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Abstract 

Purpose: 

Detectors such as birdcage coils often consist of networks of coupled resonant circuits that must 

produce specified magnetic field distributions. In many cases, such as quadrature asymmetric 

insert body coils, calculating the capacitance values required to achieve specified currents and 

frequencies simultaneously is a challenging task that previously had only approximate or 

computationally-inefficient solutions. 

Theory and Methods: 

A general algebraic method was developed that is applicable to linear networks having planar 

representations such as birdcage coils, TEM coils, and numerous variants of ladder networks. 

Unlike previous iterative or approximate methods, the algebraic method is computationally 

efficient and determines current distribution and resonant frequency using a single matrix 

inversion. The method was demonstrated by specifying irregular current distributions on a highly 

elliptical birdcage coil at 3T. 

Results 

Measurements of the modal frequency spectrum and transmit field distribution of the two 

specified modes agrees with the theory. Accuracy is limited in practice only by how accurately 

the matrix of self and mutual inductances of the network is known. 

Conclusion 

The algebraic method overcomes the inability of the existing inductance equalization method to 

account for all elements of the inductance matrix and the inability to accommodate modal 

currents that are not (co)sinusoidal. 

 

 

Keywords 
network synthesis; mesh analysis; ladder networks; ladder coil tuning; cyclic coupled networks; 

asymmetric birdcage coils 



 3 

Introduction 
Radio frequency resonators, or “coils”, used in in-vivo magnetic resonance measurements create 

B1 fields and, reciprocally (1), allow signal reception by producing controlled distributions of 

currents on conductive segments that are located at specific spatial locations. These typically 

inductive branches are connected by capacitive elements (discrete lumped capacitors or the 

capacitance between conductive surfaces separated by a dielectric) to yield resonant circuits 

with, often, several resonant frequencies and corresponding current distributions, or “modes”. 

Coil design aims to achieve resonance modes with currents that produce specified magnetic field 

distributions at the desired frequencies, often with constraints on mode degeneracy (multiple 

modes sharing the same resonant frequency) and coupling. In this work the network’s geometry 

and desired currents are assumed to be determined by independent design choices or 

optimizations. We present a general method to determine the capacitance values required to 

produce a desired modal structure in circuits such as 2-D ladder networks (2-6) or cyclic 

structures such as the birdcage coil (7) (including variants such as the dome resonator (8)), the 

TEM coil (9), ring resonator (10), and magnetron (11,12).  

Traditional implementations of these networks are typically highly symmetric which greatly 

simplifies the analysis of modal structure. Symmetry often allows modal currents to be deduced 

by inspection and frequencies have relatively simple, closed-form expressions from the electrical 

parameters of the network. Symmetry also ensures that the same value of capacitance will be 

repeated at multiple locations, and therefore there are only a few unknown capacitances that 

must be determined. The same is not true for asymmetric structures, or in general networks for 

which simple geometric operations such as rotation do not yield an identical network.  

Because the number of unknown capacitances can be several times larger for asymmetric 

networks than for their symmetric counterparts, tuning asymmetric networks is a considerable 

challenge which has previously been approached by computationally-inefficient iterative 

optimizations (13), or by using approximate methods. One such method, mesh inductance 

equalization (14,15), ignores coupling between non-adjacent meshes and is limited to 

distributions of currents where electrical phase is incremented by a constant amount between 

successive meshes. In a quadrature coil these assumptions often result in non-degenerate modes 

and this must be corrected to avoid loss of performance (16). Correction can be achieved using a 

heuristic method where the resonant frequency of each isolated mesh is adjusted (17), 
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introducing a further approximation because this method cannot control the resulting field 

patterns. The need for producing optimized transmit field homogeneity using asymmetric 

resonators has recently intensified with the increasing applications of non-proton hyperpolarized 

techniques (18), which require uniform excitation so that the available, non-replenishable 

polarization can be used as efficiently as possible. Consequently, since approximate methods do 

not provide optimal fields they cannot be used to design volume transmitters for hyperpolarized 

applications. 

The goal of the present work is to provide a rational approach to the design of general ladder 

networks by using mesh analysis and an efficient algebraic method for calculating lumped 

reactances. The primary applications, and motivations are the variants of the ubiquitous birdcage 

coil that have been modified from the original circular cylindrical shape (7) to increase 

sensitivity or to meet mechanical constraints. These asymmetric variants include contours such 

as the rectangle (19), ellipse (14), quartic (17), oval of Cassini (13), and flat-bottomed ovals for 

table-top applications (18,20). The method’s range of application readily extends to the active 

field of multichannel transmit/receive arrays constructed of separate elements or integrated such 

as the birdcage coil in array mode (21,22). 

Theory 
In electrical circuit analysis it is often advantageous to express Kirchhoff’s equations in terms of 

mesh quantities rather than the familiar nodal quantities (23). Mesh analysis is possible only for 

planar networks (23), i.e., those that can be represented on a plane without crossing branches. 

Many ladder resonators used in magnetic resonance, including the birdcage coil (24), can be 

represented as planar networks and have been analyzed using this technique (2,25). 

Leifer’s matrix formulation (25) rearranges Kirchhoff’s mesh equations into the generalized 

eigenvalue equation (26) 

 ν λ ν=E L , (1) 

which gives the angular frequencies, ω (related to the eigenvalues by 2λ ω= ), and eigenvectors 

(containing mesh currents ( )TNJJ 1=ν ) of the resonant modes of the ladder network. Here L 

is the matrix of the meshes’ mutual and self inductances, and E is the elastance matrix which 

contains the electrical coupling terms, i.e., the inverse of capacitance. Parasitic electric coupling 

is considered negligible, or is lumped into an equivalent capacitance. For a given geometry the 
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inductance matrix is typically determined by measurement or simulation, while the matrix E is 

unknown and must be determined based on the desired current distributions and resonant 

frequencies. 

