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Abstract

The construction industry has been and continues to be overflown with data.

Scholars have no problems dealing with this phenomenon through the incor-

poration of artificial intelligence (AI) methods like neural networks or random

forests. However, when the time comes to practical application, the industry

professionals show very little interest in these predictive models. Most of the

best-performing methods are too complex and packed in "black boxes". In my

view, the user’s trust in a computer program is analogous to the user’s trust

in a co-worker: if there is no understanding—there is no trust, if there is no

trust—there is no cooperation.

In collaboration with a steel fabrication company in western Canada, this re-

search investigated the cost estimation department in regards to preparing pre-

bid estimates. I found that most of the estimators fall under the "baby boomer"

cohort. In my view, it was imperative to capture their experience and know-

how before they retire and pass it on to the next generation of engineers and

managers. Another finding showed that the professionals in this company were

not eager to use AI techniques. They needed something that could be easily

interpreted and trusted.

A data set sourced from this steel fabrication company was used to compare

various AI algorithms and search for candidate for interpretable AI. Firstly, I

identified interpretable performance metrics the meaning of which can be easily

explained to a user. Secondly, these metrics were put together in a color scheme

that could help to decide on the credibility of the AI model.

As a testing case study, I used the Compressive Concrete Strength data set

(Yeh, 1998a) to illustrate that the developed framework could build an inter-

pretable AI model in a different problem domain. Linear regressions provided
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by the Model Tree can serve as formula sheets to customize concrete mix or to

calculate the compressive strength of concrete at a certain point of curing.

After the comparison of Artificial Neural Network, Support Vector Machine,

Random Forest, and Model Tree, the last was determined as a potential candi-

date to generate interpretable AI for practical applications. The enhanced M5P

algorithm with three-colored performance scheme has no analogous concepts

and functions in any existing software.

As supporting material, Appendix C provides a manual of how to setup a

Model Tree in WEKA and Appendix D contains the configurations of all of the

discussed AI models.
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“Imagination is more important than knowledge. Knowledge is limited.
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Chapter 1

Introduction

1.1 Research Motivation

1.1.1 Demographic situation

The baby boomers – that massive bubble of people born in the two decades fol-

lowing the Second World War, perhaps the most important cohort for econom-

ical, technological and social development in human history – have begun the

transition into old age (Calabrese, 2015). According to Figure 1.1 (Canada, 2017),

the projection of the population aged 65 years and older starting from 2015 does

not look promising for the current generation. In my view, each and every year

more and more professionals will be retiring together with their valuable ex-

perience and knowledge. It may affect every industry including construction

and many countries not limited to Canada. Darren Calabrese (2015) suggested

that some of the impacts of Canada’s ageing work-force can be mitigated by

its relatively large immigration program: about 250,000 new immigrants arrive

in Canada each year, roughly double of the country’s natural growth through

births and deaths. While it is relatively easy to replace the work-force, it is more

complicated to save the experience of retiring experts.

I was privileged to take part in Collaborative Research Development with
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FIGURE 1.1: The projection of Canadian population 1998 to 2038

one of the biggest steel fabrication companies in western Canada. The team I

was part of closely interacted with company’s critical cost estimation depart-

ment. After a comprehensive investigation of its age group, I found that at least

half of all the estimators fall under the “baby boomer” cohort. Thus, I decided to

study the techniques to convert raw estimation data into meaningful knowledge

and save it for the company’s newcomers and professionals in training.

1.1.2 Estimators’ Know-How in Steel Fabrication

From my observations, the cost estimating department is always engaged in a

high-intensity, never-ending “battle” in the bidding process. Firstly, for a poten-

tial new project, estimators along with executives must make a critical decision

whether “to bid” or “not to bid”. It requires completing a feasibility estimate to

know the rough number of labour hours by the fabrication shop and approxi-

mate the total price of the project. Secondly, if the decision is made “to bid”, esti-

mators break the project down to packages and initiate the take-off process. And

it takes time. For the steel fabricator, conceptual estimating entails the skills to
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review performance specifications and the footprint of a structure and develop

a budget for all the activities related to steel fabrication, namely: detailing, fab-

ricating, painting, transporting and erecting (Liddy and Cross, 2002).

It is noteworthy that two critical components are missing from the list above:

material cost and buyouts/subouts1 cost. While the unit cost for materials is

relatively constant, the cost for the buyouts/subouts category is highly unpre-

dictable. I suppose that this uncertainty considerably decreases the correlation

between the attributes of the project and the estimated total project cost. That

is why I chose the total labor-hours required to fabricate the project as an out-

put for the current study with the consideration of the fact that labor-hours data

show less variation than the recorded labor cost in dollars, which is susceptible

to inflation and time-dependent labor rate and exchange rate fluctuation.

Through embedded graduate student training based in the estimating de-

partment of the industry partner, estimators’ decision process is thoroughly

studied in terms of how the total labor-hours are predicted by experience. Firstly,

total weight, the total length of each piece and the total quantity of pieces on

a given steel fabrication job are identified. Secondly, the ratio of total weight

over total length is multiplied by a certain factor, which can be biased and fully

depends on estimator’s experience. I used this logic as a baseline to compare

against the model results.

Liddy (2002) describes an old rule of thumb: “no estimate is ever forgotten!”.

Each estimate needs to be fully documented and retained. The challenge for the

steel fabricator is to track past project costs and organize them in a way that

allows the creation of an accurate conceptual estimate in a minimal amount of

time. Unfortunately, it is not exactly true in practice. The lion’s share of the

1Buyouts/subouts refer to miscellaneous parts of the structure which are not typical for con-
ventional steel fabrication or the work that cannot be handled in the contractor’s steel shop.
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conceptual bid estimates does not go through to win the bid. As a result, lessons

learned, and success factors experienced would often be left in the shared folders

or databases. Certainly, estimators can recall most, if not all, estimates they

have ever done themselves and use the experience to benchmark and inform on

bidding new projects. But what would happen after the experienced estimator

retires? How would a novice estimator take over this challenging task without

learning from scratch? To address such age-old questions provides one of the

main motivations for conducting this research.

Another long-standing problem of data insufficiency served as an additional

motivator. From the words of Dr. Ming Lu (personal communication, July 22,

2020), "The data quality in the construction industry is much the same as twenty

years ago and far from ideal; there is a need for developing AI methods to ac-

commodate the imperfect data and solve the problem that is defined based on

such data".

1.2 Problem Statement

1.2.1 Explainable vs. Interpretable AI

Machine learning algorithms for data-driven predictive analytics, including neu-

ral networks (NN), support vector machines (SVM), random forests (RF), have

been widely utilized by researchers in the past couple of decades. According

to the recent discussion by Frank Emmert-Streib et al. (2020) such statistical

models and machine learning methods have been introduced due to the lack

of general theories outside of physics as they allow a quantitative analysis of

experimental evidence. In the past, this experimental evidence could only be
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produced in the laboratories. Nowadays, enabled with technological advance-

ment, this so-called evidence is falling on us from everywhere. Nearly every

domain is overflowed with data surge which might have created an impression

that every research should start with data collection and end with AI applica-

tion. The construction realm is surely one of them. Hojjat Adeli (2001) conducted

a review of the journal of Computer-Aided Civil and Infrastructure Engineering

from 1989 (first publication on NN topic) to 2000 and found over one hundred

and eighty NN use cases, not counting alternative stand-alone algorithms like

decision tree or fuzzy logic. A recent review paper by Preeti Kulkarni (2017) de-

scribed over seventy NN applications in construction management alone. While

scholars keep widening the boundaries of what machines can learn, practition-

ers do not go hand in hand. Many of the best performing methods feature highly

complex mathematical algorithms, prohibiting a straightforward explanation of

the obtained results in simple terms (Emmert-Streib, Yli-Harja, and Dehmer,

2020). For professionals who make high-stake decisions, these explanations are

worth their weight in gold. The user’s trust in a computer program is analo-

gous to the user’s trust in a co-worker: if there is no understanding—there is

no trust, if there is no trust—there is no cooperation. Addressing this issue led

the United States Defense Advanced Research Projects Agency (DARPA) to ini-

tiate a new field called Explainable Artificial Intelligence (XAI) (Gunning, 2016).

