04 1.2187 1.2304 1.3271

2 1 50 2.03 1.2840 1.3545 1.3505
1 100 2.02 1.2864 1.3238 1.3190
1 200 2.03 1.2641 1.2838 1.2817
5 50 2.06 1.2936 1.5179 1.5145
5 100 2.13 1.2751 1.3854 1.3761

3 1 50 3.01 1.2611 1.3820 1.4047
1 100 3.00 1.2467 1.3028 1.3234
1 200 3.00 1.2511 1.2802 1.2910
5 50 3.26 1.2685 1.7258 1.5593
5 200 3.02 1.2391 1.3952 1.3211

4 1 50 3.02 1.2710 1.3862 1.3797
1 100 3.05 1.2741 1.3354 1.3321
1 200 3.01 1.2578 1.2884 1.2901
5 50 3.24 1.2385 1.5795 1.4855
5 200 3.21 1.2554 1.3422 1.3329

5 2 50 4.08 1.2608 1.5430 1.4312
2 100 4.17 1.2534 1.4063 1.3522
2 200 4.54 1.2437 1.3258 1.2936
5 50 4.08 1.2362 1.7628 1.5051
5 200 4.26 1.2525 1.4042 1.3336

6 4 50 4.03 1.2619 1.7703 4.8466
4 100 4.23 1.2369 1.7172 3.0891
4 200 4.28 1.2548 1.6868 2.5479
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from 200 to 2000.

Now we provide details regarding smoothers that have been used when 

fitting the above GAM’s. We used the ‘gam’ function in R, package ‘mgcv’. 

For the first five examples, no attempts to model interactions were made, 

since they were not present in the true regression function. Smooth terms 

are represented using penalized regression splines with smoothing parameters 

selected by either a Generalized Cross-Validation criterion(GCV). or an Un- 

Biased Risk Estimator criterion(UBRE) which is in practice an approximation 

to AIC. (Wood. 2003). Smoothing parameters are chosen to minimize the 

GCV or UBRE score for the model. To model interactions, multi-dimensional 

smooths are available using penalized thin plate regression splines. For the 

last example, with n =  50, we used a two-dimensional smooth surface based 

on thin plate regression splines to model the interaction between two of the 

predictors. When trying to add one more two-dimensional surfaces, there 

were not enough degrees of freedom to model it. W ith n = 100, we were 

able to include a three-dimensional smooth surface to model the interaction 

between three of the predictors and a two-dimensional interaction surface, but 

there were not enough degrees of freedom to add other second or third order 

interactions. W ith n  =  200, we used three-dimensional smooth surfaces based 

on thin plate regression splines to model the interaction between three of the 

predictors. We were able to include two third-order interactions, but there 

were not enough degrees of freedom to add a third one, or a second order 

interaction. We also modeled three-way interactions using locally weighted
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surface smoothers in S-Plus. For a sample size of n = 200, we were able to 

model only two such interactions, there were not enough degrees of freedom to 

add another surface. The results were worse than when using penalized thin 

plate regression splines in R.

2.4 Standard Errors

This section presents approximate standard errors for the ALB estimator. 

Given the adaptive nature of the ALB models, difficulties in deriving stan­

dard errors are expected. We derive approximate standard errors for the fit 

assuming that the number of basis functions is fixed and employing a standard 

asymptotic technique in nonlinear regression analysis. Our derivation extends 

that of HOI from Normal errors to the more general quasi-likelihood context. 

Coverage probabilities will be estimated in several simulation studies.

We tried to develop some intuition on a different technique for estimating 

standard errors for the fit. This was an attempt that failed to yield useful 

standard errors. I mention it because it was instructive to see why the method 

fails. The technique is derived and discussed in the Appendix.

The bootstrap is another technique to obtain standard errors. When 

thinking of implementing bootstrap, we need to keep in mind that the compu­

tation complexity when using stochastic approximation is high. The algorithm 

is reasonably fast when used to fit the model once, but the computation is too 

complex for the algorithm to be iterated 10000 times, as would be required by 

the bootstrap technique. Alternative non-stochastic optimization techniques,
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such as Newton-Raphson, might be used to increase computational speed in 

smaller problems, allowing the use of bootstrap errors. Although we have not 

implemented this method, we mention here its advantages and disadvantages. 

First, we note that to implement Newton methods in the ALB context, ad­

justments have to be made to correct for the Hessian singularities caused by 

redundancies in the ALB parameterization. Although the convergence prop­

erties of Newton methods are unsurpassed, they are not necessarily so well 

behaved away from the global optimum. Good starting values are needed 

to ensure convergence towards a global optimum. The computation time in­

creases with sample size and sometimes convergence is not achieved because 

of the large number of parameters.

2.4.1 Approxim ate standard errors

In this section, approximate standard errors for the ALB estimator are de­

rived. Our derivation assumes that K  =  K  is fixed and /(x) = //c(x) for 

some parameter vector 6 € ^ 2+d̂ K. Approximate standard errors are derived 

in a general quasi-likelihood context. In the following, we assume that the 

components of the n-dimensional response vector y =  { y i , . . . . y n) are inde­

pendent with conditional mean vector fx = ( y i , . . . .  fin) and covariance matrix 

a2V(y),  where a 2 may be unknown and V(fi) is a diagonal matrix of known 

functions, V(fj,) =  diag(Vj(^i),..., Vn (fin ) ) ,  y { =  f i (X i ) .  There are no other as­

sumptions about the conditional distribution of y  given x. For the case where 

the conditional distribution of y i  given x* is Poisson with mean fit , we have 

a2 = 1 and V (y )  = diag(//1, . . . ,  y n).
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The quasi-likelihood function, for one observation, is given by:

Q{9\x,y) = f  
J%1

11 y — t
y ° 2 t

dt.

An estimate of the p-dimensional parameter vector 9 is obtained by solving 

the quasi-likelihood equations:

m  =  d Q ( g y )  =  D,v - : ( y ^ l  .  0,
da a 1

where D is an n x p matrix of partial derivatives:

D =  (D(xl ,0) , . . . ,D (xn ,$))',

m df i(x i ,e )v  r__. ,D(x,,9)  = = for , =

Standard errors of the fit /i(x) =  exp (/k-(x)) are obtained using the 

Delta method, following HOI. The regression function is approximated locally 

near 6 by a linear function of 0 ,

//(x, 9) as /i(x) +  (9 -  9)'- - ^ - -- a n  =  £ (* )  +  {Q -  0 ) 'D (x ,  9).
09 9=9

Hence, given x. the standard deviation of jj,(x) is estimated by

se{/t(x)} =  [D'(x, 9)cov(9)D(x. 9)]1̂ 2. (2-12)

All we need now is an estimate of cov(0). We discuss here three approaches 

to estimate cov(0).

The first approach extends HOI in the quasi-likelihood context. The 

information matrix for 9 is given by

m  =  i  w - ' D  =  T  D ^ ) vr l i m ) D ' ( ^ e )
2=1
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Under regularity conditions. (Lehmann, 1998, page 469) the asymptotic co- 

variance matrix of the maximum likelihood estimator is given by the inverse of 

the information matrix. Redundancies in the ALB parameterization present 

a problem here, since the information matrix is not invertible. As in HOI, 

this problem is resolved by multiplying the diagonal elements of the informa­

tion matrix by a constant close to 1, and leaving the off-diagonal elements 

unchanged. An estimate of cov(O) is then given by:

COv(0) =  a2(D'V~lD  +  fcA)"1, (2.13)

where A =  diag(D'V~lD). A small constant k  =  .01 is used in the above 

formula. Notice that the operation D'V~lD+.01A has the effect of multiplying 

the diagonal elements of D'V~lD  by 1.01 and leaving the off-diagonal elements 

unchanged.

We now present the second approach to estimate cov(0). An alternative 

solution to the redundancies in the parameterization is to fix some of the 

parameters, get rid of the redundancies in the parameterization, and apply 

the usual asymptotic techniques to calculate cov(0). An interesting question 

is whether the two approaches yield essentially the same results. We start by 

proving this result for the usual linear regression setting, with identity link 

and constant variance assumption.

Theorem 2.3 Assume E(y) =  Xi/3, cov(y) =  a2In. where X \  is n x p  matrix 

with full rank p. Let p be a q-dimensional vector and Xo be a n  x q matrix, 

such that q > p. span(A'i) =  span(.Yo) and X \ (3 =  Xop. Then.

/3 =  Aq. where A  =  {X[Xi)~l X'-^Xop is a p  x q matrix .
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Let Eg =  cov(/3) =  a2(X[Xi) 1. We approximate cov(fj) by a2(X2X 2+kA) 1. 

where A  =  diag^Ao-W). Then. can be approximated by 

= a2A ( X 2X 2 + k A )" 1A ';

P roof. Using the Spectral Decomposition Theorem. X 2X 2 = P D P ’. where 

P  is a q x q orthogonal matrix and D is a q x q diagonal matrix. Moreover, 

since X 2 has rank p.

D =  diag (d1, . . . , d p, 0 , . . . , 0 ) = ( n D n  V
\  (?—p)xp (?—p)x(?—p)/

where D u  =  diag(di, . . . ,dp).  It follows that the last q — p columns of X 2P  

are all zeros; i.e.. X 2P  =  (Eqxp : 0gx(9_p)). We have,

Then. =  a~AP{D +  kC)~lP'A'.  Since A P  =  (X ^ ) - 1 X [ X 2P  and the 

last (q—p) columns of X 2P  are all zeros, it follows that the last (q—p) columns 

of A P  are all zeros as well; i.e., A P  =  (FpXp ■ 0Px(<?_?))-

Now let us look more closely at D + kC, and its inverse. Set Hgxq =  

D  +  kC.  Both matrices Hqxq and Cqxq can be decomposed as follows:

and

X 2X 2 + kA  = P D P ' A  kA,

P(D  +  kP'AP)P',  

P(D + kC )P \  where C = P' AP.
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where H n  and Cn  are p x  p  matrices. H\o and Cn  are p x (q — p) matrices,

Hoi and Co\ are (q — p) x p matrices, and Hoo and Coo are q x q matrices.

W ith these notations:

H\\ Hio\    ( Du  -F kCn kCio
Hoi Ho_o_) ~  \  kCoi kCoo

Let us now look more closely at H ~ l . Set

, _  ( H "  H '* \
"  -  { f } 2' H 22)  '

A matrix computation result gives the following expression for H n :

H n  = (Hn  -  H n H ^ H o n ) '1.

Using the standard notation Hn-o =  Hn  — HioH^o Ho\. we have:

H u  =  (Dn + kCn-kCio_(kCo_o)-l kCo_i)~l 

= (Dn  +  kCn .o) x,

and therefore.

lim H n  =  D n .
k—o

Now let us get back to deriving E^. We have:

=  cr(Fpxp : 0Px(q-p))H (Fpxp : OpX(q_p))

=  a2F H n F \

and therefore.

lim So =  g 2F D 7 } F ' . 
k—o p
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On the other hand, we have:

Eg =  < ? ( X \X { T \

Since, span(A'i) =  span(Xo), there exists a q x  p matrix G, such that X i  =  

XoG. It follows that:

=  g 'x '2x 2g  

= g ' p d p ' g

= G' PiDnP'iG,

where Pi is the q x p matrix given by the first p columns of P. We note that 

since X [ X \  is invertible, G'P\ is also invertible, and therefore:

(XlXO" 1 =  ( P ^ r ^ G ' P ! ) - 1.

Now it remains to prove that F  =  (PjG )-1. We have:

F  =  ( X lX O -^ X - P i

=  {P[G)-l D ^{G '  P ^ G '  X^XoP,

=  {P[G)-lD ^{G '  P ^ G '  PDP'

=  ( P ,1G ) - 1D ^ ( G ' P 1) - 1G ' P 1D u P [ P i  

= (P[G)~\

□
We now justify this result for the ALB model in the quasi-likelihood 

context. Fix and ~;k  and shift 7 .̂ =  7*. — 7^ . £k = £k — %K for k =
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1, . . . .  K  — 1, to get rid of the redundancies in the ALB parameterization. Set 

&i = (<^i-7i ~ 1 k ,€k - i - £ k '&k )

( 3  =  O i

V =  0

and

X i  =  ( an n x (1 +  (K  -  1 )(d + 2)) matrix
V O 0 i j  J

X o  = ( an n x K(d  +  2) matrix.
\  9 0  j  J  i j

Note that X \  is obtained from X o  suppressing the components corresponding 

to derivatives of ^(x;, 0) with respect to 7k  and %K. With these notations, we 

obtain the following expression:

=  cov(0i) =  a2^ ' ! / - 1̂ ) - 1. (2.14)

We have span(WO =  span(X2) and Xx/3 =  X27?, proof given in the next 

paragraph. It follows that:

/3 =  ( X ^ V - ' X ^ - ' X ' ^ ’- 'X o T )  =  A t).

where .4 =  (X( V' - 1 X i) “1 X( V*~1X2. Now, we follow the same steps as in 

Theorem 2.3 and adjust for the quasi-likelihood context. We approximate 

cov(0) =  cov(ij) by a 2(X2'Vr - 1X2+&A)-1, where A =  diag(XoVr-:LX 2). Then, 

can be approximated by

t p  =  a 2 A { X ' o V ~ l X o  +  k A ) - \ A \
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The proof of this result and the matrix derivations follow analogous to the 

proof of Theorem 2.3.

We now prove that span(Xi) =  span(Xo) and X\(3 =  XoTj. To simplify 

the derivations, we prove these results for a two dimensional vector 0 =  77 =  

( 7 7 1 , 7 7 2 )' and i3 = Vi ~  r l 2 -  The proof for vectors of several dimensions follow 

easily analogous to the proof for two-dimensions. We have:

X\  =  (<7i(xi))fj.an n x l  matrix 

Xo = (flrj(x i))i • an n  x 2 matrix ,

where
dg{x, Oj)

’ ~  30} '

Since /i(x.r)i.r)o) =  — rjo.O). it follows that g\ + g2 =  0. Hence.

span(W ) =  span(A'o) and X\(3 =  Xyg.

Here is the third approach to estimate cov(0). It is well known that the 

maximum likelihood estimator is asymptotically equivalent to the estimator 

obtained by a single Newton-Raphson step starting at the true 0:

0! = 9  +  (D’V - 1D ) - 1D ,V ~1(y -  n).  (2.15)

Here 9 1 is different than in the previous paragraph. We derive cov(0x) and use 

it to approximate cov(0). Under regularity conditions, (Lehmann, 1998, page 

469) the asymptotic covariance matrix of the maximum likelihood estimator is
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given by the inverse of the information matrix. The redundant ALB parame­

terization of 0  presents a  serious problem here, since the information matrix is 

singular. Even if some parameters were fixed to remove the redundancies, fur­

ther difficulties might arise from multicollinearity among the estimated basis 

functions. These problems are addressed using a ridge regression technique.

Using the notation. F  =  o~xV ~ ll2D and z =  a~1V~1̂ 2(y — fx), equation 

(2.15) becomes:

6 l = e + {F'F)- lF'z. (2.16)

To correct for the singularities in F'F.  we use the Levenberg-Marquardt com­

promise. (Bates and Watts 1988. Section 3.5.2). The approach is summarized 

below. Set A =  diag(D'V~lD) and

^  =  (  a~lk ll2A ll2 )  and z = ^ j  ,

where k is a small positive constant. With this notation, equation (2.16) is 

replaced by

0 1 = 6 + (F'F)~lF'z.

