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Abstract 

The pelvic bone is one of most stressed bones in the human body due to its essential task of 

weight-bearing of upper body. However, pelvic bone fractures usually occur as a result of high-

rate impact loads, high cycle with low magnitude (e.g., stress fractures) or bone diseases such 

as pelvic tumors or osteoporosis. Based on these facts, and due to the complexity of injured 

pelvises for surgeons to treat, the fracture mechanism in this bone and its treatments deserves 

better understanding. In this research, computer modeling was used to investigate the fracture 

mechanism in the pelvic bone and to design and optimize the fixation plates of a damaged pelvic 

bone. 

The Finite Element Method (FEM) is a beneficial tool in engineering research to model failure 

characteristics of solid materials with complex shapes and material properties but not restricted 

to solid materials. Recently, the extended finite element method (XFEM) employs fracture 

mechanics to simulate fracture propagation in the bulk materials by allowing cracks to 

propagate through elements. In this research, the XFEM technique has been implemented to 

model fracture mechanism in the pelvic bones. 

Considering both cortical and cancellous tissues simultaneously in fracture modeling of the 

bones is one of the requirements in developing a realistic model. Numerous researchers have 

employed XFEM analysis to model fracture mechanisms in cortical bones on the microscopic 

and macroscopic scales. However, there are limited studies that modeled fracture in cancellous 

bone by XFEM analysis. In this research, previously published materials and failure 

characteristics of cortical bone have been re-implemented on macro-scale level to be utilize in 

pelvic bone fracture modeling. Modeling the cancellous bone porosity in FE modeling of pelvic 
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bone was impractical because of the details on the micro-scale level of the bone. Alternatively, 

an equivalent model was developed to produce a behavior similar to that observed in the micro-

scale models.  

In order to do so, the experimental results of a published study (Ridha et al. 2013) were used to 

create a computational model capable of predicting the fracture of one trabecula. The predicted 

material characteristics of the trabeculae were then utilized in 2D and 3D XFEM models to 

estimate the behavior of cancellous bone tissue in microscopic scale. Finally, the equivalent 

model was created based on the obtained material behavior of cancellous bone specimen. The 

results of the equivalent model were found to be in excellent agreement with the micro-scale 

XFEM models. 

Thus far, material behaviors and failure parameters of cortical and cancellous bones have been 

estimated. Also, an equivalent model from cancellous tissue in micro-scale level has been 

developed and evaluated with micro-scale modeling of cancellous specimen. The modeling 

resulting from cortical and cancellous tissues were integrated into the pelvic bone. Various 

loading conditions have been investigated to simulate different types of fracture in the pelvic 

bone. 

Finally, the estimated material properties of cancellous and cortical tissues were assigned to a 

T-shaped damaged bone fixed by a customized bone plate. The fixation plate and screws 

characteristics were optimized by means of FE analysis (FEA) and the Design of Experiments 

(DoE) method. In order to do so, the DoE model was developed. Fixation plate thickness, plate 

material and the number of screws were selected as variables and reduction of stress shielding 
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and stiffer fixation were considered as model objectives. The ANOVA (analysis of variance) 

method was employed to determine the significant factors mentioned above, along with their 

effect values. The fixation plate material and thickness were determined as the first and second 

effective parameters respectively for design of implants, and their optimized values were found. 

The contributions of my work were, developing XFEM models of cancellous bone specimens 

that are capable of accurately predicting the onset and propagation of cracks under mechanical 

loading, developing an equivalent constitutive model of cancellous bone to utilize in fracture 

modeling of bones in macro scale, developing an XFEM model that is capable of predicting 

different types of fracture in pelvic bone under various loading conditions and evaluating and 

optimizing the mechanical stability and stress shielding of the fixation system in T-shaped 

acetabular fracture by conjunction of Finite Element Analysis (FEA) and Design of Experiment 

(DoE).  
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Chapter 1 : Introduction 

1.1 Motivation and Problem Statement 

The pelvic bone is one of the essential weight-bearing structures and one of the most stressed 

areas in the human anatomy [1, 2]. Pelvic bone fractures are among the most common clinical 

problems that occur, due to high-rate impact loads or bone diseases [3]. Due to the complexity 

of injured pelvises for surgeons to treat, the fracture mechanism of this bone and its treatments 

deserve a better understanding.  

T-shaped pelvic fracture is one of the most complicated and common fractures in frontal motor-

vehicle crashes and sideways falls especially among the elderly population [4, 5]. T-shaped 

fractures are commonly treated through internal fixation with lag screws and reconstruction 

plates [4-7]. Long-term stable fixation is the essential goal of surgical treatment [4, 6, 7]. 

However, in some cases the stress shielding occurs in the treated bone as a result of removal of 

the stress from the bone by an implant. The stress shielding causes the reduction of the bone 

density around implant and screws and finally loosens the implant in the long-term. The Finite 

Element Method (FEM) can be one of the greatest tools due to the complexity of injured 

pelvises for surgeons to find an appropriate fixation system with the maximum stability and 

minimum stress shielding.  

The FEM, by incorporating continuum damage mechanics or fracture mechanics, is a beneficial 

tool in engineering research to model failure characteristics. Conventionally, traditional FEM 

utilizes element deletion techniques and continuum damage mechanics to model fracture 

propagation within bulk materials. More recently, the extended finite element method (XFEM) 

employs fracture mechanics to simulate fracture propagation in the bulk materials by allowing 

cracks to propagate through elements rather than simple element deletion. 

FEA has been utilized to model the pelvis in numerous applications [6, 8-30]. A considerable 

number of these research articles are related to evaluation of internal fixation systems and the 

stability of fixed fracture bones by means of FEA [4, 6, 7, 21, 22, 25-27]. This study [4] 

evaluated several fixation systems in T-shaped fracture of pelvic bone and obtained the 
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optimized fixation system for the treatment of an injured bone. A large quantity of studies [31-

36] investigated and optimized the fixation plate parameters (e.g., material selection, plate 

thickness, the number of screws and their optimal distance between the screws) using a 

combination of Design of Experiments (DoE) and FEA. To the best of our knowledge, there is 

no study to have optimized the fixation plate characteristics related to a damaged pelvic bone. 

Moreover, some studies [12, 20, 28-30] used FE models to examine pelvic damage mechanisms 

in backward falls, sideways falls and lateral impacts. These studies concentrated on the damage 

of pubic symphysis and sacroiliac joints. To the best of my knowledge, only one study [3] has 

modeled the crack initiation on the pelvic bone. However, instead of a real bone, a synthetic 

polyurethane pelvis was utilized to model the fracture [3]. This work is novel in that it is the 

first finite element model to simulate crack initiation in a based on real bone material properties.   

As explained earlier, XFEM technique is becoming more common in biomechanics field. In 

numerous studies [37-54], XFEM analysis has been employed to carry out several bone 

fractures on microscopic and macroscopic scales. To the best of our knowledge, there is no 

study on utilizing XFEM technique to model fracture mechanism and different types of fracture 

in the pelvic bones. Due to a lack of knowledge about fracture mechanisms in the pelvic bones 

and according to the complexity of this bone, it needs better investigation.  

The pelvic bone (similar to most other skeletal system bones) contains cortical and cancellous 

bones that are also called compact and trabecular bone, respectively [55]. The cortical bone is 

the external denser and stronger tissue of the bone and withstands forces, while the cancellous 

bone is the internal spongy tissue that makes the bone lighter and distributes the imposed loads 

to the stronger cortical tissue [55]. One of the requirements for implementing an accurate model 

of pelvic bone fracture is considering fracture mechanisms in the cortical and cancellous tissues.  

A large quantity of articles [40-52, 56-58] have employed XFEM analysis to model the fracture 

mechanism in a cortical tissue. The fracture modeling of cortical bone was conducted by 

researchers for different purposes. In some studies [41, 43, 44, 46-49, 52, 56-58], the fracture 

mechanism has been developed to investigate the mechanical characteristics of cortical bones. 

On the other hand, other studies [40, 45] have utilized the XFEM analysis as an application to 

model the damage of cortical bones in the process of screw pull-out. In some of materials, the 
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failure initiation and propagation model is out of the built-in models in ABAQUS software. In 

these cases, a user subroutine called UDMGINI can be utilized for reaching specific crack 

initiation criteria out of the built-in models [59]. These studies [40, 51] used user-defined 

subroutine UDMGINI to define failure criteria of cortical bone.  

Modeling the large volume of cancellous tissue porosity through FE modeling of bone requires 

large computational resources, which renders such models impractical. Alternatively, a macro-

scale model can be developed without modeling the porosity of cancellous tissue. However, 

this macro-scale model can be an equivalent model that is able to produce a behavior similar to 

that observed in the micro-scale model. There are several studies [60-69] which have 

implemented various equivalent models to simulate micro-scale bone in a macro-scale. In some 

of these studies [60, 65, 66], the failure was not considered as part of the equivalent model, and 

in the other studies [61, 62] damage mechanics (element deletion) was utilized to simulate post 

yield behavior of the micro-scale bone. However, XFEM technique has some benefits compared 

to traditional damage mechanics [70-72] as it is able to model and predict fractures in different 

bones on multi-scale levels [3, 37, 54, 58, 73].  

Limited studies [74, 75] have utilized XFEM technique to model failures in cancellous tissue. 

Tran et al. [74] utilized XFEM to apply a regular mesh to trabecular bone tissue. In their study, 

the elements that are within the voids can be modeled with small stiffness values in comparison 

to elements within the solid component of the tissue [74]. XFEM was then used to simulate the 

boundaries between the different phases without disrupting the mesh [74]. Also, Hammond et 

al. [75] utilized built-in XFEM models in ABAQUS to demonstrate crack formation in the 

cancellous bone specimen. To the best of our knowledge, however, there is no study on utilizing 

XFEM technique to extract material behavior and fracture parameters of cancellous tissue.  

In this regard, two main objectives will be followed in current study. The first objective is 

investigating the fracture mechanism of pelvic bone with cortical and cancellous tissues under 

various loading conditions. The second objective is proposing and optimizing a custom implant 

to fix and treat a T-shaped fractured pelvic bone. In the following, the hypotheses and objectives 

are described in more detail.  



4 

 

1.2 Hypotheses and objectives 

To achieve the first objective, the XFEM analysis was implemented on cancellous bone 

specimens on the micro-scale level (Chapter 3,4). Afterward, an equivalent model was 

developed based on the obtained material behaviors and failure parameters of cancellous bone 

specimen in microscopic scale (Chapter4). Additionally, the XFEM model of cortical bone in 

macroscopic scale was re-implemented by means of previously published models (Chapter 5). 

Finally, material behaviors and failure characteristics of cortical and cancellous tissues on 

macro-scale level were assigned to the pelvic bone (Chapter 5). The various loading conditions 

that cause different types of pelvic bone fracture in frontal motor-vehicle crashes were modeled 

and investigated (Chapter 5). 

For the next outstanding objective of this research, an implant was proposed and designed for 

fixing the pieces of T-shaped fractured pelvic bone (Chapter 6). Pelvic bone displacement, 

crack opening and stress in the bone, and fixation plate and screws were examined to find the 

optimal parameters for reducing the stress shielding and increasing the stability of fixed pelvic 

bone. To achieve this aim, the DoE technique was utilized together with FE analysis to find the 

significant factors and improve the implant characteristics (Chapter 6). 

Modeling of fracture mechanism in pelvic bone using finite element simulations was based on 

the following hypothesis and objectives: 

Hypothesis of objective 1: Concept of partition of unity (which is explained in chapter 2.3) by 

incorporating conventional Finite Element Method (FEM) can effectively be implemented to 

model fracture initiation and propagation in micro- and macro- scale levels of bones (Chapter 

3-6).  

Objective 1: To investigate pelvic bone fracture mechanisms in various loading conditions 

(Chapter 3-5): 
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Specific aim 1. Defining material properties of cancellous bone tissue and performing 

XFEM modeling of crack formation and growth in a cancellous bone specimen (Chapter 

3,4). 

Specific aim 2. Extracting material properties of cancellous bone from the results of XFEM 

modeling to assign to a solid (no-porosity) part with the same dimensions of cancellous 

bone (Chapter 4). 

Specific aim 3. Performing XFEM modeling of the pelvic bone with cortical and cancellous 

tissues and investigating the loading conditions of pelvic bone in order to model different 

types of fracture (Chapter 5).  

Hypothesis of objective 2: Design of Experiments (DoE) combined to Finite Element Method 

can be utilized as an experiment alternative to designing and optimizing of fixation plates in an 

injured pelvis. 

Objective 2: To propose a custom implant to fix and treat a fractured pelvic bone (Chapter 6): 

Specific aim 4. Modeling a fractured pelvis with fixation plates and optimizing the fixation 

plate parameters using a combination of DoE and FEA (Chapter 6). 

In the final chapter of the thesis, i.e. Chapter 7, the achievements, suggested future works, 

advantages and disadvantages of using the XFEM technique for fracture modeling in pelvic 

bone were presented. Chapter 7 also includes the achievements and suggested future works of 

using DoE technique for optimizing of fixation plates in injured pelvic bones. This thesis 

progresses from a microscopic level to a macroscopic level to the pelvis and finally the 

simulation of a clinical application as can be seen in Fig.1.1. 
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Figure 1.1. Graphical abstract describing the progresses from a microscopic level to a macroscopic level to the pelvis 

and finally the simulation of a clinical application 
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Chapter 2 : Literature Review 

According to the objectives and the aims of this study, a literature review has been conducted 

in six sections. First section is dedicated to the pelvic bone and different types of fracture in this 

bone. In the second section, the studies about FE modeling of pelvic bone have been 

investigated. Third section is devoted to exploring the failure modeling techniques and the 

advantages of XFEM technique compared to traditional damage modeling technique. Fourth 

and fifth sections are allocated to investigate the studies related to cortical and cancellous bones, 

respectively. Finally, the research related to DoE method related to optimization of implants 

are explored in sixth section.  

2.1 Pelvic bone anatomy and the types of fracture  

Pelvic ring has a very important role in human skeleton system by linking the upper body to the 

lower extremities [8]. Pelvic bone is one of the most stressed areas in the human anatomy 

according to its location for transferring the upper body weight to the lower limbs and protecting 

the inner organs of that area [1, 2, 8]. Due to the important role of this bone, it was the center 

of attention of surgeons and scientists since the early 20th century [8]. 

The complex anatomy of a pelvic bone is demonstrated in Fig.2.1. As it can be seen, the pelvic 

bone is formed by three main parts called Ilium, Ischium and Pubis [5]. These three parts fuse 

together and form a cup-shaped socket known as acetabulum [5]. Damage and fracture of pelvic 

bone or acetabulum is a common type of fracture [6]. More than half of the fractures in pelvic 

bones are caused by motor-vehicle crashes [12]. There are different types of fracture in pelvic 

bones that can be classified in three main groups of A, B and C [5]. Surgeons utilize the 

simplified anatomy of pelvic bone that is shown in Fig.2.2 for better interpretation of different 

types of fractures [5]. In Fig.2.2 it can be seen that pelvic bones are made from two columns 

and two walls that meet at the roof of acetabulum [5]. The fracture type A is related to partial 

articular fractures of acetabulum [5]. Transverse or T-type fractures are considered as type B of 

pelvic bone fractures in which a portion of the articular surface of the acetabulum is still 

connected to the intact ilium [5]. In type C, both columns are fractured, and no portion of the 

acetabulum is connected to the intact ilium [5]. 
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Figure 2.1. Ischium, pubis, and ilium parts of pelvic bone [5] 

 
Figure 2.2. Pelvic bone is composed of two columns and walls that meet at the roof of acetabulum[5] 

T-shaped fracture classifies as one of the complicated fractures of pelvic bones [5]. 7% of pelvic 

fractures with two or more fractures within the acetabulum are T-shaped fractures that are 

designated as type B fractures, as demonstrated in Fig.2.3 [5]. In T-shaped fractures, 

acetabulum splits vertically (Fig.2.4) [5]. The vertical fracture may enter any part of acetabulum 

cavity and subdivide the fracture into a T-type fracture as it is shown in Fig.2.4. 
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Figure 2.3. T-shaped fracture in pelvic bone [5] 

 

Figure 2.4. Possible directions of the fracture of the T in T-type fractures.[5] 

The fixation of T-shaped fracture is explained in [5] which is a reference for the surgeons; also,  

different types of fracture in pelvic bone and acetabulum are described in this book. The fixation 

system of T-type fracture with the fixation plate and lag screws can be observed in Fig.2.5 [5]. 

Also, there are numerous studies [76-82] that have been dedicated to evaluating the functional 

outcomes of operative treatment of such injuries. However, to the best of our knowledge, there 

is only one study [4] that has investigated the fixation system of T-type fracture in pelvic bone 
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by FEA. Fan et al. [4] evaluated three different fixation systems of T-shaped fracture by FEA 

and obtained the optimized fixation system for treatment of the injured bone. The three fixation 

systems are demonstrated in Fig.2.6. The obtained results proved that the fixation system shown 

in Fig.2.6(c) has the best functional criteria [4].  

 

Figure 2.5. Fixation system of T-type fracture[5] 

 

Figure 2.6. Three different fixation systems of T-shaped fracture[4] 



11 

 

2.2 FE modeling of pelvic bone 

According to the complex morphology of pelvic bone and its inaccessible location, surgeons 

and researchers have intended to use FE modeling rather than experiments. In this section, the 

studies related to FE analysis of pelvis ring and pelvic bone have been investigated. The main 

purpose of conducting this subsection was a comprehensive coverage of literature related to 

fracture modeling of the pelvic bone and its fixation system. In the following, the application 

of related studies has been indicated and a detailed review corresponding to this subject will be 

published in the future. 

These papers [8, 83-86] investigated the effects of boundary conditions on FE results. Phillips 

et al. [83] claimed that previous finite element studies had extensive simplifications of boundary 

conditions. Thus, the authors modeled pelvis bones with fixed boundary conditions that were 

utilized in previous studies and pelvic bones that are supported by muscular and ligamentous 

boundary conditions to compare the differences between them [83]. Shi et al. [8] studied the 

synovial joint role of the sacroiliac joint (SIJ) in the human pelvic system. The authors modeled 

SIJ penetration model and SIJ contacting model. In the first model, interfaces were penetrated 

together, and the interfaces related to the second model were just in contact with each other. 

Also, in the second model, the ligaments were modeled as representatives of boundary 

conditions [8]. Watson et al. [84] developed a series of pelvis FE models to investigate the 

relationships between the applied boundary conditions and the extracted stress distributions; 

the authors specifically studied the SIJ and pubic symphysis [84]. Hu et al. [85] used the FE 

model to analyze the influence of boundary conditions and connection conditions on stress 

distribution in pelvis ring. Three conditions were modeled in this paper [85]: first model with 

contact between femur head and acetabulum, another one the surfaces fused together in hip 

joint connecting area and the last one without proximal femurs [85]. After analyzing of stress 

distribution in three different models using FEA, Hao et al. [86] concluded that the connect 

condition of hip joint should not be neglected in FE modeling. In all of these studies [8, 83-86] 

the FEA was utilized to improve and develop more realistic boundary conditions for the pelvic 

ring.  
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The authors of these studies [87-92] have developed a more realistic FE model by considering 

the ligaments, muscle forces, cortical and cancellous bones, the thickness of cortical and 

trabecular bones in their FE models. Dalstra et al. [87] presented detailed finite element analyses 

of the pelvic bone and evaluated stress distributions under physiological conditions. Dalstra et 

al. [88] developed and validated a three dimensional FE model of pelvic bone. The authors 

considered cortical and cancellous bones as part of model to develop a more realistic FE model 

of the pelvic bone [88]. Anderson et al. [89] developed and validated a realistic FE model 

according to cortical and trabecular bone thicknesses to assess the strain prediction regarding 

the thicknesses and material properties of bone and cartilage. Ivanov et al. [90] developed an 

FE model of pelvis ring including the ligaments. The authors assessed the effects of different 

positions of SIJ to sacrum angulation, which is a physiological motion [90]. In Eichenseer et al. 

[91] a human pelvis- SIJ and sacroiliac ligaments were modeled. This study [91] aimed to 

evaluate the ligaments strains and stiffness on motion, displacement, rotation, and stresses of 

SIJ. In this study [92], an FE model of the pelvis was developed with estimation of joints 

movement and muscle forces throughout the gait cycle to analyze the stress distribution of 

pelvis ring while walking normally.  

Kuraria et al. and Zant et al. [93, 94] investigated the stress evaluation and fatigue behavior in 

pelvis and prosthesis. Kuraria et al. [93] developed an FE model to evaluate the stress 

distribution and fatigue behavior on peak contact force under different loading conditions. Zant 

et al. [94] evaluated fatigue mechanism and the behavior of cemented prosthesis cup during 

normal walking and stair climbing.  

Watson et al. and Mei et al. [95-97] modeled the reconstructed pelvis and compared the results 

to the original one. In [95] the FEA was used to compare the strain distribution between a 

reconstructed hemipelvis bone and the original one. Watson et al. [96] presented an innovative 

approach to digitize a damaged hemipelvis. They compared the reconstructed pelvis using their 

proposed technique to the original CT data and validated their proposed method [96]. Mei et al. 

[97] developed an FE model of the reconstructed pelvic ring to analyze the mechanical stresses 

on pelvis ring after hemipelvectomy. Also, Kumar et al. [98] developed asymmetric hemipelvis 

by utilizing some features of Geomagic software, and compared the results to those of mirrored 
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hemipelvis in order to determine the differences between two sides of pelvis ring. The purpose 

of this study [98] was to decrease the calculation volume of FE analyzing in case of fracture on 

one side of pelvis ring. 

Frydrýšek et al. and Ali et al. [99, 100] proposed, designed and investigated the capabilities of 

external fixators. Frydrýšek et al. [100] designed an external fixator and evaluated it by FEA 

that can be used to stabilize fractures of limbs, pelvis and its acetabulum. Ali et al. [99] used 

FE model to assess the stiffness of an external fixation of pelvic ring fracture and the parameters 

that influence mechanical performance of external fixators.  

Some researchers evaluated internal fixation systems as well as the stability of complex 

fractures in hemipelvis bone or pelvic ring by FEA [4, 6, 7, 9, 15, 17, 18, 21, 22, 25-27, 75, 

101-117]. One of the most common pelvic ring injuries is type C fracture, and that the fixation 

of this type of damage was analyzed in these studies [26, 102, 103]. To the best of our 

knowledge, this study [4] is the only one that utilized FEM to evaluate several fixation systems 

for T-shaped fracture of pelvic bone. The authors obtained the optimized fixation system 

(including the optimized number of implants and screws and their placement in the fixation 

system) for the treatment of an injured bone with T-shaped fracture [4]. 

These studies [14, 19, 118-125] simulated human pelvis and lower limb to investigate the injury 

mechanisms in different types of crashes. Kikuchi et al. [118], modeled a human pelvis and 

lower limb to predict the injuries during the frontal motor-vehicle impact. For simulation of 

knee-thigh-hip (KTH) complex injuries in frontal motor vehicle crashes, the FE models were 

developed and bone deformation, articulating joints and soft tissue behavior in the KTH 

complex were the characteristics that were analyzed by Van Rooij et al. [119]. Ikeda et al. [120] 

used FE models to predict the different fracture patterns of pelvis ring in pedestrian accidents 

with SUV/ Mini-Vans. The developed models were capable to accurately predicting the 

different pattern of pelvic fractures [120]. This is the only study [120] that has predicted the 

fracture location in the pelvis ring in frontal car crashes. Silvestri et al. [121] developed an FE 

model of KTH with ligaments and muscles to explore the mechanics of injuries of the KTH 

during frontal crashes. Shen et al. [122] used the FE model of the pelvis and lower extremities 

to investigate the injury mechanisms of a ten-year-old child for improving pedestrian protection 
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for this age group. Snedeker et al. [14] simulated the FE models of a male pedestrian with 

various impacts and different hood shapes to investigate the shape of hood leading edge in 

pedestrian-car accidents. In this study [19], an FE model of the pedestrian was created to model 

the injury mechanisms in side collision accidents. Ma et al. [19] considered the cortical and 

cancellous bone in their FE modeling. Majumder et al. [123] simulated side impact situation 

for the pedestrian in automotive accidents. For a realistic simulation, they [123] modeled human 

pelvis-femur-soft tissue complex and spring-dashpot-mass that represent the whole body. Yue 

et al. [124] developed an FE model of lower extremity to improve the understanding of KTH 

injuries mechanisms. Yue et al. [124] considered the frontal and lateral loadings in their FE 

modeling. Gunji et al. [125] investigated the influence of different parts of human body mass 

on pelvis injury mechanism on car-occupant crashes through using FEA. They also [125] used 

four different vehicle models to investigate the influence of loading locations from the hood 

edge on pelvis injury mechanism.  

In these papers [3, 12, 20, 28-30, 126-133], the fractures and injury mechanisms in pelvis were 

modeled and investigated. The papers [12, 20, 28-30, 126-131] studied pelvic injury 

mechanisms in backward and sideways falls, and lateral pelvic impacts using FE models. Kim 

et al. [130]  investigated the effects of childhood obesity on pelvic bone fracture risk exposed 

to falls. Song et al. [131] developed the FE models of vertebrae and pelvis to analyze the 

dynamic mechanisms of these bones in human falls. These studies [12, 20, 28-30, 126-131] 

concentrated on the damage of pubic symphysis and sacroiliac joints, and the fracture modeling 

of the bone was not considered as part of the simulation. Besnault et al. [133] introduced a 

material model to simulate damage and injury in the human pelvis ring. To the best of my 

knowledge, only one study [3] has modeled the crack initiation on the pelvic bone. However, 

instead of a real bone, a synthetic polyurethane pelvis was utilized to model the fracture [3].  

2.3 Extended Finite Element Method 

The Finite Element Method (FEM), by incorporating continuum damage mechanics or fracture 

mechanics, is a beneficial tool in engineering research for modeling failure characteristics of 

complex structures. Conventionally, traditional FEM utilizes element deletion techniques and 

continuum damage modeling to model fracture propagation within bulk materials. More 
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recently, the extended finite element method (XFEM) employs fracture mechanics to simulate 

fracture propagation in the bulk materials by allowing cracks to propagate through elements, 

rather than simple element deletion. 

Researchers have shown that using the element deletion technique of traditional FEM can lead 

to some physical inaccuracy in the results caused by the removal of some elements [70-72]. 

Likewise, the accuracy of solutions in the element deletion technique is more dependent on the 

element size than the element splitting technique of XFEM analysis [70-72]. In XFEM analysis, 

a crack can be modeled independently from the mesh and can be grown arbitrarily and depend 

on the solution [59]; furthermore, this technique does not require adaptive remeshing [59]. In 

biomechanics, XFEM analysis is becoming a common tool for predicting and modeling fracture 

in different bones on multi-scale levels [3, 37, 54, 58, 73]. In the following, the XFEM 

technique will be explained in detail. 

XFEM is an extension of the finite element method based on the partition of the unity method 

[59]. In the XFEM framework, discontinuities in an element are enabled by enriching degrees 

of freedom using a displacement vector function that is shown in Equation 2.1 [59]. 

u = ∑ 𝑁𝐼(𝑥) [𝑢𝐼 + 𝐻(𝑥)𝑎𝐼 + ∑ 𝐹𝛼(𝑥)𝑏𝐼
𝛼

4

𝛼=1

]

𝑁

𝐼=1

 (2.1) 

where 𝑁𝐼(𝑥) is the usual nodal shape function; 𝑢𝐼 is the nodal displacement vector; 𝐻(𝑥)𝑎𝐼 is 

the product of the nodal enriched degree of freedom vector, 𝑎𝐼, and the associated discontinuous 

jump function 𝐻(𝑥) across the crack surfaces. 𝐹𝛼(𝑥)𝑏𝐼
𝛼 is the product of the nodal enriched 

degree of the freedom vector, 𝑏𝐼
𝛼, and the associated elastic asymptotic crack-tip 

functions, 𝐹𝛼(𝑥). For modeling the propagating (not stationary) crack, the third term on the 

right-hand side (near-tip asymptotic singularity) of Equation 2.1 is being neglected, and the 

equation will be simplified to Equation 2.2 [59]. 
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𝑢 = ∑ NI(x)[uI + H(x)aI]

N

I=1

 (2.2) 

All the cracks modeled in this research are propagating cracks, for which Equation 2.2 will be 

implemented to solve.  

