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Abstract

Successful learning is of vital importance to human cognition. Accordingly, researchers

have been interested to understand brain-activity signals that support it. However, tradi-

tional analysis of brain activity is based on planned comparisons and descriptive methods,

which can both overestimate brain activity by overfitting it, and also underestimate the be-

havioural relevance of brain-activity measures by ignoring the subtle multivariate patterns.

Complementary to the traditional analysis, here I used predictive approaches that can offer

a stronger framework for finding behaviourally-relevant brain activity by testing predictions

for unseen/future observations. Two learning situations were considered; one, where par-

ticipants studied lists of words followed by old/new recognition tests for target (studied)

and lure (new) items, the other involved trial-and-error learning of the stimulus-response

rules for a large set of words, driven by reward feedback. For both learning paradigms,

I asked if brain activity present when participants studied the material explained subse-

quent variability in the learning outcomes. First, I tested if features of brain-activity sig-

nals present during the study phase, as identified by previous planned-comparisons based

investigations, could withstand tests of predictions for learning outcomes at the level of in-

dividual trials. For both tasks, this produced a small but significant success across a large

number of participants. Next, I asked if data-driven multivariate pattern analysis of the

study-phase activity produced better predictions for the learning outcomes. The multivari-

ate pattern analysis achieved a small significant success for the item-recognition task, but

it was under-powered for the trial-and-error learning task and produced non-significant re-

sults. Taken together, for both tasks, the contribution of the study-phase activity to later

variability in learning outcomes was overall small, indicating that other important predictors
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may be missing. To test this suggestion, I further investigated brain activity during the test

phase of the item recognition task. Following a similar approach as study, first I used fea-

tures of previously-identified brain-activity signals, to predict the memory outcomes, which

achieved modest success. Then, I conducted multivariate pattern analysis of test-phase ac-

tivity, which was still modest but predicted significantly better than the individual signals

at study or test phases, as well as the multivariate activity at study. Further, combining

brain-activity features from both study and test phases led to similar size of predictions as

that for the test-phase only. Thus, test-phase activity predicted memory outcomes more di-

rectly. Also, study-phase activity did not contribute to memory-variance that was not shared

by test-phase activity. The multivariate pattern analysis also offered additional important

insights. Across investigations, performance of the multivariate classifiers was positively

correlated with participants’ performance, and was meaningfully large for better-performing

participants. This could suggest that brain activity for better-performing participants has

a greater task-relevance, which is picked up by the classifiers, leading to better predictions.

The multivariate pattern analysis of test-phase activity for item recognition also showed that

depending on the time it takes to reach a decision, memory judgments could be driven by

either a unitary, integrated signal or two independent sources of evidence; suggesting a way

to reconcile the existing debate on single- versus dual-process theory. Overall, these investi-

gations showed that predictive approaches can be used to characterize as well as to quantify

the contributions of different brain-activity signals in explaining the variability in learning

outcomes. While the classifier approach could be built upon to improve the classification

rates, the overall modest predictions could also suggest that successful learning depends on

other factors that are not reflected in the brain activity during the study- or test phases of

the item recognition task, or during the feedback processing of the trial-and-error learning

task. Accordingly, future investigations will need to identify and include these factors into

the predictive analysis incrementally, in order to reach a more comprehensive explanation of

learning behaviour.
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Jeremy Thomas, and many undergraduate research assistants for their support and friend-

ships. I would also like to acknowledge all the funding supports that made my research

possible, the Natural Sciences and Engineering Research Council of Canada (NSERC), Al-

berta Gambling Research Institute (AGRI), and Department of Psychology of the University

of Alberta. Last but not the least, I would like to thank my family and friends for supporting

and encouraging me throughout my journey.

v



Table of Contents

Abstract iii

Preface iv

List of Tables x

List of Figures xviii

List of Abbreviations xix

1 General Introduction 1

1.1 Making predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overfitting and Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 A walk-through of the investigations . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Understanding learning outcomes as functions of brain activity during

the study phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Understanding learning outcomes as functions of brain activity during

the test phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Comparison between the predictive power of study- and test-phase

activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 A walk-through of the main methods . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Concluding remarks and chapter overview . . . . . . . . . . . . . . . . . . . 30

2 Predicting subsequent memory from brain activity during the study phase

of item recognition 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi



2.2.1 Behavioural materials and procedure . . . . . . . . . . . . . . . . . . 39

2.2.2 EEG methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.3 EEG Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Predicting memory from brain activity during the test phase of item recog-

nition 68

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 Participants and experimental procedure . . . . . . . . . . . . . . . . 78

3.2.2 EEG recording and pre-processing . . . . . . . . . . . . . . . . . . . . 78

3.2.3 EEG Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.4 Classification based on ERPs at test . . . . . . . . . . . . . . . . . . 79

3.2.5 Classification based on the multivariate EEG signal at test . . . . . . 80

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.1 Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.2 ERPs at test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.3 Predictions with univariate measures of the FN400 and LPP . . . . . 85

3.3.4 Shorter response times . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.5 Predictions with multivariate EEG activity at test . . . . . . . . . . . 94

3.3.6 Analysis of LDA feature weights . . . . . . . . . . . . . . . . . . . . . 97

3.3.7 Classification of the vincentized signal . . . . . . . . . . . . . . . . . 100

3.3.8 Evaluating single- and dual-process accounts with classifier evidence . 103

3.3.9 Comparison with the classifiers at study . . . . . . . . . . . . . . . . 110

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.4.1 ERPs at test: FN400 and LPP . . . . . . . . . . . . . . . . . . . . . 111

3.4.2 Multivariate pattern analysis of brain activity at test . . . . . . . . . 114

3.4.3 Comparison between study- and test-phase activity . . . . . . . . . . 118

3.4.4 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

vii



4 An event-related potential analysis of trial-and-error learning 123

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2.3 Experimental Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2.4 EEG recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.1 Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.2 ERPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 Predicting trial-and-error learning with brain activity 160

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2.1 Predictions with the amplitude of the FRN-like signal . . . . . . . . . 170

5.2.2 Multivariate pattern analysis . . . . . . . . . . . . . . . . . . . . . . . 171

5.2.3 Analysis of classifier-identified patterns . . . . . . . . . . . . . . . . . 171

5.2.4 Finding the steepest cycle for predicting subsequent response-accuracy 172

5.2.5 Separating trials based on previous feedback-outcomes . . . . . . . . 173

5.2.6 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.3.1 Feedback-locked ERPs . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.3.2 Predicting subsequent response-accuracy with the amplitude of the

FRN-like signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.3.3 Predicting subsequent response-accuracy with multivariate pattern anal-

ysis of brain-activity during feedback-processing . . . . . . . . . . . . 178

5.3.4 Predicting word-value with multivariate pattern analysis of brain ac-

tivity during feedback processing . . . . . . . . . . . . . . . . . . . . 181

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

viii



6 General Discussion and Conclusion 191

6.1 General Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.1.1 Predictive value of univariate ERP measures derived from prior studies 191

6.1.2 Additional insights from multivariate pattern analysis . . . . . . . . . 197

6.2 Research significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.3 Limitations and future directions . . . . . . . . . . . . . . . . . . . . . . . . 203

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Bibliography 207

ix



List of Tables

1.1 A comparison of the item recognition and trial-and-error learning tasks studied
in this dissertation, based on the different dimensions of their design. *Task
engagement is on speculation basis; presumed higher for the trial-and-error
learning task due to the reward feedback. . . . . . . . . . . . . . . . . . . . . 8

3.1 Mean accuracy and response times for the different memory outcomes. Stan-
dard deviations are in parentheses next to the mean values. . . . . . . . . . . 84

3.2 Classifications with FN400 and LPP amplitudes, t-test against chance (0.5)
for the AUCs, along with the Bayes Factor (BF10). Significant effects are
marked with *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Predictions based on FN400 and LPP after excluding trials with shorter re-
sponse times, t-test against chance (0.5) for the AUCs. Significant effects are
marked with *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4 Multivariate classification with LDA and SVM, t-test against chance (0.5) for
the AUCs, along with Bayes Factors (BF10). Significant effects are marked
with *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5 Predictions based on LDA and SVM after truncating the signal for each trial
prior to the response, t-test against chance (0.5) for the AUCs. Significant
effects are marked with *. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

x



List of Figures

1.1 Examples of sample data and overfitting. a) A perfect sample; data contain
no noise, and present a perfect linear fit. b) A more realistic sample; data
contain random noise, a higher-order polynomial produces a perfect fit for the
sample. c) Another sample drawn from the same population as that of panel
b, but with different random noise; the fitted higher-order polynomial (from
panel b) is no longer a perfect fit for the sample data in panel c. . . . . . . . 5

1.2 The item recognition task: participants studied lists of words, followed by a
short distractor task where they solved simple math problems. After that,
participants made old/new judgments for targets and lures. There were a
total of 9 study and test lists. Each study and test list included 25 and 50
words, respectively. Test lists included equal number of targets and lures.
Lures were never part of the study lists. None of the words were repeated
for a participant. Figure is from Chakravarty et al. (2020), reprinted with
permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Illustration of a trial in the trial-and-error learning task. For high-value words,
choosing the word led to the high (10 points) reward whereas choosing ‘HH-
HHH’ led to the low (1 point) reward. For low-value words, choosing the
word led to the 1 point reward and choosing the ‘HHHHH’ led to the 10
points reward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Grand averaged ERPs for the item recognition task, separated by hits and
misses. a. ERPs at study, plotted for the central-parietal electrode Pz. b-c.
ERPs at test, plotted for the fronto-central electrode Fz (b) and the left-
parietal electrode P3 (c), respectively. The rectangles indicate the ERPs of
interest: LPC and SW at study, and FN400 and LPP at test. Significant
differences in average ERP amplitudes are indicated with *. . . . . . . . . . 10

1.5 a. Grand averaged ERPs during the study phase of the item recognition task,
comparing between subsequently remembered (hits) and forgotten (misses)
words; ERPs are plotted for the electrode Pz. Shaded error bars represent
std. error of the mean. Difference due to LPC (400–700 ms) and SW (700–
900 ms) amplitude are marked with *. b-c. Distribution of the LPC amplitude
across all trials (hits and misses) for two different participants showcasing that
significant difference in the mean amplitudes at the participant level (a) may
not necessarily imply difference between the two conditions (hits and misses)
at the level of individual trials (c). . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Demonstration of classification based on ERP amplitudes. a. Distribution
of the ERP amplitudes across all trials for a randomly selected participant
and for two different conditions, such as, hits and misses. b. The thresholds
used for classification. c. The ROC curve, shaded region represents the AUC.
Dashed black line denotes chance. . . . . . . . . . . . . . . . . . . . . . . . . 22

xi



1.7 A schematic overview of the classifier analysis: data were split into training-
and test sets through k-fold cross-validation, the training sets were used to
train the model, while the test sets were used to evaluate them; the final model
performance was averaged across all the test sets. . . . . . . . . . . . . . . . 25

2.1 The experimental paradigm. Participants were asked to study a list of 25
words, presented one at a time at the center of the screen. This was followed
by a short distractor task with simple math problems. Participants were then
given a set of item recognition tests, judging each word as “old” (targets)
or “new” (lures). There were equal number of targets and lures in the test
phase. This whole process was repeated 9 times, yielding 225 study and 450
test trials. Each study list was unique. The order of the items during study
was same as the order of the targets at test, with lures being presented at
random positions in the list; lure items were not repeated across lists nor
within lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Demonstration of classification based on SME ERPs. a. Distribution of the
LPC amplitude (from Pz) across all trials for a randomly selected participant.
b. The thresholds used for classification. c. The ROC curve, shaded region
represents the AUC. Dashed black line denotes chance. . . . . . . . . . . . . 41

2.3 Selected electrodes for the multivariate classification, roughly distributed in
equal between the frontal and posterior scalp regions. . . . . . . . . . . . . . 43

2.4 Grand averaged ERPs at electrode Pz for subsequently remembered (hits)
and forgotten trials (misses). . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 a. Classification based on SME ERPs: LPC and SW (computed from electrode
Pz). Maximum AUC observed was 0.69 for both LPC and SW (for the same
participant). b. Multivariate classification with LDA and SVM (left) and with
oversampling to produce balanced classes (right). Maximum AUCs observed
were 0.69 for LDA and 0.73 for SVM (same participant for LDA and SVM and
also same as above). With balanced classes, maximum AUC for both LDA
and SVM was 0.69 (same participant for LDA and SVM but different from
above). Error bars are 95% confidence intervals. Dashed black line denotes
chance level (0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Correlation between AUCs for LPC and SW. Dashed lines denote chance. . . 48
2.7 Effect of tuning the regularization parameters gamma of LDA and box con-

straint of SVM. We used a nested cross validation procedure. For the outer
cross-validation, data was randomly partitioned into 10 stratified folds, 9 folds
being used for training and 1 for validation. Then, the training data was sub-
jected to an inner 9 fold stratified cross validation to tune the regularization
parameter. For each training set of the inner cross validation, separate LDA
models were trained for gamma = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1].
Similarly, for SVM, separate models were trained for box constraint = [0.001,
0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]. Then performance for these
models were computed for the test folds of the inner cross validation. Value
of the regularization parameter corresponding to the model with best perfor-
mance was selected. Then this value was used in the model for the training
data of the outer cross validation and then tested with the left out validation
set. Finally, AUCs were averaged across the 10 validation sets. a. The overall
effect of tuning the regularization parameters for each model. b. and c. AUCs
for individual participants with constant and tuned regularization parameters. 49

2.8 Correlation between AUCS for the two classifiers (LDA and SVM) with (a)
and without (b) balanced classes for training. Dashed black lines denote chance. 49

xii



2.9 Relationship between classifier performance (AUC) and proportion of hits for
LDA (a) and SVM (b). Percent change in classifier performance (∆AUC)
after oversampling, separately for LDA (c) and SVM (d). . . . . . . . . . . . 50

2.10 Determining the correct number of clusters for the cluster analysis of LDA
feature weights. Each plot shows the distance measure for each participant
for their respective clusters. Average distance scores across all participants
are listed on top of the plot. For a set of two clusters (a), this measure was
the highest. Also, all participants show positive distance scores for a set of
two clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.11 Cluster analysis of feature weights for all participants with LDA AUC > 0.5.
A set of two clusters best explained our data (N = 22 for cluster 1 and N = 21
for cluster 2). (a–c) refers to cluster 1, (d–f) refers to cluster 2. Colors are
range scaled. Note that the color scale varies across panels. See Figures 2.16
and 2.17 for full version of this figure. . . . . . . . . . . . . . . . . . . . . . . 56

2.12 ERPs at Pz for the two clusters obtained through k-means clustering of LDA
feature-weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.13 Effect of sample size on the overall significant results for SVM. With one
sample t-tests, we calculated if SVM performance was significantly better than
chance, for different sample sizes, ranging from 6 to 62 participants. For each
sample size, participants were selected at random and without replacement.
Further, for each sample size, we collected 100 sets of participants. Y axis
shows the probability of obtaining a non-significant effect, calculated across
these 100 sets and for each sample size. . . . . . . . . . . . . . . . . . . . . . 60

2.14 Classification of hit versus miss trials for each list in the task, based on the
LPC and SW ERP measures. Error bars are 95% confidence intervals. Dashed
line refers to chance performance. Lists with all hits or all misses were excluded. 62

2.15 ROC curve obtained from between subject classification of the average EEG
waveform at study for hit versus miss events, with linear SVM. Dashed line
denotes chance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.16 Topographic plots showing LDA feature weights averaged across all partic-
ipants in cluster 1 (N = 22). Colors are range scaled and the scale varies
across panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.17 Topographic plots showing LDA feature weights averaged across all partic-
ipants in cluster 2 (N = 21). Colors are range scaled and the scale varies
across panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1 Grand averaged ERPs at test, comparing hits and correct rejections (upper
panels) and hits and misses (lower panels). ERPs are plotted separately for the
frontal electrode Fz (a,c) and the left parietal electrode P3 (b,d) to examine
the effects of the FN400 and the LPP respectively. Corresponding topographic
maps are plotted for the difference waves (hits − CR or hits − misses) for
the window of the FN400 (a,c) or the LPP (b,d) respectively; color indicates
mean voltage (µV ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Classifications with FN400 (computed from electrode Fz) and LPP (computed
from electrode P3) amplitudes, separately for the classifications between 1)
old and new trials, 2) hits and misses, 3) perceived-old- and new trials, and 4)
correct rejections and false alarms. Error bars are 95% confidence intervals.
Dashed black line refers to chance (0.5). . . . . . . . . . . . . . . . . . . . . 87

3.3 Correlation between AUCs obtained from FN400 and LPP based classifica-
tions, for each classification problem. Dashed black lines refer to chance (0.5). 89

3.4 Correlation between AUCs obtained from FN400 or LPP amplitude-based
classifications and d′ values of participants behaviour, separately for each
classification problem. Dashed black lines refer to chance (0.5). Panels with
significant correlations are marked with *. . . . . . . . . . . . . . . . . . . . 91

xiii



3.5 Correlation between AUCs obtained from FN400 or LPP amplitude-based
classifications and average response-times (for hits only), separately for each
classification problem. Dashed black lines refer to chance (0.5). Panels with
significant correlations are marked with *. . . . . . . . . . . . . . . . . . . . 91

3.6 Average response times across participants. . . . . . . . . . . . . . . . . . . . 92
3.7 Classification based on the FN400 (computed from electrode Fz) and the LPP

(computed from electrode P3) after rejecting trials with response times lesser
than 500 ms and 800 ms respectively for the FN400 and the LPP. Results are
grouped into four different classification problems: 1) old versus new, 2) hits
versus misses, 3) perceived old versus perceived new and 4) correct rejections
versus false alarms. Error bars are 95% confidence intervals. Dashed black
line refers to chance (0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8 Correlation between LDA and SVM classifiers, separately for each classifica-
tion problem. Dashed black lines refer to chance (0.5). Panels with significant
correlations are marked with *. . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.9 Multivariate classification with LDA and SVM. Results are grouped into four
classification problems: 1) old and new trials, 2) hits and misses, 3) perceived-
old- and new trials, and 4) correct rejections and false alarms. Error bars are
95% confidence intervals. Dashed black line refers to chance (0.5). . . . . . . 96

3.10 Correlation between LDA and SVM AUCs and participant’s d′, separately for
each classification problem. Dashed black lines refer to chance (0.5). Panels
with significant correlations are marked with *. . . . . . . . . . . . . . . . . 97

3.11 Feature-weights for LDA, averaged across participants with LDA AUC > 0.5.
Weights are presented for all the time-features (mean amplitude over 100 ms
time-intervals) used in the classification analysis, averaged over all included
electrodes (the spatial features). Weights are shown separately for the four
classification problems. The error bars are standard errors of the mean. . . 99

3.12 Distribution of feature-weights across the scalp, separately for each of the 12
time-intervals, and averaged across participants with LDA AUC > 0.5. The
topographic plots were made by interpolating the weights of the electrodes
included in the classification analysis to other (not included) electrodes on
the scalp, through inverse distance-weighting. Weight-distributions are shown
separately for the four classification problems. Colors indicate weights, the
color scale varies across panels. . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.13 Classification with LDA and SVM after truncating the signal for each trial
prior to the response. Results are grouped into four different classification
problems: 1) old versus new, 2) hits versus misses, 3) perceived old versus
perceived new and 4) correct rejections versus false alarms. Error bars are
95% confidence intervals. Dashed black line refers to chance (0.5). . . . . . . 102

3.14 LDA feature-weights averaged across participants with LDA AUC > 0.5.
Weights are presented across all 12 vincentized time-bins, and averaged over
all included electrodes (the spatial features). Weights are shown separately
for the four classification problems. The error bars are standard errors of the
mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.15 Classifications based on independent and cumulative time-bins from 0–1200 ms
post stimulus-onset, separately for LDA (upper panels) and SVM (lower pan-
els). For independent time-bin analysis, classifiers were trained and tested
with independent 100 ms long time-windows. For the cumulative time-bin
analysis, classifiers were trained and tested with sequentially increasing (by
100 ms) time windows. Time features were not corrected for shorter response-
times through vincentization. Error bars are standard errors. . . . . . . . . . 105

xiv



3.16 Classifications for the vincentized signals, based on independent- and cumula-
tive time-bins from 0–1200 ms post stimulus-onset, separately for LDA (upper
panels) and SVM (lower panels). Error bars are standard errors. . . . . . . . 107

3.17 Classification of hits and misses based on vincentized signals, separately for
independent- and cumulative time-bins, and for LDA (upper panels) and SVM
(lower panels). Results are also shown separately for participants with faster-
(left panels) and slower average response-times (right panels). Dashed line
presents chance (0.5). Error bars are standard errors of the mean. . . . . . . 108

3.18 Classification of hit/miss trials based on vincentized independent time-bins
and cumulative time-bins from 0–1200 ms post stimulus onset, separately
for LDA (upper panels) and SVM (lower panels), and separately for trials
with response times shorter than the median response time (left panels) and
for trials with response times longer than the median response time (right
panels). Dashed line presents chance (0.5). Error bars are standard errors of
the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.19 Comparison between predictive success with brain activity features from the
study face and the test phase, for the classification of hits and misses. Error
bars are 95% confidence intervals. Dashed black line refers to chance (0.5). . 111

3.20 Correlation between predictions (AUCs) obtained with ERPs at study (LPC
and SW) and ERPs at test (FN400 and LPP), for the classification of hits
and misses. Dashed black lines refer to chance (0.5). . . . . . . . . . . . . . . 112

4.1 Illustration of a trial in the task. For high-value words, choosing the word
led to the high (10 points) reward whereas choosing ‘HHHHH’ led to the low
(1 point) reward. For low-value words, choosing the word led to the 1 point
reward and choosing the ‘HHHHH’ led to the 10 points reward. . . . . . . . 133

4.2 Learning curves for the training cycles. (a) plotting accuracy of responses
(choose high or not-choose low); the dashed horizontal line indicates chance
performance (0.5), and (b) response times for correct responses. All error bars
represent 95% confidence intervals for the mean. . . . . . . . . . . . . . . . . 136

4.3 (a) Distribution of asymptotic accuracy— mean accuracy over the last four
training cycles. (b) Distribution of the two strategies based on the accuracy
difference between non-switched and switched trials in cycle 17. . . . . . . . 137

4.4 (a) Illustration of the extreme case for conservative strategy: correct on all
non-switched trials, incorrect on all switched trials and (b) the exploratory
strategy: accuracy at chance level for all non-switched and switched trials.
(c) Learning accuracy for individual participants, separated by non-learners,
conservative and exploratory strategies. (d) Mean accuracy for the training
cycles. Note that both panels are averaged across the four conditions: high-
non-switched, high-switched, low-non-switched and low-switched. . . . . . . . 138

4.5 (a,b) Grand averaged ERPs at electrode FCz for cycle 17 and separately for
learners and non-learners, broken down by value (high or low) and reversal
state (non-switched or switched). (c,d) Mean amplitudes over the 200–350 ms
time window post feedback onset. Error bars are standard error of the mean.
(e,f) Scalp topographic plots of the difference wave (switched - non-switched)
for the same time window (200–350 ms), color reflects mean voltage (µV ).
Note the color scale limits vary for learners and non-learners in the topographic
plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xv



4.6 (a,b) Grand averaged ERPs at electrode FCz for cycle 17, separately for con-
servative and exploratory strategies and broken down by value (high or low) as
well as reversal-state (non-switched or switched). (c,d) Mean amplitude over
the 200–350 ms time window post feedback onset. Error bars are standard
error of the mean. (e,f) Topographic plots of the difference wave (switched -
non-switched) for the same time window, color reflects mean voltage (µV ). . 144

4.7 (a,b) Grand averaged ERPs at electrode FCz for cycle 17 and separately for
conservative and exploratory strategies, broken down by value (high or low)
and reversal-state combined with feedback-outcome (non-switched-correct or
switched-incorrect). (c,d) Mean amplitudes over the 200–350 ms time window
post feedback onset. Error bars are standard errors of the mean. (e,f) Topo-
graphic plots of the difference waves (switched - non-switched) for the same
time window, color reflects mean voltage (µV ). . . . . . . . . . . . . . . . . 146

4.8 Hypothesized reward prediction errors for the exploratory strategy in cycle 17
if they had reverted back to guessing the word-values. We maintained the
assumption that due to guessing they would have predicted a reward halfway
between 1 and 10 points, i.e. 5.5 points. Then, based on whether they made a
correct (10 points) or incorrect (1 point) response, the RPE should have been
+4.5 or −4.5 respectively, across all value and reversal conditions. . . . . . . 148

4.9 (a,c,d,f) Grand averaged ERPs at electrode FCz for cycle 17 and only for
exploratory strategy, broken down by value (high or low), reversal-state (non-
switched or switched) and feedback-outcome (correct or incorrect). (g) Mean
amplitudes over the 200–350 ms time window post feedback onset. Error bars
are standard errors of the mean. (b,e) Topographic plots of the difference
waves (incorrect - correct) for the FRN time window, color reflects mean
voltage (µV ). Note the color scale varies for high- and low-value. . . . . . . . 149

4.10 ERPs at FCz for cycle 17 for non-switched (a–b) and switched (c–d) trials that
were followed by a correct or an incorrect response in cycle 18. Topographic
plots of the difference wave (subsequent correct − incorrect) are placed next
to the ERPs, color reflects mean voltage (µV ) over the 200–350 ms time
window post feedback onset. ERPs are broken down by conservative (left)
and exploratory strategies (right) as well as by Value (high/low). Error bars
are standard errors of the mean. . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.11 (a–d) ERPs at FCz for cycle 1, for correct and incorrect trials that were
followed by a correct or an incorrect response in cycle 2. Topographic plots
of the difference wave (subsequent correct − incorrect) are placed next to the
ERPs, color reflects mean voltage (µV ) over the 200–350 ms time window
post feedback onset. All ERPs are broken down by conservative (left) and
exploratory strategies (right) as well as by Value (high/low). All error bars
are standard errors of the mean. . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.1 Grand averaged ERPs for learners (N = 47) during feedback presentation, and
as functions of response accuracy in the steepest cycle, chosen individually for
each participant (see Methods). ERPs are shown separately for high- and
low-value (left and right panels), for correct and incorrect responses in the
subsequent cycle while keeping response accuracy restricted to correct (upper
panels) and incorrect (lower panels) trials for the preceding cycle. Shaded
error bars are standard errors of the mean. All ERPs are plotted for the
fronto-central electrode FCz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xvi



5.2 Classification of subsequent response-accuracy, based on the amplitudes of the
FRN-like signal, and for the steepest cycle, chosen individually for each par-
ticipant (see Methods). Classifications are presented separately for when all
trials were considered in the previous cycle, when only previously-incorrect tri-
als were considered, and when only previously-correct trials were considered.
Results are also shown separately for all participants (N=58), non-learners
(N=11), conservative- (N=21) and exploratory (N=26) strategy participants.
Dashed line presents chance. Error bars are 95% confidence intervals. Signif-
icant effects are marked with *. . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.3 Classification of subsequent response-accuracy with LDA, based on multi-
variate pattern analysis of brain activity during feedback-processing, and for
the steepest cycle, which was chosen individually for each participant (see
Methods). Classifications are presented separately for when all trials were
considered in the previous cycle, when only previously-incorrect were consid-
ered, and when only previously-correct trials were considered. Results are
also shown separately for all participants, non-learners, conservative- and ex-
ploratory strategy participants. Dashed line presents chance. Error bars are
95% confidence intervals. Significant effects are marked with *. . . . . . . . . 180

5.4 Classification of subsequent response-accuracy with SVM, based on multi-
variate pattern analysis of brain activity during feedback-processing, and for
the steepest cycle, which was chosen individually for each participant (see
Methods). Classifications are presented separately for when all trials were
considered in the previous cycle, when only previously-incorrect were consid-
ered, and when only previously-correct trials were considered. Results are
also shown separately for all participants, non-learners, conservative- and ex-
ploratory strategy participants. Dashed line presents chance. Error bars are
95% confidence intervals. Significant effects are marked with *. . . . . . . . . 180

5.5 Correlation between classifier performance and asymptotic accuracy of the
participants (average accuracy over the last four training cycles), separately
for LDA (a) and SVM (b). The classification was for subsequent response-
accuracy, restricted to previously incorrect trials (the middle bars for each
group in Figures 5.4 and 5.3). Dashed lines present chance performance.
Solid lines are the regression lines. . . . . . . . . . . . . . . . . . . . . . . . . 181

5.6 a–b. Classification of word-value (high/low), for trials pooled from cycles 2
to 5, based on multivariate pattern analysis of the feedback-related activity,
for the same trials, and separately for when the feedback outcome was cor-
rect (a), and incorrect (b). Results are shown separately for all participants,
non-learners, conservative and exploratory strategy participants. Dashed line
presents chance. Error bars are 95% confidence intervals. c–d. LDA weights,
averaged across all included electrodes, and across all participants with LDA
AUC> 0.5, for classification of word-value, separately for correct- (c) and
incorrect (d) feedback-outcomes. Error bars are standard errors. c–d. Scalp-
distribution of the LDA weights, for the 300–400 ms, and the 500–600 ms time
intervals. Color reflects weights, color axes are range-scaled. . . . . . . . . . 183

6.1 Summary of the main investigations pursued in Chapters 2 and 3 based on
the item recognition task. Arrows indicate the classification problems of in-
terest and the chosen brain-activity measures used to test for the predictions.
Green ticks indicate significant predictive success (across participants). For
classification of correct rejections and false alarms, only multivariate pattern
analysis of the test-phase brain activity achieved significant success. . . . . . 192

xvii



6.2 Summary of the main investigations pursued in Chapter 5 with the trial-and-
error learning task. Blue arrows indicate the flow of the task; black arrows
indicate the classification problems of interest and the brain-activity measures
used to test for predictions. Green ticks indicate significant predictive success
(across participants). Red crosses indicate failure to find a significant effect.
*Analysis was substantially under-powered. . . . . . . . . . . . . . . . . . . . 195

xviii



List of Abbreviations

ACC Anterior Cingulate Cortex
AUC Area Under the Curve
EEG Electroencephalography
ERP Event-related Potential
FRN Feedback-related Negativity
HC Hippocampus
LDA Linear Discriminant Analysis
LPC Late Positive Component
LPP Left Parietal Positivity
ML Machine Learning
MTL Medial Temporal Lobe
RL Reinforcement Learning
ROC Receiver Operating Characteristic
RPE Reward Prediction Error
RSE Retrieval success effect
RT Response time
SME Subsequent Memory Effect
SMOTE Synthetic Minortiy Oversampling Technique
SVM Support Vector Machine
SW Slow Wave

xix



Chapter 1

General Introduction

The central idea motivating this work is that cognitive processes underlying the way we

learn and remember are captured by recorded brain activity, and thus, can be used to

explain the variability in learning outcomes, in other words, as functions of brain-activity

signals. However, to understand behavioural outcomes as functions of brain activity, it

is equally important to test if those can be predicted from brain activity. Statistically,

predicting behaviour is different from explaining behaviour, and here, through a series of

investigations I show that predictive approaches can offer complementary insights about

behaviourally-relevant brain activity, when compared to more commonly-used explanatory-

and descriptive methods.

Two different learning situations were considered; in one situation, participants studied

lists of words, followed by old/new recognition judgments for the studied (targets) and new

(lures) words. In the other learning situation, participants learned the stimulus-response

rules for a large set of words through trial-and-error and with reward feedback. For both

situations, I asked whether variability in participants’ learning success could be explained

by brain activity present when they were studying the information. In other words, does

study-phase activity predict subsequent learning success or failure at test? This question

was motivated from research using the “subsequent memory effect” framework (Sanquist,

Rohrbaugh, Syndulko, & Lindsley, 1980), which has examined brain-activity signals during

the study-phase, that support subsequent memory-success at test. However, brain-activity
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signals identified with the subsequent memory effect framework are based on planned com-

parisons, which limit their interpretation as “predictive” of later memory, unlike what has

been suggested by some researchers (e.g., Wagner et al., 1998).

This introductory chapter is organized as follows. First, to set the motivation for this

work, I start with a brief discussion of what is meant by a prediction and the importance

of testing for predictions. This is followed by a walk-through of the main investigations,

including discussions of specific research questions and results. Lastly, I present a snapshot

of the main methods that were followed across the investigations.

1.1 Making predictions

As explained in detail by Yarkoni and Westfall (2017), it is easy to confuse explanations

with predictions. Conceptually, explaining a phenomenon should include the provision for

predictions within it. However, the common statistical tools used for explanatory and predic-

tive analysis do not assume this. Thus, models that explain well can be very different from

those that predict well, because their goals are different. With predictive approaches, the

goal is to forecast the outcome of future events. Thus, for problems in the field of cognitive

neuroscience, given brain activity measures (X), the goal will be to predict the behavioural

outcome (Y). To understand how the predictive goal is different from explaining, Shmueli

(2010) notes (p. 293), “measurable data are not accurate representations of their underlying

constructs.” With explanatory approaches, the functional construct (f) between brain activ-

ity and behaviour is considered first. These are based on existing theories. Then, empirical

data are collected to test it. Notably, existing theories on the functional construct of brain

activity are less than complete, also making f less than complete.

With electroencephalographic (EEG) recordings, event-related potential (ERP) signals

are used very commonly to identify brain activity specific to the processing of a stimulus,

making a response, etc.; ERP signals are deflections from baseline EEG activity, often seen

as peaks, and are characterised by their latency, polarity and scalp distribution. Impor-

tantly, ERPs are quantified by averaging across many trials, and the averaged signals are
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used to make inferences about their involvement in specific perceptual-, cognitive- or motor

processes. Further, ERP analysis follows a planned-comparisons and descriptive approach,

which run the risk of overestimating the ERP features by an error commonly known as over-

fitting (overfitting is explained in detail in the next section). They could also underestimate

what really drives the difference in the processing of the event by overlooking other relevant

features of brain activity. In contrast, with predictive models, f is estimated from the em-

pirical data, and thus, predictive models may better identify the relevant features. See the

“ERPs” paragraph and Figure 1.5 below which explain why a descriptive result may not be

predictive, with an example. However, one downside is that predictive models could lead to

complex constructs that are difficult to interpret with existing theories.

That said, the motivation for using predictive approaches, as elegantly summarized by

Shmueli (2010) is easy to understand, and a few points are of direct relevance to the current

work.

• Consider that recordings of brain activity (e.g., with fMRI, EEG) typically contain

thousands of features. With limited background theories, it is difficult to test which

features index a mental process and how exactly they function. In other words, the-

oretical constructs are not well-defined to make hypotheses about the effects of the

many features present in the brain-activity recordings. In contrast, with predictive

models, it is easier to analyze many features. Specifically, machine learning classifiers

can automatically learn the relationship between the dependent and independent vari-

ables in case of multivariate data. Thus, exploratory predictive analysis can be used

to inform existing theories, and to improve them.

• Testing existing theories against predictive benchmarks is important because it esti-

mates how well the neural measures explain the variability in the behavioural data.

The amount of predictive success can also be used to directly compare between two or

more brain-activity signals and their underlying cognitive processes.

• Failure to predict behaviour with a brain-activity signal is also an important finding.
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The failure could be due the fact that the signal does not contain relevant information

for predicting behaviour, in which case, other relevant signals could be pursued. The

failure could also be due to the fact that the technique does not have enough sensi-

tivity to capture the information from the signal, which can motivate methodological

improvements to the predictive framework.

Thus, although planned-comparisons and descriptive-methods used in ERP research have

identified many interesting brain-activity features, some of which have been highly-replicated

across studies, to make better connections with behaviour, these should be tested with

predictive approaches.

Perhaps, the two most important concepts that explain the difference between inferences

drawn from planned-comparisons and predictive-tests are overfitting and generalizability.

These are briefly discussed below.

1.2 Overfitting and Generalizability

Overfitting is a type of error where the model fits the data too closely, most likely by

capturing the noise in it (Bishop, 2006). The problem with overfitting is that although the

model produces an extremely good fit to the specific sample dataset it had operated on,

it fails to generalize that fit for other samples. In other words, the model cannot provide

good fits when applied to another sample dataset. This renders the model-related inferences

useless for population-level data.

Consider a situation where the underlying function connecting the dependent variable

(x) and the independent variable (y) is linear in nature: y = a+ bx, where a is the intercept

and b is the slope. Now consider that in one sample, the data look like that of Figure 1.1a.

Clearly, this sample can be fit easily with a linear regression. The measure of goodness-of-fit,

R2 = 1, suggesting a perfect fit.

However, experimental data rarely look as clean as Figure 1.1a, due to sampling-error

and/or measurement-error. So, a more realistic example of sample data would look like that
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Figure 1.1: Examples of sample data and overfitting. a) A perfect sample; data contain
no noise, and present a perfect linear fit. b) A more realistic sample; data contain random
noise, a higher-order polynomial produces a perfect fit for the sample. c) Another sample
drawn from the same population as that of panel b, but with different random noise; the
fitted higher-order polynomial (from panel b) is no longer a perfect fit for the sample data
in panel c.

of Figure 1.1b, where, a linear-trend between x and y still exists, but it is embedded in

random-noise. Here, a polynomial-fit (9th-order) looks much better than a linear-fit. The

R2 values for the 9th-order polynomial-fit and the linear-fit in this case are 1 and 0.92,

respectively. However, in another sample, which contains different randomly-sampled noise

(Figure 1.1c), this 9th-order (fitted) polynomial fits the data poorly (R2 = 0.80), whereas

the more parsimonious linear-fit is better (R2 = 0.90). This is due to overfitting.

Importantly, for regression analysis used in the explanatory- or descriptive approach, the

goodness-of-fit measures are only used to estimate how closely the model fits the sample

data. Thus, unless all other samples from the population are extremely similar to the chosen

sample, there is no guarantee that any higher-order polynomial-fit will generalize across

different experiments. That said, a line-fit, due to its smallest degrees-of-freedom, is never

likely to overfit the data. It can, however, underfit the data. Underfitting refers to the

situation where the model lacks important parameters that are necessary to explain the

data-variability.

When predicting behaviour from brain activity, overfitting can also be a problem for a

different reason. There could be idiosyncratic reasons, and cognitive or neural processes that

correlate with those reasons, for a particular behavioural outcome that do not generalize to

other behavioural outcomes. For example, the word Brook may be memorable to someone
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because it reminds them of their dog named Brooks; accordingly, brain activity related to

the pet may describe why they remembered Brook in one sample dataset, but it will not

help explain why they might remember Tomato in a different sample.

Unlike the explanatory methods, with predictive analysis, the importance is placed on

generalizable results. Thus, additional steps are typically built into the analysis to check

for overfitting. Consider that one way to know whether a model overfits the data is to test

it on another sample (from the same population). Accordingly, machine learning classifiers

use different samples to fit or estimate the model parameters, and to test the performance

of the model. These are known as the “training-set” and the “test-set,” respectively. Thus,

an overfitted model is likely to perform poorly for the test-set, based on which, the model

can be revised. Often, it is not easy to collect training- and test-samples separately, or the

total amount of available data is small. Even in those cases, cross-validation procedures can

be used to create disjoint training- and test-sets (explained later in this chapter).

Notably, the goal of finding a model that generalizes to out-of-sample data may be

counter-intuitive to the goal of finding a model that efficiently captures the regularities

of the in-sample data. Overfitting of a model is reflected in the model variance, which mea-

sures resilience of the model when training on different training-sets. As model variance

increases, the generalizability of the model decreases. Thus, the goal is to obtain models

with low model-variance.

However, a low model variance can be associated with a higher model bias. Model

bias is the inherent error in the model’s assumption to learn the connection between the

independent and dependent variables. For example, simpler models (e.g., linear models)

can have a higher model bias due to making simpler assumptions, when the data actually

contain complex interactions between their parameters. When the model bias is high, the

model produces many false alarms for out-of-sample data. On the other hand, non-linear

models, as illustrated in the example above (Figure 1.1c), can overfit when the data are

simple, and thus, perform poorly for test-sets.

Thus, the test-error of the model, which is the model error for the out-of-sample data or
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the test-set, is influenced by both model bias and model variance. The actual goal is then to

find a right trade-off between the model bias and model variance. In other words, to perform

well on test-data, a model should have a low model bias along with a low model variance.

In general, larger data sets, containing many examples, help find models with low bias

and variance. In contrast, in the descriptive approach, sample size is determined based on

the desired effect size or, in some cases, it is biased by when a significant effect (e.g., p < 0.05)

is reached, also known as “p-hacking”, which is more likely to support sample-induced biases

in the effects than when using a considerably large sample (Simonsohn, Nelson, & Simmons,

2014).

Thus, overall, predictive approaches can be used to better estimate behaviourally-relevant

brain activity. As mentioned at the beginning of this chapter, this thesis makes detailed use

of predictive approaches to investigate brain activity underlying successful learning. The

main questions of interest, with respect to the two different learning situations pursued here,

are discussed below.

1.3 A walk-through of the investigations

This thesis includes four studies. Chapters 2 and 3 are based on the item recognition ex-

periment; Chapters 4 and 5 are based on the trial-and-error learning experiment. For both

tasks, the investigations first looked into the predictive power of previously-identified ERP-

measures relevant to successful learning. Thus, the classification rule for predicting learning

success versus failure, was pre-determined, and was based on the findings from the previous

planned-comparisons studies. Then, the entire dataset was considered for testing the classifi-

cation rule. Thus, this analysis re-evaluated previous findings against predictive benchmarks,

adding valuable insights to the interpretation of the highly-replicated ERP effects.

The tests of predictions with the previous ERP measures were followed by more data-

driven, multivariate pattern analysis of brain activity. The multivariate pattern analysis has

the potential to find combinations of different previously-known signals, or even to identify

previously-unknown signals that are also relevant to the behavioural outcomes. Thus, the

7



Item recognition Trial-and-error learning
Stimuli nouns nouns
Set size 25 48

Learning mediated through instruction reward feedback
Response old/new judgments (test) choose or not-choose the word

Main performance measure of interest d
′

accuracy (per cycle)
Repetition of Stimuli never on every cycle

Lures at test yes no
Task engagement* variable higher

Table 1.1: A comparison of the item recognition and trial-and-error learning tasks studied
in this dissertation, based on the different dimensions of their design. *Task engagement is
on speculation basis; presumed higher for the trial-and-error learning task due to the reward
feedback.

multivariate pattern analysis was capable of addressing the blind spots of the planned-

comparisons approach.

Table 1.1 presents a comparison of the two tasks. In item recognition, participants

were asked to study the words for old/new recognition tests that followed (see Figure 1.2 ),

whereas in trial-and-error learning, participants learned to make correct choices on a trial-

by-trial basis, in order to maximize the total rewards, which were earned at the end of the

experiment (see Figure 1.3). However, in order to make the correct choices, participants had

to study the words, because the response rules were stimulus-specific.

Thus, both tasks included study and test trials for the words. However, unlike item

recognition, there were no lures (new items present only at test) in trial-and-error learning.

As I unpack in the following sections, lures are very likely to add to the variability of the

learning outcomes. Accordingly, trial-and-error learning might have had less variability in

learning outcomes than item recognition.

Also, the item recognition task included a short delay (filled with a math distractor task)

between the study and test phases. On the other hand, for the trial-and-error learning task,

one cycle was immediately followed by the next. In fact, in the trial-and-error learning task,

for a given cycle, the participants were tested on their memory for the stimulus-response

rules, as learned in the previous cycle.
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Figure 1.2: The item recognition task: participants studied lists of words, followed by a
short distractor task where they solved simple math problems. After that, participants
made old/new judgments for targets and lures. There were a total of 9 study and test lists.
Each study and test list included 25 and 50 words, respectively. Test lists included equal
number of targets and lures. Lures were never part of the study lists. None of the words
were repeated for a participant. Figure is from Chakravarty et al. (2020), reprinted with
permission.
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Figure 1.3: Illustration of a trial in the trial-and-error learning task. For high-value words,
choosing the word led to the high (10 points) reward whereas choosing ‘HHHHH’ led to the
low (1 point) reward. For low-value words, choosing the word led to the 1 point reward and
choosing the ‘HHHHH’ led to the 10 points reward.
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Figure 1.4: Grand averaged ERPs for the item recognition task, separated by hits and misses.
a. ERPs at study, plotted for the central-parietal electrode Pz. b-c. ERPs at test, plotted
for the fronto-central electrode Fz (b) and the left-parietal electrode P3 (c), respectively.
The rectangles indicate the ERPs of interest: LPC and SW at study, and FN400 and LPP
at test. Significant differences in average ERP amplitudes are indicated with *.
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The study items (9 lists containing 25 words each) were never repeated in item recognition

(neither were the lures). In contrast, the same set of 48 words were repeated across all cycles

in trial-and-error learning (19 cycles in total). Years of behavioural research suggests that

repeated encounters with an item leads to better probability of remembering it, though

the trial-and-learning task did not include explicit memory tests for the words (but see

Chakravarty et al., 2019 who investigated free recall with a similar paradigm).

The trial-and-error learning task included reward feedback, which could have led to an

overall greater engagement for the task. In contrast, item recognition did not include any

feedback, and thus, task-engagement likely varied across participants. In this work, multiple

results from analysis of brain activity with the machine learning classifiers showed that the

classifiers performed better in predicting the learning outcomes for better-performing partici-

pants. A possible reason could be that for better-performing participants, the signal-to-noise

ratio (SNR) of their brain activity was higher, which was picked up by the classifiers. If this

is true, then task-engagement could be an important aspect for classifier-driven analysis of

brain activity.

Overall, despite the difference in the design of the two tasks, there were multiple features,

based on which the investigations for the two tasks could be compared.