Nevertheless, as per XAI strategies, developing and validating the second “non-

black-box” model, which is built to describe the “black box” of the initial model,

presents a special challenge: if the explanation is completely faithful to what the

original model computes, the explanation would equate with the “black box”

model, as such, one would not need the original model in the first place, but

the explanation. In other words, this is a case where the original model would

be interpretable (Rudin, 2019). From the perspective of applied research, the
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"no-black-box" model represents exactly what decision-maker needs.

1.3 Research Objective

The first objective of my research is to identify which out of 4 tested models

(ANN, SVM, RF, and M5P) can be called “Interpretable” in the context of prac-

tical application in construction engineering and management.

The second objective is not to create a brand new algorithm but to establish

a framework to apply existing ensemble algorithms such as Model Tree (M5P)

(Quinlan, 1992; Wang and Witten, 1997) in the context of producing interpretable

AI for construction industry professionals. The enhancement of M5P with 3-

colored scheme is intended to be able to identify which regression is worth using

and which should not be used at all. The enhancements made on Model Tree are

not aimed to increase the prediction accuracy, but to improve the interpretability

of the model’s internal logic.

1.4 Thesis Structure

Literature Review follows the Introduction chapter where I discuss four AI al-

gorithms namely artificial neural networks, support vector machine, random

forest and model tree. Next follows the Methods chapter where I provide a

description of the used data set and performance metrics chosen for the three-

color scheme. Also, this chapter contains an explanation of how M5P works in

lay terms as well as a short note on using WEKA for building predictive mod-

els. The Results chapter illustrates the attribute selection and the performance

of each model. The Discussion comes next with the comparison of models’ in-

terpretability and the description of M5P enhancement (three-color scheme). In
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Chapter 6 I present a case study to test newly developed three-color scheme.

Finally, the conclusion and contributions are summarized in Chapter 7.
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Chapter 2

Literature Review

2.1 Predictive Methods

Frank Rosenblatt (1961) was the first who pioneered the research of recreating

the human brain in the form of perceptron—a machine he designed for image

recognition1. Since then, researchers in a wide range of scientific fields adopted

this artificial neural networks (ANN) approach of teaching the machine to rec-

ognize the output based on a set of inputs. A significant departure from Rosen-

blatt’s perceptron happened when Vladimir Vapnik and Corinna Cortes (1995)

combined Vapnik’s optimal hyperplanes developed in 1965 (Vapnik and Kotz,

2006) with ANN design into the concept of Support-Vector Machines (SVM, also

support-vector networks). ANN and SVM usually perform marginally better in

comparison with simpler models like multiple linear regression or decision tree.

In particular, SVM is capable to separate categories in high dimensional space

(simply put, SVM can cluster points in unlimited dimensions); ANN excels at

distinguishing data that is not linearly separable (in other words, ANN can con-

nect dots with “curly” line that simple linear regression can not achieve). See

1Originally, the term “Perceptron” was intended as a generic name for a variety of theoretical
nerve nets (Rosenblatt, 1961).
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Figure 2.1 for visual illustration. It is challenging for human brains to compre-

hend a space described with more than three dimensions and nonlinear transfer

functions. To a certain degree, attempting to explain how these neural nets rea-

son is analogous to trying to explain the mechanisms of thought process and

consciousness in the human brain.

FIGURE 2.1: Abstract illustration of ANN and SVM

Leo Breiman (1984) developed analytical algorithms of the decision tree model

for classification and regression (CART). This model acts like an upside-down

tree, growing its branches from the root node down to the leaf nodes at the bot-

tom. Each split in a branch represents a numeric or categorical condition. The

expansion of the tree ends at “leaf” nodes (Figure 2.2). The interpretability of this

model is high, but it has some drawbacks. To quote from Elements of Statistical

Learning (Tibshirani and Friedman, 2008), "Trees have one aspect that prevents

them from being the ideal tool for predictive learning, namely inaccuracy".

As an enhanced version of the decision tree, Random Forests were developed

by Ho Tin Kam (1995). This algorithm builds as many random trees as possible.

From Figure 2.3 we can observe how random forest arbitrarily categorizes data

points using decision trees and simple yes/no conditions. After all trees are
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FIGURE 2.2: Abstract illustration of Decision Tree

grown, each of them is evaluated using the data kept for testing2. Based on this

evaluation, random forest chooses the most accurate tree as the final solution.

Another parallel endeavour to embellish decision tree models resulted in in-

tegration with regression algorithms. M5P or Model Tree was first designed by

John Quinlan (1992) and then enhanced by Yong Wang and Ian Witten (1997).

M5P grows a decision tree-like CART but instead of providing one value at a

leaf node it builds a linear regression for the instances which reach that node

(Figure 2.4).

It is noteworthy that research in deciphering those “black box” models has

achieved limited success in specific application domains. For instance, Lu, AbouR-

izk and Hermann (2001) created a tornado-like sensitivity graph that can ana-

lyze ANN input parameters and measure their impact on the output. Domain

experts could use this interpretation tool to validate the model based on their

experience and common sense. Stefan Ruping (2006) investigated how to in-

terpret SVM and how to measure the interpretability of the machine learning

2Bootstrap aggregating, also called bagging (from Bootstrap AGGregatING), is used for ran-
dom forest ensembling (Breiman, 1996).
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FIGURE 2.3: Abstract illustration of Random Forest
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FIGURE 2.4: Abstract illustration of Model Tree (M5P)

algorithm itself. He argued that in order for a model to be comprehensible to

the user it must be accurate and efficient so that interpretability does not be-

come a performance bottleneck. In general, M5P holds the potential to provide

an interpretable AI model, in contrast with the three “black box” models being

tested in the case study of this research (ANN, SVM and RF).
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Chapter 3

Methods

3.1 Data Collection

The groundwork for the research is laid by the historical data that is available to

the industry partner and had been garnered throughout the two years of joint

industry-academia research efforts.

Mehmed Kantardzic (2011) suggested that all raw data sets initially prepared

for data mining are often large and messy. One should not be surprised to find

missing values, distortions, misrecordings, inadequate sampling, and so on in

these initial data sets. This description exactly characterizes data collection in

construction.

Initially, I collected 935 instances each representing a separate pre-bid esti-

mate of a steel project or its revision. Each estimate contained a take-off of the

steel profiles1 (length, weight, and quantity) listed in a project. Additionally,

I identified relevant project attributes as follows: location of fabrication (6 dif-

ferent locations), sector (oil & gas, industrial, commercial, infrastructure), scope

(supply & erection or supply only) and complexity (light, medium, heavy, and

very heavy). The complexity feature is defined based on expert knowledge. For

example, light complexity projects are found in the commercial sector where

1Steel profile referrers to a type and shape of a cross-section of structural steel.
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they use hollow structural steel (so-called “stick build”). A heavy complexity

project generally refers to a massive structure made of plates, thus requiring con-

siderable handling and welding operations. A very heavy complexity project is

most likely a bridge or an oil rig. The totals for weight, quantity, and length of

all the pieces were calculated as a sum of all profiles (for example, Total weight

= Hollow structural steel weight + Wide flange weight + C-shape weight + and

so on). All the data was extracted from the company’s shared folder using Vi-

sual Basic code embedded in a master spreadsheet in Excel. Table 3.1 shows the

input features.