Further calculations give

e 1 = d +  (D'V~lD +  k A ) - lD ' V ~ \ y  -  fi),

and therefore the covariance of 6 \ becomes

cov (01) =  g2(D'V~1D +  h& )- lD 'V - lD {D 'V - lD  +  k A ) ~ \  (2.17)

We now look more closely at equations (2.13) and (2.17). Let A  =  

D 'V~lD. B  = D'V~lD + k A  and C = kA.  Then B  =  A  + C  and B ^ A B ' 1 =
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B~1(A + C  — C)B~l = B~ l - B ~ lC B ~l . Using the ordering of positive definite 

matrices, it follows that B~lA B ~ l < B~ l . and therefore the approximate 

standard errors based on equation (2.17) are smaller than the ones based on 

equation (2.13). leading to more liberal confidence intervals. Based on these 

considerations, we decided to use the approximate standard errors based on 

equation (2.13).

If cr is unknown, its conventional estimator is a moment estimator based 

on the residual vector y — y, namely

The interval p,(x) ±  2se{/t(x)} provides an approximate confidence in­

terval for /z(x) with nominal 95% coverage probability. One may note four 

potential problems with this simple confidence interval. First, the ridge mod­

ification to D'V~1D produces a slight downward bias in the standard error. 

Second, the quality of the linear approximation of /z(x) =  exp(/)<•) may be 

poor. Third, standard errors account for variance but not bias. If y  is poorly 

approximated by exp(/%) then exp(/%(x)) may have substantial bias relative 

to its standard deviation. Fourth, and perhaps most important, the deriva­

tion assumes that K  is fixed. The effect of adaptive selection is unknown. It 

seems likely that variation in K  will increase variation in <r, and hence in the 

standard error.

The simulation studies in Section 2.4.2 suggest that the confidence in­

tervals tend to be liberal. Given a nominal 95% confidence level, the coverage 

probabilities in our examples (averaged over Xi, . . . ,  xn) are between 86% and

(2.18)
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95%.

2.4.2 Simulation studies on standard errors

In each example, a set { x i , . . . ,  x n} of predictor vectors was generated from the 

uniform distribution on a hypercube (a, b)d. W ith this set of predictors fixed, 

we then generated 100 independent sets {yu- . . . y n} of responses, where yi has 

a Poisson distribution with mean /x(Xj) = exp(/(x,)). The ALB estimate p  

and the standard errors of the fit were calculated for each sample, according to 

the formula on the last paragraph. Averages over the sample of the observed 

coverage probability of a nominal 95% confidence interval for p,(x) =  exp(/(x)) 

are reported in Table 2.3. Also, a measure of variability for each coverage 

probability is reported. Various examples were chosen to investigate how the 

coverage probability depends on the function / ,  the dimensionality d and the 

sample size n. Some examples have several values of d to demonstrate the 

adverse effects of nuisance variables.

We denote by Xi, Xo...., xn the covariate vectors representing a sample of 

size n. For i =  1..... n. we denote by tt* the population coverage probability of 

a nominal 95% confidence interval for /r(x,), and by pt the sample proportion, 

or observed coverage probability of a nominal 95% confidence interval for /i(xz) 

obtained from the m  =  100 replicates, i.e.:

1 m
Pi =  —  Y ]  41 p ( * i )  -  Pi(xi) I <  2se{/x/(xi)}], m  ' i=i

where pi is the fit based on the Z-th sample. Let tt =  ^  tu jn  and p = Y lP i /n - 

We note that p  represents the observed coverage probability of a nominal 95%
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confidence interval for /t(x), averaged over the sample. We will also refer to it 

as CP//. Then, cri =  £ ~  ^)2 is a measure of variability in the coverage

probabilities. In our simulation studies, we report the following estimate of an 

upper bound on cc:

c l  «  - ( ^ P i ( l  -  Pi)/m +  ^ { p i  -  p f ) .  (2.19)
n z z '

i = l  i = l

We give the derivation of the above estimate at the end of this section. 

Example 2.4.1 In the first example the underlying regression function /  is 

constant.

Example 2.4.2 A sample of size n  was generated with each predictor vector 

x generated uniformly on the hyper cube (—3 .3)d. The target function is a 

linear function of the first covariate:

f ( x )  =  1  +  X J 4 .

Example 2.4.3 In the third simulated study the target function is an ALB 

function of the first covariate. A sample of size n  was generated with each 

predictor vector x generated uniformly on the hypercube (—3 ,3)d. The refer­

ence point parameterization was used to specify f x '  £i =  1, £2 =  0, £3 =  —1, 

7 i — 72 =  73 =  0, di =  1, So =  5, 5z =  1 and r =  1.

Example 2.4.4 A sample of size n  was generated with each predictor vector 

x generated uniformly on the hypercube (—1, l ) d. The target function is not 

an ALB function:

-  2sin(7r(x1 +  l) /2 )
} (z i/2  +  1)
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E xam ple  2.4.5 A sample of size n  was generated with each predictor vector 

x  generated uniformly on the hypercube (—1, l)d. The target function is an

additive function of the first two covariates:

,sin(7r(:r2 + 1) /2)
/ (x )  =  l.bx\ +  1.5-

(*2 /2  +  1)

Table 2.3: Coverage probabilities averaged over 100 replicated samples to­
gether with corresponding measure of variability a-.

No. d n CP^
1 1 100 .95 .02)

1 200 .97 .02)
1 400 .92 .03)
5 100 .98 .01)
5 200 .95 .02)
5 400 .95 .02)
10 100 .95 .02)
10 200 .95 .02)
10 400 .96 .02)

2 1 100 .96 .02)
1 200 .95 .03)
1 400 .95 .03)
5 100 .91 .04)
5 200 .91 .04)
5 400 .90 .05)

3 1 100 .95 .03)
1 200 .93 .03)
1 400 .94 .03)

4 1 100 .94 .04)
1 200 .94 .03)
1 400 .91 .04)

5 2 100 .89 .06)
2 200 .90 .07)
2 400 .86 .08)

6 4 100 .91 .04)
4 200 .93 .03)
4 400 .93 .04)
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E x am p le  2.4.6 In the sixth simulation study the target function is an ALB 

function with K  =  2. A sample of size n was generated with each predictor 

vector x  generated uniformly on the hypercube (—3 ,3)d. The reference point 

parameterization was used to specify fx'- =  (1, 2, 2, —1)', £2 =  (2, 1, 1, 2)', 

7i =  72 =  0, <5i =  0.2. d2 =  3 and r  =  2.

The simulation studies suggest that the confidence interval are typically 

liberal, with average coverage probabilities between 86% and 98%. The first, 

second and third examples are well approximated by an ALB function, for 

d =  1. The target function in the third example is in fact an ALB function. For 

these examples the coverage probabilities are closer to .95. When increasing 

the dimensionality d =  5, or d =  10 in the first two examples, we notice a drop 

in the coverage probabilities. The fourth example is again one-dimensional, 

but the target function is not an ALB function, the coverage probability drops 

to .91 for n =  400. The coverage probabilities drop even more to .86, for 

the two-dimensional fifth example, where the target function is an additive 

function. We remind the reader that our approximate standard errors account 

for variance but not for bias. With an additive function, the true mean may be 

poorly approximated by an ALB function, and therefore exp(/^(x)) may have 

substantial bias relative to its standard deviation, resulting in lower coverage 

probabilities. In the sixth example, the target is an ALB function in four 

dimensions, the coverage probabilities are .93 and .91, a bit lower than the 

nominal 95% confidence level.

Now we give the derivation of expression (2.19). In order to get an
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estimate of cc, we use the decomposition:

n  n

^ ( T T i - f r ) 2 =  +  fr)2
2 = 1  2 = 1

=  Y ^ - P i f  +  Y ^ ( P i - P ) 2 +  n ( p - 7 t ) 2 +
i = 1 7=1

n  n

+  2 ^ ( T T i  -  P i )  (P i  -  p )  +  2 ^ ( T T i  -  P i )  ( p  -  7f )  +

7=1 7=1
77

+  2 ^ ( p i - p ) ( p - f r )
7=1

=  X ^ ( ^ - P i ) 2 +  ^ ( P i - p ) 2 +  ^(p-7T)2 +
7=1 7=1

77

+  2 ^ ( 7 ri - p i ) ( p i - p ) + 2 n ( 7 r - p ) ( p - 7 r )  +  °
7=1

77 77

7=1 7=1
77

+  2 ^ ( 7Ti - P i ) ( p i  - p ) .

Thus,

2= 1

77

or2 =  - ^ ( » i - p i ) 2 +  - ^ ( p i - p ) 2- ( p - 7 r ) 2 +  - ^ ( 7 r i - p i ) ( p i - p ) .  (2.20)
n *■—' n z—' n  z '2=1 2=1 2=1

We have mpi ~  Bin(m .",). pi's not necessarily independent. We expect 

Corr(pi,Pj) to be higher when ||xj — Xj|| is small. We note that pi =  pj if 

Xi =  Xj. The second last term  in the above equation is negative. If we assume
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independence of the p i s, then:

E ( p - i r )2 =  E / t i ^ t a - T r i ) ) 2!

=  E( i  ̂ 2(Pi -  *i) J 2 (pj -  * j )}
i  i = i  j = i  j

=  ^ E E f e - ^ ) 2
2 = 1

= ^ E Varfe)
2=1

1 xn A 

U i= 1

On the other hand, if all tt* are equal and all Pi are equal, then:

E (P -  7f)“ =  E(pi -  7Tj)2 =  7Tj(l -  7ii)/m.

We note that the last term in equation (2.20) is likely negative, because if Pi 

is smaller than the average p, than pi is more likely to be smaller than tt*. 

Conversely, if p{ is smaller than tt*. than pi is more likely to be smaller than p. 

Since m pi ~  Bin(m. tt,) and E(7Tj — p i'2 =  Vai(pi)  =  7^(1 — i~i)/m. which can 

be estimated by p,(l — P i ) / m ,  we obtain a conservative measure of variability 

in the coverage probability:

a l  «  - ( f ^ P i i l  -  P i ) / m  +  Y ^ { p i  -  p ) 2). 
n *—' *—'

i= l  i = l
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2.5 ALB models for Poisson counts observed 
over tim e

2.5.1 Estim ation

In the following, we consider the situation where the counts Yi are recorded 

over time periods of different lengths £*. We will show how ALB models can 

be used to model such data sets. The conditional distribution of y given (£, x) 

is assumed to be Poisson with mean y. Extending ALB in the GLM context, 

we end up with the following model:

E(yi\tu Xi) = & = fjtfaxi),

g { m / U )  =  /*(Xi),

where g is known function linking y / t  (i.e., mean count per unit time) to 

/ a t ( x ) .  Here we use:

g{fn/U) = log {y-i/ti).

The conditional log-likelihood for one observation, (t. x, y) is given by

l (9\t ,x .y) = —y  + y logy — log y\

= —(y/ t) t  +  ylog(y/t)  + y log(f) — logt/!.

The last term in the log-likelihood is treated as a constant. It is reasonable to 

work with an optimization criterion that is invariant with respect to changes 

in time scale (eg., second to minutes), and therefore we will keep the term 

y  log(i) in our log-likelihood function, even though it does not depend on any 

of the parameters. Indeed, l(0'\t.x,y) =  —y  + y logy  and y  does not change 

when the time scale is changed.
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According to equation (1.4), the gradient of the log-likelihood can be 

written as
8 l{6 \ t ,x,y) , ^d fK

ee =
The components of the gradient of }k  were derived in HOI, equation (10). 

Therefore the updating formulae of the parameters at the m-th iteration stay 

the same as in (2.8). but with log(///f) =  fx -

2.5.2 Illustrations with simulated data

Two of the simulated examples from Section 2.2.3 are used here to illustrate 

the efficacy of the algorithm described above.

E xam ple  2.5.1 The first example is one dimensional (d =  1) and the tar­

get function is an ALB function. A sample of size 1000 was generated with

io
CM

O

©  O- O <-Tc o

3= ° . =o o"
LO
O .
o

I I I I I I I

•3 -2 -1 0 1. 2  3
explanatory variable

3 -2 -1 0 1. . . 2 3
explanatory variable

Figure 2.8: (a) Superimposed plot of the fitted function, exp(/)  and the true 
function, exp( /)  versus the predictor variable, (b) Difference exp(/) — exp(/)  
versus the predictor variable.
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each predictor x  generated from a Uniform(—3,3) distribution. The reference 

point parameterization was used to specify Jk- £1 =  1, £> =  0, £3 =  — 1, 

=  73 =  0, £1 =  1, So =  5. 83 =  1 and r  = 1. A sample of 1000 

time points t  was generated with replacement ranging from 1 second to 180 

seo .' ids. For each (t, x). a response y was generated from a Poisson distrib­

ution with mean £exp(/^(x)). The estimate /  is a linear combination of the 

K  =  3 basis functions. A superimposed plot of the fitted function, exp(/) and 

the true function. exp(/) versus the predictor variable x  displayed in Figure 

2.8(a) shows an almost perfect fit. A plot of the difference between the fitted 

values exp( /)  and the true mean function exp(/)  versus the predictor x  is also 

displayed in Figure 2.8(b). The difference between the fitted values and the 

true mean are in the range -0.10 to 0.15. In effect, the sample size when using 

the time variable is between 1 and 180 times that in the similar example of 

Section 2.2.3. Therefore, we should obtain a better fit, when using a time 

variable. Indeed, the difference between the fitted values and the true mean 

for the similar example of Section 2.2.3 are in the range -0.4 to 0.4.

E xam ple  2.5.2 The second example is 2-dimensional and the target function 

is not an ALB function:

/(x )  =  sin (x 1X2) +  2.

A sample of size 1000 was generated with each predictor vector x  generated 

uniformly on a hyper cube (—2,2)2 A sample of 1000 time points t was gener­

ated with replacement ranging from 1 second to 180 seconds. For each (t , x) a 

response y was generated from a Poisson distribution with mean fexp(/(x)).
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Figure 2.9: Contour plots of (a) /  and (b) /  as functions of the two original 
predictors.

The estimate /  is a linear combination of the K  = 10 basis functions. Con­

tour plots displayed in Figure 2.9 show /  and /  as functions of the two original 

predictors. The estimate f x  captures most of the curvature of the function / .

2.5.3 Illustration w ith Rongelap data

Our ALB model for Poisson counts observed over time was motivated by an ex­

ample studied by Diggle, Tawn, and Moyeed (1998) and by Holmes and Mallick 

(2003). The example concerns radionuclide concentration on Rongelap Island, 

which was contaminated due to fall-out from the Bikini Atoll nuclear weapons 

testing programme during the 1950:s. The former inhabitants of the Rongelap 

island have been living in self-imposed exile on the much smaller island of 

Mejatto since 1985. The Marshall Islands National Radiological Survey has 

examined the current levels of 137Cs contamination by in situ 7-ray counting
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at a set of n = 157 locations over the island. We denote by yi the count at the 

ith  location, and by ti the length of time over which the count was recorded. 

According to the well-established theory of radioactive emissions, the counts 

yi can be treated as realizations of Poisson random variables with expectations 

Hi =  //(tj.Xj). where //(£*, x*) measures the 137Cs radioactivity at location x* 

over time ti.

We note that the ALB model assumes independence of the responses yi 

given the predictors, which is unrealistic for the above data set. When the 

predictor x  =  (rri.rro) represents spatial locations of the response, we should 

model for spatial correlation among the responses. The above model does 

not take into account such correlations. Cressie, 1993 discusses methods for 

spatial models that estimate mean and covariance structure simultaneously. 

