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Abstract

The objective of this thesis is to develop techniques for control loop performance
assessment of linear time variant (LTV) processes. Two classes of problems are
considered according to different assumptions.

The first class, which deals with a general LTV performance assessment
problem, assumes both time-variant process (including disturbances) and time-variant
controller. The difficulty in handling of LTV operators is the non-commutativity
involved in manipulation of these transfer functions. Therefore, normal multiplication
or division, which is non-commutative is applied in deriving the LTV minimum
variance control (MVC) benchmark. This methodology is extended to performance
assessment of LTV feedforward/feedback control schemes.

The second one, which is more specific, assumes time-variant disturbance
dynamics, but time-invariant controller and process. The general time-varying MVC
benchmark is too demanding and inappropriate if the controller to be evaluated is
time-invariant, as is the case for most industrial non-adaptive controllers. Therefore,
alternative time-invariant performance benchmarks that are more suitable for time-

variant processes under time-invariant control are studied.
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Chapter 1

Introduction

There has been an increasing interest in the research area of control loop performance
assessment in the past decade. It has become attractive to industries because the
information on performance measure of control loops gives control engineers insight
into potentials of improving control system performance and/or finding problem in the
existing controllers. Continuous performance assessment of process operations allows
timely detection of performance degradation in the control loops and routine
maintenance of such loops at optimal settings can result in huge monetary savings for a
typical chemical complex.

Harris (1989) has reported how minimum variance or the “feedback control
invariant” term of an LTI SISO process can be estimated from closed loop process
output data, and used as a benchmark for control loop performance assessment.
Desborough and Harris (1992) further proposed the use of least squares regression in
the estimation of minimum variance control and performance index. Stanfelj et al
(1993) presented the use of autocorrelation and cross correlation functions in the
diagnosis of feedback/feedforward control loop performance. Eriksson and Isaksson
(1994) proposed some modified criteria and monitoring tools for control loop
performance assessment. Huang et al (1995) presented the on-line control performance
monitoring of MIMO processes using filtering and correlation analysis while Martin et
al (1996) presented an overview of multivariate statistical process control and its
nonlinear extension for process performance monitoring. Tyler and Morari (1996)
reported the performance monitoring of control systems using likelihood methods
while Lynch and Dumont (1996) reported the use of Laguerre network to model the
closed loop system in order to estimate the minimum variance control for controller
performance monitoring. Isaksson (1996) defined a set of alternative indices for PID
controller performance assessment. Vishnubhotla (1997) reported the use of spectral

analysis of routine operating data and time-domain techniques for control loop



performance assessment. Kendra and Cinar (1997) also presented controller
performance assessment by frequency domain techniques. Li and Evans (1997)
presented the minimum variance control of linear time-varying discrete-time systems.
There has also been an extension of controller performance assessment techniques of
univariate systems to multivariate systems by Harris et al. (1996), Huang (1997),
Huang and Shah (1998) and Huang et al. (2000). Qin (1998) presented a review and
assessment of control performance monitoring techniques. There has also been a
review of performance monitoring and assessment techniques by Harris et al. (1999),
refinery-wide control loop performance assessment by Thornhill et al. (1999),
performance assessment of PI controllers based on setpoint response data by Swanda
and Seborg (1999) and performance assessment of processes with abrupt changes of
disturbances by Huang (1999). Horch and Isaksson (1999) proposed a modification of
Harris® index for performance assessment of control loops, Forsman (1999) presented
a holistic perspective of control performance monitoring and Cinar and Undey (1999)
presented multivariable statistical process monitoring techniques for both continuous
and batch processes. Some of the most recent work on control loop performance
assessment include: control performance monitoring by Vaught and Tippett (2001),
feedforward plus feedback controller performance assessment of MIMO systems by
Huang et al. (2000), process controller performance monitoring and assessment by
Hugo (2001). Ko and Edgar (2000, 2001) developed a procedure which does not
require any knowledge of the interactor matrix for the estimation of minimum variance
performance bounds in multivariable feedback control systems. Bezergianni and
Georgakis (2000) proposed the use of a relative variance index for controller
performance assessment. Wan and Huang (2002) have reported the robust
performance assessment of feedback control systems. Huang and Jeng (2002)
presented the monitoring and assessment of controller performance for single loop
control system with controller of general structure or with PI/PID structure. Huang
(2002) complemented the work of Li and Evans and proposed a more general method
of performance assessment of LTV feedback processes.

If the control objective is to minimize process variance, minimum variance control

can be used as the benchmark against which control loop performance is evaluated.



Minimum variance control is a bound on achievable performance against which
performance of other controllers can be compared. It requires minimum effort to
estimate (routine closed-loop operating data plus a priori knowledge of time delays).
This benchmark might not be recommended for practical implementation due to
excessive control action, poor robustness, poor process invertibility and other physical
constraints on the process. However, as a benchmark, it indicates how good the
controller performance is compared to the minimum variance control and it gives how
much potential there is to further improve the controller performance (Huang, 1997).
If the controller performance is inadequate but is already close to the minimum
variance control, then further controller tuning would not be helpful. Substantial
improvement is possible only by changing the system structure such as addition of
feedforward control, reduction of dead time and another possibility might be reduction
of disturbance by introducing inventory between units or through process
modifications. However, if the controller indicates a poor performance, then the
control system performance could be improved with the current control structure with
simple retuning.

Although, there exist various performance assessment methods for time invariant
processes, there are few results available for time-variant processes. However, in
practice, most processes have certain degree of time varying behavior and this has
brought about a need to develop performance assessment methods for time varying
processes, which could be under adaptive or time-invariant control. Goodwin and Sin
(1984) and many other researchers have studied these time-varying properties in the
“Adaptive Filtering Prediction and Control” literature but it has not been well
addressed in control loop performance assessment. Li and Evans (1997) presented the
minimum variance control of linear time varying systems. The potential difficulty in
the handling of LTV operators is seen in the non-commutativity involved in
manipulation of these transfer functions. This property is important and has to be
taken into consideration in the analysis of performance assessment of LTV systems.

Abrupt change is any change in the parameters of the model that occurs either
instantaneously or very fast with respect to the sampling period of the measurement

(Basseville and Nikiforov, 1993). It has been observed that abrupt changes of



disturbances are often encountered in many chemical processes and they result in time
varying dynamics or non-stationary time series of these processes. Therefore, if the
controller is time invariant, as is the case for most industrial non-adaptive controllers,
the time varying minimum variance control benchmark is clearly too demanding and is
not appropriate. Also, the traditional performance assessment technique for time-
invariant controllers may yield erroneous results when there is an abrupt change in the
disturbance dynamics in the control loop. This is because a minimum variance control
benchmark estimated from a set of data when only stationary disturbance affects the
process could give a poor performance indication in regulating a new disturbance that
has a different dynamics. Huang (1999) has reported that without considering time-
variant characteristics, the classical performance assessment results may be incomplete
or can be misinterpreted. It is therefore necessary to obtain an alternative time-
invariant performance benchmark that is more suitable for time-variant processes
under tiine invariant control.

The performance of control schemes is often enhanced by including feedforward
elements. This is usually achieved in two ways; a feedforward variable could be
measured and used in the control scheme, or the potential benefit of implementing
feed-forward control can be estimated. Box and Jenkins (1976), and Sternad and
Stoderstrom (1988) have discussed the design of minimum variance feedforward and
feedback controller. Stanfelj et al. (1993) presented a hierarchical method for
monitoring and diagnosing the cause of poor performance of feedforward/feedback
control systems using autocorrelation and cross correlation functions. Huang (1997)
and Huang et al. (2000) have extended methods for performance assessment of
multivariate feedback control systems to performance assessment of multivariate LTI
feedback plus feedforward control systems using minimum variance control as the
benchmark. Huang (1999, 2002) and some other researchers have developed
performance assessment techniques for LTV feedback control loops. Due to non-
stationary time series often observed in performance assessment of control loops, it is
also important to develop performance assessment techniques for LTV
feedforward/feedback control loops. The estimation of the time-variant lower bound

of variance for each of the controller in the control scheme allows for the performance



of the individual controllers to be assessed from time series analysis of closed-loop

routine operating data.

1.1  Scope and outline of this thesis

The purpose of this work is to discuss and study the control loop performance
assessment of time variant processes in the field of chemical engineering. The
methods and algorithms in this thesis have been applied to industrial case study on
sulphur recovery process at Syncrude Canada Ltd. The structure of the thesis is as

follows:

Chapter 2 discusses the control loop performance assessment of time-variant SISO
processes. It has been found that there is a potential difficulty in the handling of LTV
operators, and this is seen in the non-commutativity involved in manipulation of these
transfer functions. A general algorithm for performance assessment of LTV loops is
developed in this chapter. However, the time-variant minimum variance control
discussed in this chapter is found to be suitable for time-variant controllers but will

clearly be too demanding on time-invariant controllers. This is the focus in chapter 3.

Chapter 3 and chapter 4 deal with developing an alternative time-invariant
performance benchmark that is more suitable for time-variant processes under time
invariant control. In these two chapters, the discussion is limited to time variant
disturbance models. Chapter 3 discusses the benchmark that is useful when
minimization of a particular type of disturbances amongst other forms of disturbance
dynamics affecting the process is of the only interest while chapter 4 presents the
optimization technique that can be used to obtain time-invariant minimum variance
control benchmark that can “optimize” overall performance of these time-variant

Processes.

In Chapter 5, the performance assessment methodology developed in chapter 2 is
extended to feedforward/feedback control loop performance assessment of Linear

Time Variant (LTV) MISO processes. If the controller performance is inadequate but



is already close to the minimum variance control, then further controller tuning would
not be helpful, and substantial improvement is possible only by changing the system
structure such as addition of feedforward control. Therefore, the LTV benchmark of
feedforward plus feedback control is discussed and illustrated by a simulation example

to demonstrate the feasibility of the algorithm.

1.2  Contributions of this thesis
The contributions of this thesis include:

- Generalization of a technique for control loop performance assessment of linear
time variant (LTV) processes, which assumes time variant process (including
disturbances) and time variant controller. It is an efficient algorithm suitable
for performance assessment of LTV controllers and particularly for that of

adaptive control.

- Generalization of alternative time-invariant performance benchmark that is
more suitable for time-variant processes under time invariant control using time
series analysis on closed-loop routine operating data and/or optimization

techniques.

- New development of the performance assessment methodology for feedforward

plus feedback control loops.

- Extensive case studies of the developed algorithms in simulated examples

including chemical process examples.

- Actual applications of the developed algorithm in industrial processes.



Chapter 2

Feedback Controller Performance Assessment of
Time-Variant Processes

Abstract

This chapter discusses the theoretical extension and a practical application of Linear
Time Variant (LTV) minimum variance control as a benchmark for control loop
performance assessment of time-variant processes. This time-variant minimum
variance control, which is found to be suitable for time-variant controllers or
processes, is referred to as the type-A benchmark. The proposed performance
monitoring method is illustrated through a simulated stirred tank reactor and applied to
a case study on a Sulphur Recovery Unit that is under adaptive control in Syncrude

Canada Ltd.

The main contributions of the chapter include: (1) generalization of LTV control loop
performance assessment technique by deriving expressions of the LTV minimum
variance term and actual variance term, and subsequent calculation of LTV
performance index, which have not been achieved in previous work; (2) a detailed
industrial case study to illustrate the applicability of the LTV control performance

assessment techniques in practice.



2.1 Introduction

Automatic process control has been widely used in process industries to achieve
objectives which vary from maintaining safe process operations to process
optimization. Industrial processes include control loops whose number varies from a
single loop in simple processes to thousands in large integrated plants. Routine
maintenance of such loops at optimal settings can result in huge monetary savings fora
typical chemical complex. Since these loops are maintained and serviced occasionally,
it is important that the control loop performance is efficiently monitored and controller
is retuned if necessary. Continuous performance assessment of process operations
allows timely detection of performance degradation in the control loops. However,
assessment of control loops should not disturb routine operations of the processes.
That is, performance monitoring should be non-invasive or at least should be done
under closed loop conditions (Huang, 1997). It is also required that the performance
assessment algorithm should be simple and non-complex, and should require minimal
process knowledge (Horch, 2000).

Performance assessment of control loops is often measured with respect to
response of a process to step change in set point (servo performance) or to load
disturbance variable (regulatory performance). Performance characteristics such as
integral of the absolute value of the error (IAE), settling time, overshoot, damping
e.t.c. are calculated and often used for monitoring purposes. This is a simple and
useful method when experiments or set point changes can be made periodically on
each control loop (Stanfelj et al, 1993). But continuously operating processes are
subject to numerous disturbances that make the controlled variable behave as a random
time series. The mean square error (MSE) or variance of the process variable is
commonly used as the measure for control loop performance. The variance (or
standard deviation) is used for monitoring because of its direct relationship to process
performance and profit (Bozenhardt and Dybeck, 1986, Marlin et al, 1987, Stanfelj et
al, 1993).

Harris (1989) has found that a “feedback control invariant” or controller
independent term of an LTI SISO process can be estimated from closed loop process

output data, and this term represents the process output under minimum variance



control. The minimum variance term is used as the benchmark against which control
loop performance is evaluated. Minimum variance control is a bound on achievable
performance against which performance of other controllers can be compared. It
requires minimum effort to estimate (routine closed-loop operating data plus a priori
knowledge of time delays) and it is the best possible control in the sense that no other
controller can provide a lower output variance. This benchmark might not be
recommended for practical implementation due to excessive control action, poor
robustness, poor process invertibility and other physical constraints on the process.
However, as a benchmark, it indicates how good the controller performance is
compared to the minimum variance control and it gives how much potential there is to
further improve the controller performance (Huang, 1997). If the controller
performance is inadequate but is already close to the minimum variance control, then
further controller tuning would not be helpful. Substantial improvement is possible
only by changing the system structure such as addition of feedforward control,
reduction of dead time, and another possibility might be reduction of disturbance by
introducing inventory between units or through process modifications. However, if the
controller indicates a poor performance, then the control system performance could be
improved with the current control structure with simple retuning.

Significant progress has been made in assessment of time invariant processes or to
time series that can be made stationary by some simple transformation. However, non-
stationary time series are often observed in performance assessment of control loops
due to varying process dynamics, change of disturbance models, and non-linearity of
actuators and sensors e.t.c. Although, there exist various performance assessment
methods for time invariant processes, there are few results available for time-variant
processes. In practice, most processes have certain degree of time varying behavior
and this has brought about a need to develop performance assessment methods for time
varying processes. The most intuitive extension of performance assessment technique
from Linear Time Invariant (LTI) processes to Linear Time Variant (LTV) processes is
through the recursive estimation technique, also referred to as “sequential parameter
estimation” or “adaptive control algorithm” (Ljung and Soderstrom, 1983). The

recursive identification algorithm (for LTV assessment) uses information from past



observations recursively by focusing on the most recent data and discounting remote
past measurements exponentially. Several recursive algorithms have been proposed to
estimate control loop performance in the presence of non-stationary characteristics in
the data (for example, Huang and Shah 1999). It is found that any recursive time
series algorithm can be used to estimate the LTV ARMA model for performance
assessment of LTV processes. However, the potential difficulty in the handling of
LTV operators is seen in the non-commutativity of the multiplication and/or division

of these transfer functions. This is illustrated in the multiplication of two LTV

polynomials, u(g~,¢) and v(g™,¢) in the backshift operator q:

u(g™ D) =u,(t) +u,()g” +..+u,()q”"

@.1)
g ) =v, )+ (g +..+v,(Oq"
The multiplication of u(g™,¢) and v(q™',¢) is given by
u(g” . OVg" . 8)=2, 2u,"g"v,(Oq”
e
= Yu, @y, -ig™ "’
=0 j=0
The multiplication of v(g™,¢) and u(g™,?) is given by
g u(g” D=2, 2v,(0q97u (g
=
= Z(; }_:,V, Ou,(t = g
=0 i

Hence, u(g™",)v(g™,1) # v(g™ ,D)u(gq™ ,t)

The multiplication of u(g™,7) and v(g™',¢) in eqn. (2.2) and eqn. (2.3) is referred

to as normal multiplication of the LTV polynomials. Normal multiplication is

therefore said to be non-commutative and it is seen that this type of multiplication
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causes time delay in the LTV operators. This result shows that care has to be taken to
the non-commutativity involved in manipulation of LTV transfer functions. This
property of LTV polynomials is important and has to be taken into consideration in
calculating the minimum variance term when the LTV ARMA model, for example, is

transferred to an LTV MA model.