We also make the implicit assumption that network losses are negligible (27-29) compared to 

stored electromagnetic energy, which is equivalent to saying that equivalent series resistances are 

much smaller than the reactances of the network or that the quality factors (Q) of the resonant 

modes are much greater than unity (e.g., Q > 20). When this assumption is valid the standard 

perturbation approach can be used to determine the reduction in resonant frequency due to losses 

(30, §8.8) relative to the lossless case. 

Consider an N-element birdcage coil that lacks the typical rotational symmetry, while retaining 

symmetry along the central transverse plane (Figure 1a). The elastance matrix E of Ref. (25) can 

be generalized as 
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(2), 

where Cii are the end-ring capacitances and Cij are the rung capacitances (i.e., shared 

capacitances between meshes) shown in Figure 1b. Such networks of linear, time-invariant, 

passive, and bilateral lumped elements are reciprocal (23) thus ensuring that both E and L are 

symmetric.   

Elements in the anti-diagonal corners of E are indicative of the cyclic nature of the birdcage 

network (24), which may not be the case in other forms of ladder network. The null elements off 

the 3 main diagonals and corners arise from allowing connections only between adjacent 

elements in the birdcage. Other structures may have more or fewer finite elements in E 



 6 

depending on the topology. For example, in 2-D ladder networks (2,6) each loop can have shared 

capacitances with four or more adjacent meshes, but meshes at opposite edges are not connected 

and the terms in the corners of E are zero. Structures such as the TEM coil (9), free-element 

resonator (31), ring resonator (10), surface coil arrays and high-pass 2-D networks (6), where 

coupling is primarily inductive, will also lack the electric coupling terms adjacent to the diagonal 

of E, unless an equivalent network is generated using the standard tee or pi equivalent circuits of 

a transformer (32,33). 

<Figure 1>  

Solutions of the generalized eigenvalue equation 

The inductance matrix L is real, symmetric, and by invoking energy conservation, while 

excluding the possibility of perfect magnetic coupling, we can also ensure that it is positive 

definite (34) and therefore invertible. Since the elastance matrix E is symmetric by construction, 

it ensures that the generalized eigenvalue problem of Eq. (1) is equivalent to finding the 

eigenvalues of a symmetric matrix (26). The pair (L, E) is said to be symmetric even though 
1−=D L E  is not necessarily symmetric, but only similar to a symmetric matrix. We can therefore 

be certain that for any physically-realizable ladder network the eigenvalues λ and eigenvectors ν 

(current distributions) are real and they form an orthonormal basis. These properties ensure the 

existence of N orthogonal resonance modes that can be excited individually, even if degenerate, 

without transferring signal or energy. Multiport resonators such as quadrature coils or arrays 

therefore provide an independent sensitivity pattern at each port which can be used, e.g., to 

improve SNR or to provide sensitivity encoding.  

In a standard birdcage coil L and E are also circulant matrices, i.e., having rows obtained by 

progressively shifting the elements of a single row vector (35). The numerous properties of 

circulant matrices and how they apply to standard circular birdcage coils have been discussed in 

detail in Ref. (25). Specifically, circulant systems have two eigenvectors with the sinusoidal and 

cosinusoidal current distributions (modes of azimuthal order or periodicity equal to 1) needed to 

produce uniform transverse fields in circular birdcage and TEM coils. These same distributions 

can also produce uniform fields in a birdcage coil whose rungs lie on a surface obtained from the 

circle by a suitable conformal mapping (13,14). Appropriate additional symmetries (e.g., 

symmetry about the anti-diagonals of L and E) can ensure that the (co)sinusoidal modes are also 

degenerate. 
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In such birdcage coils obtained by a conformal mapping lacking rotational symmetry, we must 

still produce (co)sinusoidal currents to create uniform magnetic fields even though L is not 

circulant. One option is to choose 1−=D L E  such that it is a suitable circulant matrix (it is not 

necessary for the factor matrices to be circulant for their product to be circulant) (35). However, 

as shown in the Appendix, this approach is equivalent to specifying all eigenvalues and 

eigenvectors of the system and consequently E will contain non-zero elements throughout. 

Restoring a circulant system is therefore not a practical approach to design ladder networks 

where the topology (circuit layout and connections) are predetermined.  

Specifying the desired modes 

Fortunately, by specifying only the desired eigenvalues and eigenvectors the remaining degrees 

of freedom can be exploited to give E the desired structure of Eq. (2). We begin by writing a 

system of equations using one generalized eigenvalue equation (1) for each of the network’s 

modes for which we wish to specify a current distribution and resonant frequency. In the case of 

a quadrature birdcage coil we specify the two orthogonal (uniform field) linear modes: 

 A A

B B

v v
v v

λ
   

=   
   

E L
E L

, (3) 

where λ has been factored out to indicate that mode A and mode B will be degenerate so they 

can be excited simultaneously at the same frequency. For other coil designs (e.g., multiport 

networks used for arrays) Eq. (3) would contain as many additional copies of Eq. (1) as needed 

to specify all the required modes (up to N). 

