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Abstract

Particle physics is the study of the fundamental constituents of matter and their inter-

actions. The study of bound states of elementary particles such as positronium and di-

positronium, whose lifetime is short, is important for understanding properties of bound

leptons with precision. The fundamental measurable quantities are the cross section and the

decay rate. Theoretically, both of these quantities require the calculation of transition ampli-

tudes, which is complicated and time consuming. We present a simple technique to compute

the amplitudes and write the products of spinors in terms of gamma matrices, which reduces

the computational time and provides more insights into the physics of a reaction. After

testing the method with the well known problem of positronium, we apply it to Ps2 → e+e−

and find that the previously published result in [1] is incorrect.

Muons are playing central role for the new physics searches. Experiments, such as Mu2e

and COMET, are designed to observe the charged lepton flavor violation (CLFV) for neutri-

noless muon to electron conversion. For these experiments, it is important to know all the

possible backgrounds, one of which is the bound muon decay that we study in this thesis. We

consider the muon bound to a nucleus in 1S state decaying to a bound electron in 1S. Two

important limits of the decay rate, namely extreme relativistic and extreme non-relativistic

are found. In the non-relativistic limit Zα→ 0, the resulting expression is valid up to Z = 43

with an error less than 1%.

ii



Preface

This thesis is organized as follows: In Chapter 1, exotic states, their types, and formation
are explained. Then the decay rate of an exotic state “di-positronium,” which is a bound state
of two electrons and two positrons, is computed. Chapter 2 deals with the Dirac equation
for an electron bound in a hydrogen-like atom. The bound state wave functions derived in
that chapter are used in Chapters 3 and 4. In Chapter 3, the decay rate of a bound muon is
computed and extreme relativistic and non-relativistic limits are discussed. Last two chapters
deal with the calculation of the magnetic moment of an electron.

The idea of working on these problems belongs to Prof. Andrzej Czarnecki. Chapter 1
is the result of collaboration with Prof. Andrzej Czarnecki, Prof. Muhammad Jamil Aslam
and Dr. Wen. We generated all the possible diagrams for Ps2 → e+e− and computed the
decay rate independently. For the first half of chapter 3, Prof. A. Czarnecki helped me
with the calculation. The second half is the result of collaboration with Prof. M. J. Aslam
and Md. Samiur. I found the first three terms in the expansion series of the decay rate of
the bound muon in the extreme relativistic and non-relativistic limits and compared with
the exact numerical result. Last two chapters are motivated by [2], and I worked under the
guidance of Prof. A. Czarnecki and collaborated with M. J. Aslam. The main result of the
thesis is Ps2 → e+ + e−, but we present additional chapters which are to be continued in my
Ph.D work.
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Chapter 1

Polyelectron Systems

In this chapter, we compute the radiation-less decay of the di-positronium (Ps2 → e+e−).
We prove that the previously published result is incorrect and the correct decay rate is 5.44
times less than the one presented in [1]. Previously published results also claim [1, 3]

Γ (Ps2 → e+e−)

Γ (Ps2 → γγ)
' 250. (1.0.1)

This large ratio of two processes, which are of the same order in the fine structure constant
and have two particles in the final state is puzzling. We introduce a simple technique to solve
the decay problems and test it with the well-established decay of the positronium into two
photons. We then apply it to correct the values of these Ps2 decays. We claim

Γ (Ps2 → e+e−)

Γ (Ps2 → γγ)
' 12. (1.0.2)

1.1 Introduction

The electron is one of the building blocks out of which matter is constructed. It is an
elementary particle having a mass 0.51 MeV (throughout this thesis I use units c = ~ =

ε0 = 1 except for a few places where these constants are restored)and charge −e. They are
everlasting and structureless as far as we know. Most of the electrons on the earth have been
there for as long as the earth has existed and some are produced by the decays. The electron
was discovered by J.J Thomson in 1897. Thomson got Nobel prize in 1906 for this discovery.
The discovery of the electron was a consequence of cathode rays that were discovered by
Julius Plücker in 1858. In 1879, William Crookes studied cathode rays and observed bending
of rays in magnetic field. In 1897, Thomson investigated cathode rays and concluded that
these rays consist of particles having negative charge. Stoney named them “electrons”.
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The positron was discovered in 1932 by Carl Anderson [4, 5]. This was the first antiparticle
to be discovered, and it started a new era in particle physics. Anderson was studying the
nature of cosmic rays using the bubble chamber on the advice of Robert Millikan. His cloud
chamber was capable to detect cosmic ray particles of energies up to 4×104 eV. He identified
particles of a positive unit charge and suspected them to be protons. But, the ionization
properties and the radius of curvature suggested that the mass of the identified particle
is much smaller than the proton. The track of the identified particle indicated it to be a
positively charged electron, and it was named positron.

1.1.1 Exotic States

An ordinary atom consists of protons, neutrons, and electrons. The protons and neutrons
are concentrated in the nucleus and electrons surround it. If subatomic particles of an atom
are replaced by some other particles (e.g., leptons or mesons), then the resulting atom will
be called an exotic atom. The exotic state can be built either replacing electrons or nucleons,
or both electrons and nucleons by leptons or mesons.

(a) An ordinary hydrogen atom. (b) Kaonic hydrogen, a hadronic
exotic state

Figure 1.1.1: The ordinary and exotic states of atoms.

The exotic states can be categorized into two types, leptonic and hadronic exotic states,
depending on its constituents. For example, a hadronic exotic state is one in which subatomic
particles are replaced by the hadrons, e.g., the electron of hydrogen atom replaced by a kaon
forms a hadronic exotic state as shown in Figure 1.1.1.
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1.1.2 Positronium

An electron and a positron revolving around their common center of mass form a positro-
nium (Ps) as shown in Figure 1.1.2. It was predicted by Anderson and Mohorovičič, inde-
pendently in 1932 and 1934, respectively. The existence of the positronium was confirmed by
Martin Deutsch in 1951 [6]. The positronium can be formed by stopping an intense beam of
positrons in porous silica. It is a purely leptonic system, so it is free from uncertainty due to
hadrons, e.g. proton charge radius. Positronium provides us an opportunity to understand
its spectrum and lifetime with great precision. So, this simplest system offers a framework
to understand bound states in Quantum Electrodynamics (QED). The creation of a positron
does not require high energy accelerators and can be very easily created from radioactive
isotopes. The electron and positron both are spin half particles, so the positronium has both
spin singlet and spin triplet states. When spins of the electron and positron are antiparallel
and combined anti-symmetrically then the spin of the positronium is zero. This singlet state
of a positronium is called para-positronium (p-Ps). The para-positronium can decay into
even number of photons, but two-photon decay dominates. The life time of p-Ps is approx-
imately 125 ps. The spin-one (triplet) positronium is called ortho-positronium (o-Ps). It
can decay into an odd number (greater than one) of photons, but branching ratio of three
photons decay is maximum.

Figure 1.1.2: Positronium.

The similarity between the hydrogen and the positronium allows us to use Bohr’s formula
of energy levels of the hydrogen for a positronium. For Ps, reduced mass is m/2, where m is
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mass of electron, therefore, energy levels for Ps are

En = −µ
2

(
e2

4πε0~

)2
1

n2
= −m

4

(
e2

4πε0~

)2
1

n2
= −6.7

n2
eV. (1.1.1)

1.2 Decay Rate of Para-positronium

We will find the decay rate of p-Ps, when the electron and positron annihilate and a pair
of photons is created. At tree level, only two diagrams that differ in the direction of the
outgoing photons contribute, as shown in Figure 1.2.1.

Figure 1.2.1: Two possible diagrams for the decay of para-positronium into two photons.

The dynamics of the system are described by the transition amplitude between initial and
final state. If the momenta of initial and final state particles are pi, ki, and the momentum
carried by the propagator is q, then the amplitudes for the two diagrams will be

M1 = [v̄ (p2)VF (µ)FP (q,m)VF (ν)u (p1)] ε∗ν (k1) ε∗µ (k2) , (1.2.1)

M2 = [v̄ (p2)VF (µ)FP (q,m)VF (ν)u (p1)] ε∗µ (k1) ε∗ν (k2) , (1.2.2)

where u (p) and v (p) are the spinors for the electron and positron, respectively. The adjoint
spinor v̄ is equal to v†γ0, ε′s are the polarizations of photons, VF(α) = ieγα is the vertex
factor, and FP (q,m) = �q+m

q2−m2 is the fermion propagator. The anti-symmetrization rule
suggests that both amplitudes should be added. Therefore, the total amplitude is

M = v̄ (p2) [VF (µ)FP (q,m)VF (ν) + VF (ν)FP (q,m)VF (µ)]u (p1) ε∗ν (k1) ε∗µ (k2) .

(1.2.3)
The p-Ps is the spin singlet state, thus the amplitude for the singlet spin configuration is

Msinglet =
M↑↓ −M↓↑√

2
,
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whereM↑↓ is obtained from the spin up electron and spin down positron,M↓↑ is obtained
from spin down electron and spin up positron. To calculate the matrix element, we use the
property of spinors, which helps us to write their product in terms of a trace as

ūMv = ūiMijvj = vjūiMij = (vū)jiMij = Tr [vūM ] . (1.2.4)

Using this in Equation (1.2.3),

M = Tr [u (p1) v̄ (p2) [VF (µ)FP (q,m)VF (ν) + VF (ν)FP (q,m)VF (µ)]] ε∗ν (k1) ε∗µ (k2) .

(1.2.5)
Momenta of the initial state particles are negligible as compared to their masses, thus

pe+/e− = (m, 0, 0, 0) , (1.2.6)

where m is the mass of the electron/positron. Assuming initial particles at rest and the
right-handed polarized photons come out back-to-back along z-axis having momenta k1 =

(m, 0, 0,m) and k2 = (m, 0, 0,−m), we found

M↑↓(e
+e− → γγ) = −2ie2, (1.2.7)

M↓↑(e
+e− → γγ) = +2ie2. (1.2.8)

These are amplitudes for free states. The force of attraction between e+ and e− is only
Coulomb force. Solving Schrödinger equation will give us Ψ(r). The bound state is linear
superposition of free states with definite r or k. It is convenient to express superposition in
momentum space

Ψ(k) =

∫
d3xeik.rΨ(r), (1.2.9)

and corresponding normalization is ∫
d3k

(2π)3 |Ψ(k)|2 = 1. (1.2.10)

Free states are normalized to 2Ei. In order to construct bound state wave function with
mass M = 2m, we have to normalize free states to unity (non-relativistically) by multiplying

1√
2E1

1√
2E2

and finally by
√

2M to normalize the bound state relativistically assumed by our

5



master formula of decay rate [7]:

|B〉 =
√

2M

∫
d3k

(2π)3
Ψ(k)

1√
2E1

1√
2E2

|k1 ↑,k2 ↓〉. (1.2.11)

Therefore, the amplitude for the p-Ps reads as

M↑↓(p-Ps→ γγ) =
√

2M

∫
d3k

(2π)3
Ψ (k)

1√
2E1

1√
2E2

M↑↓(e
+e− → γγ), (1.2.12)

M↑↓(e
+e− → γγ) is independent of k, so the integration over the momentum will yield

Ψ(r = 0); the wave function evaluated at origin.

M↑↓(p-Ps→ γγ) =
√

2M
1

2m
Ψ(0)M↑↓(e

+e− → γγ) (1.2.13)

= −
√

2M
1

m
ie2Ψ(0), (1.2.14)

M↓↑(p-Ps→ γγ) = +
√

2M
1

m
ie2Ψ(0). (1.2.15)

Using e2 = 4πα, where α is the fine structure constant, the amplitude for the spin singlet
configuration is

Msinglet = −8
√
M

1

m
iπαΨ(0). (1.2.16)

This gives the amplitude squared |Msinglet| 2 = 64π2α2 M
m2 |Ψ(0)| 2. The decay rate can be

calculated from the master formula as,

Γ(p-Ps→ γRγR) =
1

2
× 1

2M
×
∫
dΠLIPS|M|2 (1.2.17)

=
2πα2

m2
|Ψ(0)|2 (1.2.18)

The phase space integration for the two massless final state particles is 1
8π

[see (A.1.1)]. The
factor 1/2 in Equation (1.2.17) is the symmetry factor due to the identical photons in the
final state. The decay rate when the p-Ps decays into left-handed photons is same as that of
right-handed, so total decay rate is twice of the Equation (1.2.18), i.e.,

Γ =
4πα2

m2
|Ψ(0)| 2 (1.2.19)

=
mα5

2
=

1

124ps
. (1.2.20)

This agrees with the result calculated in [8].
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1.3 Di-positronium

In 1946, Wheeler speculated that two Ps atoms may combine to form the positronium
molecule (Ps2), stable with respect to auto-dissociation. Later calculations confirmed it and
predicted the binding energy of 0.4 eV. In 2007, the existence of the Ps2 was confirmed
experimentally by David Cassidy and Allen Mills at the University of California, and paved
the way for further multi-positronium work. The production of di-positroniun is described
in [9]. Studies of multi-positronium systems are motivated by a long-term goal of generating
coherent radiation and could one day facilitate fusion power generation as well as energy
weapons such as gamma-ray lasers. Being the simplest four-body bound state, Ps2 serves
as a model for more complicated systems such as tetraquarks [10, 11, 12, 13]. All of the
properties of Ps2 can be calculated with an arbitrary precision within QED. However, we
found that this few-body system is not so simple and even some of its tree-level decays have
not yet been correctly evaluated. Our aim is to calculate decay rate for Ps2 → e+e− using a
simple and clean formalism.

1.3.1 Radiation-less Decay of the Positronium Molecule

For a di-positronium decaying into an electron and a positron, there are total 36 possible
diagrams, which can be classified into 4 classes, as shown in Figure 1.3.1. There are 4 class-A,
16 class-B, 8 class-C, and 8 class-D diagrams. All 36 diagrams can be obtained from the four
diagrams given in Figure 1.3.1 by changing the annihilating pairs in initial state, and crossing
the electron and positron in the final state.

