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Abstract 

Electronic decision support systems have the potential to improve healthcare practices in many 

domains. This thesis investigates the use of data-driven decision support to help optimize brace 

treatment for children who have Adolescent Idiopathic Scoliosis (AIS). 

AIS is a spinal deformity affecting 2-3% of adolescents. If left untreated, AIS may progress 

(worsen), negatively affecting the adolescent’s emotional, social, and physical wellbeing and 

eventually necessitating surgical intervention. Brace treatment is the most common non-

surgical treatment for AIS; in brace treatment a back brace applies corrective pressure to the 

torso, with the goal of preventing progression. Patients’ faithfulness in wearing the brace as long 

and as tightly as prescribed affects treatment outcome. But the outcome also depends on patient 

characteristics, the nature of the deformity, and many other factors in addition to compliance. 

The relationships between these factors and treatment outcome are complex and not perfectly 

understood; as a result, brace treatment outcome is difficult to predict. As technology improves 

our ability to predict treatment outcome, the ability to optimize treatment protocols for 

individual AIS patients should improve as well. 

This research envisions a complete system for collecting patient data and using it to generate 

treatment recommendations for new patients. In this system, electronic sensors collect 

information about patients’ brace-wear habits, machine-learning techniques use sensor and 

other data to train prediction models, and these models’ predictions of new patients’ outcomes 

are used to customize treatment protocols to those patients. This work developed the 

components of this system and implemented them in a scalable hardware/software platform. 

Data from 31 patients was collected and processed by the system. Simulations were used to 

provide an initial assessment of the system’s treatment recommendations.  
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1. Introduction 

This chapter provides a brief overview of brace treatment for children with Adolescent 

Idiopathic Scoliosis, and a formulation of the problem: optimization of brace treatment. It 

discusses how an electronic decision support system might be used to optimize brace 

treatment. The objectives of the work are stated, and the approach taken is summarized. 

Finally an outline of the remainder of this thesis is provided. 

1.1. Brace treatment for Adolescent Idiopathic Scoliosis 

Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional deformity of the spine, affecting 2-

3% of adolescents. Scoliosis affects adolescents’ emotional and social wellbeing, and can cause 

physiological problems in severe cases. If left untreated the deformity might progress in severity 

until surgical correction is required.  

Brace treatment is the most common non-surgical treatment for AIS. In brace treatment, a 

custom brace counteracts the Scoliotic curve by applying targeted pressure to the torso. Figure 1 

shows a radiograph of a scoliotic spine, and one example of a brace. There are a myriad of brace 

types – worn for different portions of the day, constructed with different or different amounts of 

material, and using slightly different theories of curve correction – but all have a corrective 

 

Figure 1: A radiographic image of a Scoliotic spine (left), and a brace used to counteract progression 
(right). 
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effect on the spinal curve while they are worn. The goal of the brace is simply to prevent 

progression of the deformity as the adolescent grows. The brace is usually worn until skeletal 

maturity. 

Recent research suggests that a well-built and properly worn brace can lower the risk of 

Scoliosis progression, reducing the incidence of surgical intervention. However the factors 

influencing treatment success and their precise relationship to treatment outcome are not clear. 

As a result, predicting which individual cases will progress is a difficult task. It seems that 

treatment outcome is influenced by the patient’s characteristics, and the nature, location, and 

severity of their Scoliosis. It is also apparent that the amount of pressure applied by the brace is 

positively correlated with the brace’s immediate corrective effect [1], [2] and that this corrective 

effect is positively correlated with treatment success [3]. There is a further correlation between 

duration of brace-wear per day and treatment success [4], [5]. These relationships are 

documented in literature, but somewhat rudimentary: a more refined mathematical model of 

brace treatment would be needed to predict treatment outcome with much accuracy. 

Since the relationships between patient characteristics, treatment parameters, and treatment 

outcome are not clear, existing brace treatment guidelines are general in nature. For example, 

the Scoliosis Research Society (SRS) Brace Manual’s guidelines recommend that bracing should 

be used when the patient falls into certain ranges of Risser Grade (a measure of skeletal 

maturity) and Cobb angle (a measure of Scoliosis severity) [6]. These guidelines are shown in 

Table 1. 

Risser Grade Cobb Angle Action 

0-1 

0-1 

0-20° 

20-40° 

Observe 

Brace 

2-3 

2-3 

0-30° 

30-40° 

Observe 

Brace 

0-3 

0-4 

40-50° 

≥50° 

Gray 

Surgery 

Table 1: The Scoliosis Research Society Brace Manual’s indications for observation, brace treatment, and 
surgical treatment. 

Guidelines published by the Society on Scoliosis Orthopaedic and Rehabilitation Treatment 

(SOSORT) in 2011 include a table which is similar if more fine-grained – it includes each Risser 

grade as a separate category and ten categories of Cobb angle [7]. 
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1.2. Motivation 

With the large number of available brace types and brace-wear protocols, and the fact that “AIS” 

encompasses a wide range of three-dimensional deformities [8], it seems clear that general 

guidelines such as those published by the SRS and SOSORT do not adequately reflect the 

complexity of brace treatment or the diversity of patients. This is not a failing of the SRS or 

SOSORT; rather it is indicative of the current state of Scoliosis research. Existing Scoliosis 

literature is probably not yet informative enough to support the development of more 

sophisticated guidelines. Thus, evidence-based guidelines may not actually describe the brace 

treatment which is optimal for a given adolescent with AIS. 

In a perfect world, brace treatment guidelines might consider more than just Risser grade and 

Cobb angle. Guidelines which considered (for example) patients’ characteristics, the nature of 

their deformity, or their tolerance for treatment might better reflect the complexity of brace 

treatment. With a good enough ability to estimate case-by-case probabilities of treatment 

success, we might be able to replace general guidelines with patient-specific treatment plans. 

This idea is, of course, not new. Individual healthcare providers already try to fine-tune 

guidelines to meet their patients’ needs. Given two patients with similar Risser grades and Cobb 

angles, a physician might prescribe two different brace treatments: Based on past experience, 

intuition, and his/her interaction with the patient, the physician makes a judgement on how the 

general guidelines should be customized to a specific case. 

The contrast in dispositions toward patient-specific treatment protocols is interesting. High-

level organizations such as the SRS realize, perhaps, that the current body of Scoliosis research 

can only support the development of quite general guidelines. Meanwhile, physicians at the 

point of care realize the need for more patient-specific treatment, and routinely develop 

treatment plans which are individualized to varying degrees – and evidence-based to varying 

degrees.  

Optimizing brace treatment probably means finding a middle ground: the choice of treatment 

should be justifiable by virtue of being based on solid data. But it should also acknowledge that 

different patients have different needs, and have some ability to accommodate them.  

There may be opportunity to begin optimizing brace treatment at the clinic level. A system could 

be implemented which supports individualized treatment planning by providing evidence-based 
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recommendations. The system would provide information that general guidelines cannot, and 

help inform physicians’ decision-making at the point of care. The goal would be to help 

physicians optimize treatment protocols to individual patients. 

In this thesis, the system takes the form of an electronic decision support system.  

1.3. Electronic Decision Support for Brace Treatment Planning 

So how is the system to generate its evidence-based recommendations? If brace treatment 

guidelines are very general due to the current state of Scoliosis research, then the 

recommendations should not be drawn from research publications. Moreover, Trisha 

Greenhalgh et al. point out the negative consequences when “evidence-based” means “based on 

published research” [9]. This thesis will instead take “evidence-based” to mean “data-based”, 

and assert that the recommendations should be based on an analysis of data collected from past 

patients. That is, the system will use a database of records of past patients to try to infer the 

optimal treatment for a given new patient. 

The role of the system would be to enhance the physician’s decision making. Humans have 

limited ability to process information: the large number of patient records and academic 

publications available to physicians represent an overwhelming volume of data. It is very 

difficult for the human brain to process all this information, determining which facts are 

relevant and how to use them in decision-making. A computer-based decision support system 

could programmatically select the most important information and use it to produce a sound 

recommendation. The system would accomplish this using machine learning techniques. A high-

level representation of the envisioned system is shown in Figure 2.  

The system accepts patient data from various sources. This data includes patients’ clinical 

measurements, brace treatment details, and information about their brace-wear habits. This 

data is stored in a database for analysis. Machine learning techniques are used to 

(automatically) analyse the data and extract the key relationships: those that allow progression 

to be predicted for an individual AIS patient at the start of their brace treatment. These 

relationships are supplied to a “decision support engine” – a computer program which uses 

them to estimate optimal treatment parameters for new patients. Thus the system’s treatment 

recommendations are individualized but still evidence (data) based – and what’s more, the data 

originates from the same clinic at which the recommendations are being used. Published 
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research, on the other hand, involves diverse patient populations which may be different from 

the one seen at the local clinic. 

 

Figure 2: An illustration of the envisioned decision support system. Patient data accumulates in a 
database for analysis. A machine learning process distills from the data the key relationships that will be 

useful in recommending optimal brace treatment protocols. 

The treatment recommendations would serve to advise and inform the physician in treatment 

planning. They would not be perfect, being limited by the amount and quality of the available 

data, and the quality of the machine learning process. Thus the physician may and should decide 

to reject them in some cases. But as the amount of stored data increases the recommendations 

would improve. The system could partially relieve clinic staff of the task of interpreting past 

patient data, and enhance their decision-making ability. 

1.4. Objectives of This Work 

This work investigates the feasibility of a decision support system as described in section 1.3. 

The system has been developed following that general description, and validated using actual 

patient data. The validation determines whether the system functions as intended, and whether 

it can be expected to produce valuable recommendations. The specific objectives are to: 

1. Perform a preliminary validation of the concept of machine-learning based decision 

support for brace treatment using retrospective data from past patients. 

Machine 

learning 

process 

Decision 

support 

engine 

Treatment 

recommendations 

 Various 

sources of 

patient data 

Database 
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2. Design and validate an electronic sensor which can be embedded into a brace and used 

to measure how long and how tightly a patient wears their brace. 

3. Design and validate software which accepts data from the electronic sensor and other 

sources, stores it in a database, and allows users to perform simple statistical analyses 

and visualize the data. 

4. Implement and test machine-learning software which “learns” from the data how to 

predict at the start of treatment whether a braced patient will progress (i.e. whether their 

treatment will succeed). 

5. Design software which uses the prediction models to calculate recommended treatment 

parameters. Test the efficacy of these recommendations in a pilot simulation study. 

6. Validate the overall system using data from patients undergoing brace treatment at the 

local Scoliosis clinic. 

1.5. Proposed Approach 

This work implements the decision support system as a scalable hardware/software platform 

which integrates the tasks of collecting patient data, managing the database, analysing the data, 

modelling the data, and using the models for decision support. Figure 3 illustrates the overall 

system. 

The hardware portion of the platform includes an electronic device which can be embedded in a 

brace to monitor how patients wear their braces. The software portion of the platform includes a 

user interface for retrieving logged data from these devices. The data is stored in a relational 

database along with patients’ other clinical measurements. 

Analysis of the accumulated data is done from within the software platform, through the use of 

external “modules”. Two types of modules are accommodated: visualization modules (used for 

simple statistical analysis and data visualization) and modelling modules (which apply machine 

learning techniques to model the data). As the users’ needs change or the database grows, the 

platform can be expanded by adding new modules. This work also develops one modelling 

module and a small contingent of visualization modules.  

The modelling modules interact with a decision support engine, which converts the knowledge 

contained in the models into case-specific recommendations. The decision support engine 
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accepts the details of a particular case, and then determines what combination of the models’ 

non-static parameters produce a desired outcome. For example, suppose a model predicts 

treatment outcome based on patient Cobb angle, in-brace correction, and compliance. The 

decision support engine would calculate the in-brace correction and compliance required to 

obtain a desirable prediction, given the patient’s Cobb angle. Chi et al call this style of decision 

support “Prediction and Optimization based Decision Support” [10], [11]. 

 

Figure 3: Illustration of the overall decision support system. 

Validation of the software platform has been performed at the lab testing level (as identified by 

Wyatt and Spiegelhalter [12]). Field testing is out of the scope of this thesis. Thirty-one patients 

undergoing brace treatment had their braces instrumented with the electronic sensors 

developed during this work. Data from these patients has been collected and processed by the 

software platform. The modelling module was developed and cross validated using this data. A 

clinical trial simulation [13] estimates the efficacy of the treatment recommendations made by 

the decision support engine, in conjunction with the prediction model. 

1.6. Thesis Overview 

This thesis contains 6 chapters. After an introduction and review of related literature, the thesis 

describes a preliminary validation of the decision support concept. It then details the 
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development and testing of each component of the overall decision support system. The 

validation of the overall system is then described and test results are presented. Finally, 

conclusions are stated and recommendations for future work are put forward. Overviews of the 

following chapters are as follows: 

Chapter 2 contains a review of literature on AIS, brace treatment, electronic decision support 

and predictive modelling, and applications of machine learning in Scoliosis. This review of 

published literature attempts to situate this thesis among the other research being conducted. 

Chapter 3 describes a preliminary test of the concept of machine-learning-based decision 

support for brace treatment. This test used retrospective patient data to create a prediction 

model, and used this model to create treatment recommendations. The effect of the 

recommendations was estimated in a clinical trial simulation. This preliminary test was limited 

because the retrospective data did not include any information about patients’ brace wear habits 

– this information is an important part of the proposed decision support system. 

Chapter 4 discusses the design of each component of the overall decision support system: the 

electronic brace-wear sensing device, visualization and modelling modules, and the decision 

support engine. A software platform integrates these components into a complete system which 

accommodates future expansion. 

Chapter 5 describes the validation of the overall decision support system. Test procedures and 

results for the electronic device are explained. Patient data is used to test the system’s modelling 

module. The same data is used to validate the decision support engine in a clinical trial 

simulation. Some commentary is included to discuss the test results and what they reveal about 

the road to eventual implementation of a system like the one proposed here. 

Chapter 6 concludes the thesis with a summary of the work. It then provides a discussion of the 

limitations of this work and makes recommendations for working toward optimal brace 

treatment protocols in the future. 
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2. Background 

This chapter reviews published research on the topic of Adolescent Idiopathic Scoliosis: 

progression of AIS, predicting progression, and principles of brace treatment. It also 

overviews electronic clinical decision support, and general predictive modelling and machine 

learning techniques. 

2.1.    Scoliosis, Etiology, and Mechanisms of Progression 

Adolescent Idiopathic Scoliosis (AIS) is a spinal deformity affecting 2-3% of adolescents [14]. 

Although it appears on typical radiographs as a “side-to-side” bending of the spine (see Figure 

4), it is actually a complex three-dimensional deformity involving abnormal coronal and sagittal 

plane bending as well as vertebral rotation [15]–[17]. The coronal plane component can cause 

visible asymmetry of the shoulders or waist, while the rotational component can cause a visible 

rib hump or (in girls) breast asymmetry. AIS can involve deformation of the intervertebral discs 

[18], the vertebrae themselves [17], and the ribcage [19]. 

 

Figure 4: An adolescent with AIS (left), and a radiograph of the same adolescent (right). 

The standard measurement for quantifying Scoliosis severity is the Cobb angle, measured from a 

posterior-anterior (or anterior-posterior) radiograph. It is the angle formed by the endplates of 

the two most tilted vertebrae along the spinal curve (Figure 5). Unfortunately, the two-

dimensional nature of the Cobb angle makes it only an approximate measurement of Scoliosis 
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severity. The Cobb angle measurement is also very noisy; it suffers from measurement error 

with a 95% confidence interval of up to 7° for a single observer [20] and up to 9° for multiple 

observers [21]. However the Cobb angle remains the gold standard despite its drawbacks. 

 

Figure 5: Cobb angle measurement. Lines are drawn along the endplates of the two most tilted vertebrae 
in the curve. The Cobb angle is the angle formed by these lines. The Cobb angle shown in this figure is 

roughly 26°. 

Scoliosis can be life-threatening in very severe cases [22], but in general does not increase 

mortality rate. Usually severe curves are surgically corrected before becoming physiologically 

dangerous. However adolescents with AIS can have higher pain prevalence, lower social 

function, and lower self-image than healthy individuals [23].  

The etiology of AIS is unclear, but some potential contributing mechanisms have been discussed 

in literature [24]. Millner and Dickson observed that scoliosis is preceded by a flattening of the 

spine in the sagittal plane [16]; they pointed out that a spine which is straighter than normal in 
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the sagittal plane would be more prone to bending in the coronal plane when pushed laterally – 

by the aorta, for example [25]. This idea of a Scoliotic spine being initially straighter and more 

slender seems supported by the fact that Scoliotic adolescents are often tall for their weight [26], 

[27]. Van Loon et al. made the related observation that forcibly exaggerating the spine’s normal 

sagittal curves can correct Scoliotic deformities in the coronal plane [28]. The lordosing effect 

observed by Millner occurs around the adolescent growth spurt, which is also when AIS tends to 

progress the most. Adolescents’ are also skeletally immature at the start of the growth spurt, 

making their spines more flexible [29]. This flexibility could make the spine more susceptible to 

deformation. Some deficiency of the intervertebral discs may also contribute to AIS: Yu et al. 

found an abnormal lack of an elastic fiber network in discs from Scoliotic individuals [30]. 

While it is unclear whether this was a cause or a result of Scoliosis, the weaker elastic fibers 

mean poorer structural properties for the disc. 

Veldhuizen et al. suggested that AIS could originate due to postural instability caused by a small 

vestibular, visual, or proprioceptive defect [31]. The body’s attempt to compensate for this defect 

could lead to asymmetrical muscle development, which ultimately unbalances forces on the 

spine. These asymmetrical loads on the spine can cause curve progression, as shown by Stokes 

[32],[33]. Stokes further suggests that the muscle activation strategies of the adolescent may be 

the difference between progressive and non-progressive Scoliosis [33]. 

The Heuter-Volkmann Principle seems to be a commonly accepted mechanism of Scoliosis 

progression [34]. In this context the principle simply states that the growth of the vertebral 

growth plates is impeded when the plates are loaded, and stimulated when they are unloaded. 

Thus if there is some curve in the spine, the uneven loading of the growth plates causes uneven 

growth. The uneven growth exacerbates the curve, which worsens the uneven growth plate 

loading. This cyclic mechanism – termed the “vicious cycle” by Stokes et al. – explains Scoliosis 

progression, and seems to be at the core of many conservative treatments. 

There is likely some genetic basis for Scoliosis [25][35][36][37]. If literature in this area is not 

being oversold, genetic screening offers the potential for very early detection and possible 

prevention of AIS cases [36]. Developments in this area could prove very valuable in the future. 

At present though, it seems AIS is still correctly called “idiopathic”. 
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2.2. Prognostic Factors and Methods for Predicting Progression 

The natural history of AIS involves progression of the deformity [23], but the incidence of 

progressive versus non-progressive curves is unclear. For example Rogala et al. reported that 

79% of curves between 20-30° progressed [38], while Lonstein and Carlson reported only 37% 

progression for the same range of Cobb angles [39]. The inconsistent reports in literature may 

be partly due to a historical lack of a standardized definition of “progression” – some 

researchers have defined progression as a certain magnitude of Cobb angle increase, while 

others have defined it as an increase past a certain threshold. The SRS has addressed this 

problem by recommending “progression” be defined as an increase in Cobb angle of 6° or more 

[40]. 

Professionals who treat AIS cases estimate their patient’s risk of progression to make the best 

treatment decisions for their patients [7]. Literature has been flooded with statistical analyses of 

prognostic features, and sometimes contradictions appear.  Table 2 shows a list of features 

which appear in literature, along with works which claim the feature has or does not have 

prognostic value.  

Most works cited in Table 2 have investigated linear correlations between progression and the 

various features. The overall outcome of these researchers’ efforts could be summarized by 

listing a few correlations that seem to have become generally accepted by clinicians. It is 

generally accepted that younger (especially in terms of skeletal maturity) patients are at higher 

risk of progression. So are deformities involving large (in terms of Cobb angle) curves, curves 

located high on the back, or multiple curves. The risk of progression is considered greatest 

during the adolescent growth spurt.  

These correlations provide a general picture of what factors increase or decrease a patient’s risk 

of progression. However we should note that most existing research has investigated simple 

linear relationships between the factors and progression, while the true nature of these 

relationships could be inherently non-linear. It has been shown that non-linear models 

outperform linear ones in describing scoliosis severity [41], [42]: the same could be true in 

modelling progression.  

Some researchers have gone beyond simple descriptive statistics and proposed methods for 

predicting progression or non-progression in specific patients. Lonstein and Carlson proposed a 

“progression factor” – a function of patient’s age, Risser sign, and Cobb angle – which related 
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Factor 
Works which suggest 

prognostic value 

Works which 

suggest little 

prognostic value 

Age [39][43][44][45] [46][47] 

Apex * [45][46]  

Height or BMI [25][48][49] [43][48] 

Cobb / curve magnitude [25][39][43][44][47][48][50][51] [45] 

Curve type or direction † [43][44][51]  

Family history/ genetics [25][35][36][37][52] [39][43] 

Flexibility [34]  

Growth velocity/ growth spurt [25][44][46][50][53][54]  

Menarche [44][46][48][50] [45][47] 

Risser or Bone Age [39][43][44][45] [50] 

Rotation [51] [39][45] 

Sagittal plane features [16][44][55] [43][45] 

Sex [25][43] [39][47][48] 

Trunk balance ‡ [45][51] [43] 

* Apex refers to the particular vertebra which falls at the “apex” of the spinal curve. It is an indication of 

the curve’s vertical position in the spine. 

 

† Various systems have been proposed to classify AIS cases by curve type; usually based on the number, 

location, and severity of curves in the spine. Curve direction refers to the direction (left or right) of a 

curve’s deviation from the normal vertical.  

 

‡ Measured as the horizontal deviation between the top of the thoracic spine from a vertical line passing 

through the center of the sacrum. 

 

Table 2: Features which appear in literature related to an AIS patient’s risk of progression. A few features 
appear prognostic in some studies but not others. 

non-linearly to a percentage risk of progression [39]. Although Lonstein’s progression factor has 

been widely used in clinical practice [56], it seems to have never been validated as an accurate 

predictor of progression. Because of this SOSORT has discontinued its use [7].  

Peterson proposed a logistic regression model to predict progression using Risser sign, curve 

apex level, imbalance, and age [45]. Peterson claimed this model was 81% accurate in training 

(81% accurate on the dataset used to create it), but it was never validated on separate data. Like 
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Lonstein’s progression factor, there does not seem to be any evidence that Peterson’s risk of 

progression makes accurate predictions [57]. 

Ajemba et al. developed a support vector machine classifier [58] to predict progression using a 

small dataset of 44 patients, 14 of whom were braced [59]. The model used radiographic 

features as inputs, including several non-standard measurements not normally measured in 

routine practice. They reported a cross-validated prediction accuracy of 78% on the 14 braced 

patients using sagittal balance and wrist x-ray as model inputs. While Ajemba’s method may 

have merit, his dataset was so small that a generalizable model could not be found – as 

evidenced by the gap between training and test accuracies (100% and 78% respectively).  