Although we have not developed theory for simultaneous estimation of mean 

and covariance for ALB models, we briefly consider the use of ALB models in 

this context in Chapter 6. We do not deal with modeling the correlations, but 

discuss effects of spatial correlations on the ALB fit and suggest directions for 

further research on how to deal with these effects.
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Chapter 3 

ALB models for over-dispersed  
count data

3.1 Introduction

The Poisson distribution is often a good model for count data, especially for 

processes that generate events over time and space. Sometimes, however, 

unmeasured effects, clustering of events, or other contaminating influences 

combine to produce more variation in the responses than is predicted by the 

Poisson model. The ALB models for Poisson counts do not take into account 

such variation. While this omission does not have a big impact on the fit, it 

can be crucial for estimating standard errors and assessing confidence.

In this chapter, we discuss ALB models for the case where there is more 

variation in the responses than that expected from Poisson sampling theory. 

The key idea is to model the conditional variance of the response given the 

predictors as a function of the mean. Several models for the variance, para­

metric and non-parametric, are proposed in the literature. We focus on the
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model:

V ar(F|x) =  //( 1 + P(n)),

where 3 ( . )  is a  positive-valued function. This model of the variance is mo­

tivated by a Poisson-Gamma mixture, the details of which are explained in 

the next section. Based on scientific reasons and model tractability, several 

choices of Q{.) can be made. We focus on the following choices:

(i) 3 ( / j )  =  3q. bo > 0- This choice is appropriate to model Poisson over­

dispersed data with constant coefficient of variation.

(ii) , # ( / / )  =  3 / j .  3  > 0. This choice is employed by Breslow (1984) to model 

extra-Poisson variation in log-linear models.

(iii) 3 ( f x )  = exp(gijx)). modeled as the exponentiate of an ALB function of 

the mean.

The constraints on the parameters and the exponentiate are motivated by 

the fact that the variance is positive. Algorithms to fit these models may be 

summarized in three steps:

S te p l:  Initialize values for weights.

S tep2: Estimate using Weighted Least Squares (WLS) or Weighted Quasi- 

Likelihood criterion (WQL).

S tep3: Estimate ‘optimal’ weights Wi.

After following the three steps, one can either go back to the second step and 

stop, or iterate steps two and three until convergence is achieved.
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The choice of the weights is different for the two criteria WLS and WQL. 

Let us denote the conditional variance by Var(yj|Xj) =  07, which may vary 

with Hi. Then, for WLS, we minimize:

and the weights are therefore given by W{ =  1/of- For WQL, we minimize:

and the weights are therefore given by Wi =  Hijo\.

WQL was used by Breslow (1984) to model extra-Poisson variation in 

Log-Linear Models. He also discusses WLS criterion that he applied to the 

log-transformed responses, using an additional normality assumption of the 

log-transformed responses. He recommends the use of WQL instead of a WLS 

applied to the log-transformed responses, when the counts are small and nor­

mal approximation of the log-transformed responses appears in doubt. We 

have not applied the WLS to the log-transformed responses, simply because 

we would have had to apply the ALB models for constant variance, rather than 

for count data, and we wanted to  illustrate the latter. Therefore, we worked 

with the original responses. In our simulation studies and applications, the 

results from the two criteria were very similar. A result of the same flavor 

states that the WLS estimators and the Maximum Likelihood estimators are 

asymptotically equivalent in the class of Generalized Linear Models, (Carroll 

and Ruppert, 1988. Section 2.4). We have not found further discussions in the 

literature regarding when one of the criterion is preferred to the other.
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The organization of this chapter is as follows. In section 2, we discuss 

the constant coefficient of variation case in Poisson over-dispersed data and 

illustrate the ALB model with simulated data and a real example. In section 

3. we discuss the case where the variance is a function of the mean. We will 

summarize the ideas behind the heteroscedastic linear model, combine ALB 

and parametric variance function estimation to model heteroscedasticitv, and 

use ALB to model the variance function. The accuracy of the estimators from 

the above models is tested in simulation studies. Also, a comparison between 

a  competitive model and ALB model is conducted on a real example.

3.2 M odeling extra-Poisson variation using ALB

3.2.1 Estim ation

In the following we will look a t the case where extra-Poisson variation is 

present, in particular the case where the conditional variance is proportional 

to the conditional mean. The quasi-likelihood is a method for extending the 

model to allow for this possibility. The ALB model takes the form:

E (y |x ) =  ii

V ar(y|x) = a2fi, a2 >  1
K

log {fi) = /k (x ) =
a=i

The extra parameter a2, called the dispersion parameter, captures the extra­

variation and does not depend on 9 = (<Ji, 71, . . . ,  5k , 1k ,£k )- This model 

of the variance is motivated by a Poisson-Gamma mixture. Details of the
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derivation follow. For each x, a variable z  is generated from a Gamma dis­

tribution with parameters (a(x),P),  such that a(x)f3 =  exp(/(x)). Then, for 

each z, a response y is generated from a Poisson distribution with mean z. We 

can derive the conditional mean and variance of y  given x:

E[y|x] =  E[E[?/|z,x]] =  E[z\x] =  a ( x ) 0  = exp (/(x )),

Var[y|x] =  Var[E[y|z, x]] +  E[Vax[j/|z,x]]

=  Var[z|x] +  E[z|x]

=  a(x)P2 +  a(x){3 

= (l +  /3)exp(/(x)).

Writing the above equations in terms of y  and a. where y  =  exp(/(x)) and 

a2 = 1 +  !3, we end up with:

E[y\x] =  y

Var[y|x] =  o 2y, a2 > 1.

and therefore extra-Poisson variation is present in the response. Notice that 

when 8 approaches zero while y  =  a 8 is fixed, then Var(*|x) =  a d 2 approaches 

0 and z —* y.

The quasi-likelihood function is given by:

Q{0.a2\x ,y )=  [  = \ { - { y  -  y) + y\og{y) -y \o g (y ) )
Jy cr~t o-

The kernel of this quasi-likelihood function is proportional to the kernel of 

the log-likelihood function of a Poisson distribution and therefore the vector
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of parameter estimates 0 may be obtained as if a2 =  1; i.e., the conditional 

distribution of the response given the predictors is Poisson. To obtain approx­

imate standard errors for the fit, we refer to Section 2.4.1, where we derived 

approximate standard errors for the ALB estimator in the quasi-likelihood 

context. We note that the standard errors for the fit in this case are given by 

multiplying the standard errors from the Poisson case by the square root of an 

estimate of the dispersion parameter. A moment estimator based on residuals 

can be used:

-2   1 Y-'  ~  fc)2
/  j ~ ?n - p ^  pi

where p is the effective number of parameters in the ALB function.

3.2.2 Illustration using data on epileptic seizures

In the following example, we illustrate how ALB models work for over-dispersed 

Poisson data when the constant coefficient of variation assumption seems rea­

sonable. Here is a brief description of the example, from Leppik et al, (1985). 

To study the anti-epileptic drug progabide, researchers randomly assigned 

59 patients suffering from epileptic seizures to receive either progabide or a 

placebo. The data consists of the baseline number of epileptic seizures in the 

8 weeks prior to administration of the treatment, the number of seizures in the 

8 weeks after start of treatment, and the age of each patient. The goal is to see 

whether the mean number of counts is smaller for patients who received the 

progabide treatment than for the control patients, after accounting for age and 

the baseline number of seizures. In Figure 3.1, the number of post-treatment 

seizures is plotted versus the number of pre-treatment seizures with different
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Figure 3.1: Post-treatment seizures versus Pre-treatment seizures. A case in 
the Control group is marked by a ‘dot’, and in the Progabide group by a ‘plus’.

plotting symbols to distinguish the progabide patients from the controls. An 

initial ALB fit found a large residual corresponding to the unusual case with 

302 post-treatment seizures, as seen on the upper right hand corner of the 

plot. This case was excluded prior to further analysis.

An ALB model was fit with number of post-treatment seizures as the 

response variable and logarithm of baseline number of epileptic seizures, age 

and treatment group as predictor variables. ALB selected two basis functions. 

To show the over-dispersion in the responses, a plot of the deviance residuals, 

assuming a 2 = 1 is displayed in Figure 3.2. The magnitude of the residuals 

indicates that the responses show more variability than that explained by the 

Poisson distribution. The ALB fit versus the baseline number of epileptic
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Figure 3.2: Deviance Residuals versus baseline number of seizures. A case in 
the Control group is marked by a ‘dot’, and in the Progabide group by a ‘plus’.

seizures conditioning on a value of 30 for age is displayed in Figure 3.3. As we 

will see later, the fit does not depend on Age, so the fit is still representative 

when Age is fixed to a value of 30, for example. The fit is displayed separately 

for the progabide and control groups and has the corresponding observed data 

points superimposed. The two plots suggest that there is no difference between 

the two groups. The moment estimator for the dispersion parameter a was 

evaluated at 3.0801.

We now describe a technique to investigate whether the group variable 

w ith two levels, progabide and control is statistically significant. This ‘random 

shuffling’ technique follows an idea proposed by Breiman (2001). To measure 

the importance of a variable, we randomly permute the values of that variable,
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Figure 3.3: ALB fit from 3 predictors for (a)Control and (b)Progabide groups 
at Age 30.

leaving the rest of the variables fixed. We refit the model and evaluate the 

deviance on each new sample. We note that K  is recomputed for each reshuffle. 

If the deviance evaluated on the original sample is an extreme value among the 

deviances calculated on the randomly shuffled samples, then this suggests that 

the variable is important. Figure 3.4 displays a histogram of the 200 deviances 

adjusted for the number of degrees of freedom, n — (1 +  (K  — l)(d  +  2)). The 

median of the distribution values is at 10, and a value of 10.85 was evaluated 

on the original sample. The group variable appears to be unimportant and 

there is no evidence of a difference in the mean number of epileptic seizures 

counts for the progabide and control groups.

The same approach was used to measure whether the age variable was 

important. Figure 3.5 displays a histogram of the 200 deviances adjusted 

for the number of degrees of freedom, evaluated on samples with randomly
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Figure 3.4: Histogram of deviances adjusted for number of degrees of freedom 
from shuffled groups with 10.85 being the adjusted deviance for the original 
data.

Figure 3.5: Histogram of deviances adjusted for number of degrees of freedom 
from shuffled age with 10.85 being the adjusted deviance for the original data.
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Figure 3.6: Histogram of deviances adjusted for number of degrees of free­
dom from shuffled baseline number of seizures with 10.85 being the adjusted 
deviance for the original data.

permuted values of age. The median of the distribution values is at 10.5, and

90,

-h+.

O
20 40 60 80 100 1200

Number of seizures before treatment

Figure 3.7: ALB fit and GLM fit superimposed using baseline number of 
seizures as the only predictor.
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a value of 10.85 was evaluated on the original sample. The age variable appears 

to be unimportant. The same conclusion was obtained when both group and 

age were randomly permuted, leaving the baseline number of seizure variable 

fixed. The histogram corresponding to the baseline number of seizures variable 

is displayed in Figure 3.6. The deviance value for the original data falls in the 

left hand tail of the distribution, suggesting the variable is important.

We fit both ALB and GLM using baseline number of seizures as the only 

predictor. ALB uses two basis functions, suggesting a log-linear model. The 

ALB fit and GLM fit are displayed in Figure 3.7.

HOI discusses the use of standardized gradients as an exploratory tool to 

determine possible nuisance variables. The gradient components are defined 

as:

a -M  =  ^ / (* U - M  =

where x =  {x\..... x^). Approximate standard errors for the gradient com­

ponents, se{#j(x)}, can be defined in a manner similar to (2.16). Boxplots 

of the standardized gradients g j ( x . ) / s e { g j ( x ) }  may suggest possible nuisance 

variables. If /  does not involve the covariate Xj. then Qj(x) =  0 for all x. 

Figure 3.8(a) indicates that most of the standardized gradients values of the 

variable age are in the interval (—2, 2), suggesting age is a  nuisance variable. 

Similarly, in Figure 3.8(b). most of the standardized gradient values for loga­

rithm  of baseline number of seizures are outside the interval (—2, 2), suggesting 

the importance of the variable. We note that standardized gradient plots, like 

t  statistics for linear regression coefficients, could be misleading given depen-
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Figure 3.8: Boxplot of gradients, (a) for age and (b) for logarithm of baseline 
number of seizures.

dencies among covariates.

3.3 Variance function estim ation and ALB mod­
els

3.3.1 Approaches to heteroscedasticity in linear m odels

In their book. ‘Transformation and Weighting in Regression’, Carroll and Rup- 

pert (1988) discuss several approaches to heteroscedasticity. They view het­

eroscedasticity of variance as a regression problem in the sense that system­

atic smooth change of variability occurs as predictors are perturbed. From 

this point of view, there are similarities with modeling the mean. The basic 

assumption for modeling the mean is that the mean vector varies smoothly as 

we perturb continuous predictors. In simple linear regression the scatterplot of 

the predictors against the response helps us determine an appropriate model.
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In modeling variability, the basic assumption is that there is a smooth change 

of variability as continuous predictors are perturbed. The corresponding resid­

ual plot replaces the usual scatterplot used to model the mean. The residual 

plot is used to suggest models for the variability. The most widely used di­

agnostic for heterogeneity is the unweighted least squares residual plot. The 

plot consists of residuals from an unweighted fit versus the predicted values. A 

fan-shaped pattern indicates that the residual variability depends on the mean 

response. In their book, ‘Residuals and Influence in Regression', Cook and 

Weisberg (1982) argue for plotting squared residuals versus predicted value, 

mainly because plots of raw residuals are often sparse and difficult to inter­

pret. A problem with squared residuals is that moderately large residuals can 

cause problems. Transformations of absolute residuals can help, for example, 

absolute residuals themselves, their logarithms, or their 2/3 power. Carroll 

and Rupert (1982) treat absolute residuals as the basic building block in the 

analysis of heteroscedasticity.

Carroll (1982) discusses regression parameter estimation in a heteroscedas- 

tic linear model given by:

E{*/i|Xi} =  fj,i:

Varfy/x,} =  of.

The variance of is usually modeled as a function of the mean fit. or the co- 

variates. Depending on the problem, either a parametric or a nonparametric 

model can be used to estimate variability. In a parametric model, the variance 

is modeled as a known function of the mean. In a nonparametric model, the
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variance is modeled as an unknown, but smooth function of the mean. Let 

us denote by {ii the usual unweighted least squares fit, and by the raw 

residuals, rt = t/* — //^(x,). For both parametric and nonparametric models,

E(rf) = E(Yi -  /2i(Xi))2 «  af.

Either a parametric or a nonparametric regression model, more precisely a 

kernel-type estimate, can be used to regress rf on {ii(x j) and obtain an esti­

mate of of. The estimates of can then be used in a weighted least squares 

regression to get a weighted fit, { e - If we denote by {it  the weighted esti­

mate using the optimal weights 1 /o f  then, under regularity conditions, there 

is asymptotically no cost due to estimating o ,̂ ie. {it  and {le have the same 

normal limit distribution, (Carroll, 1982).

3.3.2 Combining ALB models and parametric variance 
function estim ation. An example

In the following we summarize an approach proposed by Breslow (1984) to 

model heteroscedasticity in generalized linear models using parametric vari­

ance function estimation. Then we combine ALB models and parametric vari­

ance estimation to model heteroscedasticity and compare the results of the 

two approaches on an example used in Breslow (1984). We note that because 

of the small sample size, n =  18, small dimensionality and not very complex 

data structure, this example is not ideal to reveal advantages of the ALB 

fit over other competing models. However, we found Breslow’s approach to 

model heteroscedasticity interesting and considered incorporating ALB mod­

els. First we describe Breslow's approach and later in this section we introduce
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the example.