 
Figure 2.7. Illustration of normal and tangential coordinates for a smooth crack [134] 

The discontinuous jump function across the crack surfaces, 𝐻(𝑥), is shown in Fig.2.7 and given 

by Equation 2.3 [59]. 

𝐻(x) = {
1        if (x − x∗). n ≥ 0,

−1                   otherwise,
 

(2.3) 

where 𝑥 is an arbitrary example of Gauss point, 𝑥∗ is the closest point on the crack to 𝑥, and 𝑛 is 

the normal unit to the crack at 𝑥∗. 

Crack propagation is implemented in the element based on the phantom nodes approach (as 

shown in Fig.2.8) [59]. While the crack is being initiated in an element, the phantom nodes will 

be located at the same location as the original nodes [59]. The phantom nodes are conjugated 

with the damage evolution law [59]. When the damage evolution law is satisfied, the crack 

opening will begin and the phantom nodes will be located independently from the original ones 

[59]. 
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Figure 2.8. The principle of the phantom node method [134] 

So far, the XFEM framework is provided only in ABAQUS/Standard [59]. Furthermore, XFEM 

framework merely supports first-order 2D and 3D stress/displacement solid continuum 

elements and second-order stress/displacement tetrahedral elements [59].  

2.4 Cancellous tissue 

One of the requirements for developing an accurate model of bone fracture in the macro-scale 

is considering the fracture mechanism in the cortical and cancellous tissues on the micro-scale. 

There are several studies [135-141] which utilized damage mechanics and element deletion 

technique to model failure in trabecular tissue. However, as explained earlier, XFEM technique 

is becoming more common in biomechanics field according to its benefits. To the best of our 

knowledge there is only one study [75] that modeled microcracking in cancellous bone by 

XFEM model. In that study, Hammond et al. [75] utilized XFEM to demonstrate crack 

formation in the cancellous bone. Also, XFEM has been utilized in an interesting study by Tran 

et al. [74] to apply a regular mesh to trabecular bone tissue. Elements that are within the voids 

can be modeled with small stiffness values in comparison to elements within the solid 

component of the tissue. XFEM was then used to simulate the boundaries between the different 

phases without disrupting the mesh[74]. 

There are two approaches for modeling material properties of bone tissue that have so far been 

reported in the literature. In some studies, both cortical and cancellous tissues are assumed to 

be quasi-brittle materials with the same properties at the micro level [142-144]. However, in 

most research, only the cortical bone is considered to be quasi-brittle, and the cancellous tissue 
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is assumed to be a ductile material [136, 143-147]. In this thesis, the suitability of both models 

in an XFEM model setting to predict the reported experimental behavior of cancellous bone is 

compared. 

One of the objectives of our research is to develop a 2D computational model using the built-

in XFEM technique in ABAQUS that is capable of predicting the fracture behavior of trabecular 

tissue. In order to do so, the experimental results of a three-point bending test obtained by Ridha 

et al. [148] are used to create a computational model capable of predicting the fracture of one 

trabecula. Ridha et al. [148] conducted three point bending tests on ten single trabeculae which 

were excised from bovine proximal cancellous bone. The authors employed a custom-made 

three point bending device in which the two end points were constrained in all directions while 

a vertical displacement was applied to the specimen at the middle [145, 149]. The resulting 

load-displacement graph for one trabecula is shown in Fig.2.9 [148]. Using trial and error, the 

experimental load-displacement graph of Fig.2.9 is used to calibrate the material properties of 

the trabecula for two material models with brittle and ductile behaviors. The predicted material 

characteristics of the trabecula are then utilized to predict the strength of the cancellous bone 

tissue of the forearm along three anatomical axes. 

 
Figure 2.9. Load-displacement graph for a trabecula from three-point bending test [148] 

Modeling the large volume of cancellous tissue porosity in FE modeling of bone requires large 

computational resources which renders such models impractical. Alternatively, a macro-scale 
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model can be developed in which traditional continuum elements are used to model the 

trabecular tissue as a continuum without modeling the individual trabeculae provided they 

produce a behavior similar to that observed in the micro-scale models. There are several studies 

[60-69] which implemented various constitutive models to simulate micro-scale bone in a 

macro-scale. In some of these studies [60, 65, 66], the failure was not considered as part of the 

constitutive model and in the other studies [61, 62] damage mechanics was utilized to simulate 

post yield behavior of the micro-scale bone. In the majority of the developed constitutive 

models, only one of the anatomical directions [60-62, 67] is considered. In addition, the 

behavior of bone under compression [60-62] is considered. Therefore, another objective of our 

work is to identify and implement a comprehensive macro-scale model that is able to consider 

the behavior in the different anatomical directions and in both compression and tension.  

2.5 Cortical bone 

As explained earlier, XFEM has been considered a valuable analytical method in biomechanics 

because of its potential to predict fractures in bones. Numerous researchers [40-52, 56-58, 148, 

150, 151] have employed XFEM analysis to model fracture mechanisms in cortical bones on 

the microscopic and macroscopic scales. The fracture modeling of cortical bone was conducted 

by researchers for different purposes. In some studies [41, 43, 44, 46-49, 51, 52, 56-58, 150, 

151], the fracture mechanism has been developed to investigate the mechanical characteristics 

of cortical bones. On the other hand, other studies [40, 45] have utilized the XFEM analysis as 

an application to model the damage of cortical bones in the process of screw pull-out. In some 

of materials with the specific behaviors like bone tissues, the failure initiation and propagation 

model are out of the built-in models in ABAQUS software. In these cases, a user subroutine 

called UDMGINI can be utilized for reaching specific crack initiation criteria out of the built-

in models [59]. These studies [40, 51] used user-defined subroutine UDMGINI to define failure 

criteria of cortical bone. Since, in this study [40] the failure criteria has been developed in 

macro-scale level, it has been selected to be re-implemented in this thesis. 

The user-defined subroutine UDMGINI of this study [40] has been re-implemented to be 

utilized as cortical tissue of pelvic bone in fracture modeling. There are four failure criterion 

equations which are indicated in equations 2.4-2.7 [40]. Once the value of any equation reaches 
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to 1, fracture is initiated for that criterion. Failure in X, Y and Z directions are determined by 

equations 2.4-2.6 respectively [40]. In the equation 2.7, when the maximum principle stress 

reaches to the effective strength, the fracture initiates and propagates to the normal direction of 

the maximum principal direction [40]. The failure criteria in X and Y directions (equations 2.1 

& 2.2 respectively) have been defined in tension and compression, hence six failure parameters 

are indicated in Table 2.1 [40]. 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 1: √(
𝜎11

𝜎𝑙𝑥
)2 + (

𝜎12

𝜎𝑙𝑥𝜏
)2 + (

𝜎13

𝜎𝑙𝑥𝜏
)2 = 1 (2.4) 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 2: √(
𝜎22

𝜎𝑙𝑦
)2 + (

𝜎12

𝜎𝑙𝑦𝜏
)2 + (

𝜎23

𝜎𝑙𝑦𝜏
)2 = 1 (2.5) 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 3: √(
𝜎33

𝜎𝑙𝑧
)2 + (

𝜎13

𝜎𝑙𝑧𝜏
)2 + (

𝜎23

𝜎𝑙𝑧𝜏
)2 = 1 (2.6) 

Failure 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 4: 
𝜎𝑝

√σlx
2cos2θ + σly

2sin2θ

= 1 
(2,7) 

Where 𝜎𝑙𝑥 and 𝜎𝑙𝑥𝜏 are the axial and shear strengths in X direction respectively, 𝜎𝑙𝑦 and 𝜎𝑙𝑦𝜏 

are the axial and shear strengths in Y direction respectively and 𝜎𝑙𝑧 and 𝜎𝑙𝑧𝜏 are the axial and 

shear strengths in Z direction respectively. 𝜎𝑝 is the maximum principal stress and 

𝜎11, 𝜎22 𝑎𝑛𝑑 𝜎33 are orthogonal normal stresses and 𝜎12, 𝜎23 𝑎𝑛𝑑 𝜎13 are orthogonal shear 

stresses [40]. 
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Table 2.1. Elasticity, strengths and damage evolution parameters of cortical bone [40] 

Mechanical 

properties 

initiation criteria failure strengths 

(MPa) 

𝐸11MPa 4500 𝜎𝑙𝑥(tensile) 150 

𝐸22MPa 2200 𝜎𝑙𝑦 = 𝜎𝑙𝑧(tensile) 65 

𝐸33MPa 2200 𝜎𝑙𝑥(Compression) 280 

𝐺12MPa 1000 𝜎𝑙𝑦 = σlz(Compression) 213 

G23MPa 846 σlxτ 84 

G13MPa 1000 σlyτ = σlzτ 132 

ν23 0.3 Evolution criteria 

(J m2)⁄  

 

  Failure criteria 1 800 

  All other failure criteria 300 

 

2.6 Design of Experiments (DoE) in biomechanics 

Geometrical configuration and material selection of reconstruction plates and lag screws play a 

significant role in generating the biomechanical performances such as reliable internal fixation 

and reduction of stress shielding and implant loosening [31-36, 152]. Screw configurations such 

as the number of screws, their placement in the locking plates, the length and diameter of screws 

were investigated in [34]. The shape, thickness and width of the locking plates are the 

parameters of fixation plate which were optimized in [32, 33]. The optimal material selection 

and implant design such as using porous structure in the implants have been investigated in [31, 

152] for reduction of stress shielding and acceleration of fracture healing. This study [153], 

utilized the combination of FE model with Taguchi method and probabilistic approach to 

identify the main input variables and then only modeled the effective variables to determine 

their effects. They demonstrated the combination of these methods can minimize the 

computational resources without sacrificing model accuracy. These studies [31-36] investigated 

and optimized the fixation plate-screws parameters using a combination of DoE and FE 

analysis. In this study [35] a combination of DoE, FEA and Taguchi method has been utilized 

to design and optimize a composite fixation plate for a damaged tibia. As previously mentioned, 
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in this study [4] several fixation systems of T-shaped fracture of pelvic bone have been 

evaluated and the optimized fixation system (including the optimized number of implants and 

screws and their placement in the fixation system) for the treatment of an injured bone has been 

defined. To the best of our knowledge, there is no study to have optimized the characteristics 

of fixation implant related to a damaged pelvic bone. 
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Chapter 3 : Prediction of Failure in Cancellous Bone using XFEM  

 

3.1 Abstract 

Objective: Develop XFEM models of cancellous bone specimens that are capable of accurately 

predicting the onset and propagation of cracks under mechanical loading. 

Methods: Previously published three-point bending test results of a single trabecula were 

replicated using two different XFEM approaches (elastic-plastic-fracture; EPF and elastic-

fracture; EF) that considered different configurations of the elasto-plastic properties of bone 

from which the best approach to fit the experimental data was identified. The behavior of a 

single trabecula was then used in 2D XFEM models to quantify the strength of trabecular tissue 

of the forearm along three perpendicular anatomical axes. 

Results: The EPF model better represented the experimental data in the model of a single 

trabecula. Considering the 2D trabecular specimens, the EF model predicted higher strength 

than the EPF model and there was no difference in stiffness between the two models. In general, 

the specimens exhibited higher failure strain and more ductile behavior in compression than in 

tension. Additionally, strength and stiffness were found to be higher in tension than 

compression on average. 

Conclusion: With proper parameters, XFEM is capable of simulating the ductile behavior of 

cancellous bone. The models are able to quantify the tensile strength of trabecular tissue in the 

various anatomical directions reporting an increased strength in the longitudinal direction of 

forearm cancellous bone tissue. XFEM of cancellous bone proves to be a valuable tool to predict 

the mechanical characteristics of cancellous bones as a function of the microstructure. 

3.2 Introduction 

Most bones in the human skeleton are made of cortical and cancellous tissues [55]. The cortical 

bone, also termed compact bone, is the denser and stronger tissue, while the cancellous bone, 
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also termed trabecular bone, is a spongy tissue that is able to distribute the imposed forces to 

the stronger cortical tissue while maintaining a lighter bone structure [55].  

Bone fractures usually occur as a result of high-rate impact loads, or bone diseases such as 

osteoporosis. Damage in a bone appears in the form of microcracks, and the accumulation of 

microcracks leads to bone fracture [154]. While there are some empirical relationships that 

relate the stiffness and strength to the micro-structure, there is still a need to develop models 

that are capable of predicting the mechanical properties as a function of the trabecular structure. 

The Finite Element Method (FEM), by incorporating continuum damage mechanics or fracture 

mechanics, is a very beneficial tool in engineering research to model failure characteristics of 

solid materials. Conventionally, traditional FEM utilizes element deletion techniques and 

continuum damage modeling to model fracture propagation within bulk materials. More 

recently, the extended finite element method (XFEM) employs fracture mechanics to simulate 

fracture propagation in the bulk materials by allowing cracks to propagate through elements 

rather than simple element deletion. 

Researchers have shown that using the element deletion technique of traditional FEM can lead 

to some physical inaccuracy in the results caused by the removal of some elements [70-72]. 

Likewise, the accuracy of solutions in the element deletion technique is more dependent on the 

element size than the element splitting technique of XFEM analysis [70-72]. In XFEM analysis, 

a crack can be modeled independently from the mesh and can be grown arbitrarily and 

dependent on the solution [59]; furthermore, this technique does not require adaptive remeshing 

[59]. In biomechanics, XFEM analysis is becoming a common tool for predicting and modeling 

fracture in different bones on multi-scale levels [3, 37, 54, 58, 73]. 

One of the requirements for implementing an accurate model of bone fracture is considering 

fracture mechanisms in the cortical and cancellous tissues. There are several studies [135-138, 

155, 156] which utilized damage mechanics and element deletion technique to model failure in 

bone tissues. However, as explained earlier, XFEM technique is becoming more common in 

biomechanics field according to its benefits. Numerous researchers [40-50, 52, 56-58, 148] have 

employed XFEM analysis to model fracture mechanisms in cortical bones on the microscopic 
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and macroscopic scales. However, to the best of our knowledge there is only one study [75] 

that modeled microcracking in cancellous bone by XFEM analysis. Hammond et al. [75] 

utilized built-in XFEM models in ABAQUS to demonstrate crack formation in the cancellous 

bone specimen. Also, XFEM has been utilized in an interesting study by Tran et al. [74] to 

apply a regular mesh to trabecular bone tissue. Elements that are within the voids can be 

modeled with small stiffness values in comparison to elements within the solid component of 

the tissue. XFEM was then used to simulate the boundaries between the different phases without 

disrupting the mesh[74]. 

There are two approaches for modeling material properties of bone tissue that have so far been 

reported in the literature. In some studies, both cortical and cancellous tissues are assumed to 

be quasi-brittle materials with the same properties at the micro level [142-144]. However, in 

most research, only the cortical bone is considered to be quasi-brittle, and the cancellous tissue 

is assumed to be a ductile material [136, 143-147]. In this paper, the suitability of both models 

in an XFEM model setting to predict the reported experimental behavior of cancellous bone is 

compared. 

The objective of our study is to develop a 2D computational model using the built-in XFEM 

technique in ABAQUS that is capable of predicting the fracture behavior of trabecular tissue. 

In order to do so, the experimental results of a three-point bending test obtained by Ridha et al. 

[148] are used to create a computational model capable of predicting the fracture of one 

trabecula. Using trial and error, the experimental load-displacement graph in [148] is used to 

calibrate the material properties of the trabecula for two material models with brittle and ductile 

behaviors. The predicted material characteristics of the trabecula are then utilized to predict the 

strength of the cancellous bone tissue of the forearm along three anatomical axes. 

3.3 Methods 

3.3.1 Comparison with Experimental Results 

Ridha et al. [148] conducted three point bending tests on ten single trabeculae which were 

excised from bovine proximal cancellous bone. The details of their work has been published 
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and will be summarized here for completion. The average segment length and the average 

diameter were reported to be 2.52 mm and 0.56 mm, respectively. The authors employed a 

custom-made three point bending device in which the two end points were constrained in all 

directions while a vertical displacement of 600μm was applied to the specimen at the middle 

[145, 149]. The resulting load-displacement graph for one trabecula is shown in Fig.3.1 [148].  

 
Figure 3.1. Experimental Load-displacement graph for a single trabecula in a three point bending test [148]. Red 

Diamonds represent points on the graph used for optimization of material properties.  

3.3.2 XFEM analysis of a single trabecula 

Based on the description in [148] the tested trabecular segment had a length of 2.5mm and a 

variable thickness shown in Fig.3.2. A screenshot of trabecula’s geometry from [148] was 

imported and redrawn in Solidworks. The reported overall length of 2.5mm [148] was used to 

scale the picture to the appropriate dimensions . All the simulations were solved as 2D plane-

stress problems with an out-of-plane thickness of 480μm which was chosen based on the 

average thickness of the trabecula in Fig.3.2. A 600μm displacement was applied vertically (Y 

direction in Fig.3.2) to the two nodes surrounding the middle point. The two nodes surrounding 

the two support points are fully constrained in all directions (Fig.3.2). To avoid infinite stresses 

in the model, two nodes were selected to define displacement in the middle and two nodes were 

constrained for each individual support.  
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Figure 3.2. Geometry of one single trabecula and boundary conditions reimplemented in ABAQUS [148] 

The XFEM framework built-into the general purpose finite element analysis software 

ABAQUS/Standard was utilized [59]. All simulations were conducted based on static 

equilibrium. The XFEM framework merely supports first-order 2D and 3D stress/displacement 

solid continuum elements and second-order stress/displacement tetrahedron elements [59]. 

Thus, CPS4 (4-node bilinear plane stress quadrilateral) elements were selected in all 

simulations. An initial mesh sensitivity study revealed that the obtained load-displacement 

curve (load at constrained supports and displacement at the nodes surrounding the middle point) 

for an average mesh size of 0.02mm differed from that obtained with the mesh size of 0.015mm 

by less than 2%. We opted to use the finer mesh of 0.015mm for the analysis of the results. The 

whole trabecula section is defined as the enrichment zone, which allows XFEM to initiate and 

propagate a crack anywhere within this region. Rather than defining the location of the initial 

crack, the XFEM framework allows the prediction of the crack initiation location as the load is 

applied based on the defined damage parameters. This option was utilized in this model. 

In order to find the best set of material properties that are capable of replicating the experiments, 

two different sets of material properties for the trabecular bone tissue were chosen. The first set 

was termed elastic-plastic-fracture (EPF) in which the bone was assumed to behave elastically 

up to a limit followed by a plastic behavior, followed by fracture. The second set was termed 

elastic-fracture (EF) where the bone was assumed to behave elastically up to fracture [142-144]. 

For both material sets, the initial elastic behavior was described by an isotropic material model 

with Young’s modulus and Poisson’s ratio. Poisson’s ratio was taken as 0.3 according to 

previous studies [147-149, 157]. The value of Young’s modulus was varied until the best fit to 

the elastic portion of the experimental load-displacement curves was obtained numerically. The 

values of Young’s modulus and Poisson’s ratio were then fixed in further analyses.  
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In the EPF model, von-Mises plasticity with a constant slope for the plastic portion was utilized. 

An initial yield strain 𝜀𝑦 and plastic slope 𝐸𝑝 were considered and varied to achieve the best fit 

between the load-displacement graphs of the experiments and the model. The related yield 

stress 𝜎𝑦 was obtained by multiplying the yield strain by the Young’s modulus. In the first 

iteration of the optimization procedure 𝜀𝑦 was taken as 0.6% according to [136, 148] while 𝐸𝑝 

was taken as 5% of the elastic portion slope according to [136]. After each simulation the red 

diamond points of Fig.3.1 were compared to the corresponding points obtained using the EPF 

model. The loads corresponding to the displacement of the marked points in Fig.3.1 were 

obtained from the model using linear interpolation. The objective function minimized to find 

the best set of parameters was:  

𝑆 = ∑(𝑦(𝑥𝑖) − 𝑦𝑖)
2,

𝑛

𝑖=1

 
(3.1) 

where 𝑆 is the sum of the squares of the errors, 𝑦(𝑥𝑖) is the load obtained from the EPF model 

corresponding to displacement 𝑥𝑖 and 𝑦𝑖 is the value of the experimental load.  

Based on previous studies [136, 137, 148, 158-162], the maximum principal strain criterion was 

used for the initiation of cracks in the XFEM procedure for both the EPF and the EF models. 

In the EPF model, the maximum principal strain was varied to obtain a failure load identical to 

the point where the load drops in Fig.3.1. Since the load-displacement shows a very steep 

decline after the maximum load is attained, a relatively small value was chosen for the fracture 

energy in the EPF model. 

For the EF model, the maximum principal strain and the fracture energy were varied to 

minimize the error between the experimental and numerical load-displacement graphs as 

described previously.  

3.3.3 XFEM analysis on a segment of cancellous bone 

After finding the material properties of a single trabeculae, the geometry of trabecular tissue 

was modeled to find the macroscopic behavior of the tissue. The Gross Anatomy Laboratory at 
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the University of Calgary provided micro-CT scan data of cancellous bone of human cadaver 

forearms [163]. ImageJ software was utilized to convert the µ-CT scan data into 3D STL 

geometry. Afterward, the data was imported to the Geomagic software to prepare a cropped 

cubic specimen with side lengths of 2.5mm. The 3D geometry of the cadaver radius and the 

cropped specimen are illustrated in Fig.3.3. The specimen was positioned such that the X and 

Y directions represent the anatomical transverse directions while the Z direction is the 

anatomical longitudinal direction (Fig.3.3). The material properties obtained from the single 

trabecula model were then used for the trabeculae within the cancellous bone model. In 

particular, elastic and plastic behaviors and damage evolution parameters including Max. 

principal strain and fracture energy were assigned to the cancellous bone specimen. 

All simulations in the present study were conducted assuming a 2D plane-stress state. Four 

different slices in the XY-plane and four different slices in the ZY-plane were modeled 

(Fig.3.4), with each slice having a thickness of 625μm.  The middle section of each slice was 

constructed from the 3D geometry and imported to the ABAQUS software [164-166]. Isolated 

parts of the cross-section were removed from the analysis.  

The areas of the trabecular components of samples XY1, XY2, XY3, and XY4 were equal to 

1.91, 1.66, 1.82 and 1.77 mm2 respectively. Similarly, for the samples ZY1, ZY2, ZY3, and 

ZY4 the areas of the solid portion were equal to 1.95, 1.68, 1.22, and 1.85 mm2 respectively. 

The solid fraction was calculated by dividing the area of the trabecular components by the area 

of square from which the specimen as extracted (2.5x2.5=6.25 mm2). The solid fractions of 

samples XY1, XY2, XY3, and XY4 were equal to 0.31, 0.27, 0.29, and 0.28, respectively and 

for the samples ZY1, ZY2, ZY3, and ZY4 were equal to 0.31, 0.27, 0.2, and 0.3, respectively. 

In all simulations, one side of the specimen in a particular direction was fully constrained and 

a displacement was applied on the other side of the specimen to the point where the load drops 

in load-displacement graph. The transverse (XY) specimens were loaded separately in the X 

and Y directions to determine the mechanical behavior in both transverse (medial-lateral and 

anterior-posterior) directions while the ZY specimens were loaded in the Z-direction to 

determine the longitudinal behavior in the proximal-distal direction (Fig.3.3). Each specimen 

was loaded in both tension and compression. 
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The element type and the other model parameters were set up using the same approach as 

explained in the previous section for the single trabecula. The same mesh sensitivity study was 

conducted for the 2D XFEM models of cancellous specimen. The load-displacement graphs 

revealed that the obtained load-displacement curve for an average mesh size of 0.015mm 

differed from that obtained with the mesh size of 0.01mm by less than 2%. We opted for 

reporting the results for the finer mesh. To develop a realistic model, several enrichment zones 

were defined for each 2D cancellous bone cross-section to allow for simultaneous initiation and 

propagation of multiple cracks. To develop a realistic model, 10 enrichment zones were defined 

for the cancellous bone specimen to allow for simultaneous initiation and propagation of 

multiple cracks. This was considered appropriate as the maximum number of simultaneous 

cracks that was observed in the models was 6. Selecting elements in such a complex geometry 

like trabecular tissue is time-consuming. In order to do so, all elements of the bone specimen 

were selected as one element set and the input file of the model was written. Afterward, the 

input file was edited, and the element set was split to ten element sets with an almost equal 

number of elements. Each element set was then defined as one enrichment zone. An initial crack 

location was not defined; the XFEM framework predicted the crack initiation location based on 

the developed stresses and strains and the defined damage parameters. The estimated material 

properties of the two material models (EPF, EF) for a trabecula segment were assigned to the 

cancellous bone tissue. A piece of input file of failure modeling (EPF model) in Cancellous 

Bone using XFEM is available in Appendix A. 

 
Figure 3.3. 3D geometry of radius used to create the geometry and mesh of the cancellous bone specimen 
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XY1 

 

XY2 

 

XY3 

 

XY4 

 

ZY1 

 

ZY2 

 

ZY3 

 

ZY4 

Figure 3.4. 2D sections of cancellous bone specimen in XY and ZY planes (All sections have the same size) 

The load-displacement behavior for each material model was extracted for each cancellous 

specimen slice and the stress-strain curves were determined. The loads were calculated by 

summing nodal reaction forces on the fully constrained side of specimen. The bulk stresses 

were calculated by dividing the loads by the specimen cross-sectional area (2.5 mm × 625𝜇m 

= 1.56 mm2). The strains were calculated by dividing the displacement in a specific direction 

by the initial length of the specimen (2.5 mm). 

The tensile and compressive strength for each material model in each direction was obtained as 

well as the averages along all axes. To determine the strength of the specimen in each direction 

for both material models, the maximum forces in each direction (for all section planes) were 

added together and divided by the section area. Additionally, the stiffness was determined for 

each condition from initial slope of the stress-strain curve. The strength and stiffness values for 

each material model were compared with the solid fraction in each specimen slice to determine 

if a correlation exists between these parameters. 
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3.4 Results 

3.4.1 XFEM analysis of a single trabecula 

For both EPF and EF models, the value of Young’s modulus was estimated to be 4160MPa. 

The initial slope of both the EPF and the EF models almost exactly matched the initial 

experimental slope of the load-displacement graph (Fig.3.5). 

 
Figure 3.5. A comparison of load-displacement graphs of two material models with experiment graph 

For the EPF model, the estimated 𝜎𝑦, 𝜀𝑦, and 𝐸𝑝 were computed as 166.5MPa, 0.04 and 

17.5MPa, respectively. The value of the maximum principal strain that causes fracture was 

estimated as 0.38. The fracture energy in the EPF model was taken as 10-2 mJ/mm2 which is 

small value and enabled the model to simulate the sudden drop in the load beyond the ultimate 

load (Fig.3.5). The predicted ultimate plastic strain and stress for the material were calculated 

to be 0.34 and 172.5MPa, respectively. 

For the EF model, the maximum principal strain and the fracture energy were varied to 

minimize the error between the experimental and numerical load-displacement graphs. The 

estimated maximum principal strain and the fracture energy to produce the best fit where found 

to be 0.03 and 9.2 mJ/mm2, respectively.  
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The estimated material properties of both material models are shown in Table 3.1. A 

comparison between the load-displacement graphs of EPF and EF models and the experimental 

graph is illustrated in Fig.3.5. Also, the fractures in the trabecula for each material model are 

illustrated in Fig.3.6. As mentioned earlier, the errors of EPF and EF graphs compared to the 

experimental graph were obtained based on equation 3.1 and for the ten red diamond points that 

were marked in Fig.3.1. The final values for the objective function obtained for the EPF and 

EF models were 0.17 and 3.46, respectively. As can be observed in Fig.3.5, the combination of 

the ductile plasticity model and brittle XFEM model (EPF) was able to replicate the 

experimental graph much more smoothly than the EF model whose only source of ductility was 

the fracture energy parameter require in the XFEM model.  