Wu et al. have used fuzzy clustering and artificial neural networks [60], and a non-uniform 

rational B-spline technique [61] to predict a patient’s Cobb angle at their fourth follow-up visit 

based on the previous three Cobb angle measurements. The absolute error in predicting the 

Cobb angle was 4.1 ± 3.3° in the later study: impressively close to the measurement error of the 

Cobb angle itself. Thus this method may be able to reduce patient’s radiation exposure by 

replacing some x-ray measurements with Cobb angle estimates. However, Wu’s dataset included 

56 radiographs from only 11 AIS patients, and apparently has not been validated on additional 

data to ensure generalizability. Also note that Wu’s method is applicable only after three visits 

(6-12 months apart) and so is not intended to achieve early identification of progressive curves. 

Lee et al. used Classification and Regression Tree (CART) [62] analysis to develop a decision 

tree for classifying patients’ risk of progression [48]. The tree used Cobb angle, age, and 

menarche (or height if menarche was not available) to place patients in one of four risk 

categories. But Lee was interested only in the hazard ratios for the patients in each category – 

his decision tree was not developed to generate actual predictions of progression or non-

progression for particular patients. In fact, a glance at the leaf nodes of the resulting tree 

suggests the model may predict progressive curves quite inaccurately. 

Lou et al. developed the only prediction model specifically for AIS patients treated with braces 

[3]. The model is a linear regression using Peterson’s risk of progression, flexibility, quality of 

brace wear, quantity of brace wear, and the product of quality and quantity as inputs. Lou used 

force sensors embedded in the brace to measure the quality (related to the amount of force 

applied) and quantity (related to brace wear-time per day). Initial results showed prediction of 

progression within 3° on a test set of six subjects. Lou’s method needs validation on a larger set 
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of patients, but looks very promising. Using this model, it is unclear how early in the treatment 

process a prediction could be made. 

To summarize, numerous statistical analyses have been performed to identify factors with 

prognostic value. However as Lee’s work points out: 

“A factor being judged as prognostic does not necessarily imply that it is useful in 

classifying risk of curve progression.” [48]  

One factor contributing to the truth of this statement – and possibly to the discrepancies 

observed in Table 2 – is that many of the statistical analyses in Scoliosis literature are 

explanatory rather than predictive in nature. Galit Shmueli explains that the traditional 

statistical analysis techniques practiced by most Scoliosis researchers are suitable for exploring 

causal relationships, but unsuited to developing good prediction models [63]. As a result many 

papers claim their findings support prediction of future events, when in reality they may be 

better suited to explaining past ones [64]. Moreover several methods of predicting Scoliosis 

progression have been proposed, but many have significant drawbacks. It seems safe to say that 

work on modelling Scoliosis progression is immature. 

2.3. Brace Treatment 

Brace treatment is the most common non-surgical treatment for AIS [14]. In general a brace is 

an orthotic which is usually (but not necessarily [65]) rigid, and custom fitted to each patient. 

The brace is designed to counteract the spinal curve while worn (Figure 6). Brace treatment is 

generally considered successful if the curve does not progress [40], although improvement of 

the curve can occur in some cases. Ultimately the brace is intended to prevent progression and 

thus avoid the need for surgical correction. There are a variety of brace types. Zaina et al. 

provide a thorough review of common brace types, and point out that there is no standard for 

designing braces or treatment protocols [66]. Here the focus will be on a few common brace 

types and the general principles of brace treatment.  

In general bracing is recommended for patients with 20-40° Cobb angles which are predicted to 

be progressive [6], [7]. The prognostic factors discussed previously are usually considered by 

individual care providers prescribing brace treatment. If curves progress to 45-50°, surgical 

intervention is usually recommended. 
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Figure 6: X-ray images of a patient normally (left) and wearing a brace (right). Lines defining the Cobb 
angle are shown.  

One of the oldest types of braces is the Milwaukee brace or cervico-thoraco-lumbo-sacral 

orthosis (CTLSO). It involves an orthosis which rests on the pelvis, and three metal uprights 

supporting a neck ring which contacts the patient’s throat and head. The brace provides a 

traction force to elongate the spine while additional pads counteract the spinal curve. The 

Milwaukee brace may have a higher success rate than other brace types [67], but is often 

unacceptable to adolescents because the neck support apparatus is highly obtrusive. 

The Boston Brace is a thoraco-lumbo-sacral orthosis (TLSO) invented as a less-obtrusive 

alternative to the Milwaukee brace [68]. It uses a standardized prefabricated ‘blank’, which is 

cut and padded by the orthotist to achieve the desired shape. The brace is shaped to provide 

lumbar and pelvic flexion, reliefs opposite every area of force (to encourage movement of the 

torso in the desired direction), and force couples for de-rotation. These mechanisms allow the 

Boston brace to treat all aspects of the 3-D deformity. As with any brace though, good correction 

of the 3-D deformity by the Boston brace depends on the orthotist’s skill [69]. 

The Charleston Bending Brace is a brace type which applies 3-point pressure to unbend a single 

Scoliotic curve. It can often achieve overcorrection of the curve (in-brace) and is intended for 

nocturnal wear only. The manual for the Charleston brace claims it can treat double curves, but 

calls this an “advanced technique” [70]. In practice this is uncommon, as this brace can actually 

worsen secondary curves [71]. 

The Cheneau brace has, historically, been more commonly used in Europe. It emphasises relief 

areas into which the body is expected to move. This led to the introduction of the Cheneau Light 
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brace: which removes brace material from relief areas, giving a lighter, airier feeling brace which 

has shown some success [72] 

With the exception of the Boston brace, the traditional approach to brace construction involves a 

casting procedure. The orthotist wraps the patient in a wet casting material, and then 

manipulates their torso into the desired (corrected) position while the cast hardens. The 

hardened cast serves as a negative mold of the desired torso shape. Plaster can then be poured 

into the mold to create a positive model. Any additional corrections to the torso shape can be 

made on the plaster model. The brace itself is built by draping a sheet of hot plastic over the 

model.  

A Providence brace uses a specialized system designed to facilitate effective casting. The 

Providence System consists of a large pegboard and adjustable pads that can be ‘plugged in’ 

anywhere on the board. After applying the cast, the patient lies on the board and pads are added 

to provide corrective force. The adjustable pads essentially simulate the brace itself. The makers 

of the Providence system advertise that it can achieve nearly 100% in-brace correction of the 

Cobb angle [73]. 

A more modern alternative to casting uses a 3-D scanner to capture a digital model of the 

patient’s torso. The model is manipulated in the desired ways using specialized software, and 

then exported to a computerized milling machine which fabricates the physical model used in 

the final brace construction. This approach to brace construction is referred to as CAD/CAM 

(computer assisted design / computer assisted machining).   

The Hueter-Volkmann principle and vicious cycle phenomenon are core concepts in brace 

treatment, just as they are central in explaining curve progression. By counteracting the 

Scoliotic curve, a brace unloads the normally compressed side of the vertebral growth plates. A 

brace which overcorrects the curve not only unloads the compressed side but also increases load 

on the normally uncompressed side of the growth plates; further equalizing the average forces 

on the plates. The Hueter-Volkmann principle in conjunction with the vicious cycle theory says 

that, where an untreated spinal curve would progress due to the cycle of uneven loading and 

uneven growth, in a treated spine this effect should be reduced. However Castro suggests that 

the principle may only apply to adolescents with particularly flexible spines [34]. 

A study of the Cheneau brace by Kotwicki et al. identified some passive and active mechanisms 

by which the brace counteracts the spinal curve [74]. The passive mechanisms included bending, 
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elongation, de-rotation, and tissue transfer. The bending effect described used a 3-point 

pressure system: one pressure point at the apex of the spinal curve and two opposing counter-

pressure points above and below. The three-point system is a mechanism for directly 

counteracting the spinal curve, and is accompanied by an elongation of the torso. De-rotation of 

the torso counteracts abnormal vertebral rotation, and tissue transfer helps restore overall 

balance of the torso. 

The active mechanisms identified by Kotwicki included the brace’s guidance of vertebral growth 

(as explained by the Hueter-Volkmann principle). The brace also asymmetrically guided 

respiration and re-arranged trunk muscles to employ the patient’s own muscular system in 

counteracting the curve. Kotwicki also noticed an anti-gravitational effect, whereby the body’s 

proprioceptive system will activate muscles to counteract a perceived shift out of balance. A 

well-designed brace could use this effect to activate muscles which counteract the spinal curve. 

Grivas and Kaspiris studied common European braces and reiterated many of the mechanisms 

mentioned by Kotwicki [75]. But there is some debate on the particulars of these mechanisms’ 

implementation. For example most experts seem to agree with the 3-point pressure concept, but 

disagree on where the main pressure point should be located [76].  

In fact it may be difficult to generalize about exact implementation of corrective mechanisms, as 

each brace is custom made for a specific patient’s deformity. As no two patients are identical, the 

effect of the brace on the spinal curve is highly variable [77]. In general the three-point pressure 

must be applied using a combination of brace-body contact and relief: a brace which is 

everywhere in contact with the body interferes with the guided respiration and possibly the 

tissue transfer mechanisms, and can reduce lung capacity [78],[79]. The brace must achieve 

good correction of both the Cobb angle and the vertebral rotation [80]. Greater than 25% Cobb 

angle correction has been suggested as a guideline for large curves [81], but overall the optimal 

amount of correction for a given patient is unclear. Moreover the maximum correction 

attainable is determined partly by the stiffness of the individual’s spine. Less mature spines are 

more flexible and correct more easily than stiffer spines [82],[83]; as a result they require more 

correction in-brace for effective treatment [84].  

The efficacy of brace treatment has been unclear in past literature [85]. A review by Rowe et al. 

claimed bracing was an effective treatment for AIS [86], but a later review by Dolan and 

Weinstein found literature on the subject to be “troublingly inconsistent” [87]. A 2010 Cochrane 

Review on brace treatment effectiveness concluded there was “very low quality evidence in favor 
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of using braces, making generalization very difficult” [88]. However, historically the literature 

on brace effectiveness has not considered patients’ brace-wear habits, or has considered 

prescribed but not actual brace wear-time (inappropriate as actual compliance is usually 

unknown and often overestimated [89]). This neglect may have contributed to the confusion in 

literature. 

Recent studies which have measured patient compliance indicate that brace treatment is 

effective when the brace is worn as prescribed. Katz et al. reported an 82% success rate among 

compliant brace-wearers (12 hours or more of brace wear per day) but only 31% among those 

with poor compliance (7 hours or less) [4]. Weinstein et al. reported 75% success among braced 

patients versus 42% among non-braced patients [5]. This difference in success rate became 

significant partway through Weinstein’s study - maintaining a non-braced group became 

unethical and the study stopped early. 

In seems the construction of the brace and the patient’s brace-wear habits both contribute 

heavily to treatment success [90]. It has been suggested that successful treatment requires at 

least 12 hours per day of brace wear [4] or 18 hours for large curves [81], and Lou’s prediction 

model indicates a negative correlation between wear-time and progression [3]. Lou’s model also 

indicates a negative correlation between applied force and progression. Besides being 

commonsensical, the importance of wearing the brace tightly was confirmed by studies which 

show in-brace Cobb angle correction is correlated with brace strap tension [1][2]. Sanders et al. 

agree with the importance of compliance, but show that there is much room to optimize brace 

treatment protocols themselves [91]. 

However it should be noted that patient compliance, while an important factor in treatment 

outcome, is not the whole story. The Katz and Weinstein studies show 10-18% failure rates 

among the most compliant patients, and 30-40% success rates among those with very poor 

compliance (Figure 7). Clearly treatment outcome depends on other factors in addition to 

patient compliance: some cases may simply be more or less difficult to treat.  

To summarize, a variety of brace types exist having slightly different philosophies of how to 

counteract the Scoliotic spinal curve. The brace’s design allows it to utilize various corrective 

mechanisms, and to ensure a good design we (appropriately) rely on orthotist’s experience as 
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Figure 7: This chart from a study published by Weinstein et al. [5] shows a clear compliance-success 
association. But interestingly, when we look only at compliance, success rate plateaus around 90%, and 

40% of the least compliant patients still achieve success.  

much as scientific research. Brace treatment effectively reduces overall progression rates in 

compliant patients, though success for an individual is not purely a matter of compliance. 

Ideally all aspects of an individual’s treatment would be optimized for maximum chance of 

success. 

2.4. Efforts to Improve Brace Treatment 

Efforts to improve brace treatment have generally fallen into two categories: improving the 

brace’s ability to counteract the deformity, and improving our understanding of how patients are 

wearing their braces. 

2.4.1. Improving Brace Effectiveness 

Finite element analysis (FEA) is being used to investigate how braces might more effectively 

counteract spinal deformity. A finite element model simulates a real-world object or event by 

modelling it as a collection of small elements. In this case, a numerical model of a spine and 

ribcage can be created, and the effect of various forces can be simulated and observed. FEA 

could be a convenient way to model the effect of a brace on a patient’s deformity, to optimize the 

brace’s design before building it [71][92][93][94]. 
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Gignac et al. developed patient-specific spine and ribcage models, then demonstrated that a 

computer program could determine the optimal forces for counteracting the deformity [95]. 

Cheng et al. modelled a single curve deformity and calculated the magnitude and location of the 

optimal correcting force [96]. Clin et al. used FEA to investigate the effects of altering various 

brace features. They determined that the placement of the opening, strap tension, rigid shell 

shape, lordosis design and design of the trochanter extension side were the most influential 

brace design factors [92]. FEA looks promising: in the past this technology was able to produce 

braces as effective as conventional methods [97]. It now produces more efficient and lighter 

braces [98]. 

2.4.2. Sensing Patients’ Compliance with Prescribed Brace Wear 

Investigations into how patients wear their braces have used various sensors embedded in the 

brace. These electronic compliance monitors generally consist of a sensor, clock, and a battery-

powered data logger to record sensor readings. They generally fall into two categories: 

temperature sensing and force/pressure sensing. Vandal et al. used a device which measured 

tension in the brace straps. A threshold of 7.8 N was used to identify when the brace was worn 

[99]. Havey et al. placed four pressure switches inside the brace, and considered the brace to be 

worn when at least two switches were activated [100]. Lou et al. designed a compliance monitor 

which recorded force applied to the patient’s body [101], [102]. Lou discretized the raw force 

readings to show time spent above, below, and within a reference force range. He found that 

patients typically wear their brace at 50-70% of the force level recommended by the orthotist – 

possibly decreasing the brace’s effectiveness [102]. 

Temperature sensing is the most popular method of compliance monitoring. These compliance 

monitors set a threshold on temperature in the brace (between 28° and 32° Celsius [4], [5], 

[103]–[107]), to differentiate ambient temperature from the skin temperature of the patient. 

Studies using temperature-based compliance monitors have found that younger patients are 

more compliant than older ones [105], [107], patients are generally more compliant at night 

[104], and the knowledge of being monitored itself improves compliance [108]. There is some 

discrepancy on whether patient compliance should be expected to change over time [102], [106]. 

There are limitations to both force-based and temperature-based compliance monitoring. 

Temperature sensing detects when the brace is worn, but not how well it is worn: the 

temperature readings cannot differentiate between a patient who is wearing their brace 

properly, and one who is wearing their brace too loosely. Conversely, force sensing can detect 
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how well the brace is worn, but cannot differentiate between a patient who wears their brace too 

loosely and one who does not wear it at all: in both cases the sensor records zero force. The 

distinction is clinically relevant – if the brace is too loose the patient may simply need 

instruction on proper brace-wear, while not wearing the brace is more serious. Force monitors 

can also be sensitive to their placement in the brace, and could potentially lose contact with the 

patient’s body in some positions. This would result in erroneous compliance readings. 

In 2005 Lou et al. developed an active system which used an inflatable air bladder to regulate 

pressure at one part of the brace-body interface [109]. This system was tested on 5 subjects, and 

increased the pressure from 53% of the desired level to 68% on average. It seems reasonable to 

assume that this effect should improve treatment outcome, since brace pressure normally varies 

with posture [110]. Chalmers, et al. developed an improved version of the system which 

regulated pressure at up to 4 locations [111]. In laboratory tests this system increased pressure 

from 31% of the desired level to 62%. 

2.5. Electronic Decision Support in Medicine 

“Where is the wisdom we have lost in knowledge? Where is the knowledge we have lost 

in information?” – T.S. Eliot 

Almost all research activities generate information on some subject. Some of this information is 

disseminated in publications, becoming part of the body of knowledge on the subject. But often 

the process ends there – the knowledge is never translated into actual practice [112]. The 

knowledge translation process is necessary if the research is to create lasting value. Straus et al. 

explain knowledge translation: 

“[Knowledge translation] is a move beyond the simple dissemination of knowledge into 

actual use of knowledge. Knowledge creation (i.e., primary research), knowledge 

distillation (i.e., the creation of systematic reviews and guidelines) and knowledge 

dissemination (i.e., appearances in journals and presentations) are not enough on their 

own to ensure the use of knowledge in decision-making.” [113] 

A Clinical Decision Support System (CDSS) is a software tool which can facilitate knowledge 

translation by promoting use of best practices, condition-specific guidelines, and population-

based management [114]. This promotion takes the form of case-specific advice, which the CDSS 

generates using details of the case [115] combined with knowledge about the domain in general. 

The CDSS’s advice is meant to enhance users’ (physicians, clinicians, nurses, etc.) natural 

decision making ability.  
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CDSSs can significantly affect the quality of medical decision making [116]. Garg et al. reviewed 

literature on CDSSs and found that practitioner performance was improved by 64% of CDSSs 

related to diagnosis, reminder, disease management, or prescription tasks [117]. Kuwamoto et 

al. performed a similar review with similar results (68% of CDSSs improved performance) [118]. 

Another review by Lobach et al. agreed that CDSSs improve practitioner performance in offering 

preventive services, ordering tests, or prescribing [119]. Strangely, Garg and Lobach both found 

that while practitioner performance improved, patient outcomes were unaffected. Lisboa and 

Taktak reviewed applications of artificial neural networks for decision support in cancer. They 

found that 78% of these systems improved healthcare provision, and none decreased it [120]. 

CDSSs can generally be grouped in two categories: knowledge-based and non-knowledge-based 

CDSS [121]. Knowledge based CDSS (also referred to as “Expert systems”) consist of a 

knowledge base containing information about the domain, an inference engine which draws on 

the knowledge base to generate recommendations for a particular case, and a user interface 

which communicates the recommendation to the practitioner. The knowledge base is 

constructed by eliciting domain knowledge from domain experts and/or literature, and 

codifying them in a systematic way – often in the form of IF-THEN rules. This appeal of this 

approach is that the CDSS emulates a panel of experts. An early example of a knowledge-based 

CDSS is MYCIN [122]: MYCIN recommends antimicrobial therapies for patients with bacterial 

infection using hundreds of IF-THEN rules which were derived during discussion with 

physicians. 

Non-knowledge-based CDSSs use no base of expert knowledge. Instead they employ machine 

learning algorithms which attempt to extract domain knowledge directly from retrospective 

data. In essence this type of CDSS replaces experts’ knowledge of the domain, with a machine-

learning-derived model of the domain itself. The advantage of this approach is that it avoids the 

process of eliciting a knowledge base from experts (this process can be complex [123]) and 

avoids introducing the experts’ biases or preconceptions (if any) into the system’s 

recommendations. An example of a non-knowledge-based CDSS is PAPNET [124], which uses a 

trained artificial neural network to assist in diagnosing cervical cancer. Dilsizian and Siegel 

predict great potential for non-knowledge-based CDSS: 

“In the near future, artificial intelligence/machine learning will likely assist physicians 

with differential diagnosis of disease, treatment option suggestions, and 

recommendations… based on empirical data.” [125] 
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Chi et al. coined the term “Prediction and Optimization based Decision Support System” 

(PODSS) to refer to a particular type of non-knowledge-based CDSS, which uses machine 

learning coupled with optimization to generate recommendations [126]. The PODSS uses 

machine learning to generate a model which uses domain inputs to predict some domain output. 

Each of the inputs must be classified as “static” (variables which cannot be changed by the user; 

patient age and gender for example) or “non-static” (variables which can be influenced by the 

user, such as treatment procedures) [127]. An optimization process then determines what 

combination of non-static inputs will produce the desired model output. The PODSS concept of 

using advanced data analysis to recommend optimal decisions is known in the business field as 

“prescriptive analytics” [128]. Haas et al. state that the goal of prescriptive analytics is to 

“identify optimal business, policy, investment, and engineering decisions in the face of 

uncertainty” [129]. 

The PODSS concept was used by Liau et al, who modelled the output of a crude oil distillation 

unit using an artificial neural network, and then used the model in an optimization problem to 

find the operating conditions which would maximize production [130]. Song and Kusiak created 

a model of boiler operation and used evolutionary computation to find the control settings 

which would optimize performance [131]. Chi et al. designed a support vector machine classifier 

to predict hospital mortality based on several inputs related to the hospital and the patient. This 

model was used in a PODSS which recommended an optimal hospital choice for a particular 

patient [11]. Chi et al. also designed a k-nearest-neighbor classifier to predict whether a patient 

would develop heart disease, based on their characteristics and lifestyle. This model was used in 

a PODSS which found the optimal change in lifestyle to lower a person’s risk of heart disease 

[10]. Chi et al. also used PODSS to optimize individualized warfarin treatment [13]. Buchan et 

al. proposed that similar model optimization techniques could be used to improve clinical 

treatment plans [132].  

Buchan acknowledged that gaining medical knowledge through machine learning is a departure 

from the traditional hypothesis-based experimentation. He explained: 

“Hypothesis-driven research and reductionist approaches to causality have served 

health science well… But they do not reflect the complexity of health” [132] 

Machine learning methods can be powerful knowledge discovery tools, but represent a 

somewhat different paradigm than some medical practitioners are used to. This has made the 

acceptance of machine learning methods – and CDSSs in general – an issue [133],[134]. 
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Shortliffe claimed that one cannot expect clinicians to adopt a CDSS, even if it has been proven 

to function at the level of experts [135]. Feblowitz et al. found acceptance of CDSS by health care 

providers to be “highly variable” and called acceptance a “complex and individual phenomenon” 

[136]. 

Several literature reviews have identified a long list of attributes which contribute to a CDSS’s 

successful implementation. Shortliffe states that transparency of the system is important [135]. 

Kuwamoto et al. found that successful systems integrate easily into a clinic’s existing workflow, 

provide recommendations rather than mere assessments, and provide support at the time and 

place of decision making [118]. Lobach et al. confirmed Kuwamoto’s findings and added three 

more important features: the CDSS should promote action rather than inaction, local users 

should be involved in its development, and it should provide information to patients as well as 

care providers [119]. Hsiao et al. and Lu et al. found that the quality of information provided by 

the CDSS (i.e. accuracy, completeness, and legibility) and the system’s ease of use were 

important factors [137],[138]. Bates et al. mentioned the integration, promotion of action, and 

ease of use factors. He also said that a CDSS should have good service quality (technical support 

and maintenance of the system should be provided), it should work quickly and require as little 

user input as possible, its recommendations should be simple, and its implementation should be 

monitored to ensure user adoption [134]. A similar study by Castillo and Kelemen reiterated 

many of the same features [139]. Between these authors, the most commonly named features 

were: integration into the clinic’s existing workflow, and ease of use. This long list of features 

illustrates the difficulty involved in designing and implementing a successful CDSS. However a 

review by Miller points out that, while it is true most CDSSs reported in literature do not achieve 

clinical implementation, there are some very successful CDSSs [140]. So while persuading 

medical professionals to adopt a CDSS may be difficult, it is certainly not impossible. 

