Improved Approximation Algorithms for the
Capacitated Multicast Routing Problem

2 ok k ok

Zhipeng Cai' *, Guohui Lin' **, and Guoliang Xue

! Department of Computing Science, University of Alberta.
Edmonton, Alberta T6G 2E8, Canada.
2 Department of Computer Science and Engineering, Arizona State University.
Tempe, Arizona 85287-5406, USA.

Abstract. For the Capacitated Multicast Routing Problem, we con-
sidered two models which are the Multicast k-Path Routing and the
Multicast k-Tree Routing. We presented two improved approximation
algorithms for them, which have worst case performance ratios of 3 and
(24 p) (p is the best approximation ratio for the Steiner Tree problem,
and is about 1.55), respectively, thus improving upon the previous best
ones having performance ratios of 4 and (2.4 + p), respectively. The de-
signing techniques developed in the paper could be applicable to other
similar networking problems.

Keywords: Capacitated Multicast Routing, Approximation Algorithm,
Steiner Minimum Tree, Tree Partitioning.

1 Introduction

Multicast consists of concurrently sending the same information from a single
source node to multiple destination nodes. Multicast service plays a more and
more important role in computer or communication networks supporting multi-
media applications [BJ6IT0]. It is well known that multicast can be easily imple-
mented on local area networks (LANSs) since nodes connected to a LAN usually
communicate over a broadcast network. It is also known that implementing mul-
ticast in wide area networks (WANS) is quite challenging as nodes connected to
a WAN communicate via a switched/routed network [2/11].

In order to perform multicast communication in WANSs, the source node and
all destination nodes must be interconnected by a tree. The problem of multicast
routing in WANSs is thus treated as finding a multicast tree in a network that
spans the source and all destination nodes. Its goal is to minimize the network
cost of the multicast tree, which is usually defined as the sum of the weights of
all edges in the tree.

* Supported in part by NSERC. Email: zhipeng@cs.ualberta.ca.
** To whom correspondence should be addressed. Supported by NSERC, CFI, and a
Startup Grant from the University of Alberta. Email: ghlin@cs.ualberta.ca.
*** Supported in part by ARO grant DAAD19-00-1-0377 and DOE grant DE-FG02-
00ER45828. Email: xue@asu.edu.

In this paper, we study the Capacitated Multicast Routing Problem in which
at a time the data is sent out of the course, at most a limited amount of destina-
tion nodes can be assigned to receive copies. Depending on whether or not the
switches or routers in the underlying network have the broadcasting ability, two
models were considered. In one model, switches are assumed to have the broad-
casting ability and the model is called the multi-tree model [4]. Multi-tree model
has its origin in WDM optical networks with limited light-splitting capabilities.
Under this model, we were interested in finding a set of trees such that each tree
spans the source node and a limited number of destination nodes which are as-
signed to receive data and every destination node must be designated to receive
data in one of the trees. Compared with the traditional incapacitated multicast
routing model — called the Steiner Tree problem, that doesn’t have any con-
straint on the number of receivers in the routing tree, this simpler model makes
multicast easier and more efficient to implement, at the expense of increasing
the routing tree cost. Specifically, when the number of destination nodes in a
tree is limited to k, we call it the Multicast k-Tree Routing (kMTR) problem,
which is formally defined in the following.

We model the underlying communication network using an edge-weighted
(simple, undirected) graph G(s,V, D, E'), where s is the source node, D is the set
of n destination nodes, and V' is the set of all nodes in the network: sUD C V.
E is the set of edges (representing direct links) and w(e) > 0 is the weight
(routing cost) of edge e € E. The additive edge weight function w(-) generalizes
to subgraphs of G in the natural way. Let T be a subgraph of G, the weight (or
cost) of T', denoted by w(T), is the sum of the edge weights among all edges in T'.
Let k be a given positive integer. The multicast k-tree routing (kMTR) problem
asks for a partition of D into disjoint sets D1, Do, ..., Dy each with cardinality
no more than k and a Steiner tree T; spanning the source node s and the nodes
in D; fori=1,2,...,¢, so that Zle w(T;) is minimized.