1.3.1 Understanding learning outcomes as functions of brain ac-
tivity during the study phase

Cognitive processes present during studying of the items are thought to contribute to the

variability in learning success, at the time of testing. For example, the Levels of Processing

idea (Craik & Lockhart, 1972) suggests that probability of remembering an item depends on

the conceptual depth with which it was studied. Accordingly, comparison of brain activity

during the study phase for later remembered and forgotten items could identify signals that

relate to effective encoding processes at study. Chapters 2 and 5 explored this suggestion

for the item recognition and trial-and-error learning tasks, respectively.
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Item recognition For item recognition, this “subsequent memory effect” (SME; Sanquist

et al., 1980) has been investigated across many studies. Two commonly studied and highly-

replicated ERPs at study, the late positive component (LPC) and the slow wave (SW), show

more positive amplitude for subsequently remembered (hits) than forgotten items (misses)

(Chen, Lithgow, Hemmerich, & Caplan, 2014; Fabiani, Karis, & Donchin, 1990; Friedman,

1990; Karis, Fabiani, & Donchin, 1984; A. S. Kim, Vallesi, Picton, & Tulving, 2009; Sanquist

et al., 1980; Smith, 1993), and thus, are thought to index cognitive processes that drive the

subsequent memory effect (see Figure 1.4a). Specifically, the LPC and SW are thought to

index shallow- and deep encoding strategies, respectively (Karis et al., 1984). For example,

when the items are repeated during the study phase, the difference due to subsequent memory

for the LPC amplitude is found to be larger than the same for the SW amplitude. On the

other hand, when the participants are asked to study the items using a relatively deeper

study strategy, such as, generating a sentence for each item, then the difference due to

subsequent memory for the SW amplitude is found to be much larger than the same for the

LPC amplitude (Fabiani et al., 1990). The scalp distribution of voltage for both LPC and

SW show posterior positivity. Accordingly, the centro-parietal electrode Pz is commonly

used to evaluate both ERP signals. LPC and SW have different latencies; the LPC reaches

its peak within the 400–700 ms time window relative to the onset of the stimulus at study.1.

The SW is relatively sustained activity that typically takes place after 700 ms and lasts a few

100 ms long time windows, relative to the onset of the study stimulus. Thus, although LPC

and SW likely supports different cognitive functions, there are similarities in the physical

characteristics of the two signals; since their latencies are close and they are commonly

evaluated for the same electrode Pz, it is possible that the two signals are not well separated

in commonly used analysis steps. Further, as I describe in detail in Chapter 2 (Chakravarty,

Chen, & Caplan, 2020), predictions for subsequent memory success for individual trials based

on the amplitudes of LPC and SW produced a small significant effect only. Thus, although

cognitive processes underlying LPC and SW were found to be relevant to subsequent memory

1The LPC is sometimes referred to as the P300 ERP signal (for a review, see Polich, 2007).
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success, they did not explain a good amount of variability in subsequent memory outcomes.

As mentioned above, due to the possible overlap in their latencies and similar scalp-

distribution of voltage for LPC and SW, it is possible that these signals are “process impure”.

In that case, multivariate pattern analysis of study-phase activity could find the right combi-

nation of the features of these signals (and features of other relevant signals present at study

as well) that better predict subsequent memory success. However, the multivariate pattern

analysis also produced a small significant effect (Chapter 2, Chakravarty et al., 2020). Over-

all, this suggests that cognitive processes present during the study phase, as reflected in the

recorded (time-domain) EEG signal at study, only contribute to a small amount of variability

in subsequent memory outcomes. However, the classifier performance was correlated with

participants’ performance, and it was meaningfully large for better-performing participants,

suggesting that the chance of success of a classifier may not only depend on the cognitive

processes but also how those are reflected in the recorded brain activity. Moreover, analysis

of the classifier-identified pattern of study-phase activity revealed two different patterns for

two different subgroups of participants in the experiment, which could suggest that there

was variability in how the participants approached the study phase (Chapter 2, Chakravarty

et al., 2020).

Trial-and-error learning Here, since learning was shaped by feedback, following the

logic of the subsequent memory effect, cognitive processes present during feedback processing

could be contributing to the variability in subsequent response accuracy (correct or incorrect

choices), reflecting trial-to-trial learning. However, trial-to-trial learning is not commonly

studied with the subsequent memory effect framework. Instead, it is viewed from the per-

spectives offered by theories of reinforcement learning, which suggest that optimal behaviour

in trial-and-error learning situations can be achieved by measuring the discrepancy between

the expected and actual outcomes, also known as reward-prediction error (RPE; Sutton &

Barto, 1998; Holroyd & Coles, 2002). When the outcome is worse than expected, a negative

RPE is generated, whereas for better than expected outcomes, the RPE is positive. RPE is
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measured on a trial-by-trial basis to update the subsequent expectation as well as to update

the response.

Activity of the dopamine neurons in the midbrain are found to code for RPE through

phasic responses. Studies with animal models showed that when the outcome is better than

predicted (or in the case of a positive RPE), there is a phasic increase in the firing rates of

the dopamine neurons whereas when the outcome is worse than predicted (or in the case

of negative RPE) there is a phasic decrease (from spontaneous rate) in the firing rates of

dopamine neurons. When the outcome is similar to that predicted (zero RPE) no such

changes in dopamine activity was observed (Schultz, Dayan, & Montague, 1997; Tobler,

Fiorillo, & Schultz, 2005). In humans, there may be analogous brain regions in computing

RPE, studies with fMRI show that BOLD activity levels code for RPE in the the ventral

striatum (Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006) and ventral tegmental area

(VTA; D’Ardenne, McClure, Nystrom, & Cohen, 2008). Further, drugs that change striatal

dopamine activity are found to also change reward-related response actions (Pessiglione et

al., 2006).

Previous EEG investigations of trial-and-error learning have reported an ERP, namely,

the feedback-related negativity (FRN; Miltner, Braun, & Coles, 1997; Nieuwenhuis, Holroyd,

Mol, & Coles, 2004), which is elicited during processing of the outcome and is likely generated

from the anterior cingulate cortex (ACC) (Hauser et al., 2014; Gehring & Willoughby, 2002;

Van Veen, Holroyd, Cohen, Stenger, & Carter, 2004; Miltner et al., 1997), a site that receives

dopaminergic input from the midbrain regions (Rolls, McCabe, & Redoute, 2008). Accord-

ingly, the FRN may index RPE. The FRN amplitude is more negative following unexpected

than expected feedback-outcomes (Bellebaum & Daum, 2008; Hajcak, Moser, Holroyd, &

Simons, 2006; Holroyd et al., 2004; Marco-Pallares, Cucurell, Münte, Strien, & Rodriguez-

Fornells, 2011; Pfabigan et al., 2015). Larger (more negative) RPE (for error) is followed

by response adjustments in subsequent trials. Thus, if FRN follows an RPE function, then

larger (more negative) amplitudes of FRN are also likely to be followed by subsequent re-

sponse adjustments. However, predictions for trial-to-trial learning based on the amplitudes
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of an FRN-like signal found for this task, as investigated in detail in Chapters 4 and 5,

produced a significant effect only when the previous trial was correctly responded, but not

when it was incorrectly responded. Thus, in contrast to the RPE function, the FRN-like

signal supported the maintenance of learned responses across successive cycles. Chapter 5

also included multivariate pattern analysis of brain activity during feedback processing to

predict trial-to-trial learning, but the results were non-significant, most likely because small

number of trials were available to train the classifiers.

Importantly, the above prediction results with the amplitudes of the FRN-like signal may

have been foreshadowed by the investigations in Chapter 4, which looked into the elicitation

and characteristics of the FRN-like signal for the trial-and-error learning task following

traditional ERP analysis methods. Notably, cognitive neuroscientists have thus far stuck

primarily to very simple tasks when studying the FRN and its potential role in tracking

RPE. However, research in the field of reinforcement learning is far more complex and has

investigated various learning situations, including both when learning depends on learning a

rule (model based) and when it does not (model-free). In contrast, in cognitive neuroscientific

research, studies looking into whether the FRN acts as an reinforcement learning error signal

in the brain, have typically considered learning situations like the two-armed bandit (Gehring

& Willoughby, 2002; Goyer, Woldorff, & Huettel, 2008; Hajcak, Moser, Holroyd, & Simons,

2007). Motivated from the situation of a gambler operating on two different slot machines,

the participant bets on two different stimuli that give out rewards with different probabilities.

Thus, reward-prediction itself is the main goal for a gambling task. Unlike this, in the trial-

and-error learning task investigated in Chapters 4 and 5, reward-prediction was a way to

learn the stimulus-specific response-rules. The results of Chapter 4 showed that although

an FRN-like signal was present, it was recruited differently by the task than what would be

expected from a purely RPE function. Also, the scalp distribution of voltage for this signal

was more frontal than the mid-frontal negativity typically observed for the FRN. Thus, it is

possible that the FRN-like signal identified for the current trial-and-error learning task was

characteristically different from the FRN signal reported by previous studies. The FRN-like
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signal was still relevant for trial-to-trial learning mechanisms but it was modulated by task

variables that did not manipulate RPE.

Overall, the aim of evaluating learning outcomes as functions of brain activity present

during the study phase, was achieved for both the item recognition and trial-and-error learn-

ing tasks. But the size of predictions were modest, which motivated exploration of other

important factors, such as the test-phase activity for the item recognition task (Chapter 3),

discussed below.

1.3.2 Understanding learning outcomes as functions of brain ac-
tivity during the test phase

For item recognition, memory performance is measured by the ability to distinguish the

targets (studied items) from the lures (new items). Since lures are only presented at test, a

reasonable assumption is that cognitive processes present during test phase are more relevant

to the recognition-memory outcomes than those present at study. Accordingly, Chapter 3

looked into the predictive affordance of test-phase activity. Two ERPs at test, namely, the

FN400 and the late parietal positivity (LPP), may index cognitive processes that support

recognition memory outcomes (Chen et al., 2014; Friedman, 1990; Neville, Kutas, Chesney,

& Schmidt, 1986; Rugg & Nagy, 1989; Rugg, 1995; Rugg & Curran, 2007; Warren, 1980;

Wilding & Rugg, 1996). Both FN400 and LPP show more positive voltage for hits than

correct rejections, known as the old/new effect. The FN400 and LPP also show more positive

voltage for hits than misses, known as the retrieval-success effect (coined by Dolcos, LaBar, &

Cabeza, 2005) (see Figure 1.4b-c). Based on these previous findings, Chapter 3 investigated

predictions for recognition memory outcomes, based on the amplitudes of the FN400 and

LPP.

Considering the four different outcomes at test (hits, misses, false alarms and correct

rejections), four classification problems were chosen:

1. Old versus New (or targets versus lures)

2. Hits versus Misses (or the same classification as that followed with the study-phase
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activity)

3. Items perceived as old (hits and false alarms) versus new (misses and correct rejections)

4. Correct rejections and False alarms

Both FN400 and LPP amplitudes achieved modest success in predicting old and new trials,

suggesting that these signals supported how targets and lures were discriminated in the

brain. FN400 and LPP amplitudes also achieved modest success in predicting perceived-

old- and new trials, suggesting that these signals were used by the participant to make the

memory decisions. Classification of hits and misses was also successful, and thus, these

signals likely supported difference due to memory success. However, both FN400 and LPP

amplitudes failed to predict correct rejections and false alarms, which contrasted with a

previous suggestion that false alarms are processed more like targets than lures, and are

driven by a familiarity-based process indexed by the FN400 (Finnigan, Humphreys, Dennis,

& Geffen, 2002; Wolk et al., 2006).

Notably, researchers have debated on the number of sources of evidence that drive mem-

ory judgments; a dual-process account (for a review, see Yonelinas, 2002) suggests that

recognition judgments are produced by two (or more) sources of evidence independently:

one is based on a sense of familiarity with the studied item and the other is based on the

recall of specific details about the studied item (recollection). The FN400 and LPP are

thought to index familiarity and recollection, respectively (Rugg & Curran, 2007). In con-

trast, a single-process account suggests that recognition judgments are driven by a unitary,

integrated signal (Dunn, 2008; Wixted & Stretch, 2004). Relevant to these suggestions,

multivariate pattern analysis of test-phase brain activity, as described in detail in Chapter 3,

predicted different memory outcomes significantly better than amplitudes of FN400 or LPP

alone, by finding better combination of the features. The multivariate pattern analysis also

succeeded for the classification of correct rejections and false alarms, suggesting that there

may exist memory-relevant signals beyond the FN400 and LPP.

Further, the classifiers could be used to more directly examine the dynamics of test-phase
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activity prior to reaching the memory decisions. This showed that when decisions were

reached relatively early (faster response times), they may have been driven by a unitary,

integrated signal, which is more in line with a single-process account. However, when it took

relatively longer to reach the decisions, a dual-process account became more apparent, for

there were an early and a late source of evidence, which were not integrated, and drove the

judgments. These results contrasted with Weidemann and Kahana (2019a) who carried out

classifier analysis based on the same logic, using spectral EEG features, and found support

for a single-process account only.

1.3.3 Comparison between the predictive power of study- and
test-phase activity

Having investigated the predictive affordance of both study- and test-phase brain activity

for the item recognition task, a natural question was how those predictions compared with

each other. This was also pursued in Chapter 3. This showed that predictions based on

the ERP amplitudes were not significantly different for the ERPs at study (LPC and SW)

and test (FN400 and LPP). However, multivariate pattern analysis of test-phase activity

predicted significantly better than both the univariate ERP measures at study (LPC and

SW) and test (FN400 and LPP), as well as the multivariate pattern analysis for study-phase

activity. Further, a study+test classifier, that used brain activity features from both study-

and test phases, was not significantly better in predicting memory outcomes than the test-

phase classifier. Together, these results suggested that memory-relevant cognitive processes

at study are retrieved by those at test. In addition, cognitive processes at test bring in

variability in memory-outcomes on their own (e.g., those relevant to processing of the lures).

Overall, these investigations add meaningful insights about brain activity underlying

successful learning. The investigations also make the case that predictive analyses could

be an important tool to advance cognitive neuroscientific theories and pave the ways for

future development of important learning applications based on behaviorally-relevant brain

activity.
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1.4 A walk-through of the main methods

EEG recordings This work used EEG recordings, specifically, the time-domain features

of EEG. These are widely used in cognitive neuroscientific research to look into electrical

activity of the brain as participants perform psychological experiments. Scalp-EEG, where

the electrodes are placed on the scalp, is non-invasive and extremely safe. The EEG signal

measures electric potentials as a function of time. Recall that the definition of electric

potential is that it is the amount of energy required to move a single unit of electric charge

from one ‘reference’ point to a test point. Accordingly, the electric potentials measured

with EEG are subject to a reference, e.g., a reference electrode. Also the raw EEG signal is

very small in magnitude and has to be amplified for ease of analysis. That said, EEG does

not reflect the electrical activity of individual neurons, but rather the volume-conduction of

many neurons aligned similarly, e.g., the pyramidal cells. With EEG being recorded from

the scalp, locating the generator of a signal has always been a challenge. Still, topographical

distribution of voltage values can help understand the alignment of the neural generator (or

the dipole).

ERPs One common way to analyze EEG data is with ERPs, which can isolate voltage-

changes specific to the psychological events of interest. To obtain ERPs, the continuous EEG

signal is time-locked into events of interest (e.g., the stimulus onset, the response etc.), and

then the epoched signals for the relevant trials are averaged together. The deflections (from

baseline) in this averaged signal, are thought to relate to a mixture of different cognitive

processes. Importantly, ERPs are evaluated at the participant level— the ERP amplitude,

which is obtained after averaging over many trials and for a specific condition A, is compared

to that for another condition B, across participants.

Consider Figure 1.5a, which shows the grand-averaged subsequent memory ERPs along

with the shaded error bars which are the SEM. It is clear from this figure that at the

participant level, for the trial-averaged signal, subsequent hits are significantly more positive
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Figure 1.5: a. Grand averaged ERPs during the study phase of the item recognition task,
comparing between subsequently remembered (hits) and forgotten (misses) words; ERPs are
plotted for the electrode Pz. Shaded error bars represent std. error of the mean. Difference
due to LPC (400–700 ms) and SW (700–900 ms) amplitude are marked with *. b-c. Distri-
bution of the LPC amplitude across all trials (hits and misses) for two different participants
showcasing that significant difference in the mean amplitudes at the participant level (a)
may not necessarily imply difference between the two conditions (hits and misses) at the
level of individual trials (c).

than subsequent misses, for both LPC and SW. However, if we look into the distribution of

the LPC amplitude across individual trials, the situation could be different. It is possible

that for one participant, the distributions of LPC amplitude for hits and misses look like that

of Figure 1.5b, where not only the mean amplitudes of the two distributions are different but

there is also enough separability between the distributions, so that we can set a classification

threshold in the middle of the two distribution means and classify individual trials into

subsequent hits and misses, expecting to be wrong in only a few cases. However, for another

participant, these distributions could look like that of Figure 1.5c, where although the mean

amplitudes are still different, the distributions are largely overlapping and so, a similar

classification rule as above would produce wrong predictions in many cases.

Thus, ERP analysis cannot answer whether there is a good amount of overlap between

the distributions of the ERP amplitudes for individual trials, for the two conditions A and

B, or if those distributions are easily separable. The separability of conditions at the level

of individual trials is an important consideration, for a difference in the mean amplitude

along with greatly overlapping distributions is orthogonal to the suggestion that an ERP

signal indexes difference between conditions A and B meaningfully. Also, the process of
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averaging helps bring out parts of the signal with low trial-to-trial variability and washes

out those with greater variability, while the latter can also contain information specific to the

psychological events of interest. However, conducting analysis at the level of individual trials

and separately for each participant could at least overcome the inter-individual differences

in signal-variability. Moreover, statistical tests for the ERPs are typically conducted for a

few electrodes only, selected on the basis of suggestions from previous studies; using a larger

(exploratory) set of electrodes to analyze the effects renders the approach subject to tests

of multiple comparisons, which is not very easy to implement. Thus, planned comparisons

of ERPs also limit discovery of other relevant signals, recorded by other electrodes or a

combination of the signals from different electrodes.

ROC analysis of ERP amplitudes The discussion above makes it clear as to why a

descriptive result may not be predictive. To investigate if learning outcomes can be predicted

from the univariate ERP measures, I followed a signal-detection theory approach (Green &

Swets, 1966). Briefly, after computing the mean amplitude of the ERP for individual trials,

these were sorted by magnitude (see Figure 1.6 for a demonstration). Then, a variable

classification threshold was used to classify individual trials into the two conditions (e.g.,

subsequent hits and misses). The classification rule depended on the previously known ERP

effect. So, for example, when testing for predictions for subsequent memory success based

on LPC amplitudes, the classification rule was that LPC amplitude is more positive for

subsequent hits than misses (see Figure 1.6). Accordingly, for each threshold value, all trials

above the threshold were classified as hits, those below the threshold were classified as misses.

Thus, for each threshold, there were some trials that were classified right, others were not.

Based on this, the true positive- and false positive rates were calculated for each threshold.

Then, the true positive- and false positive rates across all thresholds were plotted against

each other to obtain the receiver operating characteristic curve (ROC). Then, area under

the curve (AUC) of the ROC was computed. The AUC measured classification performance.

For AUC = 0.5, classification was at chance; for AUC = 1, classification was perfect. Also,
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Figure 1.6: Demonstration of classification based on ERP amplitudes. a. Distribution of the
ERP amplitudes across all trials for a randomly selected participant and for two different
conditions, such as, hits and misses. b. The thresholds used for classification. c. The ROC
curve, shaded region represents the AUC. Dashed black line denotes chance.

in this case, AUC < 0.5, suggested that evidence for an opposite classification rule than that

based on previous ERP findings. So, for the LPC example above, AUC < 0.5 would suggest

that subsequent misses were more positive than subsequent hits. Two-tailed t-tests were

used to test if the AUCs across all participants were significantly different from chance.

Multivariate pattern analysis Importantly, the above ROC analysis of ERP amplitudes

for individual trials was based on effects known from previous planned-comparisons of the

ERPs. Thus, although it provides an objective measure for the separability of two conditions

at individual trials level, it is possible that differences due to learning success are better

measured in terms of patterns of brain activity, rather than the univariate ERP measures.

In recent years, there has been a growing interest in employing machine learning classifiers

for analysis of brain activity. For example, brain computer interfaces (BCI) aim to connect

brain-activity signals, measured with scalp-EEG or electrodes placed inside the brain, to an

external computer. BCI research has seen many applications of the classifier methods to

better identify brain activity relevant to the sensory- or motor events of interest. Classifiers

are also being used in basic cognitive neuroscientific research with EEG.

However, the underlying research question may be of special consideration here. Classi-

fier analyses are often used as “proof-of-principle” for whether or not there is behaviourally-

relevant information in the brain. Although a valid question, it may not always be an
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interesting one. For example, decision making is dependent on the availability of relevant

information. Accordingly, brain activity at the time of decision making should include pro-

cessing of that information. Thus, it may not be surprising to find that a classifier succeeds

in predicting the decision, after being trained on brain activity present during making the

decisions. A more interesting question here could be what are the characteristic signals

that support the decision making. Another important aspect of classifier analysis of brain

activity is the size of the prediction, across a decent number of participants. The size of

prediction gives us clues about the amount of variability in the behavioural outcome that

could be explained by the chosen brain-activity features, an important point to consider

when attempting to explain behaviour as functions of brain activity.

As discussed in the walk-through of the investigations, here, I used machine learning

classifiers to examine patterns of brain activity that supported successful learning. The

investigations were not directed towards a proof-of-principle for information being present

in the brain, but to draw inferences about behaviourally-relevant brain activity and their

underlying cognitive processes. A few key points of the analysis using classifiers are described

below.

Supervised classification With classification methods, we can predict discrete class la-

bels, such as, different psychological events. This is different from predicting continuous

output values, which is obtained with regression methods. The type of classification method

used in this thesis is commonly known as supervised classification. Here, the model is sup-

plied with both the psychological event-labels and the data, in order to learn the underlying

regularities, which is known as training. In the other type of classification, known as un-

supervised classification, the model is not supplied with the event-labels, and instead, it

attempts to figure out those different classes by looking into the feature characteristics of

the sample data; an example of unsupervised classification is cluster analysis. Here, with

the supervised classification, the goal was to find a transformation of the high-dimensional

EEG data onto a single dimensional decision space. The decision boundaries separated the
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different classes, which represent different psychological events. The decision boundary can

be linear or non-linear, based on which, the classifiers are also broadly categorized into linear

and non-linear models.

Choice of classifiers Here, I have used two, arguably the most simple, linear models:

linear discriminant analysis (LDA; Fisher, 1936) and support vector machine (SVM, with a

linear kernel; Cortes & Vapnik, 1995). LDA works by optimizing the weights to the features of

the data in a way so that the variance within each class is at minimum, whereas the variance

between the two classes is at maximum. Thus, LDA weights can be directly translated into

the relative importance of the different features of the data for the classification. In this

thesis, I have frequently used the LDA weights to gain insights about the classifier-identified

pattern of activity. On the other hand, SVM works to find a hyperplane with the greatest

margin that separates the two classes.

Workflow of the classifier analysis Note that for both linear- and non-linear classifiers

the main workflow of the analysis is generally the same. First, the model sets default starting

values for its parameters. Next, when supplied with the training data, it estimates the best

fitting parameter values, through optimization techniques that aims to find the minimum

error, also known as the training error. Now, as with any model-fitting attempt, there

is always a possibility of finding parameter estimates that correspond to a local minimum

rather than the desired global minimum. To offset this, iterative steps are taken, in each of

which, the starting parameter values are changed. Once trained, the fitted-model is applied

to a test set to make predictions. Figure 1.7 presents a schematic overview of the main steps

involved in the classifier analysis.

Cross-validation Notably, while a small value of the training error is used as a sanity

check, it is of little consequence to the model performance because model performance is

evaluated for the test-set. As mentioned before, classification analysis regularly uses cross-

validation techniques, which separates the data into disjoint training and test sets. In the
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Figure 1.7: A schematic overview of the classifier analysis: data were split into training-
and test sets through k-fold cross-validation, the training sets were used to train the model,
while the test sets were used to evaluate them; the final model performance was averaged
across all the test sets.
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current work, I used k-fold cross-validation. Here, the data are randomly partitioned into

k-folds, where k is an integer. Then, (k − 1) folds are used to train the model and the

remaining fold is used to test it. This process is repeated k times, so that each fold is used

as a test-fold exactly once. The overall performance of the model is usually measured by its

average performance across all the test-folds.

Curse of dimensionality Notably, as in many other fields, such as image-processing,

classifying EEG data is challenged by the greater number of features available, in compari-

son to the very small number of samples, e.g., number of trials available for within-subject

classification. As mentioned before, with more features than observations, chance of overfit-

ting increases. To understand this situation, consider again the example of the regression I

had presented before (Figure 1.1b); the 9th order polynomial had almost as many parameters

as the number of observations (10) and thus it could assign one parameter per observation.

This is opposite to the idea of finding regularities in the data; instead it aims to “catch” the

given observations only, and it is possible to do so because of the greater number of available

parameters. Thus, a fit obtained this way is bound to fail even for small changes in the

observations.

Feature selection Likewise, with EEG, usually there are thousands of features, whereas

the number of samples is at most a few hundreds. To handle this, researchers usually

select a subset of features, either based on prior knowledge or based on feature-selection

or feature-extraction methods, that are included within the classification analysis. Feature

reduction methods, which transform the high-dimensional EEG data to a relatively low-

dimensional space are also used in some cases. Importantly, for any method that uses the

class-information to select, extract or to reduce features is subject to a circular logic if

applied to the whole dataset. Accordingly, caution must be taken to inform these methods

only based on the class-information in the training data. In this thesis, I pre-selected features

based on general knowledge of EEG recordings. For example, to reduce the spatial features,
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a small subset of 10 electrodes were selected so as to roughly cover the scalp. Also, the signal

from each selected electrode was binned over 100 ms time-windows to reduce the number of

temporal features.

Time-domain EEG features Notably, the time-domain features of the EEG signal, as

used in this thesis, have one notable limitation; the latency of a signal, which is the time

when it peaks, can fluctuate from one trial to another, potentially creating a challenge for

the classification analysis based on individual trials. Accordingly, researchers taking related

approaches have opted for the spectro-temporal features of the EEG instead, where this is

less of a problem due to averaging over a greater time-window (e.g., Weidemann & Kahana,

2019a). However, it is also important to understand the applicability of the classifier methods

with the time-domain EEG features, for both basic knowledge as well as due to the reason

that such features could provide better time-specific information (e.g., Noh, Liao, Mollison,

Curran, & de Sa, 2018).

Variability in the classifier methods Published classifier methods in cognitive neu-

roscientific research seem to vary from one study to another. The methods vary even for

studies from the same research laboratory. There may be independently justifiable reasons

for many of those choices, and it could be specifically targeted to address smaller classifica-

tion rates. For example, the choice a linear or a non-linear classifier varies across studies,

and till date there is no consensus about which is better for analyzing EEG data. Likewise,

studies have also differed based on their choice of the specific classifier algorithm, e.g., LDA,

SVM, decision trees, convolutional neural networks, etc.. Different from this, here I took the

following approach:

1. use the simplest justifiable classifier methods

2. keep the classifier methods as consistent across studies as possible

The choice of linear classifiers for the current studies was based on the argument that for

non-linear methods, the models generally try to capture both the individual effects and
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the interactions between the features, which may be limited by the small number of trials

available to learn these characteristics and will risk overfitting it more than linear models.

Also, EEG voltage values tend to have a Gaussian distribution, and thus, are well suited for

classifiers like LDA.

Regularization To further reduce the chance of overfitting, for the current models, I

used regularization, which restricts the model from becoming too complex. Recall that

the classifier uses optimization techniques to minimize the training error (or training loss).

With regularization, we add a term to this loss function, which better prevents the algorithm

from converging to local solutions, and scales the model parameters so as to penalize those

parameters with very large estimated values. The specific regularization steps for the models

are explained in the methods section of Chapter 2 (Chakravarty et al., 2020); Chapters 3

and 5 also used the same steps.

Performance of the classifier Unlike the choice of the classifier, the choice of measure

to evaluate the performance of the model can be determined more objectively. For models

trained on comparable number of examples from each class, model performance can be

evaluated by calculating its accuracy, which is defined as, (TP+TN)
(P+N)

, where TP and TN

refer to the true positives and true negatives respectively. However, in situations where one

of the classes is over-represented, accuracy may not provide a true estimate of the model

performance, because the model may be biased towards predicting the over-represented class,

and thus, makes a lot of hits or true positives but also a lot of false alarms. Consider a disease

that is contracted by 1 out of 100 people only. A classifier that is set up to predict the disease,

will have near-perfect accuracy if it predicted “no disease” for all cases. However, it will also

have a 100% false alarm rate (or false negative rate), because it will miss all positive cases.

Since class-imbalance was present for multiple classification problems considered in this

work (e.g., when classifying hits and misses for the item recognition task), I used AUC of

the ROC to measure model performance. As mentioned before, ROC is obtained by plotting
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the true-positive-rate against the false-positive-rate for varying classification thresholds, and

AUC is the area between the two axes and the the ROC curve. For AUC = 0.5, the model

predictions are random, for AUC = 1, the model performs perfectly. Models were tested on

the test sets; for each observation in a test set the model produced a score, which can be

transformed to its posterior class probability for belonging to one class over another. These

scores across all observations in the test set were used to obtain the ROC and the AUC of

the ROC. The AUCs across all test sets were averaged together.

Class imbalance In general, for imbalanced classes, to better train the models, researchers

have used different approaches, including re-sampling of the trials, e.g., undersampling the

over-represented class. Here, due to small number of trials overall, I used oversampling of

the under-represented class instead. The oversampling was done for the training sets only

and was done following the Synthetic Minority Oversampling technique (SMOTE; Chawla,

Bowyer, Hall, & Kegelmeyer, 2002). SMOTE created new examples from the existing under-

represented class examples. To create a new example, the algorithm 1) randomly selected an

existing example from the under-represented class, 2) randomly selected one example from

its k-nearest neighbours (from the same class), 3) calculated the distance between the two

chosen examples, 4) added a random number between 0 and 1 to this distance and 5) added

the distance (with added random noise) to the first chosen example. The new example,

created this way, was in between the original example and its chosen neighbour. All of

these methods were the same across the studies, and are explained in detail in Chapter 2

(Chakravarty et al., 2020).

Over-optimistic results It is also important to note that despite the use of cross-validation

techniques, classifier analysis can be subject to overfitting at a higher level, producing over-

optimistic results. To avoid this, it may be important to adhere to a pre-planned protocol

for the classifier analysis. For example, in published work, often the reason behind choos-

ing a specific classifier is not clearly stated; it is possible that the analysis was done using

29



several classifier models and only the one with the best performance was reported. Another

example is the amount of regularization for the classifier model, which could have been set

by evaluating the performance of the model for the test set. In both of these situations,

the hyper-parameters involved in the classifier analysis are influenced by the performance of

the model for the test set, when the objective behind keeping a separate test set is to use

it to only evaluate and not inform the model. This problem may be similar to the “double-

dipping” problem, or circular logic in analyzing brain activity. However, as explained by

Skocik, Collins, Callahan-Flintoft, Bowman, and Wyble (2016), it is more difficult to iden-

tify over-optimistic results in published reports, because specific reasons behind those choices

of hyper-parameters are frequently missing.

1.5 Concluding remarks and chapter overview

In sum, predictive approaches could be used to ask important cognitive neuroscientific ques-

tions, some of which cannot be addressed with planned-comparisons and descriptive methods.

For example, unlike planned comparisons, with multivariate pattern analysis, it is possible to

identify combinations of behaviourally relevant signals. The classifiers are strong data-driven

techniques and thus, they do not depend on previous theories.

The strength of the classifiers can be appreciated even more for a few investigations where

the classifiers were able to discriminate between psychological events in absence of differences

in the behavioural report. For example, a study by Haynes and Rees (2005) found that with

multivariate pattern analysis of BOLD activity for area V1, it was possible to predict the

orientation of masked stimuli, even when it was not indicated in the behavioural response.

However, classifiers are also prone to circular analysis, which produces impressive effects

but due to erroneous logic. These could lead to predictions that are based on information

other than task-relevant processes; this happens if 1) the features are not selected carefully or

2) the classification problem itself is confounded. Accordingly, classifier-based investigations

require a better understanding of those potential problems, in order to properly implement

these methods and to gain valuable knowledge from them.
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The goal of this thesis is to investigate characteristics of brain activity that can predict

learning outcomes. This is not only important for advancing basic theories of how we learn

and remember, but it also paves the way for future applications that are useful for improv-

ing learning abilities, as well as to evaluate learning effects in absence of overt behaviour.

The work presented here follows an incremental approach towards applying classifiers for

obtaining insights about behavioural relevance of brain activity, and for two different learn-

ing situations. Also, this work is more focused on predictions that work across a relatively

large number of participants. Going beyond the “proof-of-principle” of the predictive anal-

ysis working, the investigations make careful note of the overall size of predictions, and the

implication of those size of predictions in supporting the idea that learning success can be

explained as functions of brain activity.

Overview of the chapters Chapters 2 and 3 present investigations for the item recogni-

tion experiment. Chapter 2 (Chakravarty et al., 2020) looks into brain activity during the

study phase, in order to predict difference due to memory outcomes at test. It starts with

the predictions based on individual ERP amplitudes at study, such as, LPC and SW. This

is followed by multivariate pattern analysis of the study-phase activity. Chapter 3 follows

a similar setup as Chapter 2, for investigating test-phase activity. First, it goes over pre-

dictions based on amplitudes of FN400 and LPP, followed by multivariate pattern analysis

of test-phase activity. Additionally, chapter 3 uses the classifiers to investigate the dynam-

ics of brain activity leading up to the memory decisions at test. Chapter 3 also includes

comparison between study- and test-phase measures of brain activity, based on their size of

predictions.

Chapters 4 and 5 investigates brain activity for the trial-and-error learning experiment.

Chapter 4 presents analysis of the FRN, following traditional ERP methods. Specifically,

it asks if an FRN-like signal is present for the task, and if it supports an RPE function.

Finally, chapter 5 investigates if the FRN-like signal drives learning following the RPE

function. Similar to chapters 2 and 3, the investigations in Chapter 5 start with predictions
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for subsequent response-accuracy based on the amplitude of the FRN-like signal. This is

followed by predictions with multivariate activity present during feedback processing.

Lastly, chapter 6 presents a general discussion of the findings, how those connect with

previous research, and future directions. Chapter 6 also presents a critical estimation of

using classifiers as the main approach for this work.
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Chapter 2

Predicting subsequent memory from
brain activity during the study phase
of item recognition
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Abstract

To isolate brain activity that may reflect effective cognitive processes during the study phase

of a memory task, cognitive neuroscientists commonly contrast brain activity during study of

later-remembered versus later-forgotten items. This “subsequent memory effect” method has

been described as identifying brain activity “predictive” of memory outcomes. However, the

modern field of machine learning distinguishes between descriptive analysis, subject to over-

fitting, and true prediction, that can classify untrained data. First, we tested whether classic

event-related potential signals were, in fact, predictive of later old/new recognition mem-

ory (N=62, 225 items/participant); this produced significant, but small predictive success.

Next, pattern classification of the multivariate spatio-temporal features of the single-trial

EEG waveform also succeeded in predicting memory. However, the prediction was still small

in magnitude. In addition, topographic maps suggested individual differences in sources of

predictive activity. These findings suggest that on average, brain activity, measured by EEG,

during the study phase is only marginally “predictive” of subsequent memory. It is possible

that this predictive approach will succeed better when other experimental factors known to

influence memory outcomes are also integrated into the models.

34



2.1 Introduction

To analyze brain activity underlying successful memory formation, cognitive neuroscientists

have adopted the so-called “subsequent memory effect” (SME; Sanquist et al., 1980), con-

trasting brain activity during the study phase of a task for subsequently remembered (hits)

versus forgotten (misses) items. The SME is a major advance over prior methods that

compared activity between different encoding conditions rather than relating it to eventual

memory outcomes (for reviews of the SME, see Wagner, Koutstaal, & Schacter, 1999; Paller

& Wagner, 2002; H. Kim, 2011). The SME approach has produced several highly replicated

findings, including the late positive component (LPC) and the slow wave (SW) of the event

related potential (ERP) of the EEG, both more positive for subsequent hits than misses (e.g.,

Sanquist et al., 1980; Karis et al., 1984; Chen et al., 2014; Fabiani et al., 1990; A. S. Kim

et al., 2009; Friedman, 1990; Smith, 1993). The robustness of the SME could be due to

the fact that it indexes brain activity which is coupled with behaviour. For example, the

Levels of Processing concept (Craik & Lockhart, 1972) holds that the likelihood of an item

being remembered depends on the conceptual depth with which the participant evaluates

or interacts with the item during encoding. Evidence has suggested different SME ERPs

reflect these different processing-levels (Sanquist et al., 1980; Paller, Kutas, & Mayes, 1987;

Fabiani et al., 1990).

Notably, the SME is often described as identifying brain activity “predictive” of memory

success (Brewer, Zhao, Desmond, Glover, & Gabrieli, 1998; Wagner et al., 1998). If truly

predictive, the SME could form the basis of important learning applications, such as track-

ing learning progress or testing the effectiveness of different training protocols (Fukuda &

Woodman, 2015; Arora et al., 2018). Here, we examine whether “predictive” is an accurate

characterization of SME ERP signals. Consider that in the traditional approach, SME ERPs

are analyzed by the difference in brain activity at study for subsequent hits and misses, av-

eraged across many trials. The hits–misses contrast is tested for statistical significance, with

participants as repeated-measures. This captures the association between study-phase brain

activity and memory outcomes, but such a descriptive model is not aimed at explaining

the causal relationship or making predictions about new observations. To evaluate whether

or not memory outcomes can be predicted from the SME ERPs, it is important to apply

predictive models, which remain under-explored in this context. Predictive models could
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be particularly helpful in bridging the gap between the existing theories and the potential

learning applications.

Some recent studies suggest that prediction of memory from study activity could succeed

with fMRI (Watanabe et al., 2011; Lee, Brodersen, & Rudebeck, 2013) as well as with in-

tracranial EEG recordings (Weidemann et al., 2019; Weidemann & Kahana, 2019b; Ezzyat et

al., 2017; Arora et al., 2018). Also, with standard, scalp-recorded EEG, Fukuda and Wood-

man (2015) showed that two pre-identified SME EEG measures, amplitude of the frontal

slow wave and occipital alpha-band power, could predict the old/new confidence ratings

given by the participants at test. Although this is a valuable finding, it skips predicting the

memory outcome itself, our current aim. To classify subsequent memory from multivariate

EEG activity at study, Noh, Herzmann, Curran, and de Sa (2014) used two classifiers. One

was trained with pre-stimulus spectral features. The other used during-stimulus features,

and was further divided into a time-domain and a spectral-domain classifier. Overall classifi-

cation accuracy was near 60%, but the authors did not report the success rate, alone, of the

time-domain signal during-stimulus. On the other hand, using only time-domain features

(pre- and post-stimulus onset), Sun et al. (2016) found success in predicting subsequent

memory for a majority of their participants (N = 9) with a convolutional neural network

classifier [mean accuracy: 72.07%], whereas linear classifiers failed to classify the majority.

Unlike linear classifiers, non-linear classifiers (such as convolutional neural networks) can

evaluate the interactions between features, which could have led to this difference in success

rates. Notably, the number of examples available to build or train these models in this type

of context is usually very small for such interactions to be captured reliably. Also, it is

possible that in some cases, the authors may have tried various variations of the classifier

and for various reasons (including length limitations), only reported the best outcomes. This

could result in inflated apparent success rates of classifiers (Skocik et al., 2016). In sum, for

scalp-recorded EEG, it remains unknown if highly replicated ERP SME features are pre-

dictive. This is an important step in estimating a “benchmark” of predictive strength for

this purpose. It is also unclear if the multivariate time-domain EEG signal can be used pre-

dictively. One possible limitation of the time-domain features is sensitivity to trial-to-trial

variability in latency (Luck, 2014), which could impact classifier training. Thus, it is possible

that researchers have tried and failed in the time domain, and opted to stop pursuing this

goal in favour of spectral features (i.e., a file-drawer problem).
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In the present study, we seek to understand the general prospect of using study related

EEG time-domain features to predict memory with the help of easy to interpret, linear

predictive models. First, using concepts from signal-detection theory (Green & Swets, 1966),

we ask if it is possible to predict memory outcome (i.e., hit or miss) for each study item based

on individual, previously identified SME ERPs (mean amplitude of the LPC or the SW). We

consider the probability distribution of the SME ERP for all the hits versus misses and test

for the amount of separability between these two distributions which can support predictions

for individual trials. The predictions are made based on the rule that hits are more positive

than misses (for LPC or SW, as per prior findings) and by varying the classification threshold

across the two distributions.

Importantly, the SME ERPs were identified through trial-averaging and planned com-

parisons, which could limit their use to predict memory. Trial-averages in the traditional,

descriptive analysis can help raise the signal-to-noise ratio (SNR). But while this step can

identify portions of the signal with low variability across trials, it can also wash out com-

ponents with greater variability, which could also carry meaningful information related to

memory-encoding. With planned comparisons, the electrodes of interest are based on prior

studies, thus, possibly missing out on other relevant sources of activity. To move beyond

these limitations, our next step was to use multivariate measures that include features be-

yond those known from the traditional research. The multivariate features were then ana-

lyzed with predictive models borrowed from the machine-learning literature. These models

can automatically learn useful patterns from multivariate measures (Norman, Polyn, Detre,

& Haxby, 2006) and are trained and tested on separate sets of data to evaluate its general-

izability; a practice that checks for over-estimation of a model and is not, in general, looked

at in descriptive analyses. Thus, with this approach, we can ask the more general question:

does brain activity during the study phase predict memory at the test phase?

Another motivation for comparing the univariate predictors with multivariate, machine-

learning classifiers was that the standard old/new recognition task is, arguably, impoverished.

These kind of judgements are highly likely to be driven by more than one process, which

are reflected in more than one neural activity measure. The multivariate classifiers are

designed precisely for problems such as this (multiple predictors). These have the potential

to discover multiple processes, and produce a combined prediction based upon this process-

impure signal. Note that it is also possible to request additional subjective judgements,
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such as remember/know distinctions or confidence levels, to isolate multiple processes that

are thought to underlie memory retrieval, such as recollection versus familiarity. This has

been frequently done in previous classifier approaches to study phase as well as test-phase

activity (Noh et al., 2014; Fukuda & Woodman, 2015; Noh et al., 2018; Liao, Mollison,

Curran, & de Sa, 2018; Sun et al., 2016). However, there is the risk that this approach

may alter the way participants approach the task (Eldridge, Sarfatti, & Knowlton, 2002;

Hicks & Marsh, 1999). Also, this relies on subjects’ ability to cleanly separate their own

familiarity versus recollection processes (see Dunn, 2008, whose the state-trace analysis casts

a doubt on such ability). Moreover, the issue of process impurity likely goes far beyond the

recollection/familiarity distinction. Thus, to avoid this, our task included simple instructions

for the participants (simply to study for a later memory test) and a simple response (old

versus new). This also welcomed subject variability that could reveal interesting individual

differences.

Regarding the recollection/familiarity distinction, specifically, the common dual-process

view of ERPs in recognition-memory paradigms is that the FN400, an ERP elicited during

the test phase of the task, reflects familiarity-based retrieval and the Late Parietal Positivity

(LPP), also elicited during the test phase, reflects recollection-based retrieval (e.g., Rugg &

Curran, 2007). In our data set, both of these signals produced significant old/new effects

(see Chen et al., 2014), suggesting that both familiarity and recollection processes appeared

at test. This confirms the process-impurity of the task. However, the FN400 (contrasting

hits versus misses) covaried significantly with performance (d′ and negatively with response

time) across participants, whereas the LPP did not. This suggests that the putative recol-

lection process, although clearly present, played a far more minor role in driving the old/new

judgement than the putative familiarity (or conceptual priming; Voss & Paller, 2009) pro-

cess. This led to clear predictions for the current classifier approach. Because the LPC

SME covaried significantly across participants (Chen et al., 2014), with both the FN400 and

performance (d′ and response time), we expected that the LPC would produce above-chance

classification of subsequent hits versus misses. Because the SW SME covaried significantly

across participants with the LPP, but not with performance measures, we expected that the

SW would not be able to classify subsequent old/new recognition above chance. Alterna-

tively, variability reflected by the SW might be unrelated to individual differences, but could

still support classification above chance when attempted within-subjects, as we do here.
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2.2 Materials and Methods

2.2.1 Behavioural materials and procedure

Data were from the 64 participants for whom the traditional analysis of ERPs was previously

reported in Chen et al. (2014). Of these, two participants were excluded for having more

than 15% of the total number of study trials (225) rejected due to artifacts. Participants

provided written, informed consent for the procedures. The research was approved by a

University of Alberta ethical review board.

The experiment involved alternating study and test phases (Figure 2.1). Participants

were given a very simple instruction— to study the words for later tests. No instructions

related to study strategies were provided. For each study list, they were instructed that

they will see 25 words that are to be studied. Participants were not required to make any

response during study. For each test list, they were asked to make old/new judgments by

pressing the relevant key (1 for old, 2 for new). Words were presented one at a time, both at

study and at test. Each study word was displayed on the screen for 1500 ms with a jittered

inter trial interval (300–500 ms). Each study list consisted of 25 words and was followed

by a short math distractor task, consisting of 5 addition or subtraction problems involving

integers from 1 to 9. The math problem remained on the screen until the participant made

a response. Each test list immediately followed the math distractor task and consisted of

50 words, 25 of which were from the study (i.e., “old”) and 25 were lures or “new” words.

Each test word remained on the screen until the participant pressed either key. Hits were

correctly responded study trials and misses were incorrectly responded study trials.

2.2.2 EEG methods

EEG was recorded in an electrically shielded, sound-attenuated chamber, from high-density

256-channel Geodesic Sensor nets (Electrical Geodesics Inc., Eugene, OR). Signal was am-

plified at a gain of 1000 and was sampled at 250 Hz (impedance below 50 kΩ and referenced

to the vertex electrode, Cz). EEG signal was pre-processed with the EEGLAB toolbox

(http://sccn.ucsd.edu/eeglab; Delorme & Makeig, 2004), running in MATLAB. It was

bandpass filtered to 0.5–30 Hz and average re-referenced. Independent component analysis

(ICA) was used to look for artifacts in the signal (such as eye blinks, muscle noise etc.).