Wyatt and Spiegelhalter discussed the process of designing and validating a CDSS [12]. They 

divided the process into three stages: definition, prototyping and lab testing, and field testing. 

The definition stage identifies the CDSS’s main objectives, often by building a rough version of 

the system and asking for user’s comments. In the prototyping and lab testing stage, a working 

(though perhaps not final) version of the CDSS is built and tested. This testing involves the 

obvious tests of the system’s accuracy and performance, but could also include testing of others’ 

reactions to the system. For example, system users might be asked: “Is this system wanted?”, “Is 

it easy to use?”, and “Do its recommendations make sense?” Domain experts could be asked: “Is 

the system of good quality?”, “Does it reason appropriately?”, and “Are its recommendations 
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valuable?” Once the system has been finalized it must be field tested. Field testing can be a long 

and complex process [115], and involves investigating the system’s level of integration with the 

clinic, its effects on the healthcare process, and its effects on patient outcomes.  

2.6. Data Analysis and Predictive Modelling 

The quality of a PODSS’s recommendations depends on an accurate model of the domain. The 

process of creating and using such a model is sometimes called knowledge discovery and data 

mining (KDDM). Several models for the KDDM process itself have been proposed. For example, 

Cios et al. described a six-step KDDM process model [141] which has been used in research. 

Industry collaborators developed a similar model called the Cross-Industry Standard Process for 

Data Mining (CRISP-DM) [142]. Kurgan and Musilek reviewed these and several other models, 

and laid out a generic six-step model for the KDDM process [143] (Figure 8). 

 

Figure 8: Knowledge discovery and data mining process model. The process follows steps 1-6, with 
possible feedback paths shown by black arrows. 

Step 1 involves defining the goals of the KDDM venture, and understanding the current 

solutions and terminology in the domain. Step 2 is to investigate the quality of the available data 

with respect to the goals, and identify problems such as missing values, redundancy, etc. Step 3 

involves cleaning, imputing, and reducing dimensionality of the data, and choosing an 

appropriate modelling technique. Step 4 applies this technique, and step 5 tests the resulting 

model’s ability to meet the goal. Step 6 involves applying the resulting knowledge to achieve the 

goal. In practice the KDDM process is iterative, so feedback loops exist between some steps. For 

example, if step 5 discovers the domain model is unsatisfactory, it may be necessary to return to 

step 4 to try a different modelling technique, or to step 1 to modify the goal. As it relates to 

PODSS, this six-step model describes the entire process of collecting and investigating domain 
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information (data), and using machine learning to reduce it to a model which is then deployed 

as a component of a CDSS. 

Data preparation (step 3) includes reducing the number of variables for use in a model. This is 

an important step in producing a generalizable model, and can be achieved using various 

transformation or selection methods. One example of a transformation for reducing data 

dimensionality is Principle Component Analysis (PCA) [144], which performs an orthogonal 

transformation to remove correlations in data (assuming the data follows a multivariate normal 

distribution). After the transformation, some of the new variables contribute little to the overall 

variance of the data and can be removed. 

Data dimensionality could also be reduced by selecting a subset of variables for use in 

modelling, and discarding the rest. Selection methods can generally be classified as “filter” or 

“wrapper” methods. Filter methods use some heuristic criteria for selecting or ranking variables, 

where the heuristic criterion is independent of the machine learning technique used. One 

example of a filter method is Correlation-based Feature Selection [145], which searches for a 

subset of features having high correlation with the output variable but low correlation with each 

other.  

Wrapper methods integrate the machine learning technique into the variable selection process. 

A search is conducted through the space of possible feature subsets, and the machine learning 

technique is applied to each. The value of each subset is tested by measuring the accuracy of the 

corresponding models using cross-validation. Different wrapper methods are distinguished 

primarily based on the search strategy used to explore feature subsets. Kohavi and John offer a 

thorough discussion of wrapper methods [146].  

The machine learning technology used in step 4 could be one of many existing options. Shouval 

et al. explain that the technology would probably be machine learning based, not based on 

conventional statistical methods [147]. The goal of such technologies is to generate a model – 

mathematical or otherwise – which describes the relationship between inputs and outputs of the 

system or process of interest. This relationship may be valuable as a predictor of future outputs, 

or may be valuable in itself as a description of input-output interaction (the “prediction model” / 

“explanatory model” distinction [63]). The selection of a particular learning method depends on 

the problem and the data involved. If the goal involves predicting future outputs it is important 

to ensure generalizability of the resulting model, whatever machine learning method is used. 
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Using cross-validation and setting aside some data for model testing are important practices in 

this regard. 

Support vector machines (SVM) are a popular technique which has already been mentioned. A 

support vector machine classifier finds a hyperplane to separate two classes of data in an n-

dimensional space. The optimal hyperplane is the one which maximizes the margin between 

itself and the closest points on either side. To accommodate data in which the classes are not 

linearly separable, the SVM is given a degree of tolerance for misclassified data. A Kernel 

function can also be used to non-linearly transform the n-dimensional data into a space with 

higher dimension, which may make the classes more separable. Since the main objective of the 

SVM algorithm is maximizing the margin around the separating boundary, SVMs can often 

produce good, generalizable models using small training datasets. Xue provides a complete 

description of SVM [58]. 

Decision trees were also mentioned previously: the CART algorithm is one example [62], the 

C4.5 algorithm is another [148, p. 5]. Decision trees are an attractive method of performing 

classification tasks, as they are usually completely human-readable. Algorithms which generate 

decision trees (such as CART, C4.5, etc.) build the tree node-by-node, deciding at each step the 

variable and split giving the best value. The method for calculating this value varies by 

algorithm, as do methods of pruning the tree (removing less-valuable nodes). 

Logistic regression is another modelling technique which produces human-readable models; it 

may be described as the analog of linear regression for classification problems. Logistic 

regression fits the logistic function to n-dimensional data with two classes, represented 

numerically as 1 (the “case” class) and 0 (the “non-case” class). The weights of each feature in 

the data are adjusted to minimize the error between the logistic function output (which has a 

range of 0-1) and the class values of each point in the training dataset. Logistic regression 

models are common in medical research, where they are often used to analyse correlations 

between an output of interest and several inputs. When used for prediction, the logistic function 

output loosely represents the probability that a set of inputs corresponds to a “case”. 

Fuzzy logic has seen some application to Scoliosis. Where conventional logic uses absolute 

concepts of “true” (or “1”) and “false” (or “0”), fuzzy logic accommodates truth with a degree of 

membership ranging from 0 to 1. This allows for approximate reasoning, which is often better 

suited to tackling real-world problems. Some specific methods include fuzzy clustering (which 

partitions data into overlapping or “fuzzy” subsets based on similarity), and fuzzy rule bases (a 
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model consisting of fuzzy IF-THEN rules, where the activation of the consequent is proportional 

to the truth value of the antecedent). A description of these and other fuzzy processing 

techniques is given by Pedrycz and Gomide [149].  

Another method used in medical research is artificial neural network (ANN) – a machine 

learning algorithm inspired by the interaction of biological neurons in the brain. An ANN 

consists of one or more layers of simple functional blocks called “neurons”, each implementing a 

simple activation function which produces one output from one or more inputs. Weighted 

connections are made between neurons in adjacent. The first layer accepts the input variables, 

and the last layer produces the model’s output(s). A training process tunes the interconnection 

weights until the ANN can emulate relationships seen in the training data. ANNs can be 

extremely powerful, and can model complex non-linear relationships. However this also means 

that it is difficult to create a generalizable model with limited training data. A thorough 

discussion of ANN is given by Engelbrecht [150]. 

Many more modelling techniques have appeared in medical literature, and more are being 

invented all the time. The feedback loops in the KDDM process allow several different 

approaches to be tried before finding one which suits the data.  

As a final note, it is important to realize there are different ways to analyse data: Shmueli 

identifies two paradigms with unique goals: explanatory and predictive analyses [63]. 

Explanatory modelling tries to identify causal relationships in the data, or in other words, to 

identify the mechanism that generated the data. Explanatory analysis techniques concentrate on 

finding a model which describes the available data – results are usually reported in terms of R2 

and p values (often emphasizing p=0.05 as the threshold for “significance” – a practice which 

statisticians like Regina Nuzzo would like to stamp out [151]). In contrast, predictive modelling 

finds patterns in data for the sole purpose of predicting future data – the results of a predictive 

modelling endeavour would be reported in terms of predictive (rather than descriptive) power, 

accuracy, etc. Techniques used for explanatory modelling are useful in many respects, but as Leo 

Breiman points out, often unsuitable for predicting future events [152]. Breiman laments: 

“Hundreds, perhaps thousands of articles were published claiming proof of something 

or other because the coefficient was significant at the 5% level.” [152] 

A myriad of papers have investigated associations between Scoliosis progression and various 

patient characteristics. Most of these analyses have been explanatory in nature, meaning their 

results may have limited use in predicting progression in new patients. While some exceptions 
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are described in section 2.7, there is an opportunity to apply predictive modelling to problems in 

Scoliosis. 

2.7. Machine Learning and Decision Support in Scoliosis 

Machine learning and CDSS have been applied in the Scoliosis field; most of these applications 

were discussed in a review by Phan et al. [153]. Those which relate to predicting Scoliosis 

progression are described in section 2.2. Most of the others relate to assessment of Scoliosis 

severity or classification of curve type.  

Jaremko et al. used an ANN to estimate Cobb angle using surface topography [42]. The surface 

topographic measurements were taken from digitized 3-D models of the patient’s torso, and 

described various deformations of the torso surface. A genetic algorithm selected measurements 

for use in the ANN. The final ANN’s Cobb angle estimates had a 66th percentile error of 5°, and 

85th percentile error of 10°. 

A similar work by Ramirez et al. used a SVM to classify patients’ Cobb angle as “mild” (<30°), 

“moderate” (30°-44°), or severe (>44°) using surface topography and clinical measurements 

[154]. They reported 85% accuracy in classifying patients as “mild”, or “non-mild”, and 69% 

accuracy for the three-class problem. Ramirez’ intended use of the system was to assist 

physicians in planning treatment. The 44° threshold corresponds to the range where surgical 

treatment is recommended, but it is unclear whether the 30° threshold is meaningful. 

Tang et al. designed a system to automatically measure a Cobb-angle-like index from 

radiographic images. The system used fuzzy processing to identify the center of each vertebra, 

and then measured the discrepancy between the center points and a best-fit straight line. Tang 

reported good correlation (0.92) between this measurement and Cobb angles above 10°, making 

the system a potentially valuable support tool for assessment of Scoliosis severity [155]. 

Adankon et al. used surface topographic measurements to predict Scoliotic curve type (thoracic, 

double, or lumbar/thoracolumbar) using an SVM [156]. A large number of measurements were 

reduced to 53 variables using PCA, and a custom kernel was devised for SVM classification. 

Adankon reported classification accuracies of 84-97% for the various curve types. Such a system 

could potentially replace x-rays used to determine curve type. 
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Several researchers have applied machine learning to the problem of classifying types of 

Scoliotic deformity. Mezghani et al. used Kohonen Self-Organizing Maps (an extension of 

artificial neural networks) to automatically classify patients into “normal”, “moderate Scoliosis”, 

and “severe Scoliosis” categories using biplane X-rays [157]. These categories were defined with 

the goal of progressing away from Cobb angle toward a more 3-D representation of Scoliosis 

severity. The use of a computer method automated and standardized the classification. Sangole 

et al. and Stokes, et al. used clustering methods to identify new Scoliosis sub classifications 

based on several measurements taken from a 3-D reconstruction of the spine [158], [159]. 

Duong et al. performed a similar endeavour using fuzzy clustering [160]. These works indicated 

that 3-D descriptions of Scoliosis are more useful than the traditional Cobb angle alone.  

Phan et al. used a self-organizing map to learn an AIS classification scheme from a database of 

radiographs [161]. The resulting map was compared to the Lenke classification system (which 

intends to classify patients based on how they should be surgically treated). The map better 

described physicians’ surgical choices than the Lenke system. Speaking of this work, Kang et al. 

encouraged future development of computational data analysis in the Scoliosis field, but 

stressed that further validation and humanized front-end software was required [162]. 

Nault et al. developed a CDSS to assist with surgical planning for patients with main thoracic 

curves [163]. The system used a fuzzy rule base to determine whether surgical correction should 

include the high thoracic and/or lumbar curves. The system’s recommendations on 30 test cases 

were compared to recommendations from 5 surgeons; Nault reported “good agreement” 

between the two (kappa values were 0.71 for the high thoracic curves and 0.64 for the lumbar 

curves).  

In summary, some excellent work has been done applying computer methods to prediction, 

diagnosis, classification, and planning tasks in the Scoliosis domain. However this thesis 

represents the first step towards an electronic decision support system for brace treatment 

planning. 
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3. Brace Treatment Decision Support: A Preliminary Validation 

In this chapter, retrospective AIS patient data is used in a preliminary validation of the 

concept of brace treatment decision support. The patient data is extracted from the clinic’s 

records. Two models are developed to predict progression in braced patients based on start-of-

treatment measurements. The best performing model is validated by comparing its prediction 

accuracy with that of Scoliosis experts. It is then used to generate hypothetical treatment 

recommendations for a set of test patients. A clinical trial simulation estimates that these 

recommendations may have reduced overall progression rates as well as the aggressiveness of 

treatment in some cases. The limitations of this preliminary validation are discussed. 

3.1. Predicting Progression in Braced AIS Patients* 

3.1.1. Patient Data 

Patient data used in this preliminary validation was obtained retrospectively from the local 

scoliosis clinic’s database, with approval from the local ethics board. Records were extracted for 

patients aged 9-16 years, who had been diagnosed with idiopathic scoliosis and had pre-brace 

Cobb angles between 20° and 45°. All patients had been treated in 2006 or later, and had 

finished brace treatment at the time of this study. The start date of 2006 was chosen because the 

primary orthotist had received new training and revised his treatment protocol at that time. One 

hundred two patient records met the criteria; 12 were excluded because key radiographic 

measures had not been recorded. Sixty two records were used as a training set for developing 

prediction models, twenty eight were used as a test set to evaluate prediction performance. Each 

record contained the treatment outcome – a Cobb angle progression in degrees (measured at the 

time of discharge from the brace), and 14 clinical measurements taken at the start of treatment. 

These clinical measurements included: age at brace fitting, sex, diagnosis, brace type, height, 

                                                        
 

*
 Material in this section has been published in the following papers: 

- E Chalmers, W Pedrycz, and E Lou, “Predicting the Outcome of Brace Treatment for Scoliosis using Conditional 
Fuzzy Clustering,” Joint Congress of the International Fuzzy Systems Association and North American Fuzzy 
Information Processing Society, June 24-28 2013 
- E Chalmers, W Pedrycz, and E Lou, “Human experts’ and a fuzzy model’s predictions of outcomes of scoliosis 
treatment: A comparative analysis”, IEEE Transactions on Biomedical Engineering (in press) 
- E Chalmers, L Westover, J Jacob, A Donauer, H Zhao, E Parent, M Moreau, J Mahood, D Hedden, and E Lou, 
“Predicting success or failure of brace treatment for adolescents with idiopathic scoliosis”, submitted to Medical & 
Biological Engineering & Computing, currently under review after revision 
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weight, Scoliotic curve type, Cobb angle, curve direction, vertebra number of curve apex, in-

brace correction of major Cobb angle, Scoliometer measurement, height velocity, and weight 

velocity. Table 3 shows the distributions of each measurement. 

Variable 
Number 

Variable Distribution 

1 Age at fitting 13.5 ± 1.7 years 
2 Sex 75 girls, 15 boys 
3 Diagnosis 84 AIS, 6 JIS 

4 Brace type 
48 TLSO, 30 

Charleston, 12 Boston 
5 Height 159.9 ± 10.8 cm 
6 Weight 49.0 ± 10.5 kg 
7 Curve type 63 single, 27 double 
8 Major Cobb angle 30 ± 7° 

9 
Major curve 

direction 
56 Right, 34 Left 

10 Major curve apex* T11 ± 3 vertebrae 

11 
In-brace 

correction† 

TLSO: 43 ± 29% 
Charleston: 112 ± 42% 

Boston: 23 ± 18% 

12 
Scoliometer 

measurement‡ 
9 ± 4° 

13 Height velocity 5.6 ± 4.5 cm/year 
14 Weight velocity 6.6 ± 6.4 kg/year 

* Apex refers to the particular vertebra which falls at the “apex” of 
the spinal curve. It is an indication of the curve’s vertical position 
in the spine. 
 

† the instantaneous Cobb angle reduction achieved by the brace, 
expressed as a percentage of the pre-brace Cobb angle 
 

‡ a measurement of vertebral rotation, taken by placing a 
specialized inclinometer on the patient’s back while they are in a 
forward bending position 

Table 3: Clinical measurements considered as predictor variables in predictive modelling. 

One limitation of this data is that it does not include Risser sign – a measurement of skeletal 

maturity taken from a radiographic view of the pelvis which is believed to be a useful prognostic 

indicator in predicting progression. For many of the patients in this sample, Risser sign could 

not be measured due to cropping of the radiographs. Height velocity was included in the data 

instead; Little et al. suggest that height velocity is a better indicator of both growth and curve 

progression than Risser sign [50].  
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The 90 patients included 75 girls and 15 boys, aged 13.5 ± 1.7 years. Patients had been 

prescribed full-time thoraco-lumbar-sacral orthoses (60 cases) or night-time only braces (30 

cases) by the attending surgeon or nurse practitioner, according to established guidelines. Pre-

brace Cobb angles were 30 ± 7°. Forty one patients (46%) experienced >5° progression of their 

deformity by the end of brace treatment. The overall mean Cobb angle change was 5 ± 10°. Each 

record was labelled “progressed” if the patient’s major Cobb angle increased more than 5° by the 

end of treatment, and “non-progressed” otherwise. 

Missing values are a common problem in medical datasets. This dataset contained two missing 

values for height, three for weight, six for in-brace correction, fourteen for Scoliometer 

measurement, and six each for height velocity and weight velocity. These missing values were 

imputed using nearest neighbor imputation [164]: The missing value was imputed as the 

weighted average of the values from the 4 subjects who were most similar (based on Euclidean 

distance using all predictor variables). 

3.1.2. Logistic Regression Model 

A logistic regression model was trained to predict whether a braced patient’s Cobb angle would 

progress by the end of treatment, based on measurements taken at the start-of-treatment. 

Logistic regression is an attractive technique for this task because it is familiar to most medical 

researchers – who use it as a statistical analysis tool for investigating relative strengths of 

association between inputs and an outcome. It is also a “white box” model – which is an 

advantage because clinical professionals are more likely to accept a prediction model when they 

can see (and agree with) the way it makes predictions [135]. 

A logistic regression models two-class data supplied as a training data set S = {[X1,Y1], [X2,Y2]… 

[Xn,Yn]}, where each instance Xi ϵ ℝd has a corresponding outcome Yi ϵ {0,1}. Yi represents the 

class assignment for each instance: in this case, “progressed” (0) or “non-progressed” (1). In its 

basic form it fits the logistic function: 

 𝑓(𝐗) =
1

1 + 𝑒−(𝛽0+𝛃𝟏𝐗)
  Equation 1 

to the data by tuning the β parameters to maximize the log-likelihood function l(β): 

 𝑙(𝛃) = ∑ [𝑌𝑖log(𝑓(𝐗𝑖)) + (1 − 𝑌𝑖)log(1 − 𝑓(𝐗𝑖))]
𝑛

𝑖=0
  Equation 2 
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After the training process, f(X) represents an estimate of the probability P(Y=1|X). This 

estimate will be very good in the ideal case where the two classes follow normal distributions 

with similar covariance matrices but different means. In general though, the estimate can still be 

fairly good even in non-ideal situations [165]. 

A threshold of 0.5 was set on the model’s output f(X) to classify new patients as progressive 

(f(X) ≥ 0.5) or non-progressive (f(X) < 0.5). This could be considered the “default” threshold, 

because f(X) = 0.5 represents equal chances of progression and non-progression. 

3.1.2.1. Predictor Variable Selection 

Reducing the number of variables was necessary to ensure an interpretable model, and to 

remove variables which are redundant (containing roughly the same information as some other 

variable) or irrelevant (providing no information useful for predicting progression). Building a 

model using redundant or irrelevant variables can lead to overfitting; a condition in which the 

model describes idiosyncrasies in the data rather than underlying trends. 

The number of variables was reduced using selection rather than transformation (e.g. principle 

component analysis) to preserve interpretability of the final model. A subset of useful features 

were selected from the list in Table 3, using a wrapper approach and a tiered cross-validation as 

described by Kohavi [146]. Cross-validation is an intuitive, low-bias method for validating a 

model by sequentially training and testing it on different portions of the same dataset [166]. It 

allows evaluation of a model’s predictive power, rather than merely how well it fits the training 

data [152]. 

The variable selection was performed within a five-fold cross-validation scheme as illustrated in 

Figure 9. That is, five separate variable selection processes were performed on unique but 

overlapping subsets of the full training data. The entire procedure was repeated five times (the 

division into five folds was re-randomized each time) for a total of 25 selection processes 

performed on different subsets of the training data.  

The variable selection process itself exhaustively searched through variable subsets of increasing 

size. For each variable subset, a logistic regression model was tested in a leave-one-out cross-

validation. The Matthew’s Correlation between each model’s predictions and the true outcomes 

was used to select the best model within each search, and a running count tracked the number of 

times (out of 25) each variable appeared in a best subset. 
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Figure 9: Illustration of variable selection using a k-fold cross-validation scheme. 

The tiered use of cross validation (leave-one-out inside of five-fold cross validation) helps 

prevent overfitting [156]; Some overfitting may occur within each search, however these effects 

are averaged out across the multiple searches. Conversely, the variables describing underlying 

trends are selected often, and these selections accumulate across multiple searches. The number 

of selections is shown in Figure 10.  

 

Figure 10: Number of times each variable was selected during the predictor variable selection process. 
Variable numbers correspond to Table 3. Variables 11 (in-brace correction) and 12 (Scoliometer 

measurement) were clearly preferred. 
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In-brace correction and Scoliometer measurement were selected 16 and 15 times respectively, 

while all other variables were selected 7 times or less. Based on these results in-brace correction 

and Scoliometer measurement were chosen as predictor variables for the model. 

3.1.2.2. Training the Final Model 

In a small dataset even the simple logistic regression model can be influenced by random noise 

and outliers. To mitigate this effect we padded the dataset with randomly generated data – a 

form of dithering which can improve a model`s robustness [167]. The mean and covariance of 

the available data were measured and used to generate additional data in a multivariate normal 

distribution (Figure 11). These additional data points can be thought of as “hypothetical” 

subjects, postulated following the distributions observed in the real subject data. Adding this 

noise improves the model’s noise immunity by “training” it to expect some noise. The final 

padded dataset contained 692 points (62 original subjects, and 630 randomly generated 

subjects). 

 

Figure 11: In-brace correction, Scoliometer measurement, and progression for original subjects and 
randomly generated data. 

Logistic regression was applied to the training data after variable selection and generation of 

additional data. The model’s “training” accuracy was estimated in a leave-one-out cross 

validation of the training data. Although the model was trained using all training data (the 

original as well as randomly generated data) only the predictions on the original 62 subjects 

were used in cross-validated performance estimation. A final model was trained on all available 
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training data and tested on the 28-patient test set to evaluate its prediction accuracy. The final 

model’s output f(X) is depicted as a function of patients’ scoliometer and in-brace correction in 

Figure 12. The logistic regression coefficients for in-brace correction and Scoliometer 

were -0.0099 and 0.1445 respectively, with a constant term of -0.7607. 