In the other model, switches have no broadcasting ability and the model is
called the multi-path routing model [314]. Multi-path model could be viewed as a
generalization of one-to-one connection, but a restricted version of the multi-tree
routing model. It was proposed for wavelength routed optical networks, although
the basic idea is also applicable for general packet switching network [9]. Under
the multi-path model, data is sent from the source node to a destination node
in a light path. During the data transmission along the path, if an intermediate
node itself is a destination node, then the data is stored (dropped) and a copy
of the data is forwarded to its adjacent neighbor in the path. In each path some
destination nodes are designated where the data is stored (dropped). Accord-
ingly, multi-path routing is to find a set of such paths so that every destination
node is designated to received the data in a path. Compared with the multi-tree
routing model, this even simpler model makes multicast even easier and even
more efficient to implement, but again at the expense of increasing the rout-
ing tree cost. The parametric variant considered in [3] is the Multicast k-Path
Routing (kMPR) problem, where every path can be designated with at most k
destination nodes.

1.1 State-of-the-Art

For the kMTR problem, the cases where k = 1,2 reduce to the kMPR problem
[3]. So they both can be solved efficiently. The general case of kMTR is more
difficult than the kMPR problem and thus is NP-hard [3I2] too. In fact, 3MTR
has been shown to be NP-hard [7]. The best known approximation algorithm for
EMPR has a worst case performance ratio of 4 [3]; The best known approximation
algorithm for kAMTR has a worst case performance ratio of (2.4 + p) [7], where
p is the approximation ratio for the Steiner Tree problem.

1.2 Owur Contributions

We developed an averaging technique for designing better approximation algo-
rithms for both kMPR and KMTR problems for k£ > 3. The averaging technique
is presented in the next section. Basing on it, we gave a 3-approximation algo-
rithm for kMPR. We presented a technique for partitioning trees in Section 3,
and we applied the averaging technique one step further together with this tree
partitioning technique to design a (2 + p)-approximation algorithm for kMTR.
It is worth mentioning that p is the best approximation ratio for the Steiner
Tree problem, and p is about 1.55 [8I] at the writing of this paper. In more
detail, we first applied the current best approximation algorithm for the Steiner
Tree problem. Then we partitioned the obtained Steiner tree to get a number of
subtrees each spanning at most k£ destination nodes, without increasing the total
cost. After proving that the sum of the shortest paths from source s to all of
the subtrees is smaller than twice of the cost of an optimal multicast k-routing
tree, we got a (2 + p)-approximation algorithm for kAMTR, which improves the
previous best approximation ratio (2.4 + p).

2 A 3-Approximation Algorithm for kMPR

In the KMPR problem, the underlying communication network can be sim-
plified by short-cutting non-destination nodes out and thus can be assumed
as an edge-weighted complete graph G(s, D) where s is the source node and
D ={dy,ds,...,d,} is the destination node set. The edge weight function nat-
urally satisfies the triangle inequality. The goal is to find a least cost k-path
routing, which is a set of paths rooting at s and spanning all destination nodes,
and every path contains at most k£ destination nodes.

Let P, Ps,..., P} be the set of paths in an optimal k-path routing. Let
¢(P;) denote the cost of path P, which is the sum of the weights of edges on
the path. Let R* = >~ ¢(P;) be the cost of the routing tree.

The 4-approximation algorithm provided in [3] is to construct a minimum
spanning tree 7' on sUD, then duplicate the edges in T' to produce a Hamiltonian
cycle C via suitable short-cutting, and then partition the cycle C' into segments
each containing exactly k distinct destinations (the last segment might contain
less than k distinct destinations). Every segment is connected to the source s