The total wave function of Ps2 should be antisymmetric under exchange of identical
fermions. To minimize the kinetic energy, the spatial wave function of electrons (and similarly
positrons) is symmetric. This means the spin configuration of the identical particles should be
antisymmetric. Thus, in the ground state of Ps2, both electron and positron pairs are in spin
singlet states. This allows us to compute the amplitudes for only four spin configurations.

M =
1√
2

(
Me−↑ e

−
↓
−Me−↓ e

−
↑

)
· 1√

2

(
Me+↑ e

+
↓
−Me+↓ e

+
↑

)
(1.3.1)

=
1

2

(
Me−↑ e

+
↑ e
−
↓ e

+
↓

+Me−↓ e
+
↓ e
−
↑ e

+
↑
−Me−↑ e

+
↓ e
−
↓ e

+
↑
−Me−↓ e

+
↑ e
−
↑ e

+
↓

)
. (1.3.2)

For these spin configurations, first three classes of diagrams have non-zero contributions,
whereas, the amplitude of each of the diagram from class-D is zero for all the required spin
configurations. Momenta of the initial state particles are negligible as compare to their
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(a) Class-A: Both electron-positron pairs in the ini-
tial state are spin triplet state.

(b) Class-B: One of the e−e+ pairs decays in the spin
triplet state and other pair exchanges the photon.

(c) Class-C: One of the e−e+ pairs decay in the spin
singlet state (two photons) and other pair absorbs
the photons.

(d) Class-D: One of the the e−e+ pair is in spin
triplet state and decays to a photon, which is ab-
sorbed by the constituents of the other pair, which
further decays in spin triplet state.

Figure 1.3.1: Three classes of diagrams for the decay of the positronium molecule into an
electron and a positron.
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masses, thus
pi = (m, 0, 0, 0) , (1.3.3)

where m is the mass of electron/positron. Let the momenta of final state particles are
k1 = (E, 0, 0, p) and k2 = (E, 0, 0,−p), then conservation of four momenta gives

E = 2m. (1.3.4)

The square of the 4-momentum of an electron is equal to the square of its mass,

k2
1 = m2 = E2 − p2 =⇒ p =

√
3m,

thus, the dynamics of the final state particles are

k1 = (2m, 0, 0,
√

3m), k2 = (2m, 0, 0,−
√

3m). (1.3.5)

The amplitudes for the diagrams are of the form

M = Tr [up1 v̄p2VF1(µ)]Tr [vp3 v̄p4VF2(α)]Tr [vk2ūk1VF1(µ)FP1(q,m)VF1(α)]

PP(1) · PP(2), (1.3.6)

and contain products of spinors, which in terms of gamma matrices are given in Table 1.3.1.
PP(i) represents the photon propagator.

Table 1.3.1: Gamma matrix representation of the product of spinors.
Spinors product γ−Matrix representation
u↑ (p) v̄↑ (p) m (1 + γ0) γ1+iγ2

2

u↑ (p) v̄↓ (p) −m (1 + γ0) γ5+γ3

2

u↓ (p) v̄↑ (p) m (1 + γ0) γ5−γ3
2

u↓ (p) v̄↓ (p) −m (1 + γ0) γ1−iγ2
2

v↓ (k2) ū↑ (k1) −m
[√

3 (1− iγ2γ1)− 3 (γ5 − γ3) 1+γ0

2
− (γ5 + γ3) 1−γ0

2

]
u↑ (p) ū↑ (k1) m1+γ0√

2

[√
3 (1− iγ2γ1)− γ5 − γ3

]
u↓ (p) ū↑ (k1) −m1+γ0√

2
[1 + 3γ5] (γ1 − iγ2)

v↓ (k2) v̄↑ (p) − m√
2

[
1−
√

3γ5
]

(1 + γ0) (γ1 + iγ2)

u↓ (k2) ū↓ (p) m√
2

[
1−
√

3γ5
]

(1 + γ0) (γ3 + γ5)

The net results of all the diagrams for these four spin configurations, when the final state
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electron and positron are spin-up and spin-down, respectively, are

Me−↑ e
+
↑ e
−
↓ e

+
↓

= 3
√

3
ie4

m2
, Me−↓ e

+
↓ e
−
↑ e

+
↑

= 3
√

3
ie4

m2
, (1.3.7)

Me−↑ e
+
↓ e
−
↓ e

+
↑

= −3
√

3
ie4

m2
, Me−↓ e

+
↑ e
−
↑ e

+
↓

= −3
√

3
ie4

m2
. (1.3.8)

Note that the spinors are normalized to 2E. The amplitudes for all the diagrams are given
in Appendix B. The total amplitude obtained by substituting values in Equation (1.3.2) is

M
(
e+e−e+e− → e−e+

)
= 96

√
3
iπ2α2

m2
, (1.3.9)

where e2 = 4πα is used. This is the amplitude for the free state of two electrons and two
positrons, which is related to the bound state of Ps2 as

M
(
Ps2 → e−e+

)
=
√

2MΨ (0, 0, 0)
M↑↓(e

+e−e+e− → e−e+)√
2E1

√
2E2

√
2E2

√
2E2

= 24
√

6M
iπ2α2

m4
Ψ (0, 0, 0) ,

where Ψ (0, 0, 0) is the position-time wave function evaluated at origin and M is the mass of
di-positronium. The square of the amplitude, averaged over the final state spins, which gives
the probability density of Ps2 decaying into the e−e+ is

∣∣〈M (
Ps2 → e−e+

)〉∣∣2 = 1728M
π4α4

m8
|Ψ (0, 0, 0)|2 . (1.3.10)

The decay rate can be computed from the Fermi’s Golden Rule as,

Γ
(
Ps2 → e−e+

)
=

1

4
· 1

2M

∫
dΠLIPS |M| 2

=
27
√

3

2

π3α4

m8
|Ψ (0, 0, 0)|2

=
27
√

3

2
π3α13m 〈δ++−−〉 ,

where 1
4

= 1
2!

1
2!

is due to the position-space wave function of identical initial state particles,∫
dΠLIPS =

√
3

16π
[see (A.1.2)] is the phase space factor and 〈δ++−−〉 is the expectation value

of the four-particle delta-function in Ps2, its value is 4.596× 10−6 [1]. The value obtained for
the decay rate is 4.27× 10−10s−1, which is 5.44 times less than 2.32× 10−9s−1, presented in
[14].

We also computed the two photons decay rate of di-positronium for the same spin con-
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figurations using exactly same procedure and found

Γ (Ps2 → γγ) =
2π3α4

m8
|Ψ (0, 0, 0)|2 (1.3.11)

= 2π3α13m 〈δ++−−〉 . (1.3.12)

This result is the 3.93 times of the one presented in [3].
We believe that results presented in [3, 14] are incorrect for two reasons. First, [3] sums

all amplitudes with equal phase. The different order of fermion operators acting on the initial
state demands a minus sign for Figure 1.2.3(a) relative to diagrams in 1.2.3(b,c). The second
mistake is that it averages over all initial spin configurations, instead of working with the
proper spin wave function for the ground state of Ps2, in which the electron pair forms a spin
singlet, and so does the positron pair. In Ref [1], summation over all the final state spins is
taken, which includes contributions from triplet configurations of initial state electrons (and
positrons). This is not the case, the sum of final state spin projections should be zero as the
initial state spin projection is zero.

The ratio of the two decay rates is

Γ (Ps2 → e−e+)

Γ (Ps2 → γγ)
=

27
√

3

4
= 11.7, (1.3.13)

which is quite surprising. We expected the radiation-less decay to be less probable because it
involves massive particles in the final state. There are two factors which make the radiation-
less decay more probable. First is the momenta of final state particles which gives different
phase space for two reactions ∫

dΠLIPS (e−e+)∫
dΠLIPS (γγ)

=
√

3. (1.3.14)

The second reason is the nature of Feynman diagrams involved in two processes. Due to
the difference of the propagators and kinematics, amplitudes for each spin configuration are
different for the two processes. The three possible families of diagrams for two photons decay
are shown in Figure 1.3.2. First two type of diagrams contribute and the results are

Me−↑ e
+
↑ e
−
↓ e

+
↓

= − ie4

4m4
, Me−↓ e

+
↓ e
−
↑ e

+
↑

= − ie4

4m4
, (1.3.15)

Me−↑ e
+
↓ e
−
↓ e

+
↑

= +
ie4

4m4
, Me−↓ e

+
↑ e
−
↑ e

+
↓

= +
ie4

4m4
. (1.3.16)

The ratio of squared amplitudes for two reactions makes the major difference is

|Amplitudes Ratio|2 ∼ 6.75. (1.3.17)
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These are the two reasons which make the two photons decay less probable than the radiation-
less decay.

(a) A-type diagrams (b) B-type diagrams (c) C-type diagrams

Figure 1.3.2: Three categories of diagrams for Ps2 → γ + γ.

1.4 Conclusion

In this chapter, we computed the decay rate of positronium molecule decaying into an
electron and a positron and provided the correct decay rate. We also compared the result
with the two photon decay of Ps2 and found Γ (Ps2 → e+e−) /Γ (Ps2 → γγ) ' 12. This ratio
differs from Γ (Ps2 → e+e−) /Γ (Ps2 → γγ) ' 250, claimed by [1, 3]. Their result is incorrect
because they did not use the proper spin configuration of the ground state of Ps2.
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Chapter 2

Bound State Wave Functions

In this chapter, we will solve the Dirac equation for an electron bound in a hydrogen-like
atom. The solution of the Dirac equation will be used in next two chapters to compute decay
rate of the bound muon, and the magnetic moment of the electron.

2.1 The Dirac Equation

In 1828, Dirac searched for the relativistic covariant equation to replace to Schrödinger
equation (

− ~2

2m
∇2 + V (r)

)
ψ = i~∂tψ = Eψ, (2.1.1)

with positive definite energy density [15]. At that time, the charge density interpretation was
not known and the Klein-Gordon equation, which was second order in space-time derivatives,
yielded negative probabilities. The natural choice was to write the Hamiltonian in terms of
linear space–time derivatives, such as

i~∂tψ =
(
cα.p+ βmc2

)
ψ. (2.1.2)

It turned out that α′s and β are the 4 × 4 trace-less Hermitian matrices with the following
features,

{αi, αi} = 2δijI, (2.1.3)

{αi, β} = 0, (2.1.4)

α2
i = β2 = I, (2.1.5)
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and act on the wave function ψ, which have several components arranged as a column vector.
These components of the Dirac wave function together make an object called a spinor. One
of the possible representation of these matrices is

αi =

(
0 σi

σi 0

)
, β =

(
I 0

0 −I

)
, (2.1.6)

where σi are the Pauli-spin matrices. We get a nice form of the Dirac equation, multiplying
(2.1.2) by β and using natural units,

(iγµ∂µ −m)ψ = 0, (2.1.7)

where

γ0 = β, γi = βαi, ∂µ = (∂0,∇) . (2.1.8)

The Dirac Hamiltonian carries 4×4 gamma matrices, which require a four-component column
vector (Dirac spinor) interpretation for the Dirac wave function [16]. The free particle plane
wave solution of the Dirac equation are of the form,

ψ (x) = u (p) e−ip·x, (2.1.9)

where p.x = Et− p · x, and u (p) is four component Dirac spinor satisfying,

(γµpµ −m)u = 0, (2.1.10)

such that

u↑ (p) = N


(

1

0

)
σ.p
E+m

(
1

0

)
 , u↓ (p) = N


(

0

1

)
σ.p
E+m

(
0

1

)
 , (2.1.11)

where N is the normalization constant. u↑ (p) and u↓ (p) are the spin-up and and spin-down
spinors, respectively, for a particle [17]. The antiparticle solutions are

ψ = vep·x, (2.1.12)
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with

v↑ (p) = N


σ.p
E+m

(
0

1

)
(

0

1

)
 , v↓ (p) = N


σ.p
E+m

(
1

0

)
(

1

0

)
 . (2.1.13)

If spinors are normalized relativistically (to 2E), then the normalization constant N is
√
E +m.