 

Figure 12: Logistic function output shown for the range of in-brace corrections and Scoliometer 
measurements. The model output loosely represents the probability that the subject will progress. 

Applying the threshold of f(X) = 0.5 created the decision boundary for classifying patients into 

the predicted progression or predicted non-progression categories. The decision boundary is 

shown in Figure 13 along with markers representing the 90 AIS patients in the training and test 

datasets. Note that some of the patient’s braces overcorrected their deformities – thus the in-

brace correction percentage can exceed 100%. 

The model’s operation seems reasonable – the logistic regression coefficients indicate that 

progression correlates positively with Scoliometer measurement and negatively with in-brace 

correction (as expected). The selection of in-brace correction as a predictor makes sense, as does 

the selection of Scoliometer given recent research which has found association between 

transverse-plane deformities and progression [77], [168], [169]. 
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Figure 13: In-brace correction and Scoliometer measurement for all 90 subjects. The straight line shows 
the decision boundary separating predicted progression (above the line) from predicted non-progression 

(below). 

3.1.3. Fuzzy Model 

The logistic regression model described in section 3.1.2 is simple, interpretable, and reasonably 

effective. A second model was also developed to see if better performance could be obtained 

using a more sophisticated approach. Generally speaking, a more sophisticated model is a less 

interpretable one, with a greater risk of rejection by users. Kruppa et al. point out: 

“The fundamental question is whether a clinician will trust the findings obtained with a 

fancy non-interpretable machine and use this in clinical routine” [165] 

Fuzzy processing offers an attractive compromise between complexity and interpretability, by 

allowing complex mathematical constructs to be represented linguistically. 

Fuzzy processing makes use of fuzzy sets. In conventional set theory, membership 

(belongingness) is Boolean: elements either do, or do not belong to a set. By contrast, a fuzzy 

set’s members exhibit degrees of membership in the range [0, 1] [149]. An element’s 

membership in a fuzzy set is given by a membership function. For example, a fuzzy set defined 

by the triangular membership function tri(2x-1), includes the element x=1.5 with a membership 
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value of 0.5. The element x=1 has membership of 1 (full membership) and x= -1 has membership 

of 0 (no membership).  

Fuzzy set theory allows sets to more accurately reflect the “fuzzy” nature of real-world concepts. 

For example, a Cobb angle increase of 6° or more is often labelled “progression”, while an 

increase of 5° or less is labelled “non-progression”. This dichotomy is quite artificial (is a 5° 

change fundamentally that different from a 6° change?) and does not reflect the true continuous 

nature of progression. However the concepts of “progression” and “non-progression” are an 

important part of clinical practice. We could get more realistic definitions of progression/non-

progression and still retain the concepts by defining “progression” and “non-progression” as 

overlapping fuzzy sets of Cobb angle changes. The fuzzy sets could be defined such that a, say, 0° 

Cobb angle change would have high membership in the “non-progression” set, 10° would have 

high membership in the “progression” set, and a 5.5° change would have intermediate 

membership in both. The fuzzy transition between “progression” and “non-progression” 

concepts would reflect the continuous nature of progression more accurately than the 

conventional 5° threshold. 

3.1.3.1. Fuzzy C-Means Clustering (FCM) and Conditional FCM 

The second model for predicting progression in braced patients used Conditional Fuzzy C-

Means Clustering, a fuzzy processing technique which is an extension of FCM. 

FCM is a clustering algorithm which partitions data into overlapping (fuzzy) subsets, based on 

similarity. Conventional clustering methods (K-Means [170] for example) partition groups of 

similar observations into clusters, with each observation belonging exclusively to one cluster. By 

contrast, fuzzy clusters include each observation to some degree – in other words, each 

observation has some degree of membership in each cluster, based on its proximity to the 

cluster’s representative or “prototype” point. The fuzzy cluster assignments characterize the 

uncertainty faced in real-world classification problems.  

The FCM algorithm discovers c clusters in a data set S = {X1, X2,… Xn}, where each instance Xi ϵ 

ℝd. A partition matrix U=[uik] describes the cluster memberships: uik is the membership of the 

kth observation in the ith cluster. The ith cluster is represented by a prototype vi ϵ ℝn. The 

algorithm iteratively positions these prototypes and updates the partition matrix U to minimize 

the sum of square distances, which is the objective function used in the clustering: 
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 Q = ∑ ∑ 𝑢𝑖𝑘
𝑚‖𝐗𝐤 − 𝐯𝐢‖

2

𝑛

𝑘=1

𝑐

𝑖=1

  Equation 3 

The parameter m is the fuzzification coefficient, which controls the “fuzziness” of the transitions 

between clusters. It is often set to 2. The use of Euclidean distance allows a closed-form 

calculation of the optimal prototypes as the following weighted average: 

 𝐯𝐢 =
∑ 𝑢𝑖𝑘

𝑚𝐗𝐤
𝑛
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑛

𝑘=1

  Equation 4 

Cluster memberships are then re-assigned given the new prototype locations: 

 
𝑢𝑖𝑘 =

1

∑ (
‖𝐗𝐤 − 𝐯𝐢‖

‖𝐗𝐤 − 𝐯𝐣‖
)

2/(𝑚−1)

𝑐
𝑗=1

  
Equation 5 

The algorithm iterates until the changes in membership assignments are sufficiently small. 

Equation 5 – in conjunction with the final prototypes – acts as a membership function for each 

fuzzy cluster. 

Being an unsupervised learning algorithm, FCM finds clusters which are generic: they have no 

meaning beyond the similarity of the points they contain. The Conditional FCM algorithm 

(CFCM) [171] transforms FCM into a semi-supervised learning method where the clustering 

process is guided by additional information – namely the observations’ memberships in several 

“contexts”. Each context is a fuzzy set defined on some variable of interest, usually an outcome 

or predicted variable. 

CFCM gives the partition matrix an extra dimension to represent context, so uikj denotes the 

membership of the kth observation in the ith of several (let us say cj) clusters corresponding to the 

jth context. Each observation X comes with a corresponding row in the table w, where wkj 

indicates the kth observation’s membership in the jth context. The clustering is performed for 

each context separately. Partition matrix entries are calculated: 

 
𝑢𝑖𝑘𝑗 =

𝑤𝑗𝑘

∑ (
‖𝐗𝐤 − 𝐯𝐢‖
‖𝐗𝐤 − 𝐯𝐡‖

)
2/(𝑚−1)

𝑐𝑗

ℎ=1

 
Equation 6 

Thus the clustering process within each context is constrained by observations’ memberships in 

that context. The upshot of this is that CFCM discovers clusters of observations which belong to 

particular contexts. That is, it discovers clusters of a particular type, rather than FCM’s generic 

and data-driven-only clusters (see Figure 14). For this application to brace treatment, CFCM is 
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used to discover clusters of patients who all have similar brace treatment outcomes. Predicting a 

new patient’s outcome is then a matter of measuring their membership in these clusters. 

 

Figure 14: CFCM discovers clusters of observations belonging to particular contexts. This (hypothetical) 
example shows clusters of patients who improve, remain neutral, or progress during brace treatment 
(three unique contexts). Without the context information, a conventional clustering algorithm might 

merge the “improved” cluster with a “progressed” cluster. 

3.1.3.2. CFCM-based Prediction Model 

Three meaningful brace-treatment outcomes or contexts were identified: “improvement”, 

“neutral”, and “progression”. Each context was defined as a fuzzy set of Cobb angle progressions 

measured after discharge from brace treatment. These fuzzy sets’ membership functions are 

shown in Figure 15. Each of these fuzzy sets represents a unique treatment outcome, and 

together they reflect the nature of our modeling problem. The “neutral” context was designed to 

intersect the “improved” context at -0.5° progression, and the “progressed” context at 5.5°. This 

is convenient because the Scoliosis Research Society’s standardized definition of progression is a 

Cobb angle increase greater than 5° [40]. The fuzzy sets were based on Gaussian membership 

functions with a variance of 1° - which is in the range of estimated values for variance of the 

Cobb angle measurement [21]. Thus, for example, the “progressed” fuzzy set suggests the degree 

to which a measured progression represents an actual progression greater than 5°. Using these 

fuzzy sets as contexts in the CFCM clustering resulted in clusters of patients who tend to 

progress, improve, or remain neutral after brace treatment. Thus a Cobb angle improvement is 

considered to be an inherently different thing than simply not progressing. 

    Progress 
    Neutral 
    Improve 

Pre-treatment Measurement 1 

Pre-treatment Measurement 2 
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Figure 15: Fuzzy sets defining the three treatment outcome contexts used in CFCM clustering. A measured 
Cobb angle progression is mapped to three context memberships using these membership functions. 

The 62 patient records in the training set were each assigned degrees of membership in the 

“progressed”, “improved”, and “neutral” contexts based on their measured progression at the 

end of brace treatment. The CFCM clustering grouped the 62 patients into 8 fuzzy clusters: 2 

from the “neutral” context, and 3 from each of the other contexts. The number of clusters 

(prototypes) was chosen empirically, by plotting the fuzzy clusters’ goodness of fit as a function 

of the number of prototypes (see Figure 16). Points of diminishing returns in these plots 

indicated suitable numbers of prototypes. This was done for each of the three outcomes 

separately. 

 

Figure 16: Objective function Q versus number of clusters in each context. Points of diminishing returns 
suggest appropriate numbers of clusters for each context. 

The clustering used a custom distance function instead of conventional Euclidean distance. 

Distance between two points was calculated as the angle between the vectors connecting each 
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point to the global mean �̅� of the training data. That is, the distance between any two points Xa 

and Xb is: 

 ‖𝐗𝐚 − 𝐗𝐛‖ = cos−1 (
𝐗𝐚

́ ∙ 𝐗𝐛
́

|𝐗𝐚
́ ||𝐗𝐛

́ |
) Equation 7 

where 

 𝐗𝐚
́ = 𝐗𝐚 − �̅�,       𝐗𝐛

́ = 𝐗𝐛 − �̅� Equation 8 

This distance function compares patients on the basis of how they differ from average. 

Ultimately this means that the prototypes reveal how patients who tend to progress or improve 

differ from average. The concept is illustrated in Figure 17. Each prototype was placed by a 

downhill simplex algorithm (Equation 4 is derived assuming the use of Euclidean distance). 

 

Figure 17: Illustration of how distance between two points is represented. In this example ║B-C║ < ║A-
B║, because B and C lie in similar ‘directions’ from the global mean. 

Treatment outcome for new patients was predicted by first calculating the patient’s membership 

in every cluster using the conventional FCM membership calculation. That is, the membership 

ug of a new patient (described by feature vector X) in prototype vg’s cluster is: 

 
𝑢𝑔 =

1

∑ (
‖𝐗 − 𝐯𝐠‖

‖𝐗 − 𝐯𝐡‖
)

2/(𝑚−1)

𝑐
ℎ=1

 
Equation 9 

where c is the total number of clusters in all contexts. The memberships for all clusters in a 

given context were then summed to give the membership in that context. This produced 

predicted memberships in the “improved”, “progressed”, and “neutral” outcome categories. The 

model provided these three membership values along with a dichotomous progressed/non-

progressed label (per the Scoliosis Research Society standard for reporting brace treatment 
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Global 
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outcome [40]). The label was “progressed” if the “progressed” membership was larger than the 

“neutral” and “improved” memberships and “non-progressed” otherwise. 

3.1.3.3. Predictor Variable Selection 

Reducing the number of variables was necessary to ensure an interpretable model, and because 

the 62-patient training set was too small to accommodate eight, 14-dimensional prototypes. To 

preserve interpretability of the model, feature reduction was achieved through selection rather 

than transformation (i.e. principle component analysis, etc.). 

The variable selection procedure was similar to that described in section 3.1.2.1. It exhaustively 

searched through feature subsets of size 5 or less. For each feature subset, the modeling process 

described above was tested in a 10-fold cross validation. The feature subset which maximized 

correlation between the model’s predictions and the true outcome was selected. This procedure 

was performed inside of a 5-fold cross validation, and repeated 5 times (with the 5 folds re-

randomized each time) for a total of 25 searches. Features were ranked on the number of times 

they were selected by a search. Selection results are shown in Figure 18. 

 

Figure 18: Number of selections (out of 25) for each variable during the selection process. 
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3.1.3.4. Training the Final Model 

The final model was built by adding features one-at-a-time in order of rank and testing in a 10-

fold cross validation. The addition of features stopped when adding a feature did not improve 

accuracy. The final model retained four features: Scoliometer measurement, in-brace correction, 

Cobb angle, and patient age. Thus the feature selection process retained two features describing 

the scoliosis, one describing the patient, and one describing the treatment. The final CFCM-

derived prototypes are shown in Table 4. The final model was tested on the 28 patient test 

dataset. 

Prototype 

# 
Context Scoliometer 

(°) 

In-brace 

Correction 

(%) 

Cobb 

Angle (°) 

Age 

(yrs) 

 Global Mean 9 66 30 13.6 

1 

Improve 

7 61 27 10.8 

2 5 142 25 12.9 

3 7 87 22 14.6 

4 
Neutral 

4 60 27 13.6 

5 16 60 41 15.4 

6 

Progress 

10 101 26 15.3 

7 10 20 38 13.6 

8 14 38 31 12.3 

Table 4: Feature values for each prototype, and the global mean. 

Most prototypes in Table 4 seem consistent with existing literature: prototypes 1-4 have mild 

deformities and/or good in-brace correction, so we would not expect them to progress. 

Prototype 5 has a more severe deformity but is quite old (near skeletal maturity) – so the fact 

that they are “neutral” is reasonable. Prototypes 7 and 8 have severe deformities and poor 

correction, so they would be expected to progress. 

However, prototype 6 does not seem to belong to the “progress” context when compared to 

prototype 5. Prototype 6 had a more mild deformity and better correction, but apparently 

progressed more than prototype 5. This is an interesting discrepancy; the most likely 

explanation is that prototype 6 describes a cluster of patients with good in-brace correction but 

poor compliance, i.e. they were not faithful in their brace-wear. 
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3.1.4. Comparison of Logistic Regression & Fuzzy Model Performance 

Table 5 is a confusion matrix showing the logistic regression model’s prediction performance. It 

shows the number of progressive/non-progressive cases which were correctly or incorrectly 

classified during training and testing. The model achieved 73% accuracy in the leave-one-out 

cross validation on the training data. The final model included the two most-selected variables: 

it can be noted that adding the third-ranked variable (curve direction) had no effect on cross-

validated accuracy, and using only the top-ranked variable (in-brace correction) resulted in 

slightly lower accuracy of 68%. The model’s predictions on the test data were 75% accurate. 

Table 6 shows the confusion matrix for the fuzzy model. The fuzzy model’s cross validated 

accuracy in training was 77%, and it’s accuracy on the test data was 82%. 

  Predicted Outcome 

  Progress Non-Progress 

True 
Outcome 

Progress 25 [10] 9 [2] 

Non-Progress 8 [5] 20 [11] 

Table 5: Confusion matrix showing the numbers of correct and incorrect predictions made by the logistic 
regression model on the training [test] data. Training performance was measured in cross validation. 

 

  Predicted Outcome 

  Progress Non-Progress 

True 
Outcome 

Progress 24 [12] 5 [0] 

Non-Progress 9 [5] 24 [11] 

Table 6: Confusion matrix showing the numbers of correct and incorrect predictions made by the fuzzy 
model on the training [test] data. Training performance was measured in cross validation. 

 

Figure 19 compares the prediction performance of the logistic regression model to that of the 

fuzzy model in terms of Mathew’s Correlation Coefficient (MCC), sensitivity, specificity, and F1 

and F2 measures. Mathew’s Correlation measures the correlation between the treatment 

outcomes predicted by the model and the true outcomes. An MCC of 1 indicates perfect 

agreement, an MCC of 0 indicates no correlation, and an MCC of -1 indicates perfect 
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disagreement. Sensitivity is the fraction of progressive cases which were correctly identified, 

while specificity is the number of non-progressive cases which were correctly identified. The F1 

measure is a balanced measurement of performance which considers both sensitivity and 

precision – the fraction of the “progress” predictions which are actually correct. The F2 measure 

is similar to the F1 measure but places a greater emphasis on sensitivity. The statistics shown in 

Figure 19 were calculated by pooling the training and test predictions shown in Table 5 and 

Table 6. 

 

Figure 19: Comparison of selected performance measures for the logistic regression model and the fuzzy 
model. 

The fuzzy model’s predictions on the pooled training and test data are significantly different 

from the logistic regression model’s predictions: McNemar’s test gives a one-tailed p value of 

0.049. The fuzzy model shows a slight advantage in each of the metrics shown in Figure 19. Of 

particular interest are the sensitivity and F2 measure. This is because for the task of predicting 

progression, a “false negative” is more costly than a “false positive”. That is, sensitivity (the 

ability to identify progressive individuals) is more important than specificity (the ability to 

identify non-progressive individuals) in this application. 

In conclusion, the fuzzy model has a modest advantage over the logistic regression in terms of 

predictive power. It has a convenient advantage in terms of sensitivity, in particular. The fuzzy 

model has a human-readable interpretation (via its prototypes, shown in Table 4), but the 

logistic regression retains an advantage in interpretability, being a much simpler model. Its 

simplicity would also make it easier to implement. Since this application has no pressing need 
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for model simplicity, the fuzzy model is preferable to the logistic regression due to its superior 

prediction performance. 

3.2. Fuzzy Model’s Predictions Compared to Experts’† 

A physician makes Scoliosis treatment decisions using their own experience to predict risk of 

progression. If a computer model can improve these predictions, it will likely improve the 

resulting treatment decisions. Comparing computer models to human experts is a common 

benchmark. Nault et al. [163] designed a fuzzy system to recommend the number of vertebrae to 

fuse during surgical correction of AIS. The system’s recommendations on a set of test cases were 

compared to surgeons’ selections on the same cases; the system’s recommendations had “good 

agreement” with the surgeons. A comparison of this nature is intended to show that the 

computer model operates at the level of experts, or that it emulates the operation of experts. 

Alternatively, a model’s prediction performance can be compared to experts’ performance vis-à-

vis test cases. For example, Uyar et al. [172] designed a model to predict implantation of 

embryos in in-vitro fertilization. The model’s predictions were compared to embryologists’ 

predictions on new cases over a period of two months, with the result that the model’s 

predictions were more accurate than the embryologists’. Rodriquez-Gonzalez et al. [116] 

compared the diagnoses of a computerized CDSS to those of physicians and found the CDSS’s 

diagnoses to be more accurate. Studies like these attempt to show a computer model’s ability to 

“out-predict” experts. The intent is to show the model’s potential to enhance an expert’s natural 

prediction ability. 

A computer model is certainly not guaranteed to have better predictive power than experts. 

Farion et al. [173] developed a model to diagnose asthma exacerbations, but found that it 

performed more poorly than physicians. Cornu et al. [174] evaluated a CDSS intended to identify 

drug-drug interactions, and found it identified fewer interactions than pharmacists with more 

false-positives. Demonstrating a prediction model’s superior performance over experts is an 

important step in demonstrating its usefulness. If it makes better predictions, it could 

potentially be used to enhance the expert’s decision making process. On the other hand a 

                                                        
 

†
 Material in this section has been published in the paper: E Chalmers, W Pedrycz, and E Lou, “Human experts’ and 

a fuzzy model’s predictions of outcomes of scoliosis treatment: A comparative analysis”, IEEE Transactions on 
Biomedical Engineering (in press) 
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physician would have no use for a model’s predictions if they could produce better ones 

themselves. 

This work compared the fuzzy model described in section 3.1.3 to AIS experts, on the basis of 

ability to predict Scoliosis progression during brace treatment. 

3.2.1. Panel of Experts 

The experts participating in the comparison included: 

 Two orthopaedic surgeons, each with approximately 30 years of experience treating 

Adolescent Scoliosis. 

 One nurse practitioner with 3 years of experience working with Scoliosis cases. 

 Three orthotists with approximately 10, 20, and 7 years of experience constructing and 

adjusting braces for treating AIS. 

 One research scientist with 22 years of experience in Scoliosis research, and over 40 

refereed publications related to brace treatment. 

 One clinical engineer with 25 years of experience working in Scoliosis clinics, and over 

50 refereed publications related to Scoliosis and brace treatment. 

Almost all brace-treated AIS cases in the local health region are overseen by the nurse 

practitioner or one of the two orthopaedic surgeons, though a small number are seen by a third 

surgeon who was unable to participate in the study. All braces in the region are designed and 

built by the three orthotists. The orthotists and surgeon or nurse practitioner work together to 

devise a brace treatment predicted to minimize a patient’s risk of progression. Predicting the 

risk of progression is an inherent part of this process. The scientist and clinical engineer 

research scoliosis progression and risk factors, and both have multiple publications on the topic 

of predicting progression. These eight experts represent the most knowledgeable personnel on 

brace treatment in the region. 

3.2.2. Comparison Procedure 

Records of the 28 patients in the test dataset were supplied to each of the experts. Each record 

contained the following measurements taken at the start of the patients’ brace treatment: age, 

gender, time since menarche (where applicable), type of brace used and in-brace correction 

applied, height, weight, Cobb angle, location of scoliotic curve apex, Scoliometer measurement, 
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height velocity, weight velocity, and observed progression prior to bracing. The true outcomes 

(the Cobb angle progression of each patient by the end of brace treatment) were not shown to 

the experts. Each expert was asked to predict whether each of the 28 patients would progress by 

the end of brace treatment. Experts did not collaborate with each other, as they typically make 

decisions on their own in clinical settings. No time limit was imposed on the exercise. 

The fuzzy model’s predictions (the dichotomous progressed/non-progressed labels) for these 28 

patients were also obtained, based on their scoliometer measurements, in-brace corrections, 

Cobb angles, and ages. The model’s and each expert’s predictions were evaluated for agreement 

with the actual treatment outcomes using Mathew’s Correlation Coefficient (MCC) [33]. The 

experts were also considered as a panel by taking their mode prediction. Sensitivity, specificity, 

and positive and negative predictive values (PPV and NPV) were calculated for the panel and the 

fuzzy model. McNemar’s test was used to check statistical significance of the differences between 

predictors. The multi-rater kappa was also calculated to measure agreement between the 

expert’s predictions. 

In addition to comparing with experts’ predictions, the fuzzy model was also compared to 

alternatives from literature: prediction methods proposed by Lonstein et al. [39] and Peterson et 

al. [45] were implemented for comparison with the fuzzy model. These methods have seen 

perhaps the most clinical use; Lonstein’s was used in guidelines published by the Society on 

Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT) until 2011 [56]. SOSORT’s 2011 

guidelines avoided sanctioning any method, however [7]. Peterson’s method has been cited 

numerous times and its predictions are one of the inputs to Lou’s model [3]. 

Lonstein’s method uses a patient’s Cobb angle, Risser sign, and age as inputs. Peterson’s uses 

Risser sign, age, imbalance of the spine, and apical level of the curve. Risser sign information 

did not exist for 6 of the 28 test patients (due to X-ray cropping). Thus Lonstein’s and Peterson’s 

methods were applied to the remaining 22 patients. Mathew’s Correlation between the methods’ 

predictions and actual outcome was calculated for these 22 patients, and compared to the 

correlation for the fuzzy model. 