via a shortest path from s. Since the cost of a minimum spanning tree T is
at most R* (note that Pf, Py,...,P%_; and P} themselves form a spanning
tree), the cost the cycle C' is no more than 2R*. It is shown that the total
cost of shortest-paths added in order to connect segments to the source s is at
most R*. However, since for every segment the shortest path connecting from
the source s to it could destinate at an internal node on the path, in order to
produce feasible routings the algorithm uses two copies of the added path to
make two paths. Therefore, the cost of the resultant k-path routing could be as
large as 4R*. In fact, the following example shows that the ratio 4 is asymptoti-
cally tight. In this example, the optimal k-path routing is Pf", Py, ..., P, where
Pl* = S-dmk_l-dmk-dl-...—dk_g, Pz* = S—dk_l—dk—dk+1—...—dgk_g, ceey P;L = S-
d(m—1)k—1‘d(m—1)k‘d(m—1)k+1‘- . ~dmg—2. The weights are w(s,d;j—1) = M for
i=1,2,...,m, and w(d;j,d;4+1) = 1 when j # ik — 2 for some i. The underlying
communication network is the completion of this tree. Note that the cost of the
optimal k-path routing is R* = m(M + k — 1). The minimum spanning tree has
a cost the same as the optimal routing, and the cost of the Hamiltonian cycle
is exactly twice R*. According to the partitioning, d;,ds,...,d; are on a same
segment and di_1 is the closest to source s. Therefore, the final k-path routing
has a cost m(4M + 2k — 3), which is asymptotically 4 times R*.

In the following we propose another way to partition the obtained Hamilto-
nian cycle into segments each containing exactly k distinct destinations (again,
the last segment might contain less than k distinct destinations), by which the
added paths connecting them to the source can be made to be from one of the
ending destination nodes on the segments and the total length of these added
paths is also no more than R*.

Observe that in Py, Py, ..., Py, the distance from every destination node d;
to the source s is an upper bound on the weight of edge (s, d;) in the underlying
network G (recall that we assume the shortest-path distance weight). Suppose
the destination nodes are dy,ds, ..., d,. It follows that

n

Zw(s,di) <kxR",

i=1

since there are at most k destination nodes in every path P} for j =1,2,...,m.
Suppose the destination nodes on the obtained Hamiltonian cycle are indexed
consecutively from 1 to n (with source s lying in between dy and d,,). Partition
the term >, w(s,d;) into k sub-terms:

L%
w(s,dik+j)7] = 17 2, ey k.
i=0
(Note: when index is out of range, there is no such destination node.) It follows
that there is at least one index j* such that

L%

U)(S, dik+j*) § R*
=0

=3

Now partition the Hamiltonian cycle into segments of which the first one con-
tains destination nodes dj«, d;«41, dj<42, ..., dj=4r—1, the second one contains
destination nodes dj= 1, dj k41, dj* 4425 - - -5 dj=42r—1, - .., and so on. For the
ith segment, the path used to connect it to the source s is the edge (s, d;« 4 (i—1)x)-
It is clear that every segment appended with the connecting edge is still a path
and thus they form a feasible routing. Note that the cost of the segments is no
more than 2R* and the cost of added edges/paths is no more than R*. Therefore,
the cost of this routing has cost no more than 3R*.

INPUT: an edge-weighted graph G on s U D;
OUTPUT: a k-path routing.

1. Compute a minimum spanning tree Tp on s U D;
2. Double edges in Ty and short-cut a Hamiltonian cycle C' on s U D;
3. Suppose the order of nodes on C' is s-di-da-. . .-dy:
§* = argming Y15 w(s, diny);
4. Make the ith path d¢k+j*-d¢k+j*+1-d¢k+j*+2-. . .-d¢k+j*+k,1;
5. Connect source node s to dix;+ for every ¢;
6. Output the k-path routing.

Fig.1. A high-level description of the 3-approximation algorithm for kMPR,
where k > 3.

Theorem 1. The kMPR (k > 3) problem admits a 3-approximation algorithm
which runs in O(|D|3) time.