2.2 The Dirac Equation in the Presence of Coulomb Po-

tential

The Dirac Hamiltonian for an electron bound to a nucleus via Coulomb potential, i.e., a
hydrogen-like atom is given as,

H = α.p+ βm+ V (r) , (2.2.1)

where V (r) = −Zα
r
. The spherical symmetry of the potential ensures

[H,J ] = 0 = [H,P ] , (2.2.2)

where P and J are the parity and angular momentum operators. This symmetry allows us
to write wave functions in terms of two-spinors φ and χ as

ψ (x) =

(
φ (x)

χ (x)

)
. (2.2.3)

The eigenvalue equation reads as(
α.p+ βm− Zα

r

)(
φ (x)

χ (x)

)
=E

(
φ (x)

χ (x)

)
. (2.2.4)

Since eigenfunctions of the parity and total angular momentum are spherical spinors, we can
use separation of variables as [18](

φ (x)

χ (x)

)
≡

(
ig (r)A (θ, φ)

−f (r)A (θ, φ)

)
= i

(
g (r)A (θ, φ)

if (r)A (θ, φ)

)
. (2.2.5)
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Using the Identity (σ.A) (σ.B) = A.B + iσ. (A×B), we can write

(σ · p)A (θ, φ) =

(
i
(
∇.r

r

)
− ir.∇− iσ.L

r

)
A (θ, φ) (2.2.6)

= − i
r

(2 + σ.L)A (θ, φ) (2.2.7)

≡ − i
r

(1 + κ)A (θ, φ) , (2.2.8)

κ =

− (l + 1) for j = l + 1/2

l for j = l − 1/2
. (2.2.9)

Using Equations (2.2.5) and (2.2.8) in Equation (2.2.4) results in coupled equations

g′ +
(1 + κ)

r
g −

(
E +m+

Zα

r

)
f = 0, (2.2.10)

f ′ +
(1− κ)

r
f −

(
E −m+

Zα

r

)
g = 0, (2.2.11)

which get a nicer form by substituting G = rg and F = rf ,

G′ +
κ

r
G−

(
E +m+

Zα

r

)
F = 0, (2.2.12)

F ′ − κ

r
F −

(
E −m+

Zα

r

)
G = 0. (2.2.13)

The solutions of these equations were first found by Darwin, Gordon, Bethe and Salpeter,
and Rose [19]. Introducing short hand notations Zα = αZ , m ± E = α±, we can write our
equations as

G′ +
κ

r
G−

(
α+ +

αZ
r

)
F = 0, (2.2.14)

F ′ − κ

r
F −

(
α− +

αZ
r

)
G = 0. (2.2.15)

We will solve them first for the asymptotic limits. In the limit r → ∞, we can ignore
the term proportional to 1

r
. This will simplify our set of equation as G′ − (E −m)F =

0 and F ′− (E −m)G = 0. Differentiating both equations w.r.t. r and substituting values of
first derivatives will decouple the equations as

F ′′ = −α+α−F, G′′ = −α+α−G, (2.2.16)
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thus, the solution the equation is

F (r →∞) ∼ e−ρ, (2.2.17)

where ρ =
√
α+α−r. Now in the limit r → 0, in Equations (2.2.14) and (2.2.15), the terms

proportional to 1/r will be the dominant terms and the decoupled equations are

ρF ′′ + F ′ +
ω2

ρ
F = 0, ρG′′ +G′ +

ω2

ρ
F = 0, (2.2.18)

with ω2 = κ2 − Zα2. The solutions of these equations are of the form

F (r → 0) ∼ ρω. (2.2.19)

The solution for the rest of the region can be found through Frobenius method. Substituting
the solutions of the form

F = e−ρρk
∑
i=0

ciρ
i, (2.2.20)

G = e−ρρk
∑
i=0

diρ
i, (2.2.21)

in the coupled equations

ρF ′ − κF −
(√

α−/α+ρ− αZ
)
G = 0, (2.2.22)

ρG′ − κG−
(√

α+/α−ρ+ αZ

)
F = 0, (2.2.23)

give the recurrence relations

(k + i− κ) ci − ci−1 + γdi −
√
α−
α+

di−1, (2.2.24)

(k + i+ κ) di − ci−1 + γdi −
√
α−
α+

di−1. (2.2.25)

If the power series terminates at i = n, then for i = n+ 1 and i = n, we have

cn
dn

= −
√
α−
α+

, (2.2.26)

cn
dn

=

√
α+α− (k + n+ κ)− α+αZ

α− (k + n+ κ)−√α+α−αZ
. (2.2.27)
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Solving these two equations for the energy yields

E =
m√

1 +
(

αZ
n+
√
κ2−Zα2

)2
. (2.2.28)

This is the expression for the relativistic energy of the particle confined in the Coulomb
potential. To find the ground state wave function, lets set n = 0 and κ = −1, this gives
ω =

√
1− α2

Z ≡ γ, E = m
√

1− α2
Z ,
√
α+α− = mαZ , c0

d0
= −αZ

1+
√

1−az2 and ρ = mαZr, thus
the wave functions F and G simplify to

F = e−mαZr (mαZr)
γ c0, (2.2.29)

G = e−mαZr (mαZr)
γ d0. (2.2.30)

Therefore, the total wave function is

ψ = Ne−mαZr (mαZr)
γ−1

(
χr

i1−γ
αZ

σ.r
r
χr

)
, (2.2.31)

where σ.r
r

is a pseudo scalar and A (θ, φ) = Y 0
0 χr is used. The normalization constant N can

be found from the normalization condition 1 =
∫ +∞
−∞ |ψ|

2,

N =
2γ−1

√
π

(mαZr)
3/2

√
1 + γ

2Γ (1 + 2γ)
, (2.2.32)

thus, the normalized wave functions for the ground state of hydrogen-like atoms are

ψn=1,j=1/2,↑(r, θ, φ) =
(2mαZ)3/2

√
4π

√
1 + γ

2Γ (1 + 2γ)
(2mαZr)

γ−1 e−mαZr


1

0
i(1−γ)
αZ

Cθ
i(1−γ)
αZ

Sθe
iφ

 ,
(2.2.33)

ψn=1,j=1/2,↓(r, θ, φ) =
(2mαZ)3/2

√
4π

√
1 + γ

2Γ (1 + 2γ)
(2mαZr)

γ−1 e−mαZr


0

1
i(1−γ)
α

Sθe
−iφ

− i(1−γ)
α

Cθ

 .
(2.2.34)

These are the important formulae, which we will use for the calculation presented in the next
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chapters. Note that the factor γ =
√

1− α2
Z → 1 in the non-relativistic limit and γ → 0 in

the extreme relativistic limit. In the non-relativistic limit, we can retrieve the Schrödinger
wave functions along with the two-component form of the Pauli spinors.

2.3 Conclusion

In this chapter, we derived the expressions for the energy and the ground state wave
functions for hydrogen-like atoms. The same wave function can be used for a muon bound
in a hydrogen-like atom by changing the mass of the electron by the mass of muon, i.e.,
m→ mµ. We will use these wave functions in the calculation of the decay rate of the bound
muon to bound electron, and the calculation of the magnetic moment of an electron.
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Chapter 3

The Decay Rate of the Muon

In this chapter, we will derive expressions for the rate of a bound muon decaying to a
bound electron. As a warm up, we start with a free muon decaying into a free electron. The
motivation for doing this is to fully characterize the bound muon decays, which is important
for determining backgrounds for Mu2e [20] and COMET [21] experiments.

3.1 Free Muon

The muon is an elementary particle found in 1937 by Street and Stevenson [22], Anderson
and Neddermeyer [23]. It is a heavier version of the electron with mass mµ ≈ 200me.
Following the convention of the electron, the µ− is considered the particle and µ+ is the anti-
particle. The muon has spin 1/2 and participates in electromagnetic and weak interactions.
The electron, muon, tau and their neutrinos are called leptons. The word lepton is derived
from the Greek word λεπτ óç (leptos), which means thin, light weight, or small. Due the
larger mass, the muon is an unstable particle and it decays to the electron through a purely
leptonic process,

µ− → e− + νµ + ν̄e. (3.1.1)

Muons have been studied extensively over the past eight decades. The lifetime of the muon
is the most accurately known among all unstable particles [24]. The Feynman diagram of
its decay process is shown in Figure 3.1.1. The lifetime of the muon in the massless limit of
electron is

τ =
1

Γ0

=
192π3

G2
Fm

5
µ

, (3.1.2)

where GF is the Fermi coupling constant and mµ is the mass of a muon. The numerical value
of the lifetime is 2.2× 10−6 s.
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Figure 3.1.1: Tree level diagram of the muon decay.

The study of muons is very important as they are at the center of several current discrep-
ancies between the experiments and the theoretical predictions, such as the measurement of
anomalous magnetic moment and rare decays of B-meson that involve muons [25]. This is
the time to focus on the experiments that involve muons; who knows what new secrets these
fascinating particles will reveal.

The discovery that neutrinos are massive particles and the neutrino oscillations guaranteed
that in the Standard Model (SM) charged lepton flavor violation (CLFV) must occur. People
were searching for µ → e ever since the discovery of the muons. In the SM, neutrinos are
massless. But, now it is established that neutrinos have masses. If weak eigentates of the
neutrinos couple, then it opens a door to think about the same mixing for the charged leptons.
Muons are the central part in the studies of the CLFV, which would be clear signal of new
physics because the SM contribution is very small. The best limits set in the CLFV are
by the muons sector experiments at Paul Scherrer Institute (near Zurich). In 1948, Hincks
and Pontecorvo performed an experiment “Search for Gamma-Radiation in 2.2-Microsecond
Muon Decay Process” µ → eγ, at Chalk River [26]. Their search was motivated by an
experiment performed in 1947, where the muon capture for the iron and carbon was studied.
The experimentally found muon-nucleus interaction was twelve order of magnitude smaller
than predicted by Yukawa particle. Pontecorvo explained it via the neutrino-less decay
µ → eγ. The COMET experiment at J-PARC in Japan and Mu2e experiment at Fermilab
in USA, are designed to search the neutrino-less muon-to-electron conversion. In the Mu2e
experiment, the advancement of technologies will result in the production of the 1000 times
more intense muon beam than the Hincks and Potecorvo experiment. In this experiment, the
pion decay that is one of the most important background, will be eliminated. In this way,
better results are expected than in the previous muon-to-electron conversion experiments
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[27]. The experiment will start taking data in 2023. Mu2e will look the µ → e in the orbit
of aluminum atoms,

µ− +27
13 Al→ e− +27

13 Al, (3.1.3)

which is possible by the neutrino oscillation. Any observation of such a process would be
unambiguous evidence of the beyond SM new physics because neutrino-oscillation alone leads
to a tiny conversion rate, undetectable at present. This experiment is designed to improve
the event sensitivity by 4 orders of magnitude and attain the conversion sensitivity up to
3×10−17. It will run for three years with 3.6×1020 protons, with a total run time of 6×107s

to search for a signal which is a delayed mono-energetic electron around 105 MeV [27]. The
COherent Muon to Electron Transition (COMET) experiment is also looking for the same
sensitivity, however, they are using different technologies for the detection [28].

Because of these upcoming experiments, we are undertaking a research program to fully
characterize bound muon decays.

3.1.1 Decay Rate of a Free Muon

The decay of a free muon to a free electron can be computed in two steps. In the first
step, the muon decays to an electron and a hypothetical boson A,

µ− → e−A. (3.1.4)

The boson A is not a real particle. It is just a hypothetical particle, which we use for the
mathematical convenience. In the second step, A decays into an electron anti-neutrino and
a muon-neutrino,

A→ νµν̄e. (3.1.5)

Figure 3.1.2: Decay of a free muon to a free electron.
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First, we will calculate the decay rate for the first step using the master formula,

Γ =
1

2mµ

∫
dΠLIPS |〈M〉|2 , (3.1.6)

whereM is the matrix element (amplitude) between the initial and final state. It is deter-
mined by the Hamiltonian for the interaction, which causes the transition and includes the
dynamics (coupling constants, propagators involved and angular dependence) of the system.
The quantity

dΠLIPS =
d3pe

(2π)3 2Ee

d3pA

(2π)3 2EA
(2π)4 δ4 (pµ − pe − pA) , (3.1.7)

is the Lorentz invariant phase space, which is related to the energy density of states and
tells us the number of states in phase space available to the final state particles. It purely
depends on the kinematics (masses, energies and momenta). To compute a scattering cross
section or a particle’s decay rate, one follows the standard quantum mechanics procedure
of computing the transition matrix element M for the process, and then summing it over
all possible final states. For the particle scattering or decay, the final state is typically a
set of well-separated particles, and it is usually an excellent approximation to treat them as
4-momentum eigenstates. The sum over final states then reduces to a set of integrals over
the space of outgoing momenta constrained by overall 4-momentum conservation. Using
Feynman rules, we can write the amplitude as

M = ūe (pe) (igγµL) εµ (pA) , (3.1.8)

where L = 1−γ5
2

. The square of the amplitude, which gives the probability density for the
initial state µ− to decay into the final state e−A, can be calculated using the Casimir trick
[29], which is used to write the combination of a spinor and an adjoint spinor in terms of
traces.

|〈M〉|2 =
1

2

∑
spins

[ūe (pe) (igγµL)u (pµ)] [ūe (pe) (igγνL)u (pµ)]∗ εµ (pA) εν (pA)∗ (3.1.9)

=
1

2
.Tr
{(

ig

2
√

2
γµL

)
[�pµ +mµ]

(
ig

2
√

2
γνL

)
[�pe +me]

}{
−gµν +

pAµpAν
p2
A

}
(3.1.10)

=
g2

2

(
pµ.pe +

2 (pA.pe) (pA.pµ)

m2
A

)
. (3.1.11)

We introduce the kinematics of the system to find different dot products we need in Equation
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(3.1.11). Suppose the muon is at rest, then the four-momenta of the particles will be

pµ = (mµ,0) , (3.1.12)

pe = (Ee,pe) , (3.1.13)

pA = (EA,pA) , (3.1.14)

pµ · pe = mµEe, (3.1.15)

pA · pµ = m2
µ − Eemµ, (3.1.16)

pe.pA = pe (pµ − pe) = Eemµ −m2
e. (3.1.17)

Substituting the values of dot products in Equation (3.1.11)

|〈M〉|2 =
g2

2

(
mµEe +

2 (Eemµ −m2
e)
(
m2
µ −mµEe

)
m2
A

)
. (3.1.18)

This gives us the expression for the decay rate,

Γ =
g2

4

∫
d3pe

(2π)3 2Ee

d3pA

(2π)3 2EA
(2π)4 δ4 (pµ − pe − pA) (3.1.19)(

mµEe +
2 (Eemµ −m2

e)
(
m2
µ −mµEe

)
m2
A

)
. (3.1.20)

The delta function enforces overall 4-momentum conservation and can be decomposed as

(2π)4 δ4 (pµ − pe − pA) = (2π) δ (mµ − Ee − EA) (2π)3 δ3 (pe + pA) . (3.1.21)

Integration over pA results in pA → −pe.

Γ =
g2

16π

∫
p2
ed |pe|

δ
(
mµ −

√
m2
e + p2

e −
√
m2
A + p2

e

)
√
m2
e + p2

e.
√
m2
A + p2

e

(3.1.22)(
mµEe +

2 (Eemµ −m2
e)
(
m2
µ −mµEe

)
m2
A

)
. (3.1.23)

The integral
∫
p2
ed |pe|

δ
(
mµ−
√
m2
e+p

2
e−
√
m2
A+p2e

)
√
m2
e+p

2
e−
√
m2
A+p2e

simplifies to λ(mµ,me,mA)

2m2
µ

and replaces all |pe|

by λ(mµ,me,mA)

2mµ
, where λ (mµ,me,mA) =

√
m4
µ +m4

e +m4
A − 2m2

µm
2
e − 2m2

µm
2
A − 2m2

em
2
A is

24



the Källén function [8].