The modal currents in an asymmetric birdcage coil are typically chosen to maintain the high field 

homogeneity that is achieved with a standard circular coil. For rung positions determined using 

the conformal mapping approach (13,14) the eigenvectors are simply 

 

1 0
cos(2 / ) sin(2 / )

 , 

cos(2 ( 1) / ) sin(2 ( 1) / )

A B

N N
v v

N N N N

π π

π π

   
   
   = =
   
   

− −   

 

, (4) 

while for other rung arrangements the optimal currents must be determined by other means. 
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Current distributions optimized for desired field distributions 

Standard circular birdcage coils are well-known to require sinusoidally-distributed currents to 

maximize field homogeneity (7,36). Other coil shapes or conductor placements will require a 

separate determination of current intensities different from those of Eq. (4) to achieve the desired 

field pattern before network synthesis methods can be applied. Many examples exist in the 

literature that either make use of, or could benefit from optimization of modal current 

distributions, including elliptical coils with uniformly-spaced rungs (37), the “quartic” coil (17), 

biplanar coils (38,39), and various versions of open coils (40-44). 

Optimization will typically be performed on rung or, in general ladder networks, branch currents 

(labeled Ij in Figure 1b), since these currents are directly responsible for the magnetic fields. 

Field simulations can in many cases be as simple as quasi-static 2D calculations using the Biot-

Savart law. More realistic simulations could include the effects of finite rung length and the 

presence of currents in the end rings. 

The branch currents must be transformed to mesh currents (Jj in Figure 1b) before the algebraic 

method presented here can be applied. In network theory (see Section 3.6 of Ref. (23)) the mesh 

current vector is obtained from the branch current vector by multiplication with the tie-set 

matrix. For birdcage coils it can readily be observed that if the end-ring meshes are neglected 

(which is equivalent to assuming that the end-ring currents are zero) this transformation (Eq. (4) 

of Ref. (40)) has rank N–1 and therefore cannot be uniquely inverted unless further assumptions 

are made. One method of achieving this conversion for birdcage coils is to restrict the solution 

space of the inversion to mesh current distributions that have a zero mean. 

Formulating the solution by rearranging the matrix equation 

The linear system of Eq. (3) may then be expanded element-by-element and re-written with the 

unknown (non-zero) elements of E extracted from the two diagonals and top right corner, and 

arranged in a column vector ( )11 22 12 23 , 1 1, , , , , , 
T

G NN N N Ne E E E E E E E−=    of length 2N (this 

takes into account the symmetry of E without repeating elements). Equation (3) then becomes 

 Ge b=G , (5) 

where b is the right-hand side of Eq. (3) and the matrix G has dimensions 2N × 2N and contains 

the elements of vA and vB suitably rearranged: 
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. (6) 

Although this system contains an equal number of equations and unknowns, it is not guaranteed 

to provide a unique solution since the rank of G is not full. The existence of a solution will 

depend on whether the particular network’s topology and inductance matrix can support the 

specified current distributions (see examples below). Finding a unique solution of Eq. (5) 

requires reducing the number of unknowns by introducing relationships such as setting at least 

one of the capacitors to a predetermined value. For example, in the case of a hybrid birdcage coil 

(45) the ratio of end-ring to rung capacitance is a free parameter that must be set independently 

by the designer. 

Formulating the solution using Kronecker products 

We now present an alternative method of solution that can be readily generalized to network 

topologies other than the birdcage without manually working out the system of equations from 

which the G matrix above is created. While this makes it easier to implement in software, the 

solution requires a greater number of constraints to enforce on E the desired structure of Eq. (2).  

This method relies on the use of Kronecker products and the vec operator (see, e.g., Chapter 16 

of Ref. (26)) which takes the elements of a matrix and rearranges them in a column vector. The 

Kronecker product between matrices { }ija=A  and B is non-commutative and is denoted ⊗A B . 

The row and column dimensions of the product matrix are the product of the respective 

dimensions of the original matrices and the elements are defined by  
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. (7) 
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A general linear system of equations in the unknowns contained in matrix X, and elements in 

matrices A, B and C, can be written equivalently as 

 ( )  or  T x b= ⊗ =AXC B C A , (8) 

where vec( )x = X  and vec( )b = B . By re-arranging the system of Eq. (3) as two-column 

matrices 

 ( ) ( )   or  A B A Bv v v vλ λ= =E E L L EV LV , (9) 

where ( )A Bv v=V , the property of Eq. (8) may be applied with the substitutions N=A I  (the 

identity matrix of order N), λ=B LV , =C V  and unknowns =X E . In the resulting expression, 

 Ke b=K , (10) 

the vector b is identical to that in Eq. (5) by virtue of the vec operator, while vec( )Ke = E  and 

T
N= ⊗K V I  is a 2N × N2 matrix. As anticipated, the left-hand side contains N2 unknowns 

compared to 2N of the method of the previous section because it does not contain any a priori 

information regarding the null elements and symmetry of E. While this missing information will 

need to be added, the advantage of the formulation of Eq. (10) over that of Eq. (5) lies in the 

simplicity and flexibility with which the problem can be coded in matrix calculation software 

such as MATLAB (The Mathworks, Natick, MA, USA), thus avoiding the manual generation of 

matrix G of Eq. (6) which is prone to human error. 