Proof. The algorithm presented in the above, and its high-level description
in Figure [} is an approximation algorithm for the KMPR problem and its is
worst case performance ratio is 3. Note that completing the graph might take
O(|DJ3) time. After that, computing a minimum spanning tree can be done
in O(|D|*log|D|) time and forming the Hamiltonian cycle in O(|D|?) time. It
takes O(|D|) time to compute the partition, or equivalently, the optimal index
j*. Therefore, the overall running time is in O(|D|?). a

3 A (2+ p)-Approximation Algorithm for kMTR

In the kMTR problem, the underlying communication network is an edge-weighted
complete graph G(s,V, D) where s is the source node, D = {dy,da,...,d,} is
the destination node set, and V is a superset of D containing also Steiner nodes
which can be used as intermediate nodes to save the routing cost. The edge
weight function satisfies the triangle inequality. The goal is to find a least cost
k-tree routing, which is a set of Steiner trees rooting at s and spanning all des-
tination nodes, and every tree contains at most k destination nodes. Note that

in a feasible k-tree routing, one destination node assigned in some tree can be
used as a Steiner node in the others.

Let 17,75, ..., Ty, be the set of trees in an optimal k-tree routing. Recall
that every 77 might contain some Steiner nodes and might also contain some
destination nodes which are not allowed to received data (but act as Steiner
nodes).

Let ¢(T}) denote the cost of tree T;*, which is defined to be the sum of the
weights of edges in the tree. Let R* = " | ¢(T7") be the cost of the routing tree.

Since every destination node d; in tree T} satisfies w(s,d;) < ¢(T7), we have

n

> w(s,di) <k x R*

i=1

In the (2 + p)-approximation algorithm, we firstly apply the currently best
approximation algorithm for the Steiner Tree problem (which has the worst-
case performance ratio p) to obtain a Steiner tree T on s U D in the underlying
network G. Since the cost of an optimal Steiner tree is a lower bound on R*,
we know that the cost of tree T is upper bounded by pR*, that is, ¢(T) < pR*.
Note that tree T is not necessarily a feasible routing tree yet since some branch
rooted at the source s might contain more than k destination nodes. We treat
T in the following way: if there is any branch of it which contains no more than
k destination nodes, we can just leave the branch alone in the next step. For
branches containing more than k destination nodes, we perform the following
partition on each of them in the next step.

To present the partition technique, we need the following lemmas, the first
two of which are from [7].

Lemma 1. [7] Given a tree T containing n > 3 nodes, it is always possible to
partition it into two subtrees which overlap at at most one node and the numbers
of nodes in both subtrees fall in the closed interval [n, 2n].

Lemma 2. [7] Given a Steiner tree T containing n > 3 destination nodes, it
s always possible to partition it into two subtrees which overlap at at most one
node, either Steiner or destination, and the numbers of destination nodes in both
subtrees fall in the closed interval [n, 3n].

Lemma 3. Given a Steiner tree T containing n destination nodes, where k <
n < %k and k > 3, randomly select n — %k + 1 destination nodes from the tree to
form a set Dy. Then, it is always possible to partition the tree into two subtrees
T, with destination node set D1 and T with destination node set Do which
overlap at at most one node (either destination or Steiner), 0 < |D1|,|D2| < k,
DlﬁDQ 75@, andngDo 75(0

Proof. Root tree T' at any node, which could be either destination or Steiner.
In this rooted tree, for every node v, let ¢(v) denote the number of destination
nodes in the subtree rooted at v (inclusive). Let r denote the farthest (from the
root) node which has c(r) > n — 3k. Note that in the case that there is no node

having the c-value greater than n — %kz, r is set to be the root. Since k < n < %k‘,
r is uniquely defined. Re-root tree T at node r.

By duplicating root node r, we can partition 7" into two subtrees (both rooted
at r) Ty with destination node set Dy and T with destination node set Dy. Our
partition goal is to minimize |Ds| — |D1]|, assuming without loss of generality
that |Da| > |Dy|. If it already holds 0 < |Di|,|D2| < k, D1 N Dy # 0, and
D> N Dy # 0, then we got the two desired subtrees. Otherwise there must be
|D1] < £k and |Dy| > n — k. We proceed to examine subtree T3, which must
have multiple branches and each of them contains at most n — 2k destination

2
nodes.