Γ =
g2

16π

λ (mµ,me,mA)

2m2
µ

(
mµEe +

2 (Eemµ −m2
e)
(
m2
µ −mµEe

)
m2
A

)
. (3.1.24)

We introduce a dimensionless parameter z to write the mass of the boson A in terms of the
mass of muon as,

mA = zmµ, (3.1.25)

where z can have values between 0 and Eµ−Ee
mµ

.

Γ =
g2

16π

[
Ee
mµ

z2 + 2

(
Ee
mµ

(
1 + δ2

)
−
(
Ee
mµ

)2

− 2δ2

)]
q (z)

z2
, (3.1.26)

where δ = me/mµ and q = λ (mµ,me,mA)mµ/2. For the two body decay 1 → 2 + 3,
the energy of particle 2 is calculated to be E2 =

m2
1+m2

2−m2
3

2m1
using the conservation of four

momenta. Using this in Equation (3.1.26)

Γ =
g2

32π

(
1 + z2 − 2z4 + δ2z2 − 2δ2 + δ4

) q (z)

z2
. (3.1.27)

In the next step, we will find the decay rate for µ− → e−ν̄eνµ using the relation

Γ
(
µ− → e−ν̄eνµ

)
=

256π

g2mµ

Γ0

∫ zmax

0

Γ
(
µ− → e−A

)
z3dz, (3.1.28)

where Γ0 =
G2

Fm
2
µ

192π3 is the decay rate of a muon in the massless limit of electron’s mass.
Substituting value from Equation (3.1.27) and integrating over z,

Γ
(
µ− → e−ν̄eνµ

)
= Γ0

(
1− 8δ2 − 24 log δ + 8δ6 − δ8

)
. (3.1.29)

This result is consistent with the result presented in [30].

3.2 Bound Muon

The atomic bound state formed by replacing the atomic electron of hydrogen atom by the
muon (Figure 1.1.1-(b)) is an interesting system for both basic and applied researches such
as quantum chemistry (pionic atom chemistry [31]), weak interactions (muon capture [32])
and QED tests (Lamb shift [33]). Muonic bound states can easily be formed by stopping the
muons inside a material. Attempts to construct the bound muon started in 1950s and soon
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a technique of x-ray spectroscopy of muonic atoms was developed [34], . Negative muons
were stopped in the substance of interest and it was observed that they bind in atomic orbits
about the capturing nucleus. When a muon comes close to 1S state of a muonic atom, it
could either be captured by the nucleus or it can decay. For heavy nuclei capture dominates
[35].

The study of muons is of great importance to study nuclear properties. Due to the higher
mass of muons as compared to electrons, atomic orbits of bound muon states are very small.
The study of the energy spectrum of the X-rays emitted during the muon capture is helpful
to extract nuclear charge radius and its quadrupole moment [36]. Due to the small size,
bound muons catalyze sub-barrier fusion of the constituent nuclei. The binding effects make
the decay rate of the bound muon very different form the free muon [37].

3.2.1 Decay Rate

Consider the decay process of the bound muon to a bound electron

(
Zµ−

)
→
(
Ze−

)
A, (3.2.1)

where A is the fictitious boson which decays to an electron anti-neutrino and a muon-neutrino
A → νµν̄e. (Zx) represents the bound state of particle x with atomic number Z. From
Equation (3.2.1) one can see that the boson A will have a maximum mass mA = Eµ − Ee
when its momentum qA is zero. The other extreme value is mA = 0 when kA = EA. This
allows us to introduce a dimensionless parameter z to write mA = zmµ, such that zmin = 0

and zmax = Eµ−Ee
mµ

. The neutrinos emerging out of A will be parallel and anti-parallel for
zmin and zmax, respectively. The decay rate of the two processes (Zµ−) → (Ze−)A and
(Zµ−)→ (Ze−) νµν̄e are related via the dimensionless parameter z as

Γ
((
Zµ−

)
→
(
Ze−

)
νµν̄e

)
=

256π

g2mµ

Γ0

∫ zmax

0

Γ
((
Zµ−

)
→
(
Ze−

)
A
)
z3dz, (3.2.2)

We want to find the expression for the ratio of bound muon decay rate to the free electron
decay rate

Γ

Γ0

=
256π

g2mµ

∫ zmax

0

Γ
((
Zµ−

)
→
(
Ze−

)
A
)
z3dz. (3.2.3)

We can calculate decay rate Γ ((Zµ−)→ (Ze−)A) in two situations:

1. The spin of the muon and the electron is the same: the spin does not flip;

2. The spin of the muon and the electron is opposite: the spin flips.
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3.2.1.1 The Spin Non-flip Part

For the decay process (Zµ−) → (Ze−)A, there are two spin non-flip situations, where
the muon and the electron both have either spin-up or spin-down. The amplitude for this
interaction is given by,

M =
g√
2

∫
d3r eiq·rΦ̄e (r) �ε

λA∗LΦµ (r) , (3.2.4)

where L = 1−γ5
2

, λA represents the polarization state of A and

Φ (r) = f (r) u↑/↓, u↑/↓ = �ρφ↑/↓, (3.2.5)

f (r) =
(2mµαZ)γ+1/2

√
4π

√
1 + γ

2Γ (1 + 2γ)
rγ−1 exp (−mµαZr) , φ↑/↓ =

(
χ↑/↓

0

)
, (3.2.6)

ρµ = (1, iar̂) , χ↑ =

(
1

0

)
, (3.2.7)

a =
1− γ
αZ

, χ↓ =

(
0

1

)
. (3.2.8)

Thus the amplitudes for the two situations are

M↑→↑ =
g

2
√

2

∫
d3reiq·rfe (r) fµ (r)

[
ū↑eγ

µελA∗µ (1− γ5)u↑µ
]
, (3.2.9)

and M↓→↓ can be obtained by a trivial rotation ↑→↓. As the spin of the muon and the
electron is same, it means the third component of the spin of the boson-A is zero and the
corresponding polarization vector is

ελA∗µ =
1

mA

[qz, 0, 0, E] (3.2.10)

=
1

z

[
qz
mµ

, 0, 0,
Eµ − Ee
mµ

]
(3.2.11)

=
1

z
[kA, 0, 0, zmax] , (3.2.12)

when it moves along the z−axis, and it is ελA∗µ = 1
z

[kA, 0, 0,−zmax] when its motion is along
the −z−axis. There are two ways to solve the problem.

1. Keeping spin of the initial state muon fixed and taking contribution of both spin pro-
jections of A.

2. Keeping the direction of the motion of A fixed and taking into account both spin
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projections of the muon.

We will calculate the amplitudes taking motion of A along the z−axis. We write
[
ū↑eγ

µu↑µ
]

=

Tr
[
u↑µū

↑
eγ

µ
]
, where ū = φ̄↑�ρ = φ†↑γ

0
�ρ and φ†↑φ↑ = 1+γ0

2
γ5+γ3

2
γ5 (Appendix D).

[
ū↑eγ

µu↑µ
]
ελA∗µ = ελA∗µ · Tr

[
�ρ

1 + γ0

2

γ5 + γ3

2
γ5γ0

�ρ
′γµ (1− γ5)

]
(3.2.13)

=
1

z
[kA, 0, 0, zmax] ·

[
1 + a2, ..., ...,−

(
1− a2 + 2a2 cos2 θ

)]
(3.2.14)

=
1

z

[
kA
(
1 + a2

)
+ zmax

(
1− a2 + 2a2 cos2 θ

)]
. (3.2.15)

Similarly for
[
ū↓eγ

µu↓µ
]
ελA∗µ , we have

[
ū↓eγ

µu↓µ
]
ελA∗µ = ελA∗µ · Tr

[
�ρ
γ5 − γ3

2

1− γ0

2
γ5γ0

�ρ
′γµ (1− γ5)

]
(3.2.16)

=
1

z
[kA, 0, 0, zmax]

[
1 + a2, ..., ..., 1− a2 + 2a2 cos2 θ

]
(3.2.17)

=
1

z

[
kA
(
1 + a2

)
− zmax

(
1− a2 + 2a2 cos2 θ

)]
. (3.2.18)

As Equations (3.2.18) and (3.2.15) only differ by the sign of second term, it is convenient to
define,

Na =
M↑→↑ +M↓→↓

2
, (3.2.19)

Nb =
M↑→↑ −M↓→↓

2
. (3.2.20)

These definitions make sense as N2
a +N2

b = |〈M↑→↑〉|2 + |〈M↓→↓〉|2, therefore

Na =
gπ

2
√

2

kA
z

(
1 + a2

) ∫
d3reiq·rfe (r) fµ (r) , (3.2.21)

where

fe (r) fµ (r) =

(
4m2

µα
2
Zδ
)γ+1/2

4π

1 + γ

2Γ (1 + 2γ)
r2γ−2e−mµ(1+δ)αZr, (3.2.22)
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with δ = me/mµ.

Na =
g (1 + a2) kA√

2z

(
4m2

µα
2
Zδ
)γ+1/2

4

1 + γ

2Γ (1 + 2γ)

∫
dreiqrCθdCθr

2γe−mµ(1+δ)αZr (3.2.23)

= 2
g√
2

kA
z

(
1 + a2

) 1 + γ

8

(
4δ

(1 + δ)2

)γ+ 1
2 [

1 + k2
]−γ Γ [2γ]

Γ (1 + 2γ) k
sin
[
2γ tan−1 (k)

]
.

(3.2.24)

Here, new parameters are k = kA
αZ(1+δ)

and the dimension-less momentum of the boson A,
kA = q

mµ
. In the similar way we can find Nb

Nb = 2
gzmax√

2z

[
4δ

(1 + δ)2

]γ+ 1
2 1 + γ

8

[
4a2

{
Γ [2γ − 1]

Γ (1 + 2γ) k2

(
1 + k2

)−γ+ 1
2 cos

[
(2γ − 1) tan−1 k

]
−
(
1 + k2

)−γ+1 Γ [2γ − 2]

Γ (1 + 2γ) k3
sin
[
(2γ − 2) tan−1 k

]}

+
(
1 + a2

) (
1 + k2

)−γ Γ [2γ]

Γ (1 + 2γ) k
sin
[
2γ tan−1 k

]]
. (3.2.25)

Introduce a short-hand notation

Sn =
1 + γ

8

(
4δ

(1 + δ)2

)γ+1/2
Γ [1 + 2γ − n]

Γ (1 + 2γ) kn
[
1 + k2

]n−1
2
−γ

sin
[
2γ tan−1 (k)

]
, (3.2.26)

(for Cn replace sin by cos) to write Na and Nb in a compact form,

Na =
√

2
zmax

z
g
[
4a2 (C2 − S3) +

(
1 + a2

)
S1

]
, (3.2.27)

Nb =
√

2
kA
z
g
(
1 + a2

)
S1. (3.2.28)

The squared sum of these two expressions gives the contribution from the spin non-flip part
toward the decay rate of the bound muon.

3.2.1.2 The Spin-flip part

There are again two cases for spin-flip part, where a spin-up muon decays to a spin-down
electron and vice versa. The amplitudes for the two cases are given as

M↑→↓ =
g

2
√

2

∫
d3reiq·rfe (r) fµ (r)

[
ū↓eγ

µελA∗µ (1− γ5)u↑µ
]
, (3.2.29)
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ForM↓→↑, interchange ↑ and ↓. CalculateM↑→↓ first[
ū↓eγ

µελA∗µ (1− γ5)u↑µ
]

=ελA∗µ Tr
[
�ρφ↑φ

†
↓γ

0
�ργ

µ (1− γ5)
]

(3.2.30)

=ραρβ
′
ελA∗µ Tr

[
γα

1 + γ0

2

γ1 + iγ2

2
γ5γ0γβγµ (1− γ5)

]
(3.2.31)

=ελA∗µ

[
0,−

(
1− a2

)
+ 2iax sin θ cosφ,−i

(
1− a2

)
+ 2xia sin θ sinφ, ...

]
,

(3.2.32)

where x = (ia sin θ cosφ− a sin θ sinφ) and ελA∗µ = ελA∗µ (ẑ,+1) = 1√
2

[0,−1, i, 0]. Thus,

ū↓eγ
µελA∗µ (1− γ5)u↑µ = − 1√

2

[
2
(
1− a2

)
− 2iax sin θ cosφ− 2ax sin θ sinφ

]
. (3.2.33)

Substituting in Equation (3.2.29)

M↑→↓ =
g

4

(
4m2

µα
2
Zδ
)γ+1/2

4π

1 + γ

2Γ (1 + 2γ)

∫
dφ dreiqrCθdCθr

2γe−mµ(1+δ)αZr[
2
(
1− a2

)
+ x sin θ cosφ− xa sin θ sinφ

]
(3.2.34)

=
g

4

(
4m2

µα
2
Zδ
)γ+1/2

4

1 + γ

2Γ (1 + 2γ)

∫
dreiqrCθdCθr

2γe−mµ(1+δ)αZr (3.2.35)

4
[
1− a2 cos2 θ

]
(3.2.36)

= 2g

[
4δ

(1 + δ)2

]γ+ 1
2 1 + γ

8

[
2a2

{
Γ (2γ − 2)

k3

(
1 + k2

)−γ+1
sin
[
2 (γ − 1) tan−1 k

]
− Γ (2γ − 1)

k2

(
1 + k2

)−γ+ 1
2 cos

[
(2γ − 1) tan−1 k

]}

+
(
1− a2

)
q (2γ) Γ (2γ)

(
1 + k2

)−γ
sin
[
2γ tan−1 k

]]
(3.2.37)

= g
[
4a2 (C2 − S3)− 2

(
1− a2

)
S1

]
. (3.2.38)

Now considerM↓→↑,[
ū↑eγ

µελA∗µ (1− γ5)u↓µ
]

= ελA∗µ Tr
[
�ρφ↓φ

†
↑γ

0
�ργ

µ (1− γ5)
]

(3.2.39)

= ραρβ
′
ελA∗µ Tr

[
γα
γ1 − iγ2

2

γ5 − γ3

2
γ0γβγµ (1− γ5)

]
(3.2.40)

= ελA∗µ [...,−2ia cos θ,−2a cos θ, ...] , (3.2.41)
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where ελA∗µ = ελA∗µ (ẑ,−1) = 1√
2

[0, 1, i, 0].