Imposing constraints and solving 

Both formulations described above require the introduction of constraints in order for these 

underdetermined systems to have a unique solution. The constraints result from considerations 

such as the symmetry of the E matrix with respect to the main diagonal, which is a consequence 

of the reciprocity of linear networks. Elements of E may also be set to zero to reflect the ladder 

network’s topology as in the hybrid birdcage coil (45) example of Eq. (2). Additional symmetries 

and repetitions may occur due to symmetries in the coil topology or geometry, and are a 

powerful tool to test the stability of the solution as a function of the number of unknowns (i.e., 

solving with or without accounting for the additional symmetries should give the same result). 

Finally, in the case of a hybrid birdcage coil (45) the ratio between capacitance in the end ring to 
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that in the rung capacitors must also be chosen independently (e.g., by imposing a fixed ratio 

between one of the end-ring capacitances and one of the rung capacitances) prior to solution. 

Consequently, constraints will take one of two forms: either to impose a linear relationship (e.g., 

equality) between given elements of E, or to impose a specified value on an element. The former 

can be implemented by adding a row below b and G or K for each desired equality, such as 

 ,

                            or                             
0

0 0 1 0 0 1 0 0

G K

b
e

 
 

   =      
 − 

G

K

  

 (11) 

where the 1 and −1 are in the columns that correspond to two elements of eG,K that must be equal 

(or appropriate scalars for other proportionalities). Similarly, a specific value, e0, can be 

specified by additional rows containing a single unity entry in this manner: 

 ,
0

                or                

0 0 1 0 0

G K

b
e

e

 
 

   =      
 
 

G

K

 

. (12) 

The special case of 0 0e =  can also be dealt with by removing the element of eG,K and the 

corresponding column of G or K. Such constraints can be used in any number or combination as 

necessary to produce a system of the form ,G K he b=H , where H and bh contain as many rows 

with the form of Eqs. (11) and (12) as needed. Once the H matrix has full column rank the 

system is readily solved by matrix inversion or Moore-Penrose generalized inverse 

(pseudoinverse), ˆ he b+= H . Capacitances of the hybrid birdcage coil are obtained from the 

resulting elements of E by applying the definitions in Eq. (2), or from the corresponding 

definition of E for other network topologies. 

Existence of a solution and comparison of the formulations  

Given a desired set of eigenvectors, the existence of a solution is not guaranteed, but depends on 

the circuit topology (allowed shape of E) and geometry (entries in L). A full exploration of these 

relationships is beyond the scope of this work, but the example provided below illustrates that 
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unconventional current distributions are possible with standard birdcage ladder network 

structures. 

When a solution exists, the choice of formulation will have a small but negligible effect on the 

result because the methods using the G or K matrices result in systems with different numbers of 

unknowns (the Kronecker product method yields a system with many more equations than with 

the rearranged matrix G, with a correspondingly larger number of constraints required to specify 

zero elements and symmetry in E). The differences are due to the fact that the pseudoinverse 

produces a least-squares solution (i.e., finds a vector ê that minimizes ˆ he b−H ), which in 

general may not meet the specified constraints exactly because each term in the norm is weighted 

equally. The constraint equations are not given preferential treatment, and therefore the 

corresponding terms in the norm have the same likelihood as those terms corresponding to actual 

unknown capacitances of being tweaked by the pseudoinverse in the process of finding the least-

squares solution. Weighting the rows of the system unevenly (26) may be used to improve how 

well the constraints are satisfied.  

In our experience, observed differences in capacitance values between the formulations using the 

G or K matrices are well below 1%, and thus negligible compared to the uncertainty with which 

the L matrix is known (> 1% in the example below). Even in absence of uncertainty in L these 

differences can always be considered negligible since at typical in-vivo NMR frequencies 

controlling impedances to an accuracy of 1% is a challenging task. The method by which the 

matrices are generated and the constraints are specified therefore does not have a substantial 

influence on the accuracy of the solution. 

A note on the order of complexity of linear networks 

In the preceding analysis we have assumed that N equations are sufficient to model the resonant 

behaviour of an N-section birdcage coil, which is indeed true if we neglect the co-rotating end-

ring mode (25). For a general network, however, the minimal number of equations required to 

describe it must be determined so that all possible modes can be accounted for. Extra equations 

should not be introduced to avoid an ill-conditioned system. This optimal number of equations is 

referred to as the network’s order of complexity (34,46-48) and coincides with the dimension of 

the state space of the dynamical system that the network represents (48). 
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The order of complexity of networks can be determined by laborious reduction of all the 

equations resulting from Kirchhoff’s circuit laws to a system that contains only linearly 

independent equations. The rank of such a system corresponds to the order of complexity. A 

more insightful method of determining the order of complexity is to use topological analysis of 

the network using graph theory, leading to the formula (34) 

 ( )L C CL LCN N N N N= + − +  (13) 

where NL is the number of inductors, NC is the number of capacitors, NCL is the number of 

independent capacitive loops and NLC is the number of independent inductive cutsets. The latter 

are, respectively, loops that consist only of capacitors and cutsets that contain only inductors, and 

represent redundancies that can be eliminated using Kirchhoff’s voltage and current laws. 

Although the presence of losses (e.g., resistors that represent equivalent losses due to biological 

loading in MRI coils) is typically negligible in the modal analysis of Eq. (1), when determining 

the network’s order of complexity losses must be considered (47) since they can alter the latter 

two terms of Eq. (13). 

The general hybrid birdcage coil, and low-pass and high-pass limiting cases can be analyzed 

similarly to the lumped-element model of the magnetron (11,12,34). The resulting order of 

complexity is N+1, as expected, which includes N–1 modes that are typically pair-wise 

degenerate in a coil with appropriate symmetry (e.g., standard circular coils). We note also that 

the slight difference in topology between the low-pass birdcage and the magnetron results 

approximately in a doubling in the number of nonzero resonant frequencies (11). 