However, unlike normal multiplication, pointwise multiplication does not cause
any time delay in the multiplication and/or division of the LTV polynomials as is
illustrated in the following:

For two LTV polynomials, u'(g”,¢) and v'(g™',) in the backshift operator

w(gh,O)=u,@)+u'(Oqg" +..+u,' (g

B | (2.4)
V(g D)=y, ) +v' () +..+v,' (g™
The multiplication of u'(g™,£) and v'(g™',¢) is given by
w'(q' (g =2 2u'Og,' O
= 2.5)
— Z Zui '(t)vj |(t)q—(i+j)
=0 j=0
The multiplication of v'(g™',¢) and u'(g™,¢) is given by
v'(g".u'(q" 1) = v,'(O0q7u, (g
e
=Y >v,'(Ou'Og "
j=0 =0

From eqn. (2.5) and eqn. (2.6), it can be seen that for pointwise multiplication,
u' (g™, 0Ov'(q7, 1) =Vv'(q”,H)u'(g",t). Thus, pointwise multiplication is said to be

commutative.
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It should be noted that pointwise multiplication may yield erroneous results if the
plant or disturbance dynamics has relatively fast parameter change (as would be seen
in the simulation example). Therefore, normal multiplication, which is non-

commutative, is recommended when handling LTV operators.

2.2 Control Loop Performance Assessment of LTV Processes

Consider the LTV SISO process shown in Figure 2.1:
y,=q T (g, u, + N(g",1)a, @.7)

The time-delay, d is considered to be constant; T(g™,t) is the delay-free LTV plant

transfer function; N(g™,¢) is the LTV disturbance transfer function; 4, is a white noise

. . . . 2
sequence with zero mean and time-variant variance, o, (f) .

N(g™,1)

0q™,0) F—» q*T(q".0) e

Figure 2.1: Schematic of time-variant SISO process under feedback control

By applying time-series analysis to the routine operating data, the LTV closed loop
SISO response can be expressed as an ARMA model

4,0y, =C, (g7, Da, (2.8)
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The LTV ARMA model can be transferred to the LTV MA model and obtained as

v =(,(O)+ £.(Og" + £,(0)g” + .t Lo (Og " + f,()g +.)a,  29)

It has been shown in Huang (1997) that the closed-loop response under time-variant

minimum variance control constitutes the first d-terms of the MA model

w=HO+ LG+ £,Og7 ++ £, O, (2.10)

Vi

The LTV minimum variance can be calculated as

ol ) =IO+ L +..+ [0 (1) (2.11)

Note that in calculating the minimum variance term for LTV processes, the non-
commutativity associated with LTV operators should be taken into account in
transferring the LTV ARMA model to LTV MA model by using normal multiplication
rather than pointwise multiplication or division.

The above procedure can be used to calculate the time variant minimum variance
term for any model structure with any order. The complexity is, however, increased
quickly with the increase of the model order. In the following sections, we shall focus
on the derivation of the minimum variance terms for two special, yet most frequently

used model structure and order, namely AR(4) and ARMA(2,2).

2.2.1 Calculation of the LTV minimum variance for AR model

Let us consider that the process output, y, is represented by an LTV AR model of

order 4, which is a default choice in most applications (Ljung, 1999) and in MATLAB

System Identification toolbox:
4,970y, =a, (2.12)

where
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y, =+ £Oq + 1,057 + /007 +..)a, 2.13)
A (g ) =1+a,)q" +o,()g” +0,()g” +o, (g™ (2.14)
Substituting eqn. (2.13) in eqn. (2.12) yields

A, DO+ £ + £,(007 + (077 +..)a, =4, 2.15)

The LTV impulse response coefficients are obtained by equating coefficients on the

right and left hand sides of eqn. (2.15):

(f,0)=1
f)=-a,0)f,-D)
£O=-aOft-D-a,Of,-2) 2.16)

| £O=-a0f,E-D -0, -D-aOfE -3
[ O=-a,Of.t-D-2,O)f,(-2) -, ¢-3)-
a4(t)fk—4 (t - 4) k>3

It follows from eqn. (2.16) that

(f,()=1

Si@®)=—a, ()

1 LO=0,@)a (- -a,) (2.17)
fi®O=a,@®)a,t-D)-a@)a-Da,@-2)+a,( - 2a,() -, @)

That is,

¥, ==, +( @Ot -D -, (B)g” +
(oo, (t =) =, (D)o, (t —Dat, (2 = 2) + o, ( = 2)a, (1) — O)g~ +..)a,

(2.18)

However, direct long division of eqn. (2.12) gives
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V= (l —Q, (t)q—l + (a12(t) —Q, (t))q_2 + (za] (t)az (t) - (Z13 (t) — (t))q-3 + "')az
(2.19)

From eqn. (2.19), it can be seen that unlike the result obtained with normal
multiplication or division of LTV polynomials, pointwise multiplication does not cause

any time delay in the coefficients of the moving average model.

As an example, from eqn. (2.16), the appropriate minimum variance for the LTV

process with a time delay of 3 can be calculated as:

o, =1+ £ )+ f; ), ()

(2.20)
=1+ (@) + (o, (Do, (t = D) —a,(#)))o, ()

2.2.2 Calculation of the actual time-variant variance for AR model

To calculate a time-variant performance index, the actual time-variant variance has to
be calculated. An algorithm based on the LTV AR(4) model is discussed in this
section. The LTV AR model in eqn. (2.12) can be expressed as

y+a,@)y,+a,®)y, +a )y, +a @)y =a, (2:21)

The ,(f)'s represent the parameters while @, is the white noise sequence. Both

sides of eqn. (2.21) are multiplied by ¥,, ¥,s ¥,.p» Vi3> V.4 Tespectively and the

expectations are taken to obtain:

Yo + 0, ()Y, + 0, (D)7, + 0, ()Y, + o, ()Y, =0, (%)

¥+ o, ()Y, + &, ()Y, + o, (B)y, + o, (#)y; =0

v, + o, @)y, + o, @)y, + o, )y, +a,(f)y,=0 (2.22)
¥, + o, (0)y, + o, @)y, +a, @)y, +a,@)y, =0

Yo+, (8)7; + 0, (), + o, ()Y, +a,(8)y, =0
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The y,'s represent the time-variant auto covariance of the process variable, y with lag

‘1°, and 0'2 (¢) is the variance of the white noise (or shock). The equations are re-
organized in matrix format and solved to obtain the required time-variant process

variance, o, which is denoted by 7, .

1 a,(?) a,(?) o, a,®fr]| [1
a,(t) 1+a,(®) o,(?) o,t) 0 v, 0
o,(t) o, @O+a,@) 14+0,(t) 0 0 |v,|=|0lc2(®) 23
00 o®O+o® o® 1 0 || |0

0@ w0 w0 w@ 1 v [0

From eqn. (2.23), the ¥,'s in vector "B" are estimated by

B=A4"Col(®) (2.24)

The 1% element of the vector "B" represents the process variance, o, . The control

loop performance can be determined by comparing the minimum variance with the

process variance. Note that cri is also time variant and egn. (2.24) calculates the

variance at time instant, ¢.

2.2.3 Calculation of the time-variant minimum variance for ARMA Model

A more general representation of a time series is the ARMA model. It is known that
ARMA(2,2) is a typical representation of time series process and most physical
process can be well fitted by this model. The calculation of the time variant minimum
variance and actual variance for an ARMA model is more involving than the AR
model. The calculation of the time-variant minimum variance for this model is

illustrated next.

4,70y, =C,(q" e, (2.25)
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where
v =(f, )+ O + £, + f,0)g” +..)a, (2.26)

4,(q" ) =1+a,(OHg" +a,(t)q” 2.27)
C.(g")=1+¢, (g +c,(q”

Substituting eqn. (2.26) into eqn. (2.25) yields

A, D0+ L0 + £,0q7 + £,(0q” +..)a,=C,(g".a,  (228)

The LTV impulse response coefficients are obtained by equating coefficients on the

right and left hand sides of eqn. (2.28):

(f,0)=1

| FAGRIORTAGYACRY 029
£O=e0-aOhE-D)-a0Of(-2)
LO=-aOf,¢-D-a,Ofia-2)  k>2

It follows from eqn. (2.29) that

(f,(H=1
Si@®)=c@)-a,@)
L) =c,(t) - (et =D+, (e, (t - 1) -, (2) 230)

| A0 ==a (), (t=1) + 0, (D, (t = 1) + o, (et (¢ = Dy (1= 2) -
o, (1), (t = Vet (£ = 2) = &, (0)c, (¢ = 2) + 2, (e, (¢ = 2)

That is,

¥, =1+ (6O - O)" +( () -0, (Bt =D + 0, e, ~ D~ o, () +...)a
(2.31)
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However, direct long division gives a different result

7, =+ 60 -0, g+, ~ 0, (6, + 0 (O ~ 0, + o3
(-0, (e, 0) + 20, ), () + &, (76, ()~ (0 = 0, (Ve D) +.)a,

As an example, from eqn. (2.29), the appropriate minimum variance for a time delay of

3 can be calculated as:

o2, O =1+ - ) +(c,O-a@e @ -D+aOe ¢ -D-a, @) Jo? (233)
2.2.4 Calculation of the actual time-variant output variance for ARMA Model
The LTV ARMA (2,2) model can further be expressed as

vy, +a,@)y, +a,t)y.,=a, +c(a_ +c,(Da,, (2.34)

Both sides of eqn. (2.34) are multiplied by ¥,,¥,,,),, respectively and the

expectations are taken to obtain:

Yo + @)Y, + 0,1, = (-, @O)e @+ O +c ()~ o), @)
—a, (e, (D), () + 0y (B)e, (D)o (0)

(2.35)
Y, + (O, + o, 0y, = () + ¢, (B)e, (1) — 0, (e, ())o;, (1)

¥, + o, ()Y, + o, ()Y, =¢, (o, (¢)

In a similar format with the LTV AR model, the equations are re-organized and solved

to obtain the required time-variant process variance, O'j which is denoted by v, .
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1w a0 [Fa0a®+el@+e ) -a,0e®)
— 0, (e, (), () + 0, (1), ()
0@ 1+a,@®) 0 |y |=la®+a®e®-00e0) o (1)
00 o0 1 ]n] |a®
’ (2.36)

The actual variance ¥, is solved from eqn. (2.36) and the control loop performance is

determined by comparing the minimum variance with the process variance.

So far, we have been able to show how to estimate the control loop performance
for LTV AR and LTV ARMA models. From this analysis, it can be seen that the
proposed methodology for performance assessment of LTV processes can be obtained
from routine operating data and the results can be extended to higher-order models

following the same procedure if necessary.

2.3 Evaluation via Simulation

In this section, we consider a stirred tank heater shown in Figure 2.2. The objective is
to raise the temperature of the inlet stream to a desired value. The stirred tank heater is
an example of mixing vessel, which is heated by a jacket surrounding the vessel. A
mixing vessel may serve as a chemical reactor, where two or more components are
reacted under certain conditions to produce one or more products. The reaction often
occurs at a certain temperature to achieve the desired yield. In this example, saturated
steam is the heat transfer fluid that is circulated through the jacket to heat the fluid in
the tank. The assumptions made in writing the dynamic modeling equations to find the

tank temperature include:

- The volume and liquids have constant density and heat capacity

- Perfect mixing is assumed in both the tank and jacket

The temperature of the saturated steam is constant throughout the jacket
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- The flowrate of the saturated steam is time varying, and this causes the heat
transfer coefficient U to be time varying.

- The tank inlet flowrate F), tank outlet flowrate F, jacket flowrate F,
tank inlet temperature T}, and jacket inlet temperature T, vary with time.

Neglecting the work done by the impeller, energy balance around the tank is used to
obtain the modeling equation given by
ar _F Q (2.37)

=TT -T)+
dt vV VpC

14

where the rate of heat transfer from the jacket to the tank, Q is given by
Q=UA(T, -T) (2.38)

T is the tank temperature, F is volumetric flowrate, p is the density, Cp is the heat

capacity, U is the overall heat transfer coefficient and A is the area for heat transfer.

The subscripts i, j and ji denote inlet, jacket and jacket inlet respectively.

Tank F:
Inlet Tl l
— —  Jacket inlet Fﬁ. Tﬁ
\% T ¢
® &)
Tank Tank outlet
>
Jacket F/ ¢ Jacket FT

Outlet T/

Figure 2.2: Jacket stirred tank heater

In linearizing the non-linear model in eqn. (2.37), it is assumed that the tank outlet

flow rate, F', and the tank temperature, T are manipulated and controlled variables

respectively. The overall heat transfer coefficient U is time varying and 7, is
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considered as the disturbance affecting the system. The steady state is obtained by
solving the dynamic equation for d7'/dt =0. The steady state values of the system

variables and some parameters for the process are given in Bequette (1998).

F =10/min pC,=613Bw/’F ff V=10 T,=50°F T,=125F
F, =15f/min p,C,=613Bul’Ff’ V,=1ff° T,=200F T, =150°F

Linearizing and applying Laplace transform yields

F.IV

VT, -T,) N
(s+F,/V+UA/pVC,)

B T, 2.39
(s+F,/V +UA4/pVC,) (s) (239

E(s)

T(s)
Assume the temperature measurement has a time delay of 4, eqn. (2.39) yields

~7.5¢7* ~ 0.1

B F T 2.40
STl + 000163 ) O (s) (240

s+(01 + 000163 &) '

T(s)

where & = U4

Eqn. (2.40) can be written in the general form

~ds

() = ke i) + D, (s) 2.41)
(A

+ 1 s + 1

A continuous-time transfer function with the following form:

k

x(s) (2.42)
s +1

y(s)=
can be discretized as

=e(_7;/r)yn—l + (1-_8(_7;/2-)) kxn—l (243)

n

Thus, eqn. (2.40) can be expressed as
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~7.5¢™" 0.1
¢ /o.1+o.00163 ) }0.14000163 )

T(s)= 1 F(s) + 1 T.(s)
+1 s + 1
(O.l + 0.00163 ii)s (0.1 + 0.00163 17)

(2.44)

and with a sampling time of 1 unit, eqn. (2.44) can be discretized as

1 —(0.1+0.00163 &
7.5(e Cr00en _1)
_ -4+ 0.1+0.00163u

T (t) =4 ) 1 ~(0.140.001637) _ -1 F (t) +

(2.45)

0.1 (1 _ e—(0.1+0.0016317))
0.1+0.00163u

—(0.1+0.00163%) 1
1“‘@ (0.1+ u)q

T.(t)

Let's consider that UA is time varying and is given by U4 =183.9(1+ 0.5sin(¢/ x)) ,

where x is a variable oscillation period. Thus, eqn. (2.45) can be written as

(5.036—0.15sin(t/x) _ 7.5/
(0.4 +0.15sin(z/ x))
1— 0'676—(0.155in(t/x))q_1 F@) +

(0.1-0.067¢™5/))
(0.4 +0.15sin(z/ x))

1 _ 0.676—(0.155in(t/x))q—1

T(H=q"
(2.46)

T,)

From eqn. (2.46), it can be seen that both the process model and the disturbance model
are time-variant. In this example, it is assumed that the disturbance has three different
time-variant dynamics from relatively slow parameter change to relatively fast
parameter change. This time varying nature is induced by the time varying steam flow
rate for example. This illustration is chosen to compare the performance monitoring
methodology (which takes non-commutativity associated with LTV transfer functions
into account) with the conventional performance assessment algorithm. That is, the

minimum variance term is calculated using normal multiplication (non-commutative)
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and pointwise multiplication (commutative) and the difference between the two

methods are compared for each of the disturbance dynamic.

Assuming 7 (¢) is random white noise disturbance representing the driving force

of the unmeasured disturbances, then, the process model in eqn. (2.46) can further be

expressed as

-« 90) u + v(®) a (2.47)
1-8()q™ * 1-6()q" ' '

Yi=9

where , is the process variable and u, is the manipulated variable. The time variant

process and disturbance dynamics are given by

r _ (5.036—0.155in(t/x) _ 75%
(1) = (0.4 +0.15sin(¢/ x))

_ (Ol _ 0.0676—0.155in(t/x)) 2.48
v(?) = (0.4 + 0.15sin(z/ x)) 249

S(t) — 0.67e—O,ISsin(t/x)

A

\

A PI controller is used to control the process and is given by

—0.05+0.045¢™
1-—q"1

0(g)= (2.49)

Three cases of time-varying dynamics are being considered in ascending order of

increasing parameter-varying rate:
casel: x=10

case2: x=1 (2.50)

case3: x=0.5
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The simulation results in Figure 2.3 show a comparison of the difference between
normal multiplication (solid line) and pointwise multiplication (dotted line). It can be
observed that the difference between the minimum variance terms calculated using the
normal multiplication and pointwise multiplication increases as the parameter-varying
rate increases from the top to the bottom subplot. This result shows that it is important
to use normal multiplication rather than point multiplication in the estimation of

minimum variance term for time varying processes.

pozb ' ' ' ' ~—— normal multiplication
------ pointwise multiplication

0.015+
0.01 ¢+ .
DUUE ] 1 1 1 1 1 ] 1 (]

0 10 20 30 40 5 6 70 8 9% 100
0.02 ] i ¥ 1 ¥ T ] 1 1
0.015 : ; : :

0.01 |3

0.005

0.02
0015t .,

0.01 K

UDUS ! I (| L 1 1 I 1 1
0

Figure 2.3: Comparison of time-variant minimum variance term using normal multiplication and
pointwise multiplication
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2.4  Case Study on Adaptive Control of Sulphur Recovery Unit

2.4.1 Process description

The proposed performance assessment methodology is applied to monitor the control
loop performance of an adaptive controller in a Sulphur Recovery Unit (SRU) in

Syncrude Canada Ltd.