Breslow (1984) proposes the following heteroscedastic model using a 

parametric variance function:

This is a quasi-likelihood model since no assumptions are made on the distri­

bution function, other than specifying the mean and the variance. If P were 

known, the maximum quasi-likelihood solution to the above model would be 

easily obtained using the Poisson error function, the log-link, and defining 

prior weights, u\  =  (1 -I- Pjii)~l . Even if the wrong weights are used, a new 

value of 13 may again be estimated by setting the chi-square criterion to its 

degrees of freedom, i.e. YliVi ~  fy)2/{ /b (l +  Ppp} = n -  p. where p is the 

number of parameters used to estimate the mean and n is the sample size. 

Multiplying both sides by p. this equation may be solved recursively using:

and substituting from left to right-hand side.

The algorithm proposed by Breslow may be summarized as follows. 

A lg o rith m  3.1:

S te p l:  Fit the quasi-likelihood log-linear model using weights tr*. At the first 

iteration use Wi =  1. If the chi-square criterion is close to its degrees

E(y |x) =  n

Var(y |x) = p ( l  -)- Pp)

log(//) =  7  x.

(3.1)

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



of freedom, stop and conclude that the residual variation is adequately 

explained.

Step2: Update 6 using (3.1). In the first iteration substitute following ex­

pression for p  in the right hand side of (3.1):

* _  E ? = i ( & -£ i ) 2/ £ i -  ( n ~ P )  (o 0]
P Y.UHn~v)/n  '

In subsequent iterations, use the value (3 from previous iteration in the 

right hand side of (3.1).

Step3: Define new weights Wi = (1 -f and return to Step 1.

In the light of the above ideas, we propose the following heteroscedastic 

ALB model with a parametric variance function:

E(T |x) =  ^

V ar(y |x) =  n( l  +  3/j,),
K

log(^) =  f K(x) = ^ 4 <?fc(x).
fc=i

Algorithm 3.1 is applied as before, but using a quasi-likelihood ALB model to 

fit the conditional mean.

We also investigated the WLS criterion, log-link, and weights =  

(/if(1 +  3jii))~l . Let us look more closely at the two criteria. The WQL 

criterion minimizes:

n

-  Vi) ~  y*log(/*i) +  ifelog(3/i))u>i,
i=1
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where Wi = (1 +  (3fit) l . Our WLS criterion minimizes:

n

'YjiVi -  ̂ i)2vjh
i= 1

where wt = (/!*( 1 +  i3fii))~l . Modifications to the updating functions axe 

obtained as in Section 2.2.1, equations (2.7) and (2.8). We note that the 

results from the two criteria, WQL and WLS, were very similar on various 

simulation studies and real examples. Results of the simulation studies are 

displayed in the last section of this chapter.

Another approach for estimating the parametric variance function in 

Step 2, would be to use a regression through origin of (y» -  fri)2 -  1 vs jxt. 

The weights for Step 3, would then be given by wlm =  0^(1 +  /% ))~ \ where 

/3 is given by the slope in Step 2.

Now let us apply these heteroscedastic models with a parametric variance 

function to the following example used by Breslow (1984) to illustrate the 

use of Algorithm 3.1. The example concerns an Ames Salmonella reverse 

mutagenicity assay. The Salmonella bacterium carries a defective (mutant) 

gene. If in reaction with a certain chemical this type of mutation can be 

reversed, causing a back mutation with the gene regaining its function and 

ability to form many revertant colonies, then this chemical is called mutagenic 

for the Salmonella bacterium. The purpose of the Ames Salmonella reverse 

mutagenicity assay is to determine whether the chemical quinoline is mutagenic 

for the Salmonella bacterium. This is investigated by counting the number of 

revertant colonies corresponding to various doses of quinoline. Table 3.1 shows 

the number of revertant colonies observed on each of three replicate plates
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Table 3.1: Number of revertant colonies of TA98 Salmonella

Dose of quinoline (fig per plate)
0 10 33 100 333 1000
15 16 16 27 33 20
21 18 26 41 38 27
29 21 33 60 41 42

tested at each of six dose levels of quinoline.

Breslow noted that scientific reasons suggest the following log-linear 

model:

E(Y\x)  =  K x )

log(y(x)) =  71 +  72 log(x +  c) -  73a:,

where y  denotes the number of revertant colonies, x  the dose level and c is a 

constant that was set to 10, the smallest non-zero dose level. Margolin, Kaplan 

and Zeiger (1981) questioned the use of the Poisson model to analyze the data 

from this example. They argued that there is substantial evidence that the 

Poisson model, nearly universal in its adoption as the sampling distribution of 

revertants per plate from a Salmonella test, lacks the flexibility to adequately 

describe the variability in a set of plate counts. This can lead to false conclu­

sions concerning the outcome of the assay. Scientific purpose of the study is to 

determine the mutagenic effect, and to do so it is necessary to accommodate 

excess variation typically observed among replicates.

We applied the heteroscedastic GLM model using the two covariates, 

the dose level and the logarithm of the dose level, as suggested by scientific 

reasons. We also applied the heteroscedastic ALB model using only one covari-

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



o jCD

O .ID

O .
CM

200 400 600 800 1000 
Dose

600 800 1000
lose

Figure 3.9: (a) The ALB Poisson fit and heteroscedastic ALB fit versus Dose 
level together with the 95% confidence bands (the narrower intervals are for 
the ALB Poisson fit) and the counts superimposed. (b)The GLM Poisson fit 
and heteroscedastic GLM fit versus Dose level together with the 95% confi­
dence bands (narrower intervals are for the GLM Poisson fit) and the counts 
superimposed.

ate. the dose level. ALB selected three basis functions. We obtained similar 

estimates for the parameter in the variance function, $ = .0718 and .0717 

respectively. The ALB Poisson fit and heteroscedastic ALB fit versus Dose 

level together with the 95% confidence bands and the counts superimposed 

are displayed in Figure 3.9(a). The GLM Poisson fit and heteroscedastic GLM 

fit versus Dose level together with the 95% confidence bands and the counts 

superimposed are displayed in Figure 3.9(b). The confidence bands are larger 

for the heteroscedastic models, as expected. The ALB confidence intervals 

are symmetric, given by the fi ±  2se, while the GLM confidence intervals are 

asymmetric, given by the exponentiate of the confidence interval for the lin-
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Figure 3.10: Boxplot of standardized gradients for logarithm of Dose level from 
(a) ALB model and (b) heteroscedastic ALB model.

ear component, that is exp (log/t ±  2se). We remind the reader that results 

from simulations studies were very similar for ALB standard errors calculated 

in these two ways. We note that, compared to GLM where we needed two 

predictors, ALB adaptively estimates the mean function based on a single 

predictor, the Dose. The flexibility of ALB models, comes with a price of 

more parameters. In this example, ALB uses 8 parameters, including the pa­

rameter in the variance function, compared to GLM that uses 4 parameters. 

We also tried to fit ALB using two covariates, same as GLM, and ALB selected 

two basis functions, and therefore 6 parameters, including the parameter in 

the variance function. The fit based on the two covariates is very similar to 

the GLM fit.

Boxplots of the standardized gradients for Dose level displayed in figure 

3.10, suggest the importance of the Dose level in predicting the number of
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revertant colonies. We note that the magnitude of the standardized gradients 

is reduced from the ALB Poisson model to the heteroscedastic ALB model 

as expected. Although the Poisson fit and Heteroscedastic fit are very close, 

modeling for heteroscedasticity is crucial for estimating standard errors and 

assessing confidence.

3.3.3 M odeling the variance function using ALB

So far we assumed parametric models for the variance function, such as:

Var(Y’lx) =  crii.cr > 1.

A natural generalizat ion of the above model would be to assume the conditional 

variance to be a function of the mean:

V ar(y|x) =  H {n) ,H  unknown.

A key feature of many heteroscedastic regression problems is that the variances 

appear to be smooth functions of the mean response.

Our ALB model to accommodate heteroscedasticity takes the form:

Var(y|x) =  Ml +  /3(/L», ( 3 - 3 )

where 3(n) is modeled as the exponentiate of an ALB function, 3{p) = 

exp(g(fj)). This model of the variance can be motivated by a Poisson-Gamma 

mixture. The derivation follows closely the one in Section 3.2.1, except that 

here 13 is no longer fixed, but is a positive smooth function of p.

We suggest the following algorithm to fit model (3.3):
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A lgorithm  3.2:

S te p l:  Fit an ALB Poisson model of gi =  g(x.i), get fitted values fa and 

residuals r* =  — fc.

Step2: Estimate g(-) using an ALB L q regression with a log-link function of 

transformed residuals rf/(yu, +  .1) — 1 vs /b- That is,

9
min E

i . ,  v " - P
-  1 -  exp(p(/tj))

Ah +  -1

Calculate variance estimates of =  /h (l +  exp(g(fii))).

Step3: Fit an ALB weighted least squares model of [ii =  //(x,) with log-link, 

using the weights from the second step, W{ — l /d f .

We now discuss this algorithm and give details on its implementation. 

As a first step in our algorithm, we run an ALB model assuming that the 

conditional distribution of Y  given x  is Poisson with mean g. The second step 

uses an ALB model to estimate the variance function. We explain here the 

choice of the transformed residuals. We investigated several transformations 

of the residuals. Given a Poisson random variable with mean g. we have:

V ar((y -  g ) 2) = g(  1 +  3g).

This suggests that standardized residuals are more stable. Indeed,

Var/(Izi£} = dl±M = 3+i.
[ g  J g-  g

Here is the behavior of the square root of the above variance function as g  

varies:
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.1 1 10 100

V 3.6 2 1.76 1.73

To attenuate the effect of outliers and obtain a more stable behavior, we add 

a small constant in the denominator:

.1 1 10 100
/^(1+3/i)

V 1.80 1.81 1.74 1.73

To accommodate over-dispersion, we model Var(T|x) =  //(l +  exp(<?(/z))). Let 

fii denote the ALB estimate from the first step. Then,

E ~  1 +  exP ig(fri))-

As a second step in fitting the heteroscedastic model, we estimate g(-) by an 

ALB Lg regression of rf /( /h  +  .1) — 1 vs /h, using a log-link function. Modi­

fications to the updating functions axe obtained as in Section 2.2.1, equations 

(2.7) and (2.8).

There are a few considerations in choosing the power q. ALB Lq regres­

sion was introduced in HOI. Conditional mean and median are obtained by 

choosing q = 2 and q =  1, respectively. Residual plots tend to be scattered 

and to have outliers. An ALB Li fit corresponding to the median is resistant 

to outliers. On the other hand, too many residuals close to zero would pro­

duce undesirable near zero variances. An ALB Lo estimate, corresponding to 

the conditional mean, would not be resistant to outliers. A value of q = 1.5 

provides a compromise and seems to work well. For a discussion on robustness 

and Lq estimators in linear regression, we refer to Forsythe (1972).

We note that, for the case where the conditional variance is proportional
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to the conditional mean, the ALB fit in the second step should select a constant 

model.

The last step consists of running an ALB weighted least squares fit with 

a log-link. using the weights from the second step:

1
VO ' —- -

fii(l + exp(g(p,i)))'

As it was mentioned earlier in this section, we can also use a WQL criterion, 

log-link, and weights
17/;. =  ————— — ———

Wl  (1 +  exp(g(//j))) ’

Modifications to the updating functions in this last step are obtained as in 

Section 2.2.1. equations (2.7) and (2.8).

The estimator obtained from this algorithm will be referred to as the 

3-step estimator. We denote by {la the estimate obtained in Step 3, based on 

the estimated weights and by {it the estimate obtained using an ALB weighted 

least squares fit with a log-link and optimal weights, 1 /o f. Simulation studies 

at the end of this chapter show that mean predictive squared errors associated 

with the two estimators are similar.

3.3.4 Simulation Studies

In these simulation studies we evaluate estimates of the mean predictive squared 

errors associated with the heteroscedastic ALB estimators, and investigate cov­

erage probabilities corresponding to the different choices of weights. In each 

example, m  = 100 samples of n independent observations of (x, y) were gener­

ated as follows. A sample of size n was generated, with each predictor vector
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x  generated uniformly on a hypercube (a, b)d. For each x, the mean vector 

tx(x) =  exp(/(x)) was calculated. A variable 2 was generated from a Gamma 

distribution with parameters a(/z) =  y/8{y)  and 8(y). For each 2, a  response 

y  was generated from a Poisson distribution with mean 2. The variable 2 and 

the response y differs from sample to  sample, w'hile the predictor vectors x  

remain the same over the m  =  100 samples. The conditional variance is thus:

Four estimates were calculated for each sample: f tp  using true weights, f tp  

using Poisson weights, ft pm  using linear model weights, (see (ii) at the begin­

ning of Section 3.1), and ft^ using an ALB variance function to estimate the 

weights, (see (iii) at the beginning of Section 3.1). Reverse cross-validation is

the four estimates. The technique was derived in Chapter 2. For each of the 

m  =  100 samples, the mean estimate is obtained. Then, a measure of mean 

predictive squared error corresponding to the mean estimate is evaluated over 

each of the remaining 99 samples, as follows. For a sample (x*, y*), i =  1, n,

where ft  can be any of the four estimators: f i r -  f t p • ftpM  and ft a - The average 

over the 99 remaining samples is taken. This is repeated for each of the 

m  =  100 samples and an estimate of the mean predictive squared error is 

obtained by averaging the estimates over the m  = 100 samples. The mean

Var(Y|x) = H{y) = y ( l  +  f3(y))

used to obtain an estimate of the mean predictive squared error for each of

MPSE =  -  y  
n  4 —'
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predictive squared error in the above equation estimates:

i f  E { ( y / - / i ( x ) ) 2i Xj}  

n “ ? E { ( i ? - M x ) ) 2 | x i } '

Averages over the 100 samples of the mean predictive squared errors for the 

four estimators are reported in Table 3.2. For each of the five examples, several 

values of the sample size n are used to demonstrate how accuracy improves with 

increased sample size. With simulation studies, the true mean ji is known and 

therefore a lower bound on the mean predictive squared error can be obtained 

by using the true mean fx instead of the estimates when evaluating the mean 

predictive squared error:

Table 3.2: MPSE for the four estimates: averages over 100 replicated samples 
of size n. Lower bound is displayed on the third column.

Eg n lbound M PSE^ MPSEAp MPSE/ilm MPSEAa

1 50
100
200

1.0065
1.0053
.9705

1.1465
1.0665
1.0132

1.1306
1.0616
1.0061

1.1406
1.0672
1.0125

1.1942
1.0939
1.0152

2 50
100
200

1.0099
.9873
1.0092

1.1302
1.0203
1.0293

1.1273
1.0316
1.0331

1.1142
1.0235
1.0274

1.1594
1.0437
1.0362

3 50
100
200

.9924
1.0031
1.0022

1.1164
1.0605
1.0316

1.1236
1.0759
1.0362

1.1173
1.0644
1.0327

1.1721
1.0885
1.0380

4 50
100
200

.9693

.9987

.9943

1.2542
1.1508
1.0631

1.2734
1.1652
1.0793

1.2077
1.1169
1.0494

1.3539
1.1655
1.0718

5 50
100
200

1.0050
1.0024
1.0172

1.4678
1.2408
1.0984

1.5693
1.3680
1.1896

1.5612
1.2188
1.0992

1.6611
1.4298
1.1506
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We note that the lower bound estimates should then be close to one, but not 

precisely one, since the numerator in the above expression is calculated using 

a test set and therefore different from the denominator, which is simply the 

conditional variance at each predictor vector x  in the sample.

E xam ple  3.3.1 The first simulated example is one-dimensional and the target 

function is an ALB function. A sample of size n was generated with each 

predictor vector x  generated uniformly on (—3,3). For each x, the mean 

vector // =  exp ( f x )  was calculated, where f x  was specified by the reference 

point parameterization: £1 =  1, £> =  0, £3 =  —1, 71 =  72 =  73 =  0, =  .5,

do — 5. S3 — .5 and r  =  1. The parameters for the Gamma distribution are 

a{fi) =  ii/P{ii) and ,#(yu) =  .72 +  .16/i.