TABLE 3.1: Steel data set attributes

Data set input attributes

1. Scope of work 20. Round bar weight
2. Sector 21. Round bar quantity
3. Location 22. Round bar length
4. Complexity 23. Miscellaneous weight
5. Hollow structural steel weight 24. Miscellaneous quantity
6. Hollow structural steel quantity 25. Miscellaneous length
7. Hollow structural steel length 26. S-shape weight
8. Wide flange weight 27. S-shape quantity
9. Wide flange quantity 28. S-shape length
10. Wide flange length 29. Wide T-shape weight
11. C-shape weight 30. Wide T-shape quantity
12. C-shape quantity 31. Wide T-shape length
13. C-shape length 32. Pipe weight
14. L-shape weight 33. Pipe quantity
15. L-shape quantity 34. Pipe length
16. L-shape length 35. Total weight of pieces
17. Plate weight 36. Total quantity of pieces
18. Plate quantity 37. Total length of pieces
19. Plate length 38. Total labor-hours (output)
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The common practice in data mining is to clean the data set to perfection get-

ting rid of all the noise and outliers in order to achieve the least possible error.

However, a lot of valuable “experience” could be lost in the cleaning process.

A decision was made to leave as many instances as practically feasible. 218 in-

stances were left to build a model. Out of 8284 data values, 3505 are absent2 and

5 are missing. Absent values are expressed as 0 while missing values denoted

as “blank”. A sample of the dataset can be found in Appendix B.

3.2 Performance Metrics

Effective and straightforward metrics are selected based on those commonly ap-

plied to evaluate regression models. For the researcher, it is not very important

which evaluating metrics to use because in most practical situations the best nu-

meric prediction method is still the best no matter which error measure is used

(Witten and Frank, 2011). On the other hand, for practitioners, these metrics

need to indicate whether the model is worthwhile or not. Thus, selecting proper

metrics for model accuracy evaluation is vital. Next, three general types of er-

rors for evaluating regression or classification algorithms are described, namely:

absolute or mean errors, relative errors, and correlation coefficients.

3.2.1 Absolute errors

Absolute errors are the most intuitive. For example, Mean Absolute Error is an

average of the differences between actual and predicted values. Mean Absolute

Percentage Error indicates by how much on average the model under or over

predicts the target value. In practical applications, the percentage error as in

Equation (3.2) is usually avoided because it tends to be distorted by outliers.

2A single project usually does not contain all of the steel profiles.
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Mean Absolute Error = ∑
i

|predictedi − actuali|
numberinstances

(3.1)

Absolute Percentage Error = ∑
i

|predictedi − actuali|
|actuali|

· 100% (3.2)

3.2.2 Relative errors

Relative errors can be good metrics to compare AI algorithms. The error is

normalized by the error of the simple predictor (the differences between actual

values and mean of actuals) that always predicts mean. Furthermore, Relative

Squared Error and Root Relative Squared Error will often result in higher nu-

merical values than absolute errors.

Relative Squared Error = ∑
i

(predictedi − actuali)2

(actuali − actualmean)2 (3.3)

Root Relative Squared Error =

√
∑

i

(predictedi − actuali)2

(actuali − actualmean)2 (3.4)

3.2.3 R-squared

R-squared is a widely used metric to estimate the accuracy of a model. Iron-

ically, this coefficient is often confusing and can be misused. In statistics, R-

squared refers to the Coefficient of Determination and is simply a square of the

Pearson Correlation Coefficient (PCC). The PCC measures linear correlation be-

tween two variables with a metric ranging between -1 and +1. Mathematicians

square the PCC and derive Equation (3.5) to explain the percentage of variation
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between two variables. Note, this equation is given only to facilitate the inter-

pretation of R-squared and should not be used to calculate the Pearson Correla-

tion Coefficient (Witte and Witte, 2017).

R2 =
Variancemean −Variance(actual,predicted)

Variancemean
(3.5)

In machine learning, R-squared also refers to the Coefficient of Determina-

tion that indicates how much variation of the target value is explained by the

predicted value, as in Equation (3.6). In other words, if R2 is equal to 0.78 I

can say that the model only accounts for 78% of the variation and 22% remains

hidden.

R2 =
∑i baseline error2

i −∑i error2
i

∑i baseline error2
i

(3.6)

where:

errori = actuali − predictedi (3.7)

baseline errori = actuali − actualmean (3.8)

Equations (3.5) and (3.6) are essentially identical. The other interpretation of

the formula (3.6) can be put in the following way: if R2 is equal to 0.78 then the

model performs 78% better than a zero rule predictor3; or if R2 is equal to -0.11

one can suggest that the model performs 11% worse than a zero rule predictor.

Note, this version of R-squared definition can be negative (R2 ∈ (−∞, 1]) in case

of poor prediction performance (error is much higher than baseline error). This

metric can be of great value to the user for evaluating model performance. The

name, however, can be changed to Coefficient of Explained Variation to avoid

confusion.
3A model that always predicts mean.
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3.2.4 Pearson Correlation Coefficient

As mentioned earlier, the Pearson Correlation Coefficient measures statistical

correlation between two variables, denoted with R ∈ [−1, 1]. In other words,

this coefficient can tell whether the dependency between two parameters is weak

(R→ 0) or strong (R→ −1 or R→ 1).

R =
Covarianceactual,predicted

√
Varianceactual ·

√
Variencepredicted

(3.9)

where:

Covarianceactual,predicted =
∑n

i (actuali − actualmean) · (predictedi − predictedmean)

n− 1
(3.10)

Despite PCC having great value for statisticians, in machine learning, it also

causes confusion. This metric is scalable meaning that if we multiply all pre-

dicted values by any number and leave actual values intact, the correlation stays

the same (Figure 3.1 b, c). It implies the possibility that if an algorithm consis-

tently underperforms on all the predictions by a considerable margin, the cor-

relation coefficient can still stay high. An intuitive indicator of ideal prediction

accuracy is the correlation line intersecting X and Y axes at the origin with 45◦

tilt angle (Figure 3.1 a). Thus, it is advisable to apply the correlation coefficient

to justify model’s prediction performance only if it is supported by graphical

visualization of the tilt angle of the correlation line.

For the current study, I select (a) correlation coefficient R, (b) coefficient of

explained variation R2 and (c) mean absolute percentage error as AI model per-

formance evaluating metrics. Although the last error measure emphasizes the

existence of outliers, it is the most intuitive and the easiest to interpret. Dealing
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FIGURE 3.1: Pearson Correlation Coefficient

with the outliers in practical applications is a crucial task as these outliers can

be minority representatives of the population that do not land in the sampled

dataset or indicate certain errors inherent in the data.

3.3 How M5P Works

Ensemble top-down trees are usually grown to the maximum size and then

pruned backwards replacing poor-performing subtrees with leaves (see Figure

5.5). Then the smoothing procedure adjusts the performance of each leaf node to

compensate for sharp discontinuities that would inevitably occur between ad-

jacent linear models (Wang and Witten, 1997). These internal mechanisms are

employed to achieve the highest feasible prediction accuracy for M5P model as

a whole.