Table 3.1. Estimated material properties of two material models using trial and error  

Material Behaviors EPF EF 

Damage 

Evolution 

(XFEM) 

parameters 

Max principal strain 0.38 0.03 

Fracture Energy 

(mJ/mm2) 

0.01 9.20 

Elastic Young’s Modulus 

(MPa) 

4160* 4160* 

Poisson’s Ratio 0.3* 0.3* 

Plastic Yield Stress (MPa) 166.5** - 

Ultimate stress (MPa) 172.5 - 

Yield Strain 0.04 - 

Ultimate Plastic 

Strain*** 

0.34 - 

*These parameters were fixed based on the initial slope of the model. 

**Obtained by multiplying the yield strain by the Young’s modulus 

***Plastic strain value corresponding to the ultimate stress 

 

XFEM-EPF model 

 

XFEM-EF model 

Figure 3.6. Crack propagation in trabecula using the two different material models 
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3.4.2 Results of XFEM analysis of cancellous tissue 

The stress-strain curves in both tension and compression for each of the X, Y, and Z-directions 

are shown in Figs.3.7-3.9, respectively. Each figure contains both the EPF behavior and the EF 

behavior and each subfigure shows the results for the four different specimen slices. It can be 

seen from the figures that the specimens tend to exhibit brittle failure under tensile loading. 

This behavior is consistent in the three anatomical directions and in both material models. 

Under tension, the stress-strain curves are linear until failure where there is a sudden drop in 

the stress. Conversely, the under compressive loading the specimens tend to exhibit a more 

ductile failure. In these cases, there is a clear plateau in the stress-strain curve before failure and 

again this is consistent across the different directions and across the two material models. It can 

also be noted from the figures that the failure strain is higher in compression than in tension in 

the majority of the cases. 

Compression 
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Tension 

 
Figure 3.7. Stress-strain curves in the X-direction for compression and tension for both the EPF and EF models 
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Tension 

 
Figure 3.8. Stress-strain curves in the Y-direction for compression and tension for both the EPF and EF models 
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Tension 

 
Figure 3.9. Stress-strain curves in the Z-direction for compression and tension for both the EPF and EF models 

The tensile and compressive strength and stiffness values are shown for each material model in 

the X, Y, and Z-directions in Tables 3.2-3.4. In each direction, the strength tends to be higher 

in tension than in compression. Additionally, the strength determined from the EF model tends 

to be higher than that obtained from the EPF model with the exception of the tensile strength in 

the Z (longitudinal) direction. For both tension and compression and both material models, the 

strength in the X (medial-lateral) and Y (anterior-posterior) directions tends to be relatively 

close with the Y-direction values being slightly higher. The strength in the Z-direction 

(proximal-distal) tends to be much higher with the exception of specimen ZY3 which has the 

lowest solid surface fraction. 

On average, the stiffness tends to be higher in tension than in compression for each direction 

and each material model. In contrast to the strength, there appears to be no difference in stiffness 

between the two material models. There appears to be a large difference in the stiffness values 

between the different directions with the average stiffness increasing from the X-direction, to 

the Y-direction, to the Z-direction. It can be noted from tables that there is a high variability in 

the stiffness across the different specimens (high standard deviation values) and there is a large 

variability across the different directions with a range of 39.2 – 188.1 MPa in compression and 
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a range of 50.8 – 253.3 MPa in tension. This may indicate that the full 3D network of trabeculae 

needs to be considered to provide a more accurate representation of the specimen stiffness. 

Table 3.2. X-Direction Compression and Tension Strength and Stiffness for the EPF and EF Models 

Compression 
 X direction Strength (MPa) X direction Stiffness (MPa) 
 EPF EF EPF EF 

Section XY1 0.89 1.15 23.70 23.80 

Section XY2 2.15 3.00 45.80 51.10 

Section XY3 1.93 2.57 73.40 70.10 

Section XY4 1.05 1.33 14.10 13.80 

Average (SD) 1.51 (0.63) 2.01 (0.91) 39.2 (26.4) 39.7 (25.7) 

Tension 

 X direction Strength (MPa) X direction Stiffness (MPa) 

 EPF EF EPF EF 

Section XY1 2.89 3.43 31.90 32.10 

Section XY2 3.44 4.12 65.60 65.90 

Section XY3 3.69 4.82 90.10 88.70 

Section XY4 2.20 3.29 15.60 16.70 

Average (SD) 3.06 (0.66) 3.92 (0.70) 50.8 (33.5) 50.9 (32.5) 

 

Table 3.3. Y-Direction Compression and Tension Strength and Stiffness for the EPF and EF Models 

Compression 
 Y direction Strength (MPa) Y direction Stiffness (MPa) 
 EPF EF EPF EF 

Section XY1 4.17 6.41 172.60 168.80 

Section XY2 1.99 2.49 61.70 62.20 

Section XY3 5.41 8.98 140.90 139.10 

Section XY4 3.03 4.53 118.30 97.40 

Average (SD) 3.65 (1.47) 5.60 (2.76) 123.4 (46.8) 116.9 (46.8) 

Tension 

 Y direction Strength (MPa) Y direction Stiffness (MPa) 

 EPF EF EPF EF 

Section XY1 5.72 5.02 208.73 207.95 

Section XY2 3.37 5.47 79.10 74.75 

Section XY3 6.12 8.38 157.90 156.10 

Section XY4 4.79 4.51 147.70 147.60 

Average (SD) 5.00 (1.22) 5.85 (1.73) 148.4 (53.3) 146.6 (54.8) 
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Table 3.4. Z-Direction Compression and Tension Strength and Stiffness for the EPF and EF Models 

Compression 
 Z direction Strength (MPa) Z direction Stiffness (MPa) 
 EPF EF EPF EF 

Section ZY1 8.25 11.67 312.21 309.28 

Section ZY2 7.78 11.54 247.81 251.89 

Section ZY3 1.77 2.32 46.67 47.71 

Section ZY4 3.17 3.86 145.90 141.30 

Average (SD) 5.24 (3.26) 7.35 (4.96) 188.1 (116.6) 187.5 (116.4) 

Tension 

 Z direction Strength (MPa) Z direction Stiffness (MPa) 

 EPF EF EPF EF 

Section ZY1 15.55 14.25 399.60 392.70 

Section ZY2 8.56 7.77 269.10 266.30 

Section ZY3 3.31 4.94 58.30 58.90 

Section ZY4 8.82 7.83 214.10 211.00 

Average (SD) 9.06 (5.02) 8.70 (3.94) 235.3 (141.3) 232.2 (138.3) 

 

Comparing the solid surface fraction values (reported in the Methods) with the strength and 

stiffness reported in Tables 3.2-3.4, there appears to be no direction correlation between these 

parameters. However, the solid surface fraction values for all sections except ZY3 are nearly 

the same with a range of only 0.04 (0.27 – 0.31). It can be noted that section ZY3 has a lower 

solid surface fraction (0.20) and was also found to have a lower strength and stiffness compared 

to the other Z-direction values (Table 3.4). Specimens with a larger variation in the 

microstructure allowing for a larger range of surface fraction values should be analyzed to 

determine if correlations exist with either strength or stiffness. 

Fig.3.10 shows and example stress distribution in the XY4 section using the EPF model with 

tension applied in the X (Fig.3.10a) and Y (Fig.3.10b) directions. It can be seen that a major 

part of the stress is distributed only in some regions of the cross-section as opposed to across 

the entire section. This suggests that alignment of the trabecula contribute to the strength in 

each direction in addition to the solid surface fraction. 
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(a) 

 

(b) 

Figure 3.10. (a) Von-Mises stress in a model loaded in the X direction (XY4 section, EPF model) (b) Von-Mises 

stresses in a model loaded in the Y direction (XY4 section and EPF model) (stresses in MPa) 

3.5 Discussion 

In this study, a single trabecula was modeled under bending using XFEM to determine material 

properties through calibration with previously published experimental work. The estimate 

material properties were then employed in two material models, namely an elastic-plastic-

fracture (EPF) model and an elastic-fracture (EF) model in XFEM to predict the behavior of 

2D trabecular specimens. 

From the XFEM model of a single trabecula, the Young’s modulus was determined to be 4.16 

GPa using both the EPF and EF models. The stiffness values reported in literature for a single 

trabecula have a large variability and may depend on various factors such as site and orientation 

[167, 168]. The results obtained here are consistent with the lower spectrum of the range of 

values reported by Yamada et al. [169] for a single trabecula in bovine cancellous bone (4.5 – 

23.6 GPa) and within the range reported by Szabo et al. [170] (1.13 - 16.46 GPa). The maximum 

tensile strain at failure was determined to be 0.38 (Table 3.1) which lies within the range 

reported in literature (0.1422 – 0.6165)[170]. The Yield stress found here (166.5 MPa; Table 

3.1) is within the range of values reported by [171] for human trabecula under bending from 

older donors (157.1 ± 21.8 MPa), while the ultimate stress found here (172.5 MPa) is lower 

than that reported by [171] (252.29 ± 39.13) for the same donors. 
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The EPF model was able to replicate the experimental behavior much better than the EF model 

(Fig.3.5). The reason behind the success of the EPF model can be explained by investigating 

the force-displacement curves. In particular, the load displacement curve is elastic followed by 

a “ductile” or “yielding region”, followed by a sudden drop. This can be achieved better by 

utilizing a plasticity model followed by XFEM with low fracture energy. The EF model 

however, has a ductile behavior but is not capable of replicating the yielding region shown 

experimentally.  

Although EPF model is better suited to replicate the obtained experimental behavior, 

simulations run using this model it can exhibit convergence difficulties due to the associated 

strain-softening, stiffness degradation, and unstable cracks propagation [37, 59, 172-174]. The 

structural response will be nonlinear and non-smooth by fracture [59]. Furthermore, the ductile 

or quasi-brittle materials with nonlinear behaviors make the converging conditions worse 

compared to brittle materials with linear behaviors. In the present study, simulations run using 

the EF model exhibit faster convergence due to assumption of brittle behavior of cancellous 

bone tissue. In simulations with larger samples, in 3D XFEM or with finer mesh the 

convergence of EPF model might be more difficult and EF model can be an appropriate 

replacement for ductile material models. From the results of both material models, it can be 

concluded that a ductile model is better suited to model a single trabecula rather than quasi-

brittle. In [142-144], it is concluded that cancellous tissue is quasi-brittle material with the same 

mechanical properties of cortical tissue at the micro level. However, in most of studies [136, 

143-147], it is considered and shown that cancellous tissue is a ductile material. Based on our 

results, we agree with the latter conclusion.  

There are two approaches for modeling material properties of bone tissue that have so far been 

reported in the literature. In some studies, both cortical and cancellous tissues are assumed to 

be quasi-brittle materials with the same properties at the micro level [142-144]. However, in 

most research, only the cortical bone is considered to be quasi-brittle, and the cancellous tissue 

is assumed to be a ductile material [136, 143-147]. In this paper, the results support the 

contention that cancellous bone in micro-scale shows ductile behaviors rather than quasi-brittle 

behavior. We found these papers [175, 176] describing the trabecular bone ductility. However, 
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to the best of our knowledge, we have not found any references that relate the ductile behavior 

to the material composition of the trabecular bone. 

The single trabecular model was then employed to model the behavior of a trabecular network 

in 2 dimensions. The compression and tension behavior of the specimens were examined in 

three anatomical axes. In general, it was observed that the failure strains tend to be higher in 

compression than in tension (Figs.3.7-3.9), which is consistent with behavior reported by [161]. 

Additionally, the stress-strain curves in compression showed a more ductile failure of the 

structure compared to the tensile behavior. This is consistent with the result reported by [177] 

where it was noted that there was a more abrupt decline in the stress under tension than 

compression.  

Røhl et al. [177] reported no significant difference in stiffness values under tension and 

compression with mean Young’s modulus values of 483 MPa and 485 MPa, respectively. The 

stiffness values determined here in the three anatomical directions were much lower than those 

reported in literature (Tables 3.2-3.4) and varied in both direction as well as tensile/compressive 

behavior. This suggests that the full 3D network should be considered to more accurately 

capture the stiffness of cancellous bone. It is interesting to note that there was no difference in 

the stiffness values predicted between the two material models considered. 

The ultimate strength of cancellous bone reported by  Røhl et al. [177] was 2.22 ± 1.42 MPa in 

compression and 2.54 ± 1.18 MPa in tension. These are close to the values determined here for 

strength in the X-direction (1.51 – 3.92 MPa; Table 3.2) and on the same order of magnitude as 

values determined in the Y and Z-directions (3.65 – 5.85 MPa; Table 3.3 and 5.24 – 9.06 MPa; 

Table 3.4). In this study, we estimated the strength to be higher in tension than in compression, 

which is consistent with Røhl et al. [177]; however, this trend is opposite to the behavior 

reported by Keaveny et al. [161]. The predicted forces obtained using the EF model were almost 

always greater than those predicted using the EPF model. This difference can be related to 

plastic behavior of EPF model compared to EF model with only elastic behavior. 

According to previous studies [147, 157, 178-181], mechanical characteristics including elastic 

modulus and ultimate strength are different in various directions based on the volume fraction 
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or density of specimens, fabric orientation of the bone and anatomical locations of the 

specimens. The tensile test of seven cancellous bone specimens are conducted in [182] and the 

reported maximum, minimum and average tensile strength are 24.62MPa, 10.28MPa and 

18.56MPa, respectively. A comparison of reported strength and the strength in table 4.4 

demonstrates that the strength values obtained in this study are in the good agreement with 

those reported in [182]. Also, in [147, 157] it is experimentally shown that the strength in the 

longitudinal direction (Z direction in our study) is 159% greater than transverse directions (X 

and Y directions) which is what we observed in our study. This study [178], proved the same 

hypothesis, greater strength in longitudinal direction compared to transverse direction, based 

on fabric orientation of cancellous bone tissue in longitudinal and transverse directions.  

In the current study, our aim was to find the best model that would fit the experimental behavior 

of cancellous bone. This study presents the first 2D XFEM model to predict strength and 

stiffness of cancellous bone as a function of the structure. The solid surface fraction in this study 

comprised a narrow range so it was difficult to directly correlate this parameter with the strength 

and stiffness values; however, in the Z-direction it was noted that the specimen with the lowest 

solid surface fraction indeed had the lowest strength and stiffness. This technique presented 

here shows promise to be able to model the behavior of trabecular bone. 

It is important to note that the size of our micro-scale models (2.5cm^3) is smaller than the size 

of specimens in the reported experiments, which often range between 5 and 10 mm [146, 183, 

184]. Also, the results were obtained from one specimen and should be extended to several 

larger specimen from various anatomical locations. To the best of our knowledge and as 

mentioned in the Abaqus documentation, crack branching in one element is not possible. Also, 

crack propagation in an element that already is separated to two elements is not possible. 

However, propagation of multiple cracks simultaneously is possible in Abaqus. Future work 

will implement the technique in 3D and will apply the technique to trabecular structures with 

varying density to correlate tensile and compressive strength and stiffness with density. Finally, 

the results of 2D and 3D XFEM models will be compared together as well as to the results of 

experimental tests conducted in our lab. 
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Chapter 4 : An equivalent constitutive model of cancellous bone 

with fracture prediction 

 

4.1 Abstract 

Objective: To simulate the mechanical and fracture behaviors of cancellous bone in three 

anatomical directions and to develop an equivalent constitutive model.  

Method: Micro-scale XFEM models of a cancellous specimen were developed with mechanical 

behaviors in three anatomical directions. An appropriate ABAQUS macro-scale model 

replicated the behavior observed in the micro-scale models. The parameters were defined based 

on the intermediate bone material properties in the anatomical directions and assigned to an 

equivalent non-porous specimen of the same size. The equivalent model capability was 

analyzed by comparing the micro- and macro- models.  

Results:  The hysteresis graphs of the micro-scale model show that the modulus is the same in 

loading and unloading; similar to the metal plasticity models. The strength and failure strains 

in each anatomical direction are higher in compression than in tension. The micro-scale models 

exhibited an orthotropic behavior. Appropriate parameters of cast iron plasticity model were 

chosen to generate macro-scale models that are capable of replicating the observed micro-scale 

behavior of cancellous bone. 

Conclusion: Cancellous bone is an orthotropic material that can be simulated using a cast iron 

plasticity model. This model is capable of replicating the micro-scale behavior in FE analysis 

simulations without the need for individual trabecula, leading to a reduction in computational 

resources without sacrificing model accuracy. Also, XFEM of cancellous bone compared to 

traditional FEM proves to be a valuable tool to predict and model the fractures in the bone 

specimen. 
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4.2 Introduction 

One of the requirements for implementing an accurate model of bone fracture is considering 

fracture mechanisms in the cortical and cancellous tissues. In a macro-scale model, it is not 

practical to include the porous microstructure of cancellous bone, because of the huge volume 

of details on the micro-scale level of cancellous bones. Several studies [40-50, 52, 56-58, 148] 

have modeled fracture mechanisms in cortical bone at the macro- and micro-scales. However, 

to the best of our knowledge there is only one study [75] that modeled microcracking in 

cancellous bone by FE modeling. In that study, Hammond et al. [75] utilized Extended Finite 

Element Method (XFEM) to demonstrate crack formation in the cancellous bone. 

Modeling the large volume of cancellous tissue porosity in FE modeling of bone requires large 

computational resources which renders such models impractical. Alternatively, a macro-scale 

model can be developed in which traditional continuum elements are used to model the 

trabecular tissue as a continuum without modeling the individual trabeculae provided they 

produce a behavior similar to that observed in the micro-scale models. There are several studies 

[60-69] which implemented various constitutive models to simulate micro-scale bone in a 

macro-scale. In some of these studies [60, 65, 66], the failure was not considered as part of the 

constitutive model and in the other studies [61, 62] damage mechanics was utilized to simulate 

post yield behavior of the micro-scale bone. However, the XFEM technique has some benefits 

compared to traditional damage mechanics [70-72] as it is able to model and predict fractures 

in different bones on multi-scale levels [3, 37, 54, 58, 73]. In the majority of the developed 

constitutive models, only one of the anatomical directions [60-62, 67] is considered. In addition, 

only the behavior of bone under compression [60-62] is considered. The objective of our work 

is to identify and implement a comprehensive macro-scale model that is able to consider the 

behavior in the different anatomical directions and in both compression and tension.  

In this paper, 3D XFEM models of micro-scale cancellous bone were developed in which 

precise material properties of trabeculae were input. These models were used to generate the 

“macro-scale” material behavior along with the hysteresis loops associated with loading and 

unloading in both tension and compression. Finally, a built-in “equivalent” material model was 
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selected based on the obtained material behavior and the hysteresis graphs of cancellous bone 

specimen.  

4.3 Methods 

4.3.1 3D XFEM modeling of trabecular tissue 

The XFEM framework built-into the general purpose finite element analysis software 

ABAQUS/Standard [59] was utilized to develop the 3D model. The Gross Anatomy Laboratory 

at the University of Calgary provided micro-CT scan data of cancellous bone of human cadaver 

forearms. ImageJ software was utilized to convert the µ-CT scan data into 3D STL geometry. 

Afterward, the data was imported into the Geomagic software to prepare a cropped cubic 

specimen with side lengths of 1.75 mm. The 3D geometry of the cadaver radius and the cropped 

specimen are illustrated in Fig.4.1. The specimen was positioned such that the X and Y 

directions represent the anatomical transverse directions, while the Z direction is the anatomical 

longitudinal direction (Fig.4.1). 

 
Figure 4.1. 3D geometry of radius and cancellous bone specimen 

The material properties of cancellous bone and other XFEM parameters were assigned to the 

bone geometry as reported in Table 4.1. The material properties and XFEM parameters were 

obtained from a previous study [185]. The objective of this study [185] was to develop a 2D 

computational model using the built-in XFEM technique in ABAQUS that is capable of 
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predicting the fracture behavior of trabecular tissue. In order to do so, the experimental results 

of a three-point bending test obtained by Ridha et al. [148] were used to create a computational 

model capable of predicting the fracture of one trabecula. Using trial and error, the experimental 

load-displacement graph in [148] was used to calibrate the material properties of the trabecula 

for two material models with brittle and ductile behaviors. The predicted material 

characteristics of the trabecula were then utilized to predict the strength of the cancellous bone 

tissue of the forearm along three anatomical axes. 

Table 4.1. Estimated material properties assigned to the 3D XFEM model [185]  

Material Behaviors 

Damage Evolution 

(XFEM) parameters 

Elastic Plastic 

Max 

principal 

strain 

Fracture 

Energy 

(mJ/mm2) 

Young’s 

Modulus 

(MPa) 

Poisson’s 

Ratio 

Yield 

Stress 

(MPa) 

Ultimate 

stress 

(MPa) 

Yield 

Strain 

Ultimate 

Plastic 

Strain 

0.38 0.01 4160 0.3 166.5 172.5 0.04 0.34 

 

The finite element mesh consisted of 79295 C3D4 (4-node linear tetrahedron) elements with an 

average size of 0.03mm [59]. The chosen mesh size of 0.03m was considered adequate for the 

simulation since the average thickness of the trabecula was 0.1 which resulted in having 3 

elements per thickness; an opposite number of elements to model crack propagation through 

the trabeculae. In addition, an initial mesh sensitivity study showed that the obtained stress-

strain curve for a mesh size of 0.04mm differed from that obtained with the mesh size of 

0.03mm by less than 5%. We opted for the finer mesh of 0.03mm which wasn't too onerous 

computationally. To develop a realistic model, 20 enrichment zones were defined for the 

cancellous bone specimen to allow for simultaneous initiation and propagation of multiple 

cracks. This was considered appropriate as the maximum number of simultaneous cracks that 

was observed in the model was 5. Selecting elements in such a complex geometry like 

trabecular tissue is time-consuming. In order to do so, all elements of the bone specimen were 

selected as one element set and the input file of the model was written. Afterward, the input file 

was edited, and the element set was split to several element sets with an almost equal number 

of elements. Each element set was then defined as one enrichment zone. 
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In all simulations, one side of the specimen in a particular direction was fully constrained and 

a displacement was applied on the other side of the specimen until the load dropped in the load-

displacement graph. The behavior of the specimen was investigated in both tension and 

compression.  

The load-displacement behavior for each direction in tension and compression was extracted 

and the stress-strain curves were determined. The loads were calculated by summing nodal 

reaction forces on the fully constrained side of the specimen. The bulk stresses were calculated 

by dividing the loads by the specimen cross-sectional area (1.75 mm × 1.75 mm = 3.0625 mm2). 

The strains were calculated by dividing the displacement in a specific direction by the initial 

length of the specimen (1.75 mm). 

The initial slope of the stress-strain curves in tension and compression were estimated to obtain 

the value of Young’s modulus in the anatomical directions. The yield point was determined by 

a straight line parallel to the initial slope of the curve but offset by 0.2% from the origin on the 

strain axis. The yield strength and strain were estimated by the projection lines from the yield 

point to the stress and strain axis, respectively. The maximum stress on the stress axis was 

considered as the ultimate strength and the strain of the point at which the stress has a sudden 

drop was considered as the failure strain. The Poisson’s ratio of the bone specimen was defined 

in each individual direction from the ratio of lateral to axial strain in tension and compression. 

4.3.2 Hysteresis model 

The developed 3D XFEM models were modified to extract the hysteresis graphs of the bone 

specimen. All model parameters were set up using the same approach as explained in the 

previous section. The XFEM model of the bone specimen in each anatomical direction was 

loaded cyclically between tension and compression. The applied displacement was reversed at 

various points in the loading process between the yield and failure points. The points were 

selected based on the failure strain in each direction as well as tension and compression. 

Unloading was then performed at one third of, two thirds of, and exactly at the failure strain. 

The unloading in the X direction was applied at strain values of 0.028, 0.040 and 0.055 in 

tension and the strain values of 0.063, 0.126 and 0.189 in compression. The unloading in the Y 
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direction was applied at strain values of 0.043, 0.063 and 0.080 in tension and the strain values 

of 0.050, 0.099 and 0.149 in compression. The unloading in the Z direction was applied at 

strains of 0.046, 0.051 and 0.057 in tension and strains of 0.075, 0.100 and 0.143 in 

compression.  

4.3.3 Equivalent model 

After finding the material properties of micro-scale cancellous specimen, a constitutive model 

with similar mechanical characteristics of the bone was selected from built-in material models 

of ABAQUS software. The intermediate behavior of the three anatomical directions of the bone 

specimen was used to estimate the parameters of the equivalent material model. 

The XFEM framework was utilized to define failure in the equivalent model. The XFEM 

parameters were chosen so that failure in the equivalent model was similar to that in the micro-

scale model. A cube with the same size of bone specimen (1.75mm) with no porosity was used 

for the geometry of the equivalent model (Fig.4.2). The cube was then meshed by C3D8R (8-

node linear brick, reduced integration, hourglass control) elements. The whole cube is defined 

as the enrichment zone, which allows XFEM to initiate and propagate a crack anywhere within 

this region. The micro-scale cancellous specimen and the equivalent (macro-scale) specimen 

with defined boundary conditions and loading in the Y direction are shown in Fig.4.2. 

 
(a) 

 
(b) 

Figure 4.2. Micro-scale cancellous specimen (a) and equivalent model (b) 

The “Max Principal strain” criterion was utilized as the damage initiation criterion in the 

equivalent FE model. In the ABAQUS built-in crack initiation criteria, a compressive strain 
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does not initiate damage in an enriched element [59]. To define crack initiation criteria by 

simultaneous tensile and compressive strain and to use different strain in tension and in 

compression for failure in the equivalent model, a user-defined subroutine UDMGINI was 

implemented and applied to the model. The subroutine code is added in Appendix B. Also, A 

piece of input file of failure modeling in 3D Cancellous Bone using XFEM is available in 

Appendix C. 

The stress-strain graph of the equivalent model in the tensile and compressive directions were 

then extracted and compared to that of the micro-scale model with the intermediate material 

properties of the three anatomical directions. The error between the stress-strain graphs were 

computed using equation 4.1 at discrete points throughout the loading process where linear 

interpolation was used when the exact values were not present.  

𝑆 = ∑(𝑦(𝑥𝑖) − 𝑦𝑖)
2,

𝑛

𝑖=1

 
(4.1) 

where 𝑆 is the sum of the squares of the errors, 𝑦(𝑥𝑖) is the stress obtained from the equivalent 

model graph corresponding to strain 𝑥𝑖 and 𝑦𝑖 is the stress value of the micro-scale bone graph.   

4.4 Results 

In this section, the results are reported in three subsections. First, the results of 3D XFEM model 

of the trabecular tissue are presented, which include (i) stress-strain curves in three anatomical 

directions; (ii) Young’s modulus; and (iii) stresses and strains at yield and failure points. 

Second, the results of hysteresis models including the hysteresis graphs and an interpretation of 

the graphs are reported. Third, the results of equivalent model are explained, which include the 

material model that has been used in the equivalent model, the material properties that have 

been assigned to the model, and finally a comparison of stress-strain curves of equivalent model 

versus micro-scale model. 
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4.4.1 3D XFEM modeling of trabecular tissue 

The stress-strain graphs in the X (medial-lateral), Y (anterior-posterior) and Z (longitudinal) 

directions in tension and compression were extracted and are shown in Fig.4.3. Also, crack 

initiation and the extent of cracking at failure in the micro-scale models in the three loading 

directions are shown in Fig.4.4. It can be observed from the figure that the cracks, not 

surprisingly, initiated at thinner tissue members of the cancellous specimen. Fig.4.4 also shows 

that the cracks initiated in one area, and then spread out over the sample. Initiation of cracks in 

the specimen was not accompanied by a discernible effect on the overall stress-strain curve of 

the specimen (Fig.4.3). However, integration of several cracks and their simultaneous 

propagating caused a gradual decrease in the slope of the stress-strain curve followed by a 

sudden drop which we considered as the failure point (Fig.4.3). 