E xam ple  3.3.2 The second simulated example is one-dimensional. A sample 

of size n was generated with each predictor vector x  generated uniformly on 

(—3,3). The target function is linear:

f ( x)  =  1 +  x/4.

The parameters for the Gamma distribution are a(/i) =  ii/,3(fi) and P(/i) =  

.35 +  .3( fi.

E xam ple  3.3.3 For the third simulated example, a sample of size n was

generated with each predictor vector x  generated uniformly on (—1,1). The

target function is not an ALB function:

_  2sin(7r(x +  l ) /2 )

n , ~  (z /2 + 1)

The parameters for the Gamma distribution are a(/i) =  fi/d{fi) and j3(fi) =  

.47 +  .31^.
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E x am p le  3.3.4 The fourth example is two-dimensional. A sample of size n 

was generated with each predictor vector x  generated uniformly on (—1, l )2 

and the target function is an additive function:

f  fx) -  1 5 i2 +  1 5 sin( (̂ara +  !)/2)/ ( X ) -  1 .5 1 ! +  1.0 (a.s /2  +  1) •

The parameters for the Gamma distribution are a(/z) =  fj,/,3(n) and 3{ji) =  

.34 +

E xam ple  3.3.5 The last simulated example is four-dimensional and the target 

function is an ALB function with K  =  2. A sample of size n was generated 

with each predictor vector x  generated uniformly on the hypercube (—1, l )4. 

The reference point parameterization is used to specify /*-: £i =  (1,2,2, —1)', 

£> =  (2,1.1.2)'. 71 = 72 =  0, <5i =  0.2, S2 = 2 and r  =  2. The parameters for 

the Gamma distribution are a(fx) =  and =  .34 -f .5/x.

The mean predictive squared errors associated with the four estimates 

are very close to 1. showing that the four estimates are approximating very 

well the true mean function. On one hand this shows that the estimates ob­

tained using the true weights and estimated weights are very close. The fact 

that the estimate using Poisson weights is doing also very well in approximat­

ing the true mean function reminds of the result stating that using Poisson 

log-linear regression when heteroscedasticity is present still yields a roughly 

unbiased fit. The results in Table 3.2 indicate that the fitted values of the het­

eroscedastic models show substantial agreement in fitting the data. However, 

the mean predictive squared errors in Table 3.2 are based on averages across 

the predictors. The accuracy could vary for different values of the predictor
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vectors depending on how the variance function is modeled to obtain weights. 

A closer look at Table 3.2 indicates that the mean predictive squared errors 

corresponding to fiA are consistently slightly larger than the rest of the esti­

mators. We noted earlier that the choice of weights does not have a huge effect 

on the estimate of the mean, but can lead to important differences in the stan­

dard errors. As a consequence, the confidence intervals corresponding to the 

Poisson fit are narrower than the ones corresponding to the weighted fit using 

the correct weights. A simulated study on the coverage probabilities, similar 

to the one in Section 2.4.2, is summarized in Table 3.3. Table 3.3 indicates 

that the coverage probabilities corresponding to f a  and jj.L are closer to .95. 

The confidence intervals corresponding to ftp and jxA are narrower resulting

Table 3.3: Coverage probabilities averaged over 100 replicated samples to­
gether with corresponding measure of variability a~.

Eg n CP ftT CP ftp CP flLM CP(xA
1 50

100
200

.92(.03)

.94(.03)

.94(.02)

.76(.05)

.72(.03)

.73(.03)

.90(.03)

.94(.03)

.94(.02)

.78(.04)
,80(.03)
.81(.04)

2 50
100
200

.95(.03)

.96(.02)

.96(.03)

70(.04)
.74(.06)
.77(.05)

.94(.03)

.95(.02)

.94(.02)

.80(.05)

.85(.03)

.83(.03)
3 50

100
200

.95(.04)

.95(.03)

.95(.03)

.78(.06)

.80(.05)

.75(.05)

.89(.03)

.90(.03)

.94(.03)

.72(.05)
,72(.04)
.85(.05)

4 50
100
200

.92(.08)

.90(.07)

.93(.06)

.69(.07)

.72(.09)

.73(.06)

.90(.07)

.89(.08)

.92(.07)

.70(.06)

.73(.05)

.71(.07)
5 50

100
200

.91(.04)

.93(.03)

.94(.04)

.72(.05)

.74(.06)

.72(.04)

.89(.04)

.91(.04)

.91(.03)

.75(.06)

.74(.06)

.75(.05)
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in smaller coverage probabilities ranging in our examples from .71 to .81. Our 

simulation studies indicated that the estimate fi-A is not very efficient. Model­

ing the variance function using ALB does not present an advantage over using 

a linear model to estimate the weights. In fact, in our examples, the coverage 

probabilities corresponding to an ALB model for the variance function are 

much smaller than the ones corresponding to a linear model for the variance 

function. We suspect and give an argument here that modeling the residuals 

as an ALB function of the predictors from the Poisson fit is not appropriate. 

The residuals are very scattered even after they are transformed, and from 

our experience with the simulation studies, when fitting an ALB model to the 

variance function, ALB tends to select a  larger number of basis functions than 

would be needed.

Similar tables, not shown, corresponding to the quasi-likelihood ap­

proach, using a log-link and defining prior weights, display the same pattern. 

As we have stated in Section 3.3.2, we did not notice any changes in the results 

between using the quasi-likelihood or the weighted sum of squares methods.
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Chapter 4 

Exam ples

In this chapter we illustrate ALB models using two examples. We indicate 

ALB strengths and weaknesses in comparison to other models. The first ex­

ample presented in Section 4.1 concerns dependence of ozone on three mete­

orological variables at sites in the New York metropolitan region. The sec­

ond example presented in Section 4.2 concerns dependence of ozone on eight 

meteorological measurements made in the Los Angeles basin. Ozone can be 

beneficial or harmful, depending on where it is found in the atmosphere. In 

the stratosphere, ozone protects us from ultraviolet radiation, so it is benefi­

cial to  human health. On the other hand, ground-level ozone is a pollutant 

that can cause breathing difficulty, permanent lung damage, and eye irritation, 

and may trigger asthma attacks and reduce resistance to infection. It can also 

be harmful to vegetation and contribute to smog formation. In the studies 

considered, we are concerned with ground-level ozone as a  pollutant. Daily 

weather conditions affect whether and how much we are exposed to pollutants 

in the air. In the two studies considered, meteorological measurements are 

taken. The response variable is represented by ozone level counts, i.e., number
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of ozone molecules in a fixed volume of air.

4.1 Dependence of ozone on three meteoro­
logical variables at sites in the New  York 
region

The data for this example come from a study by Bruntz, Cleveland, Kleiner 

and Warner (1974) of the dependence of ozone on three meteorological vari­

ables over 111 days from May to September 1973 at sites in the New York 

metropolitan region. We will refer to this data as the NY Ozone data. The 

response variable is represented by ozone level counts and the three predictors 

are measurements of solar radiation, temperature and wind. A matrix scatter- 

plot of the four variables is displayed in Figure 4.1. Cleveland, W.S., Devlin,

wind

temperature

radiation

vf;--. ozone

Figure 4.1: Matrix Scatterplot of the four variables in NY Ozone data.
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S.J. and Grosse (1988) and Hastie and Tibshirani (1990) analyzed this dataset 

using the cube root of ozone and Normal errors assumptions. Although Hastie 

and Tibshirani (1990) have suggested an analysis based on Poisson errors as­

sumption, we have not found such an analysis in the literature. We assume 

the conditional distribution of the ozone counts given the three predictors is 

Poisson and apply ALB, GLM and GAM.

The ALB fit uses K  =  5 basis functions. A plot of the deviance residuals, 

assuming a2 = 1 is displayed in Figure 4.2. The magnitude of the residuals 

indicates that the responses show more variability than that explained by the 

Poisson distribution. The deviance statistic is 434.1979 based on 90 degrees of 

freedom. A chi-squared goodness of fit test indicates substantial evidence that

cn
CO3•g

’cn
CD

DC
CDo
c
CO

■>
CD

Q

Figure 4.2: Deviance Residuals versus fitted values in NY Ozone data.
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the Poisson model does not fit, p-value =  0. To obtain approximate standard 

errors, the quasi-likelihood approach was used. The deviance based estimator 

for the dispersion parameter a was evaluated at 2.1964.

Since the measurements are taken over time on consecutive days, it is 

necessary to investigate whether serial correlation occurs. Serial correlation 

occurs when residuals from adjacent measurements are not independent of one 

another. Although in the presence of serial correlation the mean estimates are 

still unbiased, the standard errors are underestimated. Serial correlation can 

be detected either using residual plots or calculating an estimator of a first- 

order serial correlation. A residual plot displayed in Figure 4.3 does not indi­

cate patterns in residuals over time. Cressie (1993) derives a robust estimator

J2co3T>
'co
CD
cc

Figure 4.3: Residuals versus day in NY Ozone data.
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of the first-order serial correlation:

2 l  £ “„  I* -  511/2/ n  /  ’

where z  =  median { 21. . . . .  zn} and Z{ represents the residual at observation 

i. A value of -.0369 was obtained, indicating that serial correlation is not a 

problem for this data.

Boxplots of the standardized gradients of /  displayed in Figure 4.4, indi­

cate that all three variables are important in predicting ozone levels. We note 

that such plots could be misleading given dependencies among predictors, as 

suggested by the matrix scatterplot in Figure 4.1. An alternative method to 

measure importance of each predictor, derived in Chapter 3, is applied to this

5.0 -

2.5 -

0.0  ■

-2.5 '

-5.0 '

radiation temperature wind

Figure 4.4: Boxplots of the three standardized gradients in NY Ozone data.
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data. To measure the importance of a predictor, the values of that predictor 

are randomly permuted and the deviance from the ALB model is evaluated 

on each sample. The proportion of deviances as extreme as the one from the 

original sample, together with the standard error are listed for each predictor: 

.01 (.0099) for radiation. .00(.00) for temperature and .01 (.0099) for wind. Each 

proportion was calculated from 100 randomly permuted samples. The results 

suggest that the three variables are important in predicting ozone levels.

We use conditional plots to represent the ALB surface in one dimensional 

plots. In Figure 4.5. we condition the surface on first, second and third quan- 

tiles of radiation and temperature, respectively. In Figure 4.6, we condition the 

surface on first, second and third quantiles of radiation and wind, respectively. 

In Figure 4.7, we condition the surface on first, second and third quantiles 

of temperature and wind, respectively. The plots suggest that the ozone 

level decreases with increasing the wind speed, increases with increasing tem­

perature, and increases with radiation up to a maximum and than decreases. 

As temperature increases, the curvature in the effect of the wind gets milder, 

closer to a roughly linear function, as seen in Figure 4.5. As radiation de­

creases, the curvature in the effect of the wind gets milder, closer to a roughly 

linear function, as seen in Figure 4.5. As temperature decreases, the curvature 

in the effect of the radiation gets milder, closer to a roughly linear function, as 

seen in Figure 4.7. As wind increases and temperature is in the first or second 

quantile. the curvature in the effect of the radiation gets milder, closer to a 

roughly linear function, as seen in Figure 4.7. As radiation decreases and wind
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Figure 4.5: Conditional plots of estimated ALB function. / ,  a t 25%, 50% and 
75% quantiles of radiation(113.5, 207, 255.5), and quantiles of temperature(71, 
79, 84.5).
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is in the first quantile, the effect of temperature gets milder, closer to a roughly 

linear function, as seen in Figure 4.6. There appears to be a strong interaction 

between effect of radiation and temperature, Figure 4.7. Also, there appears 

to be a mild interaction between wind and temperature, Figure 4.5. We give 

a more through discussion on detecting interactions later in this section.

We applied GAM to the NY Ozone data. We started with the main 

effects and then fitted separately all three pairwise interactions using locally 

weighted surface smoothers. Based on a crude F-test, only the interaction be­

tween wind and temperature was found significant. The full three-dimensional 

surface was not found significant either. The same findings were obtained by 

Hastie and Tibshirani (1990), using the cube root of ozone and additive mod­

els with normal errors assumption. They have also applied MARS to the cube 

root of ozone. In addition to the interaction between temperature and wind, 

MARS also found a significant interaction between radiation and tempera­

ture. Later in this section we compare the predictive performance of ALB and 

GAM, based on the log-likelihood. We note that Hastie and Tibshirani (1990) 

conduct a comparison of predictive performance of GAM and other models, 

based on cube root of ozone and normal error assumptions. A comparison 

of predictive performance of ALB and GAM with Poisson errors assumption 

versus GAM and other models using cube root of ozone and normal errors 

assumption is therefore inappropriate.

It is interesting to investigate whether ALB detects possible interactions 

for the NY Ozone data. As it was noted in HOI, plots of the ALB gradient
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components

& ( x )  =
df_
dxj

can be used to detect additive structure. If the effect of X\ is additive, then 

the partial derivative <7i(x) is a  function of x r and therefore a  plot of the 

estimate gi (x) versus xi  reveals little scatter about the curve. We note that, 

with a non-identical link, we should focus on the gradients of the ALB fit /(x ) , 

rather than The gradient of /i(x) would indicate interactions between

predictors generated by the inverse-link transformation, even if there are no 

interactions in the function / .  For example, using a log-link, even if the effect 

of xi  is additive, the partial derivative

d T S ™  =  exp(/W

would depend not only on i j ,  but also on the rest of the predictors through 

exp(/) . therefore suggesting interactions even if they are not present in the 

function / .  Back to our example, plots of the gradient ALB estimates displayed 

in Figure 4.8 suggest possible interactions between the predictors, rather than

o
in
O ' o

2 o
O o

o
o

o '

? 0  300

• i

Figure 4.8: Matrix scatterplot of the three gradients of the log of the mean 
ALB estimate versus predictors in NY Ozone data.

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



just an additive structure. A GLM with all two-way interactions, indicate the 

interaction between wind and temperature as being the strongest among the 

two-way interactions.

Partial additivity can be investigated with rotating scatterplots. For 

example, if x \ and xo interact but their joint effect on /  is additive, then g\ 

and go are both functions of (xi.xo).  Following this idea, we can investigate 

whether the combined interaction effect between wind and temperature is ad­

ditive with respect to radiation. The rotating scatterplots of the gradient with 

respect to wind versus wind and temperature and the gradient with respect 

to temperature versus wind and temperature suggest a wind and temperature 

interaction and an additive effect of radiation.

The conclusions based on these scatterplots of the gradients are quite 

subjective. GAM has the advantage of providing conclusions based on tests 

and p-values, although it should be noted that their inference techniques are 

approximate.

Table 4.1: Ten-fold cross validated prediction error based on Kullback-Leibler 
distance together with the standard errors, for the different methods.

Method Prediction error
GLM with main effects only
GLM with temperature by wind interaction
GLM with two-way interactions
GLM with three-way interaction
GAM with additive effects only, one df for each
GAM with additive effects only, two df for each
GAM with temperature by wind interaction
ALB

8.0658(1.0109)
8.9162(1.2169)
9.1273(1.2549)
9.6281(1.6438)
8.0658(1.0109)
9.2611(1.8341)
7.8040(0.9967)
6.4437(0.9262)
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In order to compare the predictive performance of ALB and GAM, 

we have evaluated the 10-fold cross validated prediction error based on the 

Kullback-Leibler divergence, derived in section 2.3.1. The same groups were 

used for all methods, and the cross-validation partition is based on serial order 

of data. For a baseline comparison, we applied GLM with all three predictors. 