Specific examples of the order of complexity of birdcage-like structures with N = 3 (48), N = 4 

(28) and N = 5 (34, p.166) have been analyzed in the literature and confirm the expression above. 

Other, more complex structures such as the multiple-end-ring birdcage (49), or dual-tuned 

versions incorporating traps (50,51), will lead to higher orders of complexity and may not be 

modelled with sufficient accuracy by considering only the N or N+1 modes that are observed in a 

standard birdcage. 

Design Process for Asymmetric Birdcage Coils 

An example of how the algebraic method can be integrated into the design process for 

asymmetric birdcage coils is summarized by the flowchart in Figure 2. The inputs are the 

operating frequency of the resonator and the shapes of the RF shield and coil former which are 
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typically specified by independent geometrical constraints. The first step is to decide the number 

and positions of the coil’s rungs, which are then used to determine the current intensities 

(eigenvectors ν) that result in sufficiently uniform transverse magnetic fields, and the inductance 

matrix L. The algebraic method is then used to calculate the elastance matrix E from which the 

capacitances are obtained. A final check is performed using Eq. (1) to ensure that the desired 

modes are not too close to the remaining modes of the network. If they are, the process must be 

repeated with different locations and/or number of rungs. 

<Figure 2> 

Birdcage with Sinusoidal Modal Currents: The Cassinian coil revisited 

An initial verification of the proposed method was performed by comparing its predicted 

capacitances to those obtained by full-wave (method of moments) numerical simulation of a 3T 

head coil designed on a Cassinian oval former (13). Since the complete inductance matrix was 

unavailable for this coil, the higher-order mutual inductances (those between non-adjacent 

meshes) were assumed to be zero. This assumption is also made in the mesh inductance 

equalization method of Refs. (14,15) that is used as a standard for comparison of the resulting 

capacitance values. 

The capacitances obtained for the Cassinian head coil using the method of moments simulation 

are compared in Table 1 with those obtained using self and nearest-neighbour mutual 

inductances by the mesh inductance equalization method of Refs. (14,15), and with those 

obtained using the new algebraic method of the previous sections. The main differences are in 

C22 which are due likely to an L2,15 term that is not negligible due to the proximity of these 

meshes, and in the rung capacitances due to the fact that C12 is assumed to be a short in the latter 

2 methods. Note that reactance is proportional to 1/C and therefore the large differences in rung 

capacitances are not necessarily significant. There is excellent agreement between the mesh 

inductance equalization method and the present method, confirming its validity under the 

assumption of zero higher-order mutual inductances. It is expected that if this unrealistic 

assumption were removed there would be more substantial differences between the second and 

third row of Table 1due to mesh inductance equalization’s inability to utilize the additional 

information. 

<Table 1> 
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Birdcage Coil in Array Mode 

An additional validation of the algebraic method was performed on published data for a birdcage 

coil operated in array mode (21,22). Ideally a birdcage array has N degenerate modes each 

corresponding to a current in only one mesh, i.e., the vectors v of Eqs. (4) form the identity 

matrix. However, as noted in Ref. (28) this perfect degeneracy is impossible to achieve because a 

birdcage coil does not have an E matrix with elements off the main three diagonals that would be 

required to cancel the effects of its full L matrix. 

A mesh inductance matrix for an 8-rung coil was generated from the data in Table 3 of Ref. (28) 

by applying Eq. (12) of Ref. (25). The Kronecker product method above was used with 

constraints on off-diagonal elements of E specified according to Eq. (12). Two sets of constraints 

on the frequencies were compared. In the first system the desired frequency of all eight modes 

was set to 63.8 MHz, resulting in capacitance values of 47.9 pF and 66.0 pF for the rungs and 

end-rings, respectively, compared to 49.2 pF and 59.8 pF according to the results of Ref. (28). In 

this solution, the frequencies of most modes are close to the mean value of 63.11 MHz with a 

standard deviation of 1.0 MHz except for the mode at 72.44 MHz (63.99±0.46 MHz and 

76.01 MHz, respectively, in Ref. (28)) in which all mesh currents are equal. This is the counter-

rotating end-ring mode and its frequency should be left free since the end-ring modes do not 

produce the primarily transverse magnetic fields that are required for imaging in a standard 

cylindrical magnet. 

A second matrix system was therefore set up with the row corresponding to the end ring mode 

removed, resulting in capacitances of 51.3 pF and 58.1 pF, respectively. The resulting mode 

frequencies, 63.84±0.47 MHz and 77.17 MHz, are within 1.5% of those of Ref. (28).  

If the number of rungs is greater than eight, we have observed that the additional finite off-

diagonal terms in L cannot be compensated for with an E matrix constrained as above, and 

therefore the number of modes whose frequency must be allowed to be unconstrained must be 

increased (e.g., 3 modes for 16 rungs). These limitations in the number of degenerate modes of 

the birdcage coil in array mode (i.e., number of useful modes < N) make its performance inferior 

to that of standard arrays that use preamplifier decoupling (52) except in situations where a 

limited number of channels is sufficient (e.g., in transmit arrays (22)). 
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Methods 
The theory introduced above was further verified by constructing a 12-element elliptical birdcage 

coil with dimensions roughly suitable for wrist imaging (Figure 3). The coil rungs (5-mm-

diameter copper rods 126 mm in length) were positioned according to Ref. (14) on an elliptical 

surface having major and minor diameters of 90 and 60 mm, respectively. Rungs were optionally 

split into two sections of equal length (joined by a 2 mm PTFE spacer) to allow capacitors to be 

connected across the gap for a hybrid version (45). The end rings joining the extremities of the 

rungs were constructed by etching 10-mm-wide copper traces on fibreglass (FR4) circuit board 

attached to the rungs using brass screws. The birdcage network is surrounded by a concentric 

circular RF shield (aluminium foil on a PMMA former) 120 mm in diameter. 