3.3.1 Growing the initial tree

To build the upside-down tree, M5P uses a Splitting Criteria, as in Equation

(3.11), to find the attribute and the value at which to begin growing branches.
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Splitting Criteria = sd(Output)− sd(Outputsplit)weighted (3.11)

where:

sd(Outputsplit)weighted = sd(Outputsplit_1) ·
∑ |Outputsplit_1|

∑ |Output| +

+ sd(Outputsplit_2) ·
∑ |Outputsplit_2|

∑ |Output|

(3.12)

The algorithm evaluates all possible splits and measures the magnitude by

which the standard deviation (sd) of the output is reduced. The reduction is

represented as the sum of the weighted standard deviations of the output values

of evaluated splits. For example, if we have two attributes (one input and one

output) and twelve instances, M5P would sort values for each attribute and find

an average between adjacent points (potential splitting values). Then, Equation

(3.11) is calculated for each of the possible splits (in our example—eleven splits)

and a splitting value with the smallest Splitting Criteria is chosen.

FIGURE 3.2: Splitting Criteria calculation example
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This procedure continues until the tree is grown to the maximum size and

stopping condition is met. In the case of M5P, the tree stops growing when the

Leaf node has less than three instances or the standard deviation of Leaf’s output

is less than 5% of the standard deviation of the output of the entire set (3.13).

sd(Outputlea f ) < 0.05 · sd(Output) (3.13)

3.3.2 Pruning

After the tree is grown, M5P builds multiple linear regressions for each leaf as

well as each subtree using standard regression and greedy search attribute se-

lection. Then the algorithm tests each instance (training process) and averages

the difference between predicted and actual values (expected error) for each leaf

and subtree. The error of every entity is then multiplied by Compensation Fac-

tor, as in Equation (3.14), to account for the fact that the model is not tested on

unseen cases. The lower the number of instances—the more error increment is

expected.

Compensation Factor =
numberinstances + numberattributes
numberinstances − numberattributes

(3.14)

The pruning itself is a process of comparing the expected error of the lower

leaves with the expected error of the upper subtree. If regression in the subtree

performs better than the regressions in the leaves, then they are pruned and

subtree becomes a leaf (bottom-up pruning).
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3.3.3 Smoothing

Finally, smoothing is employed to calibrate the Predicted Value of the leaf by pass-

ing it to higher subtrees and eventually to the root node. Equation (3.15) is cal-

culated at each level of the tree (from leaf to subtree, from subtree to next level

subtree...to the root node). The goal is to combine the prediction power of the

leaf with the prediction power of subtrees.

Predicted Valueupper node =
Predicted Valuenode·numberinst.+Predicted Valuelower node·k

numberinstances+k

(3.15)

In the Equation (3.15) k is a constant and in M5P it is equal to 15 whereas

numberinstances refers to the subtree which is denoted as "node" (blue in Figure

3.3).

FIGURE 3.3: Smoothing of Predicted Value
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3.4 Using WEKA for Building Predictive Models

In order to devise an interpretable AI model, I used WEKA to develop indepen-

dent M5P, ANN, RF, and SVM models from the same steel fabrication dataset.

WEKA provides implementations of various learning algorithms. You can pre-

process a dataset, feed it into a learning scheme, and analyze the resulting classi-

fier and its performance—without writing any program code at all (Witten and

Frank, 2016). This application was chosen because it is an open-source and can

be accessed through a graphical user interface. It is widely used for teaching,

research, and industrial applications, contains a vast number of built-in tools

for standard machine learning tasks, and additionally, it is written in Java and

distributed under General Public License which means that it is free to use on

operating systems such as Windows, Linux, and Macintosh by anyone.

As supporting material, Appendix C provides a manual of how to setup a

Model Tree (M5P) in WEKA and Appendix D contains the configurations of all

the discussed AI models.
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Chapter 4

Results

4.1 Attribute Selection

As it was mentioned earlier, Model Tree includes in its algorithm Greedy Search

that selects most valuable attributes for each regression. In the current study, to

make the comparison fair, I used a Bi-directional Greedy Wrapper Subset Eval-

uator described by Ron Kohavi and George John (1997) to perform attribute

selection for the rest of the counterpart models (Table 4.1). The resulting opti-

mal feature subsets are tailored to a particular regression algorithm by training

the model with different subsets of attributes and choosing the subset with the

highest accuracy.

To better understand the impact of selected attributes I calculate their total

proportional correlation using Equation (4.1) where Ri is the correlation coeffi-

cient between output and each attribute.

Rproportional =
∑ Ri

numberattributes
(4.1)

As we can observe from Table 4.1, some attributes, namely Total weight and

Complexity (double underlined), and Plate quantity, Plate weight, and Hollow

steel quantity (underlined), were selected by all the models, or by three out of
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TABLE 4.1: Selected attributes and their correlation to the output
(w–weight, q–quantity, l-length)

# ANN SVM RF M5P

1 Total w 74% Total w 74% Total w 74% Total w 74%
2 Total q 60% Plate q 58% R-nd bar q 8% Total q 60%

3 Plate q 58% Wide fl. q 56% R-nd bar w 8% Plate q 58%

4 Plate w 48% Plate w 48% S-shape q 8% Wide fl. q 56%
5 Hollow st. q 41% Hollow st. q 41% Complexity 7% Wide fl. w 54%

6 T-shape q 29% Plate l 32% Plate w 48%
7 C-shape q 26% Wide fl. l 25% Hollow st. q 41%

8 Location 12% L-shape l 25% Hollow st. w 41%
9 Sector 12% Sector 12% L-shape w 36%

10 Complexity 7% R-nd bar w 8% C-shape w 27%

11 S-shape w -3% S-shape q 8% C-shape q 26%
12 S-shape l -5% Complexity 7% Sector 12%

13 Complexity 7%

Rproportional(4.1) 30% 33% 21% 41%

four models respectively. It may indicate that these attributes play a crucial part

in the labour-hours prediction.

4.2 Performance of Each Model

The performance of each model is contrasted in Table 4.2 in terms of their predic-

tion metrics. The correlation graphs based on the testing data are provided for

each model in Section 5.1. I used 10-fold cross-validation to estimate the accu-

racy of the learning schemes. In 10-fold cross-validation the dataset is randomly

split into 10 mutually exclusive subsets (the folds) of approximately equal size.

The algorithm is trained on 90% of the dataset and tested on 10% of the dataset

ten times. The cross-validation estimate of accuracy is the average of ten tests

(Kohavi, 1995).
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TABLE 4.2: 10-fold cross-validation

Metric ANN SVM RF M5P

Absolute Percentage Error (want low) 150% 62% 50% 69%
Coefficient of Explained Variation, R2 (want
high)

89% 56% 87% 74%

Correlation Coefficient, R (want high) 94% 87% 95% 88%
Correlation line tilt angle (want 45◦) 45.9◦ 33.5◦ 39.9◦ 39.1◦

Next, let us examine the models that were obtained by running each algo-

rithm on the same steel dataset.
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Chapter 5

Discussion

5.1 Comparison of the Models’ Interpretability

5.1.1 ANN

With R2 equal to 89%, this algorithm is able to explain the most variation in the

model. On the other hand, the absolute percentage error is the highest which

could mean that ANN had “overlearned1” the dataset by memorizing noise

instead of generalizing patterns in data. From Figure 5.1 we can see that the

correlation line is the closest to the ideal 45◦. The subset of chosen attributes

is a reasonable representation of the problem, having a total proportional cor-

relation of 30%. The highest accuracy was achieved with the following ANN

parameters: number of hidden layers = 5, transfer function—sigmoid, learning

rate = 0.2, momentum = 0.1. Having 5 layers and 12 attributes, which became 24

after the transition from nominal (Location, Sector and Complexity) to binary,

we have 5 · 24 = 120 coefficients (weights) plus 6 bias weights between -1 and 1.