The purpose of the SRU is to extract elemental sulphur from the Hydrogen Sulphide

(H,S) component of the acid gas stream obtained as by-products of plant operations.

A simplified schematic of the SRU is shown in Figure 2.4. (modified from “Adaptive

Control of Sulphur Recovery Units, www.brainwave.com library”).

ooooeeee- ) =
Acid Gas
Controller i
i
I
I

Main Air SP

Controller e / > 2
o = ol
Air Main Air ol Plant N

2 —

Bumer -1

converters 1

]
Trim Air e Tail Gas
|} Eﬁ Thermal Reaction Furnace
9 e

2O

i

Figure 2.4: Schematic of Sulphur Recovery Unit
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The SRU consists of a Claus process, which involves vapor phase oxidation of

H,S. The conventional Claus plant consists of thermal conversion unit and three

stages of catalytic conversion in series. The description of a conventional Claus

Sulphur Recovery plant is shown in Figure 2.5.

AIR

R
L 1 : :
TAIL GAS
CONVERTER CONVERTER CONVERTER -
.
FURNACE
ACID CONDENSER CONDENSER CONDENSER CONDENSER
GAS

:

l

:

:

l

SULPHUR
PIT

Figure 2.5: Claus Sulphur Recovery Plant

The acid gas feed stream which enters the thermal reaction furnace consists of

H,S, CO,, hydrocarbons and traces of other substances. In the furnace, O, is added

under controlled conditions to react with H,S to form SO, under highly exothermic
reactions. The complex reactions in the furnace can be simplified by the following

reactions:

H,S+3/20, < SO, + H,O + Heat
2H,S+0, & 25+ 2H,0 + Heat

(2.51)
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The amount of excess oxygen at the thermal stage is regulated such that 1/3 of
the H,S is converted to SO, in the furnace.

The hot gases exiting the furnace are passed through a waste heat boiler where
they give off heat and are cooled. At the high temperatures of the reaction furnace and

while cooling in the waste heat boiler, H,S and SO, react to form sulphur vapors

which are passed into a condenser.

2H,S + SO, < 2H,0 + 3§ + Heat (2.52)

At this stage, approximately 67% of the conversion of the total H,S' to sulphur takes

place. The remaining gases are then passed through stages of in-line re-heaters, three
catalytic converters and three condensers to achieve the balance of the conversion to
sulphur. To drive the catalytic reaction as close to completion as possible, the ratio 2:1
of H,S to SO, obtained in the reactor should be maintained in the tail gas exiting
the last converter. The control configuration is such that the gross air flow-rate is set
by the main air controller F8, which adjusts the flow of combustion air to the reaction
furnace thus providing feedforward control of air to the acid gas ratio. The trim air
controller, F9 uses a gas analyzer (comprising of A2A, the analyzer that measures SO

and A2B, the analyzer for H,S) to determine the ratio of H,S to SO, in the tail gas

and performs feedback control of this ratio by adjusting the amount of airflow to the

reaction furnace.

In addition to the main H,S conversion reactions, secondary reactions occur

which result in low sulphur yield; hydrocarbons and oxygen compounds in the feed
react with sulphur to form carbon disulphide (CS,) and carbonyl sulphide (COS). To
minimize these reactions, the temperature of the gas entering the first catalytic
converter is maintained so that the converter outlet temperature is above 320°C. At the
320°C outlet temperature, 98% of the CS, and COS is expected to decompose. The

sulphur produced in each converter is removed before passing through subsequent
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conversion stages to maximize H,S conversion. Thus, process gases from each

conversion stage are cooled to condense the sulphur vapor to liquid, and removed from

the gas.

2.4.1.1 The adaptive controller

The adaptive controller, NMS5 is used to control the tail gas ratio effectively by
maintaining the appropriate set point for the trim air controller in order to achieve
optimal performance. The adaptive controller updates its process model automatically
and continuously as required to maintain optimal control of the process. This controller
increases the unit efficiency because it is able to handle the long time-delay inherent in
the process and it can handle the small variations in the acid gas flow/composition (i.e.
feed changes). The adaptive nature of the controller makes the control loop time-
variant. The effect of this time-variant nature will appear as non-stationarity of the
closed-loop data. Therefore, the proposed time variant performance assessment
algorithm is used to estimate control loop performance in the presence of non-
stationary characteristics in the data. It involves a systematic solution where the non-
commutativity problem associated with time variant processes is taken into

consideration.

2.4.2 Data analysis

The time delay of the process including a zero-order-hold from a priori analysis is
known to be no less or approximately 2 minutes. The sampling interval is one minute
and a sample size of 2076 data points collected over a three-day period is used in this
analysis. The data is assumed to contain a representative sample of normal process
operations. The plot of the operating data (mean centered output) for the adaptive

controller is shown in Figure 2.6.
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Figure 2.6: Plot of the operating data for the adaptive controller in the Sulphur Recovery Unit
(SRU)

In addition to the minimum variance control benchmark used for performance
assessment, other indicators of control loop performance are also considered and these
include the closed-loop impulse response and autocorrelation function (ACF) of the
output error.

An impulse response function curve represents the closed-loop impulse response
between the whitened disturbance sequence and the process output and it is a direct
measure of how well the controller is performing in rejecting disturbances or tracking
set-point changes (Huang et al., 1997). The autocorrelation function (ACF) of the
output error is an approximate measure of how close the existing controller is to
minimum variance condition. The minimum variance control performance has been
achieved if the autocorrelation function decays to zero beyond ‘d-1’ lags where d is the
delay of the process. The rate at which the autocorrelation tends to zero beyond ‘d-1°
lags indicates the closeness of the existing controller to the minimum variance
condition.

It is worthwhile to point out that the impulse response curve or autocorrelation
function only applies to time invariant processes. However, both control loop

performance measures are straightforward to calculate using process data and are
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therefore used as an initial, approximate estimation of performance by considering the
control loop as time invariant. After the preliminary tests, the proposed time-variant
performance assessment methodology is used to estimate the performance index of the
time-variant control loop.

The estimation of the time-variant impulse response coefficients for the AR model
(in eqn. (2.18) and eqn. (2.19)) and ARMA model (in eqn. (2.31) and eqn. (2.32))
shows that the first two terms of the moving average operators using pointwise and
normal multiplication are the same. It has been discussed that the minimum variance
term constitutes the first “d” terms of the moving average model. Hence, there will be
no difference in the minimum variance term for a time delay of 2 for the traditional
assessment method and LTV assessment method. However, the exact time delay is
not known and time delay may also be time varying. The more effective method to
account for such time delay uncertainty is to use extended horizon prediction method
(Harris et al., 1999), that is, we need to calculate performance index as a function of
time delay. With this consideration, the difference between normal multiplication and
pointwise multiplication will show up. In this case study, we shall also compare the
difference between the LTV assessment methodology (normal multiplication) and the

traditional assessment method (pointwise multiplication) over a range of time delays.

Figure 2.7 shows the results for the autocorrelation test where a rather smooth
autocorrelation plot is observed. Although it has not achieved minimum variance
control performance, the response is relatively fast (almost settles down in about four
samples). The test is only an indication of opportunity to further improve performance
because the minimum variance control is typically not achievable in practice. In fact,
it can be seen that the adaptive controller has achieved a close-to-optimal performance.
It is observed that the closed-loop impulse response in Figure 2.8 shows a similar slow
but smooth decay to zero. This result confirms a good performance of the adaptive
controller. The initial analysis using the impulse response curve and autocorrelation
function shows that the adaptive controller performance is good and the control loop is

well tuned most of the time.
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Further analysis is done on the LTV process by calculating the time-variant
performance index using the proposed performance assessment algorithm. The plot of
the performance index estimated over the three-day time period is given in Figure 2.9.
Also, a moving window size of 100 (with an overlap of 99 data points) and window
size of 50 (with an overlap of 49 data points) with conventional pointwise
multiplication approach were used in assessing the performance of the control loop,
and the results are compared with the LTV performance assessment algorithm.

Figure 2.9 shows the performance measure of the control loop using minimum
variance control benchmark. By visualizing this plot, it can be seen that the controller
performance is good and exhibits performance close to minimum variance control
most of the time. The controller has a performance index that is greater than 0.7
approximately 60% of the sampled time.

Figure 2.10 shows a comparison of the estimated performance indices using the
LTV performance assessment method and the moving window-based method (a
conventional method). Figure 2.10(a) shows that although the performance indices of
the two methods follow the same trend, but different values are obtained for most parts
of the data. Figure 2.10(b) clearly reveals a greater difference between the LTV
assessment method and moving window-based method when the window size was
decreased from 100 to 50 data points. Hence, window-based method is unlikely to
produce correct estimates of the performance index of a control loop with time-variant
disturbance and, or process dynamics. This result shows that it is important to use the
proposed LTV performance assessment algorithm in assessing the performance
measure for time varying processes. Since it is known that there is a fundamental
incorrectness in pointwise multiplication for LTV process, it is always better to use
normal multiplication in the analysis of variance for time-variant processes.
Furthermore, the plots clearly reveal time-varying behavior of the process and
appropriate tool for performance assessment must therefore be time-variant based. It
can be seen that the parameter-varying rate is slow and the difference between normal
multiplication and pointwise multiplication may not be great as will be seen in the

following.
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The comparisons between the LTV assessment methodology (normal
multiplication) and the traditional recursive assessment method (pointwise
multiplication) for time delays of 4 and 6 are shown in Figure 2.11. The top subfigure
2.11(a) is a plot of the performance index calculated for the adaptive controller using
the normal multiplication and pointwise multiplication for an assumed time delay of 4.
Figure 2.11(b) shows the calculated performance index using the two performance
assessment methods for an assumed larger time delay of 6. The plots reveal that there
is a difference between the LTV assessment methodology and the traditional
assessment for a time delay greater than 2 and the difference increases as the time
delay becomes larger. Therefore, it is important to use normal multiplication in the
calculation of the minimum variance term for an LTV process since the time varying
nature of process data is frequently observed in practice and the time delay could be

any value for different process operations.

Figure 2.12 shows the corresponding plots for the relative difference between the
performance indices using normal multiplication (NM) and pointwise multiplication
(PM) over the range of time delays discussed in the last section. The formula for

calculating the relative difference (RD) is given as follows:

_|NM result — PM result | (2.53)
- |PM result |

RD
It can be seen that the relative difference between the performance indices using
normal multiplication and pointwise multiplication increases with the increase in time
delay and the difference can be up to 40%. This result further shows that it is
important to take non-commutativity into account in the manipulation of LTV

operators.
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2.5 Conclusion

The technique for evaluating the type-A benchmark for control loop performance
assessment of time-variant processes under time-variant or adaptive control has been
discussed in this chapter. The method provides a way to monitor control loop
performance of time-variant processes by taking the non-commutativity associated
with LTV systems into account in calculating both minimum variance term and the
process variance. The proposed performance monitoring method has been illustrated

through a simulated example and demonstrated by an industrial application.
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Chapter 3

Performance Assessment of Processes with Abrupt

Changes of Disturbances Dynamics - Type-B
Benchmark
Abstract

This chapter discusses the issue of performance assessment of time-variant processes
due to abrupt changes of disturbances dynamics. It has been shown in the last chapter
that type-A benchmark is time varying minimum variance control and is suitable for
time-variant controllers or process or disturbance with the assumption that the
controller can be time variant. If the controller is time invariant, as is the case for most
industrial non-adaptive controllers, the type-A benchmark is clearly too demanding
and is not appropriate. This results in a need to develop an alternative time-invariant
performance benchmark that is more suitable for time-variant processes under time
invariant control. In this chapter and the following one, we will limit our discussion to
the time variant disturbance dynamics or models. This class of performance
assessment problem and its solution is discussed and illustrated through a simulated

example and an industrial application.

The main contributions of this chapter include (1) establishment of a general
computation framework for a new control benchmark applicable to any change of
disturbance dynamics; previous work in the literature has been limited to the
assumption that only two different disturbance dynamics affect the process; and (2) a

detailed industrial application of the proposed method.
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3.1 Introduction

Abrupt change is any change in the parameters of the model that occurs either
instantaneously or very fast with respect to the sampling period of the measurement
(Basseville and Nikiforov, 1993). Abrupt changes involve changes with large or small
magnitude but the magnitudes usually remain fairly constant for a time period before
and after the abrupt change.

Most studies on control loop performance assessment have been focused on
stationary time series or time-invariant processes, or to time series that can be
represented as a time-invariant linear function of present and past values of an
independent “white noise” process. Harris (1989) proposed that the minimum variance
control or best possible control could be estimated by applying time series analysis to
routine operating data. Desborough and Harris (1992) further proposed the use of least
squares regression in the estimation of minimum variance control and performance
index. Stanfelj et al (1993) presented the use of autocorrelation and cross correlation
functions in the diagnosis of feedforward/feedback control loop performance. Lynch
and Dumont (1996) reported the use of Laguerre network to model the closed loop
system in order to estimate the minimum variance control for controller performance
monitoring. Li and Evans (1997) presented the minimum variance control of linear
time varying systems. There has also been an extension of controller performance
assessment techniques to multivariate systems by Harris et al. (1996), Huang and Shah
(1998) and Huang et al. (2000). Some of the recent work on control loop performance
assessment includes a review of performance monitoring and assessment techniques by
Harris et al. (1999), refinery-wide control loop performance assessment by Thornhill et
al. (1999), and robust performance assessment of feedback control systems by Wan
and Huang (2002). Huang (2002) complemented the work of Li and Evans and
proposed a more general method of performance assessment of LTV feedback
processes.

Although, there exist various performance assessment methods for time-invariant
processes, there are few results available for time-variant processes. But most
processes have certain degree of time varying behavior in nature. Goodwin and Sin

(1984) have studied these time-varying properties in the “Adaptive Filtering Prediction
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and Control” literature but it has not been well addressed in control loop performance
assessment. However, it has been observed that abrupt changes of disturbance
dynamics are often encountered in many chemical processes due to, for example, the
grade change of feed, change of downstream demands e.t.c. and they result in time
varying dynamics or non-stationary time series of these processes. It is therefore
necessary to obtain performance assessment benchmarks that take these abrupt
changes of disturbance into account.

Traditional performance assessment technique for time-invariant controllers may
yield erroneous results when there is an abrupt change in the disturbance dynamics in
the control loop. This is because a minimum variance control benchmark estimated
from a set of data when only stationary disturbance affects the process could give a
poor performance in regulating a new disturbance that has a different dynamics.
Therefore, without considering time-variant characteristics, the classical performance

assessment results may be incomplete or can be misinterpreted (Huang, 1999).