EEG trials were then epoched from 100 ms pre-stimulus to 1200 ms post-stimulus intervals.
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Figure 2.1: The experimental paradigm. Participants were asked to study a list of 25 words,
presented one at a time at the center of the screen. This was followed by a short distractor
task with simple math problems. Participants were then given a set of item recognition tests,
judging each word as “old” (targets) or “new” (lures). There were equal number of targets
and lures in the test phase. This whole process was repeated 9 times, yielding 225 study and
450 test trials. Each study list was unique. The order of the items during study was same
as the order of the targets at test, with lures being presented at random positions in the list;
lure items were not repeated across lists nor within lists.
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Figure 2.2: Demonstration of classification based on SME ERPs. a. Distribution of the LPC
amplitude (from Pz) across all trials for a randomly selected participant. b. The thresholds
used for classification. c. The ROC curve, shaded region represents the AUC. Dashed black
line denotes chance.

After removing the baseline, we used a voltage threshold of 50 µV to remove epochs with

large drifts. Additionally, for each epoch, we calculated the difference in voltage between

adjacent time samples or the point-to-point difference to detect artifacts. We rejected epochs

for which the point-to-point difference exceeded 25 µV. With the voltage and point-to-point

difference thresholds in place, more than 15% of epochs were rejected for two participants

(16% and 43% epochs rejected, respectively). Data from these two participants were ex-

cluded. For all other participants included in this study (N = 62), on average, 2 out of 225

epochs were rejected [min = 0, max = 23].

2.2.3 EEG Classification

We seek a function f that can predict discrete class labels Y (hit or miss in this case) to each

trial X, i.e., f(X) = Y . X is a N ×T matrix where N denotes the number of electrodes and

T denotes the number of voltage samples as a function of time; N ∈ Z and T ∈ R. Elements

of X are called “features.” Thus, f transforms the high dimensional space of EEG features

to a one-dimensional decision space. f is called a classifier. First, we tested if classic SME

ERPs, such as the LPC or the SW, when computed for individual trials, are able to predict

memory outcome for individual trials better than chance. Next, we tested if multivariate

pattern analysis of EEG trials from the study phase can predict memory outcomes.
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Classification based on SME ERPs

Two study-related ERPs were considered, consistent with prior research dating back to Karis

et al. (1984): the LPC and the SW, from the centro-parietal electrode Pz. LPC is positive

going, occurs between 400–700 ms after stimulus onset and more positive for hits than

misses. SW is relatively sustained activity, occurring between 700–1200 ms. Across different

SME studies, SW is reported for both centro-parietal and frontal electrodes. But frontal

SW is thought to reflect item–item associations (A. S. Kim et al., 2009) or processing of

emotional stimuli (Diedrich, Naumann, Maier, Becker, & Bartussek, 1997; Simon-Thomas,

Role, & Knight, 2005). Because we used isolated common nouns, we did not expect to see

the frontal SW. The SW was subdivided into an early (700–900 ms post-stimulus) and a late

(900–1,200 ms) component (see Chen et al., 2014).

For each SME ERP and for each study trial, we calculated the mean amplitude from

electrode Pz, over the respective time window. The classification rule or function, based on

prior (descriptive) SME results, was that subsequent-hits should have more positive voltage

than subsequent-misses (Chen et al., 2014; Karis et al., 1984). Then, the receiver operating

characteristic (ROC) curve was traced by setting each observed mean amplitude value as a

classification threshold and plotting true positives (subsequent hits that were greater than

or equal to the threshold) against false positives (subsequent misses that were greater than

or equal to the threshold). After obtaining the ROC, the area under the curve (AUC)

of the ROC was calculated through trapezoidal numerical integration implemented by the

perfcurve function in MATLAB R2018a (see Figure 2.2 for a demonstration). AUC indexed

the capability of the classifier to make more hits and less false alarms. AUC = 0.5 would

reflect random predictions (chance), and a perfect classifier would achieve AUC= 1. Also, in

this case, AUC< 0.5 would indicate that subsequent misses were on average more positive

than subsequent hits.

Multivariate classification

Here, we used multiple EEG features per trial, with the speculation that other study related

EEG features (beyond the known SME measures) could also be informative for making

memory predictions. Each EEG epoch had 257 electrodes, sampled at 250 Hz for 1200 ms,

thus there were over 80,000 features per trial. For computational simplicity, we selected a
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Figure 2.3: Selected electrodes for the multivariate classification, roughly distributed in equal
between the frontal and posterior scalp regions.
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subset of these. First, as correlations are very common across neighbouring electrodes, we

selected a set of 10 electrodes that span the recording coverage (Figure 2.3). Second, we

averaged the signal for each electrode over 100 ms time bins, from 0–1200 ms post-stimulus

onset. The resulting EEG signal consisted of 10 spatial × 12 temporal = 120 features.

When using multiple EEG features to make predictions, the classification rule is not

known a-priori (unlike as above). However, we can learn this through predictive modelling.

We used two models, linear discriminant analysis (LDA; Fisher, 1936) and linear support

vector machine (SVM; Cortes & Vapnik, 1995). In general, linear models are advantageous

because these are easy to interpret; the weight of a feature in the model indicates its relative

importance in the classification. Each model has a set of parameters, values of which are

set through examples, also known as “training set”. Once trained, the model can generate

examples on its own, thus it can be used for predictions for unseen examples, also known as

“testing set”.

It is crucial to test the model on unseen examples; for the model could be too specific to

the training examples, often by capturing the noise in it (also known as “overfitting”) and

thus cannot generalize. To reduce overfitting, the weights of the features in the model can

be scaled, also known as “regularization.” We used a regularized LDA classifier (fitcdiscr,

MATLAB 2018a) where the covariance matrix was calculated as:
∑̂

γ = (1−γ)
∑̂

+γdiag
∑̂

,

where
∑̂

is the empirical, pooled covariance matrix for the two classes and γ is a regulariza-

tion parameter, lying between 0 to 1. SVM uses support vectors to draw hyperplanes that

discriminate between the two classes. The support vectors are examples (here, EEG trials)

that maximize the distance between the classes. We can reduce the chance of overfitting

of an SVM model by setting a penalty (the box constraint parameter of fitcsvm; MATLAB

R2018a) for mis-classifying examples that are on the class boundary. The default value for

box constraint is 1 and in general smaller values allow for more regularization. In this study,

for all LDA models, we set γ = 1, i.e., the maximum. For SVM, since a fixed maximum or

minimum for the box constraint parameter does not exist, we chose a value that is reasonably

smaller than the default value of 1, we set box constraint = 0.05. Importantly, the choice

of regularization parameter values were independent of the test sets used to evaluate perfor-

mance of the classifiers. Note that it is also possible to tune the regularization parameters

for individual models. However, this did not alter the results substantially (see Figure 2.7).

We tested model performance through 10-fold cross-validation. Trials were randomly
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split into ten equal-sized folds, with nine folds being used to “train” the model and the

remaining fold to “test” it. This was repeated ten times, ensuring that each trial was once

used as a test trial. Cross-validation folds were stratified, such that the number of examples

for the two classes were the same across all training folds. For each trial in a test fold, the

trained classifier computed a “score,” which readily translates into the posterior probability

of that trial belonging to each class. Probability estimates across all trials for a test fold

were then sorted and set as thresholds for calculating the corresponding true-positive and

false positive rates, to trace the ROCs and compute the AUC. Average AUC across the 10

test-folds was used as the final estimate of the classifier performance.

Note that classifier success can also be evaluated by “accuracy”, calculated as: (TP+TN)
(P+N)

;

TP = true positives, TN = true negatives, P = positives and N = negatives. However, in

our data, the two classes, hits and misses, were imbalanced (described in detail in the next

paragraph). Since accuracy does not take false alarms into consideration, for imbalanced

sets, it is possible to achieve very high accuracy when the classifier has a bias to predict

the over-represented class. Thus, we did not use accuracy as the measure for classifier

performance.

Class imbalance In our data, hits were more frequent than misses, making the train-

ing sets class-imbalanced. This could lead to the classifier getting biased towards learning

more about and predicting more frequently the over-represented class. If this was true, re-

balancing the classes either by undersampling the over-represented class or by oversampling

the under-represented class can be helpful. Due to the small sample size of our data (≤ 225

in total per participant) we did not use undersampling. Instead, we used the Synthetic Mi-

nority Oversampling Technique (SMOTE; Chawla et al., 2002; Arora et al., 2018) to create

new examples from the existing under-represented class examples. To create a new example,

the algorithm 1) randomly selects an existing example from the under-represented class, 2)

randomly selects one example from its k-nearest neighbours (from the same class), 3) calcu-

lates the distance between the two chosen examples, 4) adds a random number between 0

and 1 to this distance and 5) adds the distance (with added random noise) to the first chosen

example. The new example, created this way, lies in between the original example and its

chosen neighbour. We set the number of nearest neighbours in the SMOTE algorithm to 4

but note that the first nearest neighbour is the example itself. Thus, the effective number

45



of nearest neighbours considered for each example was 3. Synthetic minority samples were

computed until the total number of examples in the two classes matched. Importantly, we

only used SMOTE to balance the training sets. If SMOTE is used to balance the entire

dataset, it is possible to end up with very similar trials in the training and testing sets,

creating a double-dipping problem.

Cluster analysis of LDA weights For LDA, we can assess the importance of a feature

from its coefficient or weight in the model. To check if any pattern existed in the distributions

of feature-weights across participants, we performed a cluster analysis in MATLAB (R2018a)

using the k-means algorithm (kmeans function from the Statistics and Machine Learning

toolbox; Martinez, Martinez, & Solka, 2017). For a specified number of clusters, n, the

algorithm minimizes the within class variance or the sum of distance of each point in a

cluster from the centroid of the cluster. We ran the cluster analysis separately for 2, 3,

4 and 5 clusters. To avoid local minima, each clustering solution was minimized over 100

replications. For each clustering solution, we calculated the following distance measure for

each participant (using the function silhouette in MATLAB R2018a):

Si =
(yi − xi)

max(xi, yi)
, (2.1)

where xi is the average of all distances from the ith participant in one cluster to all other

participants in the same cluster and yi is the minimum of the average distances from the

ith participant to all other participants in all clusters other than its own cluster. This

measure can range from −1 (indicating probable wrong assignment of a participant in a

cluster) to 0 (participant can belong to either of the neighbouring clusters) and up to 1

(participant is distant from the neighbouring clusters). A set of 2 clusters was found to

be the best possible solution, with the highest average value for this measure (0.11) across

all participants [see Figure 2.10 for a visual representation of the distance measures across

all participants, separately for the cases of 2, 3, 4 and 5 clusters]. To visualize the feature-

weight pattern for each cluster, we used spline-interpolated topographic plots, created by the

topoplot function of the EEGLAB toolbox (Delorme & Makeig, 2004). An inverse distance-

weighting interpolation was used. This means that feature weight values for electrodes that

were not used in the classification, were calculated from the weighted averages of the same

for the electrodes used in the classification.
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Figure 2.4: Grand averaged ERPs at electrode Pz for subsequently remembered (hits) and
forgotten trials (misses).

All analyses were done using in-built and custom written functions and scripts in MAT-

LAB R2018a. Specific functions from the Statistics and Machine Learning Toolbox (Martinez

et al., 2017) were also used. Although the classification problem was set up for each partici-

pant individually, to gauge overall success of the methods, one sample t-tests (against chance

level, 0.5) were done. We also carried out Bayesian t tests using a MATLAB function by

SamPenDu (2015). The Bayes factor is the ratio of Bayesian probabilities for the alternative

and the null hypotheses; BF10 = p(H1)
p(H0)

. By convention (Kass & Raftery, 1995), BF10 > 10

provides strong evidence for the alternate and BF10 < 0.1 provides strong evidence for the

null. For BF10 > 3 and BF10 < 0.3 there is some evidence for the alternate or the null,

respectively. Effect sizes of the classifiers were estimated from the 95% confidence intervals.

To ensure that our results can be reproduced over multiple runs of the scripts, a pseudo-

random number generator algorithm was specified in MATLAB R2018a (Mersenne twister,

seed = 0).

2.3 Results

We start with the traditional ERP analysis of the subsequent memory effect. Figure 2.4

presents these ERPs at electrode Pz, averaged across all participants (N = 62), whereby

hits appeared to be more positive than misses. Paired t-tests between the mean voltage for

47



a b

LPC SW
0.45

0.5

0.55

0.6

0.65

A
U

C

Without oversampling With oversampling
0.45

0.5

0.55

0.6

0.65

A
U

C

LDA

SVM

Figure 2.5: a. Classification based on SME ERPs: LPC and SW (computed from electrode
Pz). Maximum AUC observed was 0.69 for both LPC and SW (for the same participant).
b. Multivariate classification with LDA and SVM (left) and with oversampling to produce
balanced classes (right). Maximum AUCs observed were 0.69 for LDA and 0.73 for SVM
(same participant for LDA and SVM and also same as above). With balanced classes,
maximum AUC for both LDA and SVM was 0.69 (same participant for LDA and SVM but
different from above). Error bars are 95% confidence intervals. Dashed black line denotes
chance level (0.5).

0.3 0.4 0.5 0.6 0.7 0.8

AUC (LPC)

0.3

0.4

0.5

0.6

0.7

0.8

A
U

C
 (

S
W

)

Figure 2.6: Correlation between AUCs for LPC and SW. Dashed lines denote chance.
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Figure 2.7: Effect of tuning the regularization parameters gamma of LDA and box con-
straint of SVM. We used a nested cross validation procedure. For the outer cross-
validation, data was randomly partitioned into 10 stratified folds, 9 folds being used
for training and 1 for validation. Then, the training data was subjected to an inner
9 fold stratified cross validation to tune the regularization parameter. For each train-
ing set of the inner cross validation, separate LDA models were trained for gamma =
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. Similarly, for SVM, separate models were
trained for box constraint = [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]. Then
performance for these models were computed for the test folds of the inner cross validation.
Value of the regularization parameter corresponding to the model with best performance was
selected. Then this value was used in the model for the training data of the outer cross vali-
dation and then tested with the left out validation set. Finally, AUCs were averaged across
the 10 validation sets. a. The overall effect of tuning the regularization parameters for each
model. b. and c. AUCs for individual participants with constant and tuned regularization
parameters.
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Figure 2.8: Correlation between AUCS for the two classifiers (LDA and SVM) with (a) and
without (b) balanced classes for training. Dashed black lines denote chance.
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Figure 2.9: Relationship between classifier performance (AUC) and proportion of hits for
LDA (a) and SVM (b). Percent change in classifier performance (∆AUC) after oversampling,
separately for LDA (c) and SVM (d).
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Figure 2.10: Determining the correct number of clusters for the cluster analysis of LDA fea-
ture weights. Each plot shows the distance measure for each participant for their respective
clusters. Average distance scores across all participants are listed on top of the plot. For
a set of two clusters (a), this measure was the highest. Also, all participants show positive
distance scores for a set of two clusters.
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hits and misses for the LPC was significant; t(61) = 2.89, p < 0.05. The difference was also

significant for the early SW; t(61) = 3.04, p < 0.005. Note that these effects were comparable

to those reported by previous studies. For example in Paller et al. (1987), the reported F

ratio for the LPC was 8.6, thus the corresponding t-statistic can be estimated to be 2.93

(i.e., square-root of the F ratio), which is very similar to the present study. However, the

ERP effect was not significant for the late SW; t(61) = 1.82, p = 0.07. We also calculated

the Bayes factor, BF10, which showed some evidence for the subsequent memory effect for

the LPC (BF10 = 6) and the early SW (BF10 = 9) but was inconclusive for the late SW

(BF10 = 0.7).

Next, we tested if these known SME ERP measures could predict subsequent memory

for individual trials. Since the ERP effect for the late SW was not significant, we did not

include it in this analysis. Accordingly, from here on, we refer to the early SW simply as

SW. We found that for both ERP measures (Figure 2.5), AUCs (across all participants)

were significantly above chance (0.5), t(61) = 3.31, p < 0.005, BF10 = 18 for LPC and

t(61) = 3.35, p < 0.005, BF10 = 19 for SW. However, in each case, the 95% confidence

intervals for the AUCs were close to chance; [0.51 0.54] for both LPC and SW. Also,

across participants, AUCs were significantly correlated between the LPC and SW measures,

r(60) = 0.65, p < 0.0001, (Figure 2.6). This could be due to the general temporal auto-

correlation property of the EEG signal. In sum, classification of single trials from the study

phase using a-priori measures achieved small but significant success.

Next, we tested if multivariate brain activity from the study phase, as measured with

EEG, could predict subsequent memory and if it can do so better than the individual SME

ERPs. As noted in the methods section, we selected a set of 10 electrodes and 12 time-

samples, i.e., 120 features in total. We used two linear classifiers: LDA and linear SVM,

along with a stratified 10-fold cross validation technique. AUCs were averaged across the 10

folds. To reduce chances of overfitting, we used regularization; the regularization parameters

were set to be constant across the models (also, optimizing these parameters for individual

models did not alter our results, see Figure 2.7). Across participants, the AUCs for both

LDA and SVM (Figure 2.5b, left) were significantly better than chance, t(61) = 3.54, p <

0.001, BF10 = 33.54 for LDA and t(61) = 4.55, p < 0.0001, BF10 > 500 for SVM. The

corresponding 95% confidence intervals were [0.51 0.55] for LDA and [0.52 0.56] for SVM.

Also, pairwise one tailed t-tests showed that SVM performance was significantly greater than
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the SME ERP based classifiers [SVM versus LPC: t(61) = 1.83, p < 0.05, BF10 = 1.28; SVM

versus SW: t(61) = 1.76, p < 0.05, BF10 = 1.13]. However, this was not true for LDA [LDA

versus LPC: t(61) = 0.62, p = 0.27, BF10 = 0.24; LDA versus early SW: t(61) = 0.70, p =

0.24, BF10 = 0.26]. Given that the multivariate models had more degrees of freedom than

the SME ERP based classifiers, these results suggest that overall, the time domain EEG

signal during the study phase is only marginally predictive of subsequent memory success.

Moreover, predictive success was positively correlated between LDA and SVM (Figure 2.8a),

r(60) = 0.74, p < 0.0001, suggesting that participants who were easier to classify by one

method were also easier to classify by the other.

Notably, for both LDA and SVM, a small subset of participants were found to have AUCs

far below chance (see Figure. 2.8a). This is possible, for the assumption of a symmetric null

distribution for the classifier performance may not hold in the case of small sample size data

with small effect size (Jamalabadi, Alizadeh, Schönauer, Leibold, & Gais, 2016). In that

case, non-parametric tests may be better suited. Following up on this, for each participant

we conducted a Mann Whitney U test between the AUC values for all of the 10 folds and

chance (0.5). Then, we calculated the z transform of the U statistic. Finally, we used t-

tests to check if the z scores across all participants were significantly different from zero.

This showed that the z-scores for both LDA and SVM were significantly positive, [LDA:

t(61) = 2.55, p < 0.05, BF10 = 3, SVM: t(61) = 3.13, p < 0.005, BF10 = 11]. This confirms

that even if the assumption of symmetry for the null distribution is relaxed, the LDA and

SVM classifiers in our study were overall better than chance.

Imbalanced classes might have challenged classifier training. Alternatively, participants

with better memory may have a greater signal-to-noise ratio (SNR) that the classifier could

identify. Across participants, a weak positive trend (Figure. 2.9a–b) was observed between

AUCs and the proportion of hits. This trend was significant for SVM, r(60) = 0.38, p < 0.005

but not for LDA, r(60) = 0.21, p = 0.09. We also calculated the sensitivity index or d′

of participants performance, which showed similar results as the proportion of hits [LDA:

r(60) = 0.14, p = 0.29; SVM: r(60) = 0.28, p < 0.05]. To investigate if the imbalance

between the trial numbers for hits and misses influenced our classifier results, we balanced

the trials by oversampling the misses with Synthetic Minority Oversampling Technique or

SMOTE (see Methods; Chawla et al., 2002). AUCs (Figure 2.5b, right) were yet again

significantly above chance [LDA: t(61) = 3.13, p < 0.005, BF10 = 10.91, SVM: t(61) =
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3.72, p < 0.001, BF10 = 57]. However, the 95% confidence intervals were not better than

that without oversampling (LDA: [0.51 0.54]; SVM: [0.52 0.55]). Predictive success remained

positively correlated across LDA and SVM, r(60) = 0.80, p < 0.0001 (Figure 2.8b). Thus,

while imbalanced classes often pose a challenge to classifier training, in this case, it could not

account for the relatively small prediction rate. Instead, participants with better recognition

memory appear easier to classify (see Discussion for implications of this). The positive trend

between classifier performance and proportion of hits was also observed after the classifiers

were trained with balanced classes [LDA: r(60) = 0.14, p = 0.29; SVM: r(60) = 0.13, p =

0.31]. For SVM, when participants with very low AUCs (< 0.45) were excluded, this trend

was significant, r(51) = 0.27, p < 0.05. However, classifier performance did not correlate

with d′ in this case.

For participants with LDA AUCs above 0.5 (N = 43), we wondered which features were

deemed more important by the classifier for the classification. A cluster analysis of the LDA

feature-weights revealed two subgroups of participants with distinct patterns (see Methods

and Figure 2.10). N = 22 participants were found to be in cluster 1 and N = 21 in cluster 2.

Figure 2.11 shows the topographic plots for the LDA feature-weights, averaged across all

participants in each cluster and for three different time windows: 0–100 ms, 501–600 ms

and 1001–1100 ms (see Figures 2.16 and 2.16 for the full version, i.e., for all the time-

windows). For cluster 1, for the very early 0–100 ms time window, greater feature weights

were observed on the left and right parietal regions. On the other hand for cluster 2, for

the same time window, greater feature weights were observed in the fronto-central region.

Given that these earlier time windows are more likely to reflect perceptual processing, one

possibility is that these differences in feature weight patterns are indicative of the potential

difference in attentional mechanisms between the two clusters. For a later time window, 501–

600 ms, which is closer to the onset of LPC activity, only cluster 1 showed greater weights for

the central parietal scalp region, whereas for cluster 2, greater weights were observed more

widely in the right frontal and parietal regions. Thus, the topographic plot for cluster 2,

for the 501–600 ms did not resemble the posterior positivity feature observed in the SME

ERP analysis of this data set (see Chen et al., 2014). For an even later time window, 1001–

1100 ms, the patterns for the two clusters were almost orthogonal; cluster 1 showed greater

weights in the left parietal region whereas cluster 2 showed greater weights in the frontal

and slightly left parietal region. It is possible that this difference is indicative of potentially
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different spontaneous study strategies between the participants of the two clusters.

We were also curious as to whether the standard SME ERP effects might be different

for the two clusters. Investigating this, follow up analysis of the corresponding ERPs at

electrode Pz (Figure 2.12) showed a general trend for hits to be more positive than misses

(i.e., the classic subsequent memory effect) for both clusters. However, this trend was clearly

more pronounced for cluster 1 than cluster 2. We conducted a 2×2 ANOVA on mean LPC

amplitude with the within subject factor memory success (hit versus miss) and between

subject factor cluster (1 and 2). This revealed a significant interaction between the two

factors, F (1, 41) = 15.72, p < 0.001, η2p = 0.28, whereas the LPC effect was significant for

cluster 1, it was not so for cluster 2. The same ANOVA design on the mean amplitude for

SW, also showed similar results.

The average LDA AUC for cluster 1 was similar to that of cluster 2 [mean ± SD of

AUC for cluster 1 = 0.56± 0.05; cluster 2 = 0.57± 0.04] and the average proportion of hits

was comparable between clusters 1 and 2 [mean ± SD for proportion of hits for cluster 1 =

0.79 ± 0.11; cluster 2 = 0.80 ± 0.08]. The d′ values were also comparable between the two

clusters [mean ± SD for d′ for cluster 1 = 2.13± 0.62; cluster 2 = 2.09± 0.87]. Overall, this

could suggest that there may be at least two different types of feature patterns that could

form the basis for predicting memory.

2.4 Discussion

The subsequent memory approach is often referred to as identifying brain activity “predic-

tive” of memory. However, limited attempts have been made to test this claim with actual

predictive models. Here, using signal detection theory, we showed that two, previously iden-

tified, SME ERPs, namely, the LPC and the SW, could indeed predict memory (hit or miss)

for individual trials in a word recognition task. However, across participants (N = 62), the

success rate was small. Considering the SME approach is limited by many factors, such as

planned comparisons and trial averaging, the small success may be expected. Also, multiple

processes could be at play for memory judgments in a recognition task, each associated with

different sources of neural activity. Thus, instead of single ERPs, analysis of patterns in the

multivariate EEG waveform at study may fare better at predicting memory. To test this,

we employed machine learning classifiers (LDA and linear SVM), which are well suited to
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Figure 2.11: Cluster analysis of feature weights for all participants with LDA AUC > 0.5. A
set of two clusters best explained our data (N = 22 for cluster 1 and N = 21 for cluster 2).
(a–c) refers to cluster 1, (d–f) refers to cluster 2. Colors are range scaled. Note that the
color scale varies across panels. See Figures 2.16 and 2.17 for full version of this figure.
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Figure 2.12: ERPs at Pz for the two clusters obtained through k-means clustering of LDA
feature-weights.
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analyze multivariate structures. These models were used to learn memory relevant patterns

from a set of 120 spatio-temporal EEG features from individual study trials. Both LDA and

SVM achieved significant success in predicting memory, albeit still with a small success rate.

Since generalization was also accounted for in LDA and SVM with ten fold cross valida-

tion, the success of these models further strengthens the possibility of predicting subsequent

memory from EEG activity at study. However, when comparing LDA and SVM performance

with that of the LPC or SW based classification, only SVM showed a small significant im-

provement. Thus, despite the considerably greater degrees of freedom, these models did not

offer an obvious improvement over classification with LPC or SW alone. But, interestingly,

exploratory analysis on the features of importance to the LDA classifier showed that there

were two subgroups of participants with seemingly different activity patterns. On average,

one of these subgroups (cluster 1, see Figure 2.16) showed greater feature weights for the

posterior scalp region, which is similar to the findings from the univariate ERP analysis of

the same dataset (see Chen et al., 2014). It also agrees with previous SME ERP studies

that have shown that memory success can be associated with a greater positive going signal

over the parietal region (for a review, see Paller & Wagner, 2002),. However, for the other

subgroup (cluster 2, see Figure 2.17), greater weights were observed in the frontal region.

Further, post-hoc analysis of SME ERPs at electrode Pz, separately for the two subgroups,

showed significant LPC as well as SW effects for cluster 1 but not for cluster 2. Interestingly,

previous literature also suggests that a frontal slow wave may be invoked by associative pro-

cesses whereas the posterior slow wave may reflect elaborate item-oriented processing (for

e.g., see Kamp, Bader, & Mecklinger, 2017). Although we can not know this for sure, one

possible reason for the involvement of the frontal region in cluster 2 could be that it reflects

some associative strategies for learning, spontaneously undertaken by the participants in this

group. Notably, it would not be possible to identify these subgroups without the classifier

models. Thus, both the univariate and multivariate predictive analysis reported in the cur-

rent study have their own merit. Below we discuss potential improvements and limitations

towards predicting memory.

We sought out to understand the general level of challenge in predicting memory from

EEG activity during the study phase. Unlike other approaches, where failed or less successful

analyses might not be disclosed, so the degree to which best-cases are reported becomes

impossible to judge, we report a systematic sequence of classification analyses, to avoid
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apparently inflated success rates. We did not exclude participants based on their performance

in the task, which is commonly done (Noh et al., 2014; Sun et al., 2016; Watanabe et al.,

2011). Thus, although the 95% confidence intervals of our classifier success are modest for

the aggregate, the regression (Figure 2.9b) suggests meaningfully large classification success

rates. Also, to avoid any possible circularity in the analysis, we did not select the multivariate

features based on the univariate SME results (Coutanche, 2013; Noh et al., 2014). Instead,

we selected these features based on the general EEG knowledge (scalp coverage, correlations

etc.), which substantially minimizes the chance of over-estimating the effect. Thus, our

results provide a benchmark for the effect size for this type of classification to be compared

against. This could improve with more fine-grained analysis, for example through other

feature selection or feature reduction methods or even with the help of non-linear classifiers

including state-of-the-art neural networks. Including EEG spectrogram features, which are

more resilient to trial-to-trial latency fluctuations, may also lead to better performance

(Ezzyat et al., 2017; Weidemann et al., 2019).

Notably, class-imbalance (hits versus misses) was common in our data set and this could

have biased the training of LDA and SVM towards the over-represented class (hits). How-

ever, re-balancing classes offered no improvement, allaying such concerns, at least in our case.

Alternatively, it is possible that participants with more hits also have high-SNR brain activ-

ity, which could have helped the classifier. We found some support for the latter, as SVM

performance increased significantly as the proportion of hits increased (for similar evidence,

see Arora et al., 2018). Whenever memory was close to chance, the corresponding brain ac-

tivity may have had less information for the classifier to pick up on. Conversely, participants

who performed better might, to some degree, have been those who (and whose brains) were

more engaged in the task, producing higher task-relevance of their brain-activity.

Although we cannot know for sure why better-performing participants may be easier to

classify, two causes come to mind. First, some lower-performing participants might have low

motivation, a plausible possibility, given that participants did not self-select as research par-

ticipants, but were recruited from via a course-based research participation pool, in exchange

for partial course credit. There was no disincentive to speed through the experiment or dis-

engage from the task. For such participants, brain activity may simply not be task-relevant.

Second, participants who struggle with the task more, genuinely finding the task challenging,

may have task-related brain activity that is more variable, or obscured by cognitive processes
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related to frustration, or strategic exploration, etc. Both causes could lead to lower SNR.

In future studies, this could be addressed by pre-calibrating the task for each participant to

equate difficulty across the sample, and increase the level of motivation across participants,

for example, through rewards. Both these modifications might produce substantially higher

levels of classifier success as well across the sample.

One may conclude that due to individual variability in performance and likely in brain

activity too, a large sample size, as in our study, is essential to obtain overall significant

results with the classifiers. To test this idea, we estimated the minimum sample size we

might have needed for the classifier analysis to succeed. With bootstrap techniques, we

tested significant effects for the SVM classifiers for different sample sizes, ranging from 6 to

62 participants, which were selected at random and without replacement. For each sample

size, we generated 100 sets of participants and for each set we calculated one sample t-test to

check if the corresponding SVM AUCs were significantly better than chance. Then, across

the 100 sets, we calculated the average effect or the probability of obtaining AUCs that were

not overall significantly better than chance. This showed that the probability to obtain a non-

significant effect for SVM decreases very sharply with increasing sample size (Figure 2.13),

up to about 30 participants. For sample sizes greater than 30, this probability is very close

to zero. Thus, we were not after a result that is only made possible by a large sample size.

In fact, in many cases, a sample size of about 15 participants may be enough to obtain

significant results (probability for a non-significant effect < 0.5, see Figure 2.13), provided

the number of trials per participant is high or at least comparable to our study. Thus, it is

conceivable that Sun et al. (2016) failed to find overall success with simple linear classifiers

due to small sample size (N = 9). Interestingly, while some of the early, influential, SME

ERP studies do not pass this sample size (N > 15) criterion (Brewer et al., 1998; Karis et

al., 1984; Neville et al., 1986; Sanquist et al., 1980; Wagner et al., 1998), others do so (Smith,

1993; Otten & Rugg, 2001; Paller et al., 1987; Van Petten & Senkfor, 1996; Friedman, 1990).

However, many of these also have considerably lower trial counts.

Many decades of behavioural research (Kahana, 2012; Humphreys, Bain, & Pike, 1989;

Neath, 1998; Lewis, 1979) points to numerous factors that determine memory success, that

should not be visible through the lens of study-related activity alone (for an alternate ac-

count, see Weidemann & Kahana, 2019b). Examples include competition from other items

at retrieval, nature of the retrieval task (such as recognition, free recall, serial recall, cued

59



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

#Participants

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

b
a

b
ilt

y
 o

f 
a

 n
o

n
-s

ig
n

if
ic

a
n

t 
e

ff
e

c
t

Figure 2.13: Effect of sample size on the overall significant results for SVM. With one sample
t-tests, we calculated if SVM performance was significantly better than chance, for different
sample sizes, ranging from 6 to 62 participants. For each sample size, participants were
selected at random and without replacement. Further, for each sample size, we collected
100 sets of participants. Y axis shows the probability of obtaining a non-significant effect,
calculated across these 100 sets and for each sample size.

recall, word-stem completion, word-fragment completion, lexical decision), retrieval time,

output encoding, rehearsal and response criterion (recognition tasks). The serial positions of

the items in the studied list can also influence subsequent memory (for example, primacy and

recency effects) and are possibly reflected in brain activity as well (Talmi, Grady, Goshen-

Gottstein, & Moscovitch, 2005; Rushby, Barry, & Johnstone, 2002; Sederberg et al., 2006).

However, these factors are usually not accounted for in the SME approach. In addition,

the Encoding Specificity principle (Tulving & Thomson, 1973) suggests that remembering

will be more successful when there is a good match of context between study and test than

when they mismatch (for an alternate account, see Nairne, 2002). Context could be spa-

tial/environmental, temporal or internal mental or physical state (Howard & Kahana, 2002).

This study–test contextual match is also overlooked with the SME. Brain activity indexed

by the SME may also relate to experimental manipulations such as attention (Paller et al.,

1987; Otten & Rugg, 2001; Summerfield & Mangels, 2006), intentional learning (Paller, 1990;

Karis, Bashore, Fabiani, & Donchin, 1982), use of different learning strategies (Karis et al.,

1984; Rugg & Curran, 2007), etc. Semantic congruity of the the to-be-remembered stimuli

(Neville et al., 1986) as well as the type of the stimulus (for example, verbal, pictorial, ab-

stract patterns etc., see Fabiani et al., 1990; Paller et al., 1987; Friedman, 1990; Van Petten

& Senkfor, 1996) can also influence the SME. Also, study and test phases are temporally
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distinct, but some aspect of brain activity may co-vary across these two phases (Chen et al.,

2014), and test activity (Rugg & Curran, 2007) is also an important determinant of memory.

Brain activity at retrieval may even be more reflective of important determinants of memory

success (Weidemann et al., 2019; Polyn, Natu, Cohen, & Norman, 2005), including item-

distinctiveness (LaRocque et al., 2013). Clearly, memory encoding is multifaceted and thus,

a more extensive model that incorporates different cognitive measures as well as measures

of brain activity may be more effective in predicting memory (Halpern et al., 2018).

Accordingly, it is likely that our current classifiers are “under-performing” their poten-

tial. One important factor missing from the SME approach and possibly influencing our

classifiers is that retrieval performance is, to a large extent, competitive. Thus, probability

of remembering an item not only depends on the corresponding EEG activity for that item

at study but also on the EEG activity during the study of other items. Also, over the course

of an EEG recording session, there is usually drift in the signal, mainly due to the electrodes

drying out or sliding. Additionally, it is also possible that as the task progresses, the partic-

ipant shifts their strategy or approach towards the task. All of these factors could influence

the classification. To test this, with the LPC and SW classifiers, we calculated classification

performance separately for each of the nine lists studied by each participant (Figure 2.14).

Lists with all hits or all misses were not included. Indeed, the classification improved as the

task progressed. Linear regressions between average AUC (across participants) for each list

and list number (1 to 9) were significant, for both LPC [F (1, 7) = 6.34, p < 0.05] and SW

[F (1, 7) = 7.35, p < 0.05]. Similar trends may also be possible for the multivariate classifiers,

but due to the very small number of trials available per list for training the models, we did

not follow up on that. However, performance measures such as d′ or the proportion of hits

for individual lists did not vary significantly with list number.

Also, given the wealth of research on distinctions between recollection- and familiarity-

based retrieval, one important future direction could be to incorporate those distinctions

into the classification— as indeed, has been done by some previous studies (Noh et al., 2014;

Fukuda & Woodman, 2015; Noh et al., 2018; Liao et al., 2018; Sun et al., 2016). As with

incorporation of other relevant variables (previous two paragraphs), this could improve clas-

sification accuracy. Two classifiers could be trained, one to classify based on a familiarity-like

signal and one based on a recollection-like signal. The two classifiers could then be combined

to produce a higher overall classification success rate. However, the subjective responses
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Figure 2.14: Classification of hit versus miss trials for each list in the task, based on the
LPC and SW ERP measures. Error bars are 95% confidence intervals. Dashed line refers to
chance performance. Lists with all hits or all misses were excluded.

distinguishing recollection versus familiarity might be variable, in themselves, and thus in-

troduce noise into the classification. Moreover, Dunn (2008) showed that remember/know

judgements, themselves, appear to be based upon a summation of recollection and familiar-

ity evidence. Thus, alternatively, it could be more effective to let a multivariate classifier

“discover” the two (or more) neural processes and their optimal summation weights.

Importantly, in the traditional ERP or other similar univariate analysis, brain activity

is averaged over many trials to increase the signal to noise ratio (SNR). Then, measures

from this averaged brain activity signal are computed for behavioural conditions of interest

and are compared across participants. With this approach, we may be able to identify some

components of brain activity relevant to that behaviour, it should also be considered that

the brain itself does not compute such averages to produce the behaviour. Instead, this is

produced by the firing of networks of neurons. In that sense, the classifiers, which learn

from the multivariate pattern of brain activity specific to individual events, may be closer

to the way the brain works than the traditional approach. However, since the classifiers are

driven by the data only, it is also possible for them to learn relations that are different from

what actually produces behaviour. Thus, obtaining a function-to-structure map of memory

may also be inaccessible with present methods of obtaining brain-activity measures (Henson,

2005). The two different clusters of participants identified here could reflect individual vari-

ability in studying the same information, for example, use of different strategies. Classifiers

could also be showing differences due to the word stimuli (frequency, imageability etc.).

Also, if the EEG activity from study can predict memory, then, hypothetically, it could
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also be used to guide restudy, as attempted by Fukuda and Woodman (2015). But in their

case, the restudy re-randomized the relationship between initial study-related EEG activity

and eventual memory outcome. It is possible that when enforcing better learning for stimuli

tagged as “likely-to-be-forgotten” by the classifier, stimuli that were initially more likely to

be remembered become weakened. If the goal is only to be able to predict memory, it may

be possible to find differences that lead to some classifier success, which is appreciated. But,

to be employed in a memory training framework, we may need to isolate EEG activity that

taps into truly effective encoding processes.

In doing so it may also be possible to find memory relevant neural activity patterns that

not only generalize within the trials for one participant but also across multiple participants.

This is an interesting future direction and very few studies have attempted at “between

subject” prediction of memory (Liao et al., 2018; Koch, Paulus, & Coutanche, 2020). Spe-

cific to EEG, Liao et al. (2018) found some success with the test phase activity. However,

their experiment requested additional subjective judgements from the participants, such as

remember–know as well as source and confidence judgements. Accordingly, the between

subject classifiers were set up to predict memory outcomes that were constrained to these

additional judgments rather than simple old/new responses. Thus, although their results

can not be directly compared to the current study, we were curious if between subject pre-

diction for hits versus misses is possible with the study phase EEG activity in our data set.

However, given the small success rates of the within subject classifiers, we suspected that

this may fail. We tested this with a leave-one-subject-out cross validation procedure. Data

from one participant were selected at random and used as the test set. Data from all other

participants were used to train the classifier. We chose linear SVMs, as our results show

these may be better than the LDA. The leave-one-subject-out cross validation was repeated

62 times, i.e., until data from each participant were used as the test set. This produced

AUCs greater than 0.5 for 34 out of 62 participants, i.e., for about 54% of the total sample,

thus it was not significant across participants, t(61) = 0.98, p = 0.33, BF10 = 0.22.

Also, with fMRI, Koch et al. (2020) were able to predict the average encoding pattern,

between their participants. Following this idea, we checked if we could predict the average

EEG waveform at study for hit and miss events for a participant, based on the same for the

other participants. Once again, we used leave-one-subject-out cross validation and linear

SVM classifiers. Also, since in this case each test set has only two trials (averaged waveform
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for hit and miss), instead of calculating AUCs for individual participants, we pooled together

the classifier scores across subjects to calculate the ROC and the AUC of the ROC. Further,

we used 1000 bootstrap samples to calculate the 95% CI of the AUC. This produced an AUC

of 0.64, along with a 95% CI of [0.54 0.74] (Figure 2.15). Thus, it was possible to predict

the average waveform for hit and miss events between participants. However, this may not

be too surprising as the variance of the miss waveform may, in general, be higher than the

hit waveform, due to the disparity in their trial counts, as we have discussed before. The

classifier may be able to learn based on this difference in variance. Regardless, this initial

set of analyses suggest that there may be multiple interesting directions to follow up on in

the future with between subject classifications.

In sum, SME ERPs such as the LPC and SW may not only be related to memory

success at the aggregate level, but could also predict memory for individual trials, albeit

with small effect size. Some increase in effect size was achieved by using more features of

the study-trial activity, and through multivariate pattern classification. This also showed

that two distinct patterns of activity could be related to subsequent memory success (see

Figures 2.16 & 2.17). Methodological improvements to the classification analysis may be able

to increase the performance even further (for example, by using more complex algorithms

and/or spectrogram information) and will be addressed by future research. Also, it is possible

that unlike the EEG signal, the SME measured by the fMRI may contain a better SNR

to predict memory success for individual trials. Alternatively, it is also quite possible for

the classification success to never approach the maximum possible outcome, due to the

numerous cognitive factors that are known to significantly influence memory success, but

are not directly taken into account in the subsequent memory approach. In that case, even

a low, but above-chance, classification is important, and a small level of success is, in fact,

expected.
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Figure 2.15: ROC curve obtained from between subject classification of the average EEG
waveform at study for hit versus miss events, with linear SVM. Dashed line denotes chance.
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Figure 2.16: Topographic plots showing LDA feature weights averaged across all participants
in cluster 1 (N = 22). Colors are range scaled and the scale varies across panels.
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Figure 2.17: Topographic plots showing LDA feature weights averaged across all participants
in cluster 2 (N = 21). Colors are range scaled and the scale varies across panels.
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Chapter 3

Predicting memory from brain
activity during the test phase of item
recognition
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Abstract

Memory judgments can be explained by cognitive processes that precede them in time and

thus, by the brain activity that captures those processes. However, brain-activity signals are

traditionally analyzed with planned-comparisons and descriptive methods, which can over-

estimate them, and also overlook subtle multivariate patterns. Predictive analyses could be

a good complement to descriptive approaches and to find increasingly behaviourally relevant

brain activity. We found that two previously-identified event-related potential measures of

electroencephalographic recordings, FN400 and late parietal positivity (LPP)1, present dur-

ing tests of recognition, achieved modest success in predicting the memory outcomes, but

their predictions did not correlate with each other, suggesting that the two signals may not

contribute to common memory-variability. Further supporting this idea, multivariate pat-

tern analysis of brain activity, which could identify combinations of different features, such

as, the FN400 and LPP, achieved modest but significantly better success than FN400 or LPP

voltage alone. Multivariate pattern analysis also showed that when decisions were reached

fast, only one source of evidence might drive the judgments, in line with a single-process

account; however, when the decisions took longer to reach, a dual-process account may be

more accurate. Further, multivariate pattern analysis of brain-activity during the test-phase

predicted memory better than that for study. However, when both study- and test measures

were combined, predictions were similar to test only. Thus, building on previous univariate

results (Chen et al., 2014), we found that test-related activity, which may be the result

of predictive study-related activity, can predict memory outcomes more directly. Finally,

performance of the multivariate classifiers, for both study- and test phases, correlated pos-

itively with participants’ performance, suggesting that brain activity for better-performing

participants may be more task-relevant. Overall, these investigations show that predictive

1Not to be confused with the emotion-related late positive potential (LPP; e.g., see Moran, Jendrusina,
& Moser, 2013).
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approaches are useful to evaluate behaviourally-relevant brain activity, and also to gain

additional insights about the underlying cognitive processes.
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3.1 Introduction

Cognitive processes that precede memory judgments in time can explain variability in mem-

ory judgments. Accordingly, analysis of brain activity that captures those cognitive processes

could identify memory-relevant signals. For item recognition, previous investigations with

electroencephalographic (EEG) recordings have identified two highly-replicated event-related

potential (ERP) signals, elicited during the processing of the test items: the FN400 and the

left-parietal positivity (LPP) (Chen et al., 2014; Friedman, 1990; Neville et al., 1986; Rugg

& Nagy, 1989; Rugg, 1995; Rugg & Curran, 2007; Warren, 1980; Wilding & Rugg, 1996).

Both FN400 and LPP show more positive amplitude for hits than correct rejections, com-

monly known as the old/new effect; FN400 and LPP also show more positive amplitude for

hits than misses, commonly known as the retrieval-success effect (coined by Dolcos et al.,

2005). Some have also reported more positive FN400 for false alarms than correct rejections

(Finnigan et al., 2002; Wolk et al., 2006), which is in line with the idea that false alarms

are erroneous memory-strengths for the test items that resemble the targets (we explain

the memory-strength concept for recognition judgments in detail later). Thus, FN400 and

LPP could index cognitive processes that support the recognition judgments. However, both

old/new effect and retrieval-success effect have been obtained from traditional ERP analy-

sis, which is based on planned-comparisons and descriptive methods, and runs the risk of

overestimating the brain-activity signals, and also does not look into multivariate patterns

of activity, which may be more relevant for explaining behaviour. In contrast, here, we

consider a relatively stronger predictive framework to evaluate the behavioural relevance of

ERP signals for recognition-memory, and evaluate multivariate classifiers as a way to identify

increasingly behaviourally-linked brain activity.

Predictions over planned comparisons Whether memory can be predicted from brain

activity, is not only an important question to advance theory, but also paves the way for

memory-based applications, for example, in situations where overt behavioural responses

cannot be obtained. Also, the question of predictability is not trivial, and may not be

answered by the traditional ERP effects. ERPs are obtained after averaging over many trials,

and thus only refer to the difference in the means for two or more conditions. However, at

the individual trial level, the distributions of ERP amplitudes could be largely overlapping
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(for example, see Figure 1.5c on page 20 of the Introduction Chapter), and thus, can be

orthogonal to the inference drawn from the difference in the means. Further, trial-averaging

favours signals with low trial-to-trial variability in the latencies, and washes out signals

with greater variability in trial-to-trial latencies, which could also be behaviourally relevant

(Luck, 2014). Although we cannot solve the problem of trial-to-trial variability in latency, it

is possible to overcome problems due to inter-individual differences in latency with predictive

analysis conducted for individual participants. Thus, if changes in FN400 or LPP amplitudes

are indeed monotonic functions of memory outcomes, as suggested by the ERP effects,

then, we should be able to discriminate between different memory outcomes using subject-

specific thresholds in ERP amplitudes. Here, we test this idea using a signal-detection theory

approach (Green & Swets, 1966).