In addition, the initialization of those 126 neuron weights is randomly set. See

model setup in the Appendix D.1

1Over-learning refers to an event when a machine learning algorithm fits its function to each
data point too precisely. For visualization see Figure 2.1.
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FIGURE 5.1: ANN correlation scatter-plot

5.1.2 SVM

SVM performed the worst out of 4 tested models with 56% explained varia-

tion and 33.5◦ correlation line tilt angle. From Figure 5.2 we can observe that

those seven instances located under the correlation line drag it away from the

ideal tilt. The settings for the SVM model are: transfer function (kernel)—radial

basis function (RBF), SVM type—ν-SVR (Chang and Lin, 2019), ν2 = 0.5. Un-

fortunately, the interpretability of the resulting model is extremely challeng-

ing due to the fact that the radial kernel function mathematically transforms

data points into infinite dimensions to find their high-dimensional relationship

on each other and identify a relative distance between these observations. See

model setup in the Appendix D.2

2ν ∈ (0, 1]—a parameter that controls the number of support vectors.



Chapter 5. Discussion 29

FIGURE 5.2: SVM correlation scatter-plot

5.1.3 RF

I was able to achieve the highest accuracy at 100 iterations with the average size

of each tree equal to 169 (number of leaves). The RF model performed the best

out of 4 tested machine learning models in terms of the lowest absolute percent-

age error of 50% and the highest correlation coefficient. It is worth mentioning

that the tilt angle of the correlation line is 39.9◦ that indicates an “under predict-

ing” trend (Figure 5.3). The attribute selection in the final model missed some

critical factors (e.g. steel profiles like wide flange, plate and hollow steel) and

hence is deemed insufficient. In my view, an expert would not rely on a model

that does not conform to existing know-how or common sense. However, if in-

terpretability was not an issue, Random Forest would be the algorithm of my

choice. See model setup in the Appendix D.3
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FIGURE 5.3: RF correlation scatter-plot

5.1.4 M5P

M5P did not stand out as the winner by any of the tested performance metrics.

Given the four models being evaluated, it only outperformed SVM with corre-

lation coefficient equal to 88% (Figure 5.4).

But from the interpretability standpoint, this model has marked advantages.

First, the selected attributes (Table 4.1) align the best with experts’ know-how

and common sense in the application domain. Note the attribute selection is em-

bedded in the algorithm and does not require additional computational work-

load. The resulting model is totally transparent to the user, the reasoning logic

of the model can be intuitively validated, and the model can be used manually

(Figure 5.5). Numerical variable-based splitting conditions in M5P model are
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FIGURE 5.4: M5P correlation scatter-plot

straight-forward and self-explanatory. Nominal variable-based splitting condi-

tions (such as complexity) can be interpreted as follows: if the project has com-

plexity as heavy (all three splits contain heavy complexity), then its binary value

equals 1 and at the split, it follows "> 0.5" condition. If the complexity is medium

(none of the three nominal splits contain medium complexity), then its binary

value equals 0 and at the split it follows "≤ 0.5" condition. In the regression for-

mula, same logic applies: if sector is oil & gas or infrastructure, then multiplier

equals 1, otherwise multiplier equals 0 (Figure 5.5, second line of Linear Regres-

sion 3). As such, if I had a new project with the total weight equal to 6000 kg,

total quantity equal to 500 pieces, and complexity equal to heavy, I would use

regression No. 3 to predict the total amount of labor-hours. See model setup in

the Appendix D.4
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FIGURE 5.5: M5P tree (weight in kilograms)
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The above discussion is provided to justify my choice of M5P as an inter-

pretable AI model for practical application. The prediction accuracy only served

to make a statement that Model Tree is as accurate as others. In the same time,

the interpretability of the model’s internal logic is only possible on Model Tree.

Next, I provide an enhancement to M5P that increases the interpretability of the

model as a whole and of the performance of each linear regression.

5.2 3-Colored Scheme for M5P

Incorporating pruning and smoothing features to boost accuracy leads to reduc-

tion of the interpretability of the regressions and the model as a whole. Another

obstacle to interpretability is the way we verify and validate models. The perfor-

mance results provided in Table 4.2 are an average of 10 different models which

are not the same as the model in Figure 5.5. This implies that I have no idea

how good or bad each linear regression performs because they are not tested in

cross-validation. I only know the training performance for each leaf (Table 5.1).

TABLE 5.1: Leaf training performance

Metric Full LR1 LR2 LR3 LR4 LR5 LR6 LR7
Absolute Percentage Error
(want low)

54% 112% 99% 72% 42% 48% 33% 26%

Coefficient of Explained
Variation, R2 (want high)

93% -76% -396% 39% 10% 59% 43% 86%

Correlation Coefficient, R
(want high)

97% 19% 23% 70% 58% 83% 79% 93%

Correlation line tilt angle
(want 45◦)

46.0◦ 9.8◦ 6.2◦ 37.1◦ 32.2◦ 36.3◦ 65.3◦ 47.1◦

Number of instances 218 49 35 18 47 22 8 39

Given the fact that the overall training and testing accuracy shows acceptable

results, when we look closely into each linear regression, the conclusions may
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differ. From visual inspection (Figure 5.6) and performance analysis (Table 5.1),

only one leaf (Linear Regression 7) aligns well with common sense.

FIGURE 5.6: M5P tree with correlation graphs for each node (dash
line – full model)

Knowing that the accuracy of all seven leaves had been altered by smooth-

ing, I decided to test each node separately using leave-one-out cross-validation

where the number of folds is equal to the number of data points. By doing so I

ensure that every linear model is treated on the same ground, regardless of the

number of available instances. In this case, every regression performs indepen-

dently without impact from the higher level subtrees. In Figure 5.7 I depict the

performance of each leaf applying three-colored schemes. The interpretation is
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FIGURE 5.7: Leaf leave-one-out cross-validation performance

as follows: for R and R2 red marking represents their values of 0% (negative val-

ues are as red as 0% to make R comparable to R2), yellow marking represents

the value of R and R2 equal to 50% and green marking represents their values of

100%. For absolute percentage error, the condition is the opposite: green is 0%,

yellow is 50%, and red 100%. Tilt angle becomes green at 45◦, red at 0◦ and 90◦,

and yellow at mid-point of the range between 0◦ to 45◦ or 45◦ to 90◦(22.5◦ and

67.5◦, respectively). The coloring scheme merges in between the above men-

tioned thresholds namely, green to yellow and yellow to red. I recognize that

this framework is not exact. I also know that there is no such thing as “silver

bullet” in machine learning that can determine rigid boundaries for the mini-

mum acceptable error. There is always uncertainty and risk in using predictive

models. This concept provides the user with a visual aid to decide which re-

gression is valid to use (i.e. Green Leaf ), which regression should be used with

caution (i.e. Yellow Leaf ) and finally which regression should not be used at all

(i.e. Red Leaf ). It is assumed that the Green Leaf must have at least three metrics

satisfying “green” condition and one satisfying "yellow" condition, Yellow Leaf

can satisfy either “yellow” or “green” conditions and if the leaf has at least one

red flag on the four metrics, then it is deemed as Red Leaf.