 
Figure 4.3. Stress-Strain in all anatomical directions in tension and compression 
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(a) 

 
(b) 

X-Tension 

 
(c) 

 
(d) 

X-Compression 

 
(e) 

 
(f) 

Y-Tension 
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(g) 

 
(h) 

Y-Compression 

 
(i) 

 
(j) 

Z-Tension 

 
(k) 

 
(l) 

Z-Compression 

Figure 4.4. Crack formation in cancellous specimen in all axes at two loading stages (a),(c),(e),(i),(k) initial crack 

(b),(d),(f),(h),(j),(l) failure point 
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As it can be seen in Fig.4.3, the initial slope of each curve is the same in tension and 

compression, implying the material has the same stiffness. The estimated stiffness in the X, Y 

and Z directions were computed as 205MPa, 370MPa and 570MPa respectively. The stiffness 

in the Z direction is 178% higher than that in X direction and 54% higher than in Y directions. 

The yield strength and strain were estimated as described previously and are indicated in Table 

4.2. It was observed that the yeild strength and strain were almost the same in tension and 

compression. Also, the same trend of stiffness values can be seen for the yield strength of X, Y 

and Z directions. The yield strength in the Z direction is 228% higher than that in X direction, 

and 50% higher than that in Y direction. The yield strain in the Y and Z directions are almost 

the same and slightly higher than that in X direction. 

The ultimate strength and failure strain in each anatomical direction in tension and compression 

were estimated and are reported in Table 4.3. It can be noted from Fig.4.3 and Table 4.3 that 

the ultimate strength tends to be higher in compression than in tension and it tends to be higher 

in the longitudinal Z direction than the transverse Y and X directions. The compressive strength 

in the X direction is 60% higher than the tensile strength in the same direction. This pattern is 

repeated for the Y and Z directions with values of 5% and 21% respectively. The tensile strength 

in the Z direction is 196% higher than the X direction and 29% higher than the Y direction. 

Also, the compressive strength in Z direction is 123% higher than the X direction and 48% 

higher than the Y direction. It can be observed from the Fig.4.3 and Table 4.3 that the failure 

strain is higher in compression than in tension. In contrast to the ultimate strength, there appears 

to be no specific pattern in failure strains from X, Y and Z directions. In tension, the failure 

strain of the Y direction is 54% higher than X direction and 49% higher than Z direction. 

However, in compression the failure strain in the X direction is 12% higher than the Y direction 

and 31% higher than the Z direction.  

The Poisson’s ratio of the bone specimen was obtained for each direction as explained in the 

Methods section and indicated in Table 4.4. It can be seen that the computed Poisson’s ratio 

values in tension and compression are almost the same. 
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Table 4.2. Estimated stiffness and yeild point strength and strain of trabecular tissue  

Axis Stiffness 

(MPa) 

Tension Compression 

Yeild Strength 

(MPa) 

Yeild strain Yeild Strength 

(MPa) 

Yeild 

strain 

X  205 5.41 0.029 5.45 0.029 

Y  370 12.14 0.034 11.30 0.033 

Z  570 17.72 0.033 17.75 0.033 

 

Table 4.3. Estimated mechanical behaviors of cancellous specimen by 3D XFEM model  

Axis Tension Compression 

Ultimate Strength 

(MPa) 

Failure 

strain 

Ultimate Strength 

(MPa) 

Failure 

strain 

X  7.2 0.057 11.5 0.188 

Y  16.5 0.068 17.3 0.166 

Z  21.3 0.059 25.7 0.143 

 

Table 4.4. Estimated Poisson’s ratio in each coordinate planes 

Tension Compression 

𝜈𝑥𝑦 𝜈𝑥𝑧 𝜈𝑦𝑧 𝜈𝑦𝑥 𝜈𝑧𝑥 𝜈𝑧𝑦 𝜈𝑥𝑦 𝜈𝑥𝑧 𝜈𝑦𝑧 𝜈𝑦𝑥 𝜈𝑧𝑥 𝜈𝑧𝑦 

0.17 0.08 0.14 0.22 0.20 0.23 0.16 0.08 0.13 0.22 0.20 0.23 

 

4.4.2 Hysteresis model 

In order to find the best material model that behaves similar to the cancellous tissue, the 

hysteresis graphs were extracted and investigated. The hysteresis graphs of cancellous specimen 

in X, Y and Z directions are shown in Fig.4.5-4.7. As can be seen in the figures, Young’s 

modulus of the specimen in all directions were determined to be the same in loading and 

unloading, which is similar to the traditional metal plasticity model. Also, the strength and 

failure strains are higher in compression than tension, which is a characteristic of the material 

model of the gray cast iron [59]. This characteristic of cancellous bone can be modeled by the 

cast iron plasticity model as reported in the literature [161].  
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Figure 4.5. Hysteresis graph of cancellous specimen in X direction 

 
Figure 4.6. Hysteresis graph of cancellous specimen in Y direction 

 
Figure 4.7. Hysteresis graph of cancellous specimen in Z direction 
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4.4.3 Equivalent model 

The cast iron plasticity model was selected to for the equivalent FE model. Cast iron plasticity 

can be used for isotropic materials with the same behaviors in all directions. However, it can be 

noted from the Fig.4.3 that cancellous bone is an orthotropic material with different material 

behaviors in X, Y and Z directions. To utilize the cast iron plasticity model for the equivalent 

model, the intermediate values of behaviors from the three anatomical axes were estimated and 

assigned to the model.   

As it can be observed in Fig.4.3, the stress-strain curve in the Y direction represented the 

intermediate values and those values were chosen (Table 4.5). The failure strain was calculated 

as the average value of failure strains along all directions and computed to be 0.068 in tension 

and 0.166 in compression. These values (0.068 and 0.166) were defined as maximum principal 

strain in tension and compression respectively. The fracture energy in both tension and 

compression were taken as 1 mJ/mm2 which is a small value and enabled the model to behave 

in a brittle manner once the fracture strain is attained simulating a sudden drop in the load 

beyond the ultimate load. The other parameters are the values obtained from the Y direction 

model which are indicated in Tables 4.2,4.3 and 4.4. 

Table 4.5. Material properties and XFEM parameters of the equivalent FE model 

Damage 

Evolution 

(XFEM) 

parameters 

Tension Compression 

Max principal strain Fracture Energy 

(mJ/mm2) 

Max principal strain  Fracture Energy 

(mJ/mm2) 

0.068 1 0.166 1 

 

Elastic Young’s modulus (MPa) Poisson’s ratio 

370 0.18 

 

Cast iron 

plasticity 

parameters 

Tension Compression 

Yield 

Stress 

(MPa) 

Ultimate 

stress 

(MPa) 

Yield 

Strain 

Ultimate 

Plastic 

Strain 

Yield 

Stress 

(MPa) 

Ultimate 

stress 

(MPa) 

Yield 

Strain 

Ultimate 

Plastic 

Strain 

12.14 16.04 0.0345 0.0335 11.3 17.3 0.033 0.133 
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The material properties from Table 4.5 were assigned to the equivalent model. The stress-strain 

curves of the equivalent model versus the micro-scale model are shown in Fig.4.8. The fractured 

specimen of the equivalent model in tension and compression are shown in Fig. 9(a) and (b), 

respectively. The output variable STATUSXFEM in Fig.4.9 shows the status of the enriched 

elements. The value of 1.0 (red) in Fig.4.9 means the enriched element is completely cracked 

and 0.0 (blue) means the element contains no crack. The value of STATUSXFEM lies between 

1.0 and 0.0 if the element is partially cracked. 

The sum of the squared error (Equation 4.1) of the equivalent model graph compared to the 

micro-scale model graph was obtained to be 40.61 for the sixteen points that are marked (red 

diamonds) in Fig.4.8. 

 
Figure 4.8. Stress-Strain curves of equivalent model vs. micro-scale model 

 
(a) 

 
(b) 

Figure 4.9. Fractured specimen in equivalent model by (a) tensile loading (b) compressive loading 
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4.5 Discussion 

In this study, 3D XFEM “micro-scale” models of cancellous bone specimens were developed. 

The material behaviors of the bone specimen along all anatomical directions were estimated 

and the intermediate values of material properties were determined. Additionally, the hysteresis 

graphs of the specimen were extracted to find the best material model similar to the micro-scale 

bone. Cast iron plasticity was then selected as a material model to develop an equivalent macro-

model.  The parameters of the cast iron plasticity model were then selected based on the 

intermediate material properties of cancellous bone and were assigned to the equivalent macro 

model. The stress-strain curves of the equivalent model versus those of the micro-scale bone 

specimen were compared to each other and demonstrated a good agreement. 

The assigned material properties to the 3D micro-scale XFEM model were selected based on 

our previous work [185], in which 2D micro-scale XFEM models were developed to estimate 

material behaviors of trabecular tissue. In the previously developed 2D XFEM model, it was 

observed that the failure strains tend to be higher in compression than in tension [185], which 

is consistent with the results from the 3D XFEM model. Additionally, in the 2D XFEM model 

the trends of the strength and average stiffness values in the anatomical directions were 

consistent with the observations in the 3D XFEM model (Z direction were higher than Y 

direction and both values were higher than X direction. Conversely, in the 2D XFEM model of 

[185], the strength was estimated to be higher in tension than in compression, which is opposite 

to the trend of the 3D XFEM model. Also, in the 2D XFEM model, the average stiffness tends 

to be higher in tension than in compression for each direction while the 3D models estimated 

similar stiffness in tension and compression. In 2D XFEM model, the ultimate strength 

determined in the X, Y and Z-directions was 1.51 – 3.92 MPa, 3.65 – 5.85 MPa and 5.24 – 9.06 

MPa, respectively [185]. As indicated in Table 4.3, the ultimate strength values in the 3D 

XFEM model were determined to be 7.2 MPa, 16.5 MPa and 21.3 MPa in the X, Y and Z 

directions, respectively, and such values are higher than the estimated ones in 2D XFEM model. 

The differences in the results of 2D and 3D modeling can be explained by the full network of 

trabecula in 3D compared to the in-plane network of trabeculae in 2D modeling. The 3D 

modeling is more realistic, and is expected to produce accurate results albeit at a much higher 

computational cost 
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From the 3D XFEM models of cancellous bone specimen, the Young’s moduli in X, Y and Z 

directions were determined to be 2.05GPa, 3.7GPa and 5.7GPa respectively and they were equal 

in compression and tension. The stiffness values reported in the literature for the trabecular 

specimen have a large variability and may depend on various factors such as site and 

orientation. The results obtained here are consistent within the range of values reported by 

Ulrich et al. [186] for cancellous bone of human femoral head (3.5-8.6GPa). These results are 

also within the range of values reported by Hou et al. [187] (5.7±1.6GPa) and the reported 

values by Keaveny et al. [161] (4.45±2.57GPa for Proximal tibia and 4.4±12.71GPa for 

Proximal femur).  

The graphs of Fig.4.3 demonstrated that the strength in compression tends to be higher than in 

tension, which is consistent with previous reports in the literature [136, 146, 157, 159, 161, 

188]. The ultimate strength was determined to be in the range of 7.2-21.3MPa in tension and 

11.5-25.7MPa in compression (Table 4.3) which are in the range of values reported by Keaveny 

et al. (7.63-23.1MPa in tension and 6.95-42.7MPa in compression) [159]. Also, the ultimate 

strength found by Verhulp et al.  [182] was reported to be in range of 10.28-24.62MPa which 

is in a good agreement with the strength values obtained in the current study. The tensile and 

compressive yield strengths found here were similar and were in the range of 5.4-17.7MPa 

which lies within the ranges reported by Keaveny et al. [159] for the same donors as mentioned 

for yield strengths (6.9-22MPa in tension and 5.72-31.8MPa in compression). The range of 

tensile and compressive strains at failure were determined to be 0.057-0.088 and 0.143-0.188 

respectively (Table 4.3) which are higher than those reported by Keaveny et al. for tension 

(0.0085-0.0187) and for compression (0.0115-0.0283)[159]. Also, the tensile and compressive 

yield strain found here (0.0285-0.0345) are higher than those reported by Keaveny et al. [159] 

(0.0067-0.0086 in tension and 0.0089-0.0142 in compression). 

According to previous studies [147, 157, 178-181], mechanical characteristics including elastic 

modulus and ultimate strength are different in various directions based on the density of 

specimens, fabric orientation of the bone and anatomical locations of the specimens. Ford and 

Keaveny [179] determined the elastic modulus in the longitudinal and transverse directions to 

be in the range of 704-3700MPa and  306-1300MPa, respectively. A comparison of reported 
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stiffness values and those values shown in Table 4.2 reveals that the stiffness in the transverse 

direction (Y direction in our study) is in the range of reported values and the stiffness in the 

longitudinal direction (Z direction) is lower than those reported  by Ford and Keaveny [179]. 

The same trend holds for the strength in longitudinal and transverse directions. In previous 

studies [66, 70] it was experimentally shown that the strength in the longitudinal direction (Z 

direction) is 159% greater than transverse directions (X and Y directions), which agrees with 

our results. Also, Shim et al. [3], determined  greater strength in longitudinal direction compared 

to transverse direction, based on fabric orientation of cancellous bone tissue in the longitudinal 

and transverse directions. 

The hysteresis loops of cancellous bone in loading and unloading cycles follow the same initial 

slope (i.e. Young’s modulus), which is similar to the metal plasticity model. Also, the strength 

and failure strain are higher in compression than in tension, which can be seen in gray cast iron 

[59] which was also reported by Keaveny et al. [161, 189, 190]. 

The stress-strain curves in Fig.4.3 revealed that the cancellous bone is an orthotropic material 

with various behaviors in three anatomical directions, and such result is consistent with [147, 

157, 178-181]. However, the cast iron plasticity model can be used for isotropic materials with 

the same behaviors in all directions [55]. To utilize the built-in material model for developing 

the equivalent specimen, the cancellous bone was considered to be initially isotropic with the 

intermediate material properties from three axial directions, which is a limitation of the present 

work. To evaluate the accuracy of the equivalent model, the stress-strain graphs of micro-scale 

bone and equivalent model were extracted and compared. The error of equivalent model 

compared to the micro-scale bone model demonstrated that the model has the potential to be a 

valuable tool for predicting the mechanical characteristics of a large-scale bone when it is not 

practical to include the porous microstructure of cancellous bone in the modeling. 

In closing, the mechanical and failure behaviors of cancellous bone in three anatomical 

directions was developed with an equivalent constitutive model to predict the mechanical 

characteristics of cancellous bone. This was modeled using a 3D XFEM with cast iron plasticity 

model. This model is capable of replicating the micro-scale behavior without the need for 

modeling individual trabecula. This leads to a significant reduction in the required 
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computational resources without sacrificing the required model accuracy. Also, XFEM of 

cancellous bone compared to traditional FEM is able to predict and model the fractures in the 

bone specimen. 

It is important to note that the size of our micro-scale models (1.75cm^3) is smaller than the 

size of specimens in the reported experiments, which often range between 5 and 10 mm [146, 

183, 184]. Modeling larger specimens using our technique would require large computational 

resources and is considered impractical at this stage. Future work could investigate size effect 

by considering larger specimens. 

The idea of using cast iron plasticity to model trabecular bone has been used previously by a 

few researchers [189, 190]. However, one of the limitations of this model is that it describes the 

mechanical response of a solid metal material with tension-compression strength asymmetry-

its behavior under multiaxial compressive loading needs to be investigated further. In particular, 

the behavior in tension is governed by the maximum principal stress while the behavior in 

compression is governed by the pressure independent von Mises stress. 

One of the recommendations arising from this study is extending the cast iron plasticity model 

to orthotropic materials and incorporating any observed pressure dependent failure criteria. 

Future work can then focus on calibrating the model for trabecular bone specimens and 

implementing it in a commercial finite element software-For example using UMAT in 

ABAQUS. 
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Chapter 5 : Prediction of fracture initiation and propagation in 

pelvic bones 

 

5.1 Abstract 

Objective: To develop an XFEM model that is capable of predicting different types of fracture 

in pelvic bone under various loading conditions. 

Method: Previously published mechanical and failure characteristics of cortical and cancellous 

tissues have been implemented and assigned to an intact pelvic bone with specified cortical and 

cancellous tissues. Various loading conditions, including changing load direction and 

combining on different directions, have been applied to the acetabulum and different types of 

fracture (e.g., anterior/posterior wall fracture and transverse fracture) in pelvic bone have been 

modeled. The predicated types of fracture and the maximum force at fracture have been 

compared to those acquired from previously published experimental tests.   

Results: The outputs of this approach contain types of fracture; also, the maximum force at 

fracture point have been compared to the previously published experimental tests of pelvic bone 

fracture.  Anterior/posterior wall fracture and transverse fracture are the most common types of 

fractures in the simulations. The types of fracture that have been modeled were similar to the 

fractures in the experimental tests. Additionally, the maximum fracture force in the tests was 

defined to be 5.7kN. This value was estimated to be 18.6kN in the XFEM models.  

Conclusion: The results revealed that different types of fracture in the pelvic bones can be 

caused by the various loading conditions in unstable conditions of high-rate impact loads. With 

proper mechanical and failure behaviors of cortical and cancellous tissues, XFEM model of 

pelvic bone is capable of predicting the fracture in the bone. Also, the XFEM models of 

cancellous and cortical tissues can be assigned to other bones in human body skeleton so that 

the failure mechanism in such bones can be investigated. 
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5.2 Introduction 

Pelvic ring has a very important role in the human skeleton system as it links the upper body to 

the lower extremities [8]. The pelvic bone is one of the most stressed areas in the human 

anatomy due to its location for transferring the upper body weight to the lower limbs and for 

protecting the inner organs of that area [1, 2, 8]. Due to its important role, this bone has been 

the center of attention of surgeons and scientists since the early 20th century [8]. Because of the 

complex morphology of pelvic bone and its inaccessible location, surgeons and researchers 

have opted to use FE modeling for investigating rather than experiments.  

Damage and fracture of the pelvic bone or acetabulum is a common type of fracture [6]. More 

than half of the fractures in pelvic bones are caused by motor-vehicle crashes [12]. Previous 

studies  have simulated the human pelvis and lower limbs to investigate the injury mechanisms 

in different types of crashes [14, 19, 118-125]. Kikuchi et al. [118], modeled a human pelvis 

and lower limb to predict the injuries during the frontal motor-vehicle impact. For simulation 

of knee-thigh-hip (KTH) complex injuries in frontal motor vehicle crashes, the FE models were 

developed and bone deformation, articulating joints and soft tissue behavior in the KTH 

complex were analyzed by Van Rooij et al. [119]. Also, Silvestri et al. [121] developed an FE 

model of KTH with ligaments and muscles to explore the mechanics of injuries of the KTH 

during frontal crashes. Ikeda et al. [120] used FE models to predict the different fracture patterns 

of pelvic ring in pedestrian accidents with SUV/ Mini-Vans. The models developed by Ikeda et 

al. [120] were capable of accurately predicting different patterns of pelvic fractures and their 

study was the only one found to  predict the fracture location in the pelvic ring in frontal car 

crashes.  

In other previous studies, the fractures and injury mechanisms of pelvic bones in falls were 

modeled and investigated [3, 12, 20, 28-30, 126-133]. Many of these papers studied pelvic 

injury mechanisms in backward falls, sideways falls and lateral pelvic impacts using FE models 

[12, 20, 28-30, 126-131]. Kim et al. [130]  investigated the effects of childhood obesity on 

pelvic bone fracture risk exposed to falls. Song et al. [131] developed FE models of the 

vertebrae and the pelvis to analyze the dynamic mechanisms of these bones in human falls. The 

majority of the studies discussed here concentrated on the damage of the pubic symphysis and 
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sacroiliac joints, while the fracture modeling of the bone was not considered as part of the 

simulation [12, 20, 28-30, 126-131]. Besnault et al. [133] introduced a material model to 

simulate damage and injury in the human pelvis ring. To the best of our knowledge, only one 

study has modeled the crack initiation on the pelvic bone [3]. However, instead of a real bone, 

a synthetic polyurethane pelvis was utilized to model the fracture [3].  

The objective of the current study was to predict the types of fracture and model fracture 

initiation and propagation in pelvic bones under various loading conditions. The objectives 

were achieved through the following specific aims: extended finite element method (XFEM) 

models of pelvic bone were developed in which precise material properties and fracture 

characteristics of cancellous and cortical tissues were considered as model inputs. Various 

loading conditions were applied to the acetabulum in order to model the different types of 

fractures in pelvic bone. The outputs of this approach contain maximum force at fracture point; 

also, the types of fracture have been compared to the previously published experimental tests 

of pelvic bone fracture. 

5.3 Methods 

5.3.1 Fracture in cortical and cancellous tissues in macro-scale level 

In previous studies, fracture of cancellous and cortical tissues on a macro-scale level have been 

modeled by the XFEM technique [40, 191]. The material properties and failure parameters of 

cancellous bone are mentioned in Table 5.1 [191]. In the previous work by our group [191], the 

“Max Principal strain” criterion was utilized as the damage initiation criteria. In ABAQUS 

built-in models of crack initiation criteria, a compressive strain does not initiate damage in an 

enriched element [59]. Salem et al. [191] implemented a user-defined subroutine UDMGINI to 

define crack initiation criteria by simultaneous tensile and compressive strain. This allows us 

to also use different strains in tension and in compression for failure.  
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Table 5.1. Material properties and failure parameters of cancellous tissue [191]  

Damage 

Evolution 

(XFEM) 

parameters 

Tension Compression 

Max principal strain Fracture Energy 

(mJ/mm2) 

Max principal strain  Fracture Energy 

(mJ/mm2) 

0.068 1 0.166 1 

 

Elastic Young’s modulus (MPa) Poisson’s ratio 

370 0.18 

 

Cast iron 

plasticity 

parameters 

Tension Compression 

Yield 

Stress 

(MPa) 

Ultimate 

stress 

(MPa) 

Yield 

Strain 

Ultimate 

Plastic 

Strain 

Yield 

Stress 

(MPa) 

Ultimate 

stress 

(MPa) 

Yield 

Strain 

Ultimate 

Plastic 

Strain 

12.14 16.04 0.0345 0.0335 11.3 17.3 0.033 0.133 

   

Moreover, in the previous work by Feerick et al. [40] a user-defined subroutine UDMGINI has 

been implemented for the cortical bone to utilize four failure criterion equations which are 

indicated in Equations 5.1-5.4. Once the value of any equation reaches 1, fracture is initiated 

for that criterion. Failure in the X, Y and Z directions are determined by Equations 5.1-5.3, 

respectively [40]. In Equation 5.4, when the maximum principle stress reaches the effective 

strength, the fracture initiates and propagates in the normal direction of the maximum principal 

direction [40]. The failure criteria in the X and Y directions (Equations 5.1 & 5.2 respectively) 

have been defined in tension and compression; hence, six failure parameters are indicated in 

Table 5.2 [40]. 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 1: √(
𝜎11

𝜎𝑙𝑥
)2 + (

𝜎12

𝜎𝑙𝑥𝜏
)2 + (

𝜎13

𝜎𝑙𝑥𝜏
)2 = 1 (5.1) 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 2: √(
𝜎22

𝜎𝑙𝑦
)2 + (

𝜎12

𝜎𝑙𝑦𝜏
)2 + (

𝜎23

𝜎𝑙𝑦𝜏
)2 = 1 (5.2) 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 3: √(
𝜎33

𝜎𝑙𝑧
)2 + (

𝜎13

𝜎𝑙𝑧𝜏
)2 + (

𝜎23

𝜎𝑙𝑧𝜏
)2 = 1 (5.3) 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 4: 
𝜎𝑝

√𝜎𝑙𝑥
2𝑐𝑜𝑠2𝜃 + 𝜎𝑙𝑦

2𝑠𝑖𝑛2𝜃
= 1 

(5.4) 
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Where 𝜎𝑙𝑥 and 𝜎𝑙𝑥𝜏 are the axial and shear strengths in X direction, respectively; 𝜎𝑙𝑦 and 𝜎𝑙𝑦𝜏 

are the axial and shear strengths in Y direction, respectively; and 𝜎𝑙𝑧 and 𝜎𝑙𝑧𝜏 are the axial and 

shear strengths in Z direction, respectively. 𝜎𝑝 is the maximum principal stress; 

𝜎11, 𝜎22 𝑎𝑛𝑑 𝜎33 are orthogonal normal stresses; and 𝜎12, 𝜎23 𝑎𝑛𝑑 𝜎13 are orthogonal shear 

stresses [40]. 

Table 5.2. Elasticity, strengths and damage evolution parameters of cortical bone [40] 

Mechanical properties initiation criteria failure strengths 

(MPa) 

Young’s modulus (MPa) 4500 𝜎𝑙𝑥(tensile) 150 

Poisson’s ratio 0.3 𝜎𝑙𝑦 = 𝜎𝑙𝑧(tensile) 65 

  𝜎𝑙𝑥(Compression) 280 

Evolution criteria 

(𝐽 𝑚2)⁄  

 𝜎𝑙𝑦 = 𝜎𝑙𝑧(Compression) 213 

Failure criteria 1 800 𝜎𝑙𝑥𝜏 84 

All other failure criteria 300 𝜎𝑙𝑦𝜏 = 𝜎𝑙𝑧𝜏 132 

 

5.3.2 3D XFEM modeling of pelvic bone 

The XFEM framework built-into the general purpose finite element analysis software 

ABAQUS/Standard (Dassault Systemes Simulia Corp, Providence, RI, USA) was utilized to 

develop the 3D model [59]. CT-scan data of an intact pelvic bone (left hemi-pelvis) was utilized 

and converted to the 3D mesh part by Materialise Mimics software (Materialise NV, Leuven, 

Belgium). The cortical and cancellous tissues were specified from CT-scan data in the mesh 

part. The created mesh part in Materialise Mimics software with the specified cancellous and 

cortical tissues is illustrated in Fig.5.1. The mesh part was imported to the Abaqus software as 

an input file. The re-implemented fracture modeling of cancellous and cortical bones from the 

previous section were assigned to the pelvic bone. 
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Figure 5.1. Intact pelvic bone with specified cortical and cancellous tissues 

C3D4 (4-node linear tetrahedron) elements were selected in all simulations [59]. To develop a 

realistic model, several enrichment zones were defined for the pelvic bone to allow for 

simultaneous initiation and propagation of multiple cracks. Selecting elements in such a 

complex geometry like the pelvic bone is time-consuming. In order to do so, all elements of the 

bone were selected as one element set and the input file of the model was written. Afterward, 

the input file was edited, and the element set was split into several element sets with an almost 

equal numbers of elements. Each element set was then defined as one enrichment zone.  

The hemi-pelvis is supported by two locations in human body skeleton: sacro-iliac and pubis 

symphasis joints [192]. The sacro-iliac joint has strong ligaments and interlocking surfaces, 

thus, its movement is negligible [192]. Also, a sensitivity study was conducted on boundary 

conditions at pubis symphysis joint and the results revealed negligible differences on the 

outputs [192]. In the current paper, the pelvic bone was fixed at the sacro-iliac and pubis 

symphasis joints by fully constraining these nodes in all simulations [192].  The loading on 

pelvis was specified as a constant velocity (1 m/s) applied to the nodes of acetabulum as 

illustrated in Fig.5.2(a) [193, 194]. This makes the assumption of quasi static loading. The 

direction of the applied velocity was varied to model the different types of fracture (e.g., 

anterior/posterior wall fracture and transverse fracture). The local coordinate system was set up 

as shown in Fig.5.2(b) to apply the loads in main groups of shear, compression, and their 

combination [195]. The velocity in Y and Z directions represent shear loads on acetabulum, and 

the velocity in X direction represents a compressive load. Furthermore, combined directional 
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loading (i.e. loading in both the X and Y directions simultaneously) was also investigated. 