3.2.3. Results 

The multi-rater kappa measure of agreement among experts was 0.47, showing only moderate 

agreement between experts. Some experts tended to favor predictions of “progression”, while 

others favored “non-progression”. There was no noticeable correlation between the expert’s level 
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of experience and prediction performance. This seems to illustrate the difficulty of predicting 

brace treatment outcome. 

The model outperformed (in terms of MCC) all but one expert, and performed similarly to the 

panel of experts. Figure 20 shows MCC for each expert’s predictions, as well as for the panel and 

the model. The expert’s MCC scores had mean 0.55 and standard deviation 0.08 – if experts’ 

scores were drawn from a corresponding normal distribution then the model’s improvement in 

MCC is statistically significant at p=0.03. 

 

Figure 20: Mathew’s correlation between predicted and actual outcomes for each expert’s predictions, the 
panel of experts (the mode prediction across experts), and the model. 

A detailed performance comparison between the panel of experts and the fuzzy model is shown 

in Figure 21. Sensitivities for the panel and model were 91% and 100% respectively, specificities 

were 80% and 69%, PPVs were 77% and 71%, and NPVs were 92% and 100%.  

McNemar’s test showed p-values less than 0.1 when comparing the model to experts 1, 2, 6, and 

8, and when comparing expert 1 to experts 3, 4, and 7. Interestingly, one of these cases of 

significantly different predictions (the model compared to expert 8) was the case in which the 

expert out-predicted the model. 
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Figure 21: Comparison of statistics describing the prediction performances of the fuzzy model and the 
panel of experts. 

 

Figure 22 shows the comparison between Lonstein and Peterson’s prediction methods and the 

model. Predictions generated using Lonstein’s method showed an insignificant (negative) 

correlation with actual outcomes. 

 

 

 

Figure 22: Mathew’s correlation between predicted and actual outcomes for Lonstein and Peterson’s 
prediction methods, and the model. 
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3.3. Fuzzy-Model-Based Treatment Recommendations‡ 

This work envisions a decision support system based on machine-learning-derived prediction 

model(s), in the style described by Chi [126]. The model’s function is to predict treatment 

outcome based on parameters measureable at the start of treatment. These predictions are fed 

into a decision support engine, which communicates to an end user how a particular patient’s 

predicted outcome changes as a function of these parameters. Essentially the system enables a 

“what-if” analysis; providing some insight into what might happen in the future, given particular 

actions or conditions in the present.  

Using a computer model’s predictions of future events to identify optimal decisions in the 

present is sometimes called “prescriptive analytics” [129], and is a logical next step if the 

prediction model is trustworthy. In fact the prescriptive analytics concept describes how we 

make most important decisions: when faced with a decision between several alternatives, we 

often mentally forecast the result of each action before choosing the one which seems most 

desirable. 

Figure 23 shows the fuzzy model’s predictions of a particular patient’s memberships in the 

“improve”, “neutral”, and “progress” outcome contexts. The memberships are shown as 

functions of the patients’ in-brace correction and scoliometer measurement. This type of plot 

shows graphically how the predictions vary in response to these parameters.  

In this preliminary validation, a decision support engine was implemented which used the fuzzy 

model’s predictions to provide treatment recommendations. The model predicts treatment 

outcome based on three uncontrollable features (Scoliometer, Cobb angle, and age) and one 

controllable one (in-brace correction). Thus, the decision support engine used the model’s 

predictions to recommend optimum in-brace correction given a patient’s Scoliometer, Cobb 

angle, and age.  

First the model generated a complete set of predictions for every possible combination of all four 

                                                        
 

‡
 Material in this section has been published in the following papers: 

- E Chalmers, D Hill, H Zhao, and E Lou, “Prescriptive analytics applied to brace treatment for AIS: a pilot 
demonstration”, Scoliosis (in press) 
- E Chalmers, W Pedrycz, and E Lou, “Human experts’ and a fuzzy model’s predictions of outcomes of scoliosis 
treatment: A comparative analysis”, IEEE Transactions on Biomedical Engineering (in press) 
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Figure 23: Predictions for a 13-year-old patient with 30° Cobb angle. “Improve”, “Neutral”, and “Progress” 
memberships are shown as a function of both Scoliometer measurement and in-brace correction. 

features (given a specified resolution), creating a multi-dimensional lookup table of “improve”, 

“neutral”, and “progress” membership predictions for the range of possible cases. The decision 

support engine allowed a user to enter a patient’s Scoliometer measurement, Cobb angle, and 

age. It then retrieved the predictions corresponding to these characteristics and the range of in-

brace corrections. The results were plotted, allowing the user to visualize the patient’s predicted 

memberships in the “improve”, “neutral”, and “progress” contexts as a function of the in-brace 

correction applied. For an example of this plot see Figure 24, which is actually a cross section of 

the plot shown in Figure 23.  

 

Figure 24: Predicted memberships in the “Improve”, “Neutral”, and “Progress” categories for a 13-year-
old patient with 3° Scoliometer measurement and 30° Cobb angle.  
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Considering Figure 24, observe that “progress” is the dominant membership for in-brace 

corrections below 55%, so correction greater than 55% is indicated for this patient. But we also 

notice the “improve” membership shows a point of diminishing returns at about 75% correction. 

This is valuable information, as applying too much correction might result in an uncomfortable 

brace and low compliance. 

This work chose a recommended in-brace correction based on the model’s predictions, by 

identifying the correction which made one of the “neutral” or “improve” memberships the 

dominant membership. An illustrative example is shown in Figure 25. For this patient, 60% in-

brace correction gives maximum “neutral” context membership and a relatively low “progress” 

context membership. Thus 60% correction may be a good target correction for this patient as 

predictions indicate their curve would likely not progress. A brace intended for nocturnal wear 

might attempt more correction, but the chart indicates a point of diminishing returns in the 

improve membership at about 75% correction; thus 75% may a good target correction if this 

patient is to receive a night brace. 

 

Figure 25: Using the fuzzy model’s predictions of treatment outcome to identify suitable in-brace 
correction recommendations. 
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3.4. How Good are The Recommendations?§ 

3.4.1. Clinical Trial Simulation 

Section 3.3 described how treatment recommendations were produced using computer-

generated predictions of treatment outcome. The obvious question is: what would be the effect 

of these recommendations if they were applied to actual patients? Ultimately, the efficacy of the 

recommendations would need to be determined in a formal clinical trial, with the goal of seeing 

whether using the CDSS lead to improved treatment outcomes. However computer simulation 

can provide an initial estimate of the recommendations’ effect based on retrospective data. 

A clinical trial simulation (CTS) technique proposed by Chi [126] was used to estimate the 

efficacy of the in-brace correction recommendations. Chi et al used the procedure to estimate 

the effect of lifestyle change recommendations on risk of heart disease [10], and the effect of 

individualized Warfarin treatment protocols [13]. The CTS randomly divided available patient 

data into two equally-sized groups: A and B. Separate prediction models were trained using the 

data from each group. Model A was then used to recommend in-brace corrections for the 

patients in group B, using the procedure described in section 3.3. Model B then predicted the 

new treatment outcomes for the group B patients given Model A’s in-brace correction 

recommendations. Thus, the CTS simulated a case-control study: the group B patients with 

model A’s recommendations applied are the “cases”, while the original group B patients serve as 

the matched controls. Since the two models used to create the recommendations and predict 

outcomes are trained and used separately, the CTS provides an unbiased estimate of the 

recommendations’ effect. The CTS procedure is illustrated in Figure 26.  

The procedure described in section 3.3 was used to select two target corrections for each patient 

in Group B: one for a full-time and one for a night-time brace. The CTS used the target 

corresponding to the brace type that had actually been prescribed to the patient, as recorded in 

their charts. However if no suitable full-time correction could be found (i.e. the minimum 

recommended correction was too high to be achieved by a full time brace) then the patient was 

switched to a night-brace in the simulation. Sixty percent correction or higher was considered 

unreasonably high for a full-time brace. 

                                                        
 

§
 Material in this section has been published in the paper: E Chalmers, D Hill, H Zhao, and E Lou, “Prescriptive 

analytics applied to brace treatment for AIS: a pilot demonstration”, Scoliosis (in press) 
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Figure 26: Diagram illustrating the clinical trial simulation procedure. Model A recommends in-brace 
corrections for patients in group B, with Model B predicting the recommendations’ effect. Predicted 
outcomes given the recommendations were compared to outcomes in the group B patients’ charts. 

Overall progression rates from the patient charts were compared to (predicted) progression 

rates under the recommended in-brace corrections; the difference in progression rate was 

measured. Progression was defined as a >5° increase in Cobb angle by the end of treatment [10].  

As the progression rate under the recommended corrections is predicted by the fuzzy model, 

and the model’s predictions are not perfect, there is some uncertainty associated with the 

progression rate estimated in the CTS. The progression rate can be treated as a random variable. 

The distribution of the progression rate was estimated by first measuring model B’s negative 

predictive value (NPV) and positive predictive value (PPV) in a five-fold cross validation on the 

group B patients. The probability mass function (PMF) for the number of progressions given the 

recommended in-brace corrections was calculated based on these values. That is, each of the 

model’s “progress” predictions represents a progressive case with probability equal to the 

model’s PPV. Each “non-progress” prediction represents a progressive case with probability 

equal to 1-NPV. The PMF for progressive cases in the entire group B was then calculated given 

that the PMF of the sum of two independent discrete random variables is: 

 

All Patient Data 

Group A Group B 

Prediction 
Model A 

Prediction 
Model B 

 

Model A recommends 

treatments for group B 

Model B predicts new 
outcome for group B under 

model A’s recommendations 
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 𝒇𝟑(𝒋) = ∑ 𝒇𝟏(𝒌) ∙ 𝒇𝟐(𝒋 − 𝒌)

𝒌

 Equation 10 

where f1(x) and f2(x) are the mass functions for the two variables, and f3(x) is the mass function 

for the sum. 

3.4.2. Simulation Results 

The group B patients included 23 patients who had progressed by the end of treatment, and 22 

who had not. Fourteen patients had been treated with night braces, while 31 had received full 

time braces.  

Eight group B patients who had originally been prescribed fulltime braces were switched to 

night braces in the CTS. The predicted outcome memberships for one such patient is shown in 

Figure 27. Eighty percent correction was selected as a suitable night brace correction for this 

patient, but the plot reveals no suitable full-time brace correction less than this. 

 

Figure 27: Predicted “Improve”, “Neutral”, and “Progress” memberships for one of the patients in the 
CTS. For this patient, 80% was identified as a suitable correction – too large a target for a full-time brace 

but suitable for a night brace. 

 

Recommended corrections for full-time and night braces are shown in histograms in Figure 28 

and Figure 29 respectively. Recommended corrections ranged from 20%-58% for full-time 

braces (mean 37%) and from 65%-130% for night braces (mean 91%). In 17 of the 45 cases 

(38%), the recommended correction was less than the correction that had actually been applied 

clinically, as recorded in the patients’ charts. Figure 30 shows a scatterplot of the recommended 
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in-brace corrections versus the actual corrections applied clinically, and indicates which patients 

were predicted to progress in the CTS. The group of patients who received lower corrections in 

the CTS did not suffer an increased progression rate. 

 

Figure 28: Histogram showing the distribution of recommended in-brace corrections for full time braces 
in the CTS. 

 

 

Figure 29:  Histogram showing the distribution of recommended in-brace corrections for night braces in 
the CTS. 
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Figure 30: Recommended and actual in-brace corrections for group B patients in the CTS. Those above 
the diagonal line received higher corrections in the CTS than they had received clinically. Those below the 

line received lower corrections. 

Model B’s positive predictive value was 0.73. Its negative predictive value was 0.70.  In the CTS, 

predicted outcomes for group B included 11 progressions – a 52% reduction from the original 

23. Combining 11 progression predictions and 34 non-progress predictions as per Equation 10 

produced a PMF for progressive cases, shown in Figure 31. 

 

Figure 31: Estimated probability distribution of progressive cases in group B, given the recommended in-
brace corrections. Bars show the probability mass function. The solid line shows the cumulative 

distribution function. 
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The mean of this distribution is 18 progressions (a 22% improvement over the original 23). The 

corresponding CDF (also illustrated in Figure 31) indicated a 4.7% chance of there being more 

than 23 progressions. Thus the improvement in progression rate can be considered statistically 

significant at the p=0.05 level. 

3.5. Limitations and Concluding Remarks 

The CTS estimated that the model-recommended in-brace corrections could significantly reduce 

progression rates among patients undergoing brace treatment. However there are several 

limitations to the work presented in this chapter. 

First, the method of choosing recommended in-brace corrections described in section 3.3 was 

performed manually in a rather time-consuming process. It also required a small degree of 

subjective assessment. It would be preferable if this process were automated to save the user’s 

time, and to ensure objective and reproducible recommendations. 

Second, while the model-recommended in-brace corrections were estimated to reduce 

progression rate by 22%, it is unclear whether the recommended corrections would actually be 

achievable in practice. Overall the observed ranges of recommendations for full-time and night 

braces agree with literature and corrections observed at our clinic, but some individual patients 

with stiff curves may not be capable of large corrections. Thus, what is perhaps most interesting 

is that about one-third of the recommended corrections were lower than that actually applied. 

This may suggest some potential to build less aggressive (more comfortable) braces without 

compromising treatment outcome. 

Another limitation is that the data used in this work included no measurements of patient 

compliance with prescribed brace-wear. The prediction model can only be used to recommend 

parameters which it uses in making predictions. The fuzzy model was used to recommend in-

brace correction (its other inputs – age, Cobb angle, and Scoliometer measurement – cannot be 

controlled), but recommendations of brace wear-time may be more valuable. This is because in 

practice we may have limited control over the in-brace correction. Moreover the orthotist has 

limited time with the patient and often doesn’t know the correction achieved by the brace until 

an in-brace radiograph is taken some time later. Thus fine-tuning a brace to achieve a specific 
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target correction is impractical. Health care providers have more control over the amount of 

brace-wear that is prescribed than they do over how much correction a brace applies. 

There is another aspect of the work in this chapter which may be seen as a limitation. The 

prediction model(s), the comparison with experts, and the CTS all cast predicting progression as 

a classification problem: “progress” and “non-progress” were the only predictions allowed. This 

paradigm might engender a deterministic view of curve progression: that progression has 

definite causes and that we could predict it perfectly if only we had enough information. The 

pitfalls of taking this viewpoint when predicting future events have been discussed by 

Gigerenzer et al. [175] and Nate Silver [176]. While it is important to retain the concepts of 

“progression” and “non-progression” as distinct events, it may be best if predictions of 

progression were probabilistic. For example, instead of predicting a patient to “progress” (and 

calculating the PPV corresponding to this prediction), the prediction could give the patient a 

“75% probability of progression”. This probabilistic viewpoint would better reflect our imperfect 

ability to predict progression, and better communicate the uncertainty in our predictions. 

To conclude, chapter 3 has described a complete validation of the concept of electronic decision 

support for brace treatment planning. Section 3.4.2 reported encouraging results, while section 

3.5 has pointed out some limitations. Chapter 4 will discuss the development of a complete 

decision support platform. This platform will allow ongoing collection of patient data (including 

compliance data), and conversion of this data into treatment recommendations through 

prediction models. 

  



 
 

64 
 

4. A Hardware & Software Platform for Providing Brace 

Treatment Decision Support 

This chapter describes the development of a complete decision support system which builds on 

the general approach described in chapter 3. The system includes a hardware device used for 

collecting brace-wear data, and software components which use patient data to generate 

prediction models and decision support. Development of each component is described. A 

software platform integrates the components in a complete, scalable system. 

4.1. Overview 

Chapter 3 detailed a preliminary validation of the concept of electronic decision support for 

brace treatment. First, prediction models were developed which predict treatment outcome 

using start-of-treatment measurements. Second, optimal in-brace corrections were estimated 

using the predictions. Finally, a clinical trial simulation estimated that the recommended 

parameters (if achievable) would reduce overall progression rates. 

The dataset used in the preliminary validation was limited in that it contained no brace-wear 

compliance information. Thus no measurements of compliance were used by the prediction 

model, meaning the decision support stage could not recommend patients’ optimal brace wear 

time. This chapter describes a complete decision support system which overcomes this 

limitation. The system is implemented as a platform which accommodates the following tasks: 

 Collecting patients’ brace-wear (compliance) information 

 Storage of compliance data and other routine clinical measurements 

 Visualization and simple analysis of the stored data 

 Automatic training of prediction models 

 Generation of treatment recommendations 

A diagram of the overall system is shown in Figure 32. 
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Figure 32: Illustration of the overall decision support system. 

The platform includes an electronic monitoring device which records the force applied by the 

brace and the duration of patients’ brace-wear. This device communicates with the software 

portion of the platform, which comprises the data storage, model training, and decision support 

components.  

Arrows in Figure 32 illustrate exchange of information between the components. The software 

platform interfaces with the hardware devices to download compliance data. This data is stored 

in a relational database along with additional clinical information entered by the user. A 

“charting and visualization” component draws from the database to perform various 

visualization and simple analysis tasks. A decision support engine component trains prediction 

models which predict the outcome of brace treatment using the measurements stored in the 

database. The decision support engine uses these models to predict treatment outcomes for a 

particular patient given a range of treatment options. It then uses these predictions to estimate 

the optimal treatment for the patient, with the specific nature of the recommendation depending 

on the model used. 

The following sections describe the development of each component in more detail, starting 

with components external to the software platform, and concluding with the platform itself. 

Section 4.2 describes the hardware device designed to collect compliance information. Section 

4.3 describes the relational database used to store patient data, the visualization modules, and 
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the modelling module. Section 4.4 describes the software platform which integrates these pieces 

into a complete system. 

4.2. Compliance Monitoring Device** 

4.2.1. First Generation Compliance Monitor 

An electronic compliance monitor was developed to measure patients’ brace-wear habits during 

long-term treatment. This information is used by the software platform in making predictions 

and recommendations.  

Most compliance monitors for use in AIS are temperature-based – detecting when the brace is 

worn or unworn based on body heat. An alternative is to detect brace-wear by sensing force or 

pressure at the brace-body interface, and a preliminary study by Lou et al. [3] has suggested that 

such force readings can be a predictor of treatment outcome. For this reason the device 

described here was originally designed to be a force-sensing compliance monitor – a new design 

based on a previous generation force-sensing device used by Lou et al. [102]. 

The monitor consisted of a force sensor, data logger, and battery. The data logger sampled the 

output of the force sensor using an analog-to-digital converter, and stored the digital samples in 

on-board memory as illustrated in Figure 33. The data logger communicated wirelessly, for 

convenience in downloading logged data and performing other operations.  

The monitoring device was designed for minimal size and power consumption, so that it could 

be embedded in a brace for long-term monitoring. The key component of the data logger is the 

CC2530F256 system-on-chip (Texas Instruments Inc. Texas, USA). It includes an 8051 

microcontroller, an onboard radio transceiver, and a sigma-delta analog to digital converter. 

Low-power design was accommodated by the 8051 microcontroller, which uses a simple, 8-bit 

processor with low power requirements and features several low-power operating modes. The 

included radio transceiver followed the IEEE 802.15.4 standard; a standard including the 

physical layer and media access control for low-power wireless communication. The analog-to-

digital converter had 11 bits effective resolution, allowing sufficiently precise digitization of the 

                                                        
 

**
 Material for this section has been published in the paper: E Chalmers, E Lou E, D Hill, V Zhao, “An Advanced 

Compliance Monitor for Patients Undergoing Brace Treatment for Idiopathic Scoliosis”, Medical Engineering & 
Physics (in press) 
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force sensor output. The CC2530F256 also contains 256 KB of on-board flash memory which 

was used for storing data; this reduced the size of the device by avoiding the need for separate 

memory. 

 

Figure 33: High-level illustration of the compliance monitoring device. 

The key component of the force sensing module was the FS1500 force sensor (Honeywell 

International, Inc. New Jersey, USA) with a sensing range of 14.7 N. The force sensor was 

covered by a rubber housing, which helps to direct force onto the force-sensitive area. The 

design and reliability testing of the force sensor module was performed previously [177]. The 

force readings were electronically amplified and then digitized to have a range of 10 N and a 

resolution of 0.05 N. The force of 10 N was considered to be the maximum force expected in 

brace [109]. The 0.05 N resolution meant 201 discrete force levels, so that a force reading could 

be stored using a single byte of memory.  

A two-point calibration procedure was used to calibrate each sensor individually. This procedure 

applied 1 N and 3 N forces to the force sensor and recorded the corresponding sensor outputs. 

The slope and offset of the sensor response was calculated from these values. The data logging 

device performed the calibration calculations, and stored the resulting slope and offset values. 

During long-term operation the device sampled the output of the force sensor at a user-defined 

interval. These samples were stored in the CC2530F256’s onboard flash memory. Between 

samples, power to the force sensor was turned off and the microcontroller entered a low-power 

state in which only a low-power oscillator was left running. Use of this low-power state allowed 

battery life to be extended beyond six months (the typical time span between patients’ clinic 

visits). 

4.2.2. Second Generation Compliance Monitor 
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As discussed in section 2.4.2, there are limitations to both force and temperature-based 

compliance monitoring. A second generation of the compliance monitoring device featured new 

firmware, which allowed temperature sensing using the CC2530F256’s internal temperature 

sensor. By employing both temperature and force sensing, the new device provides a more 

complete picture of brace-wear compliance. After sampling the force sensor output, the new 

device samples the CC2530F256’s onboard temperature sensor 4 times at a rate of 50 Hz, and 

averages these readings to obtain a single temperature measurement. Oversampling in this way 

improves the temperature reading’s precision [178]. 

The device uses a memory-efficient data logging scheme. Every three sampling periods, the 

device logs force and temperature information in a 4-byte packet. The packet contains a two bit 

header for communication purposes, and the three force readings (one byte each). The 

remaining 6 bits encode the difference in temperature between the current packet and the 

previous one. If the difference is too large to be encoded in six bits, any remainder is carried 

over to the next interval. The difference between successive temperature samples is usually 

small, making temperature difference a more memory-efficient metric than the actual 

temperature. When logged data is retrieved the (relative) temperature curve can be 

reconstructed by integrating temperature changes over all samples. 

The CC2530F256 includes 256 KB of flash memory, with 22 KB being reserved for program 

code. The data logging scheme requires 4 bytes for three samples, meaning the device can 

accommodate (234 KB) x (1024 bytes/KB) / (4 bytes) x (3 samples) = 179712 samples. Since the 

brace is usually donned for at least several hours at a time, and major changes in brace force are 

infrequent while the brace is worn, a two or three-minute sampling interval is assumed to 

provide sufficient data. The device’s memory capacity accommodates 250 days of sampling at a 

2 minute sampling interval, or 374 days at a 3 minute interval.  

Since the compliance monitor spends as much time as possible in a low-power state, it 

consumes an average current of only 36 µA while sampling at a 2 minute interval. With a 400 

mAh battery, the battery life is (400 mAh) / (0.036 mA) = 11,111 hours = 15.4 months (12 

months if we apply a 20% de-rating factor to the battery).  