The prediction errors together with the standard errors are displayed in Table 

4.1. Several GLM and GAM models were considered. GAM with one nom­

inal degree of freedom corresponds to a GLM, main effects only. Details on 

how GAM were fitted are given in the next paragraph. Both ALB and GAM 

with an interaction surface between temperature and wind improve upon GLM 

and ALB performs better than GAM. There is a question whether these dif­

ferences among GLM, GAM and ALB, are statistically significant. Also, is 

there evidence that some of the cross-validation groups are harder to predict 

than others, i.e., the prediction errors are significantly higher for some cross- 

validation groups than others. A two-way ANOVA assuming additive effects 

for methods and cross-validation groups, indicates there are significant differ­

ences among the ten cross-validation groups, p-value =  .002, and that there 

are no significant differences among the three methods considered, GLM with 

main effects only, GAM with interaction surface between wind and tempera­

ture, and ALB. p-value =  .189. The third and seventh cross-validation groups 

were harder to predict than the rest.

Now we give details regarding smoothers that have been used when fit­

ting the above GAM’s. As mentioned before, Hastie and Tibshirani (1990)
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modeled pairwise interactions using locally weighted surface smoothers and 

found that the only significant interaction was the one between wind and tem­

perature. A three-way interaction surface was not found significant. They 

used the cube root of ozone and normal errors assumption. We used the 

same approach in fitting GAM, assuming Poisson errors and obtained the 

same conclusions as they did regarding interaction terms. The same conclu­

sions regarding interaction terms were obtained using a quasi-likelihood model 

with constant coefficient of variation. The above models were fitted using the 

whole data set. We encountered difficulty when trying to calculate the 10-fold 

cross-validated prediction error. The software S-Plus returned error messages 

regarding the predicted values on the test set when using GAM. The error 

messages were coming from Fortran, stating that the predictions cannot be 

calculated when using locally weighted surface smoothers and extrapolating. 

We considered replacing the locally weighted surface smoothers by smooth­

ing splines, but S-Plus does not allow modeling interactions using smoothing 

splines. Switching to the software R and using the ‘gam’ package did not 

solve the predictions problem. However, the predictions were working when 

using GAM within a different package in R, called :mgcv\ There are major 

differences between what this package provides and S-Plus. Locally weighted 

surface smoothers are no longer available. Instead, multi-dimensional smooths 

are available. They are based on penalized thin plate regression splines, pro­

viding a sensible way of modeling interaction terms in GAM, (Wood, 2003). 

The GAM models in Table 4.1 are based either on main effects only, or in-
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teraction terms. The first two GAM models correspond to main effects only 

using smoothing splines in S-Plus, with a nominal one degree of freedom per 

term for the first model, and two degrees of freedom per term for the second 

model. To fit interaction terms we used R. The last GAM model in Table 4.1 

corresponds to a four degrees of freedom thin-plate regression spline term for 

radiation and a two-dimensional smooth based on thin plate regression splines 

to model the interaction between wind and temperature.

4.2 Dependence of ozone on eight meteorolog­
ical measurements made in the Los Ange­
les basin

Data for this example come from a case study regarding the dependence of 

ozone level on eight daily meteorological measurements made in the Los An­

geles basin in 1976. Although measurements were made every day that year, 

some measurements were missing; we use the 330 complete cases. We will refer 

to this data as the LA Ozone data. The response variable is represented by 

ozone level counts and there are nine predictors, including day of the year and 

eight meteorological measurements: 500 millibar pressure height, measured 

at the Vandenberg air force base (vdht), wind speed at Los Angeles airport 

(wind), humidity at Los Angeles airport (hmdt), Sandburg Air Force Base 

temperature (temp), inversion temperature base height (ibht), pressure gradi­

ent from Los Angeles airport to Daggert (dgpg), inversion base temperature 

at Los Angeles airport (ibtp), visibility (vis). A scatterplot matrix of the ten 

variables is displayed in Figure 4.9. Hastie and Tibshirani (1990) analyzed
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this data set using the log of ozone level counts and Normal errors assump­

tions. We assume the conditional distribution of the ozone counts given the 

nine predictors is Poisson and apply ALB, GLM and GAM. We mention that 

previous analysis of this data set indicate additive structure, so an additive 

model is likely to provide a more parsimonious fit compared with models al­

lowing interactions.

The ALB fit uses K  =  5 basis functions. A plot of the deviance residuals, 

assuming a~ =  1 is displayed in Figure 4.10. The magnitude of the residuals 

indicates that the Poisson distribution is appropriate. The deviance statistic 

is 246.1218 based on 285 degrees of freedom. A chi-squared goodness of fit 

test indicates that the data are consistent with a Poisson model, (p-value =  

0.9535).

Since the measurements are taken over time on approximately consec­

utive days, it is necessary to investigate whether serial correlation occurs. A 

residual plot displayed in Figure 4.11 does not indicate patterns in residuals 

over time. The same formula for an estimator of the first-order serial corre­

lation as in the previous example was used. A value of -0.0664 was obtained, 

indicating that serial correlation is not a problem for this data.

Boxplots of the standardized gradients of /  displayed in Figure 4.12, 

suggest the following variables as being important in predicting ozone levels: 

humidity, dgpg . ibtp. wind, visibility and day of the year. The rest of the 

variables: vdht, temperature, and ibht may not be important as suggested by 

the boxplots of the standardized gradients. Wind and visibility are less clear,
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Figure 4.9: Scatterplot matrix of the nine predictors in LA Ozone data.

they may be important or not. We note that such plots could be misleading 

given dependencies among predictors, as suggested by the scatterplot matrix 

in Figure 4.9. The shuffling technique to measure importance of each predic­

tor, derived in Chapter 3, is applied to this data. The proportion of deviances 

as extreme as the one from the original sample together with the margin of er-
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ror, calculated using the Agresti-Coull(AC) interval for a binomial proportion, 

are listed for each predictor: .36(.09) for vdht, .11(.06) for wind, .00(.03) for 

humidity, .28(.09) for temperature, .18(.08) for ibht, .00(.03) for dgpg, .01(.03) 

for ibtp, .01(.03) for visibility and .00(.03) for day of the year. The AC in­

terval for a binomial proportion is discussed in Brown et al., 2001. Brown et 

al., 2001 remind the reader that the actual coverage probability of a standard

5 '  

0 -

-5 -

Figure 4.12: Boxplots of the nine standardized gradients in LA Ozone data. 

Table 4.2: Suggested important variables for the different methods.

Method Suggested important variables
ALB, using boxplots
ALB. using shuffling technique
GAM

hmdt, dgpg , ibtp, wind, vis, day 
hmdt, dgpg , ibtp, vis, day 
hmdt, dgpg , ibtp, vis, day
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interval is poor for p  near 0 or 1. They discuss and test several alternatives for 

the standard interval and recommend the AC interval for larger n (n > 40). 

The AC interval(Agresti and Coull, 1998) is also called the " add 2 successes 

and 2 failures” interval. To compute the AC interval, we add 2 successes and 

2 failures and then use the same formula as for the standard interval. Table 

4.2 displays the suggested important variables for ALB using boxplots and the 

shuffling technique and for GAM. We note that except for the wind variable, 

the same sets of important variables were suggested by both techniques. We 

note that GAM returns the same sets of important variables as the numeric 

shuffling technique. We give more details about how GAM was fitted to the 

LA Ozone data later in this section.

We have mentioned before that Hastie and Tibshirani (1990) analyzed 

this data set using GAM, the log of ozone level counts and Normal errors 

assumptions. They used smoothing regression splines with a nominal four 

df for each predictor, no interaction terms. We fitted GAM using the ozone 

level counts and Poisson errors assumption following their approach of using 

smoothing regression splines with a nominal four df each. In order to compare

Table 4.3: Ten-fold cross validated prediction error based on Kullback-Leibler 
distance together with the standard errors, for the different methods.

Method Prediction error
GLM with main effects only
GAM with additive effects only, four df for each
GAM with interaction term
ALB

1.9319(.3199)
1.3125(.1476)
1.2228(.1329)
1.7114(.3363)
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the predictive performance of ALB and GAM, we have evaluated the 10-fold 

cross validated prediction error based on the Kullback-Leibler divergence, de­

rived in Section 2.3.1. The same groups were used for all methods, and the 

cross-validation partition was based on serial order of data. For a baseline 

comparison, we applied GLM to all nine predictors, main effects only. The 

prediction errors together with the standard errors are displayed in Table 4.3. 

As mentioned before, we fitted GAM using the ozone level counts, Poisson 

errors assumption, and smoothing regression splines with a nominal four df 

each. Details on how GAM with an interaction surface were fitted are given in 

the next paragraph. Both ALB and GAM improve upon GLM and GAM per­

forms better than ALB. There is a  question whether these differences among 

GLM, GAM and ALB, are statistically significant. Also, is there evidence 

that some of the cross-validation groups are harder to predict than others, i.e., 

the prediction errors are significantly higher for some cross-validation groups 

than others. A two-way ANOVA assuming additive effects for methods and 

cross-validation groups, indicates there are significant differences among the 

ten cross-validation groups, p-value =  .000, and that there are significant dif­

ferences among the four methods considered, GLM with main effects only, 

GAM with additive effects, GAM with interaction surface, and ALB, p-value 

=  .025. A post-hoc comparison indicates that GAM with interaction surface 

did significantly better than GLM, there are no significant differences among 

GLM, GAM with additive effects, and ALB, and there are no significant differ­

ences among GAM with additive effects, GAM with interaction surface, and
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ALB. The first cross-validation group was harder to predict than the rest.

It is interesting to investigate whether ALB detects possible interac­

tions for the LA Ozone data. Plots of the gradient ALB estimates displayed 

in Figure 4.13 suggest possible interactions between the predictors, rather 

than just an additive structure. We investigated the effect of modeling the 

interaction between humidity and inversion base temperature (ibtp) using a 

locally-weighted surface smoother within GAM. We remind the reader that 

S-Plus does not allow modeling interactions using smoothing splines. Based 

on a crude F-test, the interaction between humidity and inversion base tem­

perature was found significant. It is interesting to see whether including this 

significant interaction term between humidity and inversion base temperature 

would have an effect on the 10-fold cross-validated prediction error. Since 

there are problems with the use of locally-weighted surface smoothers in S- 

Plus when trying to predict on a test set, we switched to R and calculated the 

10-fold cross-validated prediction error using a two-dimensional smooth based 

on thin plate regression splines to model the interaction between humidity and 

inversion base temperature, and one-dimensional thin-plate regression spline 

terms for the rest of seven predictors. As displayed in Table 4.3, GAM with the 

interaction term  improves upon GAM with main effects, but the difference be­

tween the two methods was not found to be statistically significant. However, 

GAM with interaction surface performs significantly better than GLM.

This example illustrates how ALB models can be used in high dimen­

sional data sets to explore possible interactions among predictors. Although
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Figure 4.13: Matrix scatterplot of the nine gradients of the log of the mean 
estimate versus predictors in LA Ozone data.
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GAM performs better than ALB in this example, we can still use ALB to iden­

tify possible interactions and then use GAM for further exploration, based on 

the guidelines offered by ALB regarding interactions. We showed how the 

cross-validated prediction error was improved when modeling an interaction 

suggested by ALB. leading to a GAM model with an improved prediction 

power. ALB proves to be an automatic method that provides interesting in­

sights into multidimensional data sets.
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Chapter 5

A comparison of ALB m odels, 
G PP and GAM

5.1 Introduction

In Chapter 2 of this thesis we investigate and compare predictive accuracy 

of ALB models and GAM. We remind the reader that we used GAM based 

on thin plate regression splines with smoothing parameters selected by either 

a GCV criterion or an Un-Biased Risk Estimator criterion (UBRE) which is 

an approximation to AIC, (Wood 2003). GAM based on thin plate regres­

sion splines was implemented in R, package ‘mgcv\ To model interactions, 

multidimensional smooths are available using penalized thin plate regression 

splines.

In this chapter, we investigate predictive accuracy of ALB compared 

with GAM restricted to component-wise additive models, that is:

g(E (Y \x1. . . . :x d)) = a  + f i ( x 1) + . . .  + f d(xd),
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as well as Generalized Projection Pursuit(GPP) models, that is:

M

9{£:(y|x)) = /3o + ^ f t / i (a ;x ) .
j = 1

We note that we actually consider the Poisson distribution, so g is the log-link 

function.

Additive models are motivated by the failure of linear models in sit­

uations where the effects of the predictors are not linear. Additive models 

identify and characterize nonlinear effects retaining an important feature of 

linear models: they are additive in the predictor effects, making interpretation 

easier. Although the additive models approach has a number of attractive 

properties, not all possible underlying regression functions can be modeled as 

a sum of smooth functions. The additive model is a special case of a more 

general model that goes beyond component-wise additivity, the Projection 

Pursuit model:
M

E {Y  [x) =  fa + ^ P j f j i a ' j X ) .  
j = 1

The scope of this chapter is to compare predictive accuracy of ALB, 

GPP and GAM (component-wise additivity models), for the case where the 

conditional distribution of the response given the predictors is Poisson. The 

organization of this chapter is as follows. In Section 2, we give background 

on Projection Pursuit and the extension to the exponential family (GPP). In 

Section 3, we investigate and compare predictive accuracy of ALB, GPP and 

GAM (component-wise additivity models).
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5.2 Background on Projection Pursuit models

The central idea behind Projection Pursuit models is to extract linear combi­

nations of the predictors as derived features, and then model the target as a 

nonlinear function of these features. The Projection Pursuit regression (PPR) 

model has the form:

M

E l y  |x) =  f t +  £ & £ ( “ > )•
j = 1

As in other smoothing problems, we need to impose complexity constraints for 

identifiability of the model components:

£ 4  = i
i=  1

=  0
2 = 1

2 = 1

This is an additive model, but in the derived features a'jX. rather than the 

predictors themselves. The functions f j  are unspecified and are estimated 

along with the directions ctj using some flexible smoothing method.

The function ) is called a ridge function in $tp and it varies in the 

direction defined by the vector aj.  The PPR model is very general, since the 

operation of forming nonlinear functions of linear combinations generates a 

large class of models. For example, the product x \ x 2 can be written as ( f a  +  

X2)2 — (xi — xo)2)/4 and higher-order products can be represented similarly.

PPR  is a generalization of additive models, addressing two of their lim­

itations: additive models can at best find the additive function closest to the
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true regression function, and additive models are not invariant to rotations of 

the predictor space. The PPR has the universal approximation property; i.e.. 

asymptotically in the number of linear combinations M, PPR  can approxi­

mate any continuous function (Diaconis and Shahshahani, 1984). However, 

this generality comes with a price. Interpretation of the fitted model is usu­

ally difficult, because each predictor enters the model in a complex way. As a 

result, PPR  is most useful for prediction, and not as useful for producing an 

understandable model for the data.

The standard PPR algorithm of Friedman and Stuetzle (1981) estimates 

the smooth functions f j  using the supersmoother nonparametric scatterplot 

smoother. Friedman's algorithm constructs a model with Mm a y linear com­

binations, then prunes back to a simpler model of size M  < Mmax, where M  

and Mmax are specified by the user.

Friedman et al. (1983) propose a regression spline PPR algorithm which 

they call the Multidimensional Additive Spline Approximation (MASA). In 

this algorithm, the user specifies the number of terms M to add, and the 

number of knots to use in each regression spline. Another PPR  algorithm is 

that of Hwang et al. (1993). They estimate the smooth functions using high 

degree polynomials (in the examples they present, they use polynomials of 

degree 7 or 9). The same degree polynomial is used for each term in the fit 

and the user specifies M  and Mmax-

Roosen and Hastie (1993) present a smoothing spline PPR algorithm 

based on the PPR algorithm described by Hwang et al. (1993) and Friedman
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(1985). The general approach is to fit the terms in a stepwise manner using 

backfitting between the addition of terms. A total of Mmax > M  terms are 

fitted, and a backwards selection procedure is used to prune the fit down to 

M  terms.