Totally 11 simulations have been run that the loading direction in each simulation is indicated 

in Table 5.3. The load-displacement graph of the pelvic bone was extracted for each simulation. 

The loads were calculated by summing nodal reaction forces on the fully constrained areas of 

pelvic bones. The simulations were terminated at the point where the load dropped in load-

displacement graph or when the time-increment became too small for the simulation to 

continue. In the latter cases, the crack initiation was captured, but the models did not fully 

fracture. The output variables of interest were the location and pattern of fracture initiation and 

the maximum fracture force. 

 
 

 

(a) (b) 

Figure 5.2. (a) Applied boundary and loading conditions to the pelvic bone; (b) defined local coordinate system 

Table 5.3. Loading direction in each simulation 

Run NO. 1 2 3 4 5 6 7 8 9 10 11 

Loading 

direction 

+Z -Z +Y -Y +X +X,+Z +X,-Z +X,+Y +X,-Y +Z,+Y +Z,-Y 
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5.4 Results 

Different types of fractures were obtained from the modeling in various loading conditions, as 

shown in Fig.5.3(a)-(k). The direction of applied velocity in each simulation is illustrated in 

Fig.5.3. The STATUSXFEM in Fig.5.3 shows the status of the enriched elements. The value of 

1.0 for STATUSXFEM means the enriched element is completely cracked and 0.0 means that 

the element contains no crack. The value of STATUSXFEM lies between 1.0 and 0.0 if the 

element is partially cracked. Further, the load-displacement graphs of pelvic bone were 

extracted and illustrated in Fig.5.4(a). To fully fracture the pelvic bone model would require 

large computational resources, which was impractical in this study. As it can be seen in Fig.5.4, 

only three of simulations reach to the fracture drop point in the load-displacement graphs. In 

the rest of the simulations, the time increment became too small (in order of 10-35) and the 

simulation run was aborted by the software before reaching to the drop point in the load-

displacement graph. The maximum fracture force among all simulations was computed to be 

18.6kN with the velocity applied in the +Z and +Y directions. As it can be observed in 

Fig.5.3(a)-(k), the anterior/posterior wall fracture and transverse fracture are the most common 

types of fractures in the simulations. There are 6 anterior/posterior wall fractures and 6 

transverse fractures from the outputs of simulations.  

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 
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(f) 

 

 
(g) 
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(h) 

 

 
 (i)  

 

 
(j) 
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(k) 

 
Figure 5.3. Different types of fractures from various loading conditions modeled by XFEM (a) anterior wall (b) 

posterior wall (c) transverse & anterior wall (d) posterior wall (e) transverse fracture (f) anterior wall (g) transverse 

fracture (h) transverse fracture (i) posterior wall (j) transverse fracture (k) transverse fracture 

 

 
(a) 

 
(b) 

Figure 5.4. (a) Load-displacement graphs of fractured pelvic bone obtained from XFEM simulations (b) Force-

time graphs reported from experiments  [194] 

5.5 Discussion 

In recent years, car manufacturers are providing and improving the protection of occupants’ 

KTH complex in frontal and lateral impacts [129, 193, 194]. Also, various types of hip protector 

have been designed for elderly people to prevent hip and pelvic bone fractures which are 

investigated in several previous studies [196-198]. Recently, the XFEM technique has been 

considered a valuable analytical method to predict fractures in the KTH complex instead of 

relying on experimental test setups. As a result, the main aim of this study was to predict the 
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types of fracture and model fracture initiation and propagation in pelvic bones under various 

loading conditions.  

In this study, 3D XFEM models of a hemi-pelvis were developed. The mechanical behaviors 

and failure parameters of cancellous and cortical tissues were re-implemented from previously 

published studies [40, 191] and were applied to the intact pelvic bone with specified tissue 

regions defined by CT-scan data. Boundary and loading conditions were specified in the models 

as well as the enrichment zones, which allow XFEM to initiate and propagate the multi-cracks 

anywhere within these regions. Various loading conditions were applied to the acetabulum 

nodes as a constant velocity (1 m/s) in various directions to model different types of fracture in 

the bone. The fracture type, the load-displacement curves, and the maximum force at the 

fracture point were extracted and shown in Figs.5.3 and 5.4. 

Rupp et al. investigated the fracture in the KTH complex in several experimental studies [193, 

194, 199-201] to develop a new KTH failure criteria in frontal motor-vehicle impacts. They 

used a device to measure the hip fracture force with human cadavers. In Table 5.4, the results 

of 19 experimental tests containing the fracture type in the pelvic bone and maximum force at 

fracture point are mentioned. Also, the types of fracture obtained from XFEM models and 

reported in Table 5.4, are shown in Fig.5.5. 

Table 5.4. Type of fracture in pelvic bones and maximum force at fracture point from experimental tests [193, 194] 

Test 

Number 

Force at 

fracture 

(kN) 

Fracture type 

1 5.59 Acetabulum (“T-type fracture”), inferior ramus 

2 5.37 Acetabulum (transverse, posterior wall) 

3 4.85 Acetabulum (posterior wall) 

4 4.49 No injury 

5 7.52 Femoral neck 

6 7.87 Femoral neck 

7 6.60 Acetabulum (posterior wall), pubic rami 

8 6.67 Acetabulum (posterior coloumn, anterior hemi-transverse fx.) pubic 

rami 

9 3.34 Iliac wing, pubic rami 
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10 4.65 Femoral neck 

11 5.59 Acetabulum (posterior wall/column), inferior pubic ramus 

12 4.79 Acetabulum (transverse posterior wall), inferior pubic ramus 

13 5.57 Acetabulum (posterior wall) 

14 4.04 Acetabulum (posterior wall/ column) 

15 8.85 Acetabulum (posterior rim) 

16 3.91 Acetabulum (transverse posterior wall), pubic rami 

17 5.67 Acetabulum (“T-type” with comminuted posterior wall) 

18 5.87 Acetabulum (posterior rim) 

19 6.6 Acetabulum (posterior wall, anterior/superior rim) 

Mean 5.70  

SD 1.38  

 

     
(a) (b) (c) (d) (e) 

Figure 5.5. The types of fracture obtained from XFEM models and reported in Table 5.4 (a) anterior wall 

fracture (b) posterior wall fracture (c) transverse and anterior wall fracture (d) transverse fracture and (e) 

posterior wall fracture [202] 

 

As reported in [193, 194], all conditions in the experimental tests were similar. However, there 

are different types of fractures in pelvic bones. After an analysis of experimental outputs, it was 

revealed that the fracture types in the pelvic bones are dependent on several parameters such as 

the density of the pelvic bones, the impact intensity and impact direction from femur head to 

acetabulum in the unstable conditions of the impact loads [129]. As it indicated in Table 5.4, in 

14 tests out of 19 experiments, the fracture occurred in acetabulum which contained two T-type 

fractures, seven posterior wall or column fractures, three transverse fractures and two posterior 

rim fractures [193, 194]. The maximum and the average fracture force were determined to be 

8.85kN and 5.7 ± 1.38kN respectively [193, 194].  
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A comparison of obtained fracture types in the XFEM models in the present study with the 

experimental tests from Rupp et al. [193, 194] indicates that the impact direction from the femur 

head to acetabulum causes different types of fractures. However, it should be noted that the 

XFEM models in the present study did not run to the end of simulation in most cases and thus 

the cracks were not propagated through the whole bone. Nevertheless, the crack initiation seen 

with these models provides a good indication of the location and initial pattern of the fractures. 

The maximum fracture force (18.6kN) obtained from XFEM models (Fig.5.4) was higher than 

the values reported in the previous experimental studies [193, 194] (8.85kN), but this 

discrepancy can be explained by several reasons. Firstly, mechanical characteristics of bone 

tissues are different based on the density of specimens and anatomical locations of the 

specimens [147, 157, 178-181]. One limitation is that the cortical and cancellous specimens of 

the studies referenced here [40, 191] were selected from the femur and forearm respectively 

and not the pelvic bone. With proper mechanical and failure behaviors of cortical and 

cancellous tissues (by the specimens extracted from human pelvic bones), the results of our 

XFEM model might have a better agreement with experimental results. Secondly, the 

experimental tests were conducted on KTH complex and the measured impact intensity on the 

pelvic bone in the tests might be affected by the knee and thigh. However, the impact intensity 

was considered to be consistent in all XFEM models. Thirdly, based on additional literature 

[83-85], the fully constrained boundary conditions utilized in XFEM models are extremely 

simplified. Considering more realistic boundary conditions (using muscular and ligament 

attachments) might help to improve the FE results compared to the experimental results.  

Early car designers and researchers focused on head, neck and chest injuries because of the 

importance of these areas as most life-threatening regions of human body in the frontal car 

crashes [203]. Using seatbelts and implementation of airbags highly reduced the head and 

thorax injuries in the car accidents [203]. Design improvement of the cars for more appropriate 

protection of lower extremities to prevent various types of pelvic bone fracture is a particular 

concern of automotive safety engineers [203]. The results of the current study revealed that 

different types of fracture in the pelvic bones can be caused by the various loading conditions 

in unstable conditions of high-rate impact loads. With proper mechanical and failure behaviors 
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of cortical and cancellous tissues, the XFEM model of the pelvic bone is capable of predicting 

the fracture initiation and propagation in the bone. In future work, the XFEM model of 

cancellous and cortical tissues can be assigned to other bones in human body so that the failure 

mechanism in such bones can be investigated. 

Currently, modeling the branching in a single element by XFEM technique is impractical due 

to the limitation of this technique [134]. Because of this limitation, not all fracture types in 

pelvic bone can be represented with an XFEM model. 
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Chapter 6 : Optimization of fixation plates for T-shaped pelvic bone 

fractures 

 

6.1 Abstract 

Objective: To evaluate and optimize the mechanical stability and stress shielding of the fixation 

system in T-shaped acetabular fracture by conjunction of Finite Element Analysis (FEA) and 

Design of Experiment (DoE). 

Method: FE models of (1) an intact pelvic bone and (2) a T-style fractured pelvic bone fixed by 

a reconstruction plate and screws were developed. Three design factors including plate 

thickness, plate material and the number of screws were studied to determine their influences 

on biomechanical responses of fixation system. For the statistical analysis, a fractional factorial 

design was considered. Ten FE models based on the matrix of levels definition have been 

developed. An analysis of variance (ANOVA) technique was employed to define the significant 

variables related to biomechanical responses and finally the optimized design factors were 

determined. 

Results: It was observed that plate material and its thickness are the main effective variables 

(with p<0.05) on most of investigated biomechanical responses of fixation system. The results 

revealed that reducing 62.5% of the stiffness of the plate material resulted in a 24.1% decrease 

of the stability of the fixed bone and 10.8% decrease of the average of stress shielding rate. 

Also, reducing 22.2% of the plate thickness from 4.5mm to 3.5mm caused a decrease of 8.6% 

in the mechanical stability and an 8.1% decrease in the average stress shielding rate. Reducing 

the number of screws from 11 to 7 screws had no effect on the average of crack opening and 

stress shielding rate. 

Conclusion: The results revealed that the plate material and its thickness are the most effective 

parameters in the design of optimal fixation plates. Also, increasing the number of screws has 

no significant effect on most of the responses that can be considered by the surgeons in pelvic 
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fracture fixation. Finally, combination of DoE and FEA is capable to reduce the number of FE 

models and runs without sacrificing the required results accuracy. 

6.2 Introduction 

Pelvic bone has a significant role in human body skeleton because of its duties to linking the 

upper body to the lower extremities, weight bearing, transferring the weight to the lower limbs 

and protecting the inner organs of that area [1, 2, 8].  

Damage and fracture of the pelvic bone or acetabulum is a common type of fracture especially 

in motor-vehicle crashes [6]. One type of pelvic bone fracture is called T-shaped or T-style 

fracture. This type of fracture is a combination of a transverse fracture and a vertical fracture in 

the acetabulum [204]. T-shaped acetabular fracture represents 3%-12% of all types of pelvic 

bone fractures [204] and 7% of pelvic fractures with two or more fractures within the 

acetabulum [5]. Since, T-shaped fracture classifies as one of the complicated fractures of pelvic 

bones [5], this type of fracture was considered to be investigated in current research. 

The fixation of T-shaped fractures is explained in the book by Tile et al. [5] which is a reference 

for the surgeons working on pelvic bones. Also, there are numerous studies [76-82] that have 

been dedicated to evaluating the functional outcomes of operative treatment of such injuries. 

However, to the best of our knowledge, there is only one study [4] that has investigated the 

fixation system of T-shaped fracture in the pelvic bone by FE analysis. Fan et al. [4] evaluated 

three different fixation systems of T-shaped fracture by FE analysis and obtained the optimized 

fixation system for treatment of the injured bone.  

The geometrical configuration and material selection for reconstruction plates and lag screws 

play a significant role in generating the biomechanical performances such as reliable internal 

fixation, and in the reduction of stress shielding and implant loosening [31-36, 152, 205]. Screw 

configurations such as the number of screws, their placement in the locking plates, and the 

length and diameter of screws have previously been investigated [34]. The shape, thickness, 

and width of the locking plates have been optimized for different applications [32, 33]. The 

optimal material selection and implant design, such as using porous structures in the implants, 
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have been investigated previously for reduction of stress shielding and acceleration of fracture 

healing [31, 152]. In the study by Mehboob and Change [35] a combination of Design of 

Experiments (DoE), Finite Element Analysis (FEA) and the Taguchi method was utilized to 

design and optimize a composite fixation plate for a damaged tibia. Further, other studies 

investigated and optimized the fixation plate-screws parameters using a combination of DoE 

and FE analysis [31-36]. In the previous work [31-36], the optimization of fixation plate-screws 

was related to various bones in human body skeleton aside from the pelvic bone. To the best of 

our knowledge, there is no study to optimize the characteristics of fixation plates related to a 

damaged pelvic bone. 

The objective of the current study was to evaluate and optimize of mechanical stability and 

stress shielding of a fixation system in a T-shaped acetabular fracture by conjunction of FEA 

and DoE. The objectives were achieved through the following specific aims: The FE model of 

an intact pelvic bone (right hemi-pelvis) and a T-shaped damaged bone fixed by a plate and 

screws were developed. Several design factors were considered to evaluate their effects on 

biomechanical responses of fixation system. The statistical analysis has been conducted on the 

outputs of FE models and the main significant factors have been determined. Finally, the 

optimized design factors were obtained. 

6.3 Methods 

6.3.1 FE model of T-Shaped fracture bone and an intact bone  

Two FE models of a right hemi-pelvis were developed in this study. The first considered an 

intact pelvic bone and the second modeled simulated a T-shaped fractured bone fixed by a 

reconstruction plate and screws. (the fracture model is shown in Fig.6.1). The FE model of 

intact pelvic bone was developed as a reference to compare with the outputs obtained from the 

fixed bone model with the plate and screws. i.e. the stresses obtained from fixed pelvic bone 

model ideally should have almost the same values computed from the intact pelvic bone model.  

Cortical and cancellous tissue material properties were considered in both models, and the 

thickness of the cortical layer was assumed to be constant at 2.5mm [25]. The cortical and 
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cancellous bones were modeled as solid parts. The plate in the T-shaped fracture model was 

modeled as a shell part. The screws were generated as solid parts, neglecting the screws heads. 

The effect of the screw heads was considered in an interaction definition between the plate and 

cortical bone.  

The mechanical characteristics of the bone tissues, plate with different materials, and screws 

are indicated in Table 6.1. The number of screws, the thickness of plate and the plate material 

were changed in further simulations related to the DoE model. The material of screws was 

selected to be 316L stainless steel in all simulations and various lengths of screws were 

considered to simulate bicortical fixations. Tie constraints was utilized at the tissue interface to 

ensure that no relative displacement occurs between the inner surface of cortical bone and outer 

surface of cancellous bone. Also, tie constraint were defined between the plate and the cortical 

bone surface (in the areas of the screw heads) and at the screw and bones tissues interface [4, 

7, 51, 206]. There is no defined contact or constraint between the screws and the plate. Rough 

contact was defined between the pieces of fractured bone to allow interactions to occur between 

the pieces at their interfaces. A static/general step in ABAQUS/Standard (Dassault Systemes 

Simulia Corp, Providence, RI, USA) was utilized as the solver. C3D4 (A 4-node linear 

tetrahedron), C3D8R (An 8-node linear brick, reduced integration) and S4R (A 4-node shell, 

reduced integration) elements were selected for bone tissues, screws, and the fixation plate 

respectively. The loading and boundary conditions were defined to be the same in all 

simulations as shown in Fig.6.2. Both models were loaded under double limb standing position 

by a value of 600N, which represents the upper body weight. 

Table 6.1. Mechanical characteristics of bone tissues, plate and screws 

Material Young’s modulus (MPa) Poisson’s ratio 

Cancellous Bone [191] 370 0.18 

Cortical Bone [40] 4500 0.3 

Plate, Nitinol alloy (NiTi) [4] 105000 0.37 

Plate, SS 316 [51] 280000 0.33 

Screws, SS 316 [51] 280000 0.33 

Material 
E1 

(MPa) 

E2=E3 

(MPa) 

Nu12=Nu

13 
Nu23 

G12=G23 

(MPa) 

G13 

(MPa) 

Plate, E-

glass/epoxy [51] 

15000 7000 0.25 0.3 6000 7000 
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Figure 6.1. T-shaped fracture pelvic bone model fixed by reconstruction plate and screws 

 

  
Figure 6.2. Loading and boundary conditions in the T-shaped fracture model 
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6.3.2 Design of experiments model 

In this section, the developed FE model of T-shaped fractured bone fixed by a reconstruction 

plate and screws was utilized in statistical analysis to evaluate and optimize the design factors 

of fixation system. Three design factors including plate thickness, plate material, and the 

number of screws were selected from the literature [207-210] as the parameters of interest to 

optimize the mechanical stability and stress shielding of the fixation system in a damaged pelvic 

bone. Three levels were utilized for each of the design factors, which are determined based on 

the evaluated fixation systems reported in previous studies [4-7] to treat the T-shaped fracture 

bone and other types of fractures in pelvic bones. Table 6.2 shows the design factors and their 

dimensions at each level.  

For the statistical analysis, a 3(3-1) fractional factorial design was considered, and the matrix of 

corresponding levels and the number of runs has been designed and created by STATISTICA 

12 software (StatSoft Inc., Tulsa, OK, USA). (the matrix is listed in Table 6.3). Fractional 

factorial methods have been recommended for biomechanical analysis yielding similar answers 

with less computational effort [153]. Nine FE models were developed by modification of FE 

model of fixed pelvic bone from previous section and corresponding to the features, listed in 

Table 6.3. Also, the outputs of the first developed FE model of the fixed pelvic bone from 

previous section (in total 10 FE models) has been utilized to be analyzed for optimization of 

the fixation system.  

Biomechanical responses including crack opening, stress shielding rate, bone displacement, and 

maximum stresses in the bone, plate and screws were selected to evaluate the mechanical 

stability and stress shielding of the fixation system. The stress shielding rate was computed 

based on Equation 6.1 [211]. The rest of them were obtained from FE models directly. 

𝑆𝑡𝑟𝑒𝑠𝑠 𝑆ℎ𝑖𝑒𝑙𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (%) = (1 − 𝜎
𝜎𝑜⁄ ) × 100 (6.1) 

Where 𝜎 and 𝜎𝑜 are the stresses computed from FE models for the treated bone and intact bone, 

respectively [211]. ANOVA technique in statistical analysis software (STATISTICA 12) has 

been employed to evaluate the output parameters and define the significant variables related to 
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the biomechanical response. Finally, the optimal value of each design factor was determined, 

and the responses of the DoE model and the FE model related to optimal values were compared 

to evaluate the DoE model. 

 

Table 6.2. Design factors and their dimensions at each level 

Design factor 
Levels 

-1 0 +1 

Plate material Composite (e-

glass/epoxy) 

NiTi 

(Nitinol) 

316L stainless 

steel 

Plate thickness 

(mm) 

2.5 3.5 4.5 

Number of screws 7 9 11 

 

 

 

 
Table 6.3. Matrix of corresponding levels and number of runs  

Run Plate thickness 
Number of 

screws 
Plate material 

1 -1 (2.5 mm) -1 (7 Screws) -1 (Composite) 

2 -1 (2.5 mm) 0 (9 Screws) 0 (Nitinol) 

3 -1 (2.5 mm) 1 (11 Screws) 1 (Stainless 

steel) 

4 0 (3.5 mm) -1 (7 Screws) 0 (Nitinol) 

5 0 (3.5 mm) 0 (9 Screws) 1 (Stainless 

steel) 

6 0 (3.5 mm) 1 (11 Screws) -1 (Composite) 

7 1 (4.5 mm) -1 (7 Screws) 1 (Stainless 

steel) 

8 1 (4.5 mm) 0 (9 Screws) -1 (Composite) 

9 1 (4.5 mm) 1 (11 Screws) 0 (Nitinol) 

10 0 (3.5 mm) 1 (11 Screws) 1 (Stainless 

steel) 
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6.4 Results 

Table 6.4 demonstrates the matrix of level definition which is completed by response data from 

the FE models.  

The maximum von Mises stress and displacement from FE model of intact bone were 

determined to be 25.9MPa and 0.0678mm, respectively, and are demonstrated in Fig.6.3 (a) 

and (b) respectively. Figs.6.4 and 6.5 show the influences of the design factors on the 

biomechanical responses in chart form, showing the no-interactions and 2-way interactions in 

the DoE model respectively. These plots are for identification of factors with the strongest effect 

on biomechanical responses (p<0.05). Fig.6.4 demonstrates that the plate material and its 

thickness have the dominant influence on the crack opening, displacement, stress shielding rate 

and the maximum stress in the bone and plate. The plate material is the most influential design 

factor, and the plate thickness is the second most influential design factor on the responses. The 

variation of the number of screws had no specific influence on the responses in the Fig.6.4. 

Additionally, no dominant influence factor in the maximum stress of the screws is observed in 

Fig.6.4 (c). Therefore, the DoE model including 2-way interaction was conducted and the charts 

of influential factors were generated, which are shown in Fig.6.5. It can be observed in Fig.6.5 

that plate material and its thickness are dominant influential factors in all response variables. 

Also, Fig.6.6 (c) demonstrates that the number of screws, the plate thickness and the linear 

interaction of these factors have the strongest effect on the stress of screws. The most influential 

design factors were determined from Figs.6.4 and 6.5 and the mean plots of dominant factors 

on the biomechanical responses are shown in Fig.6.6. As it can be seen in Fig.6.6 (c), there is 

no specific pattern between the design factors and stresses in the screws and the DoE model 

requires considering the 2-way interaction. The surface plot of stress in screws versus two main 

effective factors including the number of screws and plate thickness was generated and is shown 

in Fig.6.7(a). Fig.6.7 (a) reveals that the lowest plate thickness (2.5mm) and lowest number of 

screws (7 screws) cause the highest stress in the screws, that logically seems to be true. The 

surface plots of other biomechanical responses including crack opening, displacement, stress 

shielding rate and the maximum stress in the bone and plate with considering of 2-way 

interaction are demonstrated in Fig.6.7(b)-(f). 
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Table 6.4. Level definitions and response data from FE models  

Plate thickness 

(mm) 

Number 

of screws 

Plate 

material 

Stress in 

Bone 

(MPa) 

Stress in 

Plate (MPa) 

Stress in 

Screws (MPa) 

Displacement 

(mm) 

Crack opening 

(mm) 
Stress shielding 

rate (%) 

2.5 7 Composite 18.42 7.95 22.47 0.1016 0.0656 27.2 

2.5 9 NiTi 16.2 26.08 19.9 0.0987 0.0566 36.0 

2.5 11 316L SS 15.21 35.3 19.41 0.0934 0.0452 39.9 

3.5 7 NiTi 15.84 22.32 20.94 0.0921 0.0498 37.4 

3.5 9 316L SS 14.53 36.43 21.95 0.0883 0.0383 42.6 

3.5 11 Composite 18.06 7.79 20.25 0.1048 0.0642 28.6 

4.5 7 316L SS 13.76 23.81 19.42 0.0824 0.0349 45.6 

4.5 9 Composite 17.27 6.70 20.15 0.1035 0.0641 31.7 

4.5 11 NiTi 14.97 17.52 19.86 0.0911 0.0413 40.8 

3.5 11 316L SS 14.39 28.33 20.89 0.0886 0.0377 43.1 

  

 
(a) 

 
(b) 

Figure 6.3. Maximum von Mises stress (a) and displacement (b) in the intact bone 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.4. Pareto chart of effects (including no interaction in DoE model) for (a) Bone stress(MPa) (b) plate 

stress(MPa) (c) screws stress(MPa) (d) displacement(mm) (e) crack opening(mm) (f) stress shielding ratio(%) 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.5. Pareto chart of effects (including 2-way interaction in DoE model) for (a) Bone stress(MPa) (b) plate 

stress(MPa) (c) screws stress(MPa) (d) displacement(mm) (e) crack opening(mm) (f) stress shielding ratio(%) 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.6. Means plot of dominant factors for (a) Bone stress (b) plate stress (c) screws stress (d) displacement (e) 

crack opening (f) stress shielding ratio 

 

 
(a) 

 
(b) 



94 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.7. surface plot of biomechanical responses vs. effective factors: (a) stress in screws vs. the number of screws 

and plate thickness; (b) stress in bone vs. plate material and plate thickness; (c) stress in plate vs. plate material and 

plate thickness; (d) displacement vs. plate material and plate thickness; (e) crack opening vs. plate material and plate 

thickness; (f) stress shielding rate vs. plate material and plate thickness 

 

To calculate the optimized values of design factors, ANOVA tables and effect estimates tables 

were generated, and regression equations were obtained to describe each responding variable. 

The regression equations of crack opening, stress shielding rate, bone displacement, and 

maximum stresses in the bone and the plate are listed in Equations 6.2-6.6 respectively. In 

Equations 6.2-6.6, the interaction between the variables has been neglected. As mentioned 

before, it was observed no dominant factor (with p<0.05) for stress in screws in the DoE model 

with no interaction and it is required to consider the DoE model with 2-way interaction between 

design factors. Therefore, Equations 6.2-6.6 were recalculated with considering 2-way 

interaction in the DoE model and the updated equations are listed in Equations 6.7-6.11. The 

regression equation for stress in the screws with 2-way interaction is indicated in Equation 6.12.  
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𝐶𝑂 = 0.05 − 0.013𝑀 − 0.0045𝑇 (6.2) 

𝑆𝑆𝑅 = 36.7 + 6.85𝑀 + 2.52𝑇 + 1𝑀2 (6.3) 

𝐷 = 0.095 − 0.008𝑀 − 0.003𝑇 (6.4) 

𝑆𝐵 = 16 − 1.73𝑀 − 0.64𝑇 − 0.26𝑀2 (6.5) 

𝑆𝑃 = 20 + 11.7𝑀 − 3.5𝑇 
 
 

(6.6) 

𝐶𝑂 = 0.05 − 0.015𝑀 − 0.0035𝑇 − 0.005(𝑀 ∗ 𝑇) + 0.002(𝑆𝑁)2 (6.7) 

𝑆𝑆𝑅 = 36.6 + 6.7𝑀 + 2.75𝑇 (6.8) 

𝐷 = 0.095 − 0.009𝑀 − 0.002𝑇 + 0.002(𝑆𝑁) + 0.001(𝑆𝑁)2 − 0.003(𝑇
∗ (𝑆𝑁)) 

(6.9) 

𝑆𝐵 = 16 − 1.7𝑀 − 0.7𝑇 (6.10) 

𝑆𝑃 = 20.4 + 15.6𝑀 − 6.25𝑇 − 7.7(𝑀 ∗ 𝑇) − 5.4(𝑀 ∗ (𝑆𝑁))

+ 6.9(𝑇 ∗ (𝑆𝑁)) − 2.7(𝑆𝑁) − 0.6𝑀2 

(6.11) 

𝑆𝑆 = 20.5 + 1.6(𝑇 ∗ (𝑆𝑁))  − 0.8(𝑆𝑁) − 0.6𝑀2 + 0.4𝑇2 − 0.4𝑇 + 0.4𝑀 (6.12) 

 

Where CO is crack opening (mm), SSR is stress shielding rate (%), D is displacement (mm), 

SB is stress in bone (MPa), SP is stress in plate (MPa), SS is stress in screws (MPa), M is plate 

material (Level -1, 0, 1), T is plate thickness (Level -1, 0, 1) and SN is the number of screws 

(Level -1, 0, 1). 