3.2 Effect of Abrupt Changes of Disturbance Dynamics on the
Performance of Time-Invariant Minimum Variance Control

In terms of controller performance assessment, we are facing a practical dilemma. It
has been observed that abrupt changes of disturbances dynamics are often encountered
in industrial processes but most of the industrial controllers are time-invariant.
Although performance assessment of time varying processes has been studied by
Huang (2002) and generalized in the previous chapter known as type-A benchmark,
this benchmark assumes that the controller of concern is time varying or adaptive.
Since most industrial controllers are time-invariant, performance assessment of such
time-variant processes under time-invariant control is of practical interest. In this
section, we would show how varying disturbance dynamics affects performance of
time-invariant control and we shall develop a time-invariant control benchmark to
evaluate controller performance of processes with abrupt change(s) of disturbance

dynamics.
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Let us consider the LTV SISO process shown in Figure 2.1:
v =4 T(qg",0u,+N(q" 1), ' (3.1)

The closed-loop response under any time-variant feedback control u, = -0(q7', 1)y,

can be written as
y,=F(q",a+i(q " t)a,, (32)

where

_ T'(q_lat — d)Q(q—lst - i)N(q_lat - d)
1+0(q",t-d)q~ T (g ,t —d)

g™, t)=R(q7,1)-

(3.3)
-1
=R(q",1) - 1 N(q“’ :t 1d) d
Q' (g . t-d)T (gt =d)+q"
F(g™',t) and R(g™',t) are solved from the Diophantine identity:
N 0= £+ f(Og" +..+ [, (O + R(g™.t)q™" (3-4)

-
F(g'n)

The closed-loop response under time-variant minimum variance control is given by

w = O+ O + L0+ [, ), (3.5)

Vi

The time-variant minimum variance response can be estimated from time series
analysis of closed-loop data. This time-variant minimum variance control benchmark,
which has been discussed in chapter 2, is referred to as Type-A benchmark. For time-
invariant processes, the type-A benchmark is the time-invariant minimum variance
control. For processes with abrupt changes of disturbance dynamics, the type-A

benchmark is piecewise time-invariant minimum variance control (Huang, 1999).
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It follows from eqn. (3.3) that for a time-invariant process transfer function
g “T(q™") and a time-invariant control law 0(g™), the closed-loop response can be

written as

N(g,t=d) } i 56

=F —]’ t R _1’ - -1y -1 -d
v=ra t)“[ @ @ @)+ e

Let us assume that there are three different disturbance dynamics affecting the process
with the first change in disturbance dynamics occurring at = @, and the second

abrupt change occurs at ¢ =26 :

(N(g")=F(g)+g9 R(g™) t<0
N(g",t)={N,(@")=F,(g")+q9 R, (q™) 0<t<20 (.7)
(N.(¢)=F,(¢)+q R,(q7) 1>20

For the first section of data sampled at time ¢ < &, eqn. (3.6) can be written as

] - - N, (q—l) -d
yt( ) = F; (q )at + [‘Rl (q ) - -1 -1 "l'_l -1 —d }q at (3'8)
O (@) (g )+q

The closed-loop response in eqn. (3.8) is time-invariant and the corresponding time-
invariant minimum variance control law is calculated when the right hand side of the

equation is equated to zero to obtain

0®(g™")=T"(q"R(@F (g™ (3.9)
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Substituting eqn. (3.9) into eqn. (3.8) yields

)

| =F (g )a, (3.10)

F.(qg™")a, represents the process output under minimum variance control for the first

section of data.

If the minimum variance control Q% (g™') is chosen as the benchmark, the

my

performance of this benchmark for the second section of data O <t<26 can be
estimated. From eqn. (3.6), the closed-loop response to the second disturbance

dynamics can be written as

2 - | -1 N (q—l) -d
yt( ) = F; (q )at + [R2 (q ) - -1 ~1 '\2“_1 -1 ~d }q at (3°1 1)
0 (g )T (g7)+q

The true minimum variance control O (g™") for this data set can be calculated by

equating the right hand side of eqn. (3.11) to zero and this gives

D (g y=T"(g")R,(qg"F,' (g") (3.12)

The process output under this true minimum variance control can be obtained by
substituting eqn. (3.12) into eqn. (3.11) and this yields

(2)

yt my =F'2(q_l)at (313)

However, if the minimum variance control of the first section is used, i.e. fnlv) (g7") is
used to control the section, we would naturally want to know what the response of the

second section will be.

Hence, substituting the control law Q%) (¢™") into eqn. (3.11) yields
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¥ =F,(¢a, +|R,(¢7) - R(q ")Nzgq:l))}f"a,

Gy o g N, (g™, ,
=\F R —_ 222 *R
[ (g7 )+q R, (g )]a, N( R (g7 )a,

= N,(g)e, —q"dx—z(%’;—;&(q-‘)a, 314)
_N,(g7)

"N [ N(g-g R,

_ Nz(q"‘)F
N(g™") '

(g7)a,

Eqn. (3.14) can be expressed in additive terms as

Y =F,(a")a, + [(?Zﬂ?ﬁfl;z—DE(q*‘)Ja,-d 619

This is the response of the second section when the minimum variance control of the

first section is applied.

We can also estimate the performance of this benchmark when applied to the third

section of data £>260. From eqn. (3.6), the closed-loop response to the third

disturbance dynamics can be written as

(3) -1y _ Ns(q_l) -d
F(q ,t)a, +[R (g7) Q"(q")f"(q")+q'd}q a, (3.16)

The true minimum variance control Qf:v) (g') for this data set is calculated by

equating the right hand side of eqn. (3.16) to zero:

09(q™)=T"(¢g"R(g)F (g™ (3.17)
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The process output under this true minimum variance control can be obtained by

substituting eqn. (3.17) into eqn. (3.16):

3)

yt my = F; (q—l)at

With the benchmark control law Q% (g™"), eqn. (3.16) yields

YO =F,(q")a, + [& @")-R (q")ﬁ*—q_l}q‘da,

N.q)
=[E<q“)+q*d1e3(q*‘)]a,—q'd—%ﬁ%&(g*)a,
=N, (g M)a, —q" ;V,EZZ R(g™a,

N,(qg™) AN dp gt
= N.(q")-q R
Nl(q-l)[ (q@)-9 R (q )]a,
N, (™) .., .

- F

N.(gh e

Similarly, eqn. (3.19) can be expressed as

¥ =F(ga, + ((f,(é))x SLICy ))a,_d

(3.18)

(3.19)

(3.20)

The expressions in eqn. (3.10), eqn. (3.14) and eqn. (3.19) represent the performance

of the time-invariant minimum variance control for the three disturbance dynamics

occurring in the process. It should be noted that the result obtained could be extended

to a more general case (which shall be discussed next) where more than three

disturbance dynamics may affect the process.

Let us consider a general case of a process affected by "i=1,2,3,...,n"

disturbance dynamics. Assuming an abrupt change of disturbance occurs at each data
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section, then the data Y, could be segregated into "n" piecewise stationary sections

Y,,Y,,Y,,...Y,. If the minimum variance control 0\’ (q™") of the " j*" section of

data (1< j <n) is chosen as the benchmark, then the closed-loop response of this

time-invariant benchmark control law to the "i"" disturbance dynamics (i # j) can

be written as:

9 = F(q™)a, +| R(a™) - R,(q *'»Ni‘fli ‘a
=[E<q-‘)+q-dR,.<q-')]a,—q‘d%_—((—%w*)a,
=N,(ga, —-q Niq:)) (q7")a, (3.21)
N-(q_l) -1 -d -1
=——"—=IN - R.
P ACRR TG )k
N o,
F
N( N (g7 )a,

Eqn. (3.21) implies that the difference of performance between the true minimum

variance control Q% (¢™") and the benchmark minimum variance control (g™

applied to the current i * disturbance is given by a multiplicative factor that depends

only on the disturbance dynamics.

The difference of performance between the true minimum variance control (g™
and the benchmark minimum variance control QY’(g™') applied to the current

i* disturbance can be further expressed in additive terms:

_ (g7IN,(g7) _
yO=F(q" ! ~DF.(q™") |a._, (3.22)
(97 )a, [( F@ON, @) )F(q )Ja,-
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3.3 Performance Assessment with Type-B benchmark

As has been discussed above, type-A benchmark, which is time varying minimum
variance control, is not a suitable benchmark for performance assessment of most
industrial controllers that are time-invariant. But it has been discussed that abrupt
changes of disturbances dynamics are often encountered in many chemical processes
and they result in time varying dynamics of these processes. Therefore, it is important
to obtain suitable time-invariant control benchmark for performance assessment of
these processes with time-variant disturbance dynamics. This leads to the discussion

of type-B benchmark, which is time-invariant minimum variance control.

The type-B benchmark uses minimum variance control of the data section that is
the most representative of the process operation as a benchmark to evaluate controller
performance over the entire time period. The rationale is that since the controller is

time invariant, the benchmark controller can only be time invariant.

For instance, consider a time-invariant process transfer function q“dT" (q_l) and a
time invariant control law G,(¢"'). In this example, we have a set of data
Y ={y,,,»V,>--Y,} sempled from 0<¢<n. It is assumed that the process is

affected by two different disturbance dynamics N,(¢”') and N, (g7") with the

change of disturbance dynamics occurring at # =&, where 0 <0 <n. Hence, data is

segregated into 2 sections and for the first section of disturbance, we have

Y= 9. )19 =
1 {_;lvo y J:el} d 623
N(qg™)=F(g™")+q“R(g™) 0<t<8

For the second section of disturbances, we have

Y =4y, V.. ..
{2 {i)myaﬂ’ -lyn} . i} (3.24)
N,(g)=F,(¢7)+q"R,(q7) 9<t<n
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The minimum variance or lower bound of variance for each data section could be
estimated by applying any time-invariant control loop performance assessment
algorithm (Harris, 1989; Desborough and Harris, 1992; Huang et al., 1997). These
piecewise lower bounds can be achieved simultaneously under time variant minimum
variance control (the type-A benchmark). However, a time-invariant controller can
possibly achieve only one of the lower bounds. For type-B benchmark, the minimum
variance control of one representative section of the data could be used as a benchmark
to evaluate performance of the entire process but note that the chosen minimum
variance control benchmark is optimal for that data section only. Since the disturbance
dynamics is time-variant, it is important to check the suitability of this benchmark by
estimating the possible response when it is applied to other sections of data (Huang,
1999). This should be carried out because the minimum variance control of one data
section might not be appropriate for other sections of the data set especially when there

is a significant change in the disturbance dynamics.

In this example, it is assumed that the minimum variance control of the first section of

data ¥, ={¥,,,---Vy} is used as the benchmark without loss of generality.

From Figure 2.1, the closed loop transfer function for the first section of data can be

written as

Hc(ll) —l) — d]’\[l (q~l) 1 (325)
1+¢7T(¢7)G.(q¢7)

Applying time series analysis and using pointwise multiplication and/or division, the
closed loop transfer function for the first section can be expressed as the sum of

impulse response coefficients:

YP>qHY=H® (g a, =(fO + £q" + ...+ f5q7 " +q7GY (g7 )a,
(3.26)
The minimum variance term is:
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F@)=f"+ 10" +..+ fhg (3.27)

Similarly, applying time series analysis to the second section of data yields the closed

loop transfer function

TR A 629
1+¢7T(¢7)G.(q7)

Using long division, we can obtain

Y:(Z) (q—l) = H(z) (q—l)at — (f;)(z) + fl(Z)q_l +..+ fd(_zl)q-(d—l) + q—dGl(z2) (q—l ))at

cl

(3.29)
and the minimum variance term for the second section is:
F (g =2+ fPq" +..+ [ (3.30)
From eqn. (3.25) and eqn. (3.28),
-1 )¢ -1
N,(¢7)_Hi(q) (331)

NJ(g") HP(g™)

Eqn. (3.31) can be estimated from time-series analysis of the closed-loop operating
data. Substituting eqns. (3.27) and (3.31) into eqn. (3.14) or (3.15) gives the closed
loop response of the type-B benchmark control when it is applied to the second section

of data.

Although the analysis has been carried out for two different disturbance dynamics,
this result can also be extended to the case where there are more than two disturbance
dynamics affecting the process. The illustration for the more general case is

summarized and given next.
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For a general case, consider a time-invariant process transfer function g™ T (¢g7") with
a time invariant control law G, (g7'). 1t is assumed that the process is affected by

"n" different disturbance dynamics N, (¢™), N,(g™), N,(¢™"),..., N, (g7'). The

sampled data is segregated into "n" sections and each disturbance dynamic is given by

the diophantine identity:
N.(g"=F(@q@")+qR(q™) i=1,2,3,...n (3.32)

Typically, for type-B benchmark, the minimum variance control of one representative
section of the data is used as a benchmark to evaluate performance of the entire
process. Since the disturbance dynamics is time-variant, it is important to check the
suitability of this benchmark by estimating the possible response when it is applied to
other sections of data (Huang, 1999). This should be carried out because the minimum
variance control of one data section might not be appropriate for other sections of the

data set especially when there is a significant change in the disturbance dynamics.

It is assumed that the " j*" section of data (1< j <n) is the most representative

of process operations and the minimum variance control of this section of data is used

as the benchmark for performance evaluation of the entire process. The closed loop

transfer function of the " j”" section of data can be written as:

. N.(q"'
Hc(lj) q“): -d ~J(?I ) -1 (3:33)
1+¢7T(q7)G.(q7)
and the minimum variance term is given by
Fj(q—l)zfo(j) _|_fl(j)q-1 +m+f;_jl)q—(d—1) (3.34)

The closed loop transfer function for the i” section of data (i # j) can be written as
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N(g7) (3.35)
+q7T(¢g7)G.(¢7)

HP(q™)=

1
and the corresponding minimum variance term is given by:
(g =5+ 100"+t 007 (36

From eqn. (3.33) and eqn. (3.35),

NG _Hi@) (337
N, (") HP(@q)

Substituting eqn. (3.34) and eqn. (3.37) in eqn. (3.21) gives the closed loop response

when the benchmark control is applied to the i * section of data, and can be written in

a general form as

s H?(q@™h , . .
0) ol o ) -1 () ~(d-1)
y = d L (fD g £ g7 )a (3.38)
Note that the basic assumption that has been made in the analysis of type-B benchmark

is that only changes of disturbance dynamics affects the process operation.

3.4 Evaluation via Simulation Example

Huang (1999) showed that the controversial result obtained by Eriksson and Isaksson
(1994) in their simulation example is due to the change of disturbance dynamics rather
than inadequacy of the time-invariant minimum variance control benchmark. Huang
(1999) demonstrated the validity of the minimum variance control benchmark by
considering a case where there is an abrupt change of disturbance to random walk

dynamics in the second data section. This simulation compliments the contribution by
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Huang (1999), and further shows that we can extend the result to a more general case

where we have more than two disturbance dynamics affecting the process.

The process is a discrete-time model given by

0.33
_dT -1 — -4_.__:_____ 3.39)
4T =4 T (

The process is controlled by a Dahlin controller, which is given by

., 0.7-0.474"
_ 3.40
04 )=333-0.104" — 0234~ (340

We assume that the time-variant disturbance transfer function is

N(g™)= E{Z—; (3.41)

where A and S can assume values from 0 to 1. Here, we’ll be considering a total of

7000 data points with four different types of disturbance dynamics in the simulation.

The disturbance dynamics are given as follows:

_1- 0.4q1

N,(g™")= t <2501 3.42
() =10 6747 (3.42)
: _ -1
N,(g)= 1—1—%— 2501 <t <3501 (3.43)
-q
) 1-0.4q7"
N,(g")=——"— 3501 <t <5001 3.44
@) =087 (344)
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1

— = 5001<t<7000 (3.45)
1-0.67¢q

N4(q—l)=

From eqn. (3.42), the theoretical minimum variance term for the first section of data is

F(qg")=1+0.27¢" +0.18¢ +0.12¢

and its variance is 0, , =1.1207,

From eqn. (3.43), the minimum variance term for the second section of data is

calculated as

F(q")=1+0.6q" +0.6¢q” +0.6¢"

and its variance is o>, , = 2.080°

From eqn. (3.44), the calculated minimum variance term for the third section of data is

F.(g")=1+047¢" +0.41g” +0.36¢"

and its variance is o, , =1.5107

From eqn. (3.45), the theoretical minimum variance term for the fourth section of data

is calculated as

F(q")=1+0.67¢g" +0.45¢™ +0.30¢"

and its variance is O-:w .= 1.740‘3

A plot of the four disturbance dynamics affecting the process is shown in Figure 3.1.
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Figure 3.1: Plot of the sections of data showing the four disturbance dynamics affecting the

process

A time-invariant controller cannot achieve the four minimum variance control

benchmarks o> ,, 0>, 0> .,0. , simultaneously. For type-B benchmark, only

mv,12 mv,2? mv,3? mv,4

one of them is used as the benchmark depending on which section of disturbance is

most representative. It is assumed that the disturbance dynamics in the first section of
data is most representative, such that O':WJ =1.120" is used as the benchmark for
performance assessment but this value is only valid for the first section. The minimum
variance control will give different variances for the remaining sections. Therefore, it

is imperative to check if this benchmark control is suitable for the other sections of

data after each abrupt change of disturbance.

From eqn. (3.21) the closed loop response of the chosen benchmark control to other

sections of data is given by
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, N.(¢g™) _
O] i 1
Yo = e (q7)a, (3.46)
Nref (q 1) !

where the subscript, "ref " represents the section of data that is used as the benchmark

for performance assessment and “i > denotes the other sections of data.