Hwang et al. (1993) note that two desirable qualities of polynomials are 

that they provide a fast and accurate derivative calculation, and they provide 

a smooth interpolation. Roosen and Hastie (1994) note that smoothing splines 

also have these properties, and in addition can be used to choose the smoothing 

parameters and the number of terms automatically. They also note that the 

local smoothness of the fit provided by smoothing splines will, in many cases, 

make them more reliable than the supersmoother. Roosen and Hastie (1994) 

propose an Automatic Smoothing Spline Projection Pursuit (ASP) algorithm 

with the smoothing parameters and number of terms selected automatically 

using a GCV criterion. The ASP algorithm is a direct descendant of the non- 

adaptive smoothing spline PPR  algorithm described in the previous paragraph.

Roosen and Hastie (1993) develop a Generalized Projection Pursuit 

(GPP) framework for the exponential family models using the canonical link:

M

g{E(Y  |x)) =  Pq + ^ 2  Pjfj{c!-x).
j=l

The GPP algorithm is a modification of the ASP algorithm, using the local 

scoring loops around the backfitting loops, analogous to the way GAM algo­

rithm  generalizes the Additive Models algorithm. We note that Roosen and 

Hastie (1993) only provide simulated results for a binary response using a logit
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where p = P ( Y  =  l |x )  =  E ( Y |x). No simulations or applications are provided 

for a Poisson distributed response. We contacted the authors asking for the 

code and they confirmed that the code was never adjusted to fit a Poisson 

distributed response. Only logistic regression with a binary response was per­

formed. We have modified the code to account for the Poisson distributed 

response, i.e.. we modified the adjusted dependent variable and weights in the 

local scoring algorithm, and the corresponding starting values.

In the next section, we present results of simulation studies regarding 

predictive accuracy of ALB, GPP, and GAM (component-wise additivity, as 

well as interactions).

5.3 Comparing predictive accuracy of ALB, 
G PP and GAM

The affine invariance of ALB suggests comparison with PPR. Both methods 

employ a  linear combination of simpler functions and neither is affected by scal­

ing or rotation of the covariates. PPR  approximates the regression function 

by a sum of one-dimensional ridge functions. The ridge function are estimated 

using one-dimensional smoothers and can incorporate several bumps. The lo­

gistic basis functions employed by ALB are more complex than ridge functions 

in one respect, being multi-dimensional, but are simpler in other respects, with 

quasi-concave shape constrained by a parametric family. Regarding starting
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values. Roosen and Hastie (1994) note that due to the highly nonlinear nature 

of the PPR  problem, the particular initial direction coefficients {a^}  used can 

have a dramatic effect on the results of the algorithm.

In the following simulation studies we compare predictive performance 

of ALB models, GPP and GAM for Poisson distributed response. For a de­

scription of the prediction error and simulation protocols we refer the reader to 

Sections 2.3.1 and 2.3.2. We note that in Section 2.3.1 and 2.3.2 we used GAM 

with thin-plate splines to model interaction surfaces, (Wood, 2003). For the 

rest of this section, we refer to this method as GAM(W). Here, we also look 

at GAM as component-wise additive models, (Hastie and Tibshirani, 1986), 

and refer to it as GAM(HT). GAM(W) using thin-plate splines to model in­

teraction surfaces was fit using package ;mgcv: in R, the code being written by 

the author (Wood. 2003). The smooth terms are represented using penalized 

thin-plate regression splines, allowing for interaction surfaces, with smoothing 

parameters selected by a GCV criterion. We note that GAM(W) allows a 

more flexible additive model, but the interaction surfaces need to be specified 

by the user. When there is a priori knowledge about the form of the target 

function, for example, we know that there is an interaction between the first 

two predictors and an additive effect of the third predictor, GAM(W) is able 

to take advantage of it employing a model of the form s(xi, xo)+ s(x 3), leading 

to a better performance. GAM(HT) as a component-wise additive model was 

fit in S-Plus using smoothing regression splines with a fixed number of degrees 

of freedom for each of the predictor variables. As Roosen and Hastie (1993)
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have already used GPP on a number of functions, their work provides a valu­

able test bed in which to compare ALB with GPP. In fact, Roosen and Hastie 

(1993) used functions from Hwang et al. (1993) to examine the supersmoother 

and polynomial based PPR. They only use two-dimensional functions, and also 

investigate performance of their methods using additional nuisance predictors. 

In the last three simulation studies, we use functions from Hwang et al. (1993). 

In the first three simulations studies we use functions from Section 2.3.2. The 

simulation studies results are displayed in Table 5.1.

Example 5.3.1 A sample of size n was generated with each predictor vector 

x  generated uniformly on the hypercube (—1, l )d. The target function is not 

an ALB function:

_  2sin(?r(a:i+ l ) / 2 )

(an/2 + 1 )

We note that it does not make sense to use GPP to model data with only one 

predictor. However, it is interesting to compare ALB with GPP and GAM 

using additional nuisance predictors. In this example, we used four nuisance 

variables, for a total of five predictors. The prediction errors for the methods 

we investigate are very close, especially with larger sample sizes, n =  100 and 

n  = 200. For a smaller sample size, n =  50, GAM(W) performs slightly better. 

GAM(W) is here represented by s(a?i) +  . . .  +  s{x5). no interaction surfaces. 

A closer look indicates that, especially for the smaller sample size, n  =  50, 

ALB and GPP are more affected by the nuisance variables than GAM(W), or 

GAM(HT). Methods that fit each axis separately, such as GAM, are expected 

to  perform better with this example.
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Table 5.1: Performance measures: prediction error averages from 100 repli­
cated samples of size n  for Poisson version of ALB models, Generalized Ad­
ditive model (Wood, 2003), Component-wise GAM (Hastie and Tibshirani, 
1986), and GPP together with the corresponding lower bound of the predic­
tion error.

No. d n k lower bound ALB GAM(W) GAM(HT) GPP
1 5 50 3.24 1.2385 1.5795 1.4855 1.6025 1.5825

5 100 3.20 1.2214 1.3911 1.3821 1.4219 1.3901
5 200 3.21 1.2554 1.3422 1.3329 1.3585 1.3392

2 2 50 4.08 1.2608 1.5430 1.4312 1.5219 1.6015
2 100 4.17 1.2534 1.4063 1.3522 1.4031 1.4408
2 200 4.54 1.2437 1.3258 1.2936 1.3204 1.3419
5 50 4.08 1.2362 1.7628 1.5051 1.5512 1.9235
5 100 4.12 1.2418 1.5021 1.4052 1.4132 1.7124
5 200 4.26 1.2525 1.4042 1.3336 1.3521 1.5735

3 4 50 4.03 1.2619 1.7703 4.8466 9.2317 3.9205
4 100 4.23 1.2369 1.7172 3.0891 8.5076 2.7104
4 200 4.28 1.2548 1.6868 2.5479 8.1224 2.3220

4 2 50 4.57 1.2364 1.5529 1.4809 7.1719 1.6019
2 100 4.76 1.2015 1.3973 1.3905 6.3372 1.4157
2 200 5.05 1.2286 1.3233 1.3160 5.7549 1.3367
5 50 4.21 1.2313 1.7591 1.6355 8.6984 1.7621
5 100 4.55 1.2299 1.5541 1.4341 7.6760 1.5528
5 200 5.14 1.2150 1.3577 1.3271 7.3507 1.3614

5 2 50 5.18 1.2419 1.6584 1.5741 2.1094 1.7753
2 100 5.79 1.2567 1.5166 1.4800 2.0591 1.6054
2 200 6.51 1.2408 1.4051 1.3987 1.9404 1.4135
5 50 4.81 1.2345 1.9480 1.7104 2.2901 2.0142
5 100 6.29 1.2409 1.7102 1.5034 2.2617 1.9341
5 200 6.93 1.2348 1.5157 1.3863 2.1439 1.7912

6 2 50 8.89 1.2200 1.9356 1.9663 4.2602 1.9241
2 100 11.53 1.2101 1.6218 1.8831 3.0441 1.6042
2 200 15.62 1.2181 1.7612 1.7942 2.4082 1.6839
5 50 7.59 1.2279 3.3134 1.8623 9.9684 2.7361
5 100 10.64 1.2537 3.0522 1.7294 4.6386 2.5116
5 200 14.42 1.2215 2.3334 1.7823 4.2287 2.2813
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E x am p le  5.3.2 A sample of size n  was generated with each predictor vector 

x  generated uniformly on the hypercube (—1 ,1)6*. The target function is an 

additive function of the first two covariates:

f i x )  - 1 5 x 2 +  1 5 sin(,r(l2  +  1 ) /2 )/(x )  1.53:,+1.5 ( l2 / ,  _  i j  '

GAM performs better than ALB and GPP, as expected since the underly­

ing regression function is additive. The difference in the prediction errors is 

smaller as n increases. When adding three nuisance variables, (d =  5) the 

accuracy deteriorates affecting ALB and GPP more than GAM, especially for 

the smaller sample size, n =  50. Methods that fit each axis separately, such as 

GAM, are expected to perform better with this example. We note that ALB

performs better than GPP on this additive example and seems to be less af­

fected by the nuisance variables. We also note that GAM(W) performs better 

than GAM(HT). GAM(W) is here represented by s(xi) +  s(x2) for d =  2, and 

by s(rci) +  . . .  -I- s(x^) for d = 5, no interaction surfaces.

E x am p le  5.3.3 A sample of size n  was generated with each predictor vector 

x  generated uniformly on the hypercube (—3 ,3)4. The target function is an 

ALB function defined on a 3-dimensional projection of I t 4 : ie., /(x )  =  //r(z) 

where K  =  5, z = (c1; z o , 2 3 )',

Zi = y/3(xi + X2 + £3 + X4 — 2 ) 

z 2 =  y / 3( x i  +  Xo — X3 — X4)  

z 3 =- y / 3( x i  — X 2 + X 3 — X4 )

The reference point parameterization is used to specify fx -  si =  (1,0,0)',
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& =  ( -1 ,0 .0 ) ' .  & =  (0,1.0)', & =  (0,0,1)', & =  (0,0,0)', 7i =  72 =  73 =

74 =  75 =  0, Si =  So =  .5, Sz = 64 = 3.5, 5s =  0 and r  =  1. The target /  

can be expressed as an ALB function of x and has interactions of all orders 

among the four covariates. The performance of ALB is substantially better 

than that of GPP and GAM(W). GAM(W) has difficulty modeling higher or­

der interactions, even when n is large. W ith n = 50, there are not enough 

degrees of freedom for GAM to model three-way interactions. W ith n  =  200, 

there are not enough degrees of freedom for GAM to get all three-way interac­

tions. On this example, GAM(W) performs much better than component-wise 

GAM(HT), as expected. GPP performs better than GAM(W), but worse than 

ALB. The logistic basis functions employed by ALB axe more complex than 

ridge functions, being multi-dimensional, and therefore leading to a  better 

performance of ALB on this example. In further simulations, the average pre­

diction error for GAM and GPP remains roughly constant as n  increases from 

200 to 2000.

Example 5.3.4 This example was used by Hwang et al. (1993) and Roosen 

and Hastie (1993, 1994) to test performance of the supersmoother and polyno­

mial PPR  algorithms. ASP and GPP. A sample of size n was generated with 

each predictor vector x generated uniformly on the hypercube (0, l ) d. The 

target function is a simple interaction of the first two covariates:

/(x) =  10.391((xi -  .4)(xo -  .6) +  .36).

The prediction errors for ALB, GPP and GAM(W) are very close, especially 

with larger sample sizes, n =  100 and n  =  200. For a smaller sample size.

133

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



n  =  50, GAM(W) performs slightly better. GAM(W) is here based on a 

two-dimensional smooth interaction surface s(xi,X2)- GAM(HT) performs 

much worse than the other models we consider, since the target function is 

an interaction of two covariates. ALB performs slightly better than GPP 

for d =  2. When adding three nuisance predictor variables, the prediction 

errors of ALB and GPP are very close. For d = 5, we note that GAM(W) 

performs better than ALB and GPP, but we remind the reader that in this 

case GAM(W) has an advantage; in this example GAM(W) is based on a two- 

dimensional smooth interaction surface and additive effects for the rest of the 

three predictors, i.e..

g{E(y\x)) =  s(xi,xo) +  s(x3) +  s(x4) +  s(x5).

So, we take advantage of the known form of the target function when fitting 

GAM(W), leading to improved performance over ALB and GPP.

E x am p le  5.3.5 This example was used by Hwang et al. (1993) and Roosen 

and Hastie (1993, 1994) to test performance of the supersmoother and polyno­

mial PPR  algorithms, ASP and GPP. A sample of size n  was generated with 

each predictor vector x  generated uniformly on the hypercube (0, l)d. The 

target function is a radial function in the first two covariates:

/(x )  =  24.234(r2(0.75 — r 2)), where r2 =  (xi — .5)2 +  (x3 — -5)2.

On this example, ALB performs better than GPP. Component-wise GAM(HT) 

performs much worse than the other models we consider, since the target 

function is an interaction of two covariates. GAM(W) is here based on a
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two-dimensional smooth interaction surface s(xi,X2)- GPP performs slightly 

better than ALB for d = 2. When adding three nuisance predictor variables, 

the prediction errors of ALB and GPP are very close. As in the previous 

example, for d = 5. we note that GAM(W) performs better than ALB and 

GPP, but we remind the reader that in this case GAM(W) has an advantage; 

in this example GAM(W) is based on a two-dimensional smooth interaction 

surface and additive effects for the rest of the three predictors, i.e.,

p(£(y|x)) =  s(o:1,X2) +  s f e )  +  s(x4) + s(xs).

So, we take advantage of the known form of the target function when fitting 

GAM(W). leading to improved performance over ALB and GPP.

E x am p le  5.3.6 This example was used by Hwang et al. (1993) and Roosen 

and Hastie (1993,1994) to test performance of the supersmoother and polyno­

mial P PR  algorithms. ASP and GPP. A sample of size n was generated with 

each predictor vector x generated uniformly on the hypercube (0, l ) d. The tar­

get function is a complicated interaction function in the first two covariates:

/(x )  =  1.9(1.35-I-exp(xi)sin(13(xi — .6)2)exp(—X2) sin(7x2)).

On this example, GPP performs better than ALB. We note that this compli­

cated interaction function produces a surface with many bumps and ripples 

occurring in multiple directions. This is a good example to illustrate limita­

tions on the complexity of the ALB function. A large number of basis functions 

is required to approximate functions with many bumps and ripples occurring 

in multiple directions. The averages over the 100 samples of the number of
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basis functions selected by ALB is displayed in Table 5.1. The ridge regression 

functions estimated using one-dimensional smoothers can incorporate several 

bumps, and they are more successful in this example, than the quasi-concave 

logistic basis functions employed by ALB. We note that, for d =  2, ALB and 

GPP perform better than GAM(W). Component-wise GAM(HT) performs 

much worse than the other models we consider, since the target function is 

an interaction of two covariates. GPP performs slightly better than ALB for 

d =  2. As in the previous two examples, when adding three nuisance predic­

tors (d =  5), we note that GAM(W) performs better than ALB and GPP, but 

we remind the reader that in this case GAM(W) has an advantage: the same 

discussions as in the previous two examples apply here.