Number these branches as Ty, Tbo, ..., Ty, with the destination node sets
Da1, Daa, ..., Doy, respectively. We distinguish two cases. In the first case there
is a branch say Ts; such that |Da;| > %k It follows from |Dy;| < n— %k < k that
re-partitioning T' to have only T5; in subtree T5, while all the other branches
rooted at r are included into subtree T3, gives the desired partition. That is,
0 < |D1|,|Ds| < k, Dy N Dy # B, and Dy N Dy # 0. In the other case, every
branch contains less than %kz destination nodes: |Dy;| < %k, fori =1,2,... ¢
Since |Do| =n — %k +1> %k + 1, there are at least two branches, say T and
T, both contain destination nodes from Dy (which is not the root node r).
Again, we do the re-partitioning by removing T5; from T while including it into
T). This gives us a new pair of subtrees T} and T5 that satisfy 0 < |Dq|, |Ds| < k,
DlmD()?é@, and DQQDO #@

This proves the Lemma. o

Recall that every branch of T' rooted at the source s is ignored for further
consideration. In the following, we will focus on the operations performed on one
branch of T' (rooted at the source s) containing more than k destination nodes.
First of all, we delete the edge incident at s from the branch to get a subtree
denoted as T7. Secondly, if 71 contains more than %k destination nodes, we apply
Lemma [2 to partition 77 into two subtrees. We then repeatedly apply Lemma
to partition the resultant subtrees if they contain more than %k destination
nodes. At the end of this repeatedly partition, there will be a set of subtrees
each contains no more than %k destination nodes. It should be noted that each
of them contains at least %k destination nodes since we started with 7} which
contains more than %k destination nodes. At this point, for those subtrees which
contain no more than k£ destination nodes, we may leave them alone. For ease of
presentation, we call subtrees containing at most k destination nodes final trees.
The subtrees become final at this point are called type-1 final trees. The non-final
subtrees will become type-2 final trees after the next step of partitioning.

For each non-final-yet subtree again denoted by 77, our third step is to apply
Lemma [3]on it to partition it into two final subtrees. To this purpose, we let Dy
denote the set of closest n — %k + 1 (to the source s) destination nodes in Ty,
where n is the total number of destination nodes in 77. Let T7; and Ti5 denote
the two resultant subtrees having destination node sets D1 and D5, respectively.
By Lemmal 3| 0 < |Dy| < k, D1 N Dy # 0, 0 < |Ds| <k, and Dy N Dy # 0. It is

clear that type-2 final trees always come in a pair, since they are resulted from
one single partition by Lemma [3]

For each final tree, we pick the closest destination node therein and connect
it to the source s. This gives a feasible k-tree routing. In what follows, we will
estimate the total cost of these added edges. We will show that this total is at
most twice of R*.

First of all, for every type-1 final tree, we pick the %k closest destination
nodes therein to be the representatives for the tree. Suppose there are ¢; type-1
final trees 11, T3, ..., Ty, . Let the representatives for T; be d; 1, d; 2, ..., dié,
in the order of non-decreasing distance from the source s. Secondly, for every
pair of type-2 final trees 17 and 75, if any one of them contains no less than %k
destination nodes, then the %k closest ones are picked to be the representatives
for the tree; otherwise all the destination nodes, say m, are picked to be the
representatives and additionally the %k —m farthest (to the source s) destination
nodes in the other tree are picked to be the representatives. Therefore, every
type-2 final tree has exactly %k representatives, although some of them might
not come from its own but its partner. Note that the reason we can do this is
that the total number of destination nodes in this pair of type-2 final trees is
greater than k. Similarly, assume that there are {5 pairs of type-2 final trees 171,
Th2, To1, Ta2, ..., Tes1, Ti,2. Let the representatives for Tj, be dip1, din2, - -
dyp, &, where h is either 1 or 2, in the order of non-decreasing distance from the

source s. Also for every pair of trees T;; and Tjo, let dgl, do,, ... d? . be the
; ; E

%k closest destination nodes among all the destination nodes in both of them,

and let d?’gﬂ, d?’§+27 e dgk be the %k farthest destination nodes among all

the destination nodes in both of them.
It follows that

41 2 fg

Clearly, for every type-1 final tree T;, destination node d; ; is connected to the
source s; also is true that d; must serve as a representative for either type-2
final tree T3 or type-2 final tree Tj2 and thus it is connected to the source s.
Suppose without loss of generality that d?,1 is a representative for T;1, then the
closest destination node d in T;» which is picked to be a representative has a
distance no larger than the distance from the source to destination node dg kg
It follows that the total cost of the edges added to connect the source to2the
final trees to produce a feasible k-tree routing is at most 2R*. Therefore, the
thus produced routing tree has a cost no more than (2 + p) R*.