From Figure 5.7 I can suggest that leaves with ID No. 4 and 7 are Green

and leaf No. 1 is Yellow. The other ones are Red and should not be used for

prediction. Figure 5.8 depicts the revised model with a corresponding leaf color
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scheme applied.

FIGURE 5.8: Revised M5P tree

The Enhanced Model Tree is preferred not because it predicts more accurate,

that is not the point! It is because its logic is transparent to the modeler and user.

Considering a small dataset associated with sub-models at each leaf node, the

enhanced Model Tree application framework assesses the quality of regression

at each leaf node with a selection of regression performance metrics and N-fold

testing regimen. A color scheme denoting the quality of regression is intuitive

and effective to guide the practical application.

The used data set and derived models contain confidential information of

our partner company and hence are not presented in its entirety. A sample of

the steel data set can be found in the Appendix B. Therefore, in the next chapter,

I provide a test case for further validating and presenting the current framework

application in detail. It is noted that the application problem is not estimating

steel fabrication labor-hours, but still falls in the construction engineering do-

main.
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Chapter 6

Practical Test Case

To test the newly developed framework I chose publicly available and well

studied Concrete Compressive Strength data set which can be found through

University of California Irvine Machine Learning Repository (Yeh, 1998a). It

may be confusing that the problem domain switched from steel fabrication to

high-performance concrete. Taking into account that a good quality data set

with a numeric target (regression prediction type) is difficult to find in the con-

struction field for new algorithm performance bench-marking, I consider this

change acceptable for the current study. The data set was first described by

I-Cheng Yeh (1998b). He gathered experimental data of High Performance Con-

crete (HPC) mix proportions and corresponding compressive strength from 17

different sources to build an ANN model. The components of the dataset are

described in Table 6.1.

In his experiments, Yeh achieved the coefficient of explained variance (R2)

equal to 91.4% (4-fold cross-validation) which is considered acceptable for prac-

tical application.

Using the described concrete dataset I built the M5P model (Figure 6.1) uti-

lizing the default smoothing and pruning features in WEKA. The performance

of the tree is shown in Table 6.2.
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TABLE 6.1: HPC dataset attributes

Attribute Minimum Maximum Average

Inputs

Cement (kg/m3) 102 540 281.2
Blast Furnace Slag (kg/m3) 0 359.4 73.9
Fly Ash (kg/m3) 0 200.1 54.2
Water (kg/m3) 121.8 247 181.6
Superplasticizer (kg/m3) 0 32.2 6.2
Coarse Aggregate (kg/m3) 801 1145 972.9
Fine Aggregate (kg/m3) 594 992.6 773.6
Age (days) 1 365 45.7

Output

Compressive strength (MPa) 2.33 82.6 35.8

TABLE 6.2: Concrete example training and cross-validation perfor-
mance

Metric for M5P Training 10-fold 4-fold 4-fold(Yeh, 1998b)

Absolute Percentage Error 13% 15% 15% -
Coefficient of Explained
Variation, R2

89% 86% 86% 91%

Correlation Coefficient, R 94% 92% 92% -
Correlation line tilt angle◦) 45.6◦ 45.4◦ 45.4◦ -

Just as with the steel fabrication model it is not understood what is the test-

ing accuracy of each leaf in the resulting tree. As in Section 5.2 I tested each

node independently using leave-one-out cross validation and depicted the out-

come in Figure 6.2. To comment on the figure, leaves with ID No. 7, 8 and

9 had poor performance measures and were deemed as "Red". All other nodes

showed acceptable results and were colored "Green" for practical use. It is worth

mentioning that if I remove "Red" leaves resulting from performance and only

consider "Green" ones, the accuracy improves significantly (Table 6.3).
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TABLE 6.3: Concrete example only "Green" leaves performance

Metric for M5P Leave-one-out

Absolute Percentage Error (want low) 14%
Coefficient of Explained Variation, R2 (want high) 98%
Correlation Coefficient, R (want high) 94%
Correlation line tilt angle (want 45◦) 44.6◦

While Yeh’s ANN model showed good prediction results, I doubt that labo-

ratory technicians or assistants would be comfortable training and using neural

networks on a day-to-day basis. They need something as simple as formula

sheets to quickly get the results on the spot, even without using a computer.

These formula sheets can be found in Appendix A where I provide linear re-

gressions for each node in the revised tree (Figure 6.3).

There are two universal patterns about compressive concrete strength: the

lower the ratio between water and binder the higher the strength, and as con-

crete gets older in the curing stage-the strength gets higher. From the tree in

Figure 6.1 we can observe that eight out of nine splitting attributes that identify

the distribution of the data across the tree are either concrete age, or cement por-

tion, or water portion. In the study conducted by Kadri et al.(2012) they tested

a compressive strength of high-performance concrete having different ratios of

water to cement with silica fume additive. Their findings are depicted in Figure

6.4. I plotted the value of the first splitting attribute (Age = 21 days) on their

graphs to visualize how the model separates two different stages of curing. The

first stage on the left has a rapid increase in strength whereas the second stage

on the right has a lower increasing trend. In this manner, these two simple ex-

amples support the idea that M5P can build a highly interpretable model that

aligns with common knowledge in a specific problem domain.

Linear regressions provided by M5P could serve as a practical use case for
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FIGURE 6.1: Concrete example model

FIGURE 6.2: Concrete example leave-one-out cross-validation per-
formance
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FIGURE 6.3: Revised concrete example model

building design. Let us assume that I wanted to configure my concrete mix to a

certain strength at a certain point of ageing. While I could use graphs of exper-

imental results that are usually provided for fixed mixes of concrete, using the

equations in Appendix A, I could adjust individual components whilst keeping

the other ones constant. That would allow me to create a bespoken concrete mix

tailored to specific circumstances.



Chapter 6. Practical Test Case 42

FIGURE 6.4: Strength development of concretes at different water-
cementitious materials ratios, w-water, c-cement, sf-silica fume

(Kadri et al., 2012)
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Chapter 7

Conclusion

7.1 Findings

In collaboration with a steel fabrication company in western Canada, my re-

search investigated the cost estimation department in regards to preparing pre-

bid estimates. I found that most of the estimators fall under the "baby boomer"

cohort. It is imperative to capture their experience know-how before they re-

tire and pass it on to the next generation of engineers and managers. Another

finding showed that the professionals in this company were not eager to use AI

techniques. From my point of view, they needed something that could be easily

interpreted and trusted.

A dataset sourced from the real world was used to compare various AI al-

gorithms and search for candidate for interpretable AI. I identified that Model

Tree (M5P) is the candidate. The above hypothesis is proven through comparing

Model Tree against ANN, SVM, and RF using steel fabrication project estimating

case. Considering this, I revealed hidden patterns and decision rules encoded

in the M5P model. Furthermore, I distinguished valid sub-models from invalid

ones by using a three-colored scheme on the regressions at each leaf node of the
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tree. The enhanced Model Tree application framework was successfully imple-

mented on the Concrete Compressive Strength data set. It was incorporated due

to the confidentiality issue with the steel fabrication data set which restricted

me from providing all resulting regressions and their coefficients. The resulting

model was elaborated inside out explaining every internal parameter, branching

variable, threshold, and the sub-model at each leaf node including coefficients

for each regression.

7.2 Industry Contribution

I presented a real-world case study of implementing Model Tree (M5P), along

with three commonly applied AI algorithms such as artificial neural networks

(ANN), support vector-machine (SVM), and random forest (RF) to predict project

labor-hours based on pre-bid estimate data. Through reviewing performance

measures for regression algorithms I selected (a) correlation coefficient and its

tilt angle, (b) coefficient of explained variation and (c) mean absolute percent-

age error as performance metrics for evaluating model accuracy. I not only

calibrated the Model Tree to the lowest feasible error but also created a model

representing estimators’ know-how, making it accessible to the company’s new-

comers and professionals in training.