To summarize. ALB performs better than GPP on some of these ex­

amples, and worse than GPP on others. The performance of these methods 

depends on the target function, and is affected by the different basis functions 

employed by the two methods. PPR approximates the regression function by 

a sum of one-dimensional ridge functions. The ridge functions are estimated 

using one-dimensional smoothers and can incorporate several bumps. The lo­

gistic basis functions employed by ALB are more complex than ridge functions 

in one respect, being multi-dimensional, but are simpler in other respects, with 

quasi-concave shape constrained by a parametric family. When we have previ­

ous knowledge of the additive or partially additive structure of the regression 

function, GAM(W) has a greater advantage over ALB and GPP, using models 

that exploit additivity. Especially in the last example, we note that when
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nuisance variables are added to the predictors, ALB tends to compensate by 

reducing the number of basis functions. This results in smoother estimates and 

reduced predictive performance. In this situation, it is useful to investigate 

whether the target function can be represented on a lower dimensional projec­

tion of the predictor space. Dimension reduction techniques (Li 1991, 1992: 

Cook, 1998; Ferre 1998) can be used to estimate a lower dimension projection 

before using ALB.
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Chapter 6 

Concluding Remarks

A problem common to many disciplines is that of adequately approximating 

a function of several to many variables, given only the value of the function, 

often perturbed by noise, at various points in the dependent variable space. 

In statistics, flexible regression models for multi-dimensional data have been 

devised in response to this problem. Researchers started by fitting data for 

which the constant variance of the response given the predictors is a reasonable 

assumption. Some of the flexible regression models have been extended to the 

exponential family of distributions. This thesis extends a flexible regression 

model for multidimensional data, called Adaptive Logistic Basis (ALB) models 

to accommodate some of the exponential family distributions. Comparisons 

with competitive flexible regression models are presented on both simulation 

studies and real data.

We have attempted to show that various extensions of ALB to the ex­

ponential distribution family provides a useful addition to regression method­

ology. Its strengths, such as affine invariance, complement those of other 

techniques. Extensions of ALB models to the exponential family appear well

138

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



suited for large multidimensional data sets, where the target function contains 

higher-order interactions. Some limitations may be addressed by combining 

this method with other techniques.

6.1 Main contributions

1. E x ten sio n s of ALB m odels for th e  case w here th e  cond itional d is­

tr ib u tio n  o f th e  response given th e  p red ic to rs  is Poisson. The original 

ALB methodology employs a squared error and absolute error loss functions. 

Generalizations for count data are achieved by introducing a log-link function 

and an appropriate likelihood or quasi-likelihood function. While the idea 

is straightforward, several technical complications arise in the implementa­

tion. Stochastic approximation was used to solve the minimization problem. 

For constant variance models, the response variable was standardized prior to 

using stochastic approximation. However, standardization of Poisson counts 

does not make sense. Instead of transforming the response variable prior to 

using stochastic approximation, we stabilize the magnitude of perturbations 

by scaling the updating functions and by setting an upper bound on the pre­

dictions. We proved that these modifications to the updating functions for the 

Poisson version of ALB still result in convergence of the log-likelihood toward 

a local optimum (Theorem 2.2).

We derived approximate standard errors for the ALB estimator. Given 

the adaptive nature of the ALB estimator, difficulties in deriving standard er­

rors are expected. We derived approximate standard errors for the fit assuming
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that the number of basis functions is fixed and employing a standard asymp­

totic technique in nonlinear regression analysis. Our derivation extends that 

of HOI from Normal errors to the more general quasi-likelihood context. Cov­

erage probabilities were estimated in several simulation studies. We discuss 

three approaches to estimate the covariance matrix of the parameter vector 6 . 

The first approach extends HOI in the quasi-likelihood context. The second 

approach gives an alternative solution to the redundancies in the parameter­

ization by fixing some of the parameters, and applying the usual asymptotic 

techniques to calculate cov(0). We proved that these two approaches yield 

essentially the same results (Theorem 2.3). The third approach to estimate 

cov(0) yields a sandwich estimator based on a first Newton-Raphson step ap­

proximation of 0. We found that the approximate standard errors based on 

the third approach are lower than the ones based on the first approach, leading 

to more liberal confidence intervals. Based on these considerations, we recom­

mended the approximate standard errors based on the first approach.

2. ALB m odels for over-d ispersed  count d a ta . Unmeasured effects, 

clustering of events, or other contaminating influences combine to produce 

more variation in the responses than is predicted by the Poisson model. We 

discussed ALB models for the case where there is more variation in the re­

sponses than that predicted by the Poisson sampling theory. The model of 

the variance is motivated by a Poisson-Gamma mixture. Based on scientific 

reasons and model tractabilitv. we focused on the following choices:

(i) Poisson over-dispersed data with constant coefficient of variation.
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(ii) Breslow (1984) to model extra-Poisson variation in log-linear models.

(iii) A flexible variance model that employs an ALB function.

Algorithms based on a Weighted Least Square(WLS) or a  Weighted Quasi­

likelihood (WrQL) criterion are employed to fit these models (Algorithms 3.1 

and 3.2). We found that the choice of weights does not have a huge effect 

on the estimate of the mean, but can lead to important differences in the 

standard errors. The confidence intervals corresponding to the Poisson fit 

and the flexible ALB variance model are narrower, resulting in lower coverage 

probabilities. Our simulation studies indicated that modeling the variance 

function using ALB does not present an advantage over using a linear model to 

estimate the weights. Modeling residuals as an ALB function of the predictor 

from the Poisson fit yields relatively poor results. The residuals are very 

scattered, even after transformations. From our experience with simulation 

studies, when fitting ALB models to the variance function, ALB tends to 

select a larger number of basis functions than would be needed.

In our simulation studies and examples, the results from the two crite­

ria WLS and WQL. were very similar. This finding is consistent with earlier 

results showing that WrLS and ML estimators are asymptotically equivalent 

in the class of Generalized Linear Models (Carroll and Rupert, 1988, Section 

2.4).

3. A  com parison  o f A LB m odels, G P P  a n d  G A M . We compared predic­

tive accuracy of ALB models, GPP and GAM using several simulation studies. 

We used several target functions, some of them previously used by Hwang et
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al.(1993) to examine the supersmoother and polynomial based PPR, and by 

Roosen and Hastie (1993) to test ASP and Logistic PPR. Although Roosen and 

Hastie (1993) extended PPR to the exponential family, they never investigated 

the performance for a Poisson distributed response. Their code and simula­

tions were restricted to a binary response. We modified the code to account for 

the Poisson distributed response, i.e., we modified the adjusted dependent vari­

able and weights in the local scoring algorithm, and the corresponding starting 

values. The performance of these methods was tested on several examples. We 

found that ALB performs better than GPP on some of these examples, and 

worse than GPP on others. The performance of these methods is affected 

by the different basis functions employed by the two methods. When we have 

previous knowledge of the structure of the regression function, GAM(W) has a 

greater advantage over ALB and GPP, using models that exploit this previous 

knowledge. When complicated interactions are present, producing a surface 

with many bumps and ripples occurring in multiple directions, GPP performs 

better than ALB. and GAM(HT) performs much worse than both GPP and 

ALB. ALB works better than GPP when the covariate space can be covered 

with a small number of overlapping regions where /  is well approximated by 

simple low-dimensional functions (Example 5.3.3 and Example 5.3.5).

6.2 Future directions

In the last section of Chapter 2, we presented an example (Rongelap Island 

data) that motivated work on generalizing ALB models to accommodate Pois-
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son counts over time. We remind the reader that the independence assumption 

was unrealistic for the Rongelap Island example because of spatial correlations 

at close locations.

Spatial correlations may appear in the context of modeling data as a 

(partial) realization of a random process {Z (s) : s G D}. where the index 

D  allows s to vary continuously through a region of d-dimensional Euclidian 

space. The following two model assumptions are often made:

E (Z{  s)) =  n,

Co v{Z(s1):Z (s2)) = C (s1 - s 2),

where C(.) is called a covariogram or a stationary covariance function. If 

C(si — so) is a function only of ||si — 521|, then C(.) is called isotropic. In 

order to model the spatial correlations, one approach is to assume multivariate 

normality, Z  ~  Nn(/j..T,(r})). and model the mean as a linear combination of 

the predictor variables:

/x(s) =  /?'x(s), (6.1)

where x(s) are the predictor variables at location s. Assuming a parametric 

model for the covariogram. one can obtain Maximum Likelihood estimates of 

the parameters. An example of an isotropic covariogram model is:

77 =  ( < 7 ,1 /1 ,  i / 2 ) ,

E(t]) = C ov(Z(si),Z (s2)) =  cr2exp{-(i/i||si -  s2||),/2},

for some > 0, <r > 0 and 0 <  1/2 < 2. We note that the above expression 

generates a strictly positive definite covariance matrix only if 0 < 1/2 < 2. One
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might, apply ALB models in this context, by replacing the linear predictor in 

(6.1) with the more flexible ALB predictor.

We mentioned in the previous chapter that, when we have previous 

knowledge of the additive or partially additive structure of the regression func­

tion, additive models have a greater advantage over ALB, using models that 

exploit additivity. In this situation, it is useful to investigate whether the 

target function can be represented on a lower dimensional projection of the 

predictor space. Dimension reduction techniques (Li 1991, 1992; Cook, 1998; 

Ferre 1998) can be used to estimate a lower dimension projection before using 

ALB.
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A ppendix A

An attem pt to compute standard errors for the ALB estimator us­

ing a splitting technique

I derived approximate standard errors for the fit in the quasi-likelihood 

context, assuming that the number of basis functions is fixed and using a linear 

approximation of the regression function around the parameter vector. In the 

following I will derive an attempt to compute standard errors for the ALB 

estimator using a splitting technique. A simpler starting point was to look 

at the case where the errors are normal, more precisely, yi =  /(Xj) +  ez. The 

method may be summarized in a few steps. To keep things simple, assume the 

sample size n is an even number, n = 2m. We start by splitting the data into 

two subsets of m cases:

(x?,i£),z =

(xj,y£),i =

The split is chosen in matched pairs, that means x“ «  xf, for i — 1. . .  . ,m .
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An ALB estimator is obtained on the first half,

K a

;» (x) =
k= 1

Then we carry out least squares linear regression on the second half using the 

basis functions c>£(x) evaluated at the data points in the second half. The new 

estimator can be written as:

K a

/ “‘(x) =  £ i jV 2 ( x )
fc=l

The estimated standard errors, s e { fab(x)} follow from the linear regression for­

mula. The last step is to repeat the same algorithm described above switching 

the two halves. Another estimator, / te(x) is obtained together with standard 

errors, s e { /6a(x)}. The two estimators f ab{x) and f ba(x) can than be averaged 

to give:
/-(x) =  + /»°(x)

In order to obtain standard errors for this estimator, a natural question would 

be whether the two estimators f ab(x) and / 6o(x) are uncorrelated. If they axe 

uncorrelated, a  formula for the estimated standard errors would be:

se{/(x)} =  l ^ / s e 2{ f ab(x)} + se2{ f ba(x)}

In order to develop some intuition on this splitting approach, we looked 

at a simulated one-dimensional example. A sample of size m =  1000 was gen­

erated, with each predictor x  generated from a Uniform(—3,3) distribution. 

The target function is an ALB function and the reference point parameteri­

zation was used to specify fx -  £i =  1, £2 =  0, £3 =  —1, 71 =  72 =  73 =  0,
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5i =  1. So =  o, S3 =  1 and r  =  1. To keep things simple, the same predictor 

values are used for both halves. The response vectors corresponding to the 

two halves axe generated from the models: ya =  f (x )  +  ea and yb =  f (x )  + eb 

where x  and ea are independent, x  and eb are independent and ea and eb are 

N(0, of) random variables, ac =  .2. The following estimates are then obtained: 

f ab, f ba. s e { fab}. s e { fba}. A super-imposed plot of the target function /  and 

the estimates, f ab:f ba:f  versus predictor variable x. displayed in Figure A .l, 

shows an almost perfect fit.

In order to get some intuition on the correlation between the two estima­

tors f ab and f ba. a sample of size m  — 400 was generated, with each predictor 

x  generated from a Uniform(—3,3) distribution. The target function stays the

o_
C O

10
c\T

o
c\J

o

3 ■2 1 0 1 2 3
x

Figure A.l: Superimposed plot of the target function. /  and the estimates f ab. 
/ 6a and /
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same as in the previous paragraph and to keep things simple, the same predic­

tor values are used for both halves described as part of the splitting approach. 

Then, we generated 100 replicated samples of independent response vectors ya 

and y b, corresponding to the two halves, in the same manner described in the 

previous paragraph. 100 values for the estimates f ab and f ba were obtained 

at each fixed x. The correlations between f ab and f ba are then obtained at 

each fixed x. A plot of these correlations against x. displayed in Figure A.2, 

indicates small correlations between the two estimates. A natural estimator 

for the standard error of /  would be:

se{/(x)} =  se1{ f ab{x)} +  se ^ l f^ ix ) }

Coverage probabilities at a 95% nominal level are obtained for f ab, f ba

o

ino

roo 
© o '

in
o

o

33 -2 0 2-1 1
x

Figure A.2: Plot of the correlations between f ab and f ba versus the predictor 
variable x
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Figure A.3: (a) Plot of coverage probabilities for f ab versus predictor x  (b) 
Plot of coverage probabilities for / te versus predictor x  (c) Plot of coverage 
probabilities for /  versus predictor x

and / ,  at each fixed x. Plots of these coverage probabilities against x, displayed 

in Figure A.3, indicated problems with the splitting approach. In some regions, 

the coverage probabilities appear to be poor, with minimum values as low as 

.66. A closer look at normal probability plots of the z-scores corresponding to 

f ab and f ba at a fixed x. displayed in Figure A.4, indicated departures from the 

standard normal distribution. The bias in the linear regression model may be 

an explanation for the too liberal standard errors s e { fab} and s e { fba}. Note 

that we carried out least squares linear regression on the second half using 

the estimated basis functions 4>%{x) obtained from the data points in the first 

half, assuming that they are correct. Taking into account the bias, the linear 

regression model becomes:

y b =  § a $  +  rj +  e,

where =  ( ^ ( x j ) , ....3>a(xm))', 3>a(x) =  ( g>“ ( x ) ,  ...,<b“.a(x))', and ka is the
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Figure A.4: (a) Normal probability plot of z-scores for f ab for a case with the 
lowest cpf. (b) Normal probability plot of z-scores for f ba for the same case as 
in (a)

number of basis functions selected from the first half. Note that,

5 =  ($ a,$ a) - 1$ a,E{^6|x} ,

V = (Im ~  $ a($a'$ a)_1$ a')E{2/6|x}.

The linear regression formulae give us 5ab =  ($a/$ a)-1$ a'y6 and / a6(x) =  

3>Q(x)'<5a6. and therefore:

E{da6|$ a} =  ($ a,$ a) - 1$ a,($ aJ +  77) ,

E { /a6(x )|$ a} =  $ a(x)'d =  $ a(x),($°,$ a) - 1$ a,E{y6|x}.

We obtain the conditional bias and variance of / “*:

Bias{/a6(x )|$a} =  E { /a6(x )|$ a} -  /(x )  ,

V ar{/a6(x )|$a} =  cr2$ Q(x),($ a,$ a)"1$ a(x).
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We estimate a2 by

T T X  h j Q

SO.

E {4 |4 .«} =  a 2 +  —4 -tHM I2.
f f l  r i d

The standard errors for f ab follow:

s e { f ab}  =  s a b i ^ y ^ ' ^ y 1^ ) } 112

It seems that the conditional bias in s2b did not account enough for the bias 

in f ab, and therefore the standard errors s e { f ab} are biased and the coverage 

probabilities are poor.

These findings suggest that we should not draw any conclusions based 

upon individual estimated basis functions, they are useful to estimate the fit, 

but can be misleading when used for further interpretation.
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