The planned-comparisons approach is also subject to overfitting by capturing the noise

(Bishop, 2006) that is generally present in recorded brain activity (e.g., task-irrelevant cog-

nitive and neural processes). As a result, ERP research often reports findings that risk not

being able to generalize (replicate) in future experiments operating on similar questions.

Also, analysis of amplitudes for specific ERP waveforms restrict the discovery of subtle mul-

tivariate patterns of brain activity, which may better explain behaviour (Norman et al., 2006;

Polyn et al., 2005). Overfitting can also be a problem for analyzing behaviourally-relevant

brain activity for a different reason; for example, for memory tasks, there could be idiosyn-

cratic reasons, and cognitive or neural processes correlated with them, for why a particular

word is remembered, that do not generalize to very many other words. For example, the

word Rocky may be memorable to someone because it reminds them of the movie Rocky;

accordingly, brain activity related to the movie may describe why they remembered Rocky

in one sample dataset, but it will not help explain why they might remember Pillow in a

different sample.

In contrast to the descriptive methods, with predictive analysis, specifically with machine

learning classifiers, testing for generalizability is standard practice. The models use different

sets of observations to 1) learn the relationships between independent and dependent vari-

ables, also known as training, and to 2) forecast outcomes for unseen observations, known

as testing. Thus, overfit models are likely to predict poorly for test data, and thus, both the

model and the training parameters (or features) can be re-evaluated. Such tests of predic-

tions, although still not tests for causality, can be stronger tests for finding behaviourally-
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relevant brain activity, than planned-comparisons or descriptive approaches. Accordingly,

we follow-up on the signal-detection theory inspired predictions with the univariate ERP

amplitudes proposed above, with data-driven multivariate pattern analysis of brain activity

present during the test-phase.

For both tests of predictions, with the univariate ERP measures and the multivariate

activity, we asked the following four questions. First, can targets and lures be discriminated

from brain activity, without restricting to correct responses only? Second, can participants’

old/new responses be predicted from brain activity, distinguishing trials that were perceived-

as-old (hits and false alarms) from those perceived-as-new (misses and correct rejections)?

Third, does brain activity predict memory success for the targets (hits versus misses)? Lastly,

can we predict false alarms and correct rejections based on brain activity measures? Taken

together, we investigated the relevance of FN400, LPP, and multivariate test-phase activity

in recognition-memory judgments, when subjected to tests of predictions for individual trials.

ERP analysis of our data, which was previously reported in Chen et al. (2014), showed

significant old/new and retrieval-success ERP effects for both FN400 and LPP. However,

participants’ performance (d′) as well as average response times (for hits) correlated with

FN400 amplitudes (for the retrieval-success effect) only. Thus, FN400 may have been more

relevant to the memory outcomes in this task than LPP. Accordingly, for this study, predict-

ing memory outcomes could succeed better with FN400 than LPP amplitude. Alternatively,

despite no correlation with behavioural measures, LPP could still predict memory. Also,

as we explain below, FN400 and LPP are thought to index different cognitive processes

that may contribute to the recognition-judgments independently (Rugg & Curran, 2007). In

that case, with the multivariate pattern analysis, which could discover linear combinations

of FN400 and LPP features, we may find greater predictive success than FN400 or LPP

amplitudes alone.

Single- and dual-process accounts of recognition memory Researchers have long

debated on how to interpret behavioural and neuroimaging or electrophysiological findings

of the recognition task. Notably, mathematical models of memory frequently assume that

successfully remembering one item while failing to do so for another is due to weaker memory-

strength produced by the latter than the former (e.g., Shiffrin & Steyvers, 1997). Signal-

detection theory (Green & Swets, 1966) has helped in explaining recognition judgments in
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terms of memory-strengths— if strengths vary from item to item, we can assume separate

(normal) distributions for targets and lures. It is also assumed that the mean strength

(and in some models the variance too) for the targets is greater than that for the lures.

Thus, if the memory-strength produced by a test-item exceeds some threshold value lying

in-between the target and lure strength-distributions, the item is recognized as old, otherwise

as new. Likewise, false alarms happen when the memory-strength produced by a lure item

exceeds the threshold, which could happen in multiple situations, e.g., when target and lure

distributions largely overlap or when the threshold is placed inside the lure distribution.

A single-process account, which is based on the signal-detection theory, posits that recog-

nition judgments are driven by a unitary, integrated strength-based evidence (e.g., Dunn,

2008; Wixted & Stretch, 2004). On the other hand, a dual-process account posits that recog-

nition judgments are driven by two (or more) independent sources of evidence, one of which

is based on a strength-based familiarity signal, while the other is based on a process of rec-

ollection (Yonelinas, 1997, 2002). Interestingly, traditional ERP effects of FN400 and LPP

add some support to a dual- than a single-process account. The common view is that FN400

indexes familiarity (Curran, 1999; Rugg & Curran, 2007) or conceptual priming (Voss, Lu-

cas, & Paller, 2012) while LPP indexes recollection (Rugg & Curran, 2007; Wilding & Rugg,

1996). For example, FN400 amplitude is modulated by the different confidence ratings for

old/new responses (Woroch & Gonsalves, 2010). Since confidence ratings are thought to be

familiarity-driven (Voss & Paller, 2009), the above result may suggest that the FN400 is

sensitive to different familiarity-based ratings. Results from the remember/know paradigm

(Tulving, 1985), which is a derivative of the basic old/new task, add more support to this

idea. In the remember/know task, participants are asked if, for the old response, they can

1) recollect specific details about the item or 2) can remember the item without recollection

of specific details (or they they can remember the item with a sense of familiarity only), and

respond ‘remember’ or ‘know’, respectively. LPP amplitude is modulated by whether the

response is a ‘remember’ or ‘know’ (Rugg & Yonelinas, 2003; Curran, 2004, 1999), suggest-

ing that LPP is sensitive to recollection of information. LPP amplitude is also modulated

by correct and incorrect judgments of the source information (e.g., color or location of the

studied items) (Guo, Duan, Li, & Paller, 2006; Woroch & Gonsalves, 2010). Since source

details are considered to be some of the evidence on which recollection responses could be

made, the above result also supports the idea that LPP indexes recollection-based processes.
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Although the above findings of the FN400 and LPP are relevant to single- and dual-

process accounts of memory, with ERP effects, it is not straightforward to measure the

amount of neural evidence for memory-relevant information. Also, some have argued that

the LPP occurs later than many of the responses, which makes it implausible as neural

evidence that can actually drive the responses (Ally, Simons, McKeever, Peers, & Budson,

2008; Cabeza, Ciaramelli, Olson, & Moscovitch, 2008; Voss & Paller, 2008; Wagner, Shan-

non, Kahn, & Buckner, 2005; Woroch & Gonsalves, 2010). In contrast, classifier problems

can be constructed to trace neural evidence for memory-relevant information more objec-

tively. In a novel creative approach, Weidemann and Kahana (2019a) tested support vector

machine classifiers (SVM; Cortes & Vapnik, 1995) on smaller time-intervals relative to the

onset of the test item, both with moving averages of the signal (independent time-bins) and

with cumulatively summed averages of the signal (cumulative time-bins), and they increased

the time-intervals until the response was made. Their logic can be understood as follows: if

recognition judgments are independently driven by different sources of evidence, then clas-

sifier performance for a specific time-bin should depend on the nearby source of evidence

only, whereas performance for the corresponding cumulative time-bin will depend on all rel-

evant sources up to that time. Thus, classifier performance for the cumulative time-bins

will be greater than that for the independent time-bins. Alternatively, if memory decisions

are based on a unitary, integrated signal then performance of SVM for the independent-

and the cumulative time-bins should be very similar. In other words, if evidence at time

t is no different than evidence over the interval 0 − t, then a classifier using the signal at

time t should perform similarly to a classifier using the signal over the interval 0 − t. The

results showed that SVM performance was very similar for each of the independent- and

cumulative time-bins. Thus, the results from Weidemann and Kahana (2019a) were what

one expects from a single-process account, and incompatible with a dual-process account.

However, Weidemann and Kahana (2019a) analyzed spectrographic features (power as a

function of time and frequency). The wavelet transform used to compute these features

averages over a large time window around the time point in question. This might make their

approach less sensitive to dissociations between the cumulative and independent time-binned

classifications. Here we conducted a similar investigation with the time-domain features of

EEG, which we thought could either reinforce the conclusion made by Weidemann and Ka-

hana (2019a) or alternatively, might have the time-resolution to produce a result supporting
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dual-process theory.

Cognitive processes at study Memory success for the target items in recognition tasks,

or hits and misses, are also viewed as functions of cognitive processes during the study phase.

In the “subsequent memory effect” technique, researchers have examined brain activity dur-

ing the study-phase that supports difference due to memory success versus failure at later

test (Brewer et al., 1998; Chen et al., 2014; Fabiani et al., 1990; Friedman, 1990; Karis et al.,

1984; A. S. Kim et al., 2009; Paller et al., 1987; Sanquist et al., 1980; Smith, 1993; Wagner

et al., 1998). Two highly-replicated ERPs at study, the late positive component (LPC) and

the slow wave (SW) show greater amplitudes for subsequent hits than misses (Chen et al.,

2014; Fabiani et al., 1990; Friedman, 1990; Karis et al., 1984; A. S. Kim et al., 2009; Sanquist

et al., 1980; Smith, 1993). Based on similar motivations as the current study, previously

we had looked into the predictability of the amplitudes of LPC and SW for subsequent

memory success, and for the same dataset (Chapter 2; Chakravarty et al., 2020); LPC and

SW amplitudes achieved small but significant success in predicting memory, which further

supported their relevance in memory. In the same study (Chapter 2; Chakravarty et al.,

2020), pattern analysis of the multivariate spatio-temporal EEG signals present during the

study-phase, also predicted subsequent memory, and with similar average success as LPC-

or SW amplitudes alone. Thus, overall we found support for the idea that memory outcomes

(for the targets) can be viewed as predictive functions of brain activity during the study-

phase, but the size of these predictions was small, suggested relatively small contributions

of study-phase brain activity to subsequent memory variability.

It is arguable whether recognition-memory outcomes are better explained by cognitive

processes at study or at test. Study- and test-related processes may also not be strictly

independent of each other. For example, ERP analysis for the current task (Chen et al., 2014)

found significant correlations across participants between trial-averaged SW amplitudes at

study and LPP amplitudes at test, as well as for LPC amplitudes at study and FN400

amplitudes at test, when comparing between hits and misses. Thus, cognitive processes at

study and test, as indexed by these ERPs, may share common variance in memory. However,

some suggestions could make the case for greater importance of cognitive processes at test

(e.g., Lewis, 1979). For example, consider that recognition memory depends on the ability

to distinguish targets from lures. According to the signal-detection theory, classification of
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a test item as old or as new depends on the match of the stored memory to the probe.

Alternatively, test items could also be classified on the basis of their ‘mismatch’ with the

lures (Criss, Wheeler, & McClelland, 2013). To visualize this idea, consider if lures are

strikingly dissimilar to targets (e.g., different categories of objects), the recognition task can

be performed extremely well, even without remembering specific items from study. Thus,

lures play an important role in recognition-memory outcomes. Accordingly, test-related

activity, which includes activity for the lure items, may explain more variability in memory

accuracy.

Based on the above ideas, we compared between contributions of brain-activity features

at study and at test, for explaining the memory outcomes, based on their predictive success.

Thus, we compared between predictions of study- and test-related ERPs as well as between

multivariate brain activity at study and test. If test-related activity, as discussed above, is

more directly relevant for recognition judgments, we should achieve greater predictive success

with it. Further, as mentioned above, results from Chen et al. (2014) suggested that cognitive

processes at study and test may be linked through common variance in memory. Merging

the two ideas together, it is possible that study-related processes lead to some variability in

memory, which is retrieved by test-related processes, along with additional variability due

to test only. Accordingly, test-related activity may explain a greater amount of variance in

memory than study-related activity.

To test this idea, we trained the multivariate classifiers with brain activity features from

both study- and test phases for the target items, in order to predict their memory outcomes

(hit or miss). If our hypothesis is true then this study+test classifier should predict memory

similar to the test-activity based classifier; and both the study+test and test-activity based

classifiers will perform better than the study-activity based classifier. Alternatively, if despite

a shared variance, study-related processes also contribute to the variance in memory that is

not shared by the test-related processes, then the study+test classifier should perform better

than both study-activity and test-activity based classifiers.

In sum, we examined the general scope for employing predictive analysis to investigate

brain activity, measured by time-domain EEG features, that underlies recognition judgments.

We interpret the predictive success on a background laid by results from the traditional ERP

analysis, existing theories, as well as other classifier approaches relevant to understanding

recognition memory.
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3.2 Methods

3.2.1 Participants and experimental procedure

Data were from a total of 64 participants as reported in Chen et al. (2014) and in Chapter 2

(Chakravarty et al., 2020). Data from three participants were excluded for having 15%

or more of the trials rejected due to artifacts (see below). The experiment was an item

recognition task (see Figure 2.1 in Chapter 2, on page 40). Participants first studied a list of

25 words, presented on the screen one at a time. Word onsets were jittered (300–500 ms) and

each word stayed on the screen for 1500 ms. After studying a list, participants completed

a short math distractor task consisting of simple addition or subtraction problems. After

that, they saw a list of 50 words, also presented one at a time. For each word, they made

an old or new response by pressing specific keys (press 1 for old, 2 for new). Each test list

contained 25 old and 25 new words. Each participant went through 9 study and 9 test lists,

resulting in 225 and 450 study and test trials respectively. New words or lures were not

repeated within a test list nor between different test lists.2 The procedures were approved

by a University of Alberta ethical review board.

3.2.2 EEG recording and pre-processing

The EEG signal was recorded with high-density 256-channel Geodesic Sensor nets (Electrical

Geodesics Inc., Eugene, OR), in an electrically shielded, sound-attenuated chamber. It was

amplified at a gain of 1000. The sampling rate was 250 Hz, impedance was kept below

50 kΩ, and the vertex electrode Cz was the reference. We used the EEGLAB toolbox

(http://sccn.ucsd.edu/eeglab; Delorme & Makeig, 2004) to pre-process the signal, which

involved bandpass filtering to 0.5–30 Hz, average re-referencing and using the independent

component analysis (ICA) method to discard artifacts like eye blinks, channel noise and

muscle noise. Each trial included signal from 100 ms pre-stimulus onset to 1200 ms post-

stimulus onset time-intervals (but see the description for the Vincentized analysis below,

for which the epochs were extracted differently). Baseline, for each trial, was calculated by

averaging the signal over the 100 ms pre-stimulus interval and was subtracted from all values

in each particular trial. To detect epochs containing artifacts, an absolute voltage threshold

2Words in the study list were presented in the same order in the test list, with lures being presented at
random positions in the test list.
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of 200 µV was used. We also excluded trials based on a threshold of 25 µV point-to-point

difference. For N = 3 participants, these thresholds resulted in the rejection of 15% or

more of the trials (20%, 17.56% and 44.89% respectively) and thus data from those three

participants were excluded. For all participants included in this study (N = 61), on average

1% of trials were rejected (min = 0, max = 9.78%).

3.2.3 EEG Classification

First, for each participant, the test trials were labeled by their memory outcomes: hits,

misses, false alarms and correct rejections. Next, we constructed four classification prob-

lems: 1. old words or targets versus new words or lures, 2. words perceived/responded to

as old (hits + false alarms) versus those perceived/responded to as new (misses + correct

rejections), 3. correctly responded old words (hits) versus incorrectly responded old words

(misses) and 4. correctly responded new words (correct rejections) versus incorrectly re-

sponded new words (false alarms). For classifications involving activity during the study

phase, study trials were labeled by their subsequent memory outcomes: hits or misses. Be-

low, we describe the classification analysis with the individual ERP amplitudes and with the

multivariate EEG signal at test.

3.2.4 Classification based on ERPs at test

Two ERP features were considered: the amplitudes of FN400 and the LPP. Given the scalp-

distribution of voltage for the FN400 (frontal) and LPP (left-parietal)(e.g., see Chen et al.,

2014), for each trial, we calculated FN400 amplitude by averaging the signal from Fz over

the 300–500 ms time-window post stimulus onset, and we calculated the LPP amplitude for

each trial from the left posterior electrode P3 by averaging over the 500–800 ms window,

post stimulus onset. Also, based on the ERP effects for the trial-averaged data, for both

FN400 and the LPP amplitudes, we used the following rules for each of the classification

problems mentioned above:

1. old/new: old trials are of more positive voltage than new trials.

2. hit/miss: hits are of more positive voltage than misses.
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3. perceived old/new: perceived old trials are of more positive voltage than perceived new

trials.

4. correct rejection/false alarm: false alarms are of more positive voltage than correct

rejections.

Next, for classifying individual trials, we followed a signal-detection theory (Green &

Swets, 1966) approach as described in Chapter 2 (Chakravarty et al., 2020). Specifically, for

each participant, first we sorted the individual trials by their ERP amplitudes. Then we set

variable voltage thresholds, whereby any trial with an average voltage above this threshold

would be considered as part of the positive class (e.g., old for the old/new paradigm). Next,

for each threshold we calculated the true positive rate and the false positive rate, which were

plotted against each other to obtain the receiver operating characteristic (ROC) curve. Area

under the curve (AUC) of the ROC was calculated using the perfcurve function in MATLAB

(2018a). The AUC determined classifier success. For arbitrary predictions, AUC = 0.5, for

a perfect classifier, AUC = 1 (Green & Swets, 1966).

3.2.5 Classification based on the multivariate EEG signal at test

Classification methods followed here were consistent with those used in Chapter 2 (Chakravarty

et al., 2020); for both studies, we followed a generic approach in selecting the brain-activity

features, and to analyze the classifiers. Our goal was to estimate the general level of chal-

lenge associated with using classifiers to predict different memory outcomes, leaving room

for more fine-grained methods for the future.

Since EEG recordings contain thousands of features relative to much smaller number

of trials, for computational simplicity and also to prevent the classifiers from overfitting

the training data, we pre-selected a subset of 10 electrodes to roughly cover the scalp (see

Figure 2.3 in Chapter 2 on page 43). Also, to reduce the number of temporal features per

epoch, we binned the signal in 100 ms long time-bins. Thus, in total, there were 120 features

(10 electrodes × 12 time-bins) for each trial. We used two, arguably the most simple, linear

classifiers: linear discriminant analysis (LDA; Fisher, 1936) and support vector machine

(SVM; Cortes & Vapnik, 1995). To reduce chances of overfitting, both LDA and SVM

models were regularized, which means that the models were penalized if they were too

complex. The regularization parameters for both LDA and SVM were set at 0.5.
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Classifiers were trained and tested with stratified 10-fold cross-validation, except when

classifying between correct rejections and false alarms, in which case, we used 5-fold stratified

cross-validation to help reduce instances of training or test folds containing examples from

one condition only. A small number of participants (N = 3) had to be excluded when

classifying between correct rejections and false alarms, for they had one or more test folds

containing examples from one class only.

The cross-validation folds were stratified, which means that the ratio of the number

of trials for the two conditions (or classes) were similar across the training and test folds.

Classifier performance was evaluated for the test folds— for each trial in a test fold, the

classifier produced a score, which could be transformed into the posterior probability for the

trial to belong in one class over the other. The scores for all trials in the test fold were used

to plot the ROC, and to calculate AUC of the ROC. AUCs were averaged across all the test

folds for a participant.

Class imbalance When classifying between hits and misses, or correct rejections and

false alarms, total number of trials for the two classes were imbalanced; participants made

more hits than misses, more correct rejections than false alarms. In these situations, it is

possible for the classifier to be biased towards predicting the over-represented class (hits

and correct rejections, respectively). To prevent that, we used over-sampling of the number

of trials for the under-represented class (misses and false alarms, respectively). We used

Synthetic Minority Oversampling technique (SMOTE; Chawla et al., 2002; Arora et al.,

2018; Chakravarty et al., 2020), which creates additional examples for the under-represented

class using a nearest-neighbour approach. Importantly, oversampling was done within the

cross-validation procedure, only for the under-represented class in the training-folds. Others

pursuing similar problems have opted for under-sampling of over-represented class more

commonly (e.g., Noh et al., 2014; Watanabe et al., 2011). However, for the current analyses,

the total number of trials were small, and thus, under-sampling may also lead to poor

training of the classifier, simply due to the lack of enough examples. Also, in light of the

results in Chapter 2 (Chakravarty et al., 2020), we suspected that classifier performance,

across participants, may not be significantly different with and without oversampling by

SMOTE, probably because overall, the predictions were small.
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Analysis of feature-importance with LDA weights The multivariate classifiers esti-

mate pattern of activity that best discriminates between the two classes. In this sense, the

classifiers work similar to how the brain processes information— by analyzing patterns of

neural activity. However, it is possible for the classifier-identified pattern of brain activity to

be different from the pattern of activity used by the brain to produce a specific behaviour.

With non-linear classifier models, including the state-of-the-art neural network models, it

is not straightforward to examine the classifier-identified patterns of brain activity, in order

to compare them with knowledge obtained from the planned-comparisons and descriptive

methods. However, with simple linear classifiers like LDA, it is straightforward to look into

classifier-identified patterns of brain activity. Specifically, the coefficient of each feature in

the training set of an LDA model reflects its importance or weight with respect to other fea-

tures. We used the LDA weights to determine which spatio-temporal features were deemed

more important by LDA for each classification problem. For each participant, the weights

were first averaged across all training folds, then re-scaled to the interval [0, 1]. Finally the

weights were averaged across participants. Then we looked into the changes in the averaged

weights with time, and also their distribution across the scalp. We considered only those

participants for whom LDA achieved better-than-chance predictions.

Excluding influence of motor-preparatory activity with vincentization Since test-

related activity also coincides with the action of making responses, it is possible for the

classifiers to pick up on differences due to motor-preparatory activity rather than memory-

relevant brain activity. For example, in this data set, hits were faster than misses (see

Table 3.1)— the classifier may be use this difference to make the predictions for hits and

misses. To check this, we conducted follow-up analysis with vincentized time bins (Ratcliff,

1979; Weidemann & Kahana, 2019a), which can account for the potential influence due to

motor-preparatory activity.

First, for each test trial, we used the EEG signal starting from stimulus-onset and up to

the response (signal was truncated 40 ms advance of the response). The rest of the signal

was excluded. Notably, in this case, we did not stick to our default 1200 ms time-window

of analysis and instead for longer response times, epochs were also captured for a longer

time-interval. Then, for the classifier analysis, to equate the number of features across

trials, the number of time-related features (mean amplitudes over specific time-intervals)
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were calculated by taking weighted averages— to produce a total of 12 time-related features,

as before. Thus, for a trial with response time of 1200 ms, we would obtain 12 time-related

features, each averaged over 100 ms long time-intervals; for a trial with response time of

600 ms, we would also obtain 12 time-related features but each of them is averaged over

50 ms long time-intervals. All time-intervals are aligned to the onset of the test stimulus

(0 ms).

Classifier performance as functions of time To investigate how memory-relevant in-

formation evolved over time, we conducted moving-window based classification analyses,

following the approach of Weidemann and Kahana (2019a). First, we extracted the EEG

signal for individual 100 ms time windows starting from 0 to 1200 ms post stimulus-onset.

Then, we trained and tested the classifiers for each of these 100 ms long signals. We refer

to this as the independent time-bin analysis. Next, we trained and tested the classifiers by

sequentially adding the 100 ms long signals to it. This means that while the first set of

classifiers were trained and tested on the 0–100 ms signal, the second set of classifiers were

trained and tested on the 0–200 ms signal and so on. We shall call this the cumulative time-

bin analysis. Both set of analyses were done with and without vincentization to account for

the influence due to motor-preparatory activity, as described above.

All analyses were done in MATLAB (2018b) along with specific functions from the Statis-

tics and Machine Learning Toolbox (Martinez et al., 2017). Two-tailed t-tests against chance

(0.5) were used to examine classifier success across participants; significant effects were rel-

ative to α = 0.05. Bayes Factors, obtained from Bayesian t-tests are also reported. The

Bayesian t-tests were carried out using a function written for MATLAB by SamPenDu

(2015). The Bayes Factor (BF10) indicates the Bayesian probability for the alternative over

the null hypothesis; BF10 = p(H1)
p(H0)

. BF10 > 10 indicates strong evidence for the alternate

and BF10 < 0.1 indicates strong evidence for the null (Kass & Raftery, 1995). BF10 > 3

indicates moderate evidence for the alternate and BF10 < 0.3 indicates moderate evidence

for the null. For the one-sample t-tests, we also report the 95% confidence intervals of the

mean for the classifier success; classifier success was measured by the AUC of the ROC. The

95% CIs were used as an estimate of the size of the classifier success across participants.

Also, for reproducibility of the classification results, a pseudo-random number generator was

used (Mersenne twister, seed = 0).
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Condition Accuracy (%) Response time (ms)
Hits (old) 77.6 (9.93) 978 (195)
Misses (old) 21.74 (9.84) 1361 (446)

Correct rejections (new) 85.96 (12.07) 1105 (273)
False Alarms (new) 13.41 (11.80) 1568 (564)

Table 3.1: Mean accuracy and response times for the different memory outcomes. Standard
deviations are in parentheses next to the mean values.

3.3 Results

3.3.1 Behaviour

Table 3.1 presents average accuracy and response times for hits, misses, correct rejections and

false alarms. Hits and correct rejections were more frequent than misses or false alarms. Also,

hits were faster than misses. The standard deviations (reported in parentheses in Table 3.1)

for the response times were large, suggesting meaningful variability across participants.

3.3.2 ERPs at test

Traditional ERP analysis for this dataset was previously reported in Chen et al. (2014) and

showed significant ERP effects for the FN400 and LPP and for both the old versus new,

and the hit versus miss contrasts. However, as described in the Methods, to better identify

artifactual trials, here we used an absolute voltage threshold and a point-to-point difference

threshold (also see Chapter 2; Chakravarty et al., 2020), calling for a re-analysis of the ERPs

at test to check if the old/new and retrieval-success effects were still significant. Figure 3.1

presents grand averaged ERPs at test, for the frontal electrode Fz (Figure 3.1a,c) and the

left parietal electrode P3 (Figure 3.1b,d), and compares between hits and correct rejections

(Figure 3.1a,b) and hits and misses (Figure 3.1c,d). Consistent with Chen et al. (2014), at

Fz, mean amplitude over the 300–500 ms time window, post stimulus-onset, was significantly

more positive for hits than correct rejections, [t(60) = 3.63, p < 0.001, BF10 = 42.66], or for

misses, [t(60) = 4.94, p < 0.001, BF10 > 100]. The Bayes Factors strongly supported the

effect in both cases (BF10 > 10). Likewise, at P3, mean amplitude over the time window 500–

800 ms, post stimulus-onset, was significantly more positive for hits than correct rejections

[t(60) = 5.79, p < 0.001, BF10 > 100] or for misses [t(60) = 3.57, p < 0.001, BF10 = 36.67].

Again, the The Bayes Factors strongly supported the effect in both cases (BF10 > 10). The
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respective topographic plots of the difference waves (hits − correct rejections and hits −

misses) also confirmed a frontal positive signal for FN400 and a posterior positive signal for

LPP. Thus, the old/new and retrieval-success ERP effects were still present. We proceed

with the predictive analysis as planned.

3.3.3 Predictions with univariate measures of the FN400 and LPP

First, we tested if FN400 and LPP amplitude predicted memory for individual trials, across

participants (see Figure 3.2 and Table 3.2). FN400 amplitude achieved significant success in

classifying old and new trials, but the Bayes Factor was inconclusive for this classification

(BF10 = 1.12). FN400 amplitude classified hits and misses and perceived-old and new

trials with significant success, and with the Bayes Factors strongly supporting the effects

(BF10 > 102). However, FN400 amplitude did not classify between correct rejections and

false alarms. Interestingly, the 95% CI of the FN400-based AUCs for classifying hits and

misses, [0.53 0.55], was greater than that for old and new trials, [0.50 0.52], and also greater

than that for perceived-old and new trials, [0.51 0.53], suggesting that FN400 amplitude

may be more specific to the difference due to memory-success.

LPP amplitude was also successful at classifying between old and new trials (with BF10 >

102), hits and misses, and perceived-old and new trials; and also failed to classify between

correct rejections and false alarms. However, unlike FN400, the 95% CI of the LPP-based

AUCs for classifying hits and misses, [0.52 0.55], largely overlapped with that for classifying

old and new trials, [0.52 0.54], and was the same for the perceived-old- and new trials,

[0.52 0.55], suggesting that LPP amplitude, when compared to FN400 amplitude, may

be less specific to difference due to memory-success, and more specific to difference due to

targets and lures. Also, LPP amplitude predicted significantly better than FN400 amplitude

for classifying old and new trials (t(60) = 4.09, p < 0.001, BF10 > 102), with the Bayes

Factor strongly supporting the effect. This difference between predictions with LPP and

FN400 amplitudes was also significant for classifying perceived old and new trials (t(60) =

2.08, p < 0.05, BF10 = 1.05), but the Bayes Factor was inconclusive. However, there was

no significant difference between predictions with LPP and FN400 amplitudes for classifying

hits and misses (t(60) = 0.51, p = 0.61, BF10 = 0.16), though the Bayes Factor was

inconclusive. Taken together, these differences between predictions with LPP and FN400

amplitudes may further support the suggestion that FN400 was more specific to difference
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Figure 3.1: Grand averaged ERPs at test, comparing hits and correct rejections (upper
panels) and hits and misses (lower panels). ERPs are plotted separately for the frontal
electrode Fz (a,c) and the left parietal electrode P3 (b,d) to examine the effects of the FN400
and the LPP respectively. Corresponding topographic maps are plotted for the difference
waves (hits − CR or hits − misses) for the window of the FN400 (a,c) or the LPP (b,d)
respectively; color indicates mean voltage (µV ).
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Figure 3.2: Classifications with FN400 (computed from electrode Fz) and LPP (computed
from electrode P3) amplitudes, separately for the classifications between 1) old and new
trials, 2) hits and misses, 3) perceived-old- and new trials, and 4) correct rejections and false
alarms. Error bars are 95% confidence intervals. Dashed black line refers to chance (0.5).

due to memory-success than LPP.

In sum, predictions with both FN400 and LPP amplitudes achieved significant— but

small— success in classifying different memory outcomes. However, neither FN400 nor LPP

could predict correct rejections and false alarms.

To better understand the relation between predictions with FN400 and LPP amplitudes,

as well as the relation between predictions for the four classification problems, we analyzed

the correlations between AUCs obtained with the different measures (and classification prob-

lems) across participants, as we discuss below.

FN400 Old/New* t(60) = 2.12, p < 0.05, BF10 = 1.12, 95% CI = [0.50 0.52]
Hit/Miss* t(60) = 5.71, p < 0.001, BF10 > 102, 95% CI = [0.53 0.55]

Perceived Old/New* t(60) = 5.05, p < 0.001, BF10 > 102, 95% CI = [0.51 0.53]
CR/FA t(60) < 0.01, p = 0.99, BF10 = 0.14, 95% CI = [0.48 0.52]

LPP Old/New* t(60) = 7.28, p < 0.001, BF10 > 102, 95% CI = [0.52 0.54]
Hit/Miss* t(60) = 3.72, p < 0.001, BF10 = 55.63, 95% CI = [0.52 0.55]

Perceived Old/New* t(60) = 6.51, p < 0.001, BF10 > 102, 95% CI = [0.52 0.55]
CR/FA t(60) = 0.57, p = 0.57, BF10 = 0.16, 95% CI = [0.48 0.53]

Table 3.2: Classifications with FN400 and LPP amplitudes, t-test against chance (0.5) for
the AUCs, along with the Bayes Factor (BF10). Significant effects are marked with *.
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Notably, Chen et al. (2014) found that across participants, the difference in FN400 am-

plitude for hits and correct rejections (or the old/new effect) did not correlate to the same

difference computed for the LPP amplitude. Likewise, the difference between hits and misses

(or the retrieval-success effect), as captured by the FN400 and LPP amplitudes, also did not

correlate with each other. In other words, although both FN400 and LPP showed significant

difference due to the old/new and retrieval-success effects, the effects were not correlated for

the two ERPs, suggesting that FN400 and LPP may not be sensitive to common variability

in memory retrieval processes.

Supporting this idea, here we found no correlation between the predictive performances

(AUCs) of FN400 and LPP amplitudes, for any of the four classification problems— old and

new trials, hits and misses, perceived-old- and new trials, and correct rejections and false

alarms (see Figure 3.3). Analysis of partial correlations also showed that the AUCs obtained

with FN400 and LPP amplitudes did not relate to each other, for any of the classification

problems.

We also conducted partial correlations for the AUCs obtained with the FN400 amplitudes,

across the four classification problems, while controlling for the effects of predictions (AUCs)

based on LPP amplitudes (also for the four classifications). This showed significant positive

correlations between 1) classification of old and new trials, and classification of perceived-

old- and new trials (p < 0.001) and 2) classification of hits and misses, and classification of

perceived-old- and new trials (p < 0.001); all other correlations were non-significant. Since

classification of hits and misses correlated with the classification of perceived-old- and new

trials, but not with the classification of old and new trials, it could suggest that FN400 am-

plitude is more specific to response-related differences than more general differences due to

targets and lures. However, the classification of old versus new trials with FN400 amplitude

was deemed inconclusive by the Bayes Factor, which may undermine the above interpreta-

tion.

Partial correlations for the AUCs obtained with the LPP amplitudes, across the four clas-

sification problems, while controlling for the effects of predictions (AUCs) based on FN400

amplitudes (also for the four classifications), showed significant correlations among classifi-

cations of old and new trials, hits and misses, and perceived-old- and new trials (pair-wise,

p < 0.001). Thus, apart from the classification of correct rejections and false alarms, which

had failed with both FN400 and LPP amplitudes, in case of LPP, the three other classifi-
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Figure 3.3: Correlation between AUCs obtained from FN400 and LPP based classifications,
for each classification problem. Dashed black lines refer to chance (0.5).
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cations agreed with each other; in case of FN400, both classifications of old and new trials,

and hits and misses agreed with the classification of perceived-old- and new trials.

Chen et al. (2014) also found that for the retrieval-success effect, participants’ d′ and

average response-times (for hits only), were significantly correlated with the FN400 ampli-

tude. However, LPP amplitude was not correlated with d′ or response-times, either for the

old/new- or the retrieval-success effect. Paralleling their results, when classifying hits and

misses, we found a significant positive correlation between d′ and AUCs obtained with the

FN400 amplitudes (see Figure 3.4), and a trend (p = 0.05) for a negative correlation be-

tween average response-times (hits) and the FN400-based AUCs (Figure 3.5). Interestingly,

FN400-based AUCs correlated negatively with d′ and response-times for classifying correct

rejections and false alarms. The negative correlation with d′ could be because for smaller d′,

false alarms were more likely, which could have helped better discriminate false alarms from

correct rejections than when false alarms were very rare, as in the case of a higher d′. On

the other hand, LPP-based AUCs correlated with d′ when classifying old and new trials, and

perceived-old- and new trials; the correlation between LPP-based AUCs and response-times,

when classifying old and new trials, approached significance (p = 0.05). All other corre-

lations were non-significant. Together, these results may provide more support for FN400

being more relevant to difference due to memory-success in this task, whereas the LPP was

sensitive to difference due to targets and lures.

3.3.4 Shorter response times

In general, test-related activity can overlap with motor preparatory activity for making re-

sponses. We wondered if classifications with FN400 and LPP amplitudes were influenced

by motor-preparatory activity. Motor-preparatory activity in the signal could have indexed

memory outcomes in an artifactual way. For example, classifying hits and misses could oper-

ate on the difference in response times for hits and misses (faster for hits, slower for misses).

Such classification of hits and misses is not based on memory-relevant brain activity. For

our default choice of epoch-length (1200 ms), trials with shorter response-times (<1200 ms)

will likely include motor-preparatory activity in the epoched signal. To check this, we con-

ducted a follow-up analysis by excluding shorter response-times trials. For classifications

with FN400 (latency: 300–500 ms post stimulus-onset), we excluded trials with response-

times <500 ms. For LPP (latency: 500–800 ms post stimulus onset), we excluded trials with
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Figure 3.4: Correlation between AUCs obtained from FN400 or LPP amplitude-based clas-
sifications and d′ values of participants behaviour, separately for each classification problem.
Dashed black lines refer to chance (0.5). Panels with significant correlations are marked with
*.
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Figure 3.5: Correlation between AUCs obtained from FN400 or LPP amplitude-based classi-
fications and average response-times (for hits only), separately for each classification problem.
Dashed black lines refer to chance (0.5). Panels with significant correlations are marked with
*.
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Figure 3.6: Average response times across participants.

response-times <800 ms.

For FN400, classification results were similar to that without exclusion of shorter response-

time trials (see Figure 3.7 and Table 3.3). Thus, results based on the FN400 amplitude, as

presented above, were not influenced by motor-preparatory activity. However, with the

above-mentioned exclusion-criterion for FN400 (exclude trials with response times shorter

than 500 ms), we did not end up rejecting many trials, because the average response-time,

across all types of trials, exceeded 500 ms (see Figure 3.6).

For LPP, classification of hits and misses became non-significant after excluding shorter

response-time trials. Classifications of old and new trials, and perceived-old- and new trials,

were significant, but of smaller size (indicated by the 95% CIs) than without the exclusion of

trials. Thus, predictions based on LPP amplitudes, for the classification of old and new trials,

or the classification of perceived-old- and new trials, were no longer better than predictions

based on FN400 amplitudes, as we had found before. Interestingly, classification of correct

rejections and false alarms with the LPP amplitudes, after the exclusion of shorter response-

time trials, became significant (see Table 3.3). Since correct rejections were, on average,

faster than false alarms; and false alarms were more infrequent than correct rejections,

correct rejection trials may have been excluded more often, which could have led to better

discrimination between the two types of trials.

Thus, when shorter response-time trials, which are less likely to include the LPP, were
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Figure 3.7: Classification based on the FN400 (computed from electrode Fz) and the LPP
(computed from electrode P3) after rejecting trials with response times lesser than 500 ms
and 800 ms respectively for the FN400 and the LPP. Results are grouped into four different
classification problems: 1) old versus new, 2) hits versus misses, 3) perceived old versus
perceived new and 4) correct rejections versus false alarms. Error bars are 95% confidence
intervals. Dashed black line refers to chance (0.5).

FN400 Old/New* t(60) = 2.07, p < 0.05, BF10 = 1.01, 95% CI = [0.50 0.52]
Hit/Miss* t(60) = 5.83, p < 0.001, BF10 > 102, 95% CI = [0.53 0.55]

Perceived Old/New* t(60) = 5.08, p < 0.001, BF10 > 102, 95% CI = [0.51 0.53]
CR/FA t(60) < 0.01, p = 0.99, BF10 = 0.14, 95% CI = [0.48 0.52]

LPP Old/New* t(60) = 3.09, p < 0.005, BF10 = 9.79, 95% CI = [0.51 0.53]
Hit/Miss t(60) = 0.76, p = 0.45, BF10 = 0.19, 95% CI = [0.49 0.53]

Perceived Old/New* t(60) = 3.14, p < 0.005, BF10 = 11.37, 95% CI = [0.51 0.53]
CR/FA* t(60) = 2.18, p < 0.05, BF10 = 1.26, 95% CI = [0.50 0.55]

Table 3.3: Predictions based on FN400 and LPP after excluding trials with shorter response
times, t-test against chance (0.5) for the AUCs. Significant effects are marked with *.
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excluded, predictions based on LPP amplitudes became overall worse. Notably, with the

exclusion criterion for LPP (response times shorter than 800 ms) we ended up rejecting many

trials— on average 43.25% trials were rejected for the old/new or the perceived old/new;

47.50% for the hit/miss and 38.99% for the correct rejection/false alarm classifications,

confounding the interpretation of results for LPP. Alternatively, the above results for LPP

may be because recollection is more likely to occur following a quick judgement, that can be

based on familiarity.

3.3.5 Predictions with multivariate EEG activity at test

Next, we examined the multivariate spatio-temporal EEG signal during the test phase to

predict the different memory outcomes, using the two classifiers: LDA and SVM. Assuming

that FN400 and LPP amplitudes index different cognitive processes behind recognition-

memory outcomes; and also considering that there may even exist other signals during test-

phase activity that is also relevant to memory (i.e., beyond FN400 and LPP), we expected to

find better predictions with the multivariate methods, which analyzed patterns of activity.

We tested if LDA and SVM classified between old and new trials, hits and misses,

perceived-old- and new trials, and correct rejections and false alarms, for the multivariate

EEG signal at test (Figure 3.9 and Table 3.4). Both classifiers achieved significant success,

and for all four classifications, the Bayes Factor strongly supported each of the effects. Across

participants, predictions with LDA and SVM were very similar to each other (see Figure 3.8),

suggesting generalizability of the results across the two chosen classifier models. Classifica-

tion of old and new trials, with LDA and SVM, produced a 95% CI of [0.56 0.59], which was

greater than, and non-overlapping with the 95% CI for classifying old and new trials with

FN400 amplitudes, [0.50 0.52] or LPP amplitudes, [0.52 0.54]. The 95% CIs for LDA and

SVM were also greater than that for FN400 or LPP amplitude-based classification of hits

and misses, and classification of perceived-old and new trials. Further, unlike FN400 or LPP

amplitude-based predictions, both LDA and SVM achieved significant success in classifying

correct rejections false alarms, and with good margins (95% CI for LDA: [0.54 0.58]; SVM:

[0.53 0.58]). Overall, the multivariate classifiers performed substantially better than FN400

or LPP amplitudes-based predictions alone.

Similar to the correlations between predictions with FN400 and LPP amplitudes, here

too, we looked into the relations between the four classifications, in terms of the perfor-
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Figure 3.8: Correlation between LDA and SVM classifiers, separately for each classification
problem. Dashed black lines refer to chance (0.5). Panels with significant correlations are
marked with *.

LDA Old/New* t(60) = 9.98, p < 0.001, BF10 > 102, 95% CI = [0.56 0.59]
Hit/Miss* t(60) = 6.80, p < 0.001, BF10 > 102, 95% CI = [0.55 0.59]

Perceived Old/New* t(60) = 10.09, p < 0.001, BF10 > 102, 95% CI = [0.57 0.61]
CR/FA* t(57) = 5.53, p < 0.001, BF10 > 102, 95% CI = [0.54 0.58]

SVM Old/New* t(60) = 9.63, p < 0.001, BF10 > 102, 95% CI = [0.56 0.59]
Hit/Miss* t(60) = 6.47, p < 0.001, BF10 > 102, 95% CI = [0.55 0.60]

Perceived Old/New* t(60) = 10.30, p < 0.001, BF10 > 102, 95% CI = [0.57 0.61]
CR/FA* t(57) = 4.82, p < 0.001, BF10 > 102, 95% CI = [0.53 0.58]

Table 3.4: Multivariate classification with LDA and SVM, t-test against chance (0.5) for the
AUCs, along with Bayes Factors (BF10). Significant effects are marked with *.
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Figure 3.9: Multivariate classification with LDA and SVM. Results are grouped into four
classification problems: 1) old and new trials, 2) hits and misses, 3) perceived-old- and new
trials, and 4) correct rejections and false alarms. Error bars are 95% confidence intervals.
Dashed black line refers to chance (0.5).

mance of two classifiers. Partial correlations for LDA AUCs, across the four classifications

showed that classification of perceived-old- and new trials was correlated positively with 1)

classification of old and new trials [r(56) = 0.65, p < 0.001], 2) classification of hits and

misses [r(56) = 0.47, p < 0.001] and 3) classification of correct rejections and false alarms

[r(56) = 0.27, p < 0.05]. Partial correlations for SVM AUCs, across the four classifications

also showed significant positive correlations between 1) classification of perceived-old- and

new trials and classification of old and new trials [r(56) = 0.65, p < 0.001], 2) classification of

perceived-old- and new trials and classification of hits and misses, [r(56) = 0.40, p < 0.005];

and 3) a trend for classification of perceived-old- and new trials and classification of correct

rejections and false alarms, [r(56) = 0.23, p = 0.09]. Overall, there was underlying similarity

between the classification of perceived-old- and new trials and the other three classifications,

for both LDA and SVM.

Chapter 2 (Chakravarty et al., 2020) reported meaningful variability in classifier perfor-

mance (for the multivariate EEG signal during the study phase) as a function of participant’s

d′. If the participant performed better in the task, the classifier also tended to achieve a

higher AUC. Here too, we found significant positive correlations between d′ and AUCs of
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Figure 3.10: Correlation between LDA and SVM AUCs and participant’s d′, separately for
each classification problem. Dashed black lines refer to chance (0.5). Panels with significant
correlations are marked with *.

the LDA and SVM classifiers, for classifying old and new trials (see Figure 3.10). SVM also

correlated significantly with d′ for classifying perceived-old- and new trials, whereas LDA

showed a trend effect for the same (p = 0.05). Taken together, these correlations were con-

sistent with the suggestion previously made in Chapter 2 (Chakravarty et al., 2020), that for

better-performing participants, the corresponding brain activity may be more task-relevant,

which is picked up by the classifiers, leading to better predictions.

3.3.6 Analysis of LDA feature weights

Since FN400 and LPP amplitudes failed to classify between correct rejections and false

alarms, whereas both LDA and SVM succeeded for this classification, and also since LDA-

and SVM-based predictions were overall better than FN400 and LPP amplitude-based pre-

dictions, we wondered which features the classifiers may have relied more on, to distinguish

correct rejections from false alarms. As mentioned in the Methods, with LDA, the coefficient

for each feature (in the training set) indexes the relative importance or weight of the feature

in comparison to other features. Accordingly, to understand the features of relative impor-

tance to the LDA classifier, for each classification problem, we looked into the spatial and

temporal distribution of the LDA weights, averaged across participants with AUCs > 0.5

(or the successful cases).