M↓→↑ =
g

2

(
4m2

µα
2
Zδ
)γ+1/2

4

1 + γ

2Γ (1 + 2γ)

∫
dreiqrCθdCθr

2γe−mµ(1+δ)αZr [4iaCθ] (3.2.42)

=
g

2

[
4δ

(1 + δ)2

]γ+ 1
2 1 + γ

8
8a

[
Γ (2γ)

k

(
1 + k2

)−γ
cos
[
(2γ) tan−1 k

]
(3.2.43)

− Γ (2γ − 1)

k2

(
1 + k2

)−γ+ 1
2 sin

[
(2γ − 1) tan−1 k

]]
(3.2.44)

= −4ga (S2 − C1) ≡ Fb. (3.2.45)

The decay rate is

Γ
((
Zµ−

)
→
(
Ze−

)
A
)

=

∫
dΠLIPS |〈M〉|2 (3.2.46)

=
q

2π
|〈M〉|2 (3.2.47)

=
q

2π

(
N2
a +N2

b + F 2
a + F 2

b

)
(3.2.48)

=
mµ

2π
kA
(
N2
a +N2

b + F 2
a + F 2

b

)
. (3.2.49)

Substituting this value in (3.2.3)

Γ ((Zµ−)→ (Ze−) νµν̄e)

Γ0

= 128

∫ zmax

0

(
N2
a +N2

b + F 2
a + F 2

b

)
kAz

3dz. (3.2.50)

This is an important result of this chapter, where the coordinate space calculation resulted
into a single integral representation of the decay rate. The contribution of different terms
in the decay rate are plotted against the γ in the Figure 3.2.1. The value of the decay rate
vanishes at both the extreme relativistic (γ = 0) and the extreme non-relativistic (γ = 1)

limits independent of the neutrinos’ momenta and the relative spins of the muon and electron.
The behavior of the plot is easy to understand. At the extreme relativistic end, no energy
is left for neutrinos, that’s why the decay rate vanishes. When the value of γ becomes non-
zero, with the increase of γ neutrinos get more energy, as a result the probability of the decay
increases. However, the oscillatory nature of neutrinos’ wave function coupled with the muon
and electron wave functions at large distances gives zero decay probability when integrated
over the space.
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Total decay

Na contribution

Nb contribution

Fa contribution

Fb contribution
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Figure 3.2.1: Contributions of the spin flip and spin non-flip components in the decay rate
of a bound muon as a function of γ.

3.3 Limiting Cases of the Decay Rate Ratio

In this section, we will find the asymptotic limits of the decay rate formula (3.2.50). Since
γ =

√
1− α2

Z , so αZ → 0 =⇒ γ → 1, is the case where velocities of the muon and electron
are very small and hence this is the extreme non-relativistic limit. When αZ → 1 =⇒ γ → 0,
is the case where velocities approach the speed of light, which is the extreme relativistic limit.

3.3.1 Extreme Non-Relativistic Limit

In the extreme non-relativistic limit γ =
√

1− α2
Z → 1, hence αZ is small and approaches

to zero and can be used as expansion parameter. Also δ = me
mµ
� 1 therefore, we will keep

only lowest order terms in δ. In this limit,

a =
1− γ
αz

→ 1

2
αz, kA → αzk, zmax → (1− δ) .

The leading term from the factor 1+γ
8

(
4δ

(1+δ)2

)γ+ 1
2 ≈ 2δγ+ 1

2 (1 + δ)−2γ−1 in Cn and Sn is the

δγ+ 1
2 . To solve the trigonometric part it will be convenient to use the identities tan−1 k =

arcsin k√
1+k2

and tan−1 k = cos−1 1√
k2+1

to write cos [tan−1 k] = 1√
k2+1

and sin [2 tan−1 k] =
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2 k
1+k2

. This will simplify our expressions as

C1 =
1

2k

(
1 + k2

)−1 1√
k2 + 1

,

S1 =
1

(1 + k2)2 ,

C2 =
1

2

1

k2

1

(1 + k2)
,

S2 =
1

2

1

k (1 + k2)
,

S3 = 0.

Under these simplifications the spin non-flip Na,b and spin-flip Fa,b events become,

Na → 2
√

2δγ+ 1
2
zmax

z

1

k2

(
1

k2 + 1

)2 (
2a2 + 3a2k2 + k2

)
.

Nb → 2
√

2δγ+ 1
2
kA
z

(
1 + a2

) 1

(1 + k2)2

Fa →
4δγ+ 1

2

k2 (1 + k2)2

(
a2 + 2a2k2 − k2

)
,

Fb → 8δγ+ 1
2a

k

(1 + k2)2 .

In the next step, we have to square and integrate these terms and keep only terms of the
order of α3

z as (
Γ

Γ0

)
Na

= 32δ2γ+1πα3
Z .

The Nb term does not have any contribution of the order α3
Z ,(

Γ

Γ0

)
Nb

= 128× 8δ2γ+1α3
Z

[
αZ +O (αZ)2] = O

(
α4
Z

)
.

Similarly, only one term from the the spin-flip case contributes up to α3
Z giving(

Γ

Γ0

)
Fa

= 64πδ2γ+1α3
Z ,(

Γ

Γ0

)
Fb

= 128× 16δ2γ+1α3
Z

[
πα2

Z

32

]
= O (αZ)5 .
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Hence, the total contribution in the decay rate in the leading order of αZ is

1

δ2γ+1Γ0

Γ

Γ0

= 96πα3
Z .

This expression is compared with the exact numerical result in Figure 3.5.1.

3.3.2 Extreme Relativistic Limit

In the extreme relativistic limit, γ → 0, thus, it can be used as an expansion parameter.
We can write k = kA

(1+δ)αZ
as kA = kαZ using the fact that δ <<. Similarly the upper limit

will change to zmax = γ (1− δ) ≈ γ and kA →
√
γ2 − z2. To calculate Cn/Sn, we can expand

gamma functions as

Γ (1 + 2γ − n)

Γ (1 + 2γ)
=

Γ (1 + 2γ − n)

(2γ) (2γ − 1) · · · (1 + 2γ − n) Γ (1 + 2γ − n)

=
1

(2γ) (2γ − 1) · · · (1 + 2γ − n)
,

and use γ → 0 in terms where we do not have any singularity

Γ (1 + 2γ − n)

Γ (1 + 2γ)
=

(−1)n−1

2γ (n− 1)!
.

The leading term from the factor 1+γ
8

(
4δ

(1+δ)2

)γ+ 1
2 ≈ 2δγ+ 1

2 (1 + δ)−2γ−1 in the limit γ → 0 is

the 1
4
δγ+ 1

2 . The total decay rate in the limit γ → 0 in leading order is found to be

Γ

Γ0

= δ2γ+1 256

15
. (3.3.1)

Plots of the upper tail and lower tail expansion in the leading order are stacked with the
exact numerical result in Figure 3.5.1. Figure 3.6.1 shows the more precise comparison on
both ends. It can be seen that the lower tail limit has a better agreement with the numerical
results as compare to the upper tail. In the next section, we will include two more terms of
the series to compare the results.

3.4 Extreme Non-relativistic Limit up to α7
Z

In order to expand the decay rate up to the α7
Z , it will be convenient to introduce the
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trigonometric functions in the formula (3.2.50). Rewriting it as

Γ

Γ0

1

δ2γ+1
=

(
1 + γ

8

)2(
4

(1 + δ)2

)2γ+1

128

∫ zmax

0

(
N
′2
a +N

′2
b + F

′2
a + F

′2
b

)
kAz

3dz. (3.4.1)

≡
(

4

(1 + δ)2

)2γ+1 ∫ zmax

0

f (γ, δ, z) zdz, (3.4.2)

where

f (γ, δ, z) =

(
1 + γ

8

)2

128
(
N
′2
a +N

′2
b + F

′2
a + F

′2
b

)
kAz

2, (3.4.3)

Na
′ =
√

2
zmax

z

[
4a2 (C2 − S3) +

(
1 + a2

)
S1

]
, (3.4.4)

Nb
′ =
√

2
kA
z

(
1 + a2

)
S1, (3.4.5)

Fa
′ = 4a2 (C2 − S3)− 2

(
1− a2

)
S1, (3.4.6)

Fb
′ = 4a (S2 − C1) . (3.4.7)

Changing the variable t = tan−1 k, such that kA = (1 + δ)αZ tan t ≡ λ tan t. The short hand
notations Sn (for Cn replace sin by cos) become

Sn ≡
Γ (1 + 2γ − n)

Γ (1 + 2γ)

(sec t)n−1−2γ

tann t
cos [(1 + 2γ − n) t] . (3.4.8)

The integration variable and limits in Equation (3.4.2) change as

z2 = z2
max − λ2 tan2 t, zdz = −λ2 tan t sec2 t dt, (3.4.9)

z → 0 =⇒ t→ tan−1 zmax ≡ t0 z → zmax =⇒ t→ 0, (3.4.10)

and yield

Γ

Γ0

1

δ2γ+1
=

(
4

(1 + δ)2

)2γ+1 ∫ t0

0

G (δ, γ, t) dt, (3.4.11)

where G (δ, γ, t) = f × λ2 tan t sec2 t. We expanded the integrand G
(
δ, γ =

√
1− α2

Z , t
)
in

Equation (3.4.11) with respect to αZ and found that there is no even power of αZ present in
G. Thus it can be written as

G (δ, γ, t) =
∞∑
n=1

α2n+1
Z I2n+1(δ, t). (3.4.12)

35



We want to take only up to α7
Z terms in this expansion

G (δ, γ, t) ≈ α3
ZI3(δ, t) + α5

ZI5(δ, t) + α7
ZI7(δ, t) (3.4.13)

Substituting this in Equation (3.4.11) gives us,

Γ

Γ0

1

δ2γ+1
≈
(

4

(1 + δ)2

)2γ+1 [
α3
Z

∫ t0

0

dt I3 (δ, t) + α5
Z

∫ t0

0

dt I5 (δ, t) + α7
Z

∫ t0

0

dtdθ I7 (δ, t)

]
.

(3.4.14)
This is the only approximation we will use in the calculation. The integrals will be evaluated
without any approximation.

3.4.1 Coefficient of α3
Z

The integral
∫ t0

0
dt I3 (δ, t) is the easiest one to solve which gives

3.01435t0 + 0.753588 sin (2t0)− 0.753588 sin (4t0)− 0.251196 sin (6t0) . (3.4.15)

In the next step, it is multiplied by
(

4
(1+δ)2

)2γ+1

and expanded up to α3
Z by using t0 =

tan−1 γ(1−δ)
αZ(1+δ)

. The result obtained is 294.399α3
Z .

3.4.2 Coefficient of α5
Z

The integrand I5 (δ, t) contains two series of trigonometric functions which can be ex-
pressed in terms of [log sec t] as

I5 (δ, t) =
1∑

n=0

I5n (δ, t) [log sec t]n = I50 (δ, t) + I51 (δ, t) [log sec t] , (3.4.16)

where

I50 = −0.000757684 cos2 (t) sin (t) [31827t (cos (t) + cos (3t))− 4994 sin (t) + 15810 sin (3t)] .

and I51 = 96.4593 cos4 (t) sin2 (t). Integration over t and expansion up to α5
Z yields−391.609α5

Z .
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3.4.3 Coefficient of α7
Z

Like I5 (δ, t), the integrand I7 (δ, t) can be expressed in terms of [log sec t] as

I7 (δ, t) =
2∑

n=0

I7n (δ, t) [log sec t]n (3.4.17)

= I70 (δ, t) + I71 (δ, t) [log sec t] + I72 (δ, t) [log sec t]2 , (3.4.18)

where

I71 = −0.000189421 cos2 (t) sin (t) [251616t (cos (t) + cos (3t))− 71779 sin (t) + 94653 sin (3t)] ,

and I72 = 96.4593 cos4 (t) sin2 (t). I70 is a lengthy expression thats why it is not written.
Integrating over the variable t and expansion up to α7

Z gives −1087.38246884658α7
Z .

3.5 Extreme Relativistic Limit up to γ7

In order to find two more terms of the expression, we expanded G (δ, γ, t) in (3.4.11)
using the expansion parameter t. The resultant expression was a polynomial in log [sec t].
Following exactly the same steps as we did in the last section, it is found that

Γ

Γ0

1

δ2γ+1
= 16.498600318499943γ5 + 61.92438757140619γ6

+ 108.72673906767353γ7. (3.5.1)

The curve obtained by the exact numerical result stacked by the limiting cases in the full
range of γ is shown in the Figure 3.5.1. To get a better comparison, both ends are plotted
independently in Figure 3.6.1 using the different horizontal scale. The agreement of the
limiting cases expressions improves as we add more and more terms.

In Table 3.5.1, the percentage error in the asymptotic limit Zα→ 0 is given for different
values of the atomic number. We see that the percentage error crosses 1% when we increase
the atomic number from 43, which is a good achievement. Instead of the complete and
lengthy expression of the decay rate, one can use three terms of the asymptotic series up to
Z = 43 with a 1% of error.
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Table 3.5.1: Percentage error calculated for γ → 1 or Zα → 0 limit for different values of
atomic number Z.

Atomic number (Z) Percentage error
1 2.19× 10−9

5 2.19× 10−5

10 6.51× 10−4

20 1.91× 10−2

40 0.65
43 0.98
44 1.12

Numerical

LO

NLO

NNLO
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Figure 3.5.1: Asymptotic limits results stacked on the exact numerical result. The solid line
represents the exact result. The dot-dashed, dotted and dashed lines indicate the contribution
of the first term, up to the second term and up to the third term in the expansions.