INPUT: an edge-weighted graph G(s,V, D);
OUTPUT: a k-tree routing.

1. Compute a Steiner tree Tp on s U D, using the currently best approximation;
2. Delete the edges incident at s to get subtrees of Tp;

3. For each subtree T}, and the resultant, containing k' > k destinations:

3.1 ifk > %k, apply Lemma |2 to partition 77;

3.2 if k' < %k, apply Lemma [3| to partition T1;

4. Pick for every final tree the closest destination therein and connect it to s;
5. Output the k-tree routing.

Fig.2. A high-level description of the (2 + p)-approximation algorithm for
kMTR, where k > 3.

Theorem 2. kMTR (k > 3) admits a (2 + p)-approzimation algorithm, where
p is the best performance ratio for approximating the Steiner Tree problem.

Proof. The theorem holds according to the above discussion, since the algo-
rithm presented in the above, and its high-level description in Figure [2] is a
(2 + p)-approximation for the KMTR problem. It improves the previous best
approximation algorithm which has a performance guarantee of (2.4 + p) [7]. It
is known that p is about 1.55 [8[T]. Therefore, our approximation algorithm has
a performance ratio about 3.55, while the previous best one has a performance
ratio about 3.95. It is worth mentioning that the running time is dominated by
the approximation algorithm for the Steiner Tree problem. O

4 Conclusions

We have proposed a weight averaging technique which gives a better way to
estimate the cost of the paths connecting to the source and thus guarantees
a 3-approximation algorithm for the kMPR problem. We have also designed a
better approximation algorithm for the kMTR problem, with the worst case
performance ratio (2 + p), via another design technique — tree partitioning —
which is very interesting on its own. We hope these two design techniques can
be further combined with the others developed in the literature leading to even
better approximations.

References

1. C. Gropl, S. Hougardy, T. Nierhoff, and H. J. Promel. Approximation algorithms
for the Steiner tree problem in graphs. In D.-Z. Du and X. Cheng, editors, Steiner
Trees in Industries, pages 235-279. Kluwer Academic Publishers, 2001.

2. J. Gu, X. D. Hu, X. Jia, and M. H. Zhang. Routing algorithm for multicast under
multi-tree model in optical networks. Theoretical Computer Science, 314:293-301,
2004.

10

10.

11.

J. Gu, X. D. Hu, and M. H. Zhang. Algorithms for multicast connection under
multi-path routing model. Information Processing Letters, 84:31-39, 2002.

R. L. Hadas. Efficient collective communication in WDM networks. In Proceedings
of IEEE ICCCN, pages 612-616, 2000.

C. Huitema. Routing in the Internet. Prentice Hall PTR, 2000.

F. Kuo, W. Effelsberg, and J. J. Garcia-Luna-Aceves. Multimedia Communica-
tions: Protocols and Applications. Prentice Hall, Inc., 1998.

G.-H. Lin. An improved approximation algorithm for multicast k-tree routing.
Journal of Combinatorial Optimization, 2004. Submitted.

G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2000), pages 770-779, 2000.

A. S. Tanenbaum. Computer Networks. Prentice Hall PTR, Upper Saddle River,
NJ, 1996.

Z. Wang and J. Crowcroft. Quality-of-service routing for supporting multimedia
applications. IEEE Journal on Selected Areas in Communications, 14:1228-1234,
1996.

X. Zhang, J. Wei, and C. Qiao. Constrained multicast routing in WDM networks
with sparse light splitting. In IFEE INFOCOM, pages 1781-1790, March 26-30
2000.

	Improved Approximation Algorithms for the Capacitated Multicast Routing Problem
	 Zhipeng Cai (University of Alberta), Guohui Lin (University of Alberta), Guoliang Xue (Arizona State University)