LDA feature-weights, as functions of the 12 time-related features or the time-bins (Fig-
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ure 3.11), showed very similar trends for classification of old and new trials, and classification

of perceived-old- and new trials— relatively smaller weights for the earlier time-bins, followed

by a peak for the 6th time-bin (which included the signal averaged over 500–600 ms, post

stimulus-onset) and thereafter, a drop in the weights for the later time-bins. In other words,

the averaged signal over the 500–600 ms time-interval was deemed most important by LDA,

for classifying both old and new trials, and perceived-old- and new trials. Considering the

latency of LPP (500–800 ms post stimulus onset), the peak around the 6th time-bin may sug-

gest a greater influence of LPP, for classifying the old and new trials, and the perceived-old-

and new trials.

LDA weights, for classifying hits and misses, showed an earlier smaller peak (for the

first two time-bins), followed by a second peak around the 5th and 6th time-bins; this was

followed by a drop in weights for the later time-bins. Thus, for classifying hits and misses,

LDA followed a different pattern than that for classifying old and new trials, or for classi-

fying perceived-old- and new trials. For classifying hits and misses, LDA assigned greater

importance to more than one signal, which may potentially index different memory-relevant

cognitive processes.

Finally, for classifying correct rejections and false alarms, the LDA weights curve was

less undulating— LDA weights for the earlier time-bins (1st to 6th) were overall greater than

LDA weights for the later time-bins. There was no clear peak around the middle time-bin,

as seen for the other three classifications. Thus, the pattern of activity, as identified by LDA,

for classifying correct rejections and false alarms was clearly different from that for the other

three classifications. To further examine the characteristics of the LDA weights, next we

looked into its distribution across the scalp, separately for each of the 12 time-bins.

LDA feature-weights across the scalp (Figure 3.12) showed that for the 6th time-bin, where

a peak was observed in Figure 3.11, the weights were relatively greater for the posterior

scalp, for all but the correct rejection versus false alarm classification. Since a posterior

scalp topography is also characteristic of the LPP, which also has a similar latency, this

could suggest that an LPP-like signal played a greater role in the classifications of old and

new trials, hits and misses, and perceived-old- and new trials, but not for the classification of

correct rejections and false alarms. Thus, not only did the LDA weights for the classification

of correct rejections and false alarms showed an absence of a clear peak for this time-bin

(Figure 3.11), the corresponding signal used by LDA in this time-bin may have also been
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Figure 3.11: Feature-weights for LDA, averaged across participants with LDA AUC > 0.5.
Weights are presented for all the time-features (mean amplitude over 100 ms time-intervals)
used in the classification analysis, averaged over all included electrodes (the spatial features).
Weights are shown separately for the four classification problems. The error bars are standard
errors of the mean.
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different from an LPP-like signal— the distribution showed greater influence of the bilateral

temporal electrodes.

Therefore, we may have failed to see significant success for classifying correct rejections

and false alarms with FN400 or LPP amplitudes, because those analyses were restricted to

the signal from electrodes Fz and P3. Taken together, this illustrates that there may exist

other memory-relevant brain activity that is not captured by the FN400 or LPP ERP effects

alone.

Notably, one possible reason behind the peak for the middle time-bins is that average

response times (across all trials) were close to 700–800 ms (see Figure 3.6) and thus, the

classifiers may have been picking up on motor preparatory activity, as already discussed.

To check this, we conducted a follow-up analysis with the vincentization method, that

removed response-related activity from the signal, while keeping same number features across

trials for the classification analysis, as we present below.

3.3.7 Classification of the vincentized signal

With vincentization, we obtained a total of 12 time-related features for each trial, for the

classification analysis, stopping short of the responses, themselves. We hypothesized that if

motor-preparatory activity due to the response actions were picked up by the classifiers and

were used to make the decisions, then in this follow-up analysis we would obtain smaller or

even non-significant effects for one or more of the classification problems. Alternatively, if

motor-preparatory activity, despite being present in the previous set of analysis (with the

1200 ms long epochs), did not influence the classifiers in any substantial way, then these

follow-up effects would be similar to that without vincentization.

We found support for the latter— the effects were not significantly different from those

without vincentization (see Figure 3.13 and Table 3.5). Thus, even if motor preparatory

activity was present, brain activity, starting from the stimulus-onset and prior to making

the response, carried information based on which memory outcomes could be classified.

The LDA weights across the 12 vincentized time-bins (averaged across participants with

LDA AUC> 0.5) showed an overall different pattern to that without the vincentization (see

Figure 3.14)— for all four classifications, there was an earlier peak for the 3rd vincentized

time-bin, suggesting greater influence of an earlier signal. For the classification of old and

new trials, and classification of hits and misses, there was also a clear second peak for the 5th
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Figure 3.12: Distribution of feature-weights across the scalp, separately for each of the 12 time-intervals, and averaged across
participants with LDA AUC > 0.5. The topographic plots were made by interpolating the weights of the electrodes included
in the classification analysis to other (not included) electrodes on the scalp, through inverse distance-weighting. Weight-
distributions are shown separately for the four classification problems. Colors indicate weights, the color scale varies across
panels.
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Figure 3.13: Classification with LDA and SVM after truncating the signal for each trial prior
to the response. Results are grouped into four different classification problems: 1) old versus
new, 2) hits versus misses, 3) perceived old versus perceived new and 4) correct rejections
versus false alarms. Error bars are 95% confidence intervals. Dashed black line refers to
chance (0.5).

LDA Old/New* t(60) = 8.57, p < 0.001, BF10 > 102, 95% CI = [0.54 0.57]
Hit/Miss* t(60) = 6.40, p < 0.001, BF10 > 102, 95% CI = [0.55 0.60]

Perceived Old/New* t(60) = 9.60, p < 0.001, BF10 > 102, 95% CI = [0.55 0.58]
CR/FA* t(57) = 3.59, p < 0.001, BF10 = 37.57, 95% CI = [0.52 0.58]

SVM Old/New* t(60) = 8.95, p < 0.001, BF10 > 102, 95% CI = [0.54 0.57]
Hit/Miss* t(60) = 6.54, p < 0.001, BF10 > 102, 95% CI = [0.55 0.60]

Perceived Old/New* t(60) = 9.17, p < 0.001, BF10 > 102, 95% CI = [0.55 0.58]
CR/FA* t(57) = 3.77, p < 0.001, BF10 = 63.33, 95% CI = [0.52 0.58]

Table 3.5: Predictions based on LDA and SVM after truncating the signal for each trial prior
to the response, t-test against chance (0.5) for the AUCs. Significant effects are marked with
*.
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Figure 3.14: LDA feature-weights averaged across participants with LDA AUC > 0.5.
Weights are presented across all 12 vincentized time-bins, and averaged over all included
electrodes (the spatial features). Weights are shown separately for the four classification
problems. The error bars are standard errors of the mean.

time-bin, suggesting that there may be another relevant signal. Thus, for the classification of

old and new trials, and the classification of hits and misses, LDA assigned greater importance

to multiple signals. For the classification of correct rejections and false alarms, the second

peak was at a later (vincentized) time-bin (8th-9th).

Finally, all four LDA weights-curves showed a roughly increasing trend (Figure 3.14),

specifically for the later vincentized time-bins, which partially supports the idea that memory-

relevant information in the brain may have increased with time, prior to reaching a decision.

3.3.8 Evaluating single- and dual-process accounts with classifier
evidence

We adopted the logic introduced by Weidemann and Kahana (2019a), we measured classifier

performance as a function of time, we asked if information relevant to making the memory

decisions are driven independently by multiple signals, in line with a dual-process account
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(Yonelinas, 2002); or if memory-relevant information is supported by a unitary, integrated

strength signal, as in a single-process account (Dunn, 2008). For the analysis with the

independent time-bins, classifier performance for time-bin t reflected the result of testing

the classifier for the signal contained in time-bin t only, whereas for the cumulative time-bin

analysis, it reflected the result of testing the classifier for the signal over the time-interval

0− t, relative to the onset of the test stimulus.

Now, according to a single-process account, there is a unitary signal, reflecting the mem-

ory strength composed of the sum of all evidence, which informs the judgement. Thus, if

information is integrated over time, we may predict that classifier performance at time t

(with the independent time-bin analysis) will be similar to that for time 0 − t (from the

cumulative time-bin analysis), as Weidemann and Kahana (2019a) found. Alternatively,

according to a dual-process account, different signals independently lead to the memory de-

cisions. In that case, we would predict a difference in the classifier performance curves (as

function of time) for the independent and the cumulative time-bins. Specifically, if there

are independent signals relevant to memory, those should be visible as distinct peaks in the

classifier performance curve, when analyzed for the independent time-bins. For the cumula-

tive time-bin analysis, the classifier performance curve will closely follow the more relevant

signal for the current time-bin than adding up the evidence from all the previous signals.

Figure 1 in Weidemann and Kahana (2019a) presents a schematic illustration of this logic.

Paralleling our results for the LDA weights (see Figure 3.11 for reference), when influences

of shorter response-times were not accounted for (or without the vincentization), and for the

independent time-bin analysis, classification of old and new trials, perceived-old- and new

trials, as well as hits and misses, was chance for the earlier time-bins, then it reached a peak

around the 6th time-bin and thereafter dropped back close to chance for the later time-bins

(Figure 3.15). The above pattern was true for both LDA and SVM. Thus, very early features

of the signals were less likely to contain information relevant to the memory judgments. This

trend was also present for the classification of correct rejections and false alarms, but the

peak for the independent time-bin analysis was reached even earlier.

For the cumulative time-bin analysis, for all four classifications, both LDA and SVM

performances were highly similar to that of the independent time-bins up until they reached

the peak, after which performances for the cumulative time-bins approached almost a flat

line. Thus, overall, the independent- and cumulative time-bin analyses did not provide
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Figure 3.15: Classifications based on independent and cumulative time-bins from 0–1200 ms
post stimulus-onset, separately for LDA (upper panels) and SVM (lower panels). For in-
dependent time-bin analysis, classifiers were trained and tested with independent 100 ms
long time-windows. For the cumulative time-bin analysis, classifiers were trained and tested
with sequentially increasing (by 100 ms) time windows. Time features were not corrected
for shorter response-times through vincentization. Error bars are standard errors.

evidence for an integrated signal driving the memory judgments.

However, our previous analysis with the LDA weights showed that the peak around the

middle time-bin was likely due to average response-times falling right after this interval.

Thus, the drop in classifier performance for the second half of the time-bins could be be-

cause once the response is made, the participant has no incentive to continue the memory

retrieval process, so they may simply be not attending to the probe stimulus at that time.

Alternatively, the sigmoid-like performance curve for the cumulative time-bins could be be-

cause after reaching a decision, the participant still continues to think about it or perhaps

gathers further confidence judgments about the decision. However, since this interpretation

is confounded by the response times consideration, we carried out a follow-up analysis with

the vincentization method.

With vincentization, the major peak for the independent time-bin analysis went was

greatly attenuated (Figure 3.16), supporting that it may have been, at least in part, due to

the classifiers tapping into motor-preparatory activity for the response actions.

For the classifications of old and new trials, and the perceived-old- and new trials (Fig-

ure 3.16a,c,e,g), classifier performance for the cumulative time-bin analysis (both LDA and

SVM) increased with time, almost monotonically. Classifier performance for the independent
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time-bin analysis also increased with time, but maintained a difference with classifier perfor-

mance for the cumulative time-bin, visible after the first few time-bins— the non-overlapping

error bars (standard errors) indicate that the difference was significant. Thus, with vincen-

tization, our results were still different from what would be expected for a single-process

account.

The difference between classifier performance for the independent- and the cumulative

time-bins was even more prominent for the classification of hits and misses (Figure 3.16b,f):

for the independent time-bins, it showed a clear early peak, and also a later peak, albeit less

clearly; the classifier performance for the cumulative time-bins appeared to be mainly driven

by the earlier peak. These results are more in favour of a dual- than single process account.

For the classification of correct rejections and false alarms (Figure 3.16d,h), the classifier

performance for the independent time-bins also showed multiple peaks, but the performance

curve was less undulating; the performance curve for the cumulative time-bins showed an

increasing trend for the earlier time-bins, after which the curve was almost flat. Thus, the

early peak seen in performance curve for the independent time-bins may have been important

in this case as well.

Taken together, classifier performance curves for the independent- and the cumulative

time-bin analyses overlapped with each other only for the first few time-bins, after which

the two curves diverged substantially. For the classification of old and new trials, hits and

misses, and perceived-old- and new trials, the two performance curves came closer to each

other (but did not overlap) again for the very last few time-bins. Also, aside from the initial

time-bins, and in comparison to the independent time-bins, classifier performance for the

cumulative time-bins was overall higher. This is also suggestive of a dual-process account.

Recall our results without vincentization (Figure 3.15), which showed very similar per-

formance for the independent- and cumulative time-bin analysis, until the major peak was

reached. On the other hand, our results with the vincentized signals showed that perfor-

mance for the cumulative time-bins was different from that for the independent time-bins,

and specifically when classifying hits and misses, performance for the cumulative time-bins

was mainly driven by an early peak, as seen in the performance for the independent time-bins.

Thus, we wondered if for trials with shorter response times, there was indeed a unitary

signal that led up to the decisions whereas for trials with longer response times, this signal

was followed by another (independent) memory-relevant signal (as seen for the vincentized
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Figure 3.16: Classifications for the vincentized signals, based on independent- and cumulative
time-bins from 0–1200 ms post stimulus-onset, separately for LDA (upper panels) and SVM
(lower panels). Error bars are standard errors.

signals). We investigated this suggestion with follow-up analyses for the classification of hits

and misses, since it showed the most prominent difference between the performance curves

for the independent- and cumulative time-bins.

First, we evaluated the classifier performances separately for participants with faster av-

erage response times (or those above the median split for average response times) and with

slower average response times (or those below the median split for average response times).

This showed overall increasing trends in the performance curves, for both independent-

and cumulative time-bins, and for the faster participants (Figure 3.17a,c); the error bars

overlapped for many of the time-bins and the two performance curves were generally closer

together, suggesting a single-process account, at least in part. On the other hand, the perfor-

mance curves for the slower participants (Figure 3.17b,d) clearly differed for the independent-

and cumulative time-bins, and the pattern was more similar to that without separating par-

ticipants based on their average response times (see Figure 3.16b,f). Together, these results

suggest that faster and slower response-times may be linked to the involvement of different

memory-relevant signals. For faster participants, there was likely a unitary, integrated signal

driving the decisions, which is more in line with a single-process account. On the other hand,

for slower participants, an early independent signal was more influential, a late signal was

also present but its contribution to the decisions may have been less; this was more in line

with a dual-process account.
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Figure 3.17: Classification of hits and misses based on vincentized signals, separately for
independent- and cumulative time-bins, and for LDA (upper panels) and SVM (lower panels).
Results are also shown separately for participants with faster- (left panels) and slower average
response-times (right panels). Dashed line presents chance (0.5). Error bars are standard
errors of the mean.
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Figure 3.18: Classification of hit/miss trials based on vincentized independent time-bins
and cumulative time-bins from 0–1200 ms post stimulus onset, separately for LDA (upper
panels) and SVM (lower panels), and separately for trials with response times shorter than
the median response time (left panels) and for trials with response times longer than the
median response time (right panels). Dashed line presents chance (0.5). Error bars are
standard errors of the mean.

Next, instead of splitting the data by participants, we included all participants but split

the data by faster versus slower trials. For faster trials (Figure 3.18a,c), indeed the perfor-

mance curves for the independent- and the cumulative time-bins followed each other more

closely (overlapping error bars); both curves roughly increased with time, and reached a

peak just prior to making the response, in line with a single-process account. On the other

hand, for slower trials (Figure 3.18b,d), the performance curve for the independent time-bins

showed an independent earlier as well as a later peak, and similar to the previous analyses,

the earlier peak appeared to be relatively more influential. Thus, slower trials, once again

showed more support for a dual- than single-process account. Also, one possible explanation

for the lesser influence of the later peak relative to the earlier peak could be that the later

source of information was highly correlated with the earlier one.

In sum, we found support for both single- and dual-process accounts, respectively for

when the participants responded faster and when they responded slowly.
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3.3.9 Comparison with the classifiers at study

Finally, we wondered how classifier-based evidence for memory decisions during the test

phase compared to that during study, as reported in Chapter 2 (Chakravarty et al., 2020).

We only considered the classification of hits and misses, since lures were not present at

study. Figure 3.19 presents classifications with all the used univariate (ERP amplitude) and

multivariate measures, both at study and at test— namely, 1) LPC and SW amplitude at

study, and 2) FN400 and LPP amplitude at test, as well as 3) multivariate activity at study

and 4) test, analyzed with LDA and SVM classifiers. There was no significant difference

between classification performance with ERP amplitudes at study and at test. Importantly,

LDA and SVM at test performed significantly better than 1) LPC and SW amplitudes at

study, 2) FN400 and LPP amplitudes at test, as well as 3) LDA and SVM at study (p < 0.01

for all cases). Thus, multivariate EEG activity during the test phase predicted memory

significantly better than both univariate (ERP amplitude) and multivariate EEG activity at

study.

We wondered if study- and test-related activity reflected cognitive processes that in-

dependently contributed to memory success at test, in which case, classification of study-

and test activity to predict memory outcomes may summate. To test this idea, we ran the

classifiers on combined EEG features from the study- and test phases. For each trial, we

concatenated the time features from study and test, creating a total of 24 time features per

trial (12 from study and 12 from test). Our results showed (Figure 3.19, rightmost bars) that

this study+test classifier performed similarly to the multivariate test-activity based classi-

fier, suggesting that study-activity may not contribute to memory variability independent of

test-activity. Doubling the number of time-features for the study+test classifier could have

produced a smaller effect due to overfitting but equating the number of time-features (12 in

total - 6 from study and 6 from test, each averaged over 200 ms time-intervals) did not alter

this result. Thus, overall, our results suggested that test activity is more directly predictive

of memory in item recognition.

3.4 Discussion

Our main goal for the current study was to investigate if recognition-memory outcomes

can be predicted from time-domain features of the EEG signal, present during the test
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Figure 3.19: Comparison between predictive success with brain activity features from the
study face and the test phase, for the classification of hits and misses. Error bars are 95%
confidence intervals. Dashed black line refers to chance (0.5).

phase of an item recognition task. We found that 1) univariate ERP (FN400 and LPP)

voltage measures, obtained from previous planned-comparisons analysis, predicted memory

outcomes significantly better than chance, but the size of prediction was modest overall;

2) multivariate classifiers also achieved modest but significantly better success than the

univariate voltage measures, and were associated with individual differences due to better-

and worse performing participants. Our classifier approach also led to additional insights

about task-related brain activity— 3) a moving-window classifier analysis suggested that

the LPP may be epiphenomenal - there could be different activity that reflects the putative

recollection (or later-latency) evidence driving the old/new judgment. and 4) test-phase

activity predicted memory better than study-phase activity (Chapter 2; Chakravarty et al.,

2020). We discuss each of these results in turn.

3.4.1 ERPs at test: FN400 and LPP

Previous trial-averaged ERP effects of FN400 and LPP, such as the old/new effect or the

retrieval-success effect, had suggested a monotonic relationship between the amplitudes of

FN400 or LPP and memory outcomes. Following up on this suggestion, we found that with

the exception of the classification of correct rejections and false alarms, memory outcomes
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Figure 3.20: Correlation between predictions (AUCs) obtained with ERPs at study (LPC
and SW) and ERPs at test (FN400 and LPP), for the classification of hits and misses.
Dashed black lines refer to chance (0.5).
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could be predicted modestly, at the level of individual trials, based on the amplitudes of the

two ERPs. The failure to predict correct rejections and false alarms with FN400 or LPP

amplitude suggested that these two signals may not index false alarms in a similar way as the

targets than the lures, as has been suggested previously by some researchers, specifically for

the FN400 (Finnigan et al., 2002; Wolk et al., 2006). Also, for the other three classifications

considered here, for which both FN400 and LPP amplitudes led to successful predictions,

we noted the following important points.

FN400 and LPP may be functionally different signals Predictions based on FN400

and LPP did not correlate with each other, for any of the classification problems. This paral-

leled the results from traditional ERP analysis of the FN400 and LPP in Chen et al. (2014),

who found that at the trial-averaged level, FN400 and LPP amplitudes did not correlate

with each other, either when considering the difference wave for the old/new contrast or the

hit/miss contrast.

FN400 may be more relevant to memory success FN400 amplitudes classified hits

and misses significantly better than its classification of old and new trials, or perceived-old-

and new trials. Also, participants’ d′ correlated with predictions for hits and misses with

the FN400 amplitude. In parallel, Chen et al. (2014) also found correlations between d′

and the trial-averaged amplitude of the FN400, when considering the difference wave for

the hit/miss contrast. Further, we found that predictions based on FN400 amplitudes were

not significantly altered when trials with faster response times, with respect to the latency

of the FN400, were excluded. Lastly, as we discuss later in this section, even for the slow

responses, the multivariate classifier analysis showed that the early source of evidence was

deemed more influential for the memory decisions. All of these results suggest that for this

task, FN400 may have been more relevant to memory success.

LPP may be epiphenomenal for old/new item recognition Classification of old and

new trials, or perceived-old- and new trials, were significantly better with the LPP than the

FN400 amplitudes. However, when faster responses, relative to the latency of LPP, were

excluded, predictions with LPP amplitudes became worse, except for the classification of

correct rejections and false alarms, which became significant. This could be due to reduced
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power, for many trials were excluded when considering faster responses relative to the latency

of LPP. Alternatively, for faster responses, LPP-indexed recollection may have been more

likely present, but it was epiphenomenal, for the decision had already been made, and

was likely driven by familiarity. Further, as we discuss below, for slower responses, the

multivariate classifier analysis showed that although a late source of evidence was present,

it did not influence the decision as much as the earlier source of evidence. Taken together,

LPP-indexed true recollection process may have been rare in this task, and when present,

it may have added more to the meta-judgments about the decisions rather than exerting a

great influence on the decisions themselves.

In sum, our analyses with FN400 and LPP amplitudes achieved overall significant success

in predicting memory outcomes but maintained the suggestion that contributions of these

two ERP features in memory may be small, and also unrelated to each other.

3.4.2 Multivariate pattern analysis of brain activity at test

Multivariate pattern analysis of test-phase activity achieved significant success for all four

classification problems that were of interest for this study, though the size of prediction was

still modest. Our size of predictions were similar to a recent study by Noh et al. (2018),

though the goals of the two studies were different. The average classifier accuracy for Noh

et al. (2018) was 61%, and since they had balanced the training classes, classifier accuracy

could be compared with the classifier AUCs we reported here; so for example, the average

AUC, for our classification of targets and lures was 0.58, which is comparable to their average

classifier accuracy.

Memory-relevant signals beyond FN400 and LPP The classifiers predicted signif-

icantly better than FN400 or LPP amplitudes alone. This was possible, for the classifiers

were able to find combinations of different features. It may also add further support to the

above suggestion that FN400 and LPP may not contribute to common memory variability.

Moreover, the classifiers also succeeded in predicting correct rejections and false alarms,

which was not successful with the FN400 or LPP amplitudes, at least when all response

times were considered. Thus, there may have been other relevant signals, beyond FN400

or LPP, that drive the difference between processing of false alarms and correct rejections.

Supporting this suggestion, analysis of the LDA weights for the classification of correct re-
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jections and false alarms showed greater influence of the bilateral temporal scalp regions for

the 500–600 ms time-bin post stimulus-onset, while all three other classifications (old and

new; perceived-old- and new; hits and misses) relied on an LPP-like signal, indexed by higher

LDA weights in the posterior scalp.

Interestingly, classifier results from Noh et al. (2018), who directly used FN400 and LPP

amplitudes (across different electrodes) as the features for the multivariate classification

analysis, suggested that false alarms may be processed more similar to targets than lures.

Their suggestion was based on the similarity between classifier scores for false alarms and

hits, than for false alarms and correct rejections. However, the corresponding classifier was

trained and tested for the difference between hits with incorrect source information and

correct rejections. Thus, false alarms may better scale with a subset of the hit responses, for

which additional details cannot be retrieved correctly.

Individual differences due to performance As mentioned above, the classifiers achieved

significant but modest success in predicting different memory outcomes. However, classifier

performance showed positive trends with participants’ d′ and the correlations were signifi-

cant in some cases, for example, the classification of old and new trials. Thus, despite the

overall modest size of prediction, classifier performance for better-performing participants

was meaningfully large. A possible interpretation for the positive trends between classifier

performance and participants’ d′ could be that for the better-performing participants, who

may have been well-motivated to do the task or did not find the task particularly difficult,

the corresponding brain activity had more task-relevance (or “task-resolution”). This higher

task-resolution of brain activity for the better-performing participants may have been benefi-

cial for the classifiers, which could better pickup on the signal changes, and thus, make better

predictions for the behavioural outcomes. This suggestion is further supported in Chapter

2 (Chakravarty et al., 2020) and also by Arora et al. (2018), who also found correlations

between classifier- and participants’ performance.

Influence of motor-preparatory activity Because classifiers are data-driven techniques,

they can be influenced by circumstantial evidence. In the case of test-phase activity, motor-

preparatory activity for making the responses, may provide circumstantial evidence for the

classifier analysis. For example, behavioural analysis of the current data (see Chen et al.,
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2014) showed that hits were significantly faster than misses. Thus, the classifier may be able

to pick up this information and use it to classify hits and misses. Shorter response times, rel-

ative to the chosen epoch length for the trials, are more likely to include motor-preparatory

activity, and analysis of the average response times for the current data showed that indeed

many responses fell short of the chosen 1200 ms time-window of analysis, and thus, could

have included motor-preparatory activity. However, classifier analysis with the vincentized

signal, which did not include motor-preparatory activity, produced similar predictions as

that without the vincentization. Thus, although likely present, motor-preparatory activity

did not substantially influence the classifiers. Instead, meaningful predictions were made

from brain activity prior to when the response was made.

Single- and dual-process accounts of recognition memory As mentioned before,

single- and dual-process accounts of recognition memory suggest that memory judgments

are either driven by unitary, integrated source of evidence, or by two (or more) independent

sources of evidence, respectively (Dunn, 2008; Wixted & Stretch, 2004; Wixted & Mickes,

2010; Yonelinas, 1997, 2002). The traditional ERP effects of FN400 and LPP have added to

this debate because the two ERPs are commonly modulated by different experimental factors

and thus, they may support different sources of information. However, those different sources

may still be integrated into a unitary evidence for recognition judgments. Importantly, with

the trial-averaged ERPs, we cannot examine the amount of neural evidence behind memory

decisions, which would be more useful to understand the plausibility of single- and dual-

process accounts.

Using classifiers to trace the amount of neural evidence over time, Weidemann and Ka-

hana (2019a) found a single process account to be more plausible. However, we found dif-

ferent results. Considering the vincentized signal, classifier performance, for the cumulative-

and independent time-bins overlapped with each other for the initial few time-bins only,

after which classifier performance for the cumulative time-bins was greater. Classifier per-

formance for the independent time-bins showed an early and a late source of evidence, which

was seen more clearly for the classification of hits and misses. The early source was more

influential, for the classifier performance for cumulative time-bins was mainly driven by this

early source. Thus, in contrast to Weidemann and Kahana (2019a), our results were more

in line with a dual- than single-process account.
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Consideration of fast and slow responses further informed this result. Different from

the trend we found with the vincentized signal, when vincentization was not included, the

classifier performance for the cumulative and independent time-bins completely overlapped

with each other until the single peak for independent time-bins was reached, which was likely

produced because decisions were typically reached around this time. Based on this finding,

and the above-mentioned trend for the vincentized signal, we wondered if fast responses were

made based on a single process, whereas some slower responses might be driven by the two

putative, distinguishable sources of evidence. Supporting this suggestion, classifier perfor-

mance for both the cumulative- and independent time-bins increased with time and followed

each other more closely (with overlapping error bars) for faster than slower participants,

or for faster than slower responses. For slower participants/responses, the above-mentioned

trends with the vincentized signal reappeared. Thus, slower responses were supported by

two sources of evidence, though the earlier source was more important. In other words, we

found that both single- and dual-process accounts could be relevant, but for fast and slow

responses, respectively. We also found that the influence of the later source of evidence, for

the slower responses, may less than that of the earlier source. This result may be reconciled

with Dunn (2008) who used state-trace analysis to suggest that there is not enough evidence

that the remember/know task recruits qualitatively different sources of memory-relevant in-

formation. Thus, it is possible that recollection-based judgments are too rare to produce

non-monotonicities in state-traces.

This raises the question, why do our results diverge from Weidemann and Kahana

(2019a)? Weidemann and Kahana (2019a) classified targets and lures. In our case, the differ-

ence in classifier performance for independent- and cumulative time-bins was much smaller

when classifying targets and lures, than when classifying hits and misses (see Figure 3.16a,e).

When classifying targets and lures, classifier performance for both independent- and cumu-

lative time-bins, roughly increased with time, and at the same rate. Thus, considering the

classification of targets and lures only, our results may not have been very different from

Weidemann and Kahana (2019a). Second, Weidemann and Kahana (2019a) used spectral

classifiers. Spectral estimates are computed over time-windows centered around a particular

time. This makes their time-bins effectively longer, and with more overlap in the moving

window analysis, potentially making it less different than the cumulative window than they

would have liked. Another difference between the two studies is that as the number of fea-
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tures sequentially increased for the analysis with the cumulative time-bins, Weidemann and

Kahana (2019a) changed the amount of regularization in the model (SVM) relative to the

increasing number of features, whereas we kept it constant, because amount of regularization

relative to number of features do not follow a deterministic rule. Thus, our classifiers may

have under-performed for the independent time-bins. However, in general, we have found

our results to be robust to a fixed amount of regularization or individually tuned amount of

regularization (e.g., see Figure 7 in Chapter 2; Chakravarty et al., 2020), possibly because

our predictions were overall small in size. For example, for classification between targets

and lures, the average AUC in Weidemann and Kahana (2019a) was 0.71, whereas the av-

erage AUC for our study was 0.58. It is possible that the spectral measures of EEG used

as features in Weidemann and Kahana (2019a) offered a better SNR than the time-domain

voltage measures used in the current study.

Others have also taken related approaches to evaluate single- and dual-process accounts.

For example, with multiple regression analysis, Ratcliff, Sederberg, Smith, and Childers

(2016) suggested that old/new recognition judgments may be driven by LPP only. Their

study did not directly predict old and new trials with the EEG activity, but instead it pre-

dicted the trial-to-trial drift rates (from a fitted diffusion model). However, the use of drift

rates could be useful as these measures integrate both accuracy and response time informa-

tion for each trial. Another study by van Vugt, Brandt, and Schulze-Bonhage (2017), who

used the intra-cranial EEG signal, filtered in the 4–9 Hz theta band and binned into 50 ms

long time-bins, found that performance of a logistic regression classifier, for the classification

of old and new responses, increased with time, and interestingly, it kept increasing even af-

ter reaching the response. It is possible that the participants were still gathering confidence

judgments about the recently made decision even though confidence ratings were not asked

for. Alternatively, since they did not correct for motor-preparatory activity, which was likely

present in the signal, the increase in classifier performance may only be due to the classifiers

picking up on circumstantial evidence. Notably, the performance of the classifiers in van

Vugt et al. (2017) was more comparable to our study; their median AUC was close to 0.63.

3.4.3 Comparison between study- and test-phase activity

Overall, our results provide a detailed account of classifying the time-domain EEG signal

during the test phase of an item recognition task. Consolidating with Chapter 2 (Chakravarty
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et al., 2020), we found that classifying hits and misses using the two ERP features at study,

namely LPC and SW, was not significantly better than the same using the features of the

two ERPs at test, FN400 and LPP (Figure 3.19). On the other hand, multivariate features

at test produced predictions that were significantly better than the same for ERPs at test

(FN400 and LPP) or at study (LPC and SW) or even the multivariate features at study.

Taken together, this suggests that brain activity at test is more relevant to the recognition

judgments. This is possible, because in old/new recognition judgments, hits versus misses

will depend on placement of the response criterion, and response criterion will depend on

the relative strength distributions for targets versus lures; thus, it stands to reason that test

activity will have a more complete picture of what drives the decision.

Interestingly, we found that across participants, LPC amplitude based predictions at

study were correlated with FN400 amplitude based predictions at test (Figure 3.20a), sug-

gesting that FN400 and LPC may share common variance in explaining memory outcomes.

Previously, the ERP analysis of the current data had also found correlations between FN400

and LPC amplitudes for the retrieval success effect (see Chen et al., 2014). Thus, one

possibility, as suggested by Chen et al. (2014), is that memory variability due to cognitive

processes at study are retrieved by those at test. In addition, test-related processes also

contribute to the memory variance on their own. Together, this will produce better mem-

ory predictions for test-related activity than study-related activity. Alternatively, despite a

shared variance, study-related processes may also contribute to memory variance than is not

shared by test-related processes.

Based on the above ideas, we tested the multivariate classifiers for the classification of

hits and misses, with features from both study- and test-phases, concatenated together.

This study+test classifier predicted similarly to the test-activity classifier. Thus, consistent

with Chen and colleagues’ suggestion, test-phase activity included the variability in memory

due to study-phase activity as well as had its own contribution to the variability, e.g., the

variability due to the lures, which were never part of the study, but were an important

determinant of memory performance.

3.4.4 Other considerations

To improve the classifier performance, a few other considerations also seem relevant.
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Spectral- over time-domain features of EEG The time-domain features of EEG that

were used here for the classification are likely influenced by variability in the latency of

the signals from one trial to another, in comparison to the spectral features, which use

larger time-windows to compute the power estimates and thus, are less influenced by trial-

to-trial variability in latency. Thus, using spectral-features for the classification analysis

could be a future direction for us, as has also been followed by some other studies (Ezzyat

et al., 2017; Noh et al., 2014; van Vugt et al., 2017; Weidemann et al., 2019; Weidemann

& Kahana, 2019a). However, the temporal resolution of the signal is higher with the time-

than the spectral features, which could be useful in situations, for example, when estimating

occurrence of motor-preparatory activity in the signal more accurately. Also, both time-

and spectral-classifiers could be leveraged to find overall better predictions (e.g., Noh et al.,

2014).

Choice of classifiers The two classifiers used here, LDA and SVM, were suitable for

discriminating between classes that are linearly separable, and were chosen to respect our

plan for progressing systematically to avoid overfitting at the level of the classifier algorithm

(Skocik et al., 2016). Although linear classifiers like SVM has seen frequent success and

is a common choice in cognitive neuroscientific research, it is possible that memory-related

brain activity patterns are better explained with the help of non-linear models, which also

account for interactions between the features (e.g., Sun et al., 2016). Thus, another future

direction could be to use non-linear classifiers (Arora et al., 2018; Sun et al., 2016). However,

non-linear models lack interpretability and thus, we may not be able draw inferences about

the characteristics of behaviourally-relevant brain activity, as identified by the classifiers.

Further, depending on number of features, non-linear models require a sufficiently large

number of trials to learn their main and interaction effects, whereas memory experiments

include at most a few hundreds of trials.

Class imbalance For classifying hits and misses, as well as for classifying correct rejec-

tions and false alarms, imbalance between the classes can be a potential challenge for the

analysis. With the SMOTE oversampling method used in this study as well as in Chapter 2

(Chakravarty et al., 2020), across participants, we did not find significantly different classifi-

cation results for with and without balancing the trials. However, other ways to address the
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class-imbalance could produce different results. Also, oversampling is limited to the training

sets only, and thus, test sets are still imbalanced. We ended up excluding cases where one

or more test folds contained examples from the major class only, and thus, ROC and AUC

of the ROC could not be computed.

Correcting for motor-preparatory activity with vincentization The vincentization

method for the time-domain signal, depending on the response time, could have averaged the

ERP waveforms over very small or very long time-intervals, whereas the typical duration of

ERP signals are a couple of hundred milliseconds only. Thus, vincentization may have also

influenced our results and a different approach to account for motor-preparatory activity

could produce different results. Thus, our results provide benchmarks of predictive accuracy

for the test-related EEG signals, which could be compared against in follow-up investigations

exploring methodological improvements to our analysis.

Other predictors of memory Different from the possible methodological improvements,

an alternative reason for the modest predictions could be that there exists other important

predictors of memory which are absent from the investigations presented here. To our benefit,

behavioural research over the last few decades has identified many factors that influence

memory (Humphreys et al., 1989; Kahana, 2012; Lewis, 1979; Surprenant & Neath, 2013).

Many of these factors that determine memory success could lie outside of the study or the

test phase. For example, researchers have also found activity during the delay between study

and test (e.g., Polyn et al., 2005) as well as the pre-stimulus activity (e.g., Park & Rugg,

2010) to be relevant to memory outcomes. Thus, investigations with the classifiers that

include these other predictors in an incremental fashion could offer valuable insights into

memory processes.

Applications for the future The predictive models offer interesting applications for

memory training. For example, classifier-identified patterns of brain activity during the

study phase could be used to reinforce activity that leads to successful remembering, with a

neurofeedback setup, helping people self-regulate into states more conducive of memory suc-

cess. A recent study by Ezzyat et al. (2017) found that classifier-contingent neuro-stimulation

at study could lead to better memory at test, which may partly support the potential success
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of the above-mentioned neurofeedback setup. Classifier-identified patterns of brain activity

from the test phase could also be used in applications such as brain-computer interfaces, to

communicate the participants decisions, when direct behavioural responses are not possible

to obtain.

3.4.5 Conclusion

Building on previous work showing that brain activity, both during the study- as well as the

test phase index memory outcomes in item recognition, we show that test-related activity

may be a better predictor than study-related activity and that classifiers applied on test-

related activity can also offer insights into cognitive processes that guide memory.
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Chapter 4

An event-related potential analysis of
trial-and-error learning

123



Abstract

Convergent evidence suggests that the feedback-related negativity (FRN) indexes reward-

prediction error (RPE; e.g., Holroyd & Coles, 2002). FRN studies have typically used learn-

ing problems like the gambling task— given an extremely small number of stimuli, one

attempts to find an efficient response strategy to maximize total rewards, because outcomes

are probabilistic. We tested whether the RPE role of the FRN generalizes when reward

prediction is not the main goal but rather, guides participants in a challenging stimulus-

specific learning task. Participants had learned whether or not to choose each of 48 words

depending on each word’s inferred value (high or low). Over 16 repetitions, most partici-

pants learned the response rules with very high accuracy. Next, we introduced a surprise

reversal that randomly toggled half of the words, to induce strong expectation-violations.

A signal resembling the latency and polarity of the FRN was elicited and was relevant for

feedback-mediated learning, but this signal was more frontal in its scalp distribution of

voltage than a mid-frontal negativity, which is thought to be a characteristic of the FRN.

Moreover, contradicting our hypothesis, amplitude of this FRN-like signal was not signifi-

cantly greater for switched than non-switched words. Follow-up analyses identified RPE-like

response properties of FRN-like activity, but this was influenced by task variables that were

not designed to manipulate RPE, such as word value. The FRN-like signal was associated

with response adjustments related to updating learning, but this also depended on response

strategies spontaneously adopted by the participants during the surprise reversal. Taken

together, even when predicting reward is not the participant’s primary goal but it guides

learning, the FRN, or a signal that partly resembles the FRN, may be present. However,

the mapping of this FRN-like signal onto RPE may be intimately modulated by the fine

structure of the task, deviating from the abstract, task-independent formulation of RPE of

reinforcement learning.
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4.1 Introduction

Ample research suggests that rewards play important roles in learning and decision making.

Reinforcement learning (RL) theories model learning that takes place through trial-and-error

and with the ultimate goal of maximizing the total reward (Sutton & Barto, 1998). RL is an

exciting growing front of research for experimental investigations as well as for development

of machine intelligence algorithms. Moreover, animal models (e.g., Schultz et al., 1997) and

human neuroimaging (e.g., Pessiglione et al., 2006) suggest biological plausibility of the RL

framework, leading to an overwhelming number of studies published in the last two decades

itself, examining reward-driven behaviours and their neural correlates. The majority of the

behavioural paradigms used to study such questions are inspired by the earlier animal studies

(e.g., Lau & Glimcher, 2005).

However, while research in the field of computational RL has explored and modelled a

wide range of learning situations, cognitive neuroscientific studies have focused on rather

simpler tasks to study human reinforcement learning. Accordingly, it is important to ask

if the previously found RL-relevant brain-activity signals retain their functions beyond the

common experimental paradigms. Here, we looked into an EEG signal, namely the feedback-

related negativity (FRN), which is commonly thought to reflect the instantiaion of the RL

framework. However, FRN research has mainly focused on the two-armed bandit problem

(explained in detail below). In contrast, respecting the broader domain of learning situations

in RL and also borrowing inspirations from the verbal memory literature, we used an RL

problem where the responses are relatively simple to learn but the participant is challenged

with remembering the responses mappings of a large set of stimuli (words). To better set

the current study in context, first, we briefly review the basic RL principles and evidence

for a biological RL framework, including a background for the FRN. This is followed by a

comparison between other commonly used FRN paradigms and the current task. Finally,

we note FRN-relevant hypothesis for this study.

In RL, one learns to respond optimally for a ‘state’ in multiple steps or ‘actions’. A

‘reward function’ is evaluated at each of these steps. The state, action and reward are

the basic components of RL (Schultz, 2015). In experiments, state can sometime refer

to properties of the stimuli, or it can also be an internal variable, not directly observable.

Actions are response/choices; and the reward function evaluates the quality of the action with
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respect to the stimuli. Notably, state, action or even reward variables can be quite intricate

(e.g., in real-world situations), increasing the complexity of the RL problem. However,

the basic RL framework makes simpler assumptions for these. When accounting for more

complex RL problems, researchers have often stressed on the importance of neuro-cognitive

functions such as attention, memory and executive functions (e.g., see Gershman & Daw,

2017; Rmus, McDougle, & Collins, 2021). As mentioned above, the goal of RL is to maximize

the reward in the longer term. The reward function in RL is characterized by reward-

prediction error (RPE)— the difference between the prediction about the outcome and the

actual outcome. Predictions arise from past experiences and refer to the internal expectations

about the outcomes. RPE can guide future actions, these computations are trial specific, and

are used to sequentially update the predicted reward value for the next trial. Accordingly,

the action for the future trial is also updated. Then, across trials, depending on the rate

of learning, the gap between the predicted and the actual reward value approaches the

minimum. In other words, when the outcome is worse than expected, response is adjusted

in the future trial; when the outcome is better that expected, response remains the same

(is learned) for the future trial. As learning takes place, predictions become stronger and

closely resemble the actual outcomes.

Across many studies, researchers have found support for RL-relevant computations in the

brain. An early influential finding is the activity of the dopamine neurons in the midbrain,

which show phasic responses to RPE. Animal studies showed that when the outcome is better

than predicted (or in the case of a positive RPE), there is a phasic increase in the firing rates

of the dopamine neurons whereas when the outcome is worse than predicted (or in the case

of negative RPE) there is a phasic decrease (from spontaneous rate) in the firing rates of

dopamine neurons. When the outcome is similar to that predicted (zero RPE) no such

changes in dopamine activity was observed (Schultz et al., 1997; Tobler et al., 2005). Thus,

the dopaminergic responses in animal midbrain may be bidirectional, and reflect (signed)

RPE (Hart, Rutledge, Glimcher, & Phillips, 2014). Analogous human brain regions may

be involved in reward predictions as well. For example, using neuroimaging techniques,

various brain structures in the human midbrain have been linked to RPE, specifically the

BOLD activity levels code for RPE in the the ventral striatum (Pessiglione et al., 2006) and

ventral tegmental area (VTA; D’Ardenne et al., 2008). In addition, neurochemically, human

dopaminergic response may also reflect RPE, since administration of drugs that change
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striatal dopamine activity accompanied the changes in the RL action variable (Pessiglione et

al., 2006). Therefore, a dominant idea is that the mesolimbic dopamine pathway facilitates

learning by inducing synaptic plasticity in the striatal (midbrain) regions.

The dopamine neurons of the midbrain also project on to higher order cortical areas. It

has been suggested that the communication between dopamine-indexed RPE with cortical

areas mediate control of action/response choices. Specifically, the motor areas near the

cingulate cortex are thought to play active roles in the inhibition of responses (Kerns et al.,

2004). However, recent evidence has been suggesting that the role of higher order cortical

areas, specifically the prefrontal cortex (PFC) is much more subtle (Seamans & Yang, 2004)

than simply relaying information from the midbrain dopamine systems. The PFC may have a

more direct role in reward-driven learning, supporting mechanisms that resemble dopamine-

based computations but are less likely to be entirely driven by the midbrain dopamine

activity (Rushworth & Behrens, 2008), particularly when the learning variables or the tasks

are more complex (Barraclough, Conroy, & Lee, 2004).

With scalp-recorded EEG, researchers have identified a signal, elicited during processing

of the outcome and is likely generated from the anterior cingulate cortex (ACC) (Hauser et

al., 2014; Gehring & Willoughby, 2002; Van Veen et al., 2004; Miltner et al., 1997), a site

that is thought to index RPE (Rolls et al., 2008). This signal, known as the feedback-related

negativity (FRN), is a negative-going deflection with a latency of 200–350 ms post onset of

the feedback stimuli (Miltner et al., 1997; Nieuwenhuis et al., 2004). The scalp-distribution

of voltage for the FRN has a characteristic mid-frontal negativity. Across multiple studies,

it has been observed that the FRN has a greater deflection following negative than positive

feedback outcomes (Bellebaum & Daum, 2008; Holroyd et al., 2004; Pfabigan et al., 2015).