The monitor’s low-power and memory-efficient design allow battery life and memory capacity 

greater than the typical 6-month window between clinic visits. It is also small enough to allow 

easy and unobtrusive installation into the brace for long-term use: The data logger measures 5.2 

x 2.5 x 0.8 cm, and the force sensor measures 2.4 x 2.4 x 0.8 cm. The compliance monitor is 
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shown in Figure 34. Its modular design in which the force sensor is detachable from the data 

logger is convenient because the force sensor is usually embedded in a brace pressure pad 

during installation, and is not easily removable. When the patient arrives for a clinic visit, the 

data logger can be quickly detached and replaced by a logger with a fresh battery. 

 

Figure 34: The passive brace-wear monitoring device. 

4.3. Software Components 

4.3.1. Database 

A Microsoft® Access database was created to store patient data, including clinical measurements 

collected during routine examinations, and data collected from compliance monitoring devices. 

The tables and relationships between them are shown in Figure 35. 

The database consists of six tables: 

 DemographicsTable: Contains patients’ name, sex, and birthdate. 

 ExamTable: Contains fields describing various clinical measurements. Currently the only 

fields utilized are Cobb angle(s), Scoliometer measurement, height, weight, age, and a 

boolean field indicating whether the Cobb angle was measured while the patient was in-

brace. 
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 DeviceAssignmentsTable: Records which hardware device ID numbers have been 

assigned to particular patients. 

 DeviceTypesTable: Lists the types of available hardware devices (currently limited to the 

passive monitoring device described in section 4.2, or an active pressure control device 

designed outside the scope of this thesis). 

 BraceWearTable: Stores measurements and supporting data collected from the 

monitoring devices. 

 TargetValuesTable: This table allows target forces/pressures to be associated with 

specific monitoring devices. The targets could be desired or intended levels of force 

chosen by the orthotist. 

Relationships between the tables allow data from several tables to be combined in a single query 

using appropriate SQL (Structured Query Language) “JOIN” statements. 

 

 

Figure 35: Layout of the tables in the relational database used to store patient data. 
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4.3.2. Visualization Modules 

The visualization modules allow visualization of the data in various ways, or calculation of 

various descriptive statistics. For example, given a set of compliance data retrieved from the 

passive monitoring device, we may wish to calculate the patient’s overall compliance percentage 

or plot their compliance over time. Figure 36 shows an example of such a plot – in this figure a 

patient’s brace-wear compliance (as a percentage of 24 hours) is plotted over time. This 

particular patient’s family went on vacation during July 2013, and apparently the patient did not 

wear their brace during this time – though their brace-wear had also been declining during the 

weeks previous. 

 

Figure 36: Sample plot of one patient’s brace-wear compliance (as a percentage of 24 hours) over time. 

Each visualization module is an XML (eXtensible Markup Language) document which encodes 

all information needed to perform the visualization or analysis task. The document includes the 

SQL statement used to retrieve the relevant data from the database, identifies any input 

required by the user (patient numbers, date ranges, etc.), and specifies how the results should be 

displayed. It also includes user-friendly descriptions of the visualization and instructions.  

At present, seven visualization modules have been developed to perform the following tasks: 

 Plot brace-wear compliance by time of day (see Figure 48 on page 89 for an example). 

 Plot compliance over time (see Figure 36 for an example). Readings can be averaged by 

day, week, or month. 
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 Plot a histogram of forces recorded by a monitoring device. 

 Calculate average brace-wear compliance using force measurements. Forces greater than 

the 4th centile reading are considered to represent brace-wear. 

 Plot force readings over time. Readings can be averaged by day, week, or month. 

 Plot force readings over time, adjusted for compliance. Only readings which are inferred 

to represent brace-wear are included in the calculation of daily/weekly/monthly 

averages.  

 Create a generic scatterplot of Cobb angle progression per year versus a user-specified 

field from the ExamTable table. All patients who have the relevant data recorded in the 

database are used. Progression per year is calculated by taking the overall Cobb angle 

progression observed in the database and normalizing to one year. An example 

scatterplot showing progression per year versus Scoliometer measurement is shown in 

Figure 37. The XML code for the module used to create this plot is given in Appendix A. 

 

Figure 37: Example scatterplot created using a visualization module. Each point represents one patient 
from the database. 

4.3.3. Modelling Module 

Just as a visualization module contains all the information necessary to calculate a descriptive 

statistic or create a plot, a modelling module contains everything needed to train a prediction 

model. The training process creates a model while predicts treatment outcome using the 
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measurements recorded in the database. The model can later be used by the software platform’s 

decision support engine as it identifies optimal brace treatment parameters for new patients. 

A modelling module consists of two executables and an XML document. The first executable 

accepts a data set consisting of predictor variables and corresponding outcomes for a number of 

patients. It uses this data to train and save a prediction model, and reports the cross-validated 

prediction performance of the model. No limits are placed on the type of prediction model 

created. The second executable accepts a set of predictor variables and uses the saved prediction 

model to predict the outcome. The XML document tells the software platform how to call each 

executable and contains human-readable descriptions of the model and its expected 

performance. 

One modelling module was created for this thesis. It was written in MATLAB (The MathWorks, 

Natick, MA). The module trains a logistic regression model to predict curve progression after 

one year of brace treatment. The remainder of section 4.3.3 describes the methodology used in 

developing the module. Specific details of the model’s implementation and testing are given in 

chapter 5. 

4.3.3.1. General predictive modelling approach 

Section 3.5 noted that classifying progressive non-progressive cases might best be seen as a 

probabilistic problem. That is, we should seek a probability rather than a predicted class 

assignment. Producing predictions of the form: “there is a 66% chance that patient X will 

progress” allows us to continue framing treatment outcome as a “progress”/ “non-progress” 

dichotomy, but also clearly communicates the uncertainty in the prediction. Communicating the 

inherent uncertainty in a prediction is important if the prediction is to benefit the decision-

making process [175], [176]. Logistic regression, naïve Bayes classifiers, and neural networks are 

examples of standard modelling algorithms which can give probabilistic predictions. 

Because of the small population in the local scoliosis clinic, the dataset used to train the model 

for this thesis would be small. This imposes certain constraints on the choice of modelling 

method. In particular the model must be kept simple, as a more powerful model is prone to 

overfitting a small dataset. This is intuitive but has also been demonstrated empirically by Chan 

et al. [179], who found that with small training set, a linear model outperformed a quadratic one 

on a classification problem involving two classes of unequal covariance (in such a problem the 

quadratic model is theoretically the optimal choice). Overfitting can be further mitigated by 
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minimizing the number of decisions made by the designer. Bouesteix and Schmid call this 

number of decisions the “degrees of freedom”, and note that “Increasing the degrees of freedom 

of the analyst might also increase the risk of conscious or subconscious overoptimism and 

‘fishing for significance’” [64]. Sometimes design decisions are explicit, such as choosing the 

number of neurons in a neural network or setting kernel parameters in a support vector 

machine. Other decisions are hidden inside algorithms, such as a wrapper feature selector which 

trains multiple models and chooses the one which performs “best” on the training data. The 

modelling module developed for this thesis employs logistic regression, which gives a simple 

and interpretable model. Refer to section 3.1.2 for a description of logistic regression. 

The model predicted treatment outcome in terms of Cobb angle progression after one year of 

brace treatment. However, Cobb angle measurements are known to have some inherent 

measurement error, so there is some uncertainty associated with these progression 

measurements. In keeping with the probabilistic philosophy of this modelling module, the raw 

progression measurements in degrees were converted to a probability that the Cobb angle had 

increased. This was done by assuming the Cobb angle measurement error is normally 

distributed with a 95% confidence interval of 5° (a standard deviation of roughly 1.25°) [20]. 

Since measuring progression involves “before” and “after” Cobb angle measurements, the error 

is compounded: the sum of two normally distributed random variables with variances σ2
a and 

σ2
b is a normally distributed random variable with variance σ2

a + σ2
b. Thus the progression 

measurement error has standard deviation σ = 1.77° or 95% confidence interval of roughly 7.1°. 

The probability of a measured progression corresponding to an actual Cobb angle increase can 

then be calculated and is shown in Figure 38. The logistic regression was performed on these 

probabilistic outcomes. 
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Figure 38: Probability of a Cobb angle increase given a measured Cobb angle progression, assuming 
measurement error in a single Cobb angle measurement is normally distributed with 95% confidence 

interval of 5°.  

4.3.3.2. Predictor Variables and Variable Selection 

Since the training dataset was expected to be small, the number of features included was small 

compared to the dataset described in section 3.1.1. To increase the modelling module’s ability to 

create a generalizable model, seven features were selected for inclusion as candidate predictor 

variables. These features were chosen based on existing knowledge and past experience 

including that described in section 3. Steyerberg et al. described the need to rely on existing 

knowledge when a dataset is too small to allow completely automated knowledge discovery: 

“Sensible modeling should find a balance between external knowledge from outside the 

data versus what can be learned from the data. The smaller the data set available, the 

more we have to rely on external information.”[180] 

The seven features were patient age, Cobb angle, Scoliometer measurement, in-brace correction, 

average force applied by the brace (as recorded by the compliance monitor), brace-wear 

compliance, and height velocity. Height velocity was used as a proxy for Risser sign – which is 

usually considered a good predictor but was not available for all patients at our center. Little et 

al. [50] suggest that height velocity provides a better indication than Risser sign of the period of 

maximum Cobb angle progression. Average force and brace-wear compliance were calculated 

using the 60 days of force sensor data closest to the start-of-treatment date. The 4th centile force 

reading was calculated in a 24-hour sliding window, and compliance was calculated as the 

percentage of readings greater than the 4th centile threshold. The average force was calculated 

after first normalizing the force readings to the 95th centile value. Sixty days were used because 

there are typically two months between the examination where the brace is prescribed and the 
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next follow-up visit. If the model can make predictions using only these first two months of data, 

it can be used to predict a patient’s risk of progression at their follow-up visit. 

A filter rather than a wrapper-based selection scheme was used to select a feature subset for use 

in the logistic regression. This helps mitigate the potential for overfitting. The modelling module 

implemented the Correlation-based Feature Selection (CFS) scheme proposed by Mark Hall 

[145]. Given a full set of features, this method tries to select a subset of features which have high 

correlation with the output, but low correlation with each other. This is accomplished by 

maximizing the correlation estimate: 

 𝒓𝒛𝒄 =
𝒌𝒓𝒛𝒊̅̅ ̅̅

√𝒌 + 𝒌(𝒌 − 𝟏)𝒓𝒊𝒊̅̅̅̅
 Equation 11 

where 𝒓𝒛𝒊̅̅ ̅̅  is the mean correlation between features in the subset and the output, 𝒓𝒊𝒊̅̅̅̅  is the mean 

correlation of the features with each other, and k is the number of features in the subset. 

The modelling module searched through feature subsets of size 1 and 2, choosing the subset 

giving the best value of 𝒓𝒛𝒄. This feature selection scheme is attractive for use on small datasets 

because it is completely automated – having few “degrees of freedom”. Being a filter method, it 

executes independently of the prediction model itself. Thus potential for overfitting is 

minimized. 

4.4. Software Platform 

The software platform integrates the hardware devices, database, visualization modules, and 

modelling modules into a complete system. It was written in the Microsoft C# programming 

language and has four main components used for device interface, database management, 

charting and visualization, and decision support. The following sections describe each of these 

components. 

4.4.1. Device Interface 

The device interface portion of the software can communicate with the monitoring device 

described in section 4.2. Communication is wireless via an IEEE 802.15.4 radio dongle 

(Adaptive Modules Inc. Hove, East Sussex). A screenshot of the device interface screen is shown 

in Figure 39. 
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Figure 39: Screenshot of the device interface screen in the software platform. 

The device interface allows the user to view and change the devices’ settings, download logged 

data, and perform a sensor calibration procedure for the monitoring device. It also allows 

calibration settings to be transferred from one device to another. This is a necessary feature 

because the data logger’s battery would not last through a complete two-to-three year brace 

treatment. Thus the logger must be replaced during the patient’s clinic visits (or the patient 

must be burdened with the task of recharging its battery). The force sensor is usually embedded 

in the brace’s pressure pad and cannot easily be removed with the logger, so it is left in place and 

the sensor-specific calibration settings are transferred from the old data logger to the new one. 

4.4.2. Database Management 

The database management portion of the software platform provides a front-end for the 

database and encompasses all tasks related to data storage. User interfaces allow the user to 

view as well as create patient records, and enter measurements collected during routine clinic 

visits. An illustration of one of these interfaces is shown in Figure 40. 
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Figure 40: Screenshot of the database management screen in the software platform. Patient names and 
information have been blocked in this image. 

The database management component receives downloaded data from the device interface, and 

stores it in the BraceWearTable of the database. It also retrieves data and provides it as needed 

to both the charting and visualization component and the decision support engine. 

4.4.3. Charting and Visualization 

The charting and visualization component displays plots and statistics as described by the 

individual visualization modules. The software allows the user to select from the list of available 

modules, and then automatically updates in response to the information encoded in the 

module’s XML. After parsing the XML, the interface displays the visualization’s description and 

provides fields for the user to enter any required input. When the visualization is run the SQL 

commands are parsed from the XML document and passed to the database management 

component, which returns the requested data. This data is then plotted according to the 

module’s specifications. A screenshot of the visualization screen is shown in Figure 41. This 

screenshot shows a particular patient’s brace wear (as a percentage of 24 hours) over time, 

averaged by week. This patients’ average brace wear generally fluctuates between 40% and 60% 

(9.6 - 14.4 hours per day). 
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Figure 41: Screenshot of the data visualization screen in the software platform. 

4.4.4. Decision Support Engine 

The decision support engine is the capstone of the system: Ultimately this thesis is about 

translating data into treatment recommendations, and the decision support engine is where this 

translation happens. The decision support engine handles two main tasks: training prediction 

models, and using the trained models to generate treatment recommendations. A screenshot of 

the interface used by the decision support engine is shown in Figure 42. This interface allows the 

user to train a prediction model of one of the available types, and use the trained model(s) to 

generate recommendations for specific patients. 

As part of the model training process (but a separate step from the actual training), the decision 

support engine retrieves data for all patients in the database and calculates features used in 

predictive modelling. The resulting dataset is exported as a separate file which is used during by 

modelling modules to train their prediction models.  

The software allows the user to select from a list of available modelling modules. When the user 

chooses to train a prediction model, the decision support engine parses the XML file of the 

corresponding modelling module and runs the executable used for model training. This 

executable reads the training data exported by the software and uses it to train the actual 

prediction model. The executable then saves the model and a new XML file containing 

information about the model and it’s cross validated performance which can be displayed to the 

user. This XML file also specifies which of the features in the dataset are actually used by the 



 
 

80 
 

model, and which ones are considered “controllable” (i.e. we have some control over them in 

practice and values for them can be recommended by the decision support engine) versus 

“uncontrollable” (i.e. features like patient age and Cobb angle, which may be valuable predictors 

but which we cannot control). 

 

Figure 42: Screenshot of the screen used for training models and generating recommendations. 

The decision support engine uses trained models to recommend optimal treatment parameters 

for specific patients from the database. The engine features two recommendation modes: “what-

if analysis”, and “solver”. The “what-if analysis” uses a model to predict treatment outcomes for 

every possible combination of its input features (given a user-specified resolution), creating a 

multi-dimensional lookup table outcome predictions for the range of possible cases. The results 

are displayed graphically; the user is allowed to manipulate values of the controllable features 

and observe the effect on predicted outcome. 

An example of this display is shown in Figure 43. In this example the prediction model used two 

controllable features as inputs: in-brace correction and brace-wear compliance. The “what-if” 

analysis screen allows the user to select one of these features to appear on the horizontal axis of 

a chart which plots predicted outcome as a function of this feature. The other feature appears as 

a slider beside the chart – the user can manipulate this feature’s value and observe the change in 

the predicted outcome curve. Figure 43 shows the predicted outcome (probability of 
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progression) as a function of the “Compliance” controllable variable, when the “InBrace 

Correction” controllable variable is set to 0.83 (83% curve correction). 

 

Figure 43: Screenshot of the “what-if” analysis screen. 

The second recommendation mode – “solver” – attempts to find a single optimal set of 

treatment parameters for a given patient. It does this using a prediction model in the style of 

Chi’s PODSS [126]. The prediction model essentially becomes an objective function, and an 

optimization algorithm searches for treatment parameter combinations which optimize the 

patient’s predicted outcome. 

The most efficient method of solving this optimization problem would depend on the type of 

model involved. In the case of logistic regression, a closed-form solution exists which defines all 

feature combinations which achieve a specified outcome prediction. However for many other 

types of models a closed-form solution would not exist, so the decision support engine uses a 

genetic algorithm as a general optimization technique which could be applied to any arbitrary 

modelling module. 
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A genetic algorithm (GA) is an optimization technique inspired by the concepts of natural 

selection and evolution. Given an optimization problem, a GA randomly generates a number 

(“population”) of candidate solutions called “genomes”. None of these solutions will be very 

good (they are random), but some will be better than others: A “fitness function” quantifies how 

good each genome is. The fittest are crossed and mutated in various ways to produce a second 

generation of genomes, and the fittest of the parents and offspring form the new population. The 

process iterates until (hopefully) a genome with sufficient fitness is created. Engelbrecht gives a 

comprehensive description of GA [150]. 

The decision support engine uses a custom GA written in C#. The GA maintains a population of 

individual sets of controllable feature values. In each iteration, it uses the modelling module to 

predict treatment outcome for each set. The fitness function simply measures the absolute 

difference between the prediction and a user-specified target. After five iterations the best 

controllable feature combination is presented to the user. 

The GA uses a population size of 1000 sets of feature values, which are initially randomly 

generated. It uses a roulette selection operation to select the fittest sets for crossover and 

mutation. Roulette selection gives each individual a probability of selection which is 

proportional to its fitness. Pairs of selected sets are crossed using scattered crossover, which 

randomly selects features whose values are swapped between the pair. Sets are mutated by 

adding a random quantity to a randomly selected feature value.  

4.5. System Scalability 

Hardware devices communicate with the software using a set of custom commands. Any new 

sensor or device which could be made to communicate over an IEEE 802.15.4 channel using this 

command set could be used with the interface, with minimal modification to the software 

platform’s source code. Thus the system has some limited potential for scalability in terms of 

adding new sensing devices. 

The system is designed for much greater scalability in terms of visualization and modelling 

tasks. Since the visualization modules are external to the software platform, new visualization 

and analysis tasks can be added without access to the software’s source code. Any data which 

can be retrieved using an SQL query can be displayed by the software platform. The relevant 

instructions need simply be encoded in a new XML document. 
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The practice of passing information between the software platform and the modelling module by 

reading and writing files was inspired by Tan et al. [181]. Tan et al. created a platform system for 

health analysis and simulation, and used a similar data-passing approach which they called 

“loose coupling”. The advantage of this approach is that it makes the development of modelling 

modules very flexible: the executables can be programmed in any language. For example they 

could make use of R, Python, or MATLAB libraries which support modelling, or use Weka’s Java 

application programming interfaces. This facilitates the addition of new modelling modules. The 

only requirements for developing new modules are that they include the required XML 

document and pass data to and from the software in the designated way. Any modelling module 

can be used by the software platform to generate recommendations. 
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5. System Validation and Testing 

This chapter describes testing and validation of the decision support system components 

described in chapter 4. Laboratory testing and tuning is performed on the passive monitoring 

device. It is then used on several AIS patients to assess the value of its combined force-and-

temperature-based compliance monitoring. The quality of the prediction model’s predictions is 

tested in cross-validation on data from thirty-one patients. The same data is used in a clinical 

trial simulation to estimate the efficacy of treatment recommendations made using the model. 

5.1. Compliance Monitor Testing†† 

5.1.1. In-lab Testing and Tuning 

The compliance monitor records both force and temperature data. The force data is perhaps 

most informative as a continuous variable, but the temperature change readings must be 

translated into a categorical variable: “brace worn” or “brace unworn”. This requires a threshold 

to be set on the temperature change data. A temperature change which exceeds the threshold 

indicates that the sensor is warming up due to the patient donning the brace. A negative change 

with magnitude greater than the threshold indicates a cooling down after the brace is taken off. 

Once these events are flagged, the brace-wear pattern of the patient can be reconstructed.  

The optimal thresholds were determined using a test apparatus and test data from five healthy 

volunteers. The test apparatus (shown in Figure 44) was a section of plastic brace material 

padded like an actual brace. The compliance monitor was installed in a recessed section of the 

plastic, exactly as it would be in a real brace. A belt secured the apparatus to the wearer’s body, 

such that the apparatus simulated actual brace wear. Each volunteer donned and removed the 

apparatus two or three times during a four hour period, keeping a log of when the apparatus was 

worn. The experiment was carried out in an environment of approximately 21°C. The 

temperature threshold was then tuned to achieve the best possible match between the logs and 

the temperature-based estimates of brace wear. 

                                                        
 

††
 Some material for this section has been published in the paper: E Chalmers, E Lou E, D Hill, V Zhao, “An 

Advanced Compliance Monitor for Patients Undergoing Brace Treatment for Idiopathic Scoliosis”, Medical 
Engineering & Physics (in press) 
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Figure 44: Test apparatus used to test the compliance monitor on healthy volunteers. The apparatus 
simulates the force sensor’s placement in an actual brace. 

The chosen threshold allowed the volunteer’s brace-wear to be calculated with an average error 

of 1%: comparable to the 0.1 - 3% range of errors for temperature-based compliance monitors in 

literature [4], [89], [105], [182]. A cross validation was used to estimate roughly the expected 

error when the compliance monitor is applied to new patients. The cross validation was 

conducted in 5 steps: in the ith step of 5, temperature thresholds were selected using all data 

except the ith volunteer’s data, and then these thresholds were tested on the ith volunteer’s data. 

The average of the resulting 5 errors was 4.8%. This cross validation procedure gives a 

somewhat more realistic accuracy estimate, compared to the practice of setting and testing 

thresholds on the same data. 

When using temperature to monitor compliance, there is some risk that the brace will simply be 

placed – unworn – in a warm place. The rise in temperature would cause the temperature-based 

compliance monitor to erroneously begin recording compliance. To avoid this situation the 

temperature-based compliance state was reset to “unworn” after 24 hours of consecutive “worn” 

readings. 
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The force readings can also be converted into the categorical variable: “brace worn” or “brace 

unworn”. The brace was considered to be worn when the force reading exceeded the fourth 

centile force reading. The fourth centile was used because the maximum prescribed brace wear 

time is usually 23 hours per day, meaning the brace is expected to be off at least 4% of the time. 

The fourth centile seemed more appropriate than the minimum, which could sometimes 

represent a random spurious sensor reading. The average error of the force-based estimate on 

the healthy volunteers was 1%. 

5.1.2. Patient Testing 

Temperature sensing is the de facto standard method of sensing patient’s compliance with 

brace-wear. To assess the value of the new monitor’s combined temperature/force approach, 

seven AIS patients wore the monitor in a pilot study. The temperature-based and force-based 

compliance estimates were compared. 

The monitors were installed in the braces of all consenting AIS patients who received a thoraco-

lumbo-sacral orthosis (TLSO) brace beginning August 2013. Each of these patients had been 

prescribed the TLSO (a full-time brace prescribed to be worn up to 23 hours per day) by the 

orthopaedic surgeon attending the local scoliosis clinic. The patients included 6 girls and 1 boy, 

with mean age 13.7 ± 1.7 years, and mean major Cobb angle 35 ± 6°. Five patients had right 

thoracic curves, one was left thoracic, and one was left lumbar. Ethics approval was granted by 

the local ethics board. 