All the regression Equations 6.2-6.12 should be considered simultaneously to obtain the 

optimized values of design parameters. The Equations 6.2-6.12 except Equations 6.5,6.10 and 

6.12 should be minimized and Equations 6.5 and 6.10 should be maximized up to the stress in 

the intact bone, the value of which is 25.9 MPa. The SS value obtained from Equation 6.12 

should be in the middle range of minimum and maximum. The equations and their conditions 

were entered to the Wolfram Mathematica software (Wolfram Research Inc., Champaign, IL, 

USA) and Level 0 (between the three levels of -1, 0 and 1) was determined for M and T to 

satisfy the conditions of all equations. By looking at the equations, it is apparent that an increase 

in M and T will decrease the values of CO and D in Equations 6.2,6.4,6.7 and 6.9, while 
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increasing SSR in Equations 6.3 and 6.8. To minimize all these equations together, Level 0 

should be the value of M and T. Also, increasing M and T has a negative effect on maximizing 

the Equations 6.5 and 6.10 and Level 0 satisfies the condition of these equations as well. SN 

only appears in Equations 6.7,6.9,6.11 and 6.12 and variation of the number of screws has no 

specific effect or has very little influence on the values of responses. SN was selected to be 

Level -1, since drilling the lower number of holes in the pelvic bone will be more convenient 

for the surgeons and will help to increase the speed of bone healing. By looking at Table 6.2, it 

is apparent that the NiTi plate with 3.5mm thickness and 7 screws can be a balance between the 

stress shielding and mechanical stability of the fixation system, thus this was chosen as the 

optimized plate fixation system.  

The results of DoE model for the NiTi plate with 3.5mm thickness and 7 screws were compared 

to the outputs of FE model from Table 6.4 to evaluate the DoE model and the regression 

equations. The results of FE model and DoE model (with no interaction and 2-way interaction) 

for NiTi plate with the thickness of 3.5mm and 7 screws are indicated in the Table 6.5. As it 

can be seen, the results of DoE model with 2-way interaction are in an excellent agreement with 

the outputs of FE model. 

Table 6.5. Results of DoE and FE models for NiTi plate with 3.5mm thickness and 7 screws 

 Stress in 

Bone (MPa) 

Stress in Plate 

(MPa) 

Stress in 

Screws (MPa) 

Displacement 

(mm) 

Crack opening 

(mm) 

Stress shielding 

rate (%) 

DoE model (No interaction) 16.0 20.0 - 0.095 0.05 36.6 

DoE model (2-way 

interaction) 
16.0 23.1 21.3 0.094 0.05 36.7 

FE model 15.8 22.3 20.9 0.092 0.05 37.4 

6.5 Discussion 

In this study, the FE model of an intact pelvic bone and a T-style fractured bone fixed by a 

reconstruction plate and screws were developed. The intact pelvic bone model was developed 

to be used as a reference for comparing the responses of the treated pelvic bone (i.e. 

displacement and maximum stresses in the bone). The number of screws, the thickness, and the 

material of the fixation plate were considered as design factors to assess the effects of variables 

on biomechanical responses such as crack opening, stress shielding rate, bone displacement, 
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and maximum stresses in the bone, plate and screws. For the statistical analysis, a three-level 

fractional factorial design using ANOVA technique was utilized and ten FE models were 

generated based on the matrix of levels definition. The matrix of level definition was completed 

by response data from the FE models. The effective factors related to each biomechanical 

response were defined by the DoE model including no-interaction and 2-way interaction 

between the design factors. Also, ANOVA tables and effect estimates tables were generated, 

and regression equations were obtained to describe each responding variable. The investigating 

of the regression equations revealed that Level 0 of plate material and its thickness is a balance 

between stress shielding and mechanical stability. The number of screws had no specific 

influence on the responses and logically, drilling the lower number of holes will be the best 

selection for choosing the number of screws; therefore, Level -1 was considered for the number 

of screws. The results of the FE model and DoE model for NiTi plate with 3.5mm thickness 

with 7 screws were compared to validate the results of DoE model. A good agreement was 

observed between the results of FE model and DoE model. 

The DoE model revealed that the plate material and its thickness are the first and second 

influential design factors to optimize the fixation system, respectively. The composite plate has 

the lowest stiffness, highest crack opening/displacement and the lowest stress shielding rate 

between three selected materials. On the contrary, the stainless-steel plate has the highest 

stiffness, lowest crack opening/displacement and highest stress shielding rate between all three 

materials. The results proved that a material with the stiffness in the middle ground of the 

highest and lowest stiffness such as NiTi can reduce the stress shielding rate without sacrificing 

essential mechanical stability of the fixation system. Reducing 62.5% of the stiffness of plate 

material (i.e. changing the material from stainless steel to NiTi), resulted in a decrease of 24.1% 

in the stability of the fixed bone (i.e. an increase in the average of crack opening) and a decrease 

of 10.8% of the average of stress shielding rate. As mentioned before, plate thickness is the 

second influential design factor and affects the same as plate material on the stress shielding 

rate and mechanical stability of fixation system. Reducing 22.2% of the plate thickness from 

4.5mm to 3.5mm resulted in a decrease of 8.6% in the mechanical stability (i.e. an increase in 

the average of crack opening) and a decrease of 8.1% in the average of stress shielding rate. 

Contrary to the results for plate material and plate thickness, the it was found that increasing 
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the number of screws had no significant effect on most of responses such as crack opening, 

stress shielding rate, bone displacement, and maximum stress in the bone and plate. Reducing 

the number of screws from 11 to 7 screws had no effect on the average crack opening (0.05 mm 

for both number of screws) and a little influence on stress shielding rate (~36% for both number 

of screws). This is an important finding that can be considered by surgeons working on 

reconstruction of pelvic fractures. However, one limitation is that the effect of less than 7 screws 

was not studied. Future work could look at optimizing how few screws could be used to still 

obtain satisfactory results. 

It was previously reported [152] that the plate material has an effective performance in reducing 

the stress shielding and in ensuring the stability of fixation system. In that study [152], the 

investigation of previously published studies revealed that the special design of fixation plates 

such as porous plates made by titanium-based alloys might have a better performance in 

reducing stress shielding without sacrificing essential mechanical stability of the fixation 

system. Also, several studies [35, 207, 208] investigated the effect of plate thickness in the 

fixation of different bones and the authors suggested various optimal thickness values based on 

the plate material, the bones, and the loading conditions of the bones. In another study [208], 

the various design factors including the number of screws for fixation of distal radius fracture 

were evaluated. The outputs of that study [208] revealed that the number of screws has no 

significant effect in fixation of a damaged bone under axial and torsional loading while the 

number of screws is an effective variable to fix a bone under bending. Our work also shows 

that modifying the screws between 7-11 had no significant effect.  However future work could 

evaluate the minimum number of screws to use and still provide sufficient fixation. 

The objective of this study was to evaluate and optimize the fixation system in T-shaped 

acetabular fracture. The mechanical stability and stress shielding of fixation systems were 

assessed by a conjunction of FEA and DoE. The design factors included plate thickness, plate 

material and the number of screws to determine their influences on biomechanical responses 

including crack opening, stress shielding rate, bone displacement, and maximum stresses in the 

bone, plate and screws. The results revealed that plate material and its thickness are the first 

and second influential parameters on the optimization of fixation system respectively. Also, the 
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optimized values of fixation plate and the number of screws were obtained by a hybrid model 

of FEA/DoE. Finally, the hybrid model of FEA and DoE was shown to be a valuable tool to 

reduce the number of FE models and runs, leading to a significant reduction in the required 

computational procedure without sacrificing the required results accuracy. 
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Chapter 7 : Summary and Conclusions 

 

7.1 Summary 

In this research, computer modeling was used to investigate micro and macro bone fracture 

mechanism then to design and optimize the fixation system of a T-shaped fracture pelvic bone. 

Finite Element Method (FEM) is a very beneficial tool to solve the engineering problems, and 

to model failure characteristics of solid materials. Recently, the extended finite element method 

(XFEM) employs fracture mechanics to simulate fracture mechanism in the bulk materials by 

allowing cracks initiation and propagation through the elements. In this research, the XFEM 

technique has been implemented to model fracture mechanism in the pelvic bones. 

According to the objectives of this research, a comprehensive literature review has been 

conducted. First, the anatomy of pelvic bones and the types of pelvic bone fracture have been 

studied. Also, the fixation systems of pelvic bone fractures including T-shaped fracture have 

been reviewed. Second, the studies related to FE analysis of pelvis ring and pelvic bone have 

been investigated. The main purpose of conducting this section was a comprehensive coverage 

of the literature related to fracture modeling of the pelvic bone and its fixation system by FEA. 

Third, XFEM technique, the knowledge behind this technique and the XFEM formulation have 

been studied. Fourth and fifth, the studies related to fracture mechanism in the bone tissues 

including cortical and cancellous tissues on the macro- and micro-scales have been explored. 

Finally, a review has been conducted related to the material selection and geometrical 

configuration of reconstruction plates and lag screws. The review covers DoE and Taguchi 

techniques to optimize the parameters of fixation system related to various bones in human 

body skeleton.  

It was concluded from the literature that considering both cortical and cancellous tissues 

simultaneously in the fracture modeling of the bones is one of the requirements in developing 

a realistic modeling. For the cancellous bone modeling, one of the previously published three-

point bending test results of a single trabecula were replicated using two different XFEM 
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approaches (elastic-plastic-fracture; EPF and elastic-fracture; EF) that considered different 

configurations of the elasto-plastic properties of bone from which the best approach to fit the 

experimental data was identified. The behavior of a single trabecula was then used in 2D and 

3D XFEM models to quantify the strength of trabecular tissue of the forearm along three 

perpendicular anatomical axes. The stiffness values determined in 2D XFEM in the three 

anatomical directions were much lower than those reported in literature and varied in both 

direction as well as tensile/compressive behavior. This suggests that the full 3D network should 

be considered to more accurately capture the stiffness of cancellous bone. Consequently, the 

3D XFEM micro-scale models of cancellous bone specimens were developed. The material 

behaviors of the bone specimen along all anatomical directions were estimated and the 

intermediate values of material properties were determined. Additionally, the hysteresis graphs 

of the specimen were extracted to find the best material model similar to the micro-scale bone. 

Cast iron plasticity was then selected as a material model to develop an equivalent macro-

model. The parameters of the cast iron plasticity model were then selected based on the 

intermediate material properties of cancellous bone and were assigned to the equivalent macro 

model. The stress-strain curves of the equivalent model versus those of the micro-scale bone 

specimen were compared to each other and demonstrated a good agreement. For the cortical 

bone modeling, previously published materials and failure characteristics of cortical bone have 

been re-implemented on macro-scale level to be utilized in pelvic bone fracture modeling.  

Thus far, material behaviors and failure parameters of cortical and cancellous bones have been 

estimated. Also, an equivalent model from cancellous tissue in micro-scale level has been 

developed and evaluated with micro-scale modeling of cancellous specimen. The developed 

cancellous and cortical models were assigned to an intact pelvic bone with specified cortical 

and cancellous tissues. Various loading conditions have been applied to the acetabulum, and 

different types of fracture in pelvic bone have been modeled. The predicated types of fracture 

and the maximum force at fracture have been compared to those acquired from previously 

published experimental tests. The types of fracture that have been modeled were similar to the 

fractures in the experimental tests. However, the fully fracture modeling of the pelvic bone was 

impractical as simulation runs were time-consuming to be solved. 
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Finally, the mechanical stability and stress shielding of fixation system in T-shaped acetabular 

fracture were evaluated and optimized by conjunction of FEA and DoE. In other to do so, the 

FE model of an intact pelvic bone and a T-shaped damaged bone fixed by plate and screws 

were developed. Three design factors include plate thickness, plate material and the number of 

screws were considered to evaluate their effects on biomechanical responses of the bone, 

implant and the screws. For the statistical analysis, a fractional factorial design at three-levels 

using Analysis of variance (ANOVA) was utilized. The results revealed that the plate material 

and its thickness are the most effective parameters in the design of optimal fixation plates. Also, 

it was observed that the screws number has no specific influence on the responses of fixation 

system. Additionally, the hybrid model of FEA and DoE proves to be a valuable tool to reduce 

the number of FE models and runs, leading to a significant reduction in the computational costs 

without sacrificing the required results accuracy. 

 

7.2 Conclusions 

The conclusions of this research can be indicated as following: 

• With proper parameters, XFEM is capable of simulating the ductile behavior of 

cancellous bone.  

• Cancellous bone is an orthotropic material that can be simulated using a cast iron 

plasticity model.  

• XFEM model of cancellous bone is able to quantify the tensile strength of trabecular 

tissue in the various anatomical directions reporting an increased strength in the 

longitudinal direction of forearm cancellous bone tissue.  

• XFEM of cancellous bone proves to be a valuable tool to predict the mechanical 

characteristics of cancellous bones and to model the fractures in the bone specimen. 

• XFEM model of cancellous tissue is capable of replicating the micro-scale behavior in 

FE analysis simulations without the need for individual trabecula, leading to a reduction 

in computational resources without sacrificing model accuracy.  
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• The results of pelvic bone fracture modeling revealed that different types of fracture in 

the pelvic bones can be caused by the various loading conditions in unstable conditions 

of high-rate impact loads.  

• With proper mechanical and failure behaviors of cortical and cancellous tissues, XFEM 

model of pelvic bone is capable of predicting the fracture in the bone.  

• XFEM models of cancellous and cortical tissues can be assigned to other bones in 

human body skeleton so that the failure mechanism in such bones can be investigated. 

• For design and optimization of fixation system in T-shaped pelvic bone fracture, plate 

material and plate thickness are the most effective parameters.  

• Increasing the number of screws to fix a T-shaped pelvic bone fracture has no significant 

effect on the most of biomechanical responses such as crack opening, stress shielding 

rate, bone displacement and maximum stress in bone and plate. This achievement can 

be considered by the surgeons of pelvic bones.  

• For design and optimization of fixation system in T-shaped pelvic bone fracture, the 

hybrid model of FEA and DoE proves to be a valuable tool to reduce the number of FE 

models and runs, leading to a significant reduction in the computational costs without 

sacrificing the required results accuracy. 

7.3 Future Considerations 

As a result of this research, there are several further investigations in following areas: 

1. The size of cancellous bone specimen has been used in this research was considered to 

be 1.75mm according to the limitations of ABAQUS software to model fracture in the 

specimen with the larger size specimens. Utilizing the specimen with the larger size and 

finer mesh might help to improve the results of cancellous bone. 

 

2. Develop the 3D modeling and experimental tests on the specimens with various 

densities to correlate tensile and compressive strength and stiffness with density. 
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3. Calibrate the cancellous and cortical XFEM models with several specimens from 

various bones in different locations of human body skeleton and validate the calibrated 

models with the experimental tests from the same samples. 

 

4. In this research, the results revealed that cancellous bone is an orthotropic material with 

various behaviors in three anatomical directions, and such result was consistent with 

those obtained in the literature. However, the cast iron plasticity model can be used for 

isotropic materials with the same behaviors in all directions. To utilize the built-in 

material model for developing the equivalent specimen, the cancellous bone was 

considered to be initially isotropic with the intermediate material properties from three 

axial directions, which is a limitation of the present work. At the next step, an equivalent 

model with orthotropic behaviors in three anatomical directions like cancellous bone in 

micro-scale can be developed and utilized in the pelvic bone fracture modeling.  

 

5. Mechanical characteristics of bone tissues including elastic modulus and ultimate 

strength are different in various directions based on the volume fraction or density of 

specimens, fabric orientation of the bone and anatomical locations of the specimens. 

The cortical and cancellous specimens of this research were not selected from the pelvic 

bone. With proper mechanical and failure behaviors of cortical and cancellous tissues 

(by the specimens extracted from human pelvic bone), the results of XFEM model of 

pelvic bone might have a better agreement with experimental results. 

 

6. Develop the XFEM model of pelvic bone based on the CT scan data of a pelvic bone 

sample, assign the material properties of pelvic bone tissues from the samples extracted 

from the pelvic bone sample, and finally validate the XFEM model with the same 

sample that the model was created based on. 

 

7. XFEM model of cancellous and cortical tissues with proper mechanical and failure 

behaviors can be assigned to other bones in human body skeleton so that the failure 

mechanism in such bones can be investigated. 
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8. From the literature, it can be concluded that fully constrained boundary conditions 

utilized in XFEM models of pelvic bone are extremely simplified. Considering more 

realistic boundary conditions (e.g., using muscular and ligaments) might help to 

improve the FE results compared to the experimental results. 

 

9. Develop the failure and fracture model to design products to evaluate their performance. 

 

10. Develop the models in micro and macro scales with nonhomogeneous mechanical 

properties. 

 

11. Considering viscoelastic effects in the modeling of pelvic bone under high-rate impact 

loads. 

 

12. Model the stress fractures in the weight-bearing bones (e.g., leg and foot). 

 

13. Considering comprehensive design factors for DoE model to define and optimize the 

effective factors. The design factors that can be optimized include, but are not limited 

to, (1) screw configurations such as the placement of screws in the locking plates, the 

length and diameter of screws; (2) further reduction in screw number and (3) the shape, 

length and width of the locking plates. 

 

14. Develop a hybrid of FEA/DoE to investigate the performance of porous locking plates 

with different material selections to reduce the stress shielding effects in the fixed bone. 
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Appendix A: Input file of failure modeling in Cancellous Bone using 

XFEM  

A piece of input file of failure modeling (EPF model) in Cancellous Bone using XFEM: 

*Heading 

** Job name: Job-1 Model name: Model-1 

** Generated by: Abaqus/CAE 6.14-2 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name="Part-2-mesh-2,5mm" 

*Node 

      1,  -1.15838826, -0.801203549 

      2,  -1.20887756,  -0.77740097 

      3,  -1.16939187, -0.825496793 

      4,  -1.12624943,  -0.77616173 

      5,  -1.17697728, -0.714144468 

      6,  -1.10875821, -0.833007336 

      7,  -1.04743433, -0.731905639 

      8,  -1.09115517, -0.676542401 

      9,   -1.1324867, -0.631123364 

     10,  -1.03315902, -0.839324534 

     11,  -0.97689116, -0.712469101 

     12,  -1.00999081, -0.691532016 

     13,  -1.03497875, -0.661644757 

     14,  -1.03468156, -0.623265266 

     15,  -1.10193431, -0.594139695 

     16, -0.966211855, -0.878381252 

     17, -0.859121859, -0.727213919 

     18,   -0.9123469, -0.694425404 

     19,  -1.01574028,  -0.56374383 

     20,  -1.07135892, -0.510055304 

     21,  -1.10037541, -0.539265573 

     22, -0.933855653, -0.977519214 

     23,  -0.84850949, -0.978651881 

     24, -0.803513348, -0.760111809 

     25, -0.750811875, -0.518502772 

     26, -0.890177846, -0.575671375 

     27, -0.887831092, -0.627361476 

     28, -0.694175422, -0.657165706 

     29, -0.929427862, -0.543973148 

     30, -0.897898078, -0.427301824 

     31, -0.987417102, -0.395211875 

     32,  -1.07696438, -0.289503604 

     33,  -1.09214306, -0.158129454 

     34,  -1.20715177, -0.373482347 

     35,  -1.20617723, -0.162365749 

     36, -0.926642895,  -1.04012012 

     37, -0.846910536,  -1.03333569 

     38, -0.787304521, -0.425554276 



118 

 

     39, -0.521771967, -0.609121144 

     40, -0.528864622, -0.497859538 

     41,  -0.58853364,  -0.46899128 

     42,  -1.20493841,  0.105946951 

     43,  -1.10119426,  0.127868444 

     44,  -1.01737821, 0.0553725027 

     45,  -0.91443342,  -1.25041413 

     46, -0.789507806,  -1.25217462 

     47, -0.582555294, -0.309374869 

     48, -0.686084986, -0.301149517 

     49, -0.378441036,  -0.54448837 

     50, -0.431479037, -0.466632009 

     51, -0.453684241, -0.627414465 

     52,  -1.04497874,  0.204421759 

     53,  -1.11810124,  0.287217468 

     54,  -1.20421839,  0.261949927 

     55, -0.865629435,  0.105773315 

     56, -0.877890348,  0.184317186 

     57, -0.604726553, -0.0281622671 

     58, -0.676941097, -0.0240137037 

     59,  -0.29274562,  -0.58817935 

     60, -0.229710162,  -0.48799926 

     61, -0.305602491, -0.376221597 

     62, -0.385078698, -0.711435914 

     63, -0.292408317, -0.665867865 

     64,  -1.15342665,  0.469136775 

     65,   -1.2032553,  0.470552474 

     66,  -0.67576474,  0.120193966 

     67,  -0.71541357,  0.205231547 

     68, -0.722537041, 0.0804074183 

     69, -0.596850336,  0.139763743 

     70,  -0.12715286, -0.454362422 

. 

. 

. 

. 

. 

  15511, -0.232261568, -0.0284877066 

  15512, -0.227967024, -0.036658518 

  15513, -0.203694239, -0.0319121033 

  15514,  -0.20802173, -0.0214332081 

  15515, -0.211508185, -0.0104652923 

  15516, -0.212130204, -0.033973407 

  15517, -0.216033608, -0.0237779506 

  15518, -0.219647944, -0.0133308135 

  15519, -0.220322967, -0.035270907 

  15520,  -0.22415249, -0.0259527583 

  15521, -0.227904215, -0.0160335284 

*Element, type=CPS4R 

    1,   265,     1,   266,  3845 

    2,  3845,   266,   267,  3844 

    3,  3844,   267,   268,  3843 

    4,  3843,   268,   269,  3842 

    5,  3842,   269,   270,  3841 
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    6,   270,   271,  3846,  3841 

    7,   271,     2,   272,  3846 

    8,   272,   273,  3847,  3846 

    9,   273,   274,  3848,  3847 

   10,   274,   275,  3849,  3848 

   11,   275,   276,  3850,  3849 

   12,   276,     3,   264,  3850 

   13,  3846,  3847,  3842,  3841 

   14,  3847,  3848,  3843,  3842 

   15,  3848,  3849,  3844,  3843 

   16,  3849,  3850,  3845,  3844 

   17,  3850,   264,   265,  3845 

   18,     2,   271,  3851,   292 

   19,   271,   270,  3852,  3851 

   20,   270,   269,  3853,  3852 

   21,   269,   268,  3854,  3853 

   22,   268,   267,  3855,  3854 

   23,   267,   266,  3856,  3855 

   24,   266,     1,   277,  3856 

   25,   292,  3851,  3857,   291 

   26,  3851,  3852,  3858,  3857 

   27,  3852,  3853,  3859,  3858 

   28,  3853,  3854,  3860,  3859 

   29,  3854,  3855,  3861,  3860 

   30,  3855,  3856,  3862,  3861 

   31,  3856,   277,   278,  3862 

   32,   291,  3857,  3863,   290 

   33,  3857,  3858,  3864,  3863 

   34,  3858,  3859,  3865,  3864 

   35,  3859,  3860,  3866,  3865 

   36,  3860,  3861,  3867,  3866 

   37,  3861,  3862,  3868,  3867 

   38,  3862,   278,   279,  3868 

   39,   290,  3863,  3869,   289 

   40,  3863,  3864,  3870,  3869 

   41,  3864,  3865,  3871,  3870 

   42,  3865,  3866,  3872,  3871 

   43,  3866,  3867,  3873,  3872 

   44,  3867,  3868,  3874,  3873 

   45,  3868,   279,   280,  3874 

   46,   289,  3869,  3875,   288 

   47,  3869,  3870,  3876,  3875 

   48,  3870,  3871,  3877,  3876 

   49,  3871,  3872,  3878,  3877 

   50,  3872,  3873,  3879,  3878 

   51,  3873,  3874,  3880,  3879 

   52,  3874,   280,   281,  3880 

   53,   288,  3875,   287,     5 

   54,  3875,  3876,   286,   287 

   55,  3876,  3877,   285,   286 

   56,  3877,  3878,   284,   285 

   57,  3878,  3879,   283,   284 

   58,  3879,  3880,   282,   283 

   59,  3880,   281,     4,   282 



120 

 

   60,   296,     4,   281,  3885 

. 

. 

. 

. 

. 

14140, 15516, 15517, 15520, 15519 

14141, 15517, 15518, 15521, 15520 

14142, 15518,  3821,  3820, 15521 

14143, 15509, 15519, 15512, 15506 

14144, 15519, 15520, 15511, 15512 

14145, 15520, 15521, 15510, 15511 

14146, 15521,  3820,  3819, 15510 

14147,  3819,   262,  3834, 15510 

14148, 15510,  3834,  3835, 15511 

14149, 15511,  3835,  3836, 15512 

14150, 15512,  3836,  3837, 15506 

*Nset, nset=_PickedSet2_#1, internal, generate 

     1,  15521,      1 

*Elset, elset=_PickedSet2_#1, internal, generate 

     1,  14150,      1 

*Nset, nset=_PickedSet3_#1, internal, generate 

     1,  15521,      1 

*Elset, elset=_PickedSet3_#1, internal, generate 

     1,  14150,      1 

*Orientation, name=Ori-2 

1., 0., 0., 0., 1., 0. 

3, 0. 

** Section: Section-1 

*Solid Section, elset=_PickedSet2_#1, orientation=Ori-2, 

material=Material-1 

, 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name="Part-2-mesh-2,5mm-1", part="Part-2-mesh-2,5mm" 

0.06803285320282,    -0.005451,           0. 