Other relevant connections between the FRN amplitude and properties of the feedback signal

have also been reported, such as sensitivity to reward/monetary feedback (Yeung & Sanfey,

2004), win or loss outcomes (Gehring & Willoughby, 2002; Holroyd & Coles, 2002; Yeung,

Botvinick, & Cohen, 2004; Frank, Woroch, & Curran, 2005), small versus large reward

outcomes or reward versus punishment outcomes (Yeung, Botvinick, & Cohen, 2004; Wu

& Zhou, 2009; but see Goyer et al., 2008 for a contrasting finding), reward probability

(Nieuwenhuis et al., 2002; Holroyd & Coles, 2002; Goyer et al., 2008; Walsh & Anderson,

2011a; but see Oliveira, McDonald, & Goodman, 2007; Chase et al., 2011; Yu, Zhou, &

Zhou, 2011; Wu & Zhou, 2009 who refute this) etc.
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Taken together, these results suggest a central place for this signal within the RL frame-

work. The FRN-RPE account (Holroyd & Coles, 2002) predicts a larger (more negative)

FRN when the outcome is worse than predicted in comparison to the same for when the out-

come is similar to that predicted (for a meta-analysis, see Sambrook & Goslin, 2015). This

account is motivated by the potential contribution of the ACC in generating this signal.1

Consider that if the dopamine neurons of the mesocortical pathway produce an inhibitory

effect on the neuronal population in and surrounding the ACC region, then a phasic in-

crease of the dopamine activity would inhibit the ACC neurons, which in turn will produce

more positive FRN. In contrast, a phasic decrease in dopamine activity would disinhibit

the ACC neurons, which in turn will produce more negative FRN. Note that some recent

studies suggest that underlying the FRN, there may actually be two signals: the N2 de-

flection in response to unexpected outcomes and a positive going deflection (also known as

the correct-related positivity) which relates to the processing of positive outcomes (Holroyd,

Pakzad-Vaezi, & Krigolson, 2008). Thus, when the outcome is negative, the superposition

of these two signals with different polarity will produce a more negative FRN than when the

outcome is positive (for a review, see, Proudfit, 2015).

Different from research in the field of computational reinforcement learning, cognitive

neuroscientific research has focused on a specific class of experimental paradigms to under-

stand the functional significance of the FRN. For example, a classic RL paradigm that is

commonly used to test FRN effects is the two-armed bandit task (Gehring & Willoughby,

2002; Hajcak et al., 2007; Goyer et al., 2008). Motivated from the situation of a gambler

operating on two different slot machines, here the participant has to bet on two different

stimuli that give out rewards with a specific probability (e.g., 80% versus 20%). Thus, on

each trial, there is always some uncertainty associated with the reward, even after the partic-

ipant has learned which stimulus has a greater payout probability. In other words, even after

learning that stimulus A gives out the reward about 80% of the time and that for stimulus B

is 20%, the participant still needs to guess on each trial whether the reward might be under

A (exploit) or B (explore), in order to maximize the long-term rewards. Computational

solutions to this problem, such as the ε–greedy solution suggests that choosing to explore

every once in a while is better than never choosing to explore. Humans are also likely to use

1Though some have suggested the source of the FRN to be in the basal ganglia (Martin, Potts, Burton,
& Montague, 2009).
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different strategies while performing this task. However, arguably, the task design is more

detailed for the response variable than for the stimulus. In cognitive neuroscientific research,

the ‘gambling tasks’ have typically used a small number of stimuli (e.g., two to four options)

and as such there is little challenge to remember them, more so when stimuli are paired

together and the better option may be remembered at the expense of the other.

Another popular task specific to FRN research is the time estimation task (Miltner et al.,

1997; Nieuwenhuis, Slagter, Von Geusau, Heslenfeld, & Holroyd, 2005; Gehring, Goss, Coles,

Meyer, & Donchin, 1993). Here, the participant is asked to estimate whether a specific time

interval (e.g., 1 s) has passed and press a button to indicate it. Feedback informs about

the accuracy of the response and also the margin of error. Over repetitions, the participant

learns to minimize this margin. Usually a response criterion is set. For example, all responses

that fall within a small, fixed margin of error are considered accurate; all responses outside

of this margin are considered inaccurate. However, this criterion could become stricter when

the responses become mostly accurate. Thus, the task is set up in a way so as to make

the number of accurate and inaccurate responses comparable. Similar to the gambling task,

here too the trial-by-trial rewards are associated with some uncertainty and the shifting

response-criterion helps maintain it even when the participant has learned to respond well.

Importantly, here learning reflects a conditioned motor response, which is shaped by the

feedback.

The FRN has also been suggested to guide RPE-driven response adjustments (for a

review, see Luft, 2014), as does the RPE in an RL problem. For example, van der Helden,

Boksem, and Blom (2010) found that in motor sequence learning, negative feedback to

incorrect responses that were subsequently corrected showed a larger FRN than those that

were not followed by correct responses. Gambling tasks also show larger FRN for the high-

rewarding stimulus earlier than later in the task, suggesting a smaller RPE due to learning

which in turn could suggest that the participants come to expect a reward more strongly

for the high-rewarding stimulus. Also, for the low-rewarding stimulus, the effect is opposite,

suggesting that participants come to expect the reward less strongly for the low-rewarding

stimulus (Cohen, Elger, & Ranganath, 2007). Interestingly, recent behavioural evidence also

suggests that prediction errors may not be exclusive to RL and could also support learning

even with single exposure to the items (e.g., declarative learning; see Greve, Cooper, Kaula,

Anderson, & Henson, 2017).
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In an effort to isolate RPE and keep experimental design simple, cognitive neuroscience

efforts to identify neural correlates of RPE have only scratched the surface of the range of

learning problems investigated in the field of RL. A clear limitation of the tasks considered

thus far is that the learning challenge is either absent or nearly trivial. Accordingly, here

we consider an RL task where the number of stimuli to be learned in the stimulus–response

space is substantially greater (N = 48). The rewards are deterministic, and accordingly, the

policy that guides the choice given a stimulus is also not stochastic, as in the case of the

gambling or the time estimation task. Instead here the policy is finding the map f : Si → Ri,

where R ∈ {choose, not choose}. However, with a large number of stimuli, memory for

a particular stimulus–response pair {Si, Ri} is likely to be interfered with the memory for

another pair {Sj, Rj}, and the interference can be reduced with repetitions of the pairs. This

also prevents the RPE function from converging to zero very quickly and produces learning

curves (pooled across all the stimuli) that are comparable to more common RL paradigms.

Also note that unlike the gambling paradigm, here the stimuli are not paired with each other

and thus learning about one stimulus does not help with the choice for another. One way

this situation could be different from that of a gambling task is that in order to do better,

here the participant needs to remember more detailed information about the stimuli, which

may recruit higher order cortical areas (such as those for declarative memory) more than

when there are only very few options to make choices for. In computational RL research,

the calculation of RPE follows the same mathematical function irrespective of the nature of

the task or the number of the stimuli. In cognitive neuroscientific research the mapping of

RPE onto the FRN has held up fairly well thus far, and so it is possible that there is an all-

purpose RPE-estimator in the brain, corresponding to the FRN. However, given the limited

scope of tasks examined, it is also quite plausible that RPE might be “situated” or computed

differently, even by different brain regions, depending on the task. It is also possible that

although RPE might be part of the inherent calculations performed by the brain in more

complex tasks, there might not be a single brain-activity signal that isolates RPE, itself. In

other words, measured brain activity might either a) reveal the FRN to be an all-purpose

RPE-computer, or b) ascribe the computation of RPE to various different neural sources, or

c) reveal that RPE may not necessarily be computed in pure form, as tasks become complex,

but instead, RPE may be modulated by particular other characteristics of the task.

Recently, Arbel, Murphy, and Donchin (2014) used a paradigm that is close to the current
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task. On each trial, participants were presented with a novel object and had to choose from

two non-words, one of which was the correct associate of the object. There were a total

of 60 object–non-word pairs to be learned. Interestingly, the FRN for the correct feedback

trials in cycle 1 was larger when followed by correct responses in cycle 4 than when followed

by incorrect responses in cycle 4. On the other hand, FRN for the incorrect feedback trials

in cycle 1 showed no such effect. The FRN-RPE account would have predicted that errors

followed by correct responses would produce a larger FRN than errors followed by errors.

Thus, it is possible that the FRN-indexed learning is more closely linked to how the feedback

is used, rather than the RPE-based learning predictions, specifically when the task deviates

from the commonly used gambling or time estimation tasks. Based on these findings, we also

tested if and how the FRN indexed learning in the current task, by measuring this signal

as a function of subsequent response adjustments. Specifically, for learning after surprise

reversal, we hypothesized that the FRN for the switched trials, which offered more of a

learning opportunity than the non-switched trials, will be larger when followed by correct

responses than when followed by incorrect responses subsequently.

In sum, we re-evaluate the role of the FRN as a reinforcement learning error signal for

a non-traditional RL task, where predicting reward is not the primary task, but rather, a

guide to stimulus-specific learning.

4.2 Methods

4.2.1 Participants

A total of 68 (aged 19–22 years) introductory psychology students at the University of

Alberta participated for the partial fulfillment of course credit. Data from 5 participants

could not be retrieved due to machine error. Data from another 5 participants were excluded:

3 due to poor EEG signal quality, 2 due to many missing EEG triggers. Thus data from a

total of N = 58 participants were included in the current experiment. All participants were

required to have English as their first language and had normal to corrected-normal vision.

Written consent was obtained prior to the experiment in accordance with a University of

Alberta ethical review board. Prior to the experiment, participants were informed that the

experiment was a “word choice task”, and that they would receive a payment proportional

to the total points earned in the experiment, in addition to their partial course credit.
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Participants were informed that they could earn up to $5.00.

4.2.2 Materials

Stimuli were words selected from the MRC Psycholinguistic database (Wilson, 1988). Image-

ability and word frequency were all held at mid-levels and all words had six to seven letters

and exactly two syllables. We additionally used the Affective Norms of English Words

(Bradley & Lang, 1999) to exclude words with moderately arousing, positive, or negative

emotional connotations which could interfere with learning the reward values (also used by

Madan, Fujiwara, Gerson, & Caplan, 2012; Chakravarty et al., 2019). The final word pool

consisted of 48 items. Half of the words were randomly chosen to be high-value and half to

be low-value. Item values were randomized across participants.

4.2.3 Experimental Paradigm

The session took place in an electrically shielded, sound-attenuated chamber. Participants

were told that they will be making word choices that will lead to rewards (see below and

Figure 4.1). Participants were also told that they were to complete 19 cycles of choice trials

following which they will be paid based on their total reward points accumulated. They

were informed of their progress in the experiment along with the number of reward points

accumulated after each cycle. The experiment consisted of two stages, unbeknownst to the

participants: training cycles and surprise reversal.

Training cycles

On each trial (see Figure 4.1), participants were shown a word along with a non-word letter

string, “HHHHH”, on the computer screen simultaneously. The position of the word (left

or right) was counter-balanced across all trials. All 48 words were presented once per cycle,

and for a total of 19 cycles. Participants were instructed to either choose the word or the

“HHHHH” by pressing the “P” or “Q” key of a computer keyboard to choose the item

presented on the right or left side of the computer screen respectively. Responses led to

either a high-value reward of 10 points or a low-value reward of 1 point. At the beginning

of the experiment, half of the 48 words were randomly selected to be of high-value and the

remaining to be of low-value. The participants were told that a high-value word would earn

them 10 points if they chose it, or 1 point if they did not choose it (i.e., chose the “HHHHH”
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TUNNEL    HHHHH HHHHH    BORDER
Example: 

         TUNNEL = high-value

Example: 

         BORDER = low-value

Participant response (chooses word or HHHHH) Participant response (chooses word or HHHHH)
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if (TUNNEL): if (HHHHH): if (BORDER): if (HHHHH):

+10 points +1 point +1 point +10 points

Figure 4.1: Illustration of a trial in the task. For high-value words, choosing the word led to
the high (10 points) reward whereas choosing ‘HHHHH’ led to the low (1 point) reward. For
low-value words, choosing the word led to the 1 point reward and choosing the ‘HHHHH’
led to the 10 points reward.
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option). Conversely, a low-value word would earn them 1 point if they chose it, or 10 points if

they did not choose it. Importantly, the participant could earn the 10 points reward for both

high- and low-value words, depending on their choice. Thus, the two types of words were

equally important in maximizing the total rewards earned. Aside from the verbal description

of high and low-value, these two types of trials, theoretically, only differed in their response

rules: high-value words required congruent responses, i.e., press the key on the same side

as the word and low-value words required incongruent responses, i.e., press the key on the

opposite side as the word. Moreover, using a similar reward learning paradigm, Chakravarty

et al. (2019) showed that value did not influence memory when the high- and low-value words

did not directly compete with each other. Trial choices were pseudo randomly generated,

with each word used one time per choice set, but each choice set always consisted of one

word and the string, “HHHHH”. The word and letter string remained on the computer

screen until the participant made a response. After each response, a 500–700 ms jittered

interval followed before the presentation of the reward feedback at the centre of the screen

for 1500 ms. The jitter introduced an uncertainty for when the feedback was expected to be

seen by the participants. If they earned 10 points, an image of a pile of coins was presented;

if they earned 1 point, an image of one coin was presented (Figure 4.1). The participant’s

current point balance was presented at the top of the screen during the feedback presentation.

There was an inter-trial interval of 500–700 ms before the next choice trial started.

Surprise Reversal

The training cycles (16 cycles) were followed by a surprise reversal learning, which consisted

of 3 cycles. In the reversal learning, the value of half of the words (both high- and low-value)

were switched. This means, out of the 24 previously high-value words, 12 were randomly

reversed to be of low-value (high-switched) and out of the 24 previously low-value words, 12

were randomly reversed to be high (or low-switched). Participants were not instructed about

this change. This was a continuation of the training cycles and all items were presented in

the exact similar manner. At the end of the reversal learning, which marked the end of

the experiment, participants were paid using the conversion rate of $0.0006 for every point

earned, rounded up to the nearest 25-cent amount. Participants earned between $3.00 and

$5.00.
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4.2.4 EEG recording

Scalp electrical activity was recorded using a high-density 256-channel Geodesic Sensor Net

(Electrical Geodesics Inc., Eugene, OR), amplified at a gain of 1000 and sampled at 500 Hz.

Impedance of each electrode was kept below 50 kΩ and the vertex electrode Cz was used as the

reference. EEG signal was average re-referenced, and digitally bandpass filtered between 0.1–

40 Hz. Data were analyzed by custom MATLAB scripts in conjunction with the open-source

EEGLAB toolbox (http://sccn.ucsd.edu/eeglab; Delorme & Makeig, 2004). Artifacts

such as eye blinks, muscle noise etc. were detected via Independent Component Analysis

(ICA), implemented in EEGLAB. Trials were then epoched from 200 ms before to 1000 ms

after the onset of the feedback stimuli. Baseline was removed. To detect epochs with possible

artifacts, we used an absolute voltage threshold of 200 µV . For the same purpose, we also

calculated the point-to-point difference between the time samples for each epoch and those

with a point-to-point difference exceeding 25 µV were also removed. On average, 1.2%

epochs were rejected.

4.2.5 Data Analysis

Based on previous studies (for a review, see Walsh & Anderson, 2012), FRN amplitude was

computed from the fronto-central electrode FCz by averaging the signal over the window of

200–350 ms post feedback onset. Results were considered statistically significant based on

alpha level of 0.05, but trend effects (0.05 < p < 0.10) are also discussed. We used SPSS

(version 20) to conduct the statistical tests.

4.3 Results

We first report behavioural data, with special attention to the presence of two subgroups of

participants identified by their pattern of behaviour during the reversal cycle 17. Then we

report analyses of the FRN, taking these subgroups into account.

4.3.1 Behaviour

Accuracy Performance accuracy was measured by the proportion of trials in which the

participant won the 10 points reward (Figure 4.2a). During the initial training cycles, per-

formance accuracy differed between the high- and low-value words. However, initial perfor-
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Figure 4.2: Learning curves for the training cycles. (a) plotting accuracy of responses (choose
high or not-choose low); the dashed horizontal line indicates chance performance (0.5), and
(b) response times for correct responses. All error bars represent 95% confidence intervals
for the mean.

mance accuracy for words that later switched its values in the surprise reversal cycle was not

different from that of the non-switched words. A 2×2 repeated measures ANOVA with the

within-subject factors Value (high and low) and Reversal-state (switched or non-switched

in cycle 17), on performance accuracy of cycle 1 showed a significant main effect of the

Value, F (1, 57) = 19.66, p < 0.001, MSE = 0.08, η2p = 0.26; accuracy for high-value words

was significantly greater than that of low-value words, [mean±SEM, high: 0.58± 0.02, low:

0.42±0.02]. Since participants had no prior knowledge about the values at this stage, this dif-

ference suggests that participants tended to choose the words more often than the non-word

letter string “HHHHH”, i.e., exhibited a word-choice bias. The other effects were not signif-

icant, which reassuringly indicated that there was no sampling bias between later-switched

and later-non-switched words. The word-choice bias was greatly reduced as learning took

place; an ANOVA with the same design, on the 16th cycle, showed no main effect of Value,

F (1, 57) = 1.64, p = 0.20, MSE = 0.01, η2p = 0.03 [high: 0.90± 0.02, low: 0.88± 0.03]. No

other significant main or interaction effect was found either.

Response Times Figure 4.2b plots average response times for correct responses, as a

function of cycle and the conditions mentioned above. Participants were in general faster in

responding to a high-value word correctly than to a low-value word (also see Chakravarty
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a b

Figure 4.3: (a) Distribution of asymptotic accuracy— mean accuracy over the last four
training cycles. (b) Distribution of the two strategies based on the accuracy difference
between non-switched and switched trials in cycle 17.

et al., 2019), which could be due to the congruent and incongruent nature of responses

required for them, respectively. A 2×2 repeated measures ANOVA with the within-subject

factors Value (high and low) and Reversal-state (switched or non-switched) for the response

times of cycle 1, revealed no main effect of Value, F (1, 55) = 1.70, p = 0.20, MSE =

146804.48 ms, η2p = 0.03, [high: 1441.86 ± 84.63 ms, low: 1508.66 ± 92.37 ms]. For cycle

16, there was an interaction between Value and Reversal-state, F (1, 57) = 4.27, p < 0.05,

MSE = 40688.29 ms, η2p = 0.07; response times for low-non-switched (1099.00± 41.34 ms)

tended to be faster (p = 0.07) than that of low-switched (1151.09 ± 50.32 ms), the trend

appeared to be opposite (p = 0.28) for high-non-switched (1155.71 ± 79.76 ms) and high-

switched (1098.33± 53.42 ms).

Overall, words chosen to switch values during the reversal learning were not found to be

associated with pre-existing differences during the training cycles.

Non-learners The distribution of average accuracy over the last four cycles of value learn-

ing (i.e., cycles 13 to 16) showed that not all of our participants learned the values with equal

competency (Figure 4.3a). This is important because if a participant is making random

guesses about the values even after 16 cycles of learning, a surprise value reversal may not

be detectable at all by that participant. We used a threshold of 0.8 to distinguish participants

who showed good learning (N = 47) from those who did not (N = 11).
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Figure 4.4: (a) Illustration of the extreme case for conservative strategy: correct on all
non-switched trials, incorrect on all switched trials and (b) the exploratory strategy: ac-
curacy at chance level for all non-switched and switched trials. (c) Learning accuracy for
individual participants, separated by non-learners, conservative and exploratory strategies.
(d) Mean accuracy for the training cycles. Note that both panels are averaged across the
four conditions: high-non-switched, high-switched, low-non-switched and low-switched.
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Two ways in which participants responded to the reversal cycle For participants

who learned the values (N = 47), as expected, accuracy dropped close to chance level (50%)

in cycle 17 when half of the word-values associations were reversed. Since the participants

were not given any instruction about this value reversal in cycle 17, we had expected that

they would respond correctly to the non-switched and incorrectly to the switched trials.

However, we found that there were two ways participants responded to this change (Fig-

ure 4.4), which seem to be reasonable responses to unexpected feedback. At one extreme,

the participant could choose to stick to their previous response choices about word-value

associations (hereafter referred to as a “conservative strategy”), and at the other extreme

the participant may choose to make random guesses, similar to the 1st cycle (hereafter re-

ferred to as an “exploratory strategy”). Participants who followed the conservative strategy

(Figure 4.4a) would have made responses based on the word-value associations learned prior

to the change (i.e., cycles 1 to 16). As a result, accuracy for non-switched words would be

near perfect, whereas that for switched words would be close to zero. On the other hand,

participants who followed the exploratory strategy (Figure 4.4b) would have made guess

responses to the new word-value associations. As a result, accuracy for both non-switched

and switched words would be close to chance level.

We derived an index of strategy by computing the accuracy difference between words

that were not switched and those which were switched (Figure 4.3b). A strictly conservative

participant would have an index of 1 (accuracy for non-switched = 1, switched = 0) and a

strictly exploratory participant would have an index of 0 (accuracy for non-switched = 0.5,

switched = 0.5). Thus, a threshold at the midpoint (0.5) was used to assign each participant

to one of the two strategies. Participants with an accuracy difference above or equal to 0.5

were labelled conservative (N = 21) and participants with an accuracy difference below 0.5

were labelled exploratory (N = 26).

To check these observations, we conducted a 2×2×2 repeated-measures ANOVA with

the between-subject factor Strategy (conservative and exploratory) and two within-subject

factors Value (high or low) and Reversal-state (switched or non-switched), separately for the

accuracy and response times and for cycle 1 and cycle 16. There were no significant main or

interaction effect for Strategy for any of the 4 models. Thus, overall, there was little evidence

for the quality of learning to be substantially different for the two strategies.
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Reversal learning Following cycle 17, participants may have been able to improve, having

partly adjusted to the changing rules. The learning curves show a rise in accuracy for

cycles 18 and 19. We conducted a 2×2×2 ANOVA with within-subject factors Value and

Reversal-state and between-subject factor Strategy on accuracy of cycle 18. This produced

a significant interaction between Strategy and Reversal-state, F (1, 45) = 5.74, p < 0.05,

MSE = 0.15, η2p = 0.11. Follow-up tests showed that for both high-non-switched (p <

0.05) and low-non-switched (p < 0.01) trials, the conservative strategy (high-non-switched:

0.74±0.05; low-non-switched: 0.63±0.05) performed significantly better than the exploratory

strategy (high-non-switched: 0.57±0.05; low-non-switched: 0.42±0.05). For switched trials,

accuracy did not significantly differ between conservative (high-switched: 0.40 ± 0.06; low-

switched: 0.54±0.06) and exploratory (high-switched: 0.45±0.05; low-switched: 0.66±0.05)

strategies.

The interaction between Value and Reversal-state was significant too, F (1, 45) = 22.32, p <

0.001, MSE = 0.05, η2p = 0.33. Follow-up tests showed that accuracy for high-non-

switched (0.65 ± 0.04) was significantly greater (p < 0.01) than that for high-switched

(0.43 ± 0.04); high-non-switched was also significantly greater (p < 0.001) than low-non-

switched (0.52 ± 0.04); and accuracy for high-switched (0.43 ± 0.04) was significantly less

(p < 0.001) than that for low-switched (0.60± 0.04).

The interaction Value×Reversal-state was also significant for cycle 19, F (1, 45) = 9.88,

p < 0.005, MSE = 0.05, η2p = 0.18. Once again, follow-up tests showed that high-non-

switched (0.73 ± 0.03) accuracy was greater (p < 0.005) than high-switched (0.52 ± 0.04),

high-non-switched accuracy was also greater (p < 0.05) than low-non-switched (0.63±0.04),

low-switched (0.64±0.03) accuracy was greater (p < 0.005) than high-switched, and low-non-

switched accuracy was greater (p < 0.05) than high-switched. Also, there was a main effect

of Strategy, F (1, 45) = 9.62, p < 0.005 MSE = 0.07, η2p = 0.18; conservative (0.68 ± 0.03)

achieved higher accuracy than exploratory (0.57 ± 0.03). The main effect of Reversal-state

was also significant, F (1, 45) = 5.73, p < 0.05, MSE = 0.08, η2p = 0.11; non-switched

accuracy (0.68± 0.03) was greater than that for switched (0.58± 0.03).

Thus, overall the two strategies elicited during the value reversal were not accompanied

with significant differences during the initial training cycles. We saw a difference due to

Value in handling non-switched versus switched words after the reversal, which is possibly

due to the re-occurrence of the initial word-choice bias in response to learning the word-
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value re-map. Further, participants with the conservative strategy performed significantly

better than the exploratory group for cycle 19. However, the groups did not differ in prior

learning rate; thus, conservative versus exploratory subgroups cannot be simply understood

as stronger versus weaker participants. Due to their apparent qualitatively different approach

to the task, and due to the fact that the two strategies sort trials differently across all possible

conditions (see below), the first set of ERP analyses will be followed up with more fine-grained

analyses that take these subgroups into account.

4.3.2 ERPs

Learners and non-learners Figure 4.5(a-b) presents the grand averaged ERPs for cycle

17 at the fronto-central electrode FCz, separated by learners (N = 47) and non-learners

(N = 11) as well as by Reversal-state (non-switched and switched) and Value (high and

low). For the time window of interest for the FRN (200–350 ms post feedback onset),

there was a negative deflection for the learners. For the non-learners, this was not so clear.

Figure 4.5(c-d) shows the average amplitude for this time window; for learners, for both

high- and low-value words, switched trials were more negative than non-switched, which

would be expected if switched trials produced larger RPE than non-switched. For non-

learners, however, the trend appeared to be opposite– but the larger and overlapping error

bars (SEM) suggest that this may not be conclusive. The scalp distribution of voltage for the

difference-wave (switched − non-switched) for the FRN window showed a more frontal than

mid-frontal negativity for the learners (Figure 4.5e); interestingly this was slightly oriented

towards the right hemisphere in the case of the high-value words. We conducted a 2×2×2

repeated measures ANOVA on the mean FRN amplitude with the within-subject factors

Value (high or low) and Reversal-state (switched or non-switched) and the between-subject

factor Learner-status (learner or non-learner). There were no significant main or interaction

effects. Learner-status×Reversal-state approached significance; F (1, 56) = 3.86, p = 0.054,

MSE = 4.39 µV, η2p = 0.06. The form of this trend effect can be seen in Figure 4.5(c-d); for

learners amplitude for switched (−1.27± 0.37 µV ) was more negative than that for the non-

switched (−0.95±0.45 µV ), whereas for the non-learners it went the opposite way (switched:

−1.09±0.77 µV ; non-switched: −2.14±0.93 µV ). Thus, for the learners, a signal resembling

the FRN in latency and polarity was present but it did not produce a significant difference

between the switched and the non-switched trials. Also note that the scalp-topography of
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this signal appeared to be more anterior than the typical fronto-central FRN topography.

For the non-learners, it is difficult to interpret as to why there may be an opposite trend; one

possibility is more noise in the data, specifically considering the large error bars. Another

possibility is that since the non-learners were still making frequent incorrect responses at this

point, by chance, this could have worked in favour of the switched than the non-switched,

altering their predictions.

Conservative and Exploratory strategies Next, we looked into the ERPs for the two

strategies, conservative and exploratory, separated by Value and Reversal-state (Figure 4.6).

Non-learners were omitted from this and subsequent analyses. The negative deflection for

the 200–350 ms time window post feedback onset was observed for both strategies (Fig-

ure 4.6a,b). Also, the mean amplitude over this time window appeared more negative for

the switched than the non-switched, for both high- and low-value and for both conserva-

tive and exploratory strategies (Figure 4.6c,d). Amplitude of the FRN-like signal for the

conservative participants was generally more negative than that for the exploratory par-

ticipants (Figure 4.6c,d). However, this may not be specific to the FRN window, as Fig-

ure 4.6(a,b) shows that the ERP waveform for the conservative was overall further away

from the baseline than that for the exploratory. The topographic plots for the difference

wave (Figure 4.6e,f) showed frontal negativity for all conditions and once again, was slightly

right frontal for the high-value trials. We carried out an ANOVA with the between-subject

factor Strategy and the within-subject factors Value and Reversal-state. This produced no

main effect of Reversal-state, F (1, 45) = 2.14, p = 0.15, MSE = 2.37 µV, η2p = 0.04.

Reversal-state did not interact with the other factors. There was a main effect of Strategy;

F (1, 45) = 5.86, p < 0.05, MSE = 22.43 µV, η2p = 0.11, exploratory: −0.36 ± 0.46 µV ,

conservative: −2.04 ± 0.52 µV . To check whether the difference due to Strategy was spe-

cific to the time window of the FRN-like signal, we computed the amplitudes for an earlier

50–150 ms window (FCz). Here too, the difference was close to significant; F (1, 45) =

3.69, p = 0.06, MSE = 7.59 µV, η2p = 0.08, exploratory: −0.74 ± 0.27 µV , conservative:

−1.52 ± 0.30 µV . Thus, there may have been an overall difference in the waveform for

the two groups, not just specific to the FRN-like signal. Overall, the comparisons between

switched and non-switched, when broken down by the two strategies showed clearer trends

than above but the FRN-RPE account was still not clearly present.
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Figure 4.5: (a,b) Grand averaged ERPs at electrode FCz for cycle 17 and separately for learn-
ers and non-learners, broken down by value (high or low) and reversal state (non-switched
or switched). (c,d) Mean amplitudes over the 200–350 ms time window post feedback onset.
Error bars are standard error of the mean. (e,f) Scalp topographic plots of the difference
wave (switched - non-switched) for the same time window (200–350 ms), color reflects mean
voltage (µV ). Note the color scale limits vary for learners and non-learners in the topographic
plots.
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Figure 4.6: (a,b) Grand averaged ERPs at electrode FCz for cycle 17, separately for con-
servative and exploratory strategies and broken down by value (high or low) as well as
reversal-state (non-switched or switched). (c,d) Mean amplitude over the 200–350 ms time
window post feedback onset. Error bars are standard error of the mean. (e,f) Topographic
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Response choices in cycle 17 (first reversal cycle) Our hypothesis for a larger FRN

amplitude for the switched than the non-switched was based on the assumption that switched

trials would lead to ‘worse than expected’ outcomes whereas for the non-switched, the out-

comes will be ‘same as expected’. However, if the participants frequently altered their re-

sponses in the wake of the reversal, as we found especially for the exploratory strategy partic-

ipants, then the above assumption may not have always been true. In other words, if the par-

ticipant altered their response, the corresponding prediction may have also changed. To test

this, we re-evaluated the ERPs by further breaking them down into the two feedback outcome

conditions (correct or 10 points reward and incorrect or 1 point reward). Then, we compared

between switched and non-switched conditions for instances where the response was not al-

tered. This means that for the non-switched condition, we chose trials where the outcome was

correct (10 points) as this could have only happened if the response was the same. Likewise

for the switched condition, we chose incorrect outcome trials, which could have only hap-

pened if the response was unaltered. We shall call this combined factor Feedback-outcome

dependent Reversal-state. Thus, we compared non-switched-correct and switched-incorrect

trials (Figure 4.7a-b). If the FRN-like signal observed in this task was tied more closely to

the choice of responses in the reversal, then it may be possible to find a significant differ-

ence due to this signal for the non-switched-correct and switched-incorrect conditions. The

mean amplitudes (Figure 4.7c-d) were overall more negative for switched-incorrect than non-

switched-correct. The topographic plots of the difference wave (Figure 4.7e-f) showed similar

trends as before. Once again, we carried out a 2×2×2 repeated measures ANOVA, with the

within-subject factors Value and the combined factor Feedback-outcome dependent Reversal-

state (non-switched-correct or switched-incorrect) and the between-subject factor Strat-

egy. This showed a significant main effect for Feedback-outcome dependent Reversal-state;

F (1, 45) = 5.68, p < 0.05, MSE = 2.81 µV, η2p = 0.11; switched-incorrect (−1.57±0.36 µV )

was more negative than non-switched-correct (−0.99± 0.35 µV ). The main effect of Strat-

egy also remained significant; F (1, 45) = 4.21, p < 0.05, MSE = 20.69 µV, η2p = 0.09,

conservative: −1.97±0.50 µV , exploratory: −0.60±0.45 µV . All other effects were far from

significant. Thus, taking response choices into account, we found a significant RPE-like

effect.
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Further analysis with the exploratory participants As mentioned before, partici-

pants following an exploratory strategy frequently altered their responses in the wake of the

reversal. One possibility is that they reverted back to guessing the word-values. If this is

true then on each trial, their prediction may have been halfway between the 1 and 10 points

rewards, i.e., 5.5 points. Accordingly, correct responses (10 points reward) would have led to

an RPE of +4.5 and incorrect responses (1 point reward) would have led to an RPE of −4.5.

This would be true regardless of the value of the word (high/low) and reversal condition

(switched or not). Figure 4.8 illustrates this hypothesis. Then, if the FRN indexed (signed)

RPE for the exploratory strategy, we would expect a more negative FRN for incorrect than

correct response trials, paralleling the hypothesized RPE in Figure 4.8. We tested this by

breaking down the ERPs for cycle 17 into correct and incorrect feedback outcomes, for both

switched and non-switched conditions.

This showed that for high-non-switched, incorrect feedback was actually more positive

than correct (Figure 4.9a). For Low-non-switched, there was almost no difference between

correct and incorrect (Figure 4.9d). For the switched conditions, however, incorrect feed-

back was more negative than correct (Figure 4.9c,f). The topographic plots (Figure 4.9b,e)

for the difference wave (incorrect − correct) showed a frontal positive and negative sig-

nal for the high-non-switched and high-switched conditions respectively. Interestingly, the

largest difference observed between correct and incorrect trials was that for low-switched

and the corresponding topographic plot of the difference wave showed a clear fronto-central

negativity. We conducted a 2×2×2 repeated measures ANOVA for the mean FRN am-

plitude with the within-subject factors Value (high or low), Feedback-outcome (correct or

incorrect) and Reversal-state (switched or non-switched). This revealed a significant inter-

action for Value × Feedback-outcome, F (1, 22) = 4.56, p < 0.05, MSE = 1.69 µV, η2p =

0.17. Follow-up tests showed that low-switched-correct (0.97 ± 0.35 µV ) was significantly

more positive (p < 0.05) than high-non-switched-correct (−.19 ± 0.52 µV ), high-switched-

correct (−0.42 ± 0.64 µV ) as well as high-switched-incorrect (−0.89 ± 0.50 µV ). Low-

switched-correct was also significantly more positive (p < 0.005) than low-switched incor-

rect (−0.72 ± 0.33 µV ); also low-non-switched-correct (0.36 ± 0.45 µV ) was more positive

(p < 0.05) than low-switched-incorrect (−0.72 ± 0.32 µV ). The main effect of Value ap-

proached significance; F (1, 22) = 3.05, p = 0.09, MSE = 4.75 µV, η2p = 0.12, high:

−0.36± 0.40 µV , low: −0.20± 0.30 µV . The interaction Reversal-state×Feedback-outcome
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Figure 4.8: Hypothesized reward prediction errors for the exploratory strategy in cycle 17
if they had reverted back to guessing the word-values. We maintained the assumption that
due to guessing they would have predicted a reward halfway between 1 and 10 points, i.e.
5.5 points. Then, based on whether they made a correct (10 points) or incorrect (1 point)
response, the RPE should have been +4.5 or −4.5 respectively, across all value and reversal
conditions.

also approached significance; F (1, 22) = 3.42, p = 0.08, MSE = 4.38 µV, η2p = 0.13, All

other effects were far from significant. Taken together, these results show that the FRN-like

signal was not overall more negative for incorrect feedback outcome than for correct feedback

outcome, as would be expected if the FRN-like signal found in this task simply indexed an

RPE-like function and if the exploratory strategy had simply reverted back to guessing in

cycle 17.

FRN and response adjustments in subsequent trials If the FRN is a signal that

guides learning, then one would expect that a large FRN amplitude would be predictive

of later improvement in accuracy for a given item (as in van der Helden et al., 2010). We

tested this possibility for the current task. Continuing with our analysis of the reversal trials,

first we looked into ERPs from cycle 17, comparing trials that were subsequently responded

correctly or incorrectly in cycle 18 (Figure 4.10).

For non-switched trials in cycle 17, across the two strategies and the two values (high/low),

the FRN-like signal did not appear to drive the difference due to subsequent correct/incorrect

responses in cycle 18 (see Figure 4.10a–b and the corresponding topographic plots for the

difference wave). We conducted a 2×2×2 ANOVA with the within-subject factors Value
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Figure 4.9: (a,c,d,f) Grand averaged ERPs at electrode FCz for cycle 17 and only for ex-
ploratory strategy, broken down by value (high or low), reversal-state (non-switched or
switched) and feedback-outcome (correct or incorrect). (g) Mean amplitudes over the 200–
350 ms time window post feedback onset. Error bars are standard errors of the mean. (b,e)
Topographic plots of the difference waves (incorrect - correct) for the FRN time window,
color reflects mean voltage (µV ). Note the color scale varies for high- and low-value.
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(high/low) and Subsequent accuracy (correct/incorrect) and the between-subject factor

Strategy for the amplitude of the FRN-like signal for non-switched trials in cycle 17, which

revealed no significant main or interaction effect for Subsequent accuracy or Value (p > 0.05).

This could be because non-switched trials, in general, did not offer much of a learning op-

portunity.

For the switched trials in cycle 17, across conditions (see Figure 4.10c–d and the corre-

sponding topographic plots) the FRN-like signal appeared to index difference due to Subse-

quent accuracy in cycle 18. We conducted another 2×2×2 ANOVA with the within-subject

factors Value (high/low) and Subsequent accuracy (correct/incorrect) and the between-

subject factor Strategy for the amplitude of the FRN-like signal for switched trials in cycle

17. This revealed a significant interaction for Subsequent accuracy×Strategy; F (1, 38) =

4.84, p < 0.05, MSE = 5.21 µV, η2p = 0.11. Follow-up paired t-tests showed that amplitude

of the FRN-like signal for subsequently correct trials in cycle 18 (−2.29± 0.56 µV ) was sig-

nificantly more negative than that for subsequently incorrect trials (−1.33±0.65 µV ) for the

conservative strategy (only for high-) t(17) = 2.33, p < 0.05. For the exploratory strategy,

switched trials followed by correct responses (−0.01±0.49 µV ) were less negative than those

followed by incorrect responses (−0.65± 0.56 µV ) but the effect was not significant. Thus,

adjustments to responses in cycle 18, based on the FRN-like signal (for the switched trials)

in cycle 17, appeared to work differently for the two strategies.

Finally, we wondered if the FRN-like signal also indexed response adjustments in the early

training cycles. To test this, we compared ERPs from cycle 1 for trials that were responded

correctly or incorrectly in cycle 2. These ERPs were not broken down by Reversal state in

cycle 17 as we did not expect to see any difference due to Reversal state in cycle 1 (also see the

Behavioural results that confirm this result). Although the strategies were kept separate, we

did not expect a difference in learning effects due to strategy because in cycle 1, participants

using both strategies would have simply made guesses. For cycle 1, for the correct trials, and

especially for the conservative strategy, subsequently correct responses in cycle 2 appeared

to be more negative than incorrect responses in cycle 2 and the topographic plots of the

difference wave (correct − incorrect) also supported an FRN-like signal (see Figure 4.11a–b).

A 2×2×2 ANOVA with the within-subject factors Value (high/low), Subsequent accuracy

(correct/incorrect) in cycle 2, and the between-subject factor Strategy, revealed a significant

main effect for Subsequent accuracy; F (1, 41) = 4.94, p < 0.05, MSE = 2.21 µV, η2p = 0.11,
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than mid-frontal negativity in the distribution of voltage across the scalp. Thus, it is possible

that the signal evaluated here is different from the FRN signal suggested by previous studies.

Moreover, this signal did not significantly differentiate between switched and non-switched

conditions; despite participants having learned word-values to a high accuracy criterion prior

to the reversal trials.

Individual variability in behaviour during the surprise reversal further informed this basic

result. If participants continued to respond based on their previous knowledge about the

word-value mappings (i.e., prior to the reversal), they would be incorrect for most of the

switched and correct for most of the non-switched trials. Therefore, the absence of modu-

lation of the amplitude of the FRN-like signal between these two conditions would indicate

that the FRN-like signal did not index RPE-like effect in our task. Although this logic

applies to one subset of participants (those using the “conservative” strategy), a second set

of participants appeared to make new guesses during the reversal block (those using the

“exploratory” strategy). Thus, it is possible that whenever the participant chose to alter

their response (i.e., make a guess) their prediction for that trial was also different from when

they did not alter the response. To factor this into the analyses, we compared between

non-switched and switched conditions for instances where the response was not altered, i.e.,

non-switched trials that were met with a correct feedback outcome and switched trials that

were met with an incorrect feedback outcome. In this case, the FRN-like signal was signif-

icant, with more negative amplitude for switched-incorrect than for non-switched-correct.

This can be viewed as a conceptual replication of the FRN-RPE mapping.

One might infer that the exploratory and conservative participants simply differed in their

learning ability, but behavioural results showed no significant difference in accuracy between

the two groups, either at the beginning of the training cycles or just before the reversal.

Rather, a significant difference between the two strategies appeared when looking into the

question of how the FRN-like signal may have guided learning after the surprise reversal.

Consider that in computational RL, the RPE for a trial is added back to the next prediction

(multiplied by the learning rate); the updated reward prediction is used to determine the

next response. Accordingly, if the FRN indexes RPE, larger deflections of the FRN could

index response adjustments in the next trial. To test this, we looked into the amplitude of

the FRN-like signal for cycle 17 trials that were followed by correct responses in cycle 18 and

those followed by incorrect responses in cycle 18. When restricted to non-switched trials in
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cycle 17, there were no effect on its amplitude due to subsequent response accuracy in cycle

17. This may be expected since for the non-switched trials, responses were overall more

correct and there was not much to learn. For the switched trials in cycle 17, the FRN-like

signal was significantly more negative for subsequently correct than incorrect responses, as

we would have predicted, but only for the conservative strategy. For the exploratory strategy,

the effect was opposite and non-significant.

One possibility is that since the conservative strategy did not alter their responses as

frequently as the exploratory, they might have followed the feedback more closely to learn

the changes, which produced the significant learning effect for this group as indexed by the

FRN-like signal. The exploratory strategy participants, on the other hand, had to keep track

of their responses as well as process the feedback to learn the changes, though we can not

determine the relative amount of dependence on the response and the feedback signal for

this strategy. Regardless of the correct view, these lines of thought suggest that learning

indexed by the FRN-like signal account could depend on the way the feedback signal is used

(for an individual-differences approach to this question, see Arbel & Wu, 2016).

Reassuringly, the difference due to the two strategies in learning as guided by the FRN-

like signal was not present when considering trials from the very first training cycle, which

would be expected as at this stage both groups were simply guessing. Interestingly, the

FRN-like signal in cycle 1, for correct feedback trials, was more negative when followed by

correct responses in cycle 2 than when followed by incorrect responses in cycle 2. For the

FRN-like signal in cycle 1, when restricted to the incorrect feedback trials, no such effect

due to subsequent response accuracy in cycle 2 was found. This is in line with the finding

of Arbel et al. (2014), who, for a paired associate learning task, found similar effects for

the positive and not the negative feedback trials in cycle 1 in connection with subsequent

response accuracy in cycle 4.

Consider that in our task (as well as in Arbel et al., 2014), on each trial there were only two

options to choose from, one of which was the correct response. Thus, correct and incorrect

trials were equally useful in determining the response for the subsequent trial. Based on

the FRN-RPE account, we would have predicted that errors followed by correct responses

would produce a larger FRN than errors followed by errors. However, on cycle 1, both

correct and incorrect outcomes are due to random guesses. Further, due to large number of

stimuli, we could expect interference in memory for the stimulus-response mappings. Thus,
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the significant effect for the FRN-like signal for the correct trials only (in cycle 1, as functions

of response accuracy in cycle 2) could also suggest that the FRN-driven learning effect is

more specific than RPE-driven learning proposed by RL theories.

During the surprise reversal, the responses, at least for the conservative strategy partic-

ipants, were not all random guesses. Thus, this group of participants would have clearly

more to learn from the switched than the non-switched trials. Accordingly, the FRN-like

signal indexed learning for the switched and not the non-switched and for the conserva-

tive strategy only. In contrast, Ernst and Steinhauser (2012) found that while learning to

associate Swahili words with German words, FRN amplitude (with the peak-to-peak mea-

sure) for error trials in cycle 1 that were followed by error responses subsequently was more

negative than those followed by correct responses, which is similar to the trend (although

non-significant) we saw for the exploratory strategy for the switched trials in cycle 17 as a

function of response accuracy in cycle 18. Taken together, these results cast doubt on the

role of the FRN being limited to a generic reward prediction error only. Instead, the FRN

could be indexing learning effects based on task specific cognitive demands.

As mentioned above, our results challenge the idea that the FRN may play a broader

role in learning. Instead, the FRN-like signal may be situated more locally within the task.

Some have also found that there may be specific, rather than generic, connections between

the FRN and a spillover effect on subsequent memory success. For example, in a study by

Arbel, Goforth, and Donchin (2013), participants learned to associate novel objects with

non-words (four response options to choose from, on each trial) and with feedback, for a

total of 30 associations, each repeated 20 times. On the following day, the participants came

back and were provided with all the objects and words and asked to match them. For the

correct feedback trials, associates that were later recognized in the test had a more negative

FRN than those not recognized. No such relation was observable for the negative feedback

trials. Höltje and Mecklinger (2018) also showed that in a task where participants learned

to pair Chinese characters with arbitrary images (which were also the feedback) and was

followed up with a memory test for the feedback images, the FRN for the positive feedback

images was larger when the feedback image was subsequently remembered versus forgotten.

Collins and Frank (2018) took an interesting approach to examine possible connec-

tions between RL and working memory. Rewards were deterministic and the participant

learned to choose the correct response for each stimulus through repetition. Across different
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blocks/cycles the Stimulus set size were varied (maximum = 6), as well as delay (number of

trials since last correct), as ways of manipulating working memory demand. A Q-learning

model computed expected reward (Q value) and RPE for each trial. For the stimulus-locked

EEG, effects (β weights) of Q were strong for the 200–400 ms time window and significant for

electrodes in central as well as posterior regions, whereas for number of stimuli and delay, ef-

fects were within the 300–700 ms and 200–600 ms windows respectively. Thus, both RL and

factors relevant to working-memory predicted voltage. For the feedback-locked signal, RPE

effects were found near the 200–400 ms window but the corresponding significant electrodes

were located in the central-posterior scalp (e.g., Cz, CPz), which is consistent with the la-

tency but not the topographic map of the FRN. However, for a later window near 400–600 ms,

the RPE effects were located in the fronto-central area (e.g., FCz, Cz), which is consistent

with the topographic map but not the latency of the FRN. In the feedback-locked signal,

the effect of number of stimuli was weak but that for RPE×delay may have been present.