Thus, the closed-loop response of the benchmark control Q%) (g™) to the 2, 3"

and 4" sections of data can be expressed as

v 1—_19_.—6%‘]—(1 +0.27¢7 +0.18¢7 +0.12¢7°)  2501<t<3501 (3.47)
_ -1
yo =1706707 (102747 +0.1847 +0.1247) 3501 <e<5001  (348)
1-0.87g
@ = 1———014—_1(1 +027¢" +0.18¢7 +0.12g™)  5001:<7000 (3.49)
—— R q

Although the minimum variance control of the first section of disturbances is a suitable
benchmark for the disturbance dynamics in the 3" and 4™ data sections, it can be seen

that a pole g =1 appears in the denominator of the closed loop transfer function for

the second data section which has a disturbance model with random walk dynamics.
This results in a drifting process response, which is clearly unacceptable. Table 3.1
shows that the performance index calculated for the 2™ section of data is much greater
than one and this further confirms that a very poor performance has been achieved by
this benchmark control in this data section. Once the first section benchmark is found
to be unsuitable, one has to search an alternative time invariant benchmark, which will

be discussed in the next chapter.
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Table 3.1: Type-B benchmark (with 1% section of the data as benchmark control)

d.ata . tir.ne O-:w(l,i) o ; (t ) 77(t )
section, (i) (mins)
1 1-2500 1.1203 1.6985 | 0.6596

om 2501-3500 | 14.7299 | 2.0911 | 7.0442

31 3501-5000 | 1.7290 1.9149 | 0.9029

4™ 5001-7000 | 1.7581 2.6432 | 0.6651

Now, as an illustrative example, let's consider choosing the minimum variance
control of the second section as a benchmark. If the minimum variance control of the
second data section is used as the benchmark to evaluate controller performance over
the entire time period, we need to check the suitability of this benchmark control when

applied to other sections of data.

From eqn. (3.46), the closed-loop response of the benchmark control ,(:v) (g7™") to the

1¥, 3™ and 4" sections of data can be expressed as

-l
Aty 10 6q7 —(1+0.67 +0.6g7 +0.6¢7")  1<2501 (3.50)
—_— R q
® = ToRiaT 1;37 —(1+0.6g" +0.69” +0.6¢7) 3501 <t <5001 (3:51)
— . q
y@ = =g (1+0.6¢7 +0.6g7 +0.6g7)  5001<t<7000 (3.52)

T 1-1.07¢" +0.2684™

From eqn. (3.50) to eqn. (3.52), it can be seen that the minimum variance control of the

second section of disturbance is a suitable benchmark for the disturbance dynamics in
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the 1%, 3™ and 4™ data sections. However, there is an integral action in the minimum
variance controller as it can regulate the random walk disturbances. This integral

action will inflate the achievable variance.

Table 3.2 reveals the inflation in variance due to the integrator of the benchmark
control of the second section of data when applied to other sections of data. This
results in high performance indices obtained in all the data sections. Therefore,
according to this minimum variance control benchmark, one can see that the actual
controller is very close to the benchmark in all sections. In other words, the existing
controller is optimum among the class of controllers that have an integrator in

regulating all four different disturbance dynamics.

It should be noted that if the minimum variance control of either the 3" or 4™ data
section is chosen as a benchmark to evaluate performance of the entire process, the

closed-loop response to the second section of data will also have a pole g =1

appearing in the denominator of the closed loop transfer function and this results in an

unstable response which is not acceptable as we have seen in the first scenario.

From this simulation example, it can be seen that for a time-varying process with at
least one of its disturbance models having random walk dynamics, only the minimum
variance control for the sections of data with random walk dynamics can be used as
benchmark control to evaluate controller performance over the entire time period.
However, this/these data section(s) might not be representative of the process
operation as is required by type-B benchmark. Therefore, type-B benchmark might
not always be appropriate and another benchmark has to be considered which would be
suitable for regulatory performance of different types of disturbance dynamics within a

process. This will be the focus in the next chapter.
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Table 3.2: Type-B benchmark (with 2" section of the data as benchmark control)

data | time Crny | OO | 1)
section, (i) (mins)
I 1-2500 1.6087 1.6985 | 0.9471

nd 2501-3500 | 2.0800 2.0911 | 0.9947

31 3501-5000 | 1.8618 1.9149 | 0.9723

4 5001-7000 | 2.5622 2.6432 | 0.96%4

3.5 Industrial Application

The time-invariant type-B benchmark is used to assess the control loop performance in
a Sulphur Recovery Unit (SRU) in Syncrude Canada Ltd. The general description and
the control objective of this unit have been discussed in the last chapter. However, the
output data of the PID controller that was used before the installation of the adaptive
controller in the sulphur recovery unit is considered in this case study. Type-B

benchmark is applicable to this data set since the actual control is time invariant.

A total of 740 data points are used for this case study and the data is assumed to
contain a representative sample of normal process operations. The results obtained
from the analysis of the control loop performance are applicable to the time over which
the data was collected. The sampling interval for the data is 1 minute and the time
delay of the process including zero-order-hold is estimated to be no less than 2. A time
delay 2 will be used in the following discussions. The plot of the operating data is

shown in Figure 3.2.

It is clear from Figure 3.2 that a major disturbance was affecting the process for a
time period and the process and/or disturbance dynamics is clearly time varying. It is
believed that the time-varying nature of the process data is due to time-variant

disturbance dynamics. It is also believed the significant variation (nonstationary
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behavior) of data is not due to control tuning or instrumentation problem as the loop

response was fairly stationary for most of other time period.

0.2 T ! ! - mean centered output

0.15 } .

]
u]
=
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T
1
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a 100 200 300 400 500 600 700
Time (mins)

Figure 3.2: Plot of the operating data for the PID controller

The data set is divided into three sections according to the observed data trend as
shown in Figure 3.3. The first section represents the data sampled from time 0 to 179
minutes, the second section is between 180 minutes and 400 minutes while the third

data set is sampled from 401 minutes to 740 minutes.
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Figure 3.3: Data segmentation
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Let the 3™ section of data be the “routine” disturbance affecting the process and thus
the minimum variance controller of this section should be chosen as the benchmark.
Applying time-invariant performance assessment algorithm to each section of data
yields the minimum variance for corresponding sections as shown in Fig 3.3. These
minimum variances can only be achieved by (piece-wise constant) time variant
minimum variance control. However, for the time-invariant type-B benchmark, only
one of the lower bounds can be possibly achieved. Therefore, for this example, the
minimum variance control of the 3™ section of data is considered as benchmark control
and its closed-loop response to other sections of data are calculated and the results are
presented in Table 3.3. The closed-loop impulse response of the benchmark control to

the three data sections are shown in Figure 3.4

Table 3.3 shows that the performance index of the 1% section is greater than one.
This indicates that the benchmark control has a relatively poor performance in
regulating the 1% section of disturbance, and in fact this benchmark controller is poorer

than the existing controller in regulating the disturbance occurring in the first section.

From Figure 3.4a, it can be seen that a settling time of 12 minutes is achieved by
the benchmark control to the 1% section of disturbance while Figure 3.4b shows that the
settling time to the disturbance dynamics in the 2™ section of data is 70 minutes. The
settling time of the minimum variance control benchmark to the disturbance dynamics
in the 3™ section of data is 7 minutes. Though stable responses have been obtained in
all the data sections, the long settling time of 70 minutes to the abnormal disturbance
in the second section of data is not acceptable. It is required that the closed-loop
settling time when significant upset occurs should be approximately 5 minutes, which
is the same as the open-loop settling time. Therefore, it is necessary to obtain another
time-invariant benchmark that would give suitable regulatory performance for all the
disturbance dynamics occurring in a process, which will be discussed in the next

chapter.
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Table 3.3: Type-B benchmark (with 3" section of the data as benchmark control)

qata . time O-mv(3,i) O.:w(S,i) O-)’ (t) O-j (t) n(t)
section, (i) | (mins)
1% 0-179 1.2132 1.4718 1.1446 | 1.3102 1.1234
2ond 180-400 | 2.7220 7.4095 3.1733 10.0696 | 0.7358
3d 401-740 | 1.3289 1.7659 1.3510 1.8251 0.9676
Impulse Response _ impulse Response
| — 1st section ‘ "4 I —— 2nd section
08 R 1.2 E
GEB 4
2 {14 o 08
& oz g o0&
0 3.4
] 4.2
£4d . 3 \““\
"o & 10 1% 20 25 4] S0 100 150
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(@) (b)
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12 ' ) | ——— 3rd section
g
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Figure 3.4: Impulse response for the three data sections with 3™ data section as the benchmark

control
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3.6 Conclusion

Type-B benchmark has been discussed in this chapter. For processes with piecewise
constant disturbance models, type-B benchmark refers to a minimum variance control
that corresponds to one representative disturbance model of user's choice. An example
has been given to show that type-B benchmark is useful when minimization of a
particular type of disturbances amongst other forms of disturbance dynamics affecting
the process is of the only interest. In using type-B benchmark, it should be verified if
it is suitable for other sections of data when abrupt changes of disturbance occur. If
type-B benchmark is not appropriate, there is a need to obtain another form of time-
invariant benchmark that will be suitable for the various types of disturbance dynamics

occurring within the process.
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Chapter 4

Performance Assessment of Processes with Abrupt
Changes of Disturbances — Type-C benchmark

Abstract

The objective of this chapter is to develop another time-invariant benchmark that is
able to regulate different disturbance dynamics within a given process. In Chapter 3, it
has been shown that minimum variance control of one section of data may not be
suitable for other sections of data if disturbance dynamics changes significantly. Thus,
we need to discuss an alternative time-invariant minimum variance control benchmark
that can optimize overall performance of these time-variant processes. It is shown that
this performance benchmark that is referred to as the type-C benchmark may be found
from routine operating data through some time series analysis and optimization
technique. The proposed performance assessment method is illustrated by a simulated

example, and a case study on an industrial process is presented.

The main contributions of this chapter include (1) a systematic solution of (optimal)
type-C benchmark; previous solution of type-C benchmark is based on a simulation
method; (2) establishment of a general computation framework applicable to any
change of disturbance dynamics; previous work is limited to the assumption that only
two different disturbance dynamics affect the process; (3) a detailed industrial case

study.
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4.1 Introduction

It has been shown that minimum variance control of one data section may not be
appropriate for the whole time period of the process operation in the presence of time-
variant disturbance dynamics. For such time-variant processes to be controlled by
time-invariant controllers, it is important to obtain or search for a suitable time-
invariant control benchmark that can optimize their overall performance while only
routine operating data can be used. A section of data or disturbance may be more
representative of process operation and a focus on the control of this section of
disturbances is possibly most important. Other forms of disturbances within the
process are said to be transient and it is not required to minimize the variances of these
sections of data provided they could be controlled within some predefined performance

targets or time limits (Huang, 1999).

Type-C benchmark is characterized by a controller that minimizes the variance of
a most representative section of the disturbance subject to some predefined regulatory
performance of other sections of disturbances within the process. That is, these
abnormal disturbances or major upsets, which are typically transient, should be settled
down along some user-defined reference trajectory or funnel. This is beneficial
because it ensures that a specified performance of the controlled variable is achieved in
such data sections (Qin and Badgewell, 1996). The desired closed-loop response to
these sections of disturbances could be first order or a higher order with a pre-defined
regulatory performance but it leaves out some free parameters that could be used to
search for a time invariant controller that minimizes the variance of the most
representative section of the disturbance (Huang, 1999). In general, there is a control
performance requirement such as the settling time or time constant to regulate the
abnormal disturbances of the process and it is required to find a time-invariant
controller that can minimize the representative disturbance subject to the performance
requirement of the sections of data with the significant upsets. Once the “constrained”
benchmark control response is known, the control loop performance assessment can be
carried out by comparing the benchmark control with the existing process output. This

defines the Type-C benchmark.
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It should be noted that like the type-B benchmark, a basic assumption that is also
made with type-C benchmark is that process subjects to change of disturbance

dynamics only.

4.2  The Optimization Problem - Type-C Benchmark

This section discusses the optimization problem involved in searching for a controller
that minimizes the variance of the most representative section of the disturbance
subject to some predefined performance requirement in regulating other major but
transient upsets within the process. This constitutes an extension to the recent
contribution by Huang (1999) in which the time-invariant control benchmark was

obtained via an ad hoc method rather than through dynamic optimization methods.

For an illustration, we consider a process q_dT (g™') which is subject to two

disturbance dynamics, N,(q™") and N,(¢™"). The change of disturbance dynamics

takes place at #=@. It is assumed that the first disturbance dynamics is more
representative section of the disturbance while the second section of disturbance
corresponds to the significant but transient upset affecting the process. For type-C
benchmark, it is required that the closed-loop response to this section of data is settled
along some user-defined trajectory. Thus, the closed-loop response to the second

section of disturbance can be written in a general form:

yE =+ S0+t LR + 97 L (g e, @1
Fz(;_l)

where

Fz(q_l) = 0‘2) + fl(z)q'l + ...+ fd(fl)q‘(d") 4.2)

L,(q™") is a stable and proper transfer function that depends on the feedback

controller. However, L, (g™") is not exclusively determined but it is defined in such a

way that it leaves some free parameters that can be used to find a controller that
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optimizes the regulatory performance of the first section of disturbance. Here, let us

consider the desired closed-loop response to the second section of disturbance is first

order with time constant, 7. The transfer function L,(g~ ) may be written as

L(g™)= ‘1‘%: (4.3)

From eqn. (4.3), is left as the free parameter to be determined. & can be obtained

from the desired time constant, 7 via
E=exp(-T,/7) 4.4)
where T is the sampling period of the data.

In general, yfz) in eqn. (4.1) is an achievable process response. We can find a time-

invariant controller (,(¢™") that will give the closed-loop response

2 -1 -d -1 N,(qg7)
Yy =(F(q")+qL(q™))a, =———=+— — (4.5)
)L = T F N o)

Similarly, we can write the closed-loop response for this controller O, (g™") to the

first section of disturbance:

1) — ]Xl (q—l) a (4.6)
“1+q7 T (g0, (g™

From eqn. (4.5) and eqn. (4.6), we have

o 2N (5 Y+ gL (g @
= e BT L@
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The objective is to minimize the variance of the first section of data set y" with the

time-invariant controller Q, (q'l) subject to a predefined performance of the second
section of disturbance. Thus, we need to find the free parameter  in the transfer

function L,(q™') that will minimize the variance of y. This is solved as an

optimization problem using the Lyapunov equation solver and unconstrained non-

linear minimization method:

1 Ni@™) (5 (g o oty (e ]
var(y") = var| ——"—=(F, +q™ L, ) (4.8)
") (Nz(qﬁ)( (@) +qL(g"))a
v =arg, min (Var( yf'))) (4.9)

4.2.1 Solution of the optimization problem

The approach used in solving the optimization problem is to convert the transfer

function model in eqn. (4.7) to a state space description:

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k)+ Du(k)

(4.10)

where the matrix A in eqn. (4.10) is stable.

The variance of y" is obtained by calculating the /, norm of the discrete transfer

function:

G(z)=C(ZI - A" B+D=G(g™) (4.11)

The H, norm represents the 2-norm of a stable, strictly proper system matrix. A

discrete time system is said to be stable when the magnitude of all its poles are less

than one.
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The H, norm of the system is given by
|G(¢™)|, = trace (D™D + B"L, (y)B) (4.12)
where L is the observability gramian.

The H, norm of a system follows from the solution to the Lyapunov equation

AL, (W) A = L, () + CT W)C(y) =0 (4.13)

L (v)=dlyap(4,C" (wy)C(w)) in MATLAB environment solves the discrete

Lyapunov equation. L_(y) is returned as a function of the free parameter i .

Once L, () is obtained, the optimal value of the free parameter | is calculated via

the unconstrained non-linear minimization method “fminsearch” command in

MATLAB. This optimization method makes use of the Nelder-Mead simplex (direct

search) method to evaluate the free parameter \y by minimizing the A, norm i.e.
l//min :min (DTD + BTLo(‘//)B) (414)

Once the transfer function L, (q") is completely determined, the control loop

response of the benchmark control Q, (q_l) to the disturbances occurring in both
sections of data can be calculated from eqn. (4.1) and eqn. (4.7). It has been discussed
that F,(¢™') in eqn. (4.2) can be estimated from time series analysis of routine

operating data and

N _H(q")
N.q) HP(@")

(4.15)
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can also be estimated from closed-loop operating data. Therefore, both eqns. (4.1) and
(4.7) can be estimated from routine operating data plus predefined performance
requirements for regulating the major but transient upsets. Once the benchmark
control response is obtained, the performance measure of the control loop can be
determined by comparing the benchmark control response with the existing process

output.

Up to now, we have only considered the process subject to two different
disturbance dynamics. However, if there are more than two sections of varying
disturbance dynamics, then the suitability of type-C benchmark to other sections of

data has to be determined.

In general, for a process q'df (g7") that is subject to "n" different disturbance
dynamics  N,(¢™), N,(¢7"), N;(¢""),-...N,(¢""), the process data can be
segregated into piecewise stationary sections Y, (i=1,2,3,..,n). If the j i
disturbance dynamics is the most representative section of the disturbance while the
k™ section of disturbance corresponds to the significant but transient upset affecting
the process, the objective is to minimize the variance of the j  section of the data set,

subject to a pre-specified performance for regulating the abnormal disturbance

occurring in Y, .