3.6 Conclusion

In this chapter, we derived the decay rate for (Zµ)→ (Ze) + νµ + ν̄e and found the con-
tribution of spin flip and spin non-flip components in the decay rate. The main achievement
is the expression of rate as a single integral.
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We also found the limiting cases behavior of the rate, and expanded the series of the
decay rate up to three leading order terms. The limiting cases expression are very important.
For example, the expression for the non-relativistic limit Zα→ 0 is applicable up to Z = 43

with in an error less then 1%. Instead of using full expression of rate, one can use first three
terms of the series to get reasonably good result.
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Numerical
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(a) Comparison of the exact and the extreme relativistic limit (γ → 0) expressions of the decay
rate of a bound muon to a bound electron. The dot-dashed, dotted and dashed lines show the
contribution in the series expansion up to lowest order, first order and second order terms.
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(b) Plots of exact numerical result (solid line) stacked with the expansion of the series in the extreme
non-relativistic limit (γ → 1) contributing up to leading order (dot-dashed), next to leading order
(dotted) and next to next leading order (dashed).

Figure 3.6.1: Comparison of the exact numerical result and the first three terms of the series.
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Chapter 4

The g−factor of an Electron

4.1 Introduction

In this chapter, we will find the value of the g−factor of a free and a bound electron. The
g−factor was first introduced by Landé to explain the anomalous Zeeman effect in atomic
spectra and now has a more wide-ranging significance. This factor is a property of spinning
bodies. When a spinning charged body is placed in an external magnetic field, its axis of
rotation starts moving around in a cone. The precession frequency depends on the strength
of applied field. The ratio of the body’s magnetic moment to its angular momentum is called
g−factor. There are different conventions used for the sign of the g−factor. For example,
in nuclear magnetic resonance, the positive value of g−factor indicates that the magnetic
moment of particle is parallel to its angular momentum and vice versa. In the electron spin
spectroscopy, the positive value is used even though the spin and magnetic moment of an
electron are anti-parallel.

4.2 History

In the early days of quantum mechanics, when experimental observations were tried to
explain using the quantum mechanical treatment, it was observed that electron’s g−factor
in gyromagnetic ratio, i.e., µ

L
= ge

(
q

2m

)
should be 2. In early 1920s, Dutch physicists,

Samuel A. Goudsmit and George E. Uhlenbeck postulated spin as an additional intrinsic
angular momentum [38], which was accepted as a new quantum number after experimental
confirmation by Stern and Gerlach, and Philips [39]. Uhlenbeck and Goudsmit explained the
spin using a physically spinning sphere. Since electron is a point-like particle, so it prevented
classical approaches towards the spin and its kinematics. The physically spinning sphere
model led to the problems. For example, the electron needs to have a surface speed greater
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than the speed of light to give a correct value of the magnetic moment. Conflicts due to
classical understanding of spin were dismissed by just saying that the spin is an intrinsic
quantity. The value g = 2 was used for many years and stood unquestioned. In the late
1920s, this belief got a strong reinforcement when Dirac wrote a new 4 × 4 matrix realistic
version of quantum mechanics and showed that the value of g = 2 comes out naturally from
an advanced description of the electron. His approach did not require any physical model
like spinning sphere for the electron.

There are basically two elements of a free electron’s g−factor; one which is exactly equal
to 2, calculated without including the quantum self-interaction effect and the anomalous
magnetic moment, which is the correction arises due to electron’s interaction with vacuum,
best explained by the virtual photons of quantum electrodynamics (QED) theory [40]. The
anomalous magnetic moment of the electron is one of the triggering events for the foundation
of relativistic QED. It was discovered by P. Kush and H. M. Foley in 1947 [41]. They
measured the Zeeman spectra of gallium and found that the g−value of the electron was
slightly different from 2. The measured value was 2 × 1.001 19(5). In 1948, Schwinger
computed vacuum polarization and self-energy in the order α and found the value of g; the
value of anomaly was in agreement with Kusch and Foley [42].

4.3 g−factor of a Free Electron

The Dirac equation for a free electron is given as

(i��∂ −m) Ψ = 0. (4.3.1)

In presence of electromagnetic field, ordinary derivative ∂µ is replaced by the covariant deriva-
tive Dµ ≡ ∂µ + ieAµ, giving

(iγµDµ −m) Ψ = 0. (4.3.2)

Operating (iγµDµ −m) on Equation (4.3.2) from the left yields

(
��D��D +m2

)
Ψ = 0. (4.3.3)

The product of gamma matrices in Equation (4.3.3) can be written as the linear combination
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of symmetric and anti-symmetric tensors gµν and σµν using the definitions

gµν ≡ 1

2
{γµ, γν} , (4.3.4)

σµν ≡ 1

2i
[γµ, γν ] , (4.3.5)

which gives ��D��D = γµDµγ
νDν = DµDν [gµν − iσµν ] = D2 − iσµνDµDν . We can exploit anti-

symmetrization of σµν to show that

iσµνDµDν =
i

2
σµν [Dµ, Dν ] . (4.3.6)

The commutation of covariant derivatives gives the field tensor Fµν

[Dµ, Dν ] =
i

2
[∂µ + ieAµ, ∂ν + ieAν ] (4.3.7)

= −e
2

(∂µAν − ∂νAµ) (4.3.8)

≡ −e
2
Fµν . (4.3.9)

Substituting back in Equation (4.3.3)(
D2 − e

2
σµνFµν +m2

)
Ψ = 0. (4.3.10)

In Equation (4.3.10), e
2
σµνFµν is an extra term if we compare it with Klein-Gordon equation,

which can be written in terms of the electric and magnetic field as

e

2
σµνFµν =

e

2

(
2σ0jF0j + σijFij

)
, (4.3.11)

where
σ0j =

i

2

(
γ0γj − γjγ0

)
= iγ0γj = iαj, (4.3.12)

F0j = Ej, σij = −εijkΣk, Σk ≡

(
σk

σk

)
, and εijkFij = 2Bk. Substituting values in

(4.3.10), and writing Ψ in component form

(
ψL

ψR

)
, where ψL and ψR are the left and right
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handed components, leads to[
D2 + ieE ·

(
−σ

σ

)
− e

(
σ

σ

)
·B +m2

](
ψL

ψR

)
= 0, (4.3.13)

[
D2 ∓ ieE · σ − eσ ·B +m2

] (
ψL/R

)
= 0. (4.3.14)

In non-relativistic limit, E = m+ζ, where ζ is the kinetic energy. Using ψ ∼ e−imt−iζtψ (r, t) =

e−imtψ′ (r, t) in Equation (4.3.14), we get

i
∂ψ

∂t
= − 1

2m

(
D2 + 2eσ ·B

)
ψ. (4.3.15)

If we choose potential Aµ such that the electric field E = 0 and spatial part A = B×r
2

of Aµ

is time independent and satisfies Coulomb gauge ∇ ·A = 0, then

D2f =
(
∇2 − 2ieA ·∇− e2A2

)
f, (4.3.16)

and A ·∇ = i
2
B ·L. This gives us an equation similar to the Schrödinger equation

i
∂ψ

∂t
=

[
−∇

2

2m
− e

2m
B ·L− e

2m
σ ·B +

e2A2

2m

]
ψ. (4.3.17)

Since σ = 2S, we have

i
∂ψ

∂t
=

[
−∇

2

2m
+
e2A2

2m

]
ψ − e

2m
B [L+ 2S]ψ. (4.3.18)

The number 2 is the expression L+ 2S, is the gyromagnetic ratio of the free electron, which
comes out naturally in the Dirac equation.

4.4 The g−factor of a Bound Electron

In this section, we aim to find the g−factor of a bound electron. First time, F. G. Walter
found the g−factor of a bound electron in the hydrogen and deuterium atoms in 1972 [43].
In 1977, J. S Tiedeman did a comparison of the magnetic moments of a bound and a free
electron [44]. In 1980, g−factor of a bound electron was measured using hydrogen-like atoms
[45, 46].

The Dirac equation for an electron bound to a nucleus via Coulomb potential, i.e., a
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hydrogen-like atom is given as

[
i��D +m

]
ψ = 0, (4.4.1)

where ��iD = ��i∂ − e��A = ��i∂ − eγ0A0, A0 = eΦ(r) = −Zα
r
. The solution of this equation for an

electron with spin up is found in chapter 2

ψ1,1/2,↑ (r, θ, φ) = f (r)


1

0

aCθ

aSθe
iφ

 , (4.4.2)

where,

f (r) =
(2mZα)3/2

√
4π

√
1 + γ

2Γ (1 + 2γ)
(2mZαr)γ−1 e−mZαr, (4.4.3)

a =
i (1− γ)

Zα
. (4.4.4)

If this bound electron is placed in a weak magnetic field B such that

B =∇×A, (4.4.5)

A =
B × r

2
, (4.4.6)

where A is the vector potential, then this field can be treated as a perturbation. The Dirac
equation in this case will be

[
i��D +m

]
ψ = 0, (4.4.7)

where i��D = i��∂ − eγ0A0 + eγ · A. Thus, the Hamiltonian representing the perturbation is
H ′ = eγ ·A. The first order energy correction in the ground state of hydrogen atom is given
by

E1
1 = 〈1, 1/2, ↑ |H ′| 1, 1/2, ↑〉 (4.4.8)

= e

∫
d3xψ̄1,1/2,↑ (r, θ, φ)γ ·Aψ1,1/2,↑ (r, θ, φ) . (4.4.9)
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If magnetic field is along the z-axis, then

A =
B × r

2
(4.4.10)

=
Bz

2
(xŷ − yx̂) . (4.4.11)

Substituting the value in Equation (4.4.9)

E1
1 = −eBz

2

∫
d3x rSθψ̄1,1/2,↑ (r, θ, φ) [γxSφ − γyCφ]ψ1,1/2,↑ (r, θ, φ) . (4.4.12)

The expression [γxSφ − γyCφ] can be simplified using the values of γ-matrices. This gives

[γxSφ − γyCφ] =


1

1

−1

−1

Sφ − Cφ


−i
i

i

−i

 (4.4.13)

= i


e−iφ

−e+iφ

−e−iφ

e+iφ

 . (4.4.14)

Substituting Equation (4.4.14) together with Equation (4.4.2) in Equation (4.4.12), we have

E1
1 =

iBze

2

∫
d3x rSθ |f (r)|2

[
1 0 a∗Cθ a∗Sθe

−iφ
]

(4.4.15)
1

1

−1

−1




e−iφ

−e+iφ

−e−iφ

e+iφ




1

0

aCθ

aSθe
iφ

 (4.4.16)

=
−iBze

2

∫
d3x rSθ |f (r)|2 (aSθ − a∗Sθ) (4.4.17)

= −iBzea

∫
dφ

∫
dθS3

θ

∫
dr r3 |f (r)|2 (4.4.18)

=
−8πBzeai

3

∫
dr r3 |f (r)|2 . (4.4.19)
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The integral
∫
dr r3 |f (r)|2 can be solved by substituting 2mZαr = y =⇒ 2mZαdr = dy,∫

dr r3 |f (r)|2 =
1

4π (2mZα)

1 + γ

2Γ (1 + 2γ)

∫
dy y2γ+1e−y (4.4.20)

=
1

4π (2mZα)

1 + γ

2Γ (1 + 2γ)
Γ (2 + 2γ) (4.4.21)

=
1

4π (2mZα)

1 + γ

2
(1 + 2γ) . (4.4.22)

Substituting value in Equation (4.4.19) gives us the expression for the first order energy
correction

E1
1 = Bz2

��4πe

3

(1− γ)

Zα

1

��4π (2mZα)

1 + γ

2
(1 + 2γ) (4.4.23)

= Bz
e(

6m (Zα)2) (1 + 2γ)
(
1− γ2

)
. (4.4.24)

We can also find the first order energy correction due to magnetic field using the non-
relativistic quantum theory. An electron interacting with the magnetic field is described
by the Hamiltonian V = −µ.B, where µ = g e

2m
S is the magnetic moment of electron. The

factor “g” called gyromagnetic ratio of the electron. The change in the energy of an electron
due to interaction with magnetic filed is thus given by

∆E = g
e

2m
S.B. (4.4.25)

and corresponding expectation value is

∆E = 〈1, 1/2, ↑ |−µ.B| 1, 1/2, ↑〉 (4.4.26)

=
geBz

2m
〈1, 1/2, ↑ |Sz| 1, 1/2, ↑〉 (4.4.27)

=
geBz

4m
. (4.4.28)

The value of g factor of a bound electron can be found by comparing Equation (4.4.24) and
Equation (4.4.28)

geBz

4m
= Bz

e(
6m (Zα)2) (1 + 2γ)

(
1− γ2

)
, (4.4.29)

g =
2(

3 (Zα)2) (1 + 2γ)
(
1− γ2

)
, (4.4.30)
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since γ =
√

1− (Zα)2; in the non-relativistic limit Zα→ 0 and 1 + 2γ ≈ 1 + 2− (Zα)2 ≈ 3.
Thus the value of g−factor of a bound electron is g = 2.

4.5 Conclusion

In this chapter, we calculated the magnetic moments of a free and a bound electron. For
the free electron, the Dirac equation naturally gives a factor of 2 for the gyromagnetic ra-
tio, which we put by hand in non-relativistic calculations. This is a great triumph of the
Dirac theory. For the bound electron g−factor, the change of the energy due to a pertur-
bation caused by the magnetic field is computed from the Dirac equation. The result in
the non-relativistic limit Zα → 0 is compared with the value of energy obtained from the
non-relativistic quantum mechanics yielded g = 2. The values we obtained are the mag-
netic moments in the approximation neglecting quantum self-interaction effects. In the next
chapter, we shall examine these corrections.
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Chapter 5

Anomalous Magnetic Moment of a
Bound Electron

In the previous chapter, we computed the magnetic moment of a bound electron. In this
chapter, we will use a simple technique to compute its anomalous magnetic moment. We
will calculate the so called Z-diagrams, which are the graphical representation of an electron
interacting with the electromagnetic field. This chapter is based on [2].