*End Instance 

**   

*Nset, nset=Set-3, instance="Part-2-mesh-2,5mm-1" 

  188,  189,  190,  199,  200,  209,  211,  212,  225, 2838, 2839, 

2840, 2841, 2842, 2867, 2868 

 2869, 2870, 2871, 2872, 2873, 2874, 2875, 2876, 2990, 2991, 2992, 

2993, 2994, 2995, 2996, 2997 

 2998, 2999, 3000, 3001, 3160, 3161, 3162, 3163, 3164, 3165, 3166, 

3167, 3168, 3169, 3170, 3171 

 3172, 3173, 3174, 3175, 3176, 3177, 3178, 3407, 3408, 3409, 3410, 

3411, 3412, 3413, 3414, 3415 

 3416, 3417, 3418, 3419, 3420, 3421, 3422, 3423, 3424 

*Nset, nset=Set-4, instance="Part-2-mesh-2,5mm-1" 
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   34,   35,   42,   54,   65,   75,   85,  101,  572,  573,  586,  

587,  588,  589,  590,  591 

  592,  593,  594,  595,  596,  597,  598,  599,  600,  680,  681,  

682,  683,  684,  685,  686 

  687,  688,  689,  690,  691,  692,  693,  694,  695,  696,  697,  

698,  699,  858,  859,  860 

  861,  862,  863,  864,  865,  866,  867,  868, 1049, 1050, 1051, 

1052, 1053, 1054, 1055, 1056 

 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1207, 

1208, 1209, 1210, 1211, 1212 

 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1319, 1320, 1321, 

1322, 1323, 1324, 1325, 1326 

 1327, 1580, 1581, 1582, 1583, 1584, 1585, 1586, 1587, 1588, 1589, 

1590, 1591, 1592, 1593, 1594 

*Elset, elset=_PickedSet53, internal, instance="Part-2-mesh-2,5mm-1" 

 6468, 6469, 6470, 6471, 6472, 6473, 6474, 6475, 6476, 6477, 6478, 

6479, 6480, 6481, 6482, 6483 

 6484, 6485, 6486, 6487, 6488, 6489, 6490, 6491, 6492, 6493, 6495, 

6496, 6497, 6498, 6499, 6500 

 6501, 6502, 6503, 6504, 6505, 6506, 6509, 6510, 6511, 6512, 6513, 

6514, 6515, 6516, 6517, 6518 

 6519, 6522, 6523, 6524, 6525, 6526, 6527, 6528, 6529, 6530, 6531, 

6532, 6535, 6536, 6537, 6538 

 6539, 6540, 6541, 6542, 6543, 6544, 6545, 6549, 6550, 6551, 6552, 

6553, 6554, 6555, 6556, 6557 

 6558, 6562, 6563, 6564, 6565, 6566, 6567, 6568, 6569, 6570, 6571, 

6575, 6576, 6577, 6578, 6579 

 6580, 6581, 6582, 6583, 6584, 6588, 6589, 6590, 6591, 6592, 6593, 

6594, 6595, 6596, 6597, 6601 

 6602, 6603, 6604, 6605, 6606, 6607, 6608, 6609, 6610, 6721, 6722, 

6723, 6724, 6725, 6726, 6727 

 6728, 6729, 6730, 6731, 6732, 6733, 6734, 6735, 6736, 6737, 6738, 

6739, 6740, 6741, 6742, 6743 

 6744, 6745, 6746, 6747, 6748, 6749, 6750, 6751, 6752, 6753, 6754, 

6755, 6756, 6757, 6758, 6759 

 6760, 6761, 6762, 6763, 6764, 6765, 6766, 6767, 6768, 6769, 6770, 

6771, 6772, 6773, 6774, 6775 

 6776, 6777, 6778, 6779, 6780, 6781, 6782, 6783, 6784, 6785, 6786, 

6787, 6788, 6789, 6790, 6791 

 6792, 6793, 6794, 6795, 6796, 6797, 6798, 6799, 6800, 6801, 6802, 

6803, 6804, 6805, 6806, 6807 

 6808, 6809, 6810, 6811, 6812, 6813, 6814, 6815, 6816, 6817, 6818, 

6819, 7268, 7269, 7270, 7271 

 7272, 7273, 7274, 7275, 7277, 7278, 7279, 7280, 7281, 7282, 7283, 

7284, 7286, 7287, 7288, 7289 

 7290, 7291, 7292, 7293, 7295, 7296, 7297, 7298, 7299, 7300, 7301, 

7302, 7304, 7305, 7306, 7307 

 7308, 7309, 7310, 7311, 7313, 7314, 7315, 7316, 7317, 7318, 7319, 

7320, 7322, 7323, 7324, 7325 

 7326, 7327, 7328, 7329, 7331, 7332, 7333, 7334, 7335, 7336, 7337, 

7338, 7340, 7341, 7342, 7343 

 7344, 7345, 7346, 7347, 7349, 7350, 7351, 7352, 7353, 7354, 7355, 

7356, 7357, 7358, 7359, 7360 

 7361, 7362, 7363, 7364, 7365 
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*Elset, elset=_PickedSet54, internal, instance="Part-2-mesh-2,5mm-1" 

 4621, 4622, 4623, 4624, 4625, 4626, 4627, 4628, 4629, 4630, 4631, 

5373, 5374, 5375, 5376, 5377 

 5378, 5379, 5380, 5381, 5382, 5383, 5384, 5385, 5386, 5387, 5388, 

5389, 5390, 5391, 5392, 5393 

 5394, 5395, 5396, 5397, 5398, 5399, 5400, 5401, 5402, 5403, 5404, 

5405, 5406, 5407, 5408, 5409 

 5410, 5411, 5412, 5413, 5414, 5415, 5416, 5417, 5418, 5419, 5420, 

5421, 5422, 5423, 5424, 5425 

 5426, 5427, 5428, 5429, 5430, 5431, 5432, 5433, 5434, 5435, 5436, 

5437, 5438, 5439, 5440, 5441 

 5442, 5443, 5444, 5445, 5446, 5447, 5448, 5449, 5450, 5451, 5452, 

5453, 5454, 5455, 5456, 5457 

 5458, 5459, 5460, 5461, 5462, 5463, 5464, 5465, 5466, 5467, 5468, 

5469, 5470, 5471, 6251, 6252 

 6253, 6254, 6255, 6256, 6257, 6258, 6259, 6265, 6266, 6267, 6268, 

6269, 6270, 6271, 6272, 6273 

 6279, 6280, 6281, 6282, 6283, 6284, 6285, 6286, 6287, 6293, 6294, 

6295, 6296, 6297, 6298, 6299 

 6300, 6301, 6307, 6308, 6309, 6310, 6311, 6312, 6313, 6314, 6315, 

6321, 6322, 6323, 6324, 6325 

 6326, 6327, 6328, 6329, 6335, 6336, 6337, 6338, 6339, 6340, 6341, 

6342, 6343, 6349, 6350, 6351 

 6352, 6353, 6354, 6355, 6356, 6357, 6363, 6364, 6365, 6366, 6367, 

6368, 6369, 6370, 6371 

*Elset, elset=_PickedSet55, internal, instance="Part-2-mesh-2,5mm-1" 

 7519, 7520, 7521, 7522, 7523, 7524, 7525, 7526, 7527, 7528, 7529, 

7530, 7531, 7532, 7533, 7534 

 7535, 7536, 7538, 7539, 7540, 7541, 7542, 7544, 7545, 7546, 7547, 

7548, 7550, 7551, 7552, 7553 

 7554, 7555, 7556, 7557, 7558, 7559, 7560, 7561, 7562, 7563, 7564, 

7565, 7566, 7567, 7568, 7569 

 7570, 7571, 7572, 7573, 7574, 7575, 7576, 7577, 7578, 7579, 7581, 

7582, 7583, 7584, 7585, 7586 

 7588, 8360, 8361, 8362, 8363, 8364, 8365, 8366, 8367, 8368, 8369, 

8370, 8371, 8372, 8373, 8374 

 8375, 8376, 8377, 8378, 8379, 8380, 8381, 8382, 8383, 8384, 8385, 

8386, 8387, 8388, 8389, 8390 

 8391, 8392, 8393, 8394, 8395, 8396, 8397, 8398, 8399, 8400, 8401, 

8402, 8403, 8404, 8405, 8406 

 8407, 8408, 8409, 8410, 8411, 8412, 8413, 8414, 8415, 8416, 8417, 

8418, 8419, 8420, 8421, 8422 

 8423, 8424, 8425, 9266, 9267, 9268, 9269, 9270, 9271, 9272, 9273, 

9274, 9275, 9276, 9277, 9278 

 9279, 9280, 9281, 9282, 9283, 9284, 9285, 9287, 9288, 9289, 9290, 

9291, 9292, 9293, 9294, 9295 

 9297, 9298, 9299, 9300, 9301, 9302, 9303, 9304, 9305, 9308, 9309, 

9310, 9311, 9312, 9313, 9314 

 9315, 9318, 9319, 9320, 9321, 9322, 9323, 9324, 9325, 9328, 9329, 

9330, 9331, 9332, 9333, 9334 

 9335, 9338, 9339, 9340, 9341, 9342, 9343, 9344, 9345, 9348, 9349, 

9350, 9351, 9352, 9353, 9354 

 9355, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 9368, 9369, 

9370, 9371, 9372, 9373, 9374 
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 9375, 9743 

*Elset, elset=_PickedSet56, internal, instance="Part-2-mesh-2,5mm-1" 

  9826,  9827,  9828,  9831,  9832,  9833,  9836,  9837,  9838,  9841,  

9842,  9843,  9844,  9845,  9846,  9847 

  9848,  9849,  9850,  9851,  9852,  9853,  9854,  9855,  9856,  9857,  

9858,  9859,  9860,  9861,  9866,  9867 

 11073, 11074, 11075, 11076, 11077, 11078, 11079, 11080, 11081, 11082, 

11083, 11084, 11085, 11086, 11087, 11088 

 11089, 11090, 11091, 11092, 11093, 11094, 11095, 11096, 11097, 11098, 

11099, 11100, 11101, 11102, 11103, 11104 

 11105, 11106, 11107, 11108, 11109, 11110, 11111, 11112, 11113, 11114, 

11115, 11116, 11117, 11118, 11119, 11120 

 11121, 11122, 11123, 11124, 11125, 11126, 11127, 11128, 11129, 11130, 

11131, 11132, 11133, 11134, 11135, 11136 

 11137, 11138, 11139, 11140, 11141, 11142, 11143, 11144, 11145, 11146, 

11147, 11148, 11149, 11150, 11151, 11152 

 11153, 11154, 11155, 11156, 11157, 11158, 11159, 11160, 11161, 11162, 

11163, 11164, 11165, 11166, 11167, 11168 

 11169, 11170, 11171, 11172, 11863, 11870, 11871, 11872, 11873, 11878, 

11879, 11880, 11881, 11882, 11883, 11884 

 11885, 11886, 11887, 11888, 11889, 11890, 11891, 11892, 11893, 11894, 

11895, 11896, 11897, 11898, 11899, 11900 

 11901, 11902, 11903, 11904, 11905, 11906, 11907, 11908, 11909, 11910, 

11911, 11912, 11913, 11914, 11915, 11916 

 11917, 11918, 11919, 11920, 11921, 11922, 11923, 11924, 11925, 11926, 

11927, 11928, 11929, 11930, 11931, 11932 

 11933, 11934, 11935, 11936, 11937, 11938, 11939, 11940, 11941, 11942, 

11943, 11944, 11945, 11946, 11947, 11948 

 11949, 11950, 11951, 11952, 11953, 11954, 11955, 11956, 11957, 11958, 

11959, 11960, 11961, 11962, 11963, 11964 

 11965, 11966, 11967, 11968, 11969, 11970, 11971, 11972, 11973, 11974, 

11975, 11976, 11977, 11978, 11979, 11980 

 11981, 11982, 11983, 11984, 11985, 11986, 11987, 11988, 11989, 11990, 

11991, 11992, 11993, 11994, 11995, 11996 

 11997, 11998, 11999, 12000, 12001, 12002, 12003, 12004, 12005, 12006, 

12007, 12008, 12009, 12010, 12011, 12012 

 12013, 12014, 12015, 12016, 12017, 12018, 12019, 12020, 12021, 12022, 

12023, 12024, 12025, 12026, 12027, 12028 

 12029, 12030, 12031, 12032, 12033, 12034, 12035, 12036, 12037, 12038, 

12039, 12040, 12041, 12042, 12043 

*Elset, elset=_PickedSet57, internal, instance="Part-2-mesh-2,5mm-1" 

 6611, 6612, 6613, 6614, 6632, 6637, 6642, 6643, 6656, 6657, 6658, 

6659, 6660, 6661, 6662, 6663 

 6664, 6665, 6856, 6857, 6858, 6859, 6860, 6861, 6862, 6863, 6864, 

6865, 6866, 6867, 6868, 6869 

 6870, 6871, 6872, 6873, 6874, 6875, 6876, 6877, 6878, 6879, 6880, 

6881, 6882, 6883, 6884 

*Elset, elset=_PickedSet58, internal, instance="Part-2-mesh-2,5mm-1" 

 1370, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 

1381, 1382, 1383, 1384, 1385 

 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1422, 1436, 1437, 1547, 

1548, 1551, 1552, 1553, 1554 

 1555, 1556, 1557, 1558, 1559, 1560, 1561, 1562, 1563, 1564, 1565, 

1566, 1567, 1568, 1569, 1570 
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 1571, 1572, 1573, 1574, 1575, 2205, 2206, 2208, 2209, 2210, 2211, 

2212, 2213, 2214, 2215, 2216 

 2217, 2218, 2219, 2220, 2221, 2222, 2223, 2224, 2225, 2226, 2227, 

2228, 2229, 2230, 2231, 2232 

 2233, 2234, 2235, 2236, 2237, 2238, 2239, 2240, 2241, 2242, 2243, 

2244, 2245, 2246, 2247, 2248 

 2249, 2250, 2251, 2252, 2254, 2256 

*Elset, elset=_PickedSet59, internal, instance="Part-2-mesh-2,5mm-1" 

 8706, 8707, 8708, 8709, 8710, 8711, 8712, 8713, 8714, 8715, 8716, 

8717, 8718, 8719, 8720, 8721 

 8722, 8723, 8724, 8725, 8726, 8727, 8728, 8729, 8730, 8731, 8732, 

8733, 8734, 8735, 8736, 8737 

 8738, 8739, 8740, 8741, 8742, 8743, 8744, 8745, 8746, 8747, 8748, 

8749, 8750, 8751, 8752, 8753 

 8754, 8755, 8756, 8757, 8758, 8759, 8760, 8761, 8762, 8763, 8764, 

8765, 8766, 8767, 8768, 8769 

 8770, 8771, 8772, 8773, 8774, 8775, 8776, 8777, 8778, 8779, 8780, 

8781, 8782, 8783, 8784, 8785 

 8786, 8787, 8788, 8789, 8790, 8791, 8792, 8793, 8794, 8795, 8796, 

8797, 8798, 8799, 8800, 8801 

 8802, 8803, 8804, 8805, 8806, 8807, 8808, 8809, 8810, 8811, 8812, 

8813, 8814, 8815, 8816, 8817 

 8818, 8819, 8820, 8821, 8822, 8823, 8824, 8825, 8826, 8827, 8828, 

8829, 8830, 8831, 8832, 8833 

 8834, 8835, 8836, 8837, 8838, 8839, 8840, 8841, 8842, 8843, 8844, 

8845, 8846, 8847, 8848, 8849 

 8850, 8851, 8852, 8853, 8854, 8855, 8856, 8857, 8858, 8859, 8860, 

8861, 8862, 8863, 8864, 8865 

 8866, 8867, 8868, 8869, 8870, 8871, 8872, 8873, 8874, 8875, 8876, 

8877, 8878, 8879, 8880, 8881 

 8885, 8886, 8887, 8888, 8889, 8890, 8891, 8892, 8893, 8894, 8895, 

8896, 8897, 8906, 8907, 8908 

 8909, 8910, 8911, 8912, 8913, 8925, 8926, 8927, 8928, 8929, 8944, 

8945, 9546, 9547, 9548, 9551 

 9552, 9553, 9554, 9555, 9556, 9557, 9558, 9559, 9560, 9561, 9562, 

9563, 9564, 9565, 9566, 9567 

 9568, 9569, 9570, 9571, 9572, 9573, 9574, 9575, 9576, 9577, 9578, 

9579, 9580 

*Elset, elset=_PickedSet60, internal, instance="Part-2-mesh-2,5mm-1" 

  9790,  9791,  9792,  9793, 10631, 10632, 10633, 10634, 10635, 10636, 

10637, 10638, 10639, 10640, 10641, 10642 

 10643, 10644, 10645, 10646, 10647, 10648, 10649, 10650, 10651, 10652, 

10653, 10654, 10655, 10656, 10657, 10658 

 10659, 10660, 10661, 10662, 10663, 10664, 10665, 10666, 10667, 10668, 

10669, 10670, 10671, 10672, 10673, 10674 

 10675, 10676, 10677, 10678, 10679, 10680, 10681, 10682, 10683, 10684, 

10685, 10686, 10687, 10688, 10689, 10690 

 10691, 10692, 10693, 10694, 10695, 10696, 10697, 10698, 10699, 10700, 

10701, 10702, 10703, 10704, 10705, 10706 

 10707, 10708, 10709, 10710, 10711, 10712, 10713, 10714, 10715, 10716, 

10717, 10718, 10719, 10720, 10721, 10722 

 10723, 10724, 10725, 10726, 10727, 10728, 10729, 10730, 10731, 10732, 

10733, 10734, 10735, 10736, 10737, 10738 
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 10739, 10740, 10741, 10742, 10743, 10744, 10745, 10746, 10747, 10748, 

10749, 10750, 10751, 10752, 10753, 10754 

 10755, 10756, 10757, 10758, 10759, 10760, 10761, 10762, 10763, 10764, 

10765, 10766, 10767, 10768, 10769, 10770 

 10771, 10772, 10773, 10774, 10775, 10776, 10777, 10778, 10779, 10780, 

10781, 10782, 10783, 10784, 10785, 10786 

 10787, 10788, 10789, 10790, 10791, 10792, 10793, 10794, 10795, 10796, 

10797, 10798, 10799, 10800, 10801, 10802 

 10803, 10804, 10805, 10806, 10807, 10808, 10809, 10810, 10811, 10812, 

10813, 10814, 10815, 10816, 10817, 10818 

 10819, 10820, 10821, 10822, 10823, 10824, 10825, 10826, 10827, 10828, 

10829, 10830, 10831, 10832, 10833, 10834 

 10835, 10836, 10837, 10838, 10839, 10840, 10841, 10842, 10843, 10844, 

10845, 10846, 10847, 10848, 10849, 10850 

 10851, 10852, 10853, 10854, 10855, 10856, 10857, 10858, 10859, 10860, 

10861, 10862, 10863, 10864, 10865, 10866 

 10867, 10868, 10869, 10870, 10871, 10872, 10873, 10874, 10875, 10876, 

10877, 10878, 10879, 10880, 10881, 10882 

 10883, 10884, 10885, 10886, 10887, 10888, 10889, 10890, 10891, 10892, 

10893, 10894, 10895, 10896, 10897, 10898 

 10899, 10900, 10901, 10902, 10903, 10904, 10905, 10906, 10907, 10908, 

10909, 10910, 10911, 10912, 10913, 10914 

 10915, 10916, 10917, 10918, 10919, 10920, 10921, 10922, 10923, 10924, 

10925, 10926, 10927, 10928, 10929, 10930 

 10931, 10932, 10933, 10934, 10935, 10936, 10937, 10938, 10939, 10940, 

10941, 10942, 10943, 10944, 10945, 10946 

 10947, 10948, 10949, 10950, 10951, 10952, 10953, 10954, 10955, 10956, 

10957, 10958, 10959, 10960, 10961, 10962 

 10963, 10964, 10965, 10966, 10967, 10968 

*Elset, elset=_PickedSet61, internal, instance="Part-2-mesh-2,5mm-1" 

 7207, 7208, 7209, 7210, 7211, 7212, 7213, 7214, 7215, 7216, 7217, 

7218, 7219, 7220, 7221, 7222 

 7367, 7368, 7369, 7370, 7845, 7846, 7847, 7848, 7854, 7855, 7856, 

7857, 7863, 7864, 7865, 7866 

 7872, 7873, 7874, 7875, 7881, 7882, 7883, 7884, 7890, 7891, 7892, 

7893, 7899, 7900, 7901, 7902 

 7903, 7904, 7905, 7906, 7907, 7908, 7909, 7910, 7912, 8017, 8018, 

8019, 8020, 8021, 8022, 8023 

 8024, 8025, 8028, 8029, 8030, 8031, 8032, 8033, 8034, 8035, 8039, 

8040, 8041, 8042, 8043, 8044 

 8045, 8046, 8050, 8051, 8052, 8053, 8054, 8055, 8056, 8057, 8061, 

8062, 8063, 8064, 8065, 8066 

 8067, 8072, 8073, 8074, 8075, 8076, 8077, 8078, 8083, 8084, 8085, 

8086, 8087, 8088, 8089, 8227 

 8228, 8229, 8230, 8231, 8232, 8233, 8234, 8235, 8238, 8239, 8240, 

8241, 8242, 8243, 8244, 8245 

 8246, 8250, 8251, 8252, 8253, 8254, 8255, 8256, 8257, 8261, 8262, 

8263, 8264, 8265, 8266, 8267 

 8268, 8272, 8273, 8274, 8275, 8276, 8277, 8278, 8279, 8284, 8285, 

8286, 8287, 8288, 8289, 8290 

 8295, 8296, 8297, 8298, 8299, 8300, 8301 

*Enrichment, name=Crack-4, type=PROPAGATION CRACK, elset=_PickedSet53 

*Enrichment, name=Crack-7, type=PROPAGATION CRACK, elset=_PickedSet54 

*Enrichment, name=Crack-8, type=PROPAGATION CRACK, elset=_PickedSet55 
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*Enrichment, name=Crack-11, type=PROPAGATION CRACK, elset=_PickedSet56 

*Enrichment, name=Crack-18, type=PROPAGATION CRACK, elset=_PickedSet57 

*Enrichment, name=Crack-19, type=PROPAGATION CRACK, elset=_PickedSet58 

*Enrichment, name=Crack-22, type=PROPAGATION CRACK, elset=_PickedSet59 

*Enrichment, name=Crack-24, type=PROPAGATION CRACK, elset=_PickedSet60 

*Enrichment, name=Crack-25, type=PROPAGATION CRACK, elset=_PickedSet61 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=Material-1 

*Damage Initiation, criterion=MAXPE, position=COMBINED, tolerance=0.5 

 0.38, 

*Damage Evolution, type=ENERGY 

 1e-07, 

*Damage Stabilization 

1e-06 

*Elastic 

2000., 0.3 

*Plastic 

80.,   0. 

83., 0.34 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES, inc=1000000 

*Static, stabilize=2e-05, allsdtol=0.005, continue=NO 

0.01, 1., 1e-50, 0.1 

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-1 Type: Displacement/Rotation 

*Boundary 

Set-3, 1, 1, 1. 

Set-3, 2, 2 

Set-3, 6, 6 

** Name: BC-2 Type: Displacement/Rotation 

*Boundary 

Set-4, 1, 1 

Set-4, 2, 2 

Set-4, 6, 6 

**  

** CONTROLS 

**  

*Controls, reset 

*Controls, parameters=time incrementation 

16, 20, , , , , , 50, , ,  

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 
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**  

*Output, field 

*Node Output 

CF, PHILSM, PSILSM, RF, U 

*Element Output, directions=YES 

LE, PE, PEEQ, PEMAG, S, STATUSXFEM 

*Contact Output 

CDISP, CSTRESS 

**  

** HISTORY OUTPUT: H-Output-2 

**  

*Output, history 

*Node Output, nset=Set-3 

U1, U2, U3 

**  

** HISTORY OUTPUT: H-Output-3 

**  

*Node Output, nset=Set-4 

RF1, RF2, RF3 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT 

*End Step 
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Appendix B: User subroutine UDMGINI code 

The user defined subroutine UDMGINI code utilized in this study has been provided in the 

following: 

      SUBROUTINE UDMGINI(FINDEX,NFINDEX,FNORMAL,NDI,NSHR,NTENS,PROPS, 

     1 NPROPS,STATEV,NSTATEV,STRESS,STRAIN,STRAINEE,LXFEM,TIME, 

     2 DTIME,TEMP,DTEMP,PREDEF,DPRED,NFIELD,COORDS,NOEL,NPT, 

     3 KLAYER,KSPT,KSTEP,INC,KDIRCYC,KCYCLELCF,TIMECYC,SSE,SPD, 

     4 SCD,SVD,SMD,JMAC,JMATYP,MATLAYO,LACCFLA,CELENT,DROT,ORI) 

C 

      INCLUDE 'ABA_PARAM.INC' 

CC 

      DIMENSION FINDEX(NFINDEX),FNORMAL(NDI,NFINDEX),COORDS(*), 

     1 STRESS(NTENS),STRAIN(NTENS),STRAINEE(NTENS),PROPS(NPROPS),  

     2 STATEV(NSTATEV),PREDEF(NFIELD),DPRED(NFIELD),TIME(2), 

     3 JMAC(*),JMATYP(*),DROR(3,3),ORI(3,3) 

       

      DIMENSION PE(3), ANPE(3,3), E(6) 

      PE(1)=0.0 

      PE(2)=0.0 

      PE(3)=0.0 

C 

C ROTATE THE STRAIN TO GLOBAL SYSTEM IF THERE IS ORIENTATION 

C 

      CALL ROTSIG(STRAIN,ORI,E,2,NDI,NSHR) 

      CALL SPRIND(E,PE,ANPE,2,NDI,NSHR) 

      EPS1 = PE(1) 

   EPS2 = PE(1) 

      KMAX = 1 

   KMIN = 1 

   EPSABS = 0 

      DO K1 = 2, NDI 

         IF(PE(K1).GE.EPS1) THEN 

            EPS1 = PE(K1) 

            KMAX = K1 

         ELSE IF(PE(K1).LT.EPS2) THEN 

                 EPS2 = PE(K1) 

                 KMIN = K1 

         END IF 

      END DO 

   EPSABS = (-1)*EPS2 

      IF(EPS1.LT.EPSABS) THEN 

         FINDEX(2) = EPS2/PROPS(2) 

      ELSE 

      FINDEX(1) = EPS1/PROPS(1) 

   END IF 

      IF(EPS1.LT.EPSABS) THEN 

         DO K1 = 1, NDI 

            FNORMAL(K1,2) = ANPE(KMIN,K1) 

         END DO 
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      ELSE 

         DO K1 = 1, NDI 

          FNORMAL(K1,1) = ANPE(KMAX,K1) 

         END DO 

      END IF 

      RETURN 

      END 
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Appendix C: Input file of failure modeling in 3D Cancellous Bone 

specimen using XFEM  

A piece of input file of failure modeling in 3D Cancellous Bone specimen using XFEM: 

*Heading 

** Job name: Job-2 Model name: Job6 

** Generated by: Abaqus/CAE 2017 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=PART-1 

*Node 

      1,  0.550000012,  0.508301973,     1.063797 

      2,  0.550000012,  0.511321425,   1.08241236 

      3,  0.550000012,  0.515941501,   1.37498844 

      4,  0.550000012,  0.521607399,   1.23360991 

      5,  0.550000012,  0.526500404,   1.19675064 

      6,  0.550000012,  0.526548266,   1.31339109 

      7,  0.550000012,  0.526881099,   1.27236247 

      8,  0.550000012,  0.527424097,   1.10947692 

      9,  0.550000012,  0.533798397,   1.42357171 

     10,  0.550000012,  0.533815801,   1.08557844 

     11,  0.550000012,    0.5342803,    1.1341058 

     12,  0.550000012,  0.540143669,   1.34942102 

     13,  0.550000012,  0.541185915,   1.16875291 

     14,  0.550000012,  0.541900218,   1.39375961 

     15,  0.550000012,  0.550782621,   1.06923532 

     16,  0.550000012,  0.551912785,   1.23334193 

     17,  0.550000012,  0.556919217,   1.30162776 

     18,  0.550000012,  0.564598799,   1.20207274 

     19,  0.550000012,  0.565680325,   1.26152349 

     20,  0.550000012,  0.574441433,   1.37208152 

     21,  0.550000012,  0.579189003,   1.41461217 

     22,  0.550000012,     0.584454,   1.32872534 

     23,  0.550000012,  0.594299316,   1.23796475 

     24,  0.550000012,  0.594466686,   1.28536928 

     25,  0.550000012,  0.612301826,   1.38779819 

     26,  0.550000012,  0.616995156,   1.35040343 

     27,  0.550000012,  0.622524917,   1.21853137 

     28,  0.550000012,  0.624504685,   1.25935543 

     29,  0.550000012,  0.627007902,   1.30704725 

     30,  0.550000012,  0.647033334,   1.40243089 

     31,  0.550000012,  0.650326908,    1.2369858 

     32,  0.550000012,  0.654542804,   1.36341035 

     33,  0.550000012,  0.655081749,   2.56148243 

     34,  0.550000012,  0.659236193,   1.32601571 

     35,  0.550000012,  0.659549057,   1.27669799 

     36,  0.550000012,  0.670629859,   2.58834696 

     37,  0.550000012,  0.674067497,   1.23074043 

     38,  0.550000012,  0.683561385,   1.19039249 



131 

 

     39,  0.550000012,   0.68508321,   2.53493261 

     40,  0.550000012,  0.687396884,   1.39104998 

     41,  0.550000012,  0.692090273,   1.29837608 

     42,  0.550000012,  0.692090273,   1.34715188 

     43,  0.550000012,  0.699563503,   2.56517315 

     44,  0.550000012,  0.702415884,   1.25772977 

     45,  0.550000012,  0.704475105,   2.59370565 

     46,  0.550000012,  0.704606056,   1.22033501 

     47,  0.550000012,  0.711470187,   1.18301523 

     48,  0.550000012,  0.722128391,   1.37641728 

     49,  0.550000012,  0.722128391,   2.54183102 

     50,  0.550000012,  0.725883126,   1.33089316 

     51,  0.550000012,  0.731222272,   2.57579017 

     52,  0.550000012,  0.732141018,   1.28103352 

     53,  0.550000012,   0.73392874,   1.41448617 

     54,  0.550000012,  0.735895813,   1.21816719 

     55,  0.550000012,  0.744924664,   1.18177223 

     56,  0.550000012,   0.75216639,   1.24634874 

     57,  0.550000012,  0.752999306,   1.14547777 

     58,  0.550000012,  0.761553288,   1.30487955 

     59,  0.550000012,  0.762179077,   1.37641728 

     60,  0.550000012,  0.771878779,   1.33902252 

. 