From eqn. (4.7), the closed-loop response of the benchmark control O, (g7™") to the

representative disturbance occurring in YJ can be calculated as

. N,(@™) _ v o
D=L 2 F(g")+—2—q" 4.16
& N,,(q“)( e ]a' o
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and from eqn. (4.1), the benchmark performance to the abnormal disturbance occurring

in the k" section of data can be written in a general form as

¥ = (F(q“)+r__ e q")a, (4.17)
where
F(g)=f2+ fPq" +..+ fRq7 (4.18)

We can also write the closed-loop response for the controller Q,(g™) to the i .

section of disturbance as

-1
O = _diji(C{l) _q, v itk (4.19)
1+9™T(g7)0:(q7)

For the time-invariant controller O, (™), the closed-loop response to the k" section

of disturbance can be further expressed as

(k)__ F, d = ],Y k(qnl) 4.20
D4 = L T o) 0

From eqn. (4.19) and eqn. (4.20), the closed-loop response of the controller 0.(q™)

to the disturbance occurring in the i * section of data can be obtained as

0 = N;q__,i( (q )+7:—"é:—q; Ja izk @21)

Therefore, in addition to obtaining the benchmark performance to the representative

disturbance and the major upset occurring in the process, we can also check the
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suitability of the type-C benchmark when it is applied to the entire duration of the

process.

43 Evaluation via Simulation Example and An Industrial Application

4.3.1 Simulation example

Huang (1999) gave an example to demonstrate the optimization problem involved in
type-C benchmark. In his simulation, an estimated solution was found by direct
observation of curvature rather than the use of dynamic optimization methods.
However, this simulation shows that the type-C benchmark may be found from routine

operating data through some time series analysis and optimization techniques.

The process transfer function is given by

= 0.33
“T@)=9"'—— 4.22
qa°T(q)=q 1-0.674° (422)

A Dahlin controller is used to control the process and it is given by

0.7-0.47q"

~ ” (4.23)
0.33-0.10¢™ - 0.23¢

(g™ =

In this example, a total of 4500 data points are considered and it is assumed that the
process is affected by three different disturbance dynamics with an abrupt change of
disturbance occurring at the 2001 data point and 3001” data point. The

disturbance dynamics are given by:

_1-04q"

= . 1<t <2001 (4.24)
1-0.67¢

N.(q™)
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1-0.4q""

N,(¢7)= o 2001 <t <3001 (4.25)
-q
_ 1-0.4q™
N, (g)=—"— 3001 <t<4500 4.26
@)= 10874 (4.26)

A plot of the disturbance dynamics is shown in Figure 4.1.

10 T T T T T T

—wi2nd data sectiorj+—

-15F e
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0 500 1000 1500 2000 2500 3000 36500 4000 4500
time

Figure 4.1: Plot of the three different disturbance dynamics affecting the process
For the first 2000 data points, the minimum variance term can be calculated as

F(g)=1+0.27¢" +0.18¢ +0.12¢4° (4.27)

The minimum variance term for the second section of data after the first abrupt change

of disturbance can be calculated as

F(g")=1+0.6¢" +0.6¢7 +0.6¢° (4.28)
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and the minimum variance term for the third disturbance dynamics can be calculated

as:

F(qg7)=1+047q" +0.41g” +0.364 (4.29)

With type-C benchmark, the more representative disturbance that requires high-
performance control is determined. The section of disturbance that constitutes the
abnormal disturbance is considered to be typically transient and it is to be controlled
within some predefined trajectory or funnel. For example, let us assume that the
disturbance appearing in the time 0<# <2000 is the most representative section of
data. The disturbance dynamics in the second section of data is considered to be the
abnormal disturbance. The type-C benchmark minimizes the variance of the first
section of data subject to some predefined performance in regulating the second
section of disturbance. This benchmark control is applied to the third section of data to

check its suitability.

It follows from eqn. (4.1) that the closed-loop response to the second section of

disturbance can be written as
y® =(1+0.6¢g7" +0.6¢7 +0.6¢” + L, (g™ )g ™" )a, (4.30)

Let us consider that the closed-loop response to the second section of the disturbances
be first order with time constant . Thus, the transfer function L,(g™') may be

expressed as

LR(q")=1~_—'/§/F (4.31)

where  is the free parameter, and

E=exp(-T,/7) (4.32)
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From eqn. (4.16), the closed-loop response to the first section of data can be written as

¢

N (g7 - - - v -4
M ! 1 2 3
y = 2 (1+0.6g™ +0.697 +0.69g7 + ———9 )a,
N,(g7) 1-24

(4.33)

1-¢~ 3 Ly
————1+06 '+ 0.6g72+0.697 + ——q ")a,
=067 ( q q q —¢q" -q")

The free parameter  can be solved via the optimization problem

= 14+0.607 +0.697 +0.6” +—2 434
argwmm[ a{l--067 - (1+0.69 9" +08q" 1, a1 )aD (4.34)

The general methodology that is used for the solution of the optimization problem is

given in section 4.2.1.

Having obtained the closed loop response to the /* and 2" sections of data, the
closed loop response of the benchmark control Q,(¢™") to the 3™ data section is

calculated from eqn. (4.21) and is given by

@ = N(ql)(1+06q +0.6g7 +0.6¢7 +—0—q")a,
N,(q 1-¢&q”
(4.35)
_ 129" (140647 +0.647 +0.607 +—Y—g)a,
1-0.87¢ 1-¢q™
The optimal value of is calculated for different 7 and the corresponding

benchmark variance min(var( y")) is calculated. The variance of the closed-loop

response of the chosen benchmark control to the second and third sections of
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disturbances var (y”) and var (' are also calculated and the results are

summarized in Table 4.1.

Let us consider, for an example, that the specified settling time to the abnormal .
disturbance in the middle section of data is 15 minutes. It can be seen from eqn.
(4.30), eqn. (4.33) and eqn. (4.35) that stable responses have been obtained for all the
sections of data. The closed-loop responses of the three sections of data to the
benchmark control are given in Figure 4.2. Figure 4.2(a) shows that the settling time
to the 1% section of disturbance is 18 minutes while Figure 4.4(b) gives the settling
time to the abnormal disturbance to be 15 minutes. Figure 4.4(c) shows that the
settling time of the type-C benchmark control to the 3™ section of disturbance is 30
minutes.  This result shows that the benchmark control has achieved the closed-loop
settling time that has been specified for the regulation of the abnormal disturbance
occurring in the second section of data while minimizing the variance of the most
representative section of the disturbance in the process operation. Thus, type-C
benchmark is a suitable time-invariant control benchmark that can “optimize” overall
performance of time-variant processes in the presence of significant changes in

disturbance dynamics.

Table 4.1: Benchmark variance and optimal values of \J/ for user-specified é: (simulation

example)
T ¢ Vo min(var¢™)) | var(y®) | var(y")
0 0 0.2594 1.5281 2.1473 1.8532
1.5 0.5134 0.3926 1.4228 2.2893 1.8382
3.0 0.7165 0.4453 1.3427 2.4875 1.8225
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Figure 4.2: Impulse response for the three data sections with type-C benchmark (simulation

example)

77



4.3.2 Industrial application

For this case study, the time-invariant type-C benchmark is applied to monitor the
control loop performance of the Sulphur Recovery Unit (SRU) described in chapter 2.
The output data of the PID controller that was considered in chapter 3 is also used in
this case study. The data segmentation, which is according to the trend observed in the

process data, is shown in Figure 4.3.

0.25 T T T T T

— 2nd section .
02— 15! —Fo ————» 3rd section w——]
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0.15 .
a.1f -

0.05

01F P .

015} ] .
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-0.25 1 1 1 i [
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Time (mins)

Figure 4.3: Data segmentation showing abnormal disturbance in the 2" section of data

The disturbance dynamics in the 1% and 3™ sections of data are stable disturbances and
for this example, the 3™ section of disturbance is assumed to be more representative of
the process operation. A significant change is observed at the sample time 180
minutes and the disturbance that occurs from sampling time 180 minutes to 400
minutes is treated as a abnormal disturbance occurring within the process. The type-C
benchmark is applied by minimizing the variance of the 3™ section of disturbance
subject to some pre-defined performance in regulating the disturbance occurring in the

2" gection of data. That is, it is required that the abnormal disturbance be settled down
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along some user defined trajectory or time limits. In this example, the time constant of
the open-loop system is approximately 1.0 minute. Let us consider that the desired
closed-loop settling time when significant upset occurs be 5 minutes. The benchmark

control is applied to the 1¥ section to check its suitability.

The results of performance assessment using type-C benchmark are presented in
Table 4.2. Figure 4.4 shows the closed-loop impulse responses for the three data
sections and it can be seen that the benchmark control gives stable responses
throughout the entire process. Figure 4.4(a) shows that the settling time to the 1%
section of disturbance is 5 minutes. It can be seen from Figure 4.4(b) that the settling
time to the abnormal disturbance is 5 minutes. Figure 4.4(c) shows that the settling
time of the benchmark control to the 3™ section of disturbance is 11 minutes. This
result indicates that the type-C benchmark has achieved the desired regulatory
performance which requires that the closed-loop settling time when significant upset
occurs (in the 2™ data section) should be same as the open-loop settling time of 5
minutes. Table 4.2 shows that the variance of the “routine” disturbance in the 31
section of data has also been minimized subject to the “constraint” in regulating the
performance of the significant upset in the middle section of the data. This can be seen
in the high performance index of 0.9262 obtained in the 3™ section of data. From
Table 4.2, the performance index of the 1t section, which is greater than one, is an
indication that the actual controller has a better performance than the benchmark
control in regulating the 1% section of disturbance. The low performance index
obtained in the 2™ data section shows that a significant improvement could be
achieved by re-tuning the PID controller without affecting the performance
specifications for regulating the abnormal disturbance. Therefore, in this example, the
type-C benchmark is found to be suitable for all the sections of data and performance

specification for regulating the abnormal disturbance has been achieved.

79



Amplitude

Table 4.2: Benchmark variance and values of \[/ for user-specified f or(7)
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44 Conclusion

Control-loop performance assessment of time-variant processes using type-C
benchmark has been discussed. Type-C benchmark is a time-invariant minimum
variance control that can minimize one disturbance dynamics subject to some pre-
specified performance requirement on another disturbance dynamics. The results have
shown that if type-B benchmark is not appropriate for processes with significant
change in disturbance dynamics, then type-C benchmark can be used as an alternative
performance benchmark. The results also provide guidelines for using routine
operating data through time series analysis and optimization techniques to obtain
suitable time-invariant control benchmark that can “optimize” overall performance of

time-variant processes.
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Chapter 5

Feedforward and Feedback Controller Performance
Assessment of LTV systems

Abstract

In this chapter, the feedforward/feedback control loop performance assessment of
Linear Time Variant (LTV) control systems is discussed. The time varying minimum
variance feedfoward plus feedback control is used as the benchmark for performance
assessment of the time-variant control loop and the non-commutativity associated with
manipulation of LTV transfer functions is taken into consideration in the analysis of
feedforward plus feedback control systems. The feedforward/feedback minimum
variance control benchmark of the control loop can be obtained using routine operating
data and time-series analysis. The proposed performance methodology is illustrated
through a simulated stirred tank reactor and applied to a case study on a feedforward
plus feedback control scheme in the sulphur recovery process under adaptive control,
which is clearly an LTV control system. The study on LTV feedforward and feedback
control performance assessment has not been done in the literature and this chapter

constitutes a completely new contribution in this area.
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5.1 Introduction

Performance assessment of LTV feedback control loops has been discussed in the last
three chapters. This includes the use of time-invariant and time-variant minimum
variance control as the benchmark to evaluate performance of the control loop and it
has been seen that the proposed performance assessment methodology is an efficient
and a convenient technique for monitoring industrial processes. Although minimum
variance control is not desirable for practical implementation due to its poor robustness
to modeling errors in addition to other physical constraints on the process, it provides a
lower bound on the process variance that serves as an appropriate benchmark against
which the control loop performance can be evaluated.

The performance measure of control loops gives control engineers insight into
potentials of improving control system performance. If the controller performance
does not satisfy requirement but is already close to the minimum variance control, then
further tuning of the controller will not be useful (Huang et al., 2000). Substantial
improvement is possible only by changing the control strategy such as addition of
feedforward control, reducing dead time and/or reducing the disturbance in its source.
The performance of control schemes is often enhanced by including feedforward
elements and this is usually considered in two ways; a feedforward variable could be
measured and used in the control scheme, or the potential benefit of implementing
feed-forward control can be estimated. The latter is achieved by estimating the
potential variance reduction for a prospective feedforward variable, which is not
already incorporated in an existing control scheme.

Studies and discussions on the design of minimum variance feedback-only
controllers can be found in Astrom (1970), Box and Jenkins (1976) and other
references. Box and Jenkins (1976), and Sternad and Stoderstrom (1988) have also
discussed the design of minimum variance feedforward and feedback controller.
Stanfelj et al. (1993) presented a hierarchical method for monitoring and diagnosing
the cause of poor performance of feedforward/feedback control systems using
autocorrelation and cross correlation functions. Huang (1997) and Huang et al. (2000)
have extended methods for performance assessment of multivariate feedback control

systems to performance assessment of multivariate LTI feedback plus feedforward
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control systems using minimum variance control as the benchmark. Li and Evans
(1997) and Huang (1999, 2002) have developed minimum variance control and
performance assessment techniques for LTV feedback control loops respectively. This

chapter is an extension of this method to LTV feedforward plus feedback control

systems.

In this study, the analysis for the multiple-input single-output (MISO) feedforward
and feedback control scheme is presented. The estimation of the lower bound of
variance for each of the controller in the control scheme allows for the performance of
the individual controllers to be assessed and it is shown that this can be obtained from

the closed-loop routine operating data.

5.2  Analysis of LTV Feedforward and Feedback Control Systems

A review of the performance assessment of LTI processes with feedforward and
feedback control scheme is presented as a preface to the analysis for LTV processes.
Desborough and Harris (1992), Huang (1997), Kadali et al (1999), and Huang et al
(2000) have reported that the closed-loop response to both unmeasured and measured

disturbances can be modeled as:

v(@')=G,(q" )a,+3.G,(q" )b, 5.1)

i=1

where 7 is the number of measured disturbance variables. , is the measured process
variable and G, and G,, are proper and rational transfer functions. a,, which is

white noise, is the driving force for the unmeasured disturbances while b,, represents

the white noise sequence which is the driving force for the measured disturbance(s).

The driving force b, can be generated by applying time series analysis to the

feedforward variable D, ,:

D,(g")=G, . (g7)b, (5.2)

84



In this analysis, it is considered that there is no cross-correlation between the
unmeasured disturbances and the measured disturbances. Therefore, for these time-
invariant systems, eqn. (5.1) can be represented as a sum of impulse response

coefficients

(f(“)a oot d(al) t—-(d 1))+(ft;(a)at )+Z(-f(b)b +.. + (bl)bx,l—(d—l)) (f(b) l,t-d )
B (5.3)
where d represents the time delay of the process including zero-order-hold. Eqn. (5.3)
can be further expressed as the sum of the contribution of the measured and

unmeasured disturbances to the actual process variance:

in] —

v, = +Z(e:"'" +ém) (5.4)
—\.f_"J
y," P

y! is the contribution of unmeasured disturbances to the process variance while

Z ¥y is the contribution of measured disturbances to the process variance, and
i=1

(a) (a)

e =(f@a, +..+ f2a_.,)
AU
& =(

(5.5)

(a) a
»f;l' at—d + »f:i+lat—(d+l) + '")

eri’m =(f(b)b +.. +f;1(b )b.t (d—l))

. (5.6)
~im ¢
e = (fd )b d(fl)btt (d+l) )

The output under minimum variance feedback and feedforward can be expressed as:

yr=e +> e (5.7)

i=l

The minimum variance feedforward and feedback control is calculated and used as the

benchmark to evaluate the performance of feedforward and feedback controllers
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respectively. é* represents the inflation to e} due to non-optimal feedback control to

the unmeasured disturbances and é" is the inflation to e/ due to non-optimal

feedforward/feedback control of the measured disturbances. For a detailed discussion

readers are referred to Huang (1997).

However, due to the fact that most processes have certain degree of time varying
behavior, it is imperative to develop performance assessment methods for time-variant
feedforward plus feedback control loops. For this class of time-variant systems, care
has to be taken to the non-commutativity associated with manipulations of LTV

transfer functions. An illustration has been given in chapter 2 (section 2.1) to show
that the multiplication or division of two LTV polynomials, u(g™,#) and v(g™,t) is
non-commutative, that is, u(g™,)v(q™",t) #v(q~',t)u(q',t). This is important
and has to be taken into consideration in calculating the minimum variance term when
an LTV ARMA model is transferred to an LTV MA model. It is seen that pointwise
multiplication may yield erroneous results especially when the parameter change for
the plant or disturbance dynamics is relatively fast. Therefore, normal multiplication,

which is non-commutative is recommended when handling LTV operators and is used

in the analysis of variance for LTV feed-forward and feedback control systems.