5.1 Introduction

In the late 1950s, the theoretical splitting of the ground state of a hydrogen due to
interaction of the magnetic moment of an electron, and the magnetic field of nuclear dipole
was calculated to be 1416.90±0.54 MHz [19]. The experimental value measured by Nafe,
Nelson, and Rabi was 1421.3±0.2 MHz [47], which showed clear discrepancy. In 1947, after
the experimental observations, Breit suggested that the electron’s magnetic moment may be
different from the µ0 = e~/2m [48]. In 1947 and 1948, P. Kush and H. M Foley investigated
the magnetic moment of the electron for gallium atom and reported g = 2.00344±0.00012 [41]
different from the g = 2 predicted by the Dirac equation. The value of anomalous magnetic
moment is found using various QED effects such as self-energy and vacuum polarization.

The QED effects for a free electron are described as

g = 2

[
1 + C2

(α
π

)
+ C4

(α
π

)2

+ C6

(α
π

)6

+ ...

]
. (5.1.1)

C2, C4 and C6 are found analytically to be 0.5, −0.32847844400 and 1.181234017, respectively,
whereas C8= −1.7283(35) and C10= 0(3.7) are found numerically [49, 50, 51]. The value of
the magnetic moment for a free electron is known very precisely. If an electron is bound,
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binding effects play a role in the value of magnetic moment and it depends on the atomic
number Z. Therefore, precise measurements of g (Z) provide a chance to test the QED theory
for bound states. Theoretically, the value of g is split into three parts

g (Z) = gD + ∆grec + ∆grad, (5.1.2)

where the first term contains the lowest order expansion in Zα and found by Breit in 1928
to be [52]

gD =
2

3

[
1 + 2

(
1− α2

Z

)1/2
]
. (5.1.3)

∆grec and ∆grad represent the recoil and radiative corrections, respectively. We can write a
similar expansion series for the bound electron as that of a free electron in Equation (5.1.1)
as

∆grad = 2

[
C0 (Zα) + C2 (Zα)

(α
π

)
+ C4 (Zα)

(α
π

)2

+ C6 (Zα)
(α
π

)6

+ ...

]
. (5.1.4)

The binding effects are contained in coefficients. The first two coefficients are precisely
calculated numerically [53, 54] as well as analytically [55, 56]. The main source of uncertainty
is the coefficient C4 (Zα), which contains a parameter C ′ such that

C4 (Zα) = C4 (0)
[
1 + C ′ (Zα)2 +O (Zα)4] . (5.1.5)

C ′ is is universal in every power of (α/π); we will also find the value of the C ′.

5.2 Tree Level Contributions

The aim of this calculation is to find binding correction to g−factor up to the order (Zα)2.
Tree level contributions to the g−factor are described the three diagrams shown in Figure
5.2.1.

The change in energy of the electron can be calculated from the matrix element

iM = −i∆E. (5.2.1)

We will find the matrix elements of Feynman diagrams [ 5.2.1] to find change in the energy
∆E of an electron. The comparison of the result with Equation (4.4.25) will give us the value
of g−factor of a bound electron.
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(a) The scattering of an electron
from a magnetic field.

(b) The scattering of an electron
from electric and magnetic field.

(c) Mirror diagram of (b)

Figure 5.2.1: Tree level diagrams contributing to the g−factor of a bound electron. The
interaction with the electric and magnetic field is denoted by dashed and cross lines, respec-
tively.

5.3 Zeroth Order Contribution

The matrix element for an electron with momentum q1 interacting with a magnetic field
B, such that, the momentum of the electron changes to q2 is given as

iM = ū (q2) [ieγµAµ]u (q1) , (5.3.1)

where u (q1) =
√

2m

(
φ

σ.q1
2m

φ

)
, ū (q2) =

√
2m
(
φ† φ†σ.q2

2m

)
γ0, are the spinors and γµAµ =

γ0A0 − γ ·A =

(
−σ ·A

σ ·A

)
. Substituting values in Equation (5.2.1) gives

iM =− i∆E = 2iem
(
φ† φ†σ.q2

2m

)( 1

−1

)(
−σ ·A

σ ·A

)(
φ

σ.q1
2m

φ

)
(5.3.2)

= 2iem
(
φ† −φ†σ·q2

2m

)( − (σ ·A) σ.q1
2m

φ

(σ ·A)φ

)
(5.3.3)

= −2ieφ† [(σ ·A) (σ · q1) + (σ · q2) (σ ·A)]φ. (5.3.4)

The expectation value is

〈ψ|ψ〉∆E = e 〈(σ ·A) (σ · q1) + (σ · q2) (σ ·A)〉 (5.3.5)

≡ e 〈(σ ·A) (σ · P ) + (σ · P ) (σ ·A)〉 . (5.3.6)
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Using the identity σiσj = δij + iεijkσk and the Coulomb gauge (∇ ·A = 0)

〈ψ|ψ〉∆E = ieεijk 〈AiPj − PiAj〉 〈σk〉 (5.3.7)

= −ieεijk 〈[PiAj]〉 〈σk〉 . (5.3.8)

The commutation relation of a differential operator with A is [PiAj] f = (PiAj) f, this
simplifies the result

〈ψ|ψ〉∆E = −ieεijk 〈PiAj〉 〈σk〉 (5.3.9)

= eεijk 〈∇iAj〉 〈σk〉 (5.3.10)

= eBk 〈σk〉 (5.3.11)

= 2eS ·B, (5.3.12)

where, we have used the fact S = 1
2
σ. The wave function ψ is normalized as

〈ψ|ψ〉 = 2m. (5.3.13)

Therefore, we have

∆E = −〈M〉 =
e

m
S ·B. (5.3.14)

Comparing it with Equation (4.4.25) gives us the value of g−factor to be 2. Now we will
calculate Z-diagrams.

5.3.1 Amplitude of Z-Diagrams

Consider the first diagram where electron first scatters from the Coulomb potential and
then interacts with the vector potential A. The matrix element for the diagram is

iM1 = ū (q2) (−ieγ.A) ν (q1 + q)

(
Zα

r

)
u (q1) , (5.3.15)

where ν is is the spinor for the negative energy state. In the zeroth order, we can write
ω ≈ m, thus the spinors simplify to

u (p) =

√
2ωp

ωp +m
Λ+ (p)w ≈ Λ+ (p)w, (5.3.16)
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where w is the four component object, and

ν (p) =

√
2ωp

ωp +m
Λ− (p)w ≈ Λ− (p)w, (5.3.17)

where Λs are the projection operators, so

iM1 =
ieZα

2m

(
φ† 0

)
Λ+ (q2) (α ·A) Λ− (q1 + q)

(
1

r

)
Λ+ (q1)

(
φ

0

)
. (5.3.18)

The projection operators are defined as

Λ+ (p) =
1

2

[
1 +

α · p+ βm

ω

]
(5.3.19)

≈ 1

2

[(
2 0

0 0

)
+

1

m

(
σ · p

σ · p

)]
(5.3.20)

=

(
1 σ·p

2m
σ·p
2m

0

)
, (5.3.21)

Λ− (p) =
1

2

[
1− α · p+ βm

ω

]
(5.3.22)

≈ 1

2

[(
0 0

0 −2

)
− 1

m

(
α · p

α · p

)]
(5.3.23)

= −

(
0 α·p

2m
α·p
2m

1

)
. (5.3.24)

Substituting values of projectors in Equation (5.3.18) leads to

iM1 = −ieZα
(
φ† 0

)( 1 σ·q2
2m

σ·q2
2m

0

)(
σ ·A

σ ·A

)(
0 α·q

2m
α·q
2m

1

)
1

r

(
1 σ·q1

2m
σ·q1
2m

0

)(
φ

0

)
(5.3.25)

= −ieZα
2m

(
φ† φ†σ·q2

2m

)( (σ ·A) (σ · q)φ

(σ ·A) (σ · q) σ·q1
2m

φ

)
1

r
(5.3.26)

= −ieZα
2m

φ†
[
(σ ·A) (σ · q) +

σ · q2

2m
(σ ·A) (σ · q)

σ · q1

2m

] 1

r
φ. (5.3.27)

53



Similarly the amplitude of the cross diagram can be found as

iM2 =
ieZα

2m
φ†
[
(σ · q) (σ ·A)

1

r
+
σ · q2

2m
(σ ·A) (σ · q)

σ · q1

2m

1

r

]
φ. (5.3.28)

Thus total amplitude is

iM = −ieZα
2m

φ† [(σ ·A) , (σ · q)]
1

r
φ. (5.3.29)

To find the commutation relation [(σ ·A) , (σ · q)], consider the static vector potential of
the form A = B×r

2
=⇒ Ai = 1

2
εijkBjrk,

(σ ·A) (σ · q) = σiAiσjqj (5.3.30)

=
1

2
εilmBlrmqj

(
iεijkσk

)
(5.3.31)

=
i

2

(
Bjrmqj −Bmrjqj

)
σm. (5.3.32)

Similarly,

(σ · q) (σ ·A) =
i

2

(
qjBmrj − qjBjrm

)
σm. (5.3.33)

Hence the commutation relation is

[(σ ·A) , (σ · q)] = (σ ·A) (σ · q)− (σ · q) (σ ·A) (5.3.34)

=
i

2

[(
Bjrmqj −Bmrjqj

)
σm −

(
qjBmrj − qjBjrm

)
σm
]

(5.3.35)

=
i

2

[
Bj
{
rm, qj

}
−Bm

{
rj, qj

}]
σm, (5.3.36)

where [ri, qj] = iδij − qjri, {ri, qj} = riqj + qirj = 2riqj − iδij, so that

[(σ ·A) , (σ · q)] =
i

2

[
Bj
(
2riqj − iδij

)
−Bm

(
2rkqk − 3i

)]
σm. (5.3.37)

To compute the average value of energy we need
〈
(riqj) 1

r

〉
= −i

〈
rirj 1

r2

〉
= i
〈(

1
3
δij 1

r

)〉
. This

gives 〈(
2riqj − iδij

) 1

r

〉
= i

〈(
2

3
δij − δij

)
1

r

〉
= − i

3
δij
〈

1

r

〉
. (5.3.38)

Thus, the average value of [σ ·A,σ · q] 1
r
is −1

3

〈
1
r

〉
σ·B, which simplifies the matrix elements

as
i〈M〉 = i

eZα

m

1

3

〈
1

r

〉
σ ·B

2
, (5.3.39)
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The ground state wave function R = 2 (Zα)
3
2 e−Zαr gives the expectation value

〈
1
r

〉
=∫

4 (Zα)3 re−2Zr = Zα, hence

i〈M〉 = i
1

3
(Zα)2

( e

2m
σ ·B

)
. (5.3.40)

Combining it with the Equation (5.3.14) will give us the tree level contribution

〈M〉 = −
[
2− 2

3
(Zα)2

]
e

2m
S.B, (5.3.41)

thus, the value of g−factor of the bound electron obtained by comparing it with Equation
(4.4.25) is

g = 2

[
1− 1

6
(Zα)2

]
. (5.3.42)

Comparing it with Equation (5.1.5) gives C ′ = 1
6
. The bound state correction factor C ′ is

universal for all orders in α/π.

5.4 Expansion of Spinors

In the previous section, we solved Figure 5.2.1a in the limit E ≈ m and used q1 = q2, now
we aim to solve it for q2 = q1 + k, q2 = P + k

2
, q1 = P − k

2
and expand ωp =

√
m2 + p2

up to the square of velocity which gives ωp ≈ m
(

1 + p2

2m2

)
. Under these conditions we can

write √
ω2 +m

2ω2

= 1− P
2 + P · k

8m2
, (5.4.1)√

ω2 +m

2ω2

= 1− P
2 − P · k

8m2
, (5.4.2)√

1

2ω1 (ω1 +m)
=

1

2m

(
1− 3

8

P 2 − P · k
m2

)
, (5.4.3)√

1

2ω2 (ω2 +m)
=

1

2m

(
1− 3

8

P 2 + P · k
m2

)
, (5.4.4)
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and hence the expression for the spinor is

u (p) =
1√

2ωp (ωp +m)

(
(ωp +m)φ

p̂φ

)
(5.4.5)

=

 (
1− p2

8m2

)
φ(

1 + 3
4
p2

m2

)
p̂

2m
φ

 . (5.4.6)

The change in the energy is

∆V = −e
(
φ†
(

1− q22
8m2

)
φ†
(

1− 3q22
4m2

)
q̂2
2m

)( Â

Â

) (
1− q21

8m2

)
φ(

1− 3q21
4m2

)
q̂1
2m
φ

 (5.4.7)

=
−e
2m

φ†
[(

1− 3P 2

4m2

)
P̂ Â

(
1− P 2

8m2

)
+

(
1− P 2

8m2

)
Â

(
1− 3P 2

4m2

)
P̂

]
φ (5.4.8)

=
−e
2m

φ†
[{
Â, P̂

}
− 1

8m2

(
P 2ÂP̂ + 3ÂP̂P 2 − 3P 2P̂ Â+ P̂ ÂP 2

)]
φ (5.4.9)

Using Âp̂ = Aipjiεijkσk, the average value of different components can be computed as

P 2Aipj − pjAiP 2 = i
(
∆Ai∇j −∇jAi∆

)
(5.4.10)

=
i

2
εilnBl

(
∆rn∇j −∇jrn∆

)
, (5.4.11)

where Ai = 1
2
εilnBlrn is used. Note that

∆ (rnφ) = ∇k∇k (rnφ) = ∇k
(
δknφ+ rn∇kφ

)
= ∇nφ+ δkn∇kφ+ rn∆φ = (2∇n + rn∆)φ. (5.4.12)

This gives

P 2Aipj − pjAiP 2 =
i

2
εilnBl

(
2∇n∇j + rn∆∇j −∇jrn∆

)
=
i

2
εilnBl

(
2∇n∇j +����rn∆∇j − δjn∆−����rn∇j∆

)
=
i

2
εilnBl

(
2
δnj

3
∆− δjn∆

)
=
i

6
εiljBl

(
−∇2

)
(5.4.13)

=
i

6
εiljBlP 2. (5.4.14)
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Similarly, we have

AipjP 2 − P 2pjAi = iεilnBl
(
rn∇j∆−∆∇jrn

)
= iεilnBl

(
rn∇j∆−∆δjn −∆rn∇j

)
= i

5

6
εiljBlP 2. (5.4.15)

Substituting values in Equation (5.4.9) and using
〈
P 2

2m

〉
= −Binding = m

(
Zα
2

)2,

∆V =
e

2m
(B · σ)

[
2− 2

3
(Zα)2

]
, (5.4.16)

it means g = 2− 2
3

(Zα)2, which agrees with the first two terms of Equation (5.1.3).