<Figure 3> 

Current distributions 

The chosen rung positions allow uniform fields to be produced with (co)sinusoidal rung currents 

in the absence of an RF shield (14), or in the presence of a confocal elliptical outer shield (53), 

but not with other shapes such as the 120-mm circular cylinder. Nonsinusoidal current 

distributions were therefore determined for the two linearly polarized modes by independently 

minimizing the standard deviation of the field amplitude of each mode within an elliptical region 

that is confocal with the coil former. This 2-D quasi-static field calculation uses the method of 

images (54) to account for the presence of the circular shield. The resulting rung current 

distributions (shown in Figure 4a) produce fields that are only slightly more homogeneous than 

those from the standard sinusoidal distributions. A second, more irregular set of currents was 

therefore chosen to test the method’s ability to generate specified current distributions. The 

corresponding field homogeneity plots are shown in Figure 4b and c. 

<Figure 4> 

Tuning 

The mesh inductance equalization procedure (14,15) cannot be used to determine the 

capacitances needed to produce non-sinusoidal currents because this method is limited to 

producing equal increments of electrical phase between adjacent meshes. 

The inductance matrix of the shielded coil was determined similarly to Ref. (18) by populating 

isolated meshes or mesh pairs with 91 pF porcelain capacitors (series 100B, American Technical 
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Ceramics) having closely matched values (90±0.1 pF) as measured at 1 MHz with an HP4285A 

impedance meter (Agilent, USA). The 1 pF discrepancy between nominal and measured 

capacitance value is within the nominal 5% tolerance and is attributed to the manufacturing 

processes. For this measurement the coil rungs were ungapped copper rods and the capacitors 

were soldered to the appropriate locations on the end rings. Other end-ring sections were not 

only left open but also disconnected from the unused rungs by removing the brass screws, thus 

minimizing the effect of parasitic capacitances. The resulting resonant frequencies were 

determined using a weakly-coupled 1-cm-diameter shielded loop probe and a network analyzer 

(HP8753, Agilent, USA) in reflection (S11) measurement mode over the frequency span between 

60 and 80 MHz. Inductances were calculated using standard formulae for single or coupled 

resonant circuits (24,31) and values with magnitude below 2 nH were considered to be below the 

measurement’s sensitivity and set to zero. 

The algebraic method was then used as described in the Theory section to calculate the 

capacitances required for operation at 127.8 MHz with the three current distributions of the 

previous section. The (co)sinusoidal and homogeneity-optimized distributions required 

constraining rung capacitor C34 to a short circuit (infinite capacitance) to fully determine the 

system of equations (see Imposing constraints and solving); conversely, the irregular 

distributions required setting C23 to a short circuit. Note that if any of the other rung capacitors 

are shorted instead, an unphysical solution with some negative capacitance values will result.  

A large number of capacitors (100B series, American Technical Ceramics, USA) with nominal 

values of 15, 18, 33, 39, 47, 56, and 100 pF were measured at 1 MHz using the HP4285A 

impedance meter and each value was recorded. Bins were created with the required number of 

capacitors or combinations of capacitors chosen such that their values be as close as possible to 

those calculated for the irregular distributions. Furthermore, maximal symmetry along the two 

longitudinal planes of symmetry was ensured for each value bin by using the half of the 

capacitors with larger values on the end ring where the cable connections are to be made, while 

the other half are used on the opposite end ring. The resonant frequencies were measured using 

weak inductive coupling and no additional capacitors were used for tuning or mode de-coupling.  

The inductance matrix of the unshielded coil was also measured and the algebraic method was 

applied with the same current distributions. For all distributions C34 was set to a short circuit to 

achieve a solution with positive capacitance values. 
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Bench performance measurements 

An approximately elliptical container having major and minor diameters of 66 mm and 36 mm, 

respectively, and length 135 mm was filled with ~300 mℓ of a demineralised water solution 

containing 2.00 g/ℓ of NaCl and 0.77 g/ℓ of CuSO4·5H2O to mimic biological tissue. Loaded and 

unloaded quality factors (Q) were measured using a transmission measurement (S21) with two 

loop probes weakly coupled to one of the linearly polarized modes, followed by the second 

mode. 

Lattice baluns (56,57) were constructed to match the 50 Ω coaxial feed cables to the loaded port 

impedances across end-ring capacitors on meshes 1 and 10. Baluns were accurately tuned by 

temporarily shorting the coil-side output of the balun and adjusting the inductances to place the 

higher of the resulting modes at 127.8 MHz (two modes are always present due to mutual 

inductance in the current paths of the lattice balun even though the two inductive windings can 

be decoupled by placing them at right angles). Resulting return loss measurements are 

approximately 20 dB for both ports and isolation is 18 dB or better in loaded conditions. In 

unloaded conditions values are 5.5 dB and 16 dB, respectively. This level of performance was 

deemed acceptable (16) and therefore variable capacitors for fine tuning of frequency and 

isolation were not installed. 