In this chapter, a basic property of the backshift operator g~ when it is multiplied by

an LTV transfer function, A(g~',t), for example, will be applied. See Huang (1999,
2002):

g AUg . )=Ug",t-n)g™"

n ~1 —~1 (58)
q'AUg . 0D=Mg .t+n)q"
Consider the LTV multiple-input single-output (MISO) process in Figure 5.1:
v =qT(q" ., +N,(q",t)a, + N,(¢",0)D, (5.9)
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y, is the measured process variable, u, is the manipulated variable and
T=K"'"(q".0)J(qg"',t) is the delay-free plant transfer function.
N, =M""(q"',t)L(g™',t) represents the time-variant transfer function of the
unmeasured disturbances while a, is the “driving force” for realization of the
unmeasured disturbances. N,D, =X "'(q”',t)P(q7,t)D, is the effect of the

measured feedforward variable, D,, on the process variable. Note that T,N,,N,
given above are also known as LTV Box-Jenkins model, which are the most general

linear dynamic models.

a‘T(g™,) >

G”(q™,b)

Figure 5.1: Schematic of time-variant MISO process under feedforward plus feedback control

For the LTV MISO process in eqn. (5.9), the closed loop response under LTV
feedforward/feedback control can be represented by an LTV ARMAX model as will

be seen in the following Lemma:

Lemma: The closed loop representation of an LTV Box-Jenkins model shown in Fig.

5.1 under feedback and feedforward control can be written as an LTV ARMAX model.
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Proof:

The manipulated variable for the feedforward/feedback control system is the sum of

the outputs from the feedback controller and the feedforward controller:
u =u” +uf (5.10)
where u” =-G”(q™',¢)y, and u] = G7(q™',1)D,

Let us consider that the time-variant feedback and feedforward controllers are given

by:

(5.11)

G”=Z"(q",0OW(q".0)
G =S"(q",HN(g™,1)

Substituting eqn. (5.10) and eqn. (5.11) in egn. (5.9) yields

y, =[1+qT (" .HG (g ,OI'N,(g",)a, +
1+q7°T(q",0G" (g ,H (¢ T (g ,HG (g ,t)+ N,(¢",))D,

=[1+¢" K" (q",0J(q",)Z (g7 .HW (g . )]' M (g™ ,)L(g " ,1)a, +
(+q™ K (g, )@ .HZ (g .oW (g .DT")
(@K (q",0J(q",H)S" (¢ HN(@ .0+ X" (", HP(g",))D,

= [1 +K” (q_l st = d)J(q—] N d)Z—l (q—l f— d)W(q_l £ = d)q_d ]_l
(M7 (g™, OL(g" ,6)a, +
+K (g, t-d)J(qg" t-d)Z7 (g t—dW (gt —d)g™]"

(K—l(q—l’t _d)'](q_lat _d)Sﬁl (q_lat —d)N(q—l’t _d)q_d +X_l(q—lat)P(q_lat))D¢
(5.12)

From Li and Evans (1997) and Huang (1999,2002), pseudocommutation equations can

be written such that:
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{J ORI YAl CROEYAICRRINICaN) 5.13)
J(g",08"(g",0)=8"(q".)T (¢7',1)

Substituting eqn. (5.13) into eqn. (5.12) yields

y,=(+K (g t-d)Z Mgt -d)T (gt W (g™t =g 1)
M (g",0)L(g™ ,D))a, +
+K (g t-DZ (g - (gt —dW (gt -d)g™ )  G19
(K (g t-d)S (g t—d)T(g",t—d)N(g",t —d)qg™" +
X (g™ ,0)P(g™,1))D,

E'qg  t—-d)=K"(qg" t-d)Z'(q",t—d
L { (¢ t-d)=K"(g",t-d)Z7'(q ) 515

Gl (g,t-d)=K"(g",t-d)S (g7t - d)
Substituting eqn. (5.15) into eqn. (5.14) yields
Mg ,0X(q" HG(q t-DN+E (g t-d) (gt —dW(q " t—d)g Iy, =
M(q_l,t)(X(q_lat)j(q_lat_d)N(q_lat —d)q—d + G(q_l’t —d)P(q_l’t))Dr + (516)
Glg',t—d)X(g " ,)L(g .1,

Let M (g™ ,)=M(q7,0)X(q7,t) (5.17)

We can also write the pseudocommutation equation:

M(q",t)G(q" t —~d)E™ (gt —d)=E" (G t-d)B(g" t—dM(g™,t) (5.18)

Substituting eqn. (5.18) into eqn. (5.16) yields
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[M(q'l,t)G(q—l,t—d).-l—E—l(q_],t—-d)a(q—l’t—d)j\:l—(q_l,t)j(q—l,t—d)W(q_l’t _d)q_d]yt =
(M(q_‘at)j(q_lat _'d)N(q_l’t —d)q—d +M(q—l,t)G(q_l,t—d)P(q_l’t))Q +

Glg* t—-DX(g" .HLg " H)a,
(5.19)

Multiplying eqn. (5.19) by E (q7',t—d) yields

[E(q_lat —d)ﬂ(qwl 7t)G(q_l L= d) + a(q—l ! -—d)ﬁ(q_l,t)j(q_l,t _d)pV(qu1 o —d)q—d]yt =
Eg* t-d)M(q" )T (g t-d)N(g* t—d)g ™ +M(q" H)G(g "t —)Pg" D, +

E(q_lst —d)G(q—l’t _d)X(q_l 9t)L(q_l ’t)a:
(5.20)

Eqn. (5.20) can be expressed as
A4,(qg" )y, =B,(q".0)D,+C,(q" .)a, (5.21)

Eqn. (5.21) has the form of an LTV ARMAX model, where 4, (g".1), B,(q",t) and

C_(q",t) are polynomials in the backshift operator q"'.  Therefore, for a time-

variant feedforward plus feedback control loop, the closed-loop response to

unmeasured and measured disturbances can be expressed as an LTV ARMAX model.

End of Proof

A general form of the closed loop response can be written for cases in which there are

more than one measured disturbances and this is given by:
4,(q" )y, =2 BJ(q".OD, +C,(q" D)a, (5:22)
i=!

where

A(q D=1+ a,Og" + (g7 +..+a (g™ +...
BY(g" ) =b(0)g "+ g +..+ 5 ()
C.(g"0=1l+c ()" +c,()g” +...+¢,()g™" +...

(e 4h-1)

.. (523)
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n is the number of measured disturbance variables. y, is the time-varying process

variable, D, is the measured disturbance for the feedforward variable, "i" and, ¢, is
the time delay it takes for a change in D,.,t to affect the process variable. @, is white

. . . . . 2
noise sequence with zero mean and time-variant variance O, (t) .

From eqn. (5.22), the closed-loop response of the process variable to the measured and

unmeasured disturbances can further be written as

¥, =24, (a" DB (q".HD, + 4, (¢ .DC.(q" Da, (5-24)

i=1

Ym) \(ru)
[¥) t

Yo =290 4y (5.25)
i=1

()

Y™ represents the closed-loop response to the i" measured disturbance while y,

represents the closed-loop response to the unmeasured disturbance, and
™ =4 (g ,0)BY(q",t)D 5.26
yt,i cl q H cl (q > ) it ( . )

v =4,"(q",0)C, (g7 . )a, (5.27)

Time series analysis can be applied to each measured disturbance, D.-,: to obtain an

LTV ARMA model
0" (q™",0)D,, =7"(q7,1)b,, (5.28)

b, is the driving force for the measured disturbance D,., ,- The analysis presented in

it
this chapter considers the multiple-input single-output (MISO) processes in which

there is no cross-correlation between the unmeasured and measured disturbances.
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Thus, the driving force b, is independent of a,, which is the driving force for the

unmeasured disturbance.

5.2.1 Analysis of minimum variance for feedback control

For the analysis of the LTV feedforward and feedback control scheme,
ARMAX (2,[nb, nb, ...nb,1,2, [t t$ ...t9]) model that is representative of,
and applicable to most physical processes is considered. Here,
nb,=nb,=...=nb =2. 1. is the time delay it takes for a change in each

feedforward variable to affect the process variable. This time series modeling will

yield an estimation of the model

n

A.(q" )y, =2 Bi(q".OD, +C,(q",D)a,

i=1

The model can then be transferred to the form of (5.24). The effect of measured and
unmeasured disturbances can be calculated from egns. (5.26) and (5.27). In this

section, we shall discuss the calculation of the minimum variance term for the

unmeasured disturbance.

For the unmeasured disturbance, we have

A4,(q",H)=1+0a,(q™ g~
dMA) %(ﬁ4+ax)i (5.29)
Ccl(q 9t)=1+c1(t)q +Cz(t)q

Eqn. (5.27) can be written in the impulse response form:

O =(f,O)+£,(0)g " + [,(0g7 + £,0q” +...)a, (5.30)

Substituting eqn. (5.30) into eqn. (5.27) yields

A, @ DO+ L0+ L,0q7 + £g” +..)a,=C.(g" Da,  (3D)
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The time-variant impulse response coefficients are estimated by equating the

coefficients on the right and left hand sides of eqn. (5.31):

(f0)=1

| £ =c)-a®f¢-D 532
[0 =¢,(0) - a0, (t =) - 2, () (¢~ 2)

=00t -D -2, =) k>2

and from eqn. (5.32),

([, () =1
£ =c,t)-a,0)
| £iO=c,0- a0, -D+aOat-)-a0) 533
F() =0, (t)c, (t ~ 1) + &, (D, (t =) + @, (B)ex, (= e, (£ 2) -
a,(O)a,(t - Dy, (t - 2) - &, (t)e,(t - 2) + &, (e (t - 2)

g
Therefore, the process output can be expressed as

y:(u) =(1 +(Cl (t)_aq (t))q-l +(cz (t)"'al (t)cl (t —1)+a1(t)a1 (t —1) —aZ(t))q_z +"')a’

(5.34)
The corresponding minimum variance (for the feedback control) for the LTV process

with a time delay of 3 as an example, can be calculated:

o2, () =1+ £ () + 7))

o?, () =(1+(c,() — o, @) +(c, () — 0, (B)e, ¢ =D + o, (Do, (¢ =) — @, () )2 ()
(5.35)

However, direct long division gives

@ =1+ (e, () — o, (g™ + (e, () — o, (De, () + 0, (1) —a, (g™ +
(=, (O)c, () + 20, (Do, () + o, () ¢, () + &, (1)’ — &, e, (g™ +..)a,
(5.36)
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and the corresponding LTI minimum variance is given by

o () =1+, )~ o, @) +(c,®) -, (&) + o, () —a, @) o2 () (5.37)

which is not correct. Therefore, it is important to consider non-commutativity in

handling an LTV process.

5.2.2 Analysis of minimum variance for feedforward control

For each feedforward variable Di,,, ARMA (2,2) model is considered for the time

series analysis since this model is generally applicable to most physical processes.

However, the result can be extended to a higher order time series model by following

the same procedure.
From eqn. (5.28), 0”(q™',¢) and 77’ (q™",¢) can be written as

0", =1+8"(t)g" +8;, (g~

. . . (5.38)
7%(q™ =1+t +m" (g™
The measured disturbance can be expressed as an impulse response form:
D, =(f" )+ [ @®q + £1(Og” +..)b, (5.39)
Substituting eqn. (5.38) and eqn. (5.39) in eqn. (5.28) yields
1+ (g + 00 OO+ £ O + £ O+ )b,

=(1+n"(0)g" +n" (g 7B,

. R . . m. m, m,
The time-variant impulse response coefficients, f, ', f, ',.... f, = are calculated from

eqn. (5.40) and are given by
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(i) =1

Fr@=n0@) - 00O £ (¢ 1)

| R ® =P =00 O f (=D =P Of (¢~ 2) 541
£ ==00 0 1t =) - 3L f" (- 2)

@ =-00OfLE-D-07 OS50 -2 k=3

It follows from eqn. (5.41) that

(fry=1
£ @)= ©)—30(1)
| £ =m0 ®-0 (M~ +0° (3P ¢~D -2 ©) 542
S ()= =00 (m® (¢ = 1) + 8060 (¢ - D (¢ = 2) + 8 ()P (¢ 1)
— 80 (1)3° (¢ ~1)0" (¢ ~2) — 8P (O (¢~ 2) + 8P ()0 (¢ - 2)

However, direct long division yields

¥, =1+ -0 Ol +nY O - O’ (1) +0 1) ~0 {(O)g” +
(=0 (ML (1) +20° ()0 (1) + 8P (1)’ M (1) + 87 (1)’ — 0, (0 ()g~ +..) b,

(5.43)
which is, once again, not correct.
Eqn. (5.26) can be written in the impulse response form as
Yo =20+ £000 + 2 Oq +..)b, (5:44)

Substituting eqn. (5.23), eqn. (5.39) and eqn. (5.44) into eqn. (5.26) yields
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(+a(0)q" + a0 OO+ [OOF" + £Oq” +..)b, =

. iy : -, m; m; 1 m; -2 (545)
¢ 0a™ +60Oq NGO+ £ Og" + £ O+ )b,

The first ¢ d(i) coefficients of the moving average (MA) model are zero for ¢ d(i) >0,

and the remaining impulse response coefficients are obtained by equating the terms on

the left and right hand sides. That is,

“(1)=0

® (#)=0

POS!

©O=bOL"~1,")

@ O=BCO S =1,) OO =1, =D =@, Of =D
-, O (t-2)

1,01

A

LO=bOF =1,V + OS] o (=1 ~D - OS]

-0, (O f5¢-2)  k>t,”
(5.46)

Eqn. (5.46) shows that if the delay of the feedforward variable D,.,, is greater than or

equal to the process delay, then the contribution of the measured disturbance to the

minimum variance of the feedforward plus feedback control will be equal to zero.

Assume that the measured disturbances are mutually uncorrelated, the minimum

variance of each measured disturbance can be calculated from eqn. (5.46) as

o2 @ (t)=( DX (1) + L) + .+ fd‘j'}z(t))o;,.(t) (5.47)
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where d is the time delay of the process including the delay due to zero-order-hold

device.

Let us consider that the time delay it takes a change in D,, to affect the process

variable is 2, then t;i) =2. The corresponding minimum variance of each measured

disturbance for the LTV process with a time delay of 3 can be calculated as

o2 =(fO@ + £ @ + £ Jor, ()

; m; (a2 2 (5.48)
= (b1(1)(t)fo ’ (t - td )) Gb,i (t)
It follows from eqn. (5.41) that
a2, () =b" () o;,(0) (5.49)

One can evaluate the performance measure of the control loop by comparing the
total contribution of the minimum variance terms from the measured and unmeasured

disturbances with the actual process variance. However, the above procedure needs

the assumption that the shock of the measured disturbances, b,,'s, are mutually

independent. This assumption can be satisfied if the measured disturbance, D, 's are

mutually independent or if there is only one measured disturbance. Otherwise, we have

to use a more tedious multivariable approach, which is discussed next.

5.2.3 Performance assessment of feedforward plus feedback LTV systems with
correlated disturbances

This section addresses the more general case that accounts for cross correlation

amongst the measured disturbances, D, ,.

Let D, be the vector of "n" feedforward variables which can be represented as
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D, =[D, D, .. D,T

and D, can be modeled by

d(qg™',t)D, =f(q™",1)B,

(5.50)

(5.51)

B, is the vector of driving force b, for the measured disturbances, which can be

expressed as

B =, b, .b,[

t 1.

D, can be expressed in impulse response form as
Qt = E)(D) (t)Bt + F;(D) (t)Bt—l + Fd(—?) (t)Br—dﬂ +...

Consider eqn. (5.51) to be a vector ARMA(2, 2) process

. {ém“ D=I+8,)q" +3,(t)q”
1.€.
(g =1 +7,()q" +7,(t)q”

(5.52)

(5.53)

(5.54)

I is "n x n" identity matrix. 0, is "1 x n" matrix that consists of the autoregressive

1

coefficients of the ARMA model in eqn. (5.51) which corresponds to q_1 while 52 is

" x n" matrix that consists of the autoregressive coefficients corresponding to g~

Similarly, 7, is "7 x n" matrix that consists of the moving average coefficients of the

ARMA model in eqn. (5.51) which corresponds to ¢~ while 77, is "n x n" matrix

that consists of the moving average coefficients corresponding to q_2 .

(Note that ARMA(2, 2) is also the typical representation of time series in practice).