5.5 Conclusion

In this chapter, we have solved the so called Z-diagrams to calculate the anomalous
magnetic moment of a bound electron. In the first half of the chapter, Z-diagrams are solved
in the zeroth order ω ≈ m and found the value of unknown coefficient C ′ for the equation

C4 (Zα) = C4 (0)
[
1 + C ′(Zα) +O (Zα)4] . (5.5.1)

The universal bound state correction factor C ′ is found to be 1/6. In the second half of the
chapter, first order correction to the Z-diagrams are found by the expansion of spinors up to
the square of velocities. The resulting expression for the g−factor agrees with the first two
terms of the Breit formula.
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Conclusion

In Chapter 1, I have presented the decay rate of di-positronium (Ps2) into an electron-
positron pair and found that the previously published result is overestimated by a fac-
tor of 5.44. In the ground state of Ps2, both initial state electron and positron pairs
are in spin singlet state. As a result, we found that 8 diagrams out of 36 do not con-
tribute. We computed Γ (Ps2 → e−e+) ≈ 4.27× 10−10s−1. As a result, we brought the ratio
Γ (Ps2 → e+e−) /Γ (Ps2 → γγ) to a reasonable value of about 12. Previously it was 250 and
this large ratio was a puzzle. This is the main new result of my thesis.

I reproduced the rate of the bound muon decaying into a bound electron using the full
Dirac wave functions (both particle and anti-particle parts) in Chapter 3. The resulting
expression contained single integral over a dimensionless parameter. Then, I found the first
three terms of the decay rate expression for the extreme relativistic and non-relativistic
cases. The limiting cases expressions compared with the exact numerical results showed a
good agreement.

In last two chapters, I reproduced the magnetic moment of a free and a bound electron.
First I found the magnetic moments without including the quantum self-interaction effects.
Then I calculated the so called Z-diagrams and found the anomalous magnetic moment of
a bound electron. The zeroth order calculation yielded the value of universal bound state
correction factor to be 1/6. The first order corrections obtained by the expansion of electrons’
spinors up to the square of velocities gave the value of g = 2 − 2

3
(Zα)2, which agreed with

the Breit’s formula [52]. In my future work I plan to apply the insights learned from the
bound electron g−factor to better describe the decay of a bound muon.
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Appendix A

Phase Space Factors

A.1 Two Particles in the Final State

Consider an initial state of total mass M decays into two particles of masses m1 and m2

having momenta k1and k2 respectively. The phase space integral will be,

∫
dΠLIPS =

∫
d3~k1

(2π)3 2k0
1

d3~k2

(2π)3 2k0
2

(2π)4δ4(P − k1 − k2),

where P and ki’s are the four momenta of particles, and ~ki are the three momenta. The 4-D
Dirac delta function can be decomposed in terms of 3-D and 1-D Dirac delta functions as
(2π)4δ4(P − k1 − k2) = (2π)δ(M − k0

1 − k0
2)(2π)3δ4(~k1 + ~k2), integration over ~k2 yields,

∫
dΠLIPS =

∫
d3~k1

(2π)3 2

√
~k1

2 +m2
1

1

2

√
~k1

2 +m2
2

(2π)δ(M − k0
1 − k0

2)

=

∫ ∣∣∣~k1

∣∣∣ 2d
∣∣∣~k1

∣∣∣
4π

δ(M − k0
1 − k0

2)√
~k1

2 +m2
1

√
~k1

2 +m2
2

=
1

8π

λ (M2,m2
1,m

2
2)

M2
(A.1.1)

where λ (M,m1,m2) =
√
M4 +m4

1 +m4
2 − 2m2

1m
2
2 − 2m2

2M
2 − 2M2m2

1.
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A.1.1 Phase Space for Two Massless Particles

If the final state particle are massless, then λ (M, 0, 0) = M2 and∫
dΠLIPS =

1

8π
. (A.1.2)

This result is used in the two photons decay rate of para-positronium.

A.1.2 Phase Space for Two Identically Massive Particles

For the identical massive particles in the final state, λ (M,m,m) =
√
M4 − 4m2M2, the

phase space factor for non-relativistic normalization is∫
dΠLIPS =

1

8π

√
M4 − 4m2M2

M2
.

In case of Ps2 → e+e−, M = 4m, thus,∫
dΠLIPS =

√
3

16π
. (A.1.3)
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Appendix B

Amplitudes of the Diagrams
Contributing in the Radiation-less Decay
of Di-Positronium

Figure B.0.1: Class-A of diagrams

Table B.0.1: Amplitudes of Class-A diagrams.

×16
√

3 ig
4
e

m5 Me−↑ e
+
↑ e
−
↓ e

+
↓
Me−↓ e

+
↓ e
−
↑ e

+
↑
Me−↑ e

+
↓ e
−
↓ e

+
↑
Me−↓ e

+
↑ e
−
↑ e

+
↓

M01 0 0 − 1
32

− 1
32

M02 0 0 − 1
32

− 1
32

M03
1
32

1
32

0 0
M04

1
32

1
32

0 0
1
16

1
16

− 1
16

− 1
16
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Figure B.0.2: Class-B of diagrams
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Table B.0.2: Amplitudes of Class-B diagrams.

×16
√

3 ig
4
e

m5 Me−↑ e
+
↑ e
−
↓ e

+
↓
Me−↓ e

+
↓ e
−
↑ e

+
↑
Me−↑ e

+
↓ e
−
↓ e

+
↑
Me−↓ e

+
↑ e
−
↑ e

+
↓

M05
1
16

1
16

− 1
32

− 1
32

M06 0 0 0 1
16

M07
1
16

1
16

− 1
32

− 1
32

M08 0 0 1
16

0
M09

1
32

1
32

− 1
16

− 1
16

M10 − 1
16

0 0 0
M11

1
32

1
32

− 1
16

− 1
16

M12 0 − 1
16

0 0
M13

1
16

1
16

− 1
32

− 1
32

M14 0 0 0 1
16

M15
1
16

1
16

− 1
32

− 1
32

M16 0 0 1
16

0
M17

1
32

1
32

− 1
16

− 1
16

M18 − 1
16

0 0 0
M19

1
32

1
32

− 1
16

− 1
16

M20 0 − 1
16

0 0
1
4

1
4

−1
4

−1
4

Figure B.0.3: Class-C of diagrams
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Table B.0.3: Amplitudes of Class-C diagrams.

×16
√

3 ig
4
e

m5 Me−↑ e
+
↑ e
−
↓ e

+
↓
Me−↓ e

+
↓ e
−
↑ e

+
↑
Me−↑ e

+
↓ e
−
↓ e

+
↑
Me−↓ e

+
↑ e
−
↑ e

+
↓

M21 0 0 −1
8

−1
8

M22 0 −1
8

1
8

1
8

M23 0 0 −1
8

−1
8

M24 −1
8

0 1
8

1
8

M25
1
8

1
8

0 0
M26 −1

8
−1

8
1
8

0
M27

1
8

1
8

0 0
M28 −1

8
−1

8
0 1

8

−1
8

−1
8

1
8

1
8
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Appendix C

Symmetry Factors

Consider the folk state of Ps−, a bound state of two electrons and a positron

∣∣Ps− (P )
〉

=

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3 Ψr1r2r3 (p1,p2,p3) a†r1 (p1) a†r2 (p2) br3 (p3) |0〉 , (C.0.1)

where a†s (p) (bs (p)) is the creation operator for an electron (positron), p and s is the mo-
mentum and spin of the created particle. The total momentum of the ion is P . Einstein
summation convention for the repeated indices is used understood. The momentum space
wave function Ψr1r2r3 (p1,p2,p3) can be written as

Ψr1r2r3 (p1,p2,p3) = (2π)3 δ3 (P − p1 − p2 − p3) Ψr1r2r3 (p1,p2) . (C.0.2)

Using the Fourier transformation to obtained the position space wave function

Φr1r2r3 (x1,x2,x3) =

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3 exp [ip1 · x1 + ip2 · x2 + ip3 · x3] Ψr1r2r3 (p1,p2,p3) .

(C.0.3)
Using value of momentum space wave function from Equation (C.0.2) and integrating over
p3 gives

Φr1r2r3 (x1,x2,x3) = eiP ·x3

∫
d3p1

(2π)3

d3p2

(2π)3 exp [ip1 · (x1 − x3) + ip2 · (x2 − x3)] Ψr1r2r3 (p1,p2)

≡ eiP ·x3φr1r2r3 (ρ1,ρ2) (C.0.4)
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where relative coordinates ρ1 = r1 − r3 and ρ2 = r2 − r3 are used. The Jacobian of this
transformation is 1 and

φr1r2r3 (ρ1,ρ2) =

∫
d3p1

(2π)3

d3p2

(2π)3 exp [ip1 · ρ1 + ip2 · ρ2]ψr1r2r3 (p1,p2) . (C.0.5)

The wave function of the ground state of Ps− can be decomposed into symmetric momentum
space wave function ψ (p1,p2) and anti-symmetric spin wave function χr1r2r3 as

ψr1r2r3 (p1,p2) = ψ (p1,p2)χr1r2r3 , (C.0.6)

Our aim is to find the normalization, for which following anti-commutation relations are very
useful, {

ar (p) , a†r′ (p
′)
}

=
{
br (p) , b†r′ (p

′)
}

= (2π)3 δ3 (p− p′) δrr′ ,{
ar (p) , b†r′ (p

′)
}

=
{
ar (p) , br′ (p

′)
}

= 0, (C.0.7)

The expectation value of〈
0
∣∣∣b†r′3 (p′3) ar′2 (p′2) ar′1 (p′1) a†r1 (p1) a†r2 (p2) br3 (p3)

∣∣∣ 0〉 (C.0.8)

= (2π)9 δ3 (p′3 − p3) δr3r′3
[
δ3 (p′1 − p1) δr′1r1δ

3 (p′2 − p2) δr′2r2 (C.0.9)

−δ3 (p′1 − p2) δr′1r2δ
3 (p′2 − p1) δr′2r1

]
. (C.0.10)

We then find

〈
Ps− (P ′)

∣∣Ps− (P )
〉

=

∫ 3∏
i=1

dp̃idp̃
′
iψr1r2r3 (p1,p2,p3)ψ∗r′1r′2r′3 (p′1,p

′
2,k

′
3)× (2π)9 δ3 (p3 − p′3) δr3r′3 (C.0.11)

×
[
δ3 (p′1 − p1) δr′1r1δ

3 (p′2 − p2) δr′2r2 − δ
3 (p′1 − p2) δr′1r2δ

3 (p′2 − p1) δr′2r1
]

=

∫ 3∏
i=1

dp̃i
[
ψr1r2r3 (p1,p2,p3)ψ∗r1r2r3 (p1,p2,p3)− ψr1r2r3 (p1,p2,p3)ψ∗r2r1r3 (p1,p2,p3)

]
= 2 (2π)3 δ3 (P − P ′)

∫
dp̃1dp̃2 |ψr1r2r3 (p1,p2)|2 , (C.0.12)

where dp̃i = d3pi
(2π)3

, and we have used the anti-symmetric property ψ∗r2r1r3 = −ψ∗r1r2r3 of the
ground state of Ps−. The spin wave function χr1r2r3 = 1√

2
(↑↓ − ↓↑) ↑ is normalized to 1, and
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the spatial wave function by ∫
d3ρ1d

3ρ2 |φ (ρ1,ρ2)|2 = 1, (C.0.13)

giving ∫
dp̃1dp̃2 |ψr1r2r3 (p1,p2)|2 = 1, (C.0.14)

hence 〈
Ps− (P ′)

∣∣Ps− (P )
〉

= 2 (2π)3 δ3 (P − P ′) . (C.0.15)

The factor 2 in Equation (C.0.15) is due to indistinguishable electrons, which need to be
compensated while calculating the decay rate.

Similarly for Ps2, there are two identical electrons and two positrons, it means we need
to divide it by a factor of 4.
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Appendix D

4× 4 Matrices in terms of
Gamma-Matrices

The definition is
j

Aij = i


0 .. .. .. 0

: .. .. .. :

0 ... 1 0 :

: : : :

0 .. .. .. 0


(D.0.1)

1 + γ0

2

γ5 + γ3

2
= A13

1 + γ0

2

γ5 + γ3

2
γ5 = A11 (D.0.2)

1 + γ0

2

γ1 + iγ2

2
= A14

1 + γ0

2

γ1 + iγ2

2
γ5 = A12 (D.0.3)

γ1 − iγ2

2

γ5 − γ3

2
= A21

γ1 − iγ2

2

γ5 − γ3

2
= A23 (D.0.4)

γ5 − γ3

2

1− γ0

2
= A24

γ5 − γ3

2

1− γ0

2
γ5 = A22 (D.0.5)

γ1 + iγ2

2

1 + γ0

2
= −A32

γ1 + iγ2

2

1 + γ0

2
γ5 = −A34 (D.0.6)

1− γ0

2

γ5 − γ3

2
= A31

1− γ0

2

γ5 − γ3

2
γ5 = A33 (D.0.7)

γ5 + γ3

2

1 + γ0

2
= A42

γ5 + γ3

2

1 + γ0

2
γ5 = A44 (D.0.8)

1− γ0

2

γ1 − iγ2

2
= −A41

1− γ0

2

γ1 − iγ2

2
γ5 = −A43 (D.0.9)
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