Force sensors were installed by the orthotist at the major correction pad area (Figure 45). A 

section of the main pressure pad in each brace was cut away to accommodate the force sensor, 

and the sensor was covered with an adhesive covering. The main pressure pad placement is an 

important aspect of brace design, and so the main pad was considered the optimal location for a 

single force sensor. The monitors were installed during the patients’ clinic visits or brace fittings, 

and retrieved at the following visit – producing an average of 93 days of data per patient (range 

41-218 days). Force sensors were confirmed to be working properly when the patients returned 

to the clinic.  

Temperature-based and force-based brace wear-time estimates were calculated for each day and 

as an overall average. A Wilcoxon test checked for significant differences between daily force-

based and temperature-based estimates for each patient. The fourth centile threshold force used 

in the force-based estimate was calculated for each twenty-four hour period separately; this 
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accounts for changes in the baseline force over time, due to gradual shifting of the sensor or 

wearing of the brace padding.  

 

Figure 45: Installing the monitor in a brace. 

The average force reading while the brace was worn (per the force-based estimate) was 

calculated. Force-based compliance by time of day was also measured for each patient and 

normalized to their overall compliance, to show the distribution of brace wear by time of day. 

5.1.3. Patient Test Results 

Figure 46 shows the compliance estimates for each patient. Three patients (patients 3, 5, and 6) 

showed close agreement between temperature and force-based compliance estimates. However, 

the other six patients showed statistically significant (p<0.01) differences between the two 

estimates. In three of these six cases the force sensor estimated significantly lower compliance 

than the temperature sensor.  

The average forces measured during brace wear are shown in Figure 47. These values show the 

force measured during periods when the force sensor deemed the brace to be worn. The values 

seem reasonable given force measurements taken by Lou et al. [102] in a clinic setting (where 

the patient’s brace-wear is at its best). There is a loose correlation (Pearson r=0.65, p=0.06) 

between these values and the force-based compliance estimates in Figure 46, indicating that 
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patients who wore their braces tightly generally tended to receive higher force-based compliance 

estimates. 

 

Figure 46: Median daily force-based and temperature-based compliance estimates for each patient. Error 
bars show 16th and 84th centiles. Only patients 3, 5, and 6 show good agreement between force and 

temperature-based estimates. 

 

Figure 47: Median forces during brace-wear measured for each patient. Error bars show 16th and 84th 
centiles. 
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It should be noted that the force sensors were calibrated before being installed in the braces. The 

installation involved covering the sensor with foam padding of varying thickness, so the sensor 

readings may not actually be accurate measurements of force. Fortunately, their value as 

measurements of force is not relevant within the scope of this thesis; ultimately, they need only 

be useful for predicting treatment outcome. 

Figure 48 shows each patient’s measured probability distribution of brace wear by time of day; 

patient 7 was excluded from this figure because their monitor recorded no force. This chart 

shows the portion of each patient’s daily brace wear occurring during intervals centered at 

00:00, 06:00, 12:00, and 18:00; thus it shows patients’ brace-wear patterns vis-à-vis the time of 

day. For example, consider the line representing patient 6: roughly 55% of the brace-wear 

recorded during the test occurred at 18:00, 40% occurred at 12:00, and almost none occurred 

between 00:00 – 06:00. Thus this patient tends to wear their brace in the afternoon and early 

evening, and generally sleeps without it. In contrast, patient 5 wears the brace most frequently 

at night, and infrequently during the mid-day. This figure seems to agree with previous studies, 

which have found patients to be generally more compliant at night than during the day [104], 

[106]. 

 

Figure 48: Distribution of each patient’s force-based brace-wear estimate by time of day. 
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The test results suggest that temperature-based compliance estimates can differ significantly 

from force-based estimates. Previous work has shown that patients wear their braces at only 

39%-78% of the prescribed tightness [102], suggesting that temperature-based compliance 

estimates should be higher than force-based estimates (a loose brace would not activate the 

force sensor but should still activate the temperature sensor). For example, patients 1 and 2 

probably don their braces loosely – resulting in intermittent force readings (as illustrated in 

Figure 47). 

However, Figure 46 shows force-based estimates being higher than temperature-based 

estimates just as often as not. There is no definitive explanation for this anomaly, but these 

patients’ force readings seem more realistic than their temperature readings: the force readings 

show reasonable periods where the brace was unworn, usually just before and after school time 

or in the evenings. The rest of the time there is significant force with mild fluctuations, just as 

we expect from in-brace force readings. The temperature readings, on the other hand, often 

switch inexplicably between ‘worn’ and ‘unworn’ states, with no corresponding activity in the 

force readings. These unexpected events usually occurred at regular times in the morning or 

evening, presumably during patients’ morning or nighttime routines. If these patients wore 

insulating shirts under their braces, or if the sensor was installed such that it did not have good 

thermal contact with the body, the temperature readings would have been biased by ambient air. 

The compliance monitor’s temperature sensing function worked well in a laboratory setting, but 

it appears that in practical application its reliability may not be perfect. The discrepancies 

between force-based and temperature-based compliance monitoring could have implications for 

practitioners who use temperature-based monitors. In future testing patients should be asked to 

keep a brace-wear diary for comparison to the sensor estimates. Though ultimately the true 

accuracy of the diary would be unknown, it may shed some light on which sensor’s brace-wear 

estimate is more accurate. Note though, that a brace-wear estimate need not necessarily be an 

accurate measure of wear time to be useful for prediction. 

Even when each sensing modality functions properly, there are limitations to temperature-only 

and force-only compliance monitoring. Temperature-based monitoring could give a good 

indication of when the brace is worn, but not how well it is worn. Temperature sensing also 

becomes ineffective if ambient temperature is similar to skin temperature or if the sensor has a 

poor thermal connection to the patient. Conversely, force-based monitoring can indicate how 

well the brace is worn, but gives a poor estimate of how often. The more complete information 

provided by a force-and-temperature combination could enable some clinically relevant 
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distinctions. For example, Figure 46 shows poor force-based and temperature-based compliance 

estimates for patient 7: this patient simply does not wear their brace as prescribed (and openly 

admitted this during their clinic visit). Patients 1 and 2 wore their braces relatively often 

(according to the temperature-based estimate), but force readings suggest it was worn loosely. 

Patient 3 has similar temperature and force-based compliance estimates: when they wore their 

brace it was likely worn at the appropriate tightness. A health-care provider will give these 

patients different recommendations in response to this brace wear information. 

5.2. Validation of Prediction Model and Decision Support Engine 

5.2.1. Patient Data 

Data from thirty-one AIS patients who had compliance monitors installed in their newly 

prescribed braces was stored and processed using the software platform. Fourteen night braces 

and seventeen full-time braces were included in this sample. These patients had been recruited 

to wear the compliance monitors, starting in 2008. An additional five patients had monitors 

installed in their braces but dropped out of the study thereafter. One of the patients was 

excluded from the dataset because of erroneous force readings recorded by their monitor. 

Distributions of the seven variables listed in section 4.3.3.2, and the outcome (Cobb angle 

progression per year), are shown in Table 7. 

Variable Distribution 

Age 12.7 ± 1.8 years 
Major Cobb Angle 29 ± 7° 
Height Velocity 2.0 ± 1.3 cm/year 
Scoliometer Measurement 10 ± 3° 
In-brace Correction of 
Cobb Angle 

Full-time brace: 38 ± 20% 
Night-time brace: 100 ± 34% 

Average Force* 0.27 ± 0.2 
Brace-wear compliance Full-time brace: 9.2 ± 6 hrs/day 

Night-time brace: 6.6 ± 2.7 hrs/day 
Cobb Angle Progression 
per Year 

1 ± 7° 

 
* After normalizing all force readings to the 95th centile value. 

Table 7: Description of the patient data used for model and decision support validation. 

Few patients had a clinic visit that fell exactly one year after beginning brace treatment. As a 

result, Cobb angle progression was measured over durations ranging from 8 to 16 months. All 
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measured progressions were converted to “per year” quantities for consistency. Not all the 

patients in this group had been given the compliance monitor described in section 4.2; many 

had used a previous device which did not include a temperature sensor. Thus all brace-wear 

estimates in this dataset are force-based as described in section 4.3.3.2. 

Height velocity could not be calculated for 10 of the patients because the necessary height 

measurements were not available. The missing height velocity entries were imputed using the 

mean of the available height velocity instances. Scoliometer measurements did not exist for 5 of 

the patients. The missing scoliometer measurements were imputed using a linear regression 

model. This model was created by querying the local clinic’s database for age, height, weight, 

and Cobb angle measurements from all examinations of idiopathic scoliosis patients aged 9-16. 

This returned 1367 examination records from 648 patients. A wrapper feature selection process 

selected Cobb angle as the single best predictor of Scoliometer measurement out of the four 

possibilities: a linear regression model using Cobb angle predicted Scoliometer measurement 

with a mean absolute error of 2.9° in 10-fold cross-validation (the default prediction method of 

assigning all cases the mean Scoliometer value gave a mean absolute error of 3.9°). The 

requirements for age, height, and weight were then removed from the database query, resulting 

in 1892 examination records from 783 patients. The linear regression model was build using this 

data, with the final model being: Scoliometer = 0.2166 * Cobb Angle + 3.5165. 

The pooling of both night and full-time braces in the data may seem unusual to those more 

familiar with traditional hypothesis-based research. When the research goal involves a 

conventional hypothesis test or comparison, it is often advisable to subdivide the data into 

homogeneous subgroups for analysis. But when the goal is simply to achieve good predictions, it 

is appropriate – even preferable – to use more heterogeneous training data. Not only will the 

resulting model be generally applicable (rather than being applicable to only one brace type), 

but the model may actually be made stronger when heterogeneous training data are used. Justin 

Washtell explains this concept in the context of advertising: 

“The central premise of predictive modeling is precisely that one size does not fit all - 

otherwise we would just assign the same outcome to all cases and be done with it. The 

intention is that to whatever extent customer group A is different to customer group B, 

our algorithms should recognize this [and] the resultant model should treat the two 

groups differently. At the same time, to whatever extent customer group A is similar to 

customer group B, we would still like our algorithms to identify those similarities and 

discover general rules. Our joint model - having benefited from the entire data - will be 

much stronger overall.” [183] 
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5.2.2. Cross-validation of Prediction Model 

The correlation-based feature selection was applied as a pre-filter to the dataset described in 

section 5.2.1. The results of the correlation based feature selection are shown in Figure 49. The 

compliance feature produced a higher value of rzc (as per Equation 1Equation 11; see page 76) 

than any other single feature or pair of features. However, combinations of average force, 

compliance, and in-brace correction all performed similarly. 

 

Figure 49: Results of correlation-based feature selection algorithm for each feature and pair of features. 
The compliance feature produced the highest score (by a small margin). 

The logistic regression model was tested in a leave-one-out cross-validation on the filtered data. 

For comparison, “default” predictions were also generated by predicting each test patient to 

have the same probability of progression observed in the training patients. That is, given the set 

of training data S = {[X1,Y1], [X2,Y2]… [Xn,Yn]}, where each patient instance Xi ϵ ℝd has a 

corresponding outcome Yi ϵ [0,1], the default method ignores the features Xi and generates a 

predicted probability of progression Ŷ by simply averaging the probabilistic outcomes Yi: 
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 Ŷ =
1

𝑛
 ∑ Y𝑖

𝑛

𝑖

 Equation 12 

The Brier Score and median prediction error were calculated for both the logistic regression and 

the default method. Brier Score is the mean square error between a model’s probability 

prediction and the corresponding true outcome. The Brier Scores were 0.16 and 0.18 for the 

logistic regression and default predictions respectively. The median errors were 0.35 and 0.50 

for the logistic regression and default predictions respectively. This performance improvement 

over the default method shows that the logistic regression is utilizing information contained in 

the patient data. 

The distribution of errors for each method is shown in histograms in Figure 50. The distribution 

for the logistic regression is subjectively more desirable, having more bulk in the lower half of 

the error range. However the difference between the two sets of predictions is not statistically 

significant on the small validation dataset (p=0.40 by the Wilcoxon test).  

 

Figure 50: Overlaid histograms showing the distribution of errors obtained using the logistic regression 
(blue) model, and the default method (red). (Areas of overlap appear purple). 

While the logistic regression model demonstrated an improvement over the default method 

there are two main factors which limit the predictive power achievable at this stage. The first is 
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the small training data set; as the database grows, it will come to support more meaningful and 

powerful models. The second factor is the outcome being taken after one year rather than after 

the entire treatment; “progression” may be a stochastic process which is easier to predict in the 

long term than the short term. This logistic regression model may not yet be suitable for clinical 

use – unless an experiment like that described in section 3.2 were to demonstrate clinical value. 

However the model is valuable as a demonstration of how the software platform may be used to 

generate predictive models. Recommendations based on this model may also have value as 

described in the following section. 

Figure 51 shows a calibration plot for the model’s cross-validated predictions. “Calibration” 

describes how correct a probabilistic prediction is, vis-à-vis the corresponding actual outcomes 

for instances which received the prediction. For example, suppose ten patients are each 

predicted to have an 80% chance of progression. If eight of them actually progress, the 

predictions were well-calibrated. The calibration plot in Figure 51 was calculated by first 

applying Gaussian smoothing (using a normal distribution with σ = 0.05) to the set of 

predictions to compensate for the small dataset. At each point, the vertical deviation between 

the calibration curve and the ideal diagonal line was scaled by the relative weight of predictions 

at that point; this compensates for large deviations which are the result of an under-represented 

prediction. 
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Figure 51: Calibration plot for the logistic regression model’s cross-validated predictions. 

The logistic regression model’s output is plotted in Figure 52, along with dots representing each 

patient. With brace-wear expressed as a fraction of 24 hours, the logistic regression coefficient 

for brace-wear compliance was -3.25, with a constant term of 1.07. The probability of 

progression can be calculated using these coefficients and the brace wear as per Equation 1. 
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Figure 52: Logistic-regression model predictions as a function of brace-wear time. Each dot represents 
one of the patients in the training dataset. 

5.2.3. Validation of Decision Support Engine 

The primary purpose of the prediction model(s) is to be used by the decision support engine to 

generate treatment recommendations, as described in section 4.4.4. The logistic regression 

model described in sections 4.3.3 and 5.2.2 was used to generate recommended brace wear-

times. These recommendations were calculated by solving Equation 1 (on page 34) for brace-

wear time given a specified target probability of progression: 

 𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑏𝑟𝑎𝑐𝑒 𝑤𝑒𝑎𝑟 =
− ln (

1
𝑝 − 1) − 𝛽0

𝛽1
 

Equation 13 

where p is the target probability of progression, β0 is the logistic regression constant term, and 

β1 is the logistic regression coefficient for brace wear. The recommended wear-times produced 

by Equation 13 were capped at 8 hours/day for night braces and 23 hours/day for full-time 

braces. The target probability of progression was set to 10% lower than the overall probability 
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observed in the data. The average probability of progression in the data described in section 

5.2.1 was 0.50, so the target probability was set to 0.40. 

The effect of the recommended brace wear was estimated in a clinical trial simulation. The CTS 

randomly divided available patient data into two equally-sized groups: A and B. Separate 

prediction models were trained using the data from each group. Model A was then used to 

calculate recommended wear-times for the patients in group B, as per Equation 13. Model B 

then predicted the new treatment outcomes for the group B patients given Model A’s 

recommendations. Refer to Figure 26 (page 58) for an illustration of the general CTS procedure. 

This CTS procedure was repeated 1000 times, with the group A / group B assignments re-

randomized each time. The 1000 repetitions allowed various distributions to be estimated. 

Figure 53 shows a histogram of the wear-time recommendations produced during all runs of the 

CTS. The average recommendation was 12.6 hours/day, though the recommendations were 

limited to 8 hours/day for patients who had night braces. Figure 54 shows the distribution of the 

difference between the wear-time recommendation and the actual measured wear-time. In 34% 

of cases the recommendation was less than or equal to the actual wear-time. 

The CTS-estimated effect of the recommendations is illustrated in Figure 55 and Figure 56. 

Figure 55 shows the distribution of individual patients’ change in progression rate during all 

runs of the CTS. Approximately 67% of patients experienced a decrease in risk of progression. 

The mean change in probability of progression was -0.13. Figure 56 shows the distribution of 

overall group B risk of progression. The mean group probability of progression was 0.37; slightly 

better than the 0.40 target used in the simulations. Of the 1000 CTS runs, 3.6% showed a group 

probability of progression greater than the measured average of 0.50. Thus the improvement in 

group probability of progression could be considered statistically significant. 
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Figure 53: Histogram showing the distribution of brace wear-time recommendations produced during the 
clinical trial simulations. 

 

 

Figure 54: Empirically measured probability distribution and cumulative distribution of the difference 
between recommended wear-times and patients’ actual measured wear times. 
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Figure 55: Empirically measured probability distribution and cumulative distribution of the estimated 
change in probability of progression across all individual group B patients in all runs. 

 

Figure 56: Empirically measured probability distribution and cumulative distribution of overall group B 
risk of progression across all runs of the clinical trial simulation. 
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 The recommended wear times produced a significant reduction in overall progression 

rate, but 

 Predicted risk of progression for individual patients increased significantly in some 

cases. 

The (average) 12.6 hours/day of brace wear meant an increase for many of the patients in the 

simulation; and this caused the reduction in overall progression rates – a success vis-à-vis the 

goals and design of the simulation. However, some patients had in practice worn their braces 

much more than this, and the reduction to 12.6 hours produced a corresponding increase in 

their individual probability of progression. If there is a message of clinical significance, it may be 

that encouraging non-compliant patients to wear a full-time brace for the prescribed 18-23 

hours/day (a daunting prospect for some adolescents) may be unnecessary. It may be enough to 

help these patients work toward 12-13 hours/day. 

As the software platform is used to accumulate more patient data, more sophisticated prediction 

models will be possible. Having more accurate and more individualized predictions would give a 

narrower distribution of possible group progression rates (as compared to Figure 56) and a 

lower incidence of increased individual risk of progression (as compared to Figure 55). 

  



 
 

102 
 

6. Conclusions and Recommendations 

A brief recap of the work is provided, and the major contributions of this thesis are listed. 

Limitations of the work in this thesis are discussed, and some suggestions for future research 

in this area are put forward. 

6.1.      Summary of Work 

After a literature review, this thesis explored the idea of data-driven decision support for brace 

treatment of AIS; specifically the idea that a prediction model could be used to generate 

optimum in-brace correction targets for each patient. Two prediction models were developed 

using a retrospective dataset of 90 patients – both predicted whether or not a braced patient’s 

Cobb angle would progress by the end of treatment. The first model was a logistic regression 

model which made predictions on the basis of patients’ Scoliometer measurement and in-brace 

correction. The second model was a fuzzy model based on conditional fuzzy clustering, which 

made predictions on the basis of patient’s Scoliometer measurement, in-brace correction, Cobb 

angle, and age. Both models were cross-validated on the training portion of the dataset and 

further validated on the test portion to ensure generalizability. 

The fuzzy model’s predictive power was found to be superior to that of the logistic regression. It 

was subjected to additional testing by comparison with human AIS experts. In this test the 

model predicted more accurately than seven out of eight experts. This comparison provided 

some evidence that the model had the ability to enhance the experts’ natural predictive ability. 

A method of using the model to generate patient-specific in-brace correction recommendations 

was described: the model was used to predict treatment outcome for a range of possible 

corrections, and the correction giving the most desirable outcome was selected. Larger 

corrections were not always more desirable, and in one third of cases the recommended 

correction was lower than what had actually been applied clinically. A clinical trial simulation 

(CTS) was used to estimate the effect of applying the recommended in-brace corrections. The 

CTS estimated that the recommendations (if achievable) would lower overall progression rates. 

Ultimately a real clinical trial would be necessary to prove that recommendations generated in 

this way could change outcomes. However the CTS is an inexpensive way to estimate what the 

outcome of the real clinical trial would be, and thus provide some justification for moving 

forward. 
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The thesis then described a complete decision support system. The system was designed 

following the general approach used in chapter 3: patient data is collected and used to train 

prediction models, which are used to generate treatment recommendations. However several 

methodological improvements were made to the approach in chapter 3. The decision support 

system includes a means of collecting brace-wear information for use in prediction and 

recommendation, where the approach in chapter 3 relied purely on measurements taken in the 

clinic. The system treats the prediction task as a probabilistic rather than a classification 

problem, and the system includes an algorithmic method of selecting treatment 

recommendations rather than the manual method used in chapter 3. 

The system includes an electronic monitoring device which can be embedded in a patient’s brace 

during long-term treatment. The device monitors patients’ brace-wear by measuring 

temperature and force applied at the main brace pressure pad. A software platform stores 

patient data and allows it to be visualized or modelled using an expandable set of visualization 

and modelling modules. This thesis includes the development of several visualization modules 

and one modelling module, which trains a simple logistic regression model to predict 

progression after one year. The platform also includes a decision support engine which can 

facilitate “what-if” analysis or search for a given patients’ optimal treatment parameters using a 

genetic algorithm. The complete system facilitates collection and storage of brace-wear data and 

other clinical data, visualization of the data, training of prediction models, and generation of 

treatment recommendations using the models.  

In testing, the monitoring device achieved less than 5% error in laboratory testing, and was used 

in seven patients’ braces where it provided more complete information than conventional 

temperature-based monitors. Compliance monitor and other clinical data for thirty-one patients 

was processed and stored by the software platform. Brace wear-time was selected by a feature 

selection algorithm as the single most valuable feature in this dataset, and was used to train a 

logistic regression model to predict one-year progression based on brace-wear time. This model 

achieved a Brier score of 0.16 in cross-validation, and presented an improvement in predictive 

power over a default prediction method. The model’s probabilistic predictions also appear to be 

fairly well calibrated. 

The prediction model was used to calculate recommended brace wear-times. These 

recommendations were calculated to reduce the patient group’s overall probability of 

progression by ten percent. A clinical trial simulation estimated these recommendations to 
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provide a statistically significant reduction in overall probability of progression; the mean value 

of this reduction was 13%. The average brace-wear recommendation in the clinical trial 

simulation was 12.6 hours per day. 

6.2. Summary of Contributions 

The main contributions of this thesis are:  

 An exploration of the concept of CDSS for use in brace treatment planning. Current 

practice relies to a large extent on established guidelines and algorithms. While these 

guidelines are often based on some simple statistical analysis of patient data, the 

computerized use of locally collected data to support decision making represents a 

paradigm shift. This thesis provides a thorough description of a system that leverages 

patient data to provide a source of information and recommendations during treatment 

planning. In contrast to established guidelines, these recommendations would be based 

on locally-collected data describing the types of patients and treatments seen at that 

clinic itself. 

 A preliminary demonstration of the concept of electronic decision support for brace 

treatment planning. A CTS in Chapter 3 estimated that computer-recommended in-brace 

corrections, if achievable, could reduce progression rates. A similar CTS in chapter 5 

estimated that computer-recommended wear-times, if adhered to, could reduce a patient 

groups’ overall probability of progression to a desired level. 

 A template for predictive modelling and data-driven decision support in this domain. 