For further research validation and application demonstration, I used the de-

veloped color scheme to build a model that learns from an established machine

learning dataset for algorithm performance bench-marking and predicts com-

pressive strength of high performance concrete as a test case. The resulting tree

and linear regressions can be used manually in laboratories even without having

a computer.
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Both of the implemented case studies are aimed to promote artificial intelli-

gence in the construction industry.

7.3 Academic Contribution

To a certain extent, excellence is a consequence of continuous learning from pre-

decessors. Despite that, we reached the point where conventional learning is

simply not enough to get to the next level. The construction industry constantly

suffers from losing precious knowledge when experts leave or retire. There is an

obvious disconnect in expertise transfer. Many studies have been done regard-

ing incorporating machine learning techniques in the construction field and in

fact, it is becoming more acceptable to practitioners. However, there is a huge

barrier in the way of artificial intelligence entering the industry’s day-to-day

practice. Humans tend to avoid things they do not understand.

The resulting AI model is the simplest form yet still sufficient to represent

the complexity in the practical problems and tolerate the limitations in available

data (limited quantity, noise, and incompleteness) in construction engineering.

The enhancement in the form of the three-colored model performance scheme

to M5P algorithm has no analogous concepts and functions in any existing soft-

ware, hence it is considered an academic contribution of this research.

To remark on the limitations, my research relies on a well-established data

mining tool such as WEKA. While it is widely used open-source educational

software, some data processing tools and hypotheses remain hidden in com-

plex code. I assume that based on the reputation of the University of Waikato,

where this application was developed and continually maintained, and a track

record of related academic publications and successful use cases over the last

two decades, this tool is reliable enough to support my research.
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7.4 Next Steps

From the interpretability standpoint, further steps can be made towards reveal-

ing data set attributes’ meaning and contribution to AI models. For now, at-

tribute selection is made by applying existing regression modeling tools with

the objective mostly set as to increase model’s prediction performance.

Throughout application of M5P on construction engineering problems I no-

ticed its capability to cluster instances in the available data set that contribute

very little to the prediction results. In other words, Model Tree has yet to iden-

tify data points which may have poor quality or are outliers. Further research

could be conducted to enhance this capability, for example, in comparison with

other clustering techniques like K-means or Hierarchical clustering.

Another branch of follow up research can be done on further improving and

applying the proposed three-colored model performance scheme on machine

learning algorithms of classification type where performance metrics slightly

differ from regression ones.
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Appendix A

Regressions for Concrete test case

A.1 Linear regression 1

Age(days) <= 21

| Cement(kg/m3) <= 354.5 :

Compressive strength (MPa) =0.075 ∗ Cement(kg/m3)+

0.0354 ∗ Blast Furnace Slag(kg/m3)+

0.0269 ∗ Fly Ash(kg/m3)+

−0.0865 ∗Water(kg/m3)+

0.6381 ∗ Superplasticizer(kg/m3)+

−0.0112 ∗ Coarse Aggregate(kg/m3)+

−0.0094 ∗ Fine Aggregate(kg/m3)+

1.144 ∗ Age(days)+

20.764
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A.2 Linear regression 2

Age(days) <= 21

| Cement(kg/m3) > 354.5 :

Compressive strength (MPa) =0.096 ∗ Cement(kg/m3)+

0.0898 ∗ Blast Furnace Slag(kg/m3)+

0.0134 ∗ Fly Ash(kg/m3)+

−0.3097 ∗Water(kg/m3)+

−0.1961 ∗ Superplasticizer(kg/m3)+

−0.0362 ∗ Coarse Aggregate(kg/m3)+

−0.0348 ∗ Fine Aggregate(kg/m3)+

2.2142 ∗ Age(days)+

92.8024
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A.3 Linear regression 3

Age(days) > 21

| Cement(kg/m3) <= 355.95

| | Cement(kg/m3) <= 164.8 :

Compressive strength (MPa) =− 0.0148 ∗ Cement(kg/m3)+

0.0983 ∗ Blast Furnace Slag(kg/m3)+

0.018 ∗ Fly Ash(kg/m3)+

−0.1414 ∗Water(kg/m3)+

0.0749 ∗ Superplasticizer(kg/m3)+

−0.0227 ∗ Coarse Aggregate(kg/m3)+

−0.012 ∗ Fine Aggregate(kg/m3)+

0.0793 ∗ Age(days)+

66.538
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A.4 Linear regression 4

Age(days) > 21

| Cement(kg/m3) <= 355.95

| | Cement(kg/m3) > 164.8

| | | Water(kg/m3) <= 183.9 :

Compressive strength (MPa) =0.2097 ∗ Cement(kg/m3)+

0.2104 ∗ Blast Furnace Slag(kg/m3)+

0.1838 ∗ Fly Ash(kg/m3)+

0.0627 ∗Water(kg/m3)+

0.2028 ∗ Superplasticizer(kg/m3)+

0.1051 ∗ Coarse Aggregate(kg/m3)+

0.1063 ∗ Fine Aggregate(kg/m3)+

0.1621 ∗ Age(days)+

−245.7724
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A.5 Linear regression 5

Age(days) > 21

| Cement(kg/m3) <= 355.95

| | Cement(kg/m3) > 164.8

| | | Water(kg/m3) > 183.9

| | | | Blast Furnace Slag(kg/m3) <= 14.3

| | | | | Age(days) <= 42 :

Compressive strength (MPa) =0.1303 ∗ Cement(kg/m3)+

−0.3452 ∗ Blast Furnace Slag(kg/m3)+

0.1132 ∗ Fly Ash(kg/m3)+

−0.2014 ∗Water(kg/m3)+

−0.4195 ∗ Superplasticizer(kg/m3)+

−0.0057 ∗ Coarse Aggregate(kg/m3)+

0.0092 ∗ Fine Aggregate(kg/m3)+

23.6472
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A.6 Linear regression 6

Age(days) > 21

| Cement(kg/m3) <= 355.95

| | Cement(kg/m3) > 164.8

| | | Water(kg/m3) > 183.9

| | | | Blast Furnace Slag(kg/m3) <= 14.3

| | | | | Age(days) > 42 :

Compressive strength (MPa) =0.1475 ∗ Cement(kg/m3)+

0.2673 ∗ Blast Furnace Slag(kg/m3)+

0.0642 ∗ Fly Ash(kg/m3)+

−0.5462 ∗Water(kg/m3)+

1.3101 ∗ Superplasticizer(kg/m3)+

0.0104 ∗ Coarse Aggregate(kg/m3)+

0.0215 ∗ Fine Aggregate(kg/m3)+

0.0157 ∗ Age(days)+

63.8728
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A.7 Linear regression 7

Age(days) > 21

| Cement(kg/m3) <= 355.95

| | Cement(kg/m3) > 164.8

| | | Water(kg/m3) > 183.9

| | | | Blast Furnace Slag(kg/m3) > 14.3

| | | | | Cement(kg/m3) <= 263.25

| | | | | | Age(days) <= 59 :

Compressive strength (MPa) =0.0448 ∗ Cement(kg/m3)+

0.0312 ∗ Blast Furnace Slag(kg/m3)+

−0.0868 ∗ Fly Ash(kg/m3)+

−0.0371 ∗Water(kg/m3)+

1.2251 ∗ Superplasticizer(kg/m3)+

−0.0076 ∗ Coarse Aggregate(kg/m3)+

−0.0385 ∗ Fine Aggregate(kg/m3)+

59.2209
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A.8 Linear regression 8