Transmit field maps 

The elliptical test coil was connected for two sets of measurements with linear excitation, i.e., 

exciting port 1 and 10 individually while the other port is matched to a 50 Ω load. Transmit field 

( 1B+ ) amplitude measurements were then performed on the above phantom in the central 

transverse plane of the coil using the double-angle method (58). Two gradient-echo images were 

acquired in successive experiments with nominal tip angles of 40 and 80° and TE = 4.5 ms, 

TR = 5000 ms, 110 mm FOV, 10 mm slice thickness, 96×96 matrix (reconstructed to 128×128) 

and one average. 



 19 

Results 

Tuning 

The measured inductance matrix of the shielded elliptical birdcage is given in Table 2 and the 

capacitance values calculated with the algebraic method for the three specified current 

distributions are given in Table 3. 

<Table 2> 

<Table 3> 

The resonant frequencies of the prototype coil are shown in Figure 5 in comparison to those 

predicted by theory using both the algebraic method and mesh inductance equalization. As 

expected, the algebraic method is able to achieve degenerate order-one modes for the standard 

(co)sinusoidal current distributions while mesh inductance equalization (14,15) is not because it 

cannot account for inductances between non-adjacent meshes. For the irregular current 

distribution, the separation between uniform modes and the nearest higher-order mode is slightly 

worse in the prototype than predicted by the algebraic method but within acceptable limits 

(~10 MHz) given the high Q factors. 

<Figure 5> 

For the unshielded coil, however, it was found that for the (co)sinusoidal and optimized current 

distributions there are higher-order modes very close (<5 MHz) to the desired frequency which 

preclude the use of this unshielded resonator when quality factors are realistic. We speculate that 

this is due to the fact that without the shield the inductive coupling is stronger and more 

asymmetric between non-nearest-neighbour meshes than with the shield present (e.g., facing 

meshes such as nos. 4 and 10 have stronger coupling than nos. 1 and 7). The resulting solutions 

deviate from the standard obtained from circulant systems both in the distribution of modal 

frequencies and currents. Alterations to the coil geometry such as increasing the number of 

meshes or distributing the rungs in a different manner may provide an improved modal 

distribution as could a reduction in ellipticity or introduction of a closely-fitting shield. 

Performance 

Quality factor results in Table 4 indicate, consistently with other oval coils (13,14,53), a higher 

efficiency (55) for the mode that produces a B1 field parallel to the short axis of the coil. The tip 

angle maps shown in Figure 6 are in good qualitative agreement with the simulated maps of 
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Figure 4. Discrepancy in the field map of the horizontal mode is attributed to the asymmetric 

loading due to the placement of the matching circuits. 

<Table 4> 

<Figure 6> 

Conclusion 
An algebraic network synthesis method has been developed to calculate the capacitance values 

required to resonate MR ladder coils that have varying degrees of symmetry. Specified modal 

current distributions and frequencies are achieved simultaneously, thus allowing multiport 

applications such as quadrature operation. The algebraic method is based on mesh equations and 

is applicable to linear networks that have planar representations such as birdcage coils, TEM 

coils, and numerous variants of ladder networks. Computational efficiency is assured by the 

single inversion of a matrix whose rank is of the same order of magnitude as the order of 

complexity of the ladder network. Unlike iterative (13) or approximate (14,17) methods, the 

algebraic method optimizes current distribution and resonant frequency simultaneously, and its 

accuracy is limited in practice only by how accurately the inductance matrix of the network is 

known. The new method is consistent with the existing inductance equalization method, and 

furthermore overcomes its inability to account for all elements of the inductance matrix and the 

inability to accommodate modal currents that are not (co)sinusoidal. This algebraic method has 

been applied with success to an asymmetric insert birdcage body coil for 3He imaging (18) and in 

this work to a highly elliptical wrist-size coil with an irregular current distribution. The test 

prototype shows excellent agreement with the theory in terms of the modal frequency spectrum 

and transmit field distribution of the two specified modes. Future applications include more 

complex designs such as four-ring and other multiply-tuned birdcage coils. 
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Appendix 
By choosing 1−=D L E  such that it is a suitable circulant matrix, the properties of circulant 

matrices then allow us to write H= ΛD F F , where Λ is a diagonal matrix containing the 

eigenvalues of D, superscript H indicates the conjugate (Hermitian) transpose, and F is the 

Fourier matrix whose elements are the coefficients of the discrete Fourier transform. By 

definition, F contains the eigenvectors of D and therefore defines all of the modal currents. The 

eigenvalues in Λ may be chosen independently in order to place each mode at the desired 

frequency. For example, undesired modes that do not produce uniform fields can be kept well 

separated from the two modes that do. Calculation of E is then straightforward, 

 H= ΛE LF F . (A1) 

However, since both L and D are likely to have non-zero elements throughout, E will generally 

yield a dense matrix that does not have the limited envelope or sparsity (tridiagonal plus the two 

corners) described by Eq. (2). These additional non-zero elements correspond to elastances that 

cannot be physically inserted into the birdcage ladder network without introducing additional 

capacitive connections (33,59,60) between non-adjacent rungs. These additional connections 

create further inductively-coupled meshes that increase the dimension of the problem (see also A 

note on the order of complexity of linear networks), i.e., additional meshes with self and mutual 

inductances. Even a careful choice of eigenvalues will not restore the desired structure because 

the restriction that is imposed by the choice of eigenvectors (the complete matrix F) limits the 

available degrees of freedom. 
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Tables 
 