Moreover, EEG correlates of both Q (for stimulus-locked) and RPE (for feedback-locked)

increased with number of stimuli, suggesting that the RL and working-memory systems may

not be independent. When the number of stimuli was small, EEG indices (voltage) of RPE

declined much faster.

Our task was not designed to manipulate working memory and the number of stimuli

used in this study was considerably higher than the maximum set size used by Collins and

Frank (2018), though the number of exposures to each stimulus (maximum 15) was close to

the number of exposures for our task (16). However, in light of their results, it is possible that

the RPE in this task also declined at a much slower rate over the course of the training cycles.

This could have contributed to a meaningful difference between the current paradigm and

the two-armed-bandit and other similar FRN paradigms. Namely, the slower RPE function

could also have been the case during reversal learning, translating into weaker FRN-like

differences overall. There may have also been differences in the RPE decline rate due to the

two strategies, paralleling the small difference in the slope of the learning curves for these

two groups.

Turning to the word-value effect, recall that high- and low-value words only differed in the

way these were described at the beginning of the experiment and how the response (in favour

of the 10 points reward) had to be made. Aside from these, the utility for these two types of

words in achieving the goal of maximizing the total rewards, was the same. Accordingly, we

156



do not expect the quality of memory for high- and low-value words to be different. Using the

same basic training cycles but without the reversal cycles, Chakravarty et al. (2019) found

no difference in subsequent free recall (with or without incentives) accuracy for the words.

However, some difference due to value in lexical decision times was present, likely due to

habituation of the congruent and incongruent actions involved in making correct responses

for the high- and low-value words respectively, during the learning phase. The difference

in response times was also observed in the current task. Moreover, difference due to value

in learning accuracy for the cycle 1 can only be explained by a bias to choose the word

than the ‘HHHHH’ string, because the participants could only make guesses at this stage.

Additionally, it is possible that this bias reappeared, at least for the exploratory participants

when they made guesses in the wake of the surprise reversal. The ERPs for cycle 17, for the

exploratory strategy, showed a significant interaction between value and feedback accuracy,

which was mainly driven by the low-switched and the high-non-switched conditions (feedback

correct versus incorrect). The low-switched trials showed the largest FRN-like signal across

all examined conditions. One possibility is that since low-switched trials were those instances

where now choosing the (previously low) word led to better outcome than not-choosing it,

the word choice bias would have led to the high reward for the low-switched trials. The word

choice bias will also lead to the high reward for the high-non-switched trials, however here

correct responses were when the participant did not alter their response and thus, may have

been more surprised to receive the same outcome as before (i.e., with respect to the overall

changed status). Thus, overall, it is possible that a word-choice bias in cycle 17 influenced

how the trials were sorted for whether or not there was a violation of expectation.

Although post-hoc, features of the results suggest why the FRN-like signal may have

retained the hypothesized role in indexing subsequent response adjustments only for the

conservative participants (for the switched trials). The learning curves show that although

both strategies start with similar performance and also achieve similar levels of performance

by the end of the training cycles, there may be a small difference in the rate of learning as

indicated by the slopes of the learning curves; with the exploratory strategy being slower.

This difference was also observed in the last two cycles after the surprise reversal, with the

conservative participants re-learning the word-values a little better than the exploratory.

Thus, the conservative strategy may have been slightly more efficient for learning the re-

versals (only keep track of feedback and update response) than the exploratory (keep track

157



of both one’s own responses and the corresponding feedback). Specifically, the conservative

participants may have relied on RPE more exclusively than the exploratory participants.

The RPE does not directly depend on the response of the current trial but does influence

the response for the next by updating the reward expectation. Considering the putative

FRN-RPE connection, our results accordingly showed no substantial difference in the FRN-

like signal due to strategy for cycle 17 (current trial) but due to the responses in cycle 18

(future response). Thus, we show evidence for the FRN-like signal tracking learning, possibly

when learning is more closely dependent on the RPE. On the other hand, our results also

show that when a large number of stimuli are involved, the RPE-dependent RL mechanism

could vary, potentially due to (differential) involvement of other cognitive functions, such as

interference in memory for the stimulus-response pairs.

Relevant to the difference due to how the feedback signal is used for learning, Walsh

and Anderson (2011a) instructed their participants about the reward probabilities of each

stimulus, eliminating overt dependence on feedback to do well in the task. However, the

FRN-RPE relevant effects were still present, though a difference in how the FRN indexed

learning may have appeared. Yeung, Holroyd, and Cohen (2004) found differences due to

FRN amplitude even when participants made no overt response and simply processed the

reward feedback passively. Taken together, these findings may suggest that the functionality

of the FRN is more extensive than that put forward by the FRN-RPE account. However,

under specific learning situations, such as those present in a typical gambling/time estimation

task, the FRN functions primarily like a reinforcement-learning error signal.

Our findings also appear consistent with Cockburn and Holroyd (2018), who found that

as the information content of the feedback increased, such as by providing the participants

with reward probability, magnitude, margin of error etc., the FRN was attenuated. Our

exploratory strategy group may have only processed the feedback magnitude (correct or

not) while the conservative strategy group used it to relate back to the preceding words.

Thus, the same feedback may have afforded more information to the conservative than the

exploratory participants, leading to the absence of the hypothesized effect of learning indexed

by the FRN-like signal for the exploratory group.

In sum, our findings suggest that the FRN may not index RPE in all RL situations. It is

possible that as the RL problem becomes more complex, RPE computations are influenced

by other features of the task. Moreover, the topographic map of the FRN-like signal observed
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in this task may suggest a different albeit close source compared to the FRN signal reported

by previous studies. The FRN-like signal may not be computing an untarnished RPE value,

but rather, computing more local RPE, specific to each stimulus, and relative to the response

and possibly even the type of feedback just received.
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Chapter 5

Predicting trial-and-error learning
with brain activity
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Abstract

In trial-and-error learning, feedback is used to update current knowledge. Thus, analysis

of brain-activity during feedback-processing could identify signals that support trial-to-trial

learning. Going beyond traditional analysis, which is based on planned-comparisons and

descriptive methods, we asked if brain-activity during feedback-processing predicted trial-

to-trial learning. Participants learned, through repetitions (cycles), the response-rules for a

set of 48 words, divided equally into high- and low-value. The goal was to maximize the

total rewards, which could be achieved by choosing the high- and not choosing the low-value

words. We found that amplitude of an event-related potential signal resembling the latency

of the feedback-related negativity (FRN), which is thought to index the discrepancy between

expected and actual outcomes, or reward-prediction error (RPE; Holroyd & Coles, 2002),

modestly predicted trial-to-trial learning, but only when the previous trial was correctly re-

sponded. Thus, different from RPE, which supports response adjustments following errors,

this FRN-like signal may support maintaining of correct (learned) responses from one trial to

the next. We also investigated multivariate pattern analysis of EEG-activity (time-domain)

during feedback-processing, but due to the small number of trials available for training

the classifiers, it was under-powered and thus, failed to predict trial-to-trial learning. In-

terestingly, classifier-performance increased with participants’ performance. Additionally,

multivariate pattern analysis of brain-activity during feedback-processing achieved modest

success in predicting the inferred word-values (high/low); suggesting that participants may

be ‘thinking back’ about the preceding stimulus after receiving the feedback. Also, the

classifiers identified distinct patterns of brain activity for predicting word-value, when the

feedback-outcome was correct than when it was incorrect, which suggested that learning

from correct and incorrect feedback-outcomes may be supported by signals that are re-

cruited differently. Together, these findings show promise in isolating behaviourally-relevant

brain activity for trial-and-error learning. They also call for a reconsideration of the ways in
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which reinforcement learning theory can inform our understanding of human trial-and-error

learning.
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5.1 Introduction

Many forms of learning are driven by feedback. A feedback signal informs us about the

quality of the current response, so that future responses/actions can be adjusted in favour

of the better outcomes. Thus, analysis of brain activity during feedback processing can

identify signals that reflect cognitive processes driving learning from the feedback, our current

aim. For electroencephalographic (EEG) recordings, an event-related potential (ERP) peak,

namely, the feedback-related negativity (FRN), is likely elicited when processing a feedback-

stimulus. It is commonly characterized by a mid-frontal negativity in the scalp-distribution of

voltage, and has a peak-latency close to 300 ms post onset of the feedback-stimulus (Miltner

et al., 1997; Nieuwenhuis et al., 2004). Across many studies, the FRN has shown a greater

deflection for negative- than positive feedback outcomes (Bellebaum & Daum, 2008; Holroyd

et al., 2004; Pfabigan et al., 2015; Marco-Pallares et al., 2011; Hajcak et al., 2006). Others

have also found that amplitude of the FRN is modulated by differences in reward-magnitude

(Yeung, Botvinick, & Cohen, 2004), reward-probability (Goyer et al., 2008; Nieuwenhuis

et al., 2002; Walsh & Anderson, 2011b); for wins and losses (Frank et al., 2005; Yeung,

Botvinick, & Cohen, 2004); as well as for rewards and punishments (Yeung, Botvinick, &

Cohen, 2004; Wu & Zhou, 2009). Together, these findings have led to the suggestion that the

FRN indexes discrepancies between expected and actual outcomes, also known as reward-

prediction error (RPE; see Holroyd & Coles, 2002). Thus, similar to the RPE function,

the FRN may also support trial-and-error learning (e.g., Cohen et al., 2007). However,

the traditional ERP analysis of the FRN is based on planned-comparisons and descriptive

methods, which, as we explain later in this section, can overestimate brain-activity measures

by overfitting it, and also do not allow discovery of subtle multivariate pattern of activity

that may be more relevant for explaining trial-and-error learning behaviour. In contrast,

here we used a stronger, predictive framework to evaluate the role of the FRN as well as

multivariate brain activity during feedback processing, to explain trial-and-error learning

behaviour.

The RPE account of the FRN (Holroyd & Coles, 2002) is motivated from reinforcement

learning theories (Sutton & Barto, 1998). In reinforcement learning, RPE is used to update

reward-expectations for subsequent trials, depending on the learning-rate. There is evidence

for RPE-like computations in the brain. For example, in animals, phasic dopamine activity
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in the midbrain is found to code for RPE (Schultz et al., 1997). For better-than-expected

outcomes (positive RPE), there is phasic increase in activity (relative to the spontaneous

rate) of the midbrain dopmaine neurons; and for worse-than-expected outcomes (negative

RPE), there is phasic decrease; no changes from spontaneous activity-rate is observed for

same-as-expected (zero RPE) outcomes (Hart et al., 2014; Schultz et al., 1997; Tobler et al.,

2005). Paralleling this, BOLD signal in human midbrain areas, such as the ventral striatum,

ventral tegmental area, is also modulated by RPE (D’Ardenne et al., 2008; Pessiglione et

al., 2006). Also, FRN may be indirectly associated with the midbrain dopamine activity.

Multiple studies have suggested that the neural-generator of the FRN is located in the

anterior cingulate cortex (ACC; Gehring & Willoughby, 2002; Hauser et al., 2014; Miltner et

al., 1997; Van Veen et al., 2004); a site that receives midbrain dopaminergic input, through

the mesocortical dopamine pathway (Rolls et al., 2008). Thus, the FRN may result from

relaying of midbrain dopaminergic responses to the ACC region (for a review, see Walsh &

Anderson, 2012).

If the FRN reflects a reinforcement-learning error signal, it may also support trial-to-

trial learning. In reinforcement learning, larger (negative) RPE for errors are likely followed

by response-adjustments in subsequent trials. Likewise, larger deflections of the FRN (for

errors) may be followed by correct responses in subsequent trials. Supporting this idea,

van der Helden et al. (2010) found that in a motor sequence-learning task, FRN amplitude

was more negative when negative feedback outcomes (due to incorrect responses) were fol-

lowed by correct responses, than when they were followed by incorrect responses. Another

study by Cohen et al. (2007), who used a gambling task, found that for the high-rewarding

stimulus, FRN amplitude became smaller with the course of learning, suggesting that par-

ticipants learned to expect a reward more strongly for the high-rewarding stimulus. For the

low-rewarding stimulus, FRN amplitude became larger with learning, suggesting that par-

ticipants were not able to predict a reward strongly for the low-rewarding stimulus. Others

have also reported larger FRNs for earlier- than later parts of the task (Walsh & Ander-

son, 2011b; Bellebaum & Daum, 2008), suggesting FRN-guided learning effects. Instead of

immediate response-adjustments in the next trial, overall greater probability for subsequent

response-adjustments for larger FRN, has also been noted by some studies (Yasuda, Sato,

Miyawaki, Kumano, & Kuboki, 2004).

However, others have refuted the role of the FRN in indexing subsequent response-
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adjustments (van de Vijver, Ridderinkhof, & Cohen, 2011; Luft, Takase, & Bhattacharya,

2014). For example, Chase et al. (2011) used a gambling (probabilistic learning) paradigm,

which included multiple reversal-learning phases. In the reversal learning, the reward-

contingencies for the high- and low-rewarding stimuli were reversed. Although the FRN

amplitudes agreed with model-derived RPE-values for the task, they did not index subse-

quent response-adjustments in response to the reversal. Importantly, Chase et al. (2011)

had instructed their participants, at the beginning of the experiment, that there will be

sudden changes in reward-contingencies. Having this knowledge in the background may

have recruited the FRN differently. Another study by Arbel et al. (2014) used a task where

participants learned to associate novel-objects with non-words, through trial-and-error, and

with feedback. The material were learned through repetitions (cycles). They found larger

FRN for correct-feedback trials in cycle 1, when those were followed by correct responses in

cycle 4, than when those were followed by incorrect responses in cycle 4. According to the

FRN-RPE account, FRN amplitude for errors, when followed by correct responses, would be

larger than when they are followed by incorrect responses. However, no such effect was found.

Thus, the FRN may not support learning following the RPE function used in reinforcement

learning theories.

Notably, the task used by Arbel et al. (2014) was substantially different from those

used more commonly to study the characteristics of the FRN, such as, gambling tasks and

time-estimation tasks. This could have also contributed to the findings reported above.

Gambling tasks include a very small number of stimuli, each associated with a different

reward-probability. On each trial, the participant bets on a stimulus for the better payout.

Thus, the goal is to find a suitable response-strategy that helps maximize the total rewards.

Accordingly, reward-predictions are used to drive the response-strategies. On the other hand,

in time-estimation tasks, participants learn to be increasingly more accurate to respond

within a specific time-interval, with feedback. Thus, here, learning reflects a conditioned

motor-response, guided by the feedback signal.

Different from both gambling and time-estimation tasks, in the task used by Arbel et al.

(2014), reward-prediction was used to guide response-adjustments based on the associations

between novel-objects and non-words. The total number of stimuli was substantially higher

(N = 60) than gambling tasks, which typically use 2 to 4 stimuli. Thus, memory for one

novel-object and non-word association was subject to interference from the other novel-object
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and non-word associations. This difference in the role of the reward-prediction, between

gambling or time estimation tasks and learning tasks such as the one used by Arbel et al.

(2014), could be important to understand the boundary conditions on the functions of the

FRN. The theoretical RPE function only measures the difference between expected- and

actual outcomes. However, the RPE-like function supported by the FRN may be subject

to the number of learnable stimuli (see Collins & Frank, 2018). Others have also reported

that the FRN amplitude becomes smaller when the information offered by the feedback is

increased (Cockburn & Holroyd, 2018).

Importantly, the task used by Arbel et al. (2014) included only three cycles of learning

for 60 pairs of novel objects and non-words. This may not have provided enough training

for the associations, specifically for participants with slower learning rates. Moreover, Arbel

et al. (2014) used performance in cycle 4 to evaluate the quality of learning, and compared

successful and unsuccessful learning in terms of their FRN amplitudes in cycle 1. However,

since RPE is trial-specific, the FRN-indexed RPE for cycle 1 may not be as relevant for the

learning outcomes in cycle 4, as it would be for learning outcomes in cycle 2. Thus, Arbel

et al. (2014) addressed how the very first feedback received in a trial-and-error learning

situation has a long term effect on the behavioural adjustments.

In contrast, here we test if FRN can support trial-to-trial learning, where the evidence

for learning is subsequent behavioural adjustment. We recently investigated characteristics

of the FRN for a trial-and-error learning task, that also involved a large number of stimuli

(words, N = 48), and reward feedback (see Chapter 4). Participants learned whether or

not to choose each word depending on its inferred value (high or low). Through repetitions

(16 cycles), most participants learned the stimulus-response rules considerably well. Thus,

a surprise reversal, which reversed half of the stimulus-response relations at random, was

designed to induce strong expectation-violations. Analysis of the feedback-locked ERPs for

the surprise reversal cycle 17 elicited a negative-going deflection with similar latency as the

FRN but with relatively more frontal than mid-frontal distribution of voltage across the

scalp. Also, this FRN-like signal was not significantly larger for the switched- than the non-

switched words. Follow-up analyses revealed that the FRN-like signal was influenced by an

RPE-like function, but it was further modulated by task-variables that were not designed

to manipulate the RPE. Further, re-learning of the stimulus-response associations, after the

surprise reversal, was indexed by larger amplitude of the FRN-like signal, but only for one
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subgroup of participants, who had not altered their previously learned responses, in the wake

of the surprise reversal. Taken together, the FRN-like signal may have supported learning

differently from the theoretical RPE function, and non-traditional tasks could help unravel

this suggestion.

However, the interpretations above are from the traditional ERP effects of the FRN,

which are limited to trial-averaged data only, and thus, do not provide direct insights for

trial-to-trial learning, at the level of individual trials. For example, for the task described

above, we found that the amplitude of the FRN-like signal, for the correct feedback-outcomes

in cycle 1, was larger when those were followed by correct responses in cycle 2 than when

followed by incorrect responses in cycle 2 (see Chapter 4). However, following traditional

ERP methods, here, these amplitudes were averaged for trials that were correct in cycle 1

and incorrect in cycle 2, and then compared to the average for trials that were correct in

cycle 1 and also correct in cycle 2. This difference in the average amplitudes of the FRN-like

signal do not suggest that the distribution of its amplitudes for the two conditions mentioned

above, were meaningfully different, when considering individual participants.

Here, to better estimate the role of the FRN-like signal and other relevant signals present

during processing of feedback information, in trial-to-trial learning of the stimulus-specific

response-rules for the task used in Chapter 4, we used predictive analysis, tailored to indi-

vidual trials. We adapt the approach taken in Chapter 2 (Chakravarty et al., 2020) to assess

the predictive value of brain activity during study trials of a verbal item-recognition task:

we start with a priori univariate ERP measures that have been replicated numerous times,

and follow that with data-driven, multivariate classifier analyses.

Predictions are meant to forecast the outcomes for future observations, whereas the

planned-comparisons approach followed by traditional ERP analysis aims to explain current

observations only; this is subject to overfitting, which is an error that is produced when a

model fits to the noise in a sample dataset. An overfitted model is a perfect fit to the sample

data it had operated on, but fails for other samples drawn from the same population, which

have differently sampled random noise. Thus, the planned-comparisons approach runs the

risk of overestimating the chosen neural measures by overfitting them; and the planned-

comparisons approach can also underestimate the behavioural relevance of brain activity, by

ignoring subtle multivariate patterns.

First, based on the knowledge from previous planned-comparisons-driven ERP effects of
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the FRN (e.g., Cohen et al., 2007; van der Helden et al., 2010), we tested if the amplitude

of the FRN-like signal classified between subsequently correct and incorrect responses. In

other words, given the amplitude for a trial in cycle n–1, can we predict its response (correct

or incorrect) in cycle n? As mentioned before, the FRN-RPE account would predict a larger

(more negative) FRN amplitude for error trials that are followed by a correct response,

than error trials that are followed by an incorrect response. If this relationship between

the FRN amplitude and subsequent response accuracy is true, then we may be able to

predict subsequent response accuracy for individual trials, based on its FRN amplitude

from its previous trial. Thus, based on a classification rule that is derived from previous

planned-comparisons analysis, we tested for predictions of subsequent response accuracy, for

individual trials, and separately for each participant.

If the FRN-like signal found in this task does not support trial-to-trial learning following

an RPE-like function, then the above classification-rule will not hold for individual trials.

However, since the trial-and-error learning task was shaped by information retrieved from the

feedback, it is likely that there exists other brain-activity signals during feedback processing

that support trial-to-trial learning. Then, to identify those signals, or a combination of

them, our next step was to follow exploratory, data-driven, multivariate pattern analysis

methods. Thus, in this case, we did not pre-assign a rule for classifying subsequent responses

into correct and incorrect trials. Instead, the relation between feedback-locked multivariate

activity and subsequent response-accuracy was learned from the data itself, and separately

for each participant. More importantly, the classifiers were trained and tested on different

sets of trials, to check for overfitting.

To avoid forcing the result or selective reporting, we take the same approach to the

classifier methods as in Chapter 2 (Chakravarty et al., 2020) and also in Chapter 3. Two,

arguably the most simple, and linear classifiers were used: linear discriminant analysis (LDA;

Fisher, 1936) and support vector machines (SVM; Cortes & Vapnik, 1995), both of which

are well suited to learn linearly-separable multivariate patterns of brain-activity, representing

different conditions, in this case, subsequent response-accuracy (correct or incorrect). Also,

SVM is more robust against overfitting. Further, with LDA, it is straightforward to analyze

the classifier-identified patterns (see Methods), and can be used to examine the relative

importance of different signals for predicting subsequent response-accuracy in this task.

In sum, we evaluated the relevance of the FRN-like and other brain-activity signals

168



for learning the stimulus-specific response-rules in the task presented in Chapter 4, by using

those signals to directly predict subsequent response accuracy for individual trials. Although

the design of trial-and-error learning tasks suggests that information acquired from the feed-

back is crucial for learning, here we objectively measure the importance of brain-activity

during feedback-processing, against predictive-benchmarks.

5.2 Methods

Participants We used data from the 58 participants reported in Chapter 4. All partici-

pants were native English speakers, had normal or corrected-to-normal vision and provided

written informed consent in accordance with a University of Alberta ethics review board.

Detailed description of the task and materials can be found in Chapter 4.

Behavioural materials and procedure Participants completed a “word choice task”.

A set of 48 words were used, half of which were chosen at random, at the beginning of

the experiment, to be of high-value, the other half was set to be of low-value. Participants

learned the value of each word through trial-and-error.

On each trial, they were presented (visually) with two items on either side of the com-

puter screen (see Figure 4.1 in Chapter 4 on page 133). One of these items was always a

word (common noun) and the other was always a nonsense string (‘HHHHH’). They were in-

structed that there were two types of words - high- and low-value. For trials with high-value

words, if they chose the word (pressed a button on the same side as the word) instead of the

string ‘HHHHH’, they got a 10 point reward, indicated by an image of a pile of coins. Also,

in this case, choosing the string ‘HHHHH’ led to 1 point, where the feedback was an image

of one coin. For the trials with low-value words, the rule was opposite, i.e., choosing the

string ‘HHHHH’ led to 10 points, and choosing the word led to 1 point. The contrast for the

two feedback images, for 1 and 10 points rewards, was equated. The goal for the participant

was to maximize the reward points, which, at the end of the session, were converted to a

small monetary bonus (up to CAD 5) that they received in addition to course credit for

participation.

All words were displayed (in random order) in each of 19 cycles. However, in cycle 17, half

of the words switched their value, without warning. This meant that half of the previously
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high-value words were randomly chosen to be of low-value and half of the previously low-

value words were randomly chosen to be of high-value. The last two cycles (18 and 19)

followed with no further changes to word-values

All responses were self-paced, but very fast responses (¡200 ms) were flagged and notified

to the participant to prevent speeding through the task. There was a jittered interval of 500–

700 ms between the response and the onset of the feedback as well as between the feedback

offset and the onset of the next trial. Each feedback trial lasted 1500 ms.

EEG Recording EEG was recorded with high-density 256-channel Geodesic Sensor nets

(Electrical Geodesics Inc., Eugene, OR), in an electrically shielded, sound-attenuated cham-

ber. The raw signal was amplified at a gain of 1000. We used a sampling rate of 500 Hz

for the recording and the impedance was kept below 50 kΩ. The vertex electrode Cz was

used as the reference. Preprocessing of the signal was done using the EEGLAB toolbox

(http://sccn.ucsd.edu/eeglab; Delorme & Makeig, 2004). Preprocessing steps included

bandpass filtering (0.5 Hz–30 Hz), average re-referencing and decomposition with indepen-

dent component analysis (ICA) to identify artifactual activity such as, eye blinks, channel

noise and muscle noise. Then, individual epochs relative to the onset of the feedback were

extracted from the signal. Each epoch included a pre-stimulus onset window of 200 ms and

a post-stimulus onset window of 1000 ms. Baseline, for each trial, was calculated by aver-

aging the signal over the 200 ms pre-stimulus interval and was subtracted from all values in

each particular trial. To detect epochs containing artifacts, an absolute voltage threshold

of 200 µV was used. We also excluded trials based on a threshold of 25 µV point-to-point

difference. On average, 1.2% trials were rejected per participant with these thresholds.

5.2.1 Predictions with the amplitude of the FRN-like signal

We tested if the amplitude of the FRN-like signal for a word in cycle n–1 predicted its

response-accuracy in cycle n. Following a signal-detection theory approach (Green & Swets,

1966), previously also used in Chapter 2 (Chakravarty et al., 2020), first, we calculated

the amplitudes (mean-voltage over the 200–350 ms time window, post feedback-onset) for

individual trials. Then, these voltage measures were sorted by their magnitude. After that,

we set a variable voltage-threshold, classifying trials above the threshold as subsequently-

incorrect, and those below the threshold as subsequently-correct. This classification-rule was
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based on the FRN-RPE account— feedback trials that are followed by correct responses are

associated with a more negative FRN than trials that are followed by incorrect responses.

Then, the true-positive and false-positive rates, corresponding to each voltage-threshold,

were plotted against each other, to obtain the receiver operating characteristic (ROC) curve.

The area under the curve (AUC) of the ROC was used to measure classification success. For

AUC = 0.5, classification was at chance; for AUC = 1, classification was perfect.

5.2.2 Multivariate pattern analysis

All classification analysis followed the same rule for selecting the time-domain features of

EEG activity (during feedback processing), as was also followed in Chapter 2 (Chakravarty

et al., 2020) and in Chapter 3. First, to avoid any circularity in the classification logic, we

pre-selected a set of 10 electrodes, roughly covering the scalp (see Figure 2.3 in Chapter 2

on page 43). Then, for each trial, the signal from each electrode was binned into 100 ms

long time-bins. This produced a total of 100 features per trial— 10 electrodes and 10 time-

bins. The classifiers were trained with 5-fold cross validation, the cross-validation folds were

stratified, which means that the ratio of the number of trials, for the two classes (subsequent-

correct and subsequent-incorrect), was kept constant. Further, the trial numbers for the two

classes were balanced within each training set, using the Synthetic Minority Oversampling

Technique (SMOTE; Chawla et al., 2002), in order to prevent the bias in classifier-training for

the over-represented class; however, note that previous results from Chapter 2 (Chakravarty

et al., 2020) suggested that oversampling by SMOTE did not alter the effects significantly

from that without oversampling. To reduce chances of overfitting, both LDA and SVM were

regularized, the regularization parameter was set at 0.5 for both. Classifier performance was

measured by the area under the curve (AUC) of the receiver operating characteristic curve

(ROC); AUC was averaged over the 5 test folds.

5.2.3 Analysis of classifier-identified patterns

With LDA, it is straightforward to look into the features of importance, as determined by the

classifier. The coefficient of each feature in the model directly translates into the weight or

importance of the feature relative to all other included features. For each participant, these

weights were first averaged across the 5 training folds. Then, to compare across participants,

weights were re-scaled to the [0, 1] interval. Finally, average weights across participants were
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used to look into the relative importance of the 10 time-bins as well as plotted on the scalp

to look into the relative importance of the different electrodes/scalp regions, separately for

each time-bin.

5.2.4 Finding the steepest cycle for predicting subsequent response-
accuracy

We considered that predicting subsequent response-accuracy of cycle n, based on feedback-

related brain-activity measures in the previous cycle n–1, would be more relevant for a pair of

successive cycles that reflect a decent increase in accuracy. This increase in accuracy would

suggest that the response-rules, for multiple trials, may have been acquired in cycle n, relative

to their response-status in cycle n–1. Although, on average (across participants), accuracy

for the early training cycles increased sharply (see Figure 4.2a on page 136), the amount of

increase in accuracy for a given pair of successive cycles varied across participants (e.g., see

Figure 4.4c on page 138). Thus, instead of choosing the same pair of successive cycles across

all participants to test the predictions for subsequent response-accuracy, a better approach

would be to choose the pair of successive cycles that show the most increase in accuracy,

and are selected individually for each participant.

On the other hand, for testing the predictions, it is also necessary that the later cycle n

contains both correct and incorrect trials. Accordingly, cycles with perfect accuracy cannot

be used as the later cycle n, even if it showed the biggest increase in accuracy with respect

to its previous cycle. Thus, taking both of the above considerations into account, we came

up with the following rule to select the steepest cycle for each participant.

1. For each participant, first, we located the training cycles for which accuracy was greater

than or equal to 75% but less than 100%. Then, among those cycles, we selected the one

with the least accuracy. This means that we chose the cycle with accuracy closest to

the 75% accuracy criterion. Across participants, the maximum cycle-accuracy obtained

this way was 85%.

2. Next, we considered the accuracy of all cycles between (and including) cycle 1 and the

cycle chosen above, and calculated the pairwise difference in their accuracy (accuracyn−

accuracyn−1).
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3. Then, we located the pair of successive cycles with the biggest, positive difference in

accuracy.

Thus the steepest cycle (n) chosen for each participant included both correct and incorrect

trials to test the predictions, and at the same time, reflected the biggest positive change in

accuracy with respect to its previous cycle (n–1). However, the amount of change in cycle-

accuracy for the steepest cycle with respect to its previous cycle varied across participants.

For participants with a slower learning rate, the above change would have been small, and

for those a faster learning rate, it would have been larger.

5.2.5 Separating trials based on previous feedback-outcomes

We also considered that when predicting subsequent response-accuracy, it would be a cleaner

comparison to separate trials that received correct- and incorrect feedback-outcomes in the

previous cycle. For error trials in the previous cycle, that are subsequently responded cor-

rectly, the FRN-RPE account would predict a bigger signal change, than when these are not

responded correctly in the next cycle. On the other hand, for correctly-responded trials in

the previous cycle, the interpretation is not straightforward. For example, if the previous

(correct) response was a guess, then a subsequent correct or incorrect response could follow

the same logic as above. However, if the previous response was not a guess, and was a learned

response instead, then a subsequent correct response would be maintaining that learned in-

formation, whereas a subsequent incorrect response could be due to failure to remember; as

discussed in the introduction, due to the large number of stimuli present in this task, it is

possible to fail to remember the correct response for a word, even if it was learned before.

Moreover, not separating the trials based on previous feedback-outcome also introduces a

potential confound to the classifier analysis. As we unpack later in the Discussion, classifiers,

due to being data-driven techniques, can be influenced by circumstantial features. Here, the

classifiers are tasked to predict response accuracy of cycle n, based on the feedback-locked

multivariate brain activity features present in cycle n–1. However, the accuracy of the two

cycles correlate with each other. Accordingly, the classifier could simply be predicting the

accuracy for cycle n–1 itself.

Thus, for both the predictions with the FRN amplitudes and with the multivariate pat-

tern analysis, we present the results with and without separating the trials based on previous
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feedback-outcomes.

5.2.6 Statistical analysis

All analyses were done using MATLAB (2018b) and specific functions from the Statistics

and Machine Learning Toolbox (Martinez et al., 2017). To test classifier success across

participants, two-tailed t-tests (against chance) were used, significant effects were relative to

α = 0.05. The 95% confidence intervals of the mean were used as an estimate of the size of

the prediction. Bayesian t-tests were also conducted, using a MATLAB function written by

SamPenDu (2015). The Bayesian probability for the alternative- over the null hypothesis is

indicated by the Bayes factor (BF10); BF10 =
p(H1)
p(H0)

. For BF10 > 10, there is strong evidence

for the alternate and for BF10 < 0.1, there is strong evidence for the null (Kass & Raftery,

1995). For BF10 > 3, there is moderate evidence for the alternative and for BF10 < 0.3, there

is moderate evidence for the null. A pseudo-random number generator (Mersenne twister,

seed = 0) was used for reproducibility of the classification results.

5.3 Results

Behaviour As reported previously in Chapter 4, participants performed at chance for

cycle 1, which was expected (Figure 4.2). After that, performance increased sharply with

increasing cycles and approached the maximum by cycle 16. Thus, participants were able

to learn the stimulus-response associations of the 48 words within the 16 cycles of value

learning. For the earlier training cycles, performance for high-value words tended to be

greater than that for the low-value words (see Figure 4.2a on page 136). This is because

participants preferred to choose the word more often than the string ‘HHHHH’ (word choice

bias). Also, response times for the low-value words tended to be slower than that for the

high-value words (see Figure 4.2b on page 136, considering correct responses only). This

could be because low-value words required incongruent responses (press a button on the

opposite side of the word).

Average performance for the last four training cycles (cycles 13 to 16, see Figure 4.3a

on page 137) showed that a small number of participants (N = 11) did not learn the

word-values considerably well (average performance accuracy less than 0.8). These were

flagged as ‘non-learners’. Also, analysis of performance in the reversal cycle 17 showed
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that participants either responded on the basis of knowledge acquired in the training cycles

(N = 21, conservative, see Figure 4.4a on page 138, or changed it in the wake of the reversal

(N = 26, exploratory, see Figure 4.4b on page 138).

Analysis of the feedback-locked ERPs during the surprise reversal (cycle 17) showed that

the amplitude of the FRN-like signal was not significantly more negative for the switched-

than the non-switched words (see Chapter 4). However, since the exploratory participants

had frequently altered their responses, we speculated that whenever a participant altered

their previously-learned response for a trial, their reward prediction for that trial may have

changed as well. Supporting this, we found that the amplitude of the FRN-like signal for cycle

17 was significantly more negative for switched and non-switched trials when the responses

were not altered. Further, acquiring the new response-rules in cycle 18 was indexed by the

amplitude of the FRN-like signal in cycle 17— its amplitude in cycle 17 for switched trials

that were followed by correct responses in cycle 18 was more negative than those followed by

incorrect responses. However, this response adjustment indexed by the FRN-like signal for

cycle 18 was significant for the conservative- and not the exploratory strategy participants

(see Chapter 4).

Notably, for the training cycles, there was no significant difference in learning rates

between the groups. In our classification analysis, we present results for all participants,

followed by the breakdown of participants into non-learners and the two strategies.

5.3.1 Feedback-locked ERPs

Detailed analysis of the feedback-locked ERPs for the surprise reversal cycle 17 can be found

in Chapter 4. Here, we looked into the feedback-locked ERPs during the early training cycles,

to get a sense of what to expect from the classification analysis that follows. Non-learners

were not included in the ERP analysis.

We considered the steepest cycle (the steepest increase in accuracy from one cycle to

the next), which was chosen individually for each participant, following the rules described

in the Methods. Then feedback-locked ERPs from its previous cycle were obtained and

plotted separately correct and incorrect trials in the steepest cycle, as well as, for correct and

incorrect trials in the previous cycle (see Figure 5.1). For high-value words that were correctly

responded to in the previous cycle, amplitudes of the FRN-like signal for subsequently correct

trials appeared to be more negative than subsequently incorrect trials (Figure 5.1a). A paired
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t-test between these two conditions was significant, t(37) = 2.48, p < 0.05, BF10 = 2.55,

but the Bayes Factor (BF10 < 3) was inconclusive. However, for the other conditions,

the difference in the amplitudes of the FRN-like signal for subsequent correct and incorrect

responses was smaller (Figure 5.1b–d). Thus, to compare across all conditions, we conducted

a 2×2×2×2 repeated-measures ANOVA for the amplitudes of the FRN-like signal, with the

within-subject factors Value (high and low), Accuracy in the previous cycle (correct and

incorrect), Accuracy in the subsequent cycle (correct and incorrect), and the between-subject

factor Strategy (conservative and exploratory). However, this model revealed no significant

main or interaction effect for Accuracy in the subsequent cycle. Also, note that the degrees of

freedom of the model was reduced because multiple participants did not make any incorrect

response for previously correct trials, and thus, they were excluded from the analysis.

Overall, for the high-value and previously-correct trials the ERP analysis showed a sig-

nificant effect in favour of the suggestion that the FRN-like signal in this task indexed

trial-to-trial learning. However, this was not true for the other relevant conditions.

5.3.2 Predicting subsequent response-accuracy with the ampli-
tude of the FRN-like signal

Considering the steepest cycle, which was individually chosen for each participant (see Meth-

ods), the predictions based on the amplitudes of the FRN-like signal are presented in Fig-

ure 5.2. When all trials from the previous cycle were considered, this amplitude did not pre-

dict subsequent response-accuracy significantly better than chance (0.5); t(50) = 1.48, p =

0.15, 95% CI = [0.49 0.55], BF10 = 0.42, but the Bayes Factor (0.1 < BF10 < 3) was incon-

clusive. When only incorrect trials from the previous cycle were considered, the amplitude

of the FRN-like signal also did not predict subsequent response-accuracy significantly better

than chance; t(50) = 0.70, p = 0.49, 95% CI = [0.47 0.56], BF10 = 0.19, also with incon-

clusive BF10. However, when only correct trials from the previous cycle were considered,

there was a significant effect: t(48) = 2.92, p < 0.01, 95% CI = [0.52 0.61], BF10 = 6.51;

the Bayes Factor (3 < BF10 < 10) suggested moderate evidence in favour of the effect. The

95% confidence interval suggested that the size of the prediction was modest. Moreover,

breaking down the results into the two strategies showed that the effect was significant for

the exploratory- (t(23) = 2.43, p < 0.05, 95%CI = [0.51 0.62]) and not the conservative

(t(20) = 1.30, p = 0.21, 95%CI = [0.47 0.63]) strategy participants (Figure 5.2). Given
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a Previously-correct (High) b Previously-correct (Low)

c Previously-incorrect (High) d Previously-incorrect (Low)

Figure 5.1: Grand averaged ERPs for learners (N = 47) during feedback presentation, and as
functions of response accuracy in the steepest cycle, chosen individually for each participant
(see Methods). ERPs are shown separately for high- and low-value (left and right panels),
for correct and incorrect responses in the subsequent cycle while keeping response accuracy
restricted to correct (upper panels) and incorrect (lower panels) trials for the preceding
cycle. Shaded error bars are standard errors of the mean. All ERPs are plotted for the
fronto-central electrode FCz.
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Figure 5.2: Classification of subsequent response-accuracy, based on the amplitudes of the
FRN-like signal, and for the steepest cycle, chosen individually for each participant (see
Methods). Classifications are presented separately for when all trials were considered in
the previous cycle, when only previously-incorrect trials were considered, and when only
previously-correct trials were considered. Results are also shown separately for all partici-
pants (N=58), non-learners (N=11), conservative- (N=21) and exploratory (N=26) strategy
participants. Dashed line presents chance. Error bars are 95% confidence intervals. Signifi-
cant effects are marked with *.

that the means were similar, this could also be due to slightly more participants in the

exploratory- than conservative strategy group.

Thus, the amplitude of the FRN-like signal supported trial-to-trial learning for the correct

responses only. As discussed before, for previously-correct trials, if the response was a guess,

then a greater signal change in the FRN-like signal for later correct responses could agree

with the FRN-RPE account. However, considering this result, along with the non-significant

effect for the previously-incorrect trials, it is possible that the FRN-like signal in this task

did not follow an RPE-like function in order to support trial-to-trial learning of the correct

responses. Notably, this result was consistent with the conclusions of Chapter 4. Instead,

the FRN-like signal may have indexed maintenance of learned responses across successive

cycles, with a greater signal change. Notably,

5.3.3 Predicting subsequent response-accuracy with multivariate
pattern analysis of brain-activity during feedback-processing

Next, we tested if multivariate pattern analysis of brain activity during feedback-processing

predicted subsequent response-accuracy. Following the same approach as above, responses

were considered for the steepest cycle, chosen individually for each participant. The re-
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sults showed that when all trials were considered from the previous cycle, both LDA and

SVM achieved significant success in predicting subsequent response-accuracy (see Figures 5.3

and 5.4); LDA: t(50) = 2.54, p < 0.05, 95% CI = [0.51 0.58], BF10 = 2.74, SVM:

t(50) = 2.60, p < 0.05, 95% CI = [0.51 0.59], BF10 = 3.17, but the BF10 provided moder-

ate support for the SVM effect only. Also, in this case, for both LDA and SVM, the effects

were more significant for the exploratory- than the conservative strategy participants (Fig-

ures 5.3 and 5.4), which, once again, could be due to more participants in the exploratory

strategy group. However, as mentioned before, the classifier success in this case, could be

due to the classifiers predicting response accuracy for the previous cycle itself.

When only incorrect trials were considered from the previous cycle, both LDA and SVM

failed to produce significant effects; LDA: t(46) = 0.25, p = 0.81, 95% CI = [0.46 0.56],

BF10 = 0.16, SVM: t(46) = 0.89, p = 0.38, 95% CI = [0.47 0.58], BF10 = 0.23; BF10

was inconclusive in both cases. Interestingly, in this case, we found a positive correlation

between LDA performance and asymptotic accuracy of the participants (average accuracy

over the last four training cycles); r(47) = 0.31, p < 0.05; there was also a trend-effect for

SVM, r(47) = 0.24, p = 0.09. The correlation plots (see Figure 5.5) showed that this result

was mainly due to the non-learners, for whom, the classifiers performed worse.

Finally, when only correct trials were considered from the previous cycle, both LDA and

SVM once again failed to produce significant effects; LDA: t(29) = 0.68, p = 0.50, 95% CI =

[0.46 0.59], BF10 = 0.24, SVM: t(29) = −0.16, p = 0.87, 95% CI = [0.42 0.57], BF10 =

0.20; BF10 was inconclusive in both cases. However, in this case, the degrees of freedom

were substantially lower than all other analyses reported above.

Overall, multivariate pattern analysis of brain activity during feedback-processing did

not succeed in predicting subsequent response accuracy. However, this set of analyses was

subject to lower number of trials available for training the classifiers. Also, the degrees of

freedom of the t-tests suggested that especially for the case of previously-correct trials, many

participants did not have enough trials in order to conduct the classifier analysis with 5-fold

cross-validation. Thus, the failure of the multivariate pattern analysis could be due to lack

of power.
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Figure 5.3: Classification of subsequent response-accuracy with LDA, based on multivariate
pattern analysis of brain activity during feedback-processing, and for the steepest cycle, which
was chosen individually for each participant (see Methods). Classifications are presented
separately for when all trials were considered in the previous cycle, when only previously-
incorrect were considered, and when only previously-correct trials were considered. Results
are also shown separately for all participants, non-learners, conservative- and exploratory
strategy participants. Dashed line presents chance. Error bars are 95% confidence intervals.
Significant effects are marked with *.
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Figure 5.4: Classification of subsequent response-accuracy with SVM, based on multivariate
pattern analysis of brain activity during feedback-processing, and for the steepest cycle, which
was chosen individually for each participant (see Methods). Classifications are presented
separately for when all trials were considered in the previous cycle, when only previously-
incorrect were considered, and when only previously-correct trials were considered. Results
are also shown separately for all participants, non-learners, conservative- and exploratory
strategy participants. Dashed line presents chance. Error bars are 95% confidence intervals.
Significant effects are marked with *.
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Figure 5.5: Correlation between classifier performance and asymptotic accuracy of the par-
ticipants (average accuracy over the last four training cycles), separately for LDA (a) and
SVM (b). The classification was for subsequent response-accuracy, restricted to previously
incorrect trials (the middle bars for each group in Figures 5.4 and 5.3). Dashed lines present
chance performance. Solid lines are the regression lines.

5.3.4 Predicting word-value with multivariate pattern analysis of
brain activity during feedback processing

Lastly, we wondered if multivariate pattern analysis of brain-activity during feedback-processing

predicted word-value (high or low), suggesting that participants were thinking back about

the trial, which facilitated learning. Since classifying value was not confounded by the de-

pendence of accuracy on cycle, to better train the classifiers with more trials, we pooled

trials from cycles 2 to 5. However, due to the word-choice bias in the early training cy-

cles, word-value was related to accuracy; high-value words were responded correctly more

frequently than the low-value words. Thus, the classifier could pick up on the two different

reward images used for the correct and incorrect feedback-outcomes, and predict word-value

using this difference. To avoid this, we conducted the classifier analysis separately for when

the feedback-outcome was correct or incorrect (see Figure 5.6a–b).

For correct feedback-outcomes, both LDA and SVM achieved significant success in pre-

dicting word-value (LDA: t(57) = 3.37, p < 0.005, 95% CI = [0.51 0.55], BF10 = 20.86;

SVM: t(57) = 2.57, p < 0.05, 95% CI = [0.51 0.54], BF10 = 2.90), though only the

LDA effect was strongly supported by the Bayes Factor (BF10 > 10). Both LDA and SVM

also succeeded in predicting word-value when the feedback outcome was incorrect (LDA:

t(56) = 3.05, p < 0.005, 95% CI = [0.51 0.57], BF10 = 8.97; SVM: t(56) = 2.17, p < 0.05,
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95% CI = [0.50 0.56], BF10 = 1.25); with BF10 indicating moderate support for the LDA

effect only. Interestingly, the LDA weights for predicting word-value when the feedback

outcome was incorrect showed a clear peak for the 5th and 6th time-bins, suggesting greater

influence of the feedback-related signal in this time-window (see Figure 5.6c–d). On the

other hand, the LDA weights for predicting word-value when feedback outcome was correct

did not show a similar peak, and instead, they were overall higher for the earlier- than the

later time-bins. However, the scalp distribution of the LDA weights for the 500–600 ms

time-bin, as well as for an earlier 300–400 ms time-bin, looked very similar for the correct

and incorrect feedback-outcome conditions (see Figure 5.6e–h). Thus, it is possible that

there were same underlying signals, but those were weighted differently, and thus proba-

bly also recruited differently in the brain, when discriminating between high- and low-value

words separately for correct- and incorrect feedback-outcomes. Taken together, these results

suggest that brain-activity during feedback-processing reflected thinking back/processing of

the word-value information, which may be implemented differently in the brain when the

feedback-outcome was correct, and when it was incorrect.