Substituting eqn. (5.53) and eqn. (5.54) into eqn. (5.51) yields
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I+3,()q" +3,()q VEP (1)B, + FO (O +..+ F2 (g +..)B, =

) (5.55)
(I +7,(g” +M,(0)g7)B,

The coefficients, F,”(¢), F,'” (t), ..., F"(t) are calculated from eqn. (5.55) and are

given by

(F”(0)=1
EP () =m,() - 0,()F,”(t-1)
JE20=0,0)-8,OF”(-)-0,OF” (¢ ~2)

) B (5.56)
EP(t)=-0,()F,” (t-1)-0,() " (t-2)
FO(0)=-8,()FD(-1)-3,(0F(t-2) k23
It follows from eqn. (5.56) that
(FP (@) =1
F2@)=m,(t)-0,()
D) 4\ — == AV (f — (DS (t—1N-0
JEZ@O=m00-0,0nF-D+0,0)d-1)-0,0) (5.57)

F® () ==0,(ty0, (¢ =1) +8,(18,(t - )T, (t - 2) + 0,(1)3,(t - 1)
—8,(13,(t =13, ~2) - 3,(O)T, (¢ = 2) + 6,(19,(t - 2)

Eqn. (5.22) can be expressed as

A,(q" )y, =B"(q",0)D, +BP(q" ,t)D,, +..+ B (¢7,)D,, +C, (g, t)a,

(5.58)
Eqn. (5.58) can be re-arranged to give

Lt

A4,(q" Dy, =[BY(@",t) BP(q\t) ... BY (@ ,0] 7 |+C(g" e, (559

nt |
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Therefore

v, =47(q" DB (g0 BY (g™.1) . B (@.0ID, + 4 (¢7,0C, (q".1)a,

!
~

y(m) y(u)
t t
(5.60)
Eqn. (5.60) can be expressed as
y=y"+ " (5.61)
where

»™ = 42 q" DB (¢, 1) B, ... B"(q" 01D, D,, ...D,, I e
That is

A(q* Dy =[B(q™,t) BY(q™,0) ... B”(¢" 01D, D,,...D,, [ (563

t
Substituting eqn. (5.23) into eqn. (5.63) yields

(+a g +a,Oq )" =
[: bl(l) (t)q—t d(l) n by) ( t)q—(; d(l)+1): b](n) (t)q_,d(n) + b2(") (t)q ’(’d(") +1):]Qt (5.64)

where t;i) is the time delay it takes for a change in each feedforward variable D,.’, to

affect the process variable.
0 = maximum (¢\") — minimum (ty’) + 2

Let < and (5.65)

0, = minimum (¢\) (fori=1,2,..n)
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Then, eqn. (5.64) can be re-arranged and expressed as
(+a(Oq" +a,0q " =B + B O " +..+ B OF "D, (5.66)

where @ represents the total number of terms on the right hand side of eqn. (5.66).

B’ (#) is a "I x n" row vector that consists of coefficients on the right hand side

(r.h.s) of eqn. (5.64) which corresponds to q_é’1 . Similarly, B (¢t)is a "I x n" row
vector that consists of coefficients on the r.h.s of eqn. (5.64) which corresponds to

-+ o e o . :
D until B; " (t) which is also a "I x n" row vector that consists of coefficients

—(01 +8+1)

on the r.h.s of eqn. (5.64) corresponding to ¢

y,("') can be expressed in impulse response form as

y'(”‘) = E)(m)(t)Bt + E(M)(t)B;-x +..+F d‘f;) ®B,_,., +.. (5.67)
Substituting eqn. (5.53) and eqn. (5.67) into eqn. (5.66) yields

(+a0)q" +a,OgYE OB, +FE” OB, +.F OB 1 +.) =

BOOF* +BO O +..+ B O ) EP O+ FO (O +EP " +..)B
(5.68)

The impulse response coefficients (which are "/ x n" row vectors) are obtained by

equating the terms on the left and right hand sides. However, it should be noted that if

6, >0, then, the first 0, coefficient(s) of the moving average (MA) model is(are)

"] x n" zero row vector(s). That is,
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(F™()=[00...]

Fm(@#)=[00...]
F"(6)=B"(OF”(t-6)

A

F{ @0 =-a,(OF (¢ =1)- a,(OF (¢~ 2)+ B OF "t =6, D+
BOOF (t-6,)

E®(0) =0, (OFD (=1 - a,(OF3 (=2 + B OFS 40t =6, 0+ j+1)
(for j=0,1,2,..,0-1), k>6,

(5.69)

The minimum Feedforward & Feedback variance can be calculated from egn. (5.69):
m m m m m m mT
o2 ()= F" O, F™ (@) + FE™ OZ,F™ (t) +..+ F(OZ,F (8) - (5.70)

where

X, =covl. " (5.71)

b

Lt |

and d is the time delay of the process including the delay due to zero-order-hold

device.

5.3 Simulation
5.3.1 Simulation example with one measured disturbance

For the same stirred tank reactor in chapter 2, the performance of the control loop is re-

assessed by including a feedforward control variable. Let us consider that the tank

inlet temperature T}, is the measured feedforward variable and the time delay it takes
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for this measured disturbance to affect the tank temperature is 1. A deterministic step-

type disturbance is the unmeasured disturbance added to the system and the white

noise sequence, 4, is the driving force for the unmeasured disturbance.

Therefore, the process output, 7'(¢) can be expressed as:

(5.036-0.155in(l/x) _ 75/ O 1
(0.4 +0.15sin(¢/ x)) .
1-0 678—(0A15sin(1/x)) -1 F(t) + 1- -1 at to
. q q

(0.1- O.O67e”°"55‘"‘”"y
, (0.4 +0.15sin(¢/ x))

1 _ 0.676—(0.15sin(t/x))q-1

T(t)=q™

q T.(t)

(5.71)

Assume that the measured disturbance, 7, can be represented as

1
Tt)=—b 5.72
(@) 1-0.9¢™" (5.72)

where b, is white noise representing the driving force for realization of the measured

disturbance, which is independent of 4, .

The process model can be expressed as

L0 S ) I 0.1
= —Uu, + b + 5.73
P E 1 s [1-5(:)41-‘ —09g" ) T1og e O

where the time variant process and disturbance dynamics are given by
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- _ (5.036—0.155in(t/x) _ 75)
() = (0.4 +0.15sin(¢/ x))

)= (0.1=0.067¢™%P5¢/?) (5.74)
- (0.4 + 0.15sin(¢/ x))

A

(¢

S(t) — 0.678—0']55in(t/x)

Eqn. (5.71) shows that both the process model and the disturbance model are time-
variant. Let us consider that the disturbance has three different time-variant dynamics
in ascending order of increasing parameter-varying rate, from relatively slow

parameter change to relatively fast parameter change:

casel:
_(0.1-0.067 1510y
V= (0.4 +0.15sin(¢/10)) (5.75)
o(t)= 0.67 %3500
case 2.
_(0.1- 0-0676_0'155i“(t))
U(t) ) (04 +0.15 Sil’l(t)) (5.76)
o@)= 0.67 ¢35
case 3:
o(t)= (0.1- 0.067e“°~155in(2t)) .

(0.4 + 0.15sin(2t))
5(t) — 0.676—0.155in(2t)

This example compares the feedforward/feedback minimum variance control (which
takes non-commutativity associated with LTV transfer functions into account) with the
conventional minimum variance control benchmark that is calculated using point
multiplication. This is carried out by calculating the feedforward/feedback minimum
variance term using normal multiplication (non-commutative) and pointwise

multiplication (commutative), and comparing the difference between the two methods.
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The simulation results in Figure 5.2 show a comparison of the difference between
normal multiplication (solid line) and pointwise multiplication (dotted line). It can be
seen that the difference between the minimum variance terms calculated using the
normal multiplication and pointwise multiplication increases as the parameter-varying
rate increases from the top to the bottom subplot. This result shows the importance of
using normal multiplication rather than pointwise multiplication in the estimation of

the LTV feedforward/feedback minimum variance term for time varying processes.

' == normal multiplication

L e point multiplication

0.09

[l
0 20 30 40 & 6 70 8 9 100

0.07 L
0

0.11 T T T T T T T T T

0} §

0.07
0
o1

008 HiiAlA

0.07
0

Figure 5.2: Comparison of time-variant feedforward/feedback minimum variance term using
normal mulitiplication and pointwise multiplication
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5.3.2 Simulation example with correlated disturbances

For the same example in section 5.3.1, let us consider that the ambient temperature, T

is also measured and included as a feedforward variable in the feedforward plus
feedback control scheme. The time delay it takes for this measured disturbance to

affect the tank temperature is 3. The measured ambient temperature is considered to

be correlated with the measured tank inlet temperature, 7, as will be seen in the

analysis:

The process variable, 7'(¢) can be expressed as:

(5.036—0.15sin(t/x) _ 75/
(0.4 +0.15sin(t/ x)) 0.02

—gt b L

=4 1 0.67¢ O3S -1 F@) +q 1-0.8"" T, +
(O. 1 _ 0.067e—O.ISSin(t/x)/
1 (0.4 + 0.15sin(¢/ x)) 0.1
q . T,(t)+ —-a
1- 0.676_(0'155111(”)6»6]-1 1— q—l t
(5.78)
The measured disturbance, 7, can be expressed as:
1

where b,, is white noise representing the driving force for realization of the measured

disturbance, T,

The ambient temperature is given by:

1

T =—b 5.80
* 1-0.9g™ ™ G50

where b,, is white noise which is correlated to b, , by:

b,,=05b,+0.5e (5.81)
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"e¢" in eqn. (5.81) represents random noise.

Hence, the process model can be expressed as

4 90 g ¢ 0.02 1
V=9 -1 ut -1 -1 -1 -1 |72 +
1-98(¢)g 1- S(t)q 1- O 9q 1-0.8¢" A\1-0.9¢

(5.82)

where the time variant process and disturbance dynamics are given by eqn. (5.74).

In this example we also consider that the disturbance has three different time-variant
dynamics in ascending order of increasing parameter-varying rate, from relatively slow
parameter change to relatively fast parameter change as given by eqn. (5.75) to eqn.
(5.77). |

The feedforward/feedback minimum variance control benchmark is calculated
using the developed LTV algorithm for correlated disturbances (which takes non-
commutativity associated with LTV transfer functions into account) and compared
with the conventional minimum variance control benchmark that is calculated using

pointwise multiplication (which is non-commutative).

The simulation results for the correlated disturbances in Figure 5.3 show a
comparison of the difference between the developed algorithm and the conventional
method. It can be seen that the difference between the two methods increases as the
parameter-varying rate increases from the top to the bottom subplot. This result
further shows that it is important to consider non-commutativity associated with the
manipulation of LTV operators in calculating the LTV feedforward/feedback
minimum variance control benchmark to evaluate the performance of LTV

feedforward/feedback control systems.
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012 ' ' ‘ = normal multiplication

------ pointwise multiplication

AR
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Figure 5.3: Comparison of time-variant feedforward/feedback minimum variance term using
normal multiplication and pointwise multiplication for correlated disturbances

5.4 Case Study on An Industrial Process

The present case study is concerned with the feedforward/feedback control loop
performance assessment of sulphur recovery process under adaptive control that is an
LTV control system. One feedforward variable is considered in this analysis with the

time delay of ¢, =1. The sulphur recovery process description is given in chapter 2

(section 2.4.1) and the schematic of the process is shown in Figure 2.4.

The data set has a sample size of 314 data points taken over a five-hour period
with sampling interval of one minute. The time delay of the process is approximately
no less than 2 minutes including the delay due to zero-order-hold device and is taken
as 2 in this case study. The operating data is shown in Figure 5.4 while Figure 5.5 is
the plot of the measured disturbance.
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Figure 5.4: Plot of the operating data for the adaptive controller
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Figure 5.5: Plot of the measured disturbance, Dl .

The data set used in this example clearly reveals that there is a significant disturbance

occurring in certain limited time period (approx. 8% time) within the given data and

the process/disturbance dynamics is clearly time varying.
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The analysis carried out here compares the relative difference between the
feedforward/feedback minimum variance term using normal multiplication (non-

commutative) and pointwise multiplication (commutative).

Figure 5.6 shows the relative difference between the minimum variance terms
using normal multiplication (NM) and pointwise multiplication (PM). One can see that
the relative difference between the LTV performance method and the traditional
recursive method can be up to 50%. The result shows that it is important to take non-
commutativity into account in the manipulation of LTV operators of
feedforward/feedback control loops.  Thus, it is recommended that normal
multiplication rather than pointwise multiplication is used when one deals with time

varying processes.

WA JWW |

100 150 200 250 300
Time (mins)

Figure 5.6:Relative difference between LTV feedforward/feedback minimum variance terms using
normal multiplication and point multiplication

relative difference (%)
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5.5 Conclusion

The LTV feedforward/feedback minimum variance control benchmark for time-variant
processes has been derived in this chapter. This result is a significant extension of the
recent contribution by Huang (2002) from performance assessment techniques for
LTV feedback control loops to LTV feedforward/feedback control systems. The
proposed method provides a way to calculate the minimum variance control
benchmark from routine operating data and has been illustrated through a simulated

example and an industrial case study.
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Chapter 6

Conclusions

This work deals with the development of techniques for control loop performance
assessment of linear time variant (LTV) univariate processes, including LTV feedback
and/or feedforward control loops. The algorithms have been illustrated through
simulation examples as well as case study on a sulphur recovery process.

Chapter 2 deals with the development of a computational algorithm for control
loop performance assessment of linear time variant (LTV) processes, which assumes
time variant process (including disturbances) and time variant controller. The
methodology is found to be appropriate for performance assessment of LTV control
such as adaptive control and has been used to evaluate the performance of a sulphur
recovery process that is under adaptive control. However, the time-variant minimum
variance control, which is found to be suitable for time-variant controllers, will clearly
be too demanding on time-invariant controllers and this is the focus in chapter 3.

Alternative time-invariant performance benchmarks that are more suitable for time-
variant processes under time invariant control have been developed in chapter 3 and
chapter 4, with a limited discussion to time variant disturbance models. The
benchmark developed in chapter 3 is useful for minimization of a particular type of
disturbance of interest amongst other forms of disturbance dynamics affecting the
process. However, it is found that this benchmark might not always be appropriate.
Therefore, another benchmark that would be suitable for regulatory performance of
different types of disturbance dynamics within a process is presented in chapter 4. This
performance benchmark, which may be found from routine operating data through
some time series analysis and optimization technique has been applied to the
performance assessment of a PID controller in a sulphur recovery process.

The performance assessment methodology developed in chapter 2 is extended to
feedforward/feedback control loop performance assessment of Linear Time Variant
(LTV) MISO processes in chapter 5. The LTV benchmark developed for feedforward
plus feedback control schemes is presented and the feasibility of the algorithm is
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illustrated by a simulated stirred tank reactor as well as a case study on sulphur

recovery process.

As has been discussed by many researchers and practicing engineers, routine
control loop monitoring is gaining increasing attention. New control loop performance
assessment technologies will permit automated and repeated monitoring of the design,
tuning and upgrading of the control loops. Poor design, tuning or upgrading of the
control loops will be detected, and continuous performance monitoring will indicate
which loops should be retuned or which loops have not been effectively upgraded
when changes in the disturbances, in the process or in the controller occur. The results
in this thesis show that the use of the correct methodology for continuous performance
assessment of process operations allows timely detection of unwanted control loop
variability. This can give control engineers insight into focusing control re-tuning and

maintenance efforts on such control loops with poor performance.

6.1 The Contributions of this Thesis
The main contributions of this work include:
1. Establishment of a general computation framework for a new time-invariant

control benchmark applicable to any change of disturbance dynamics, for time-

variant processes under time invariant control.

2. A systematic solution of (optimal) time-invariant minimum variance control
benchmark that can “optimize” overall performance of time-variant processes

under time invariant control has been established.

3. Development of the performance assessment methodology for LTV

feedforward plus feedback control loops.

4. Evaluation of the proposed algorithms/methodology using simulation

examples.
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5. A detailed industrial case study to illustrate the applicability of a generalized
control performance assessment technique for linear time variant (LTV)

processes is presented.

In this thesis, the algorithms are coded in MATLAB and used for the simulations and

industrial applications.

6.2 Recommendations For Future Work

It has been discussed that there is an increasing interest in the research area of control
loop performance assessment. Continuous performance assessment of time-variant
processes is important since most processes have certain degree of time varying
behavior and this has brought about a need to develop performance assessment
methods for time varying processes. Although this thesis has presented some of the
fundamental techniques, but there are some issues on performance assessment which

have not been addressed. Therefore, some recommendations for future work are listed:

1. It is important to develop a method for calculation of the actual, time-variant

process variance for feedforward plus feedback control loops.

2. It will be interesting to obtain a general performance assessment algorithm for

processes with time-varying time-delay.

3. It would be worthwhile to develop a performance assessment methodology for
time-variant processes, which would incorporate fault detection, as well as

recommendations for controller tuning.

4. Tt will be certainly of interest to incorporate detection of abrupt change

algorithms into the algorithms developed from this thesis.

5. Extension of this work to multivariable process is interesting but challenging.
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