capacitance[pF] C11 C22 C33 C44 C55 C12 C23 C34 C45 

optimized (13) 35.99 35.44 32.93 29.87 28.19 300.2 276.4 355.0 522.3 

method of 

Refs. (14,15) 
35.60 31.65 32.80 29.36 28.18 ∞ 1827 427.4 266.7 

algebraic 

method 
35.63 31.67 32.81 29.39 28.19 ∞ 1939 430.8 267.4 

Table 1: End-ring (C11-C55) and rung (C12-C45) capacitance values for the 16-element Cassinian oval birdcage 

head coil (13); C12 is assumed to be a short in rows 2 and 3; remaining capacitances are obtained by 

symmetry. The rows contain, respectively, the results of numerical optimization using a full-wave numerical 

simulation, mesh inductance equalization (14,15) and the present algebraic method (higher-order mutual 

inductances set to zero). Underlined entries emphasize differences. 

 

 
 1 2 3 4 5 6 7 8 9 10 11 12 
1 92.41 -30.72 -5.57 -2.40      -2.40 -5.57 -30.72 
2  101.0 -34.32 -5.67  -0.55   -1.14 -1.36 -2.10 -6.01 
3   114.5 -37.10 -5.60   -1.14 -0.49  -1.88 -2.10 
4    119.3 -37.10 -5.67 -2.40 -1.36  -1.54  -1.36 

Table 2: first four rows of the elliptical coil’s measured mesh inductance matrix [nH]. The remaining 

elements are obtained by symmetry (i.e., reflection across the dashed diagonal lines). Greyed-out cells were 

deemed to be below the measurement sensitivity and set to zero. 
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capacitance[pF] C11 C22 C33 C44 C12 C23 C34 

(Co)sinusoidal 94.18 80.95 66.14 62.73 589.5 1105 ∞ 

Optimized for 

homogeneity 
93.72 81.20 66.77 65.23 220.8 783.2 ∞ 

irregular 99.97 79.48 71.82 85.89 62.97 ∞ 731.4 

actual used: mean 

(nominal values) 

99.1 

(100) 

79.7 

(33+47) 

72.2 

(33+39) 

85.8 

(30+56) 

63.0 

(3×15+18) 
∞ ∞ 

Table 3: capacitance values calculated using the algebraic method and used in the shielded elliptical coil 

prototype (127.8 MHz). Three sets of current patterns are considered (Figure 4a): standard sine and cosine; 

currents optimized for maximal homogeneity; and an irregular pattern. Numbering is according to Figure 3a 

and other capacitances are obtained by symmetry; ∞ indicates a short circuit; + indicates capacitors in 

parallel. 

 

 

Coupled Mode Unloaded Q Loaded Q Q ratio Efficiency 

Mesh 1 410 150 2.7 63% 

Mesh 10 510 110 4.6 78% 

Table 4: quality factors (Q) and efficiency (55) of uniform field modes at 127.8 MHz. 
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Figure Captions 

Figure 1: a) example of a birdcage coil without rotational symmetry. The grey plane indicates the only plane 

of symmetry that is assumed in the analysis of the birdcage coil examples. b) section of the electrical ladder 

network used to model the birdcage. Sections at the far left and right are joined to introduce the required 

periodic boundary conditions. 

Figure 2: summary of the design process for asymmetric birdcage coils. It begins by specifying the shapes of 

the RF shield and coil former, followed by choosing the number and location of the rungs. With these inputs 

the inductance matrix and optimal rung current intensities are determined, which, along with the operating 

frequency, provide the input to the algebraic method. If the spectral distribution of the resulting modes is not 

acceptable (e.g., undesired modes are too close to those specified) the process is repeated with modified 

positions and/or number of rungs. 

Figure 3: a) the elliptical coil prototype with circular shield removed; b) cross section and mesh numbering 

convention. 

Figure 4: a) rung current distributions considered for the shielded elliptical coil of Figure 3.  The standard 

(co)sinusoidal distributions (dashed) would be optimal in the case of an unshielded coil or one with a confocal 

elliptical shield (53) and are nearly identical to those optimized for maximal field homogeneity in the presence 

of the circular shield (solid); irregular patterns (thicker solid) were actually used for the prototype to test the 

algebraic method’s ability to produce specified currents. b), c) magnetic field homogeneity contours of the 

linearly polarized modes resulting from the irregular patterns in a) (2% intervals from amplitude at centre, 

empty coil, 2-D quasi-static field approximation). 

Figure 5: measured and calculated resonance frequencies of the shielded elliptical birdcage coil prototype. 

Mode order or periodicity (defined as one half of the number of sign changes in the corresponding 

eigenvector) is indicated beside each calculated frequency. For the irregular current distribution used in the 

prototype that was built (left) the separation between uniform modes and nearest higher-order mode 

(arrows) is slightly worse than predicted by the algebraic method but within acceptable limits given the high 

Q factors. Mesh inductance equalization (14,15) can only be used for the standard sinusoidal and cosinusoidal 

current distributions (right) and unlike the algebraic method it yields order-one modes that are not 

degenerate (splitting indicated by dashed lines) because it cannot account for inductances between non-

adjacent meshes. Consequently the prototype coil tuned using mesh inductance equalization would be 

unsuitable for quadrature operation. 

Figure 6: normalized tip angle maps (%) obtained using the double angle method (58) in a transverse slice 

corresponding to the midplane of the elliptical birdcage coil. Contours at 2% intervals are overlaid. A) linear 

excitation at mesh 1 (horizontal B1) and B) linear excitation at mesh 10 (vertical B1). 
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