. 

. 

. 

. 

  22477,   1.02799845,    1.9587189,   2.59798217 

  22478,   2.09818792,   1.68684053,   2.76523662 

  22479,  0.842361152,   1.46664584,   2.16614556 

  22480,   2.06427336,   1.58932364,   2.34574103 

  22481,  0.581149042,  0.715667307,   2.53802276 

  22482,   2.01109433,     1.613626,   2.30430174 

  22483,   1.99393296,   1.97524786,   2.74292111 

  22484,   1.26115561,   2.19182372,   2.11326909 

  22485,  0.674788475,   1.70322561,   2.20922232 

  22486,  0.762059093,  0.708972812,   2.57470369 

  22487,   1.50344729,  0.582755983,   2.15535855 

  22488,   2.24365187,   1.79963696,   1.07921267 

  22489,   1.37145591,  0.769375265,   2.22563291 

  22490,   1.01669753,   1.38236046,   2.51585436 

  22491,   1.06148708,   1.82118225,   1.39299536 

  22492,  0.814122081,  0.634509504,   2.01582003 

  22493,   1.02733672,   1.77748513,   1.07861471 

  22494,   1.98705316,   1.05367446,   1.70388567 

  22495,   2.26180983,   1.24222398,   2.11876988 

  22496,   1.06921208,   1.98457158,   2.25538087 

  22497,   2.27046967,  0.571690619,   1.68206251 

  22498,  0.751012146,   2.19309211,   1.79567659 

  22499,   2.27148247,  0.625325382,   1.76212132 

  22500,   2.00764704,   1.02609897,   1.13275051 

  22501,   1.23711383,  0.793396413,   1.41538668 

  22502,   1.83621264,  0.519468069,   1.08045065 

  22503,   1.48956788,   0.52724874,   1.90750504 
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  22504,   1.58921421,    1.9751184,   2.24117279 

  22505,   2.25807762,   1.26615512,    2.3715601 

  22506,  0.856917143,  0.557284951,    2.5398469 

  22507,   1.84950674,    1.1744734,   2.18177915 

  22508,  0.620485127,   2.00977468,   1.07866836 

  22509,   1.70977974,   1.32131279,   2.32947373 

  22510,    1.8829999,  0.776603281,   1.94662285 

  22511,  0.703161836,   1.02284074,   2.70184779 

  22512,   1.40074515,  0.784251451,   2.29308796 

  22513,   1.24433231,   2.15227461,   2.06890702 

  22514,  0.885693848,    1.2912991,   2.06284952 

  22515,    2.1796422,   1.98545313,   2.71681905 

  22516,  0.939723313,    1.2642014,   2.08413577 

  22517,    1.9000113,   1.96992493,   2.16779399 

  22518,   1.53332031,   1.45282257,   2.71418691 

  22519,   1.87502742,   2.02320528,   2.13879633 

  22520,   2.04791093,   1.88819671,   2.13596511 

  22521,   1.78895879,   2.11640644,   1.39854896 

  22522,   2.07356429,   1.65593541,   2.64598274 

  22523,   0.91733098,    1.3462404,   2.05715203 

  22524,   1.75451088,   1.24620271,   2.21797276 

  22525,  0.927335382,   1.12999463,   2.07578826 

  22526,  0.706632972,  0.747108042,   2.03584838 

  22527,   1.83240056,    2.0142169,   1.11648333 

  22528,    1.7891165,    2.0517292,   1.22943819 

  22529,    1.2294966,   2.17378139,   1.40477455 

  22530,   1.94861448,   1.93584716,   2.17735052 

  22531,   2.04323459,   1.86577737,   2.68365574 

  22532,   1.80784833,   2.05417037,   1.28067017 

  22533,  0.839983284,  0.616059721,   1.69283772 

  22534,   1.22086596,   2.08236885,    1.3940469 

  22535,  0.859092295,   1.27420855,   2.73663521 

  22536,   1.96094227,   1.31021476,   2.11882496 

  22537,    2.0379858,  0.882332087,   2.75820327 

  22538,   1.95439112,   1.92656815,    2.0345819 

  22539,   1.96752274,   1.90411472,   2.10286474 

  22540,   2.25377488,  0.670993507,   1.81665874 

  22541,   1.34448981,   0.84398973,   2.37610674 

  22542,   1.99776423,   1.88596237,   2.04049015 

  22543,   1.82260346,  0.870767772,   1.72121572 

  22544,   2.00759673,     1.119555,   1.67909265 

  22545,   1.79951942,   1.22751486,   2.20683265 

  22546,   2.12349463,   1.66382492,   2.66834068 

  22547,    1.8024931,   2.04968095,    1.1888119 

  22548,   1.90084434,   1.93825877,   2.12264347 

  22549,   2.05245519,  0.860283375,   2.71751928 

  22550,  0.888634324,  0.653402925,   2.54687762 

  22551,  0.662032247,   2.22106767,   1.19756663 

  22552,   0.55773133,    2.1368556,   2.74986124 

*Element, type=C3D4 

 34437, 15779, 16042, 15739, 16278 

 34438, 16042, 16087, 15739, 16278 

 34439, 16125, 16042, 15779, 16278 

 34440, 16281, 16125, 15779, 16278 
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 34441, 15645, 15976, 15795, 16304 

 34442, 16050, 15976, 15645, 16304 

 34443, 15846, 16294, 16279, 15817 

 34444, 16309, 15798, 15743, 16291 

 34445,  4438,  4775,  4493,  4585 

 34446, 15798, 15866, 15743, 16291 

 34447, 15792, 15743, 15866, 16291 

 34448, 16295, 15866, 15798, 16291 

 34449, 16309, 16295, 15798, 16291 

 34450, 15846, 15792, 15866, 16291 

 34451, 15672, 16298, 15585, 16288 

 34452, 15969, 15672, 16288, 16286 

 34453, 15846, 16294, 16291, 16279 

 34454,   945,   865, 20967,     2 

 34455, 15634, 16309, 15743, 16310 

 34456, 15303, 15585, 15392, 16306 

 34457,  4812,  4556,  4438,  4775 

 34458, 15792, 15817, 15660, 16294 

 34459,  5728,  5499,  5770,  5429 

 34460, 15660, 15779, 15585, 16299 

 34461, 15585, 16298, 15392, 16306 

 34462, 16298, 16311, 15392, 16306 

 34463, 15585, 16314, 15303, 15660 

 34464, 16418, 15572, 15505, 16413 

 34465, 16306, 16299, 15585, 16288 

 34466, 15634, 15743, 15543, 16310 

 34467, 15817, 16279, 16112, 16281 

 34468, 19441, 19440,  6876,  7131 

 34469, 16295, 16132, 15866, 16291 

 34470, 15739, 16278, 16087, 16288 

 34471, 16125, 15817, 16112, 16281 

 34472, 16064, 16315, 15795, 16304 

 34473, 16299, 16281, 15779, 16278 

 34474, 15543, 15660, 15299, 16314 

 34475, 16330, 16335, 15634, 16322 

 34476, 16314, 15543, 15660, 16310 

 34477, 19640,  7730,  7483,  7835 

 34478, 16050, 15645, 15873, 16307 

 34479, 16315, 15695, 15795, 15443 

 34480, 15645, 15795, 15443, 16315 

 34481, 15739, 16087, 15969, 16288 

 34482, 15299, 15660, 15303, 16314 

 34483, 15660, 16281, 16294, 15817 

 34484, 16289, 15672, 15916, 16286 

 34485, 15672, 16117, 15916, 16286 

. 

. 

. 

. 

112026, 112027, 112028, 112029, 112030, 112031, 112033, 112034, 112036, 

112037, 112038, 112039, 112040, 112041, 112042, 112043 

 112044, 112045, 112046, 112047, 112048, 112049, 112050, 112051, 

112052, 112053, 112054, 112055, 112056, 112057, 112058, 112060 
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 112061, 112062, 112063, 112064, 112065, 112066, 112067, 112068, 

112070, 112072, 112073, 112076, 112077, 112078, 112079, 112080 

 112083, 112084, 112088, 112089, 112090, 112091, 112092, 112095, 

112096, 112097, 112098, 112099, 112100, 112101, 112102, 112104 

 112106, 112107, 112109, 112110, 112111, 112112, 112113, 112114, 

112115, 112116, 112117, 112119, 112120, 112121, 112122, 112123 

 112124, 112125, 112126, 112128, 112129, 112130, 112131, 112132, 

112133, 112134, 112135, 112136, 112137, 112138, 112139, 112140 

 112141, 112142, 112144, 112145, 112146, 112147, 112148, 112149, 

112151, 112152, 112153, 112156, 112157, 112158, 112159, 112160 

 112161, 112163, 112165, 112170, 112171, 112172, 112174, 112175, 

112176, 112178, 112179, 112181, 112182, 112183, 112184, 112185 

 112186, 112187, 112188, 112189, 112190, 112191, 112192, 112193, 

112195, 112196, 112198, 112199, 112200, 112201, 112202, 112203 

 112204, 112206, 112208, 112211, 112212, 112214, 112215, 112216, 

112217, 112221, 112224, 112228, 112231, 112232, 112238, 112239 

 112240, 112241, 112242, 112243, 112244, 112245, 112246, 112247, 

112251, 112252, 112253, 112254, 112255, 112256, 112257, 112259 

 112260, 112261, 112262, 112263, 112264, 112265, 112266, 112267, 

112268, 112269, 112273, 112274, 112275, 112276, 112277, 112278 

 112279, 112280, 112281, 112282, 112283, 112284, 112285, 112286, 

112288, 112289, 112290, 112291, 112293, 112294, 112295, 112296 

 112297, 112298, 112300, 112302, 112303, 112304, 112305, 112306, 

112307, 112308, 112309, 112310, 112312, 112313, 112314, 112316 

 112317, 112318, 112319, 112320, 112321, 112322, 112323, 112324, 

112325, 112326, 112327, 112328, 112329, 112330, 112331, 112332 

 112333, 112334, 112335, 112336, 112337, 112338, 112340, 112341, 

112342, 112344, 112346, 112347, 112348, 112350, 112352, 112353 

 112354, 112355, 112357, 112360, 112361, 112362, 112363, 112364, 

112365, 112366, 112368, 112369, 112370, 112371, 112372, 112373 

 112377, 112378, 112381, 112382, 112383, 112384, 112385, 112386, 

112387, 112388, 112389, 112390, 112391, 112392, 112393, 112394 

 112395, 112396, 112397, 112398, 112401, 112402, 112403, 112404, 

112405, 112407, 112410, 112411, 112412, 112413, 112414, 112415 

 112416, 112417, 112418, 112419, 112421, 112422, 112424, 112425, 

112426, 112427, 112428, 112429, 112430, 112431, 112432, 112433 

 112434, 112435, 112436, 112437, 112438, 112439, 112440, 112441, 

112442, 112443, 112444, 112445, 112446, 112447, 112448, 112449 

 112450, 112451, 112452, 112453, 112454, 112455, 112456, 112457, 

112458, 112460, 112461, 112462, 112463, 112464, 112465, 112466 

 112467, 112469, 112470, 112471, 112472, 112473, 112474, 112475, 

112476, 112477, 112478, 112479, 112481, 112482, 112483, 112484 

 112485, 112486, 112487, 112488, 112489, 112490, 112491, 112492, 

112493, 112494, 112495, 112496, 112497, 112498, 112499, 112500 

 112501, 112502, 112504, 112505, 112506, 112507, 112508, 112509, 

112510, 112511, 112512, 112513, 112514, 112515, 112516, 112517 

 112518, 112519, 112521, 112522, 112523, 112524, 112526, 112527, 

112528, 112529, 112530, 112531, 112533, 112534, 112535, 112537 

 112538, 112539, 112540, 112541, 112542, 112543, 112544, 112545, 

112547, 112548, 112549, 112550, 112551, 112552, 112553, 112554 

 112555, 112556, 112558, 112559, 112561, 112563, 112565, 112566, 

112567, 112568, 112569, 112570, 112571, 112572, 112573, 112574 

 112575, 112576, 112577, 112578, 112579, 112580, 112581, 112582, 

112583, 112584, 112585, 112586, 112587, 112588, 112589, 112590 
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 112591, 112592, 112593, 112594, 112595, 112596, 112597, 112598, 

112599, 112600, 112601, 112602, 112603, 112604, 112605, 112606 

 112607, 112608, 112609, 112610, 112611, 112612, 112613, 112614, 

112615, 112616, 112617, 112619, 112620, 112621, 112622, 112623 

 112624, 112625, 112626, 112627, 112628, 112629, 112630, 112631, 

112632, 112633, 112634, 112635, 112636, 112637, 112638, 112640 

 112641, 112643, 112644, 112645, 112646, 112647, 112648, 112649, 

112650, 112651, 112652, 112653, 112654, 112656, 112657, 112658 

 112659, 112660, 112661, 112662, 112663, 112664, 112665, 112666, 

112667, 112668, 112670, 112671, 112672, 112673, 112674, 112675 

 112677, 112678, 112679, 112680, 112682, 112683, 112684, 112685, 

112686, 112687, 112688, 112689, 112690, 112691, 112692, 112693 

 112694, 112695, 112697, 112698, 112700, 112701, 112702, 112703, 

112704, 112705, 112706, 112707, 112708, 112709, 112710, 112711 

 112712, 112713, 112714, 112715, 112716, 112718, 112719, 112720, 

112721, 112722, 112723, 112724, 112725, 112728, 112729, 112731 

 112732, 112734, 112735, 112736, 112737, 112738, 112739, 112740, 

112741, 112743, 112744, 112745, 112747, 112748, 112749, 112750 

 112751, 112752, 112753, 112754, 112755, 112756, 112757, 112758, 

112759, 112760, 112761, 112762, 112763, 112764, 112765, 112766 

 112767, 112768, 112769, 112770, 112771, 112772, 112773, 112774, 

112775, 112776, 112777, 112778, 112779, 112780, 112781, 112782 

 112783, 112784, 112785, 112786, 112787, 112788, 112789, 112791, 

112792, 112793, 112795, 112797, 112798, 112799, 112800, 112801 

 112803, 112804, 112805, 112806, 112807, 112808, 112809, 112811, 

112813, 112814, 112815, 112816, 112817, 112818, 112819, 112820 

 112821, 112822, 112823, 112824, 112825, 112827, 112828, 112829, 

112830, 112831, 112832, 112833, 112834, 112835, 112836, 112837 

 112838, 112839, 112840, 112841, 112843, 112844, 112846, 112847, 

112850, 112851, 112852, 112853, 112854, 112855, 112856, 112857 

 112858, 112859, 112860, 112862, 112863, 112864, 112865, 112866, 

112867, 112868, 112869, 112870, 112871, 112872, 112873, 112874 

 112875, 112876, 112877, 112878, 112879, 112880, 112881, 112882, 

112883, 112884, 112890, 112891, 112892, 112893, 112895, 112897 

 112898, 112904, 112908, 112909, 112910, 112911, 112912, 112913, 

112914, 112915, 112916, 112918, 112919, 112920, 112921, 112922 

 112923, 112925, 112926, 112927, 112928, 112929, 112931, 112932, 

112933, 112934, 112935, 112936, 112937, 112938, 112940, 112941 

 112942, 112944, 112945, 112946, 112947, 112948, 112949, 112950, 

112951, 112952, 112953, 112954, 112957, 112958, 112959, 112961 

 112962, 112963, 112964, 112965, 112966, 112967, 112968, 112969, 

112970, 112971, 112972, 112974, 112978, 112979, 112982, 112983 

 112984, 112985, 112986, 112987, 112989, 112990, 112991, 112992, 

112993, 112994, 112995, 112997, 113001, 113002, 113004, 113006 

 113007, 113008, 113009, 113010, 113011, 113013, 113014, 113016, 

113017, 113018, 113019, 113022, 113023, 113025, 113026, 113027 

 113028, 113029, 113030, 113031, 113032, 113033, 113034, 113037, 

113038, 113039, 113040, 113041, 113042, 113043, 113044, 113045 

 113046, 113047, 113048, 113049, 113050, 113051, 113052, 113053, 

113054, 113055, 113056, 113057, 113059, 113060, 113062, 113063 

 113064, 113065, 113066, 113067, 113068, 113069, 113070, 113071, 

113073, 113074, 113077, 113080, 113081, 113082, 113083, 113084 

 113085, 113086, 113087, 113089, 113091, 113092, 113093, 113094, 

113095, 113096, 113097, 113098, 113099, 113100, 113101, 113102 
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 113103, 113104, 113106, 113107, 113108, 113110, 113111, 113112, 

113116, 113117, 113118, 113120, 113121, 113122, 113124, 113126 

 113127, 113128, 113130, 113131, 113133, 113134, 113135, 113136, 

113137, 113138, 113139, 113140, 113141, 113142, 113144, 113145 

 113146, 113147, 113148, 113149, 113151, 113152, 113153, 113155, 

113156, 113157, 113158, 113159, 113160, 113162, 113163, 113164 

 113165, 113166, 113167, 113168, 113170, 113171, 113172, 113173, 

113174, 113175, 113176, 113177, 113178, 113179, 113180, 113181 

 113182, 113183, 113185, 113186, 113187, 113188, 113189, 113190, 

113191, 113192, 113194, 113195, 113196, 113197, 113198, 113199 

 113200, 113201, 113202, 113203, 113204, 113205, 113207, 113208, 

113209, 113210, 113211, 113212, 113215, 113216, 113217, 113218 

 113221, 113222, 113223, 113224, 113226, 113227, 113228, 113229, 

113230, 113233, 113235, 113236, 113239, 113240, 113242, 113244 

 113246, 113248, 113249, 113250, 113251, 113252, 113253, 113254, 

113255, 113257, 113258, 113259, 113260, 113261, 113262, 113263 

 113264, 113265, 113267, 113268, 113270, 113273, 113274, 113275, 

113276, 113277, 113278, 113280, 113281, 113282, 113283, 113284 

 113285, 113286, 113287, 113288, 113289, 113290, 113291, 113292, 

113293, 113294, 113295, 113296, 113297, 113298, 113300, 113301 

 113302, 113303, 113304, 113306, 113307, 113308, 113309, 113310, 

113312, 113313, 113314, 113315, 113316, 113317, 113319, 113320 

 113322, 113323, 113324, 113325, 113326, 113327, 113329, 113331, 

113333, 113334, 113335, 113337, 113338, 113341, 113342, 113343 

 113344, 113345, 113347, 113348, 113349, 113350, 113352, 113353, 

113354, 113355, 113356, 113357, 113358, 113359, 113360, 113361 

 113365, 113367, 113371, 113372, 113373, 113374, 113375, 113376, 

113377, 113378, 113379, 113380, 113381, 113382, 113383, 113384 

 113385, 113386, 113388, 113389, 113390, 113391, 113392, 113393, 

113394, 113396, 113397, 113398, 113399, 113400, 113402, 113403 

 113404, 113405, 113406, 113407, 113408, 113409, 113411, 113412, 

113414, 113415, 113416, 113417, 113418, 113419, 113420, 113421 

 113422, 113423, 113424, 113425, 113426, 113427, 113428, 113429, 

113431, 113432, 113435, 113436, 113437, 113439, 113440, 113443 

 113444, 113445, 113446, 113447, 113448, 113449, 113450, 113451, 

113452, 113453, 113454, 113455, 113456, 113457, 113458, 113459 

 113460, 113461, 113464, 113465, 113466, 113468, 113469, 113470, 

113474, 113475, 113476, 113477, 113478, 113479, 113480, 113482 

 113483, 113484, 113485, 113486, 113487, 113488, 113489, 113490, 

113493, 113496, 113498, 113499, 113502, 113503, 113505, 113506 

 113508, 113509, 113510, 113511, 113512, 113514, 113515, 113518, 

113521, 113522, 113524, 113525, 113526, 113527, 113529, 113530 

 113531, 113532, 113533, 113535, 113538, 113539, 113541, 113544, 

113545, 113547, 113548, 113549, 113550, 113551, 113552, 113554 

 113556, 113557, 113563, 113564, 113565, 113566, 113567, 113568, 

113570, 113571, 113572, 113573, 113574, 113575, 113576, 113577 

 113578, 113579, 113580, 113582, 113583, 113586, 113587, 113588, 

113589, 113590, 113591, 113593, 113594, 113595, 113596, 113603 

 113604, 113605, 113608, 113609, 113610, 113612, 113613, 113614, 

113616, 113618, 113621, 113623, 113625, 113627, 113628, 113632 

 113634, 113635, 113636, 113637, 113638, 113639, 113640, 113641, 

113643, 113645, 113646, 113648, 113650, 113651, 113653, 113654 

 113655, 113656, 113658, 113659, 113660, 113661, 113663, 113664, 

113668, 113669, 113672, 113673, 113675, 113676, 113677, 113679 
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 113681, 113682, 113683, 113684, 113685, 113686, 113687, 113688, 

113689, 113690, 113691, 113692, 113693, 113695, 113697, 113698 

 113700, 113701, 113702, 113704, 113705, 113706, 113707, 113708, 

113713, 113717, 113718, 113719, 113722, 113723, 113724, 113725 

 113727, 

*Enrichment, name=CRACK-1, type=PROPAGATION CRACK, elset=SET-3 

*Enrichment, name=CRACK-2, type=PROPAGATION CRACK, elset=SET-4 

*Enrichment, name=CRACK-3, type=PROPAGATION CRACK, elset=SET-5 

*Enrichment, name=CRACK-4, type=PROPAGATION CRACK, elset=SET-6 

*Enrichment, name=CRACK-5, type=PROPAGATION CRACK, elset=SET-7 

*Enrichment, name=CRACK-6, type=PROPAGATION CRACK, elset=SET-8 

*Enrichment, name=CRACK-7, type=PROPAGATION CRACK, elset=SET-9 

*Enrichment, name=CRACK-8, type=PROPAGATION CRACK, elset=SET-10 

*Enrichment, name=CRACK-9, type=PROPAGATION CRACK, elset=SET-11 

*Enrichment, name=CRACK-10, type=PROPAGATION CRACK, elset=SET-12 

*Enrichment, name=CRACK-11, type=PROPAGATION CRACK, elset=SET-13 

*Enrichment, name=CRACK-12, type=PROPAGATION CRACK, elset=SET-14 

*Enrichment, name=CRACK-13, type=PROPAGATION CRACK, elset=SET-15 

*Enrichment, name=CRACK-14, type=PROPAGATION CRACK, elset=SET-16 

*Enrichment, name=CRACK-15, type=PROPAGATION CRACK, elset=SET-17 

*Enrichment, name=CRACK-16, type=PROPAGATION CRACK, elset=SET-18 

*Enrichment, name=CRACK-17, type=PROPAGATION CRACK, elset=SET-19 

*Enrichment, name=CRACK-18, type=PROPAGATION CRACK, elset=SET-20 

*Enrichment, name=CRACK-19, type=PROPAGATION CRACK, elset=SET-21 

*Enrichment, name=CRACK-20, type=PROPAGATION CRACK, elset=SET-22 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=MATERIAL-1 

*Damage Initiation, criterion=MAXPE, tolerance=0.6 

 0.38, 

*Damage Evolution, type=ENERGY 

 0.0001, 

*Damage Stabilization 

1e-05 

*Elastic 

4100., 0.3 

*Plastic 

 166.5,   0. 

 172.5, 0.34 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Disp-BC-1 Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

SET-2, ENCASTRE 

** Name: Disp-BC-2 Type: Displacement/Rotation 

*Boundary 

SET-1, 1, 1 

** Name: Disp-BC-3 Type: Displacement/Rotation 

*Boundary 

SET-1, 2, 2 

** Name: Disp-BC-4 Type: Displacement/Rotation 
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*Boundary 

SET-1, 3, 3 

** Name: Disp-BC-5 Type: Displacement/Rotation 

*Boundary 

SET-1, 4, 4 

** Name: Disp-BC-6 Type: Displacement/Rotation 

*Boundary 

SET-1, 5, 5 

** Name: Disp-BC-7 Type: Displacement/Rotation 

*Boundary 

SET-1, 6, 6 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES, inc=1000000 

*Static, stabilize=0.0002, allsdtol=0.05, continue=NO 

0.01, 1., 1e-50, 0.1 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Disp-BC-1 Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

** Name: Disp-BC-2 Type: Displacement/Rotation 

*Boundary, op=NEW 

** Name: Disp-BC-3 Type: Displacement/Rotation 

*Boundary, op=NEW 

** Name: Disp-BC-4 Type: Displacement/Rotation 

*Boundary, op=NEW 

** Name: Disp-BC-5 Type: Displacement/Rotation 

*Boundary, op=NEW 

** Name: Disp-BC-6 Type: Displacement/Rotation 

*Boundary, op=NEW 

** Name: Disp-BC-7 Type: Displacement/Rotation 

*Boundary, op=NEW 

** Name: Disp-BC-8 Type: Symmetry/Antisymmetry/Encastre 

*Boundary, op=NEW 

SET-2, ENCASTRE 

** Name: Disp-BC-9 Type: Displacement/Rotation 

*Boundary, op=NEW 

SET-1, 1, 1, 1. 

** Name: Disp-BC-10 Type: Displacement/Rotation 

*Boundary, op=NEW 

SET-1, 3, 3 

** Name: Disp-BC-11 Type: Displacement/Rotation 

*Boundary, op=NEW 

SET-1, 4, 4 

** Name: Disp-BC-12 Type: Displacement/Rotation 

*Boundary, op=NEW 

SET-1, 5, 5 

** Name: Disp-BC-13 Type: Displacement/Rotation 

*Boundary, op=NEW 

SET-1, 6, 6 

** Name: Disp-BC-14 Type: Displacement/Rotation 
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*Boundary, op=NEW 

SET-1, 2, 2 

**  

** CONTROLS 

**  

*Controls, reset 

*Controls, analysis=discontinuous 

*Controls, parameters=time incrementation 

, , , , , , , 100, , ,  

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 

*Contact Output 

CDISP, CSTRESS 

**  

** FIELD OUTPUT: F-Output-2 

**  

*Node Output 

CF, PHILSM, PSILSM, RF, U 

**  

** FIELD OUTPUT: F-Output-3 

**  

*Element Output, directions=YES 

E, EE, IE, LE, MISES, PE, PEEQ, PEMAG, S, STATUS, STATUSXFEM 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history 

*Node Output, nset=SET-1 

U1,  

**  

** HISTORY OUTPUT: H-Output-2 

**  

*Node Output, nset=SET-2 

RF1,  

**  

** HISTORY OUTPUT: H-Output-3 

**  

*Output, history, variable=PRESELECT 

*End Step 