Age(days) > 21

| Cement(kg/m3) <= 355.95

| | Cement(kg/m3) > 164.8

| | | Water(kg/m3) > 183.9

| | | | Blast Furnace Slag(kg/m3) > 14.3

| | | | | Cement(kg/m3) <= 263.25

| | | | | | Age(days) > 59 :

Compressive strength (MPa) =− 0.0536 ∗ Cement(kg/m3)+

0.0591 ∗ Blast Furnace Slag(kg/m3)+

−0.0489 ∗Water(kg/m3)+

0.0832 ∗ Coarse Aggregate(kg/m3)+

0.022 ∗ Age(days)+

−30.0589
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A.9 Linear regression 9

Age(days) > 21

| Cement(kg/m3) <= 355.95

| | Cement(kg/m3) > 164.8

| | | Water(kg/m3) > 183.9

| | | | Blast Furnace Slag(kg/m3) > 14.3

| | | | | Cement(kg/m3) > 263.25 :

Compressive strength (MPa) =0.0737 ∗ Cement(kg/m3)+

−0.0213 ∗ Blast Furnace Slag(kg/m3)+

0.007 ∗ Fly Ash(kg/m3)+

−0.1053 ∗ Superplasticizer(kg/m3)+

−0.0267 ∗ Coarse Aggregate(kg/m3)+

0.0533 ∗ Fine Aggregate(kg/m3)+

0.0265 ∗ Age(days)+

12.1755
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A.10 Linear regression 10

Age(days) > 21

| Cement(kg/m3) > 355.95 :

Compressive strength (MPa) =0.1071 ∗ Cement(kg/m3)+

0.1607 ∗ Blast Furnace Slag(kg/m3)+

0.0958 ∗ Fly Ash(kg/m3)+

−0.3161 ∗Water(kg/m3)+

−0.5749 ∗ Superplasticizer(kg/m3)+

0.0023 ∗ Coarse Aggregate(kg/m3)+

0.0095 ∗ Fine Aggregate(kg/m3)+

0.0446 ∗ Age(days)+

48.0601
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Appendix B

Steel fabrication dataset sample

This appendix contains the steel fabrication dataset sample and its characteris-

tics. The are seven instances provided in Tables B.2 and B.3, one for each Leaf.

TABLE B.1: Steel dataset characteristics

No. of attributes 38
No. of instances initial 935
No. of missing values initial 22435
No. of instances after cleansing 218
No. of missing values after cleansing 5
No. of zeros(footnote 2, page 15) after cleansing 3505
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TABLE B.2: Steel dataset sample(weight in kilograms, length in
meters

Regression No. LR 1 LR 2 LR 3 LR 4
Instance No. 149 65 47 27
Scope Supply & erect. Supply Supply & erect. Supply
Sector Industrial Industrial Infrastructure Industrial
Location Edmonton Saskatchewan Edmonton Winnipeg
Complexity Medium Medium Very heavy Medium
Hollow Steel weight 0 0 0 0
Hollow Steel quantity 0 0 0 0
Hollow Steel length 0 0 0 0
Wide flange weight 6538 0 4661 1346
Wide flange quantity 42 0 27 9
Wide flange length 678 0 58 146
C-shape weight 258 0 0 95
C-shape quantity 9 0 0 1
C-shape length 14 3 0 0 66
L-shape weight 2038 0 2624 270
L-shape quantity 44 0 40 5
L-shape length 258 0 97 94
Plate weight 1496 15192 6289 84114
Plate quantity 177 1776 410 239
Plate length 245 84 103 1600
Round bar weight 0 0 0 0
Round bar quantity 0 0 0 0
Round bar length 0 0 0 0
Miscellaneous weight 0 0 0 0
Miscellaneous quantity 0 0 0 0
Miscellaneous length 0 0 0 0
S-shape weight 0 0 0 0
S-shape quantity 0 0 0 0
S-shape length 0 0 0 0
T-shape weight 0 0 0 43
T-shape quantity 0 0 0 2
T-shape length 0 0 0 14
Pipe weight 0 19693 0 0
Pipe quantity 0 3108 0 0
Pipe length 0 118 0 0
Total weight 10330 34885 13575 85869
Total quantity 272 4884 477 256
Total length 1325 201 258 1920
Labor-hours 323 1332 3022 2490
Hours, predicted 213 1175 1904 2074
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TABLE B.3: Steel dataset sample continuation

Regression No. LR 5 LR 6 LR 7
Instance No. 79 132 118
Scope Supply & erect. Supply Supply
Sector Commercial Industrial Infrastructure
Location Saskatchewan Saskatchewan Vancouver
Complexity Light Heavy Medium
Hollow Steel weight 65709 103477 477
Hollow Steel quantity 302 490 66
Hollow Steel length 4066 7325 90
Wide flange weight 267183 11768 81463
Wide flange quantity 610 77 102
Wide flange length 16921 396 98
C-shape weight 14953 7550 6422
C-shape quantity 116 46 160
C-shape length 726 194 210
L-shape weight 34911 2907 47
L-shape quantity 1577 134 16
L-shape length 4612 74 4
Plate weight 33120 47044 575571
Plate quantity 2703 577 2508
Plate length 2470 2193 2552
Round bar weight 969 0 0
Round bar quantity 2129 0 0
Round bar length 322 0 0
Miscellaneous weight 0 0 0
Miscellaneous quantity 0 0 0
Miscellaneous length 0 0 0
S-shape weight 0 0 1299
S-shape quantity 0 0 57
S-shape length 0 0 155
T-shape weight 136 14243 10106
T-shape quantity 1 18 80
T-shape length 66 1788 143
Pipe weight 3558 57 0
Pipe quantity 127 12 0
Pipe length 556 16 0
Total weight 420539 187046 675385
Total quantity 7565 1354 2989
Total length 29740 11986 3252
Labor-hours 5678 9269 13372
Hours, predicted 4452 11312 13244
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Appendix C

WEKA Concrete example setup

manual

This appendix is provided for the teaching purposes. It explains how to setup

M5P model for the Concrete example test case using WEKA software.

FIGURE C.1: Applications window
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FIGURE C.2: Loading a dataset
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FIGURE C.3: Attribute features
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FIGURE C.4: Loading an algorithm
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FIGURE C.5: Setting the algorithm features
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FIGURE C.6: Training a model
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FIGURE C.7: Classifier error visualization
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FIGURE C.8: Tree visualisation
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Appendix D

WEKA model setups from Chapter 5

D.1 ANN setup

FIGURE D.1: WEKA ANN preprocess
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FIGURE D.2: WEKA ANN performance
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FIGURE D.3: WEKA ANN setup
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FIGURE D.4: WEKA ANN regression error
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D.2 SVM setup

FIGURE D.5: WEKA SVM preprocess
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FIGURE D.6: WEKA SVM performance
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FIGURE D.7: WEKA SVM setup
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FIGURE D.8: WEKA SVM regression error
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D.3 RF setup

FIGURE D.9: WEKA RF preprocess
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FIGURE D.10: WEKA RF performance
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FIGURE D.11: WEKA RF setup
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FIGURE D.12: WEKA RF regression error
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D.4 M5P setup

FIGURE D.13: WEKA M5P preprocess
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FIGURE D.14: WEKA M5P performance
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FIGURE D.15: WEKA M5P setup
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FIGURE D.16: WEKA M5P regression error
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