This thesis employed appropriate predictive modelling techniques: models were tested in 

cross-validation and further validated on separate data where possible. Models were 

evaluated on the basis of their predictive power, rather than their statistical goodness-of-

fit. The amount of data available was considered when choosing techniques and “degrees 

of freedom”. Clinical trial simulations estimated the distribution of possible outcomes, 

should the models be used in practice. 

Additional contributions include:  

 The fuzzy model described in section 3.1.3, which provides valuable predictions of 

treatment outcome based on pre-treatment clinical measurements. The modelling 

technique is novel, and seems to have good aptitude for this prediction task. 
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 Description and validation of a compliance monitoring device described in section 4.2, 

which combines both force and temperature-based monitoring to provide more complete 

information than other existing temperature-only compliance monitors. The force data 

collected by this monitor has been used in this thesis to create a prediction model for 

brace treatment outcome. 

6.3. Limitations and Recommendations for Future Work 

6.3.1. Patient Data 

The given timeframe allowed a limited amount of data to be collected for use in chapter 5’s 

validation of the decision support system. As a result the predictive model developed as 

described in section 4.3.3 was kept simple to avoid over-fitting the data. Its testing as described 

in section 5.2 was limited to cross-validation, with additional testing on new data reserved for a 

future time. As the platform developed and described in this thesis is used, more and more 

patient data will accumulate in the database. Additional model testing, development of new and 

more sophisticated models, and more precise CTS results will be possible given enough data. 

It is difficult to say how much data is “enough”. In fact there may be no way of knowing a priori 

how many observations a dataset should contain in order to support a given predictive 

modelling task. Some crude rules of thumb have been proposed in terms of events-per-variable 

– the ratio of observations in the dataset to predictor variables considered by the machine 

learning algorithm. A simulation study by Peduzzi et al. [184] suggested that logistic regression 

analysis requires 10 events-per-variable. A later study by Vittinghoff and McCulloch [185] 

suggested this rule of thumb is too conservative, and could be relaxed. A similar study by 

Sahiner et al. [186] suggested 5 events-per-variable as an appropriate minimum. However, all 

these studies have considered only linear or generalized linear models. Moreover, events-per-

variable rules of thumb are rough guidelines at best, and are routinely violated in fields like gene 

microarray analysis [187] and econometrics [188], where the events-per-variable ratio can be 

much less than one. Conversely, some prediction goals may require many more than 10 events-

per-variable. 

Rather than try to estimate how much data will be required for a prediction task, it may be 

better to focus on the prediction performance. Raudys and Jain [189] point out that a 

measurement of a model’s prediction performance is a random variable, as it depends on the 
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particular training and test samples used for evaluation. Cross-validation as used in this thesis 

can be a useful tool to estimate the distribution of possible prediction performance [190]. As the 

amount of available data increases, this measured distribution should approach its “true” form. 

For example, consider the group probability of progression shown in Figure 56. This 

distribution is already acceptable given the goals of the CTS, but additional data could cause the 

confidence interval of this distribution to shrink further. If additional data no longer affects the 

distribution, then it is likely that the existing data already gives a sufficient representation of the 

patient population. 

To speed the collection of patient data, a clinic should consider implementing compliance 

monitoring as a standard procedure. This would drastically increase the amount of available 

compliance monitor data. Data-sharing agreements could be also established between multiple 

clinics, as has been done in other fields [191]. However such agreements could potentially 

detract from the clinic-specific nature of the system’s recommendations. As a minor note, data 

collection could also be facilitated by modifying the software platform to automatically pull 

patients’ clinical data from the clinic’s database, rather than requiring this data to be manually 

entered. In the future the concept of a stand-alone platform could be discarded altogether; it 

may be possible to directly integrate the decision support system with existing software used by 

the clinic. 

Section 5.2.1 noted that several patients who received compliance monitors dropped out of the 

study soon after. While this could potentially create bias in a conventional analysis, it may not 

be a concern for the work in this thesis. The prediction model predicts probability of progression 

given a patient’s brace-wear (measured by the monitoring device). If there is a “type” of patient 

who is likely to refuse a monitoring device, the model will not apply to them and they should be 

removed from the dataset. However, caution should then be exercised in applying the model-

based recommendations to this type of patient. 

There are several limitations to the data used for modelling. For example, only a snapshot (60 

days) of brace-wear data was used in calculating the average force and brace-wear variables 

shown in Table 7. Thus it is assumed that brace-wear habits are relatively consistent throughout 

treatment (or at least that these 60 days can be used to predict outcome). Orthotists have 

suggested in private conversation that this assumption is reasonable. Moreover, assumptions 

such as this are often unavoidable; if the predictions required brace wear measurements taken 

throughout treatment, the prediction model would be inapplicable to current patients in 
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practice (i.e. it would not be able to deliver a prediction until the end of treatment – when the 

prediction was no longer needed). Another such assumption is that the single in-brace 

correction measurement used to quantify the brace’s effectiveness is a good indication of the 

correction experienced during daily brace-wear. In practice, the in-brace radiograph may tell us 

more about what correction is possible than what correction is typical. Still, future work could 

develop a prediction model which uses brace-wear measurements taken throughout treatment, 

and is used purely for creating recommendations. 

Another limitation of the compliance monitor data is the fact that it represents force at a single 

location in the brace. Each monitor was installed by the orthotist at the brace’s main pressure 

pad – the location deemed by the orthotist to be of primary interest in terms of applied force. 

Thus, force readings are comparable between patients in the sense that they all represent 

primary pressure pad forces. However braces involve several applied forces acting in concert, so 

a single force sensor will never completely describe the effect of the brace. Future work should 

strive to incorporate multiple sensors in a non-obtrusive way. This would allow better 

measurement of the force distribution inside the brace (though it likely would not affect the 

force-based compliance estimates). 

The discrepancy between force and temperature-based brace wear estimates should be 

investigated. The force-based estimates are most likely the more useful of the two; they seemed 

more realistic during patient testing, and were a stronger predictor of progression than the other 

variables listed in Table 7. Still, a comparison with patients’ brace-wear diaries or with another 

temperature-based monitor could be beneficial. 

Future work should make use of new clinical measurements as they become available. For 

example, this thesis has considered Cobb angle measurements taken using conventional 2-D 

radiographs. 3-D radiography is becoming more commonplace and may provide measurements 

with better predictive value. Work by Courvoisier et al. [77], [192] has demonstrated that the 

EOS 3-D radiography system (EOS Imaging) can be used to assess the efficacy of a brace – 

measuring correction of rotational deformity in addition to Cobb angle. Courvoisier et al. [193] 

and Nault et al. [168], [169] have used EOS to show that measures of transverse-plane deformity 

correlate strongly with progression. Other examples of potentially useful predictors which may 



 
 

108 
 

be more readily available in the future include measurements of spinal stiffness, or the 3-D 

orientation of the force applied by the brace’s pressure pad. 

6.3.2.  Prediction Model‡‡ 

Castillo and Kellemen point out a risk that users may come to distrust a CDSS if it frequently 

provides erroneous information [139]. As more data becomes available it will be important to 

conduct additional testing of prediction models to ensure their prediction performance in 

acceptable. If possible, it would be beneficial to test the model(s) by comparison with experts as 

described in section 3.2. Such testing can be a good demonstration of a prediction model’s value 

(or a revelation that the lack thereof); this is important when the model is a component of a non-

knowledge based decision support system, which derives its knowledge from data. Knowledge-

based decision support systems have less need of such validation, as they simply recite the 

codified knowledge the experts have programmed them with.  

The patient data described in section 5.2.1 included force-based brace wear information only. 

Temperature information was discarded as it was not available for all patients. As discussed in 

section 5.1.3, the combination of force and temperature data provides a more complete picture 

of brace wear than either force or temperature-based monitoring alone. Future work could 

include both kinds of measurements in the set of potential predictor variables. Alternatively, 

future work could seek to combine the two measurements into a single indicator in a meaningful 

way. 

The accumulation of patient data over time will allow experimentation with a variety of 

modelling techniques. The simple logistic regression model described in this thesis is designed 

to provide a probabilistic prediction of progression, which is useful in understanding any 

patient’s risk of progression and in producing treatment recommendations. Most standard 

modelling techniques will result in similar probabilistic predictions or classifications, which help 

us understand who is likely to progress. In the context of brace treatment, it may also be useful 

to know who is almost certain to progress or not progress. Patients who have an extremely low 

(or extremely high) likelihood of progression may not be good candidates for brace treatment at 

all. 

                                                        
 

‡‡
 Some material in this section has been published in the paper: Chalmers E, Mizianty M, Parent E, Yuan Y, Lou E, 

“Toward maximum-predictive-value classification”, Pattern Recognition, 47(12): 3949-3958, 2014 
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Identifying cases where the outcome is almost certain is a difficult task: in statistical terms the 

predictor must have nearly 100% positive predictive value (PPV) with respect to the outcome of 

interest. One could try to generate such predictions using a standard probabilistic prediction 

technique, and identifying cases where the predicted probability is extreme. For example, a 

logistic regression model could be trained to predict progression. Patients who are predicted by 

the model to have a very high probability of progression could be flagged as being almost certain 

to progress. However such an approach would not give optimal high-predictive-value 

predictions. The reason for this is illustrated in Figure 57 using data from the “ecoli” dataset 

[194]. The logistic regression creates a decision boundary by considering the entire dataset: the 

natural decision boundary created by setting a threshold of 0.5 on the model output can be 

shifted by increasing this threshold. The shifted boundary would produce predictions with 

higher PPV, but may unnecessarily decrease the true-positive rate (TPR). The optimal decision 

boundary may require a completely different decision boundary. 

 

Figure 57: A sample two-class classification problem taken from the “ecoli” dataset. A standard logistic 
regression produces decision boundary A. Increasing the decision threshold on class probability can 
maximize PPV by shifting the boundary to B, but can never produce optimal linear boundary C (the 

boundary with maximum TPR at 100% PPV). 
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Some work on maximizing the predictive value of predictions has been done by Chalmers et al. 

[195]. However further developments would be required to confidently identify patients who are 

very likely to progress despite brace treatment, or very unlikely to progress even without it. 

6.3.3.  Decision Support Engine 

The clinical trial simulation described in section 5.2.3 measured the effect of model-generated 

brace wear recommendations. The average brace wear recommendation was 12.6 hours per day, 

which meant an increase in wear time for most patients. The CTS results showed that if patients 

adhered to the model-generated brace wear recommendations, there would be a decrease in 

overall risk of progression. These results are, perhaps, not surprising: it stands to reason that an 

overall increase in brace wear would produce an overall decrease in probability of progression. 

In general a machine-learning-based decision support system will not give results which seem 

particularly unusual. A main advantage of these systems may be that they quantify relationships 

which may have been vague previously. 

In the CTS the model’s recommendations were designed to produce a 10% reduction in overall 

probability of progression. This was achieved successfully, but at the expense of some 

individual’s probabilities of progression. CTS is a useful and important technique for evaluating 

decision support systems like the one described in this thesis. However in the future the 

recommendation protocol could be made more sophisticated, to decrease group probability of 

progression with minimal detriment to any individual probability of progression. 

An interesting theoretical limitation of the CTS has to do with the notions of causality and 

confounders. It is possible that the predictor variables which give the best predictions of an 

event are not actually causes of that event. As a silly example, suppose that patients who are 

predisposed to be poor brace wearers also tend to have diets high in Progressium – an as yet 

undiscovered mineral which weakens the human spine. The prediction model used in the CTS 

predicts probability of progression based on brace wear time, and indicates that lower brace-

wear raises the probability of progression. But in fact, the real cause of progression in poor brace 

wearers is not the lack of brace wear, but rather the intake of so much Progressium. It is 

important to note that whether or not brace-wear has a causal relationship with progression is 

irrelevant to the quality of the predictions themselves. However it is relevant to 

recommendations made using the model, which assume that changes in brace wear can actually 

change the probability of progression. 
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Another way of explaining the difficulty is by contrasting the population level with the individual 

level. The prediction model was trained using data from a population of patients, and describes 

a relationship between brace wear and progression which was observed in that population. 

There is no question that this relationship is useful for predicting progression in future patients. 

However we have no guarantee that the population level observation still applies at the 

individual level. We observe that – in the population – better brace wearers have lower risk of 

progression. But this does not necessarily guarantee that an individual can change their risk of 

progression by changing their brace wear. That is an assumption. 

This assumption is implicit in much of our activity. For example, if a patient’s brace achieves 

little correction, their health care provider might recommend that the brace be adjusted to 

attempt more correction. The health care provider has observed in the population of past 

patients that higher in-brace correction correlates with treatment success, and so assumes that 

this patient’s chance of success can be improved with a more corrective brace. This is a perfectly 

reasonable assumption – and adjusting the brace is probably the correct action given the 

information available. But still there is some chance that the observed success of well-corrected 

brace patients has nothing to do with the in-brace correction, but rather some other factor such 

as the spinal curve’s flexibility or predisposition to correct in a brace. The upshot of this is that a 

CTS provides a good initial estimate of the efficacy of computer-generated recommendations, 

but does not prove anything. Ultimately a real clinical trial would be necessary to evaluate a 

decision support system’s effect on patient outcomes. Moreover, an electronic decision support 

system’s recommendations should always be delivered to a human expert – not trusted blindly. 

One final limitation of the decision support engine is in the way it searches for “optimal” 

treatment parameters. In the case of the logistic regression model described in section 4.3.3, 

calculating brace-wear recommendations is trivial: the brace-wear giving a specified probability 

of progression can be easily calculated, and the model’s predictions are a function of a single 

predictor variable and can be easily visualized. However, the platform will accommodate 

prediction models of any complexity. The genetic algorithm described in section 4.4.4 searches 

for the treatment parameters which produce a user-specified output from an arbitrary model. 

One problem with this approach is that the genetic algorithm finds one “optimal” set of 

treatment parameters – the set that produces a model output closest to the user’s specification. 

But for a given model, there may be a variety of treatment options which would all give the same 

predicted outcome. In practice it would be valuable to know about all these options. As a simple 
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example, Figure 58 shows the output of a logistic regression model trained using the brace-wear 

and in-brace correction variables of the dataset described in section 5.2.1. For any given 

probability of progression, an infinite number of brace-wear / in-brace correction combinations 

can be found which produce the probability prediction. These solutions extend along a line 

whose orientation is defined by the logistic surface. 

 

Figure 58: Output of a sample logistic regression model trained using the Brace Wear and In-brace 
Correction variables from the dataset described in section 5.2.1. 

Most optimization techniques are designed to seek a single, global optimum to an objective 

function. To identify multiple treatment parameter combinations for recommendation would 

require a novel optimization technique. Inventing such a technique would ultimately make 

recommendation systems like the one described in this thesis more useful in practice. 

6.3.4.  A Final Note on “Optimal” Treatment Recommendations 

This thesis has discussed the concept of “optimizing” brace treatment for AIS. The grand vision 

underlying this thesis is that an electronic decision support system could recommend treatment 

parameters which are optimal in the strongest sense: the recommended parameters would 

consider all aspects of brace treatment relevant to a specific patient, and give that patient their 

individual best chance of success. The work presented in this thesis is an important step toward 
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this ideal, but in its present state does not achieve optimal recommendations in this strong 

sense. 

To truly optimize treatment, the decision support system would need a very rich database of 

features. If the feature set captured all information relevant to progression, it would allow the 

best possible predictions of progression and the most meaningful recommendations. As 

mentioned in section 6.3.1, one important way to improve the database would be to add three-

dimensional measurements of Scoliosis. This work has used the two-dimensional Cobb angle as 

the quantification of Scoliosis severity (as is the standard). The prediction models are affected by 

the crudeness of Cobb angle as a measurement of severity. The decision support engine tries to 

optimize Cobb angle progression, unaware of the effect this optimization might have on the 

holistic, three-dimensional deformity. 

Furthermore, the decision support engine cannot account for factors which are not described in 

the database. The engine optimizes prediction model outputs by tuning the inputs to the 

prediction model(s). But if there are important treatment parameters which are not represented 

in the database, they will never be used by the prediction models or considered by the decision 

support engine’s optimization process. For example, aspects of brace design likely play a major 

role in treatment outcome, but cannot be optimized by the current system because they are not 

described by the available data. 

In the future, investments should be made to create richer, more descriptive, and higher-quality 

databases. This thesis is a first step toward a system for optimizing brace treatment on an 

individual level, and its results provide a taste of what might be possible with further 

development. Creating truly optimized treatment protocols will be a difficult but worthwhile 

challenge. 
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Appendix A: Creating Visualization Modules 

Visualization modules are XML-style documents with a .vis file extension. The following table 

describes the elements allowed in the document. Mandatory elements are marked with an 

asterisk (*). Where several values are allowed for an element’s content, the default value is 

enclosed in brackets. 

Element Sub-
Element 

Description 

name*  The name of this module as displayed to the user. Ideally 
this will match the filename. 

description*  A description to be displayed to the user. Should contain all 
information needed to understand and use the module. 

input  The name of an input to be entered by the user. This input 
can be referred to elsewhere in the document. Up to 4 ‘input’ 
elements can exist in a visualization module. 

sql*  The SQL query used to extract the data for charting 
series*  Each column returned by the SQL query will be plotted as a 

separate series. Use ‘series’ elements and corresponding 
sub-elements to specify how each should be displayed. 

seriesName* The series name to be displayed in the chart legend 
chartType One of the following options: [column], point, line, 

stackedColumn, polar, radar 
dataLabels “on” to turn on data labels for this series 
xDataType One of the following options: [double], or dateTime 
yDataType One of the following options: [double], or dateTime 
xRange Minimum and maximum x-axis values, separated by a 

comma 
yRange Minimum and maximum y-axis values, separated by a 

comma 
xLabel  X-axis label to be displayed on chart 
yLabel  Y-axis label to be displayed on chart 
xTick  One of the following options: off, or a positive value 

specifying the x-axis tick interval. If this element is unused 
the tick interval will be chosen automatically. 

yTick  One of the following options: off, or a positive value 
specifying the y-axis tick interval. If this element is unused 
the tick interval will be chosen automatically. 

grid  Specifies gridlines to be applied to the chart. One of the 
following options: [off], x, y, xy  

 

Below is example code for a visualization module which creates a generic scatterplot of Cobb 

angle progression per year versus a user-specified field from the ExamTable table in the 

database (refer to section 4.3.2 and Figure 37). 
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<?xml version="1.0" encoding="utf-8"?> 
<visualization> 
 <name> Scatter with Progression </name> 
 <description>  

Scatter plot of a user defined field with Cobb angle progression per year. The 
field can be any examTable field (e.g. 'MaxCobb', 'Scoliometer', or 'Age'). 

 </description> 
 <input> userField </input> 
 
 <sql> 

SELECT startExam.userField, (endExam.MaxCobb - startExam.MaxCobb)/ 
((endExam.ExamDate - startExam.ExamDate)/365) as progressionPerYr   
FROM 
( 

(SELECT PatientName, MIN(ExamDate) as minDate,  
MAX(ExamDate) as maxDate 

FROM ExamTable WHERE InBrace = false 
GROUP BY PatientName 
) as dateRanges 
INNER JOIN ExamTable startExam 
ON dateRanges.PatientName = startExam.PatientName  

AND dateRanges.minDate = startExam.ExamDate 
) 
Inner JOIN ExamTable endExam 
ON dateRanges.PatientName = endExam.PatientName  

AND dateRanges.maxDate = endExam.ExamDate 
WHERE endExam.ExamDate - startExam.ExamDate > 182  

AND startExam.userField IS NOT NULL; 
 </sql> 
 <series> 
  <seriesName> Progression vs userField </seriesName> 
  <chartType> point </chartType> 
 </series> 
 <yLabel> Progression Per Year </yLabel> 
 <xLabel> userField </xLabel> 
</visualization> 
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Appendix B: Creating Modelling Modules 

A modelling module consists of three files initially, with at least one more being generated by the 

module during the training process. The module should be located in the software platform’s 

“AppData” folder. The three files supplied by the user are: 

1. The model training executable 

This executable should enact the model training process using the training data supplied by the 

software platform. This training data will be in a comma-separated-value file named 

“trainingData.csv”.  

When the training process is complete it should create (in the folder where it resides) an XML 

document with a .tnd file extension. It may save additional data as needed. The .tnd file 

represents the trained model to the software platform. It contains elements listed in the 

following table, with mandatory elements marked by an asterisk (*): 

Element Attribute Description 
name*  The name of the trained model, to be displayed to the 

user 
predictExeName*  The name of the prediction executable (see the following 

section) 
date*  The date on which the training process took place 
description*  A description of the trained model, to be displayed to the 

user. 
controllableVariable  The file should contain one controllableVariable element 

for each controllable variable used by the prediction 
model. This element’s content is the variable’s name.  

 min The minimum allowed value for this variable 
 max The maximum allowed value for this variable 
uncontrollableVariable  The file should contain one uncontrollableVariable 

element for each uncontrollable variable used by the 
prediction model. This element’s content is the variable’s 
name. 

outputType*  One of the following options: console, file. Specifies 
whether the prediction executable returns predictions in 
the console window or as a separate file (see the 
following section). 

 

 

The following example .tnd file was generated by the logistic regression modelling module used 

in this thesis. 
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<?xml version="1.0" encoding="utf-8"?> 
<trainedModel> 

<name>Logistic Regression Model</name> 
<predictExeName>LogisticRegressionModelPredict.exe</predictExeName> 
<date>03-Dec-2014</date> 
 
<description> 

This model predicts probability of progression (any Cobb angle increase) 
based on in-brace correction and compliance. 
 
Coefficients: 
Correction: -0.47314 
Compliance: -2.0153 
Intercept: 1.4016 

 
Brier score in leave-one-out cross validation is 0.16 

</description> 
 
<controllableVariable min="0" max="2">InBraceCorrection</controllableVariable> 
<controllableVariable min="0"max="1">Compliance</controllableVariable> 
<outputType>console</outputType> 

</trainedModel> 

 

2. The prediction executable 

This executable reads patient data supplied by the software platform in a comma-separated-

value file named “testData.csv”. This data will have the same format as the original training 

data. The prediction executable should make a prediction for each instance (patient) in the data 

set and deliver these predictions in a comma-separated list either in the console window or a 

separate file named “predictions.txt”.  

3. The model description document 

This document is an XML document with a .mdl file extension which represents a model type to 

the software platform. The document contains the three elements described in the following 

table: 

Element Description 
name The name of the model type, to be displayed to the user 
description A description of the model type, to be displayed to the user. 
train The name of the model training executable 
predict The name of the prediction executable 
 

The following example shows the contents of the .tnd file for the logistic regression module used 

in this thesis. 
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<?xml version="1.0" encoding="utf-8"?> 
<modelType> 

<name> Logistic Regression Model </name> 
 
<description> 
Trains a logistic regression model to predict probability of progression, based on 
in-brace correction and brace-wear compliance. Progression is defined as any 
positive change in Cobb angle, but the training process assumes Cobb angle 
measurement error with a 95% CI of 5 degrees. 
</description> 

 
   <train>LogisticRegressionModelTrain.exe</train> 
   <predict>LogisticRegressionModelPredict.exe</predict> 
</modelType> 
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Appendix C: Compliance Monitor Schematic and Circuit Board 

Layout 

 

Schematic for the force sensor portion of the monitoring device 
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Schematic for the data logger portion of the monitoring device 
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Top and bottom layer circuit board layouts 