5.4 Discussion

Our goal was to investigate brain activity while participants processed feedback information

which supported trial-to-trial learning. We found that the amplitude of the FRN-like signal

found in this task achieved significant success in predicting trial-to-trial learning when the

previous trial was responded correctly. However, this amplitude did not predict trial-to-

trial learning when an error was made in the previous trial or when both previously correct

and incorrect trials were considered. Multivariate pattern analysis of brain activity during

feedback processing failed to predict trial-to-trial learning for all three situations mentioned

above. However, multivariate pattern analysis may have failed due to smaller number of trials

available for training the classifiers, especially when considering previously-correct trials

only. Interestingly, classifier performance increased with the performance of the participant;

specifically, for participants who failed to learn the stimulus-specific response-rules even after

16 cycles of training, the classifiers also performed worse. Additionally, multivariate pattern

analysis of brain activity during feedback processing achieved a small but significant success

in predicting the inferred value of the word (high or low); and interestingly, the classifier-
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Figure 5.6: a–b. Classification of word-value (high/low), for trials pooled from cycles 2
to 5, based on multivariate pattern analysis of the feedback-related activity, for the same
trials, and separately for when the feedback outcome was correct (a), and incorrect (b).
Results are shown separately for all participants, non-learners, conservative and exploratory
strategy participants. Dashed line presents chance. Error bars are 95% confidence intervals.
c–d. LDA weights, averaged across all included electrodes, and across all participants with
LDA AUC> 0.5, for classification of word-value, separately for correct- (c) and incorrect
(d) feedback-outcomes. Error bars are standard errors. c–d. Scalp-distribution of the LDA
weights, for the 300–400 ms, and the 500–600 ms time intervals. Color reflects weights, color
axes are range-scaled.
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identified pattern for discriminating between high- and low-value words was different for when

the feedback-outcome was correct or incorrect. Together, our results offered novel insights

for understanding brain activity behind trial-and-error learning, as we discuss below.

Trial-and-error learning presents a situation where information acquired from the feed-

back is crucial to do better in the task. Thus, it is natural to ask what features of brain

activity may support learning from the feedback. Previous research suggests that the FRN

may be a candidate. Specifically, the FRN-RPE account (Holroyd & Coles, 2002) suggests

that the FRN acts like an reinforcement learning error signal in the brain. If this is true,

then, similar to how the RPE function has been able to successfully explain reinforcement

learning, the FRN could also support human trial-and-error learning. However, previous

studies looking into this question have found mixed results. One possibility is that the FRN

scales with an RPE function to support learning only for more traditional reinforcement

learning tasks used in this type of research, such as gambling tasks or time estimation tasks.

On the other hand, for tasks where reward prediction is not the central goal, but instead

it guides stimulus-specific learning, such as the current task, the FRN-like signal may not

1) index a generic RPE computation (see Chapter 4) or 2) support learning following an

RPE-like function. Notably, a study by Chase et al. (2011), who used a gambling task, also

found that the FRN did not support trial-to-trial learning following an RPE function. Thus,

functions of the FRN in human trial-and-error learning may be different from a theoretical

RPE function.

Going beyond traditional ERP effects, here, we showed that amplitude of the FRN-like

signal predicted learning from correct feedback-outcomes, but not from incorrect feedback-

outcomes. These results contrast with what would be predicted by the FRN-RPE account—

that for a trial, there is a greater probability for a change in response when it was previously

responded incorrectly. The traditional ERP analysis of the FRN-like signal found in this task

also showed more negative amplitude for correct trials when they were followed by correct

trials in the next cycle, than when they were followed by incorrect trials in the next cycle,

but only for high-value words and the Bayes Factor was inconclusive. Two other studies

which used a paradigm close to ours, also found (with traditional ERP analysis) that FRN

indexed learning for correctly-responded trials only (Arbel et al., 2013, 2014).

As discussed briefly in the Methods and Results, a correct trial could have been either a

guess (for example, all correct trials in cycle 1 were guesses) or a learned response. A guess
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would have produced a non-zero (positive) RPE, and accordingly, a larger FRN amplitude

will be more likely if the guessed-correct response was followed by another correct response,

than if it was followed by an incorrect response. This agrees with the FRN-RPE account.

However, if this is true, then a larger FRN will also be more likely when an incorrect (which

has to be a guess) response was by followed a correct response, than if it was followed by

another incorrect response. However, this was not the case. Alternatively, a correct response

could be a learned response, in which case, it would produce a zero RPE, and thus, a smaller

FRN, and there is no response adjustment required in the subsequent trial. However, our

results suggested that there was a greater signal-change for the FRN when a correct response

was followed by another correct response, than when a correct response was followed by

an incorrect response. Also, consider the interpretation for the situation where a correct

response is followed by an incorrect response. Unlike gambling tasks, here, rewards were

deterministic, and thus, once the response-rule for a word was learned, there was no need

to bet on it in subsequent trials. Thus, only possible reason behind the situation where a

correct response was followed by an incorrect response is that it was simply not remembered.

This is possible, for there were 48 trials per cycle, producing interference in memory. Thus,

a greater signal change in the FRN-like signal for correct responses that were followed by

correct responses, than for correct responses that were followed by errors, could suggest that

the FRN-like signal supports maintaining of correct or learned responses from one trial to

the next. This contrasts with the RPE function, which supports response adjustments after

making errors.

Although the FRN-like signal did not predict learning for previously-incorrect trials,

there could be other signals present during feedback processing that do so. However, our

multivariate pattern analysis of brain activity during feedback processing could not predict

learning either. Classifiers require a large number of trials for better training. Accordingly,

our initial plan was to pool trials from multiple cycles. However, classifiers are also sensitive

to circumstantial information, in this case, the dependence between response-accuracy and

training cycles. As the number of cycles increased, response-accuracy increased. Thus, a

classifier designed to predict response-accuracy should also be able to make predictions about

the cycle, albeit not perfectly. However, with trials pooled across cycles, the classifier could

be doing the reverse. In other words, the classifier could be predicting response-accuracy

based on cycle alone. Thus, trials were not pooled across multiple cycles. However, even for
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predicting the response-accuracy for one cycle, based on the multivariate feedback-related

activity from the previous cycle, the classifiers could have predicted the response-accuracy

of the previous cycle itself, and produced a significant success, as we saw in the results.

Thus, restricting to previously-correct or previously-incorrect trials only was a much cleaner

comparison. However this reduced the number of training trials drastically, producing under-

powered, non-significant effects. Importantly, predictions with the amplitudes of the FRN-

like signal only were not subject to these confounds; in that case, all the trials were treated

as test trials, and the classification-rule was obtained from previous ERP effects of the FRN,

in accordance to the RPE account.

Notably, cognitive processes present during the study or encoding of information are

thought to be important predictors of the variability in later memory success. In the sub-

sequent memory effect approach (Sanquist et al., 1980), researchers have examined brain

activity during the study phase of memory tasks to identify signals that index later memory-

success at test. The subsequent memory effect approach is referred to as identifying brain

activity that is predictive of memory, because it evaluates memory outcomes as functions of

brain-activity signals that are operational at an earlier time than when the actual test hap-

pens (for a review, see Paller & Wagner, 2002). However, very few studies have looked into

the predictability of the brain-activity signals identified with the subsequent memory effect

framework using actual predictive tests (Chakravarty et al., 2020; Fukuda &Woodman, 2015;

Noh et al., 2014; Sun et al., 2016; Watanabe et al., 2011). In a previous study (Chapter 2;

Chakravarty et al., 2020), we found that the EEG (time-domain) features present during the

study-phase of an item-recognition task were indeed predictive of later memory-success (at

test), but the size of prediction, for both individual ERP-measures at study (late-positive

component and slow-wave), as well as for multivariate pattern analysis of study-related ac-

tivity, was small, though the classifier performance increased with participant’s performance,

and was meaningfully large for participants who performed well.

The subsequent memory effect framework applies to many learning situations, including

the current task, where response-accuracy may be explained as functions of brain-activity

signals present during feedback-processing of the previous trial. However, the subsequent

memory effect has been more commonly studied in what can be referred to as ‘one-shot’

learning— participants study unique lists of items (such as, words) followed by memory-

tests, such as old/new recognition, recall etc., and thus, the tests typically evaluate memory
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outcomes after single exposure to the items only. Further, learning in those memory tasks is

based on instruction only, there is no clear, immediate incentive for the participant to learn

the lists, other than their general motivation to do well in the task. In contrast, here, the

same set of 48 words were repeated across all cycles, and also, there were rewards, both of

which could have made the task more engaging, producing more task-relevant brain activity.

In partial support of the above suggestion, the size of prediction with the amplitude of the

FRN-like signal (for previously-correct trials), as estimated by the 95% confidence intervals

of the average AUC, was greater ([0.52 0.61]) than what we found with the amplitudes of

the late-positive component ([0.51 0.54]) or the slow wave ([0.51 0.54]), when predicting

subsequent memory success in Chapter 2 (Chakravarty et al., 2020). Note that the number

of participants were comparable across the two studies. However, in Chapter 2 (Chakravarty

et al., 2020), the number of trials included (for each participant) into the predictive analysis

was substantially higher. Taken together, the current investigations draw an interesting

parallel with the subsequent memory effect investigations, and it may be possible to find

even more predictive success with multivariate pattern analysis of brain activity (during

feedback processing) for the trial-and-error learning task by figuring out a better way to

employ those methods.

In our task, learning entailed gaining knowledge about the value of a word (high or

low). Accordingly, we asked if the feedback-related brain activity predicted the value of the

preceding word stimulus. We found significant success with the multivariate classifiers in

predicting word-value, but the size of the prediction was small. We conducted the analy-

sis separately for correct- and incorrect feedback-outcomes, because the two reward-images

used for correct- and incorrect feedback-outcomes were different, and as mentioned before,

classifiers can be sensitive to such information— due to the word-choice bias in the ear-

lier training cycles, correct (the 10 points reward) responses were more common for high-

than low-value words, and thus, the classifier could be predicting word-value by learning

about the difference due to the two reward images. Analyzing the classifiers separately for

correct- and incorrect feedback-outcomes helped avoid this confound, and also produced

an interesting result. Although classification success for both the correct- and incorrect

feedback-outcome conditions were comparable, the LDA-weights suggested different under-

lying patterns. Notably, when the feedback-outcome was correct, it meant that the preceding

response was either a congruent action for the high-value words, or an incongruent action
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for the low-value words. For incorrect feedback-outcomes, this was opposite. Thus, the dif-

ference between the classifier-identified patterns could suggest how the participant learned

to make congruent and incongruent responses to high- and low-value words, respectively.

Taken together, learning from correct- and incorrect feedback-outcomes involved different

signals, and potentially different cognitive processes underlying those signals, even though

correct and incorrect feedback-outcomes were equally useful to learn the stimulus-specific

response-rules.

To our knowledge, no other study has investigated brain-activity signals for trial-and-

error-learning with predictive approaches, though research in the field of brain-computer

interfaces (BCI) has focused on error-related signals such as the FRN to improve the perfor-

mance of the BCI equipment (Mousavi & de Sa, 2019; Chavarriaga, Sobolewski, & Millán,

2014); this is a different goal. However, a recent study by Williams, Hassall, Lindenbach, and

Krigolson (2019) may be relevant. Here, participants learned to associate Tamil/Manipuri

symbols to English words through trial-and-error. A computational (reinforcement learning)

model was also fitted to do the same task, in order to compare between experimental data

and model behaviour. Their computation of the FRN amplitude was a little different from

the current study, for their analysis of the FRN was based on an alternate theory suggested

by some researchers previously. Specifically, some have suggested that the FRN may be the

result of a superposition of two signals: a negative-going deflection with latency close to

200 ms, also known as the N2, which is followed by a positive-going deflection, also known as

the reward-related positivity. The N2 is thought to index unexpected outcomes whereas the

reward-related positivity indexes positive outcomes (Holroyd et al., 2008). The superposi-

tion of the two signals with opposite polarity gives rise to a more negative FRN for negative

than positive outcomes (for a review, see, Proudfit, 2015). Williams et al. (2019) analyzed

the reward-related positivity, and found that its amplitude decreased with learning. Also,

the reward-related positivity was negatively correlated with accuracy, and positively corre-

lated with response times, for both participant- and the model data. Together, the RPE

effect indexed by the reward-related positivity, a signal that may underlie the FRN, was

strongly correlated with learning. However, their study did not test for predictions beyond

the correlations, and thus, as with any descriptive analysis, this effect could be subject to

overfitting. Correlations between variables do not readily suggest that one can be predicted

from another, unless the relation is also evaluated for out-of-sample data, which contains
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differently sampled random noise.

Another study by Arbel and Wu (2016) is also relevant. Their study followed a similar

paradigm as that of Arbel et al. (2014), participants learned to associate novel objects with

non-words through feedback and with repetitions or cycles. Using correlations, Arbel and

Wu (2016) also found that the FRN amplitude decreased with learning. However, a gradual

decrease in an EEG signal across a session may also be due to other reasons, such as,

electcrodes drying out, etc., and may not be due to learning only. Additionally, with logistic

regressions, Arbel and Wu (2016) found that while a larger FRN for the positive-feedback in

cycle 1 predicted learning-success at a later test in case of the negative-feedback, a smaller

FRN in cycle 1 predicted learning-success at the later test. Thus, for the negative feedback,

the FRN-indexed learning effect followed an opposite rule to that for the positive feedback.

However, this was not a classifier analysis; the logistic regression did not use separate trials

for training and testing the model, and thus, could have been subject to overfitting as well.

In light of the findings Arbel and Wu (2016), who used a paradigm that was closer to

the current study than a gambling- or time estimation task, one possibility is that in our

study, the amplitude of the FRN-like signal for the previously-incorrect trials also indexed

trial-to-trial learning following a reverse classification-rule than that for previously-correct

trials. However, in that case, the ROC analysis of the amplitudes would have produced

AUC values significantly below chance, but this was not the case. Thus, unlike Arbel and

Wu (2016), in this study, the trial-to-trial learning effect indexed by the FRN-like signal was

not orthogonal for previously-correct and incorrect trials.

Overall, our results added novel insights to human trial-and-error learning, and challenged

the equivalence between an FRN-like signal and RPE (also see Chapter 4). The multivariate

classifiers could not be employed efficiently, in order to make the same predictions as those

tested with the amplitudes of the FRN-like signal; this is a direction to be pursued in detail

in the future. However, when they were not under-powered, the multivariate classifiers were

successful in predicting word-value.

Notably, the overall size of prediction, both in case of amplitudes of the FRN-like sig-

nal and the multivariate classifiers, were modest, though classifier performance depended

on participants’ performance. Thus, it is possible that for better-performing participants,

brain activity was more task-relevant, which produced a higher signal-to-noise ratio (SNR),

and the classifiers were able to leverage it. Also, the time-domain features of EEG are more
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likely to be influenced by the trial-to-trial variability in the latency of the EEG signals, than

for example, the spectral-domain features of EEG, though some suggest that the latency of

the FRN is relatively more stable across trials, and thus, it takes smaller number of trials

to obtain a significant FRN effect, following traditional ERP methods (Marco-Pallares et

al., 2011). In general, when conducting classifier analysis for EEG data, researchers have

more commonly opted for the spectral domain features (for example, see Weidemann et al.,

2019; Noh et al., 2014, who used EEG classification to predict different memory outcomes).

However, even in those cases, the prediction sizes were never near perfect. Although previ-

ous studies have not very commonly discussed the interpretations of their results based on

the overall size of prediction, this is an important point that needs further consideration,

specifically when the size of prediction is modest. It is possible that on average a small size

of prediction is what we can expect from classification of EEG, and the chance of success for

the classifier methods needs to be viewed in terms of the task-relevance (or “task-resolution”)

of recorded brain-activity. Further, it may be possible to evaluate this task-resolution with

the participants’ performance (see also Chapter 2 Chakravarty et al., 2020 and Chapter 3,

where we found similar suggestions). For the investigations pursued here, it is also possible

that cognitive processes present during feedback-processing only explain part of the vari-

ability in trial-to-trial learning. Other sources of variability may include cognitive processes

present during processing of the stimulus, making responses, etc.; these would also need to

be explored in detail in the future.

In sum, we found that an FRN-like signal might be able to support trial-to-trial learning.

However unlike RPE, which supports response adjustments after making an error, the FRN-

like signal may support maintaining of correct or learned responses, from one trial to the

next. This also calls for a reconsideration of the ways in which reinforcement learning in

thought to inform human trial-and-error learning.
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Chapter 6

General Discussion and Conclusion

In this thesis, I investigated brain activity underlying learning success, with predictive ap-

proaches. Using single-trial estimates of the time-domain features of electroencephalographic

(EEG) recordings, I showed that it is possible to make predictions about learning-outcomes

at the level of individual trials, and also to gain insights about behaviourally-relevant brain-

activity signals. In this final Chapter, I discuss the general implications for the findings and

questions for the future. I also note the significance of this work in using predictive analysis

as the main approach, along with its limitations and future directions.

6.1 General Implications

The central idea behind the investigations pursued here was that variability in learning out-

comes can be explained by cognitive processes preceding them in time, and thus, predicted

from brain activity that likely captures those cognitive processes. The studies first evaluated

the predictive value of previously known event-related potential (ERP) measures related to

the behavioural outcomes, followed by more data-driven analysis of the multivariate pat-

terns. Figures 6.1 and 6.2 present visual summaries of the main investigations with the two

paradigms. Here, I discuss how each of these investigations adds to the existing knowledge

about behaviourally-relevant brain activity.

6.1.1 Predictive value of univariate ERP measures derived from
prior studies

Late positive component, slow wave, and the subsequent memory effect The two

ERP signals during the study phase of the item recognition task, late positive component
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(LPC) and slow wave (SW), achieved small but significant success in predicting subsequent

memory. This provides objective evidence for the predictability of the subsequent memory

effect ERPs (see Figure 2.5 in Chapter 2, page 48). However, across participants, the small

size of prediction (estimated from the 95% confidence intervals) could suggest that explain-

ing memory-variability by cognitive processes underlying the LPC and SW amplitudes is an

overestimation. Interestingly, predictions based on LPC and SW amplitudes were positively

correlated with each other (see Figure 2.6 in Chapter 2, page 48), which contrasts with the

general suggestion that LPC and SW index different cognitive processes such as shallow- and

deep encoding strategies, respectively (Paller et al., 1987; Smith, 1993). Chen et al. (2014)

also found correlations between the trial-averaged amplitudes for LPC and SW (when com-

paring between subsequent hits and misses). However, only LPC amplitude correlated with

participants’ d
′

, suggesting a greater relevance of LPC than SW for the memory outcomes

of this task. Also, consider that LPC and SW have 1) similar scalp-distribution of voltage,

2) they are generally computed from the same electrode Pz, and 3) their latencies may over-

lap. Thus, correlations between measures of LPC and SW (average amplitudes or AUCs)

could be due to the general temporal and/or spatial auto-correlation property of the EEG

recordings. We also found that predictions for hits and misses based on the LPC amplitude

correlated with that based on the FN400 amplitude (at test), whereas predictions based on

the SW amplitude correlated with that based on the late parietal positivity (LPP) amplitude

(at test) (see Figure 3.20 in Chapter 3, page 112). This could suggest a difference between

the two ERPs at study. In parallel, Chen et al. (2014) reported correlations between the

trial-averaged amplitudes of LPC and FN400, and also between SW and LPP. Together these

results suggest that despite some commonality, either caused by the way these two signals

are measured or due to their shared variance in explaining subsequent memory success, LPC

and SW are, at least in part, signals that index different cognitive processes at study.

FN400, late parietal positivity, and single- versus dual-process accounts The

amplitudes of the two commonly-investigated ERPs during the test phase of the item recog-

nition task, FN400 and LPP, also achieved modest success in classifying between 1) targets

and lures, 2) hits and misses, and 3) old and new responses. These results support the rele-

vance of the FN400 and LPP in recognition memory outcomes (see Figure 3.2 in Chapter 3,

page 87). However, both ERP signals failed to classify between false alarms and correct
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rejections, which contrasts with the suggestion that false alarms are processed similar to

targets than lures, and are driven by familiarity (Finnigan et al., 2002; Wolk et al., 2006).

Unlike LPC and SW at study, predictions based on FN400 and LPP amplitudes did not

correlate with each other. Thus, FN400 and LPP may not contribute to common memory

variability (see Figure 3.3 in Chapter 3, page 89). There is little doubt that FN400 and

LPP are characteristically different, the scalp-distributions of voltage for the two ERPs look

clearly very different (see Figure 3.1 in Chapter 3, page 86). Also, the common view is that

FN400 and LPP index familiarity- and recollection-based cognitive processes, respectively

(Rugg & Curran, 2007). However, debates surround the idea whether FN400 and LPP (or the

familiarity and recollection processes that may underlie these signals) independently give rise

to the recognition judgments, or if they are integrated to form a unitary source of evidence

that drives the recognition judgments. The current investigations did not settle this debate,

but offered a few useful insights. Specifically, the consideration of response times could be

an important aspect. Analysis of the response times for the memory judgments showed that

on average, many responses were reached either before or within the time-window of interest

for the LPP (see Figure 3.6 in Chapter 3, page 92). Thus, LPP amplitude-based predictions,

at least for the shorter response-time trials, may have been supported either by some motor-

preparatory activity due to the response-actions, or driven by a recollection process that was

more epiphenomenal in this task. Also, Chen et al. (2014) reported that d
′

correlated with

trial-averaged FN400- but not LPP amplitudes. Accordingly, one possible interpretation is

that in this task, LPP supported meta-judgments about recently made decisions, rather than

actively driving the memory judgments (Woroch & Gonsalves, 2010).

Feedback-related negativity, reward-prediction error, and trial-and-error learn-

ing The possible connection with reinforcement learning theories have led to an abundance

of studies pursuing the characteristics of the feedback-related negativity (FRN; for a review,

see Walsh & Anderson, 2012). Indeed it is an attractive idea that there may exist a signal

in the brain that does exactly what a reward-prediction error (RPE) function would do in

a theoretical problem (Holroyd & Coles, 2002). However, this may be an oversimplification

of the functions of the FRN, specifically if we consider the fact that trial-and-error learning

is more basic to the range of cognitive functions that higher-order cortical areas are capable

of supporting, and that the FRN is very likely generated in one of the higher-order cortical
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areas— the anterior cingulate cortex (ACC). Moreover, recent evidence suggests that for re-

inforcement learning, the role of the higher-order cortical areas may not be simply limited to

relaying of information from the midbrain dopaminergic systems, but they could also play a

more active role, specifically when the task involves complex learning variables (Barraclough

et al., 2004; Gershman & Daw, 2017). Thus, the finding that the current trial-and-error

learning task recruited the FRN differently from what would be expected based on a purely

RPE function (Chapter 4), may not be that surprising. However, EEG experiments cannot

claim involvement of specific higher-order cortical regions, and thus, future investigations

with fMRI, will be required to examine the above suggestion. Also, it is possible that the

signal identified with the planned comparisons approach in Chapter 4 is different from the

FRN signal suggested by previous studies, especially because its scalp distribution of voltage

appeared to be relatively more frontal than the FRN-specific fronto-central negativity.

Given that the FRN is related to how and what information is retrieved from the feedback,

it likely plays a role in supporting trial-and-error learning. However, the question of interest

for the current study (Chapter 5) was whether or not the FRN supports learning following

an RPE-like function. The results did not suggest so. Both the trial-averaged ERP effects

and the predictions with the amplitudes of the FRN-like signal indicated that this signal

supported how learned (or correct) responses were maintained across successive cycles, rather

than how errors were adjusted subsequently (see Figures 5.1 and 5.2 in Chapter 5, pages 177

and 178, respectively). A similar pattern of results was also reported by Arbel et al. (2014),

who used a paradigm similar to the current task. The suggestion that FRN supports learning

following an RPE-like function, has also been challenged with the more commonly-used

gambling paradigm (Chase et al., 2011). Critically departing from the studies above, the

results presented in Chapter 5 were from direct tests of predictions based on the amplitude

of an FRN-like signal. Notably, visual inspection of the feedback-locked ERPs also showed

other characteristics, for example, a sustained SW-like signal (see Figure 5.1 in Chapter 5,

page 177), which could have separated the different learning-relevant conditions. Future

investigations will be required to carry out a more extensive analysis of the ERP signals

present during feedback-processing, and their role in supporting trial-to-trial learning of

many stimulus-response rules.
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6.1.2 Additional insights from multivariate pattern analysis

Correlation between classifier performance and participants’ performance Across

Chapters 2, 3 and 5, a common finding was that classifier performance was positively cor-

related with the participants’ performance. For example, Chapter 2 showed that SVM

performance for predicting subsequent memory success (hits or misses) was positively corre-

lated with participants’ d′. Although the overall size of prediction for SVM was small when

predicting subsequent memory, it was meaningfully large for better-performing participants.

Likewise, Chapter 3 showed that participants’ d′ was positively correlated with both LDA

and SVM performance for prediction of old and new trials (see Figure 3.10 in Chapter 3,

page 97). In Chapter 5, SVM performance for classifying between subsequent correct and

incorrect responses, when restricted to previously-incorrect trials, was correlated with the

average accuracy of the participant for the last four training cycles Figure 5.5 in Chapter 5,

page 181). Taken together, these results could suggest that the probability of success of a

classifier may not only depend on the underlying cognitive processes, but also how those are

reflected in the recorded brain activity. Participants with better recognition memory may

have a higher SNR that could be picked up by the classifiers. Better-performing participants

may also be more engaged in the task, which produced brain activity that was more relevant

to the task and could be leveraged by the classifiers to make better predictions.

Cognitive processes at study Multivariate pattern analysis of study-phase activity for

the item recognition task produced a small significant effect (see Figure 2.8 in Chapter 2,

page 49), suggesting that cognitive processes present during the study phase contributed to

only a small amount of variability in later memory success. Additionally, with cluster analysis

of the LDA weights we found that there were two main classifier-identified patterns, for two

different subgroups of participants (see Figure 2.11 in Chapter 2, page 56). Thus, there

were possible differences due to how participants approached the study phase. However, as I

explain later, since classifier analysis is a data-driven technique, classifier-identified patterns

are not necessarily the same as those used by the brain in making the memory judgments.

Single- and dual-process accounts Partly supporting the idea that FN400 and LPP

may not contribute to common variability in memory, multivariate pattern analysis of test-

phase activity, which could find combinations of features, such as the FN400 and LPP,
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produced significantly better predictions than predictions based on FN400 or LPP ampli-

tudes alone (see Figure 3.9 in Chapter 3, page 96). Importantly, unlike FN400 or LPP,

multivariate pattern analysis succeeded in predicting false alarms and correct rejections, and

the classifier-identified pattern indicated that there may exist other memory-relevant signals

beyond FN400 and LPP. Further investigations of the characteristics of memory-relevant

signals beyond FN400 and LPP, are important goals for future research. Also, classifier

evidence for smaller time-intervals, after correcting for shorter response times with vincenti-

zation, added further insights into the single- and dual-process accounts (see Figure 3.17 in

Chapter 3, page 108). Specifically, for shorter response-time trials, there was some evidence

for a unitary, integrated signal driving the memory judgments, more in line with a single-

process account (Dunn, 2008) than a dual-process account (Yonelinas, 2002). However, for

longer response-time trials, there was clearly an independent early-signal, and also likely a

late signal, contributing to the memory-judgments. Importantly, the signals were not in-

tegrated to produce a single evidence, but the influence of the later signal may have been

relatively small. Thus, longer response-time trials showed more support for a dual- than a

single-process account. Together, these suggest that the single- and dual-process accounts

of recognition memory need not be strictly disjoint, and also, can be viewed in terms of the

time it takes for the participant to reach a decision. True recollection-based decisions may

be rare, at least for making the simple old/new judgments in this task. A recollection-like

process is more likely present when it takes longer to reach the decision, but even then, the

recollection-dependent evidence may only be partly different from the earlier, familiarity-

driven evidence. It is also possible that the LPP is not a good marker of recollection-based

recognition.

The remember/know paradigm (Tulving, 1985) has added much support to the interpre-

tations of FN400 and LPP based on familiarity and recollection, respectively, and thereby to

a dual-process account. The remember/know paradigm is a derivative of the basic old/new

task, where participants are asked if, for the old response, they can 1) recollect specific de-

tails about the item or 2) can remember the item without recollecting specific details (in

other words, if they can remember the item with a sense of familiarity only), and respond

‘remember’ or ‘know’, respectively. Multiple studies have found that in the remember/know

paradigm, LPP amplitude is modulated by the difference in remember and know responses

(Curran, 1999, 2004; Rugg & Yonelinas, 2003). However, the remember/know paradigm may
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specifically prime the participant towards the meta-judgments at a greater level than what

happens for the basic old/new judgments, and thus, recruit the recollection process more

widely. Moreover, Dunn (2008) argued that even remember/know responses can be based

on a single integrated strength. Thus, future investigations using the classifier approach to

examine neural evidence for memory relevant information for the remember/know paradigm

could be helpful to further understand the role of LPP.

Comparing between cognitive processes at study and at test Based on the predic-

tion size for classifying memory success versus failure (hits and misses) with the univariate

ERP amplitudes and the multivariate pattern analysis, for both study and test phase activ-

ity, it is possible that cognitive processes present during the test phase are able to retrieve

those at study, and also contribute to memory variability on their own. Multiple results

supported this idea. First, as mentioned before, the correlations between predictions with

LPC (at study) and FN400 (at test) amplitudes, and between SW (at study) and LPP (at

test) amplitudes, may suggest commonality in the memory-specific functions of the 1) LPC

and FN400 and 2) SW and LPP. Second, multivariate pattern analysis with test-phase ac-

tivity surpassed all other measures in the predictive strength. This may not be surprising as

test-phase activity likely includes more relevant information for the memory judgments, and

the classifier results supported this idea. Considering the variability in memory, it may be

more surprising that the classifiers were able to find small but significant predictive success

with the study-phase activity. Lastly, the study+test classifiers performed similar to the

test-phase classifiers (see Figure 3.19 on page 111), suggesting that incorporating both study

and test activity does not produce an additive effect. In other words, the classifiers show

that the predictive power of study activity is fully absorbed by the test activity; this is an

interesting and novel finding.

Classifiers for trial-and-error learning Predicting response-accuracy of a trial from the

feedback-locked activity of the previous trial (Chapter 5) was based on the same logic as the

subsequent memory effect. Additionally, with the repetitions of the words across the cycles

and the use of rewards as reinforcements, the trial-and-error learning task likely engaged the

participants better than the item recognition task. However, multivariate pattern analysis

of the feedback-locked activity to predict subsequent response-accuracy was limited by the
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dependence of accuracy on cycles. Since accuracy increased with cycles, classifiers could

use the information about difference due to cycles to predict response accuracy; thus, the

classifiers could make predictions without relying on actually task-relevant brain activity.

For predictions with the amplitude of the FRN-like signal, the classification rule was

already assumed (based on the RPE function of the FRN), and thus, no separate training

trials were required. On the other hand, to learn the classification rules, classifiers (LDA

and SVM) required a larger number of training trials; thus, considering a single cycle may

not have been helpful. Also, trials from multiple cycles were not pooled together because of

the accuracy-cycle dependence. Still, predicting subsequent response-accuracy based on the

feedback-locked activity of the previous cycle was significantly above chance, when consider-

ing all trials in the previous cycle (see Figures 5.3 and 5.4 in Chapter 5, pages 180 and 180,

respectively). However, the classifier could also be predicting the response accuracy of the

current cycle, which is correlated to the response accuracy of the next. Considering only-

correct or only-incorrect trials in the previous cycle was a cleaner comparison, and was not

susceptible to this confound. However, this restriction cut down the number of trials available

to the classifier training even more drastically, specifically for the case of previously-correct

trials. Thus, in the future, we will need to figure out more clever ways to implement the

classifiers for understanding these types of learning situations.

Interestingly, the classifiers achieved modest success in predicting word-value (high or

low), which was not confounded by the accuracy-cycle dependence, and was done separately

for correct and incorrect feedback outcomes (see Figure 5.6 in Chapter 5, page 183). Further,

the classifier-identified patterns were different for when the feedback outcome was correct

and when it was incorrect. This could suggest that learning from correct and incorrect

feedback outcomes involved different signals or different combinations of the signals present

during feedback processing. Notably, the above result also parallels the results from the

planned comparisons of the feedback-locked ERPs - the FRN-like signal in cycle 1 indexed

subsequent response adjustments in cycle 2 but only for the correct and not the incorrect

trials in cycle 1. Thus, another future direction will be to investigate why and how learning

from correct and incorrect feedback differed, even though both were equally useful in learning

the stimulus-specific response-rules.
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6.2 Research significance

To examine the brain-basis of behaviour, there have been two major approaches. One ap-

proach is to look into loss of cognitive functions following brain lesions, which provides more

causal support for region-specific activity and behaviour. For example, studies with patient

H.M., who had undergone surgery to control severe epileptic seizures, provided detailed ac-

counts of brain-regions relevant to memory processes. H.M.’s surgery resulted in lesions to

different parts of the medial-temporal lobe, including the hippocampus, the amygdala and

the parahippocampal gyrus. Post surgery, and in the following years, H.M. showed severe

deficits in remembering new episodic-details with no apparent loss in perceptual or intel-

lectual abilities. This suggested the importance of the medial temporal lobe in memory

functions (Scoville & Milner, 1957).

However, conducting studies following brain-lesions is limited to specific patient popula-

tions only. The other research theme, that became popular with the development of various

techniques to record functional brain-activity, such as, EEG, fMRI etc., has commonly looked

into the neural correlates of behaviour. These studies can be conducted with representative

samples from the general (without lesion) population. With the superior spatial-resolution,

fMRI can be used to identify region-specific activity for psychological processes; whereas

with EEG, which has a superior temporal-resolution, researchers have looked into the time-

course of brain activity, evoked by psychological processes, and with milliseconds accuracy.

However, causality cannot be claimed with this approach. Different psychological processes

can recruit the same brain-region in fMRI, or the same EEG signal. Reports of individual

differences within the same experiment are also common. Moreover, many researchers sug-

gest that psychological processes are more likely to be produced by distributed pattern of

activity in the neuronal-networks than by localized activity.

Predictive approaches cannot claim causality either, but are definitely a step ahead in

finding the neural-correlates, than the planned-comparisons and descriptive methods. Specif-

ically, the idea of generalizability is important, for otherwise we may be looking at sample-

specific solutions only. Statistical tests for ERP effects are typically conducted for a very

small number of electrodes. Evaluating the signals from across the scalp is important, but

with the traditional approach, it requires corrections for multiple comparisons, and are not

commonly pursued. Multivariate methods, including machine learning classifiers, could be
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better suited for evaluating signals across the scalp.

Moreover, classifiers are data-driven techniques, and thus, they do not require a specific

hypothesis about the direction of the effect. For example, ERP effects of LPC are evaluated

based on the hypothesis that for subsequent hits, LPC amplitude is more positive than that

for subsequent misses. However, when classifying subsequent hits and misses based on study-

phase activity, the classifiers can automatically learn how brain activity differs for hits and

misses, by learning the characteristics of the features specific to subsequent memory success.

The current investigations showed that questions of interest to traditional ERP research

can also be addressed with predictive approaches, which add more stringent criteria for

evaluating behaviourally-relevant brain activity. The ROC analysis of the ERP amplitudes

paralleled the effects with the trial-averaged ERP amplitudes. Although both were sig-

nificant, the two analyses were characteristically different because the trial-averaged ERP

amplitudes cannot indicate the amount of separability between conditions at the individual

trial level. Consider that if the means for the two conditions are quite different, the dis-

tributions could still largely overlap, leading to poorer predictions for individual trials (see

Figure 1.5c on page 20 of the Introduction Chapter). However, the tests for predictions can

tell whether or not the trial-averaged ERP amplitudes are different for the pair of conditions.

Also, the measures of area under the curve (AUC) of the receiver operating characteristic

(ROC) curves are balanced and absolute measures. These can be compared to chance (0.5),

as well as compared across different brain activity measures. This is not possible with the

trial-averaged ERP effects, which only evaluate relative difference between conditions.

Further, the implementation of predictive approaches for investigating brain activity un-

derlying learning outcomes offered more than a “proof-of-principle” for information in the

brain. For example, examination of the dynamics of brain activity prior to reaching the mem-

ory decisions for the item recognition task was different from how classifiers have frequently

been used to investigate brain activity, such as, to check whether or not predictions are

possible. Instead, by evaluating classifier performance as function of time, this investigation

offered novel insights about single- and dual-process accounts of recognition memory.
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6.3 Limitations and future directions

Despite offering a better lens to evaluate behaviourally-relevant brain activity, some limita-

tions of the predictive approach, specifically in the context of the current investigations, are

also apparent.

Availability of a large dataset and sensitivity to circumstantial/artifactual fea-

tures In general, classifiers require a relatively large set of trials for training, and even

more so, when the data include many features; though support vector machine (SVM) mod-

els are more robust against overfitting when the number of features is large in comparison

to the small number of training trials. Thus, classifiers may not be well-suited for exper-

iments with too few trials. EEG experiments can be designed to include many trials, but

longer recording-sessions can also influence the data quality. As I have discussed before,

classifiers can be sensitive to such information. For example, in Chapter 2 (Chakravarty et

al., 2020), we predicted subsequent memory success from the study-phase activity, and for

the individual study lists (see Figure 2.14 in Chapter 2, page 62). This analysis showed that

classifier performance increased with the order of the study lists. One possible reason behind

this result could be that there were gradual changes in the EEG signal over the recording

session, which somehow helped the classifiers to better discriminate between subsequent hits

and misses. On the other hand, recordings over multiple sessions can also be problematic,

for this could shift the electrode positions, the brain-state, and change the signals thereby.

Further, classifiers can be quite sensitive to circumstantial features. The biggest exam-

ple for the current investigation was classifying subsequent response accuracy based on the

feedback-locked activity from the previous trial (Chapter 5). Due to being data-driven tech-

niques, the classifiers need not rely on task-relevant brain activity to predict the behaviour.

Instead, they can pick up on any information that is useful for such prediction. Specifically

when the signal-changes for the task-relevant brain activity are smaller than the differences

indexed by circumstantial features, it is important to carefully review the question of interest

for the classifier investigation, in order to make meaningful inferences from these methods.

However, if the signal changes for the the task-relevant brain activity are not that small,

circumstantial features may not influence the classifiers as much. One example of this was

the motor preparatory activity present during test-phase of the item recognition task, which

203



did not seem to have a significant impact on the predictions (Chapter 3).

Difficulty interpreting classification results It cannot be determined in advance as to

which classifier models should be used; the process of selecting a classifier is exploratory. The

current investigations included the two most simple classifiers, linear discriminant analysis

(LDA) and SVM. There were two reasons behind this selection. First, the objective was

to evaluate the general level of challenge in predicting learning-success from brain-activity

measures, with possible methodological improvements kept as a separate goal for the future.

Second, non-linear classifiers, which usually evaluate independent contributions of its pa-

rameters, along with their interactions, could be better suited to situations where larger sets

of trials are available to train the classifiers. However, it is possible that learning outcomes

are represented in brain activity patterns that are not linearly separable, and would need to

be investigated in the future.

Non-reliance on theory Lastly, even when it is not influenced by circumstantial features,

a classifier can find combinations of features (to predict behaviour) that is different from the

pattern of activity used by the brain to produce the same behaviour. With LDA, it was

possible to take a direct peak at the features with greater influence and compare those

with existing findings from ERP research. However, in general, interpreting the features

for the classifier analysis, specifically for non-linear classifiers is not straightforward. Thus,

the lack of dependence on existing theories is both an advantage and a disadvantage for

the classifier methods. Accordingly, a better approach is to incorporate insights from both

planned-comparisons approaches and the predictive methods.

In view of the current results, there are several directions for future research using the

classifier methods.

Manipulation of engagement in the task As mentioned before, across multiple analy-

ses, classifier performance correlated with participants performance, suggesting that better-

performing participants, who may have a higher task-engagement or motivation to do well

in the task, could lead to capturing of more task-relevant brain activity by EEG recordings,

which in turn could be picked up by the classifiers. Accordingly, a future manipulation

of task engagement could lead to overall better predictions. However, depending on the
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classification problem of interest, better-performing participants could also produce greater

imbalance between the classes (e.g., hits and misses), which would need to be accounted for.

Leveraging the greater signal-to-noise ratio of the participants who perform well

Following up on the above idea, another future direction can be investigated. Consider that

for the better-performing participants, the signal-to-noise ratio (SNR) may be relatively

higher for the classifiers to pick up on. Then, we can ask if it is possible to make predictions

about behavioural outcomes for the other participants, based on the training received from

the brain-activity for the better-performing participants. The non-stationarity of the signal

due to the potentially different states of the different participants, would need to be accounted

for, but our initial investigations suggest that this between-subject classification analysis

could be successful (e.g., see Figure 2.15 in Chapter 2, page 65).

Learning applications based on brain activity Predicting memory from brain activity

that precedes the memory tests has important learning applications. For example, online

predictions of memory from the study-phase activity could be used to train participants to

study better. Further, with techniques like neurofeedback protocols, these predictions can be

used to help participants self-regulate into states that are more conducive of memory success

(for an implementation of classifier-driven neuro-stimulation, see Ezzyat et al., 2017). Also,

the data-driven approach of this research makes it equally amenable to the normal, healthy

population, as well as specific patient populations.

6.4 Conclusion

In sum, this work shows that brain activity, underlying learning outcomes, can be inves-

tigated using predictive approaches, which impose a more stringent criteria for evaluating

brain-activity as behaviourally-relevant. I showed that questions of interest to traditional

ERP research, are also of relevance, and can be tested, with the predictive methods. Ad-

ditionally, multivariate pattern analysis may identify behaviourally-relevant signals that are

not commonly studied with the traditional ERP methods. Moreover, the size of predic-

tion can be used to compare between the contribution of different signals in explaining the

learning-variability; this is not possible with the traditional ERP methods. Also, unlike

univariate ERP measures, the classifiers can be set up to examine dynamics of brain activity
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leading up to memory decisions. For the current investigations, the overall size of predic-

tion with the time-domain EEG features was small, which could be what we can generally

expect to find from predictive analysis of brain-activity for different behavioural outcomes.

Aside from potential improvements to the classifier analysis discussed above, the small size

of prediction could suggest that the resolution of the EEG recordings may not be enough to

capture all relevant factors influencing learning outcomes, and interestingly, this resolution

could depend on the participants’ level of engagement in the task. Future investigations will

be required to test these suggestions in detail.

206



Bibliography

Ally, B. A., Simons, J. S., McKeever, J. D., Peers, P. V., & Budson, A. E. (2008). Parietal
contributions to recollection: electrophysiological evidence from aging and patients
with parietal lesions. Neuropsychologia, 46 (7), 1800–1812.

Arbel, Y., Goforth, K., & Donchin, E. (2013). The good, the bad, or the useful? the
examination of the relationship between the feedback-related negativity (FRN) and
long-term learning outcomes. Journal of Cognitive Neuroscience, 25 (8), 1249–1260.

Arbel, Y., Murphy, A., & Donchin, E. (2014). On the utility of positive and negative feedback
in a paired-associate learning task. Journal of Cognitive Neuroscience, 26 (7), 1445–
1453.

Arbel, Y., & Wu, H. (2016). A neurophysiological examination of quality of learning in a
feedback-based learning task. Neuropsychologia, 93 , 13–20.

Arora, A., Lin, J.-J., Gasperian, A., Maldjian, J., Stein, J., Kahana, M., & Lega, B. (2018).
Comparison of logistic regression, support vector machines, and deep learning classifiers
for predicting memory encoding success using human intracranial EEG recordings.
Journal of Neural Engineering , 15 (6), 066028.

Barraclough, D. J., Conroy, M. L., & Lee, D. (2004). Prefrontal cortex and decision making
in a mixed-strategy game. Nature Neuroscience, 7 (4), 404–410.

Bellebaum, C., & Daum, I. (2008). Learning-related changes in reward expectancy are
reflected in the feedback-related negativity. European Journal of Neuroscience, 27 (7),
1823–1835.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Bradley, M. M., & Lang, P. J. (1999). Affective norms for english words (ANEW): Instruc-

tion manual and affective ratings (Tech. Rep.). : Technical report C-1, the Center for
Research in Psychophysiology.

Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1998). Making
memories: brain activity that predicts how well visual experience will be remembered.
Science, 281 (5380), 1185–1187.

Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and
episodic memory: an attentional account. Nature reviews neuroscience, 9 (8), 613–625.

Chakravarty, S., Chen, Y. Y., & Caplan, J. B. (2020). Predicting memory from study-related
brain activity. Journal of Neurophysiology , 124 (6), 2060–2075.

Chakravarty, S., Fujiwara, E., Madan, C. R., Tomlinson, S. E., Ober, I., & Caplan, J. B.
(2019). Value bias of verbal memory. Journal of Memory and Language, 107 , 25–39.

Chase, H. W., Swainson, R., Durham, L., Benham, L., R., & Cools. (2011). Feedback-related
negativity codes prediction error but not behavioral adjustment during probabilistic

207



reversal learning. Journal of Cognitive Neuroscience, 23 , 936–946.
Chavarriaga, R., Sobolewski, A., & Millán, J. d. R. (2014). Errare machinale est: the use

of error-related potentials in brain-machine interfaces. Frontiers in neuroscience, 8 ,
208.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16 , 321–
357.

Chen, Y. Y., Lithgow, K., Hemmerich, J. A., & Caplan, J. B. (2014). Is what goes in what
comes out? encoding and retrieval event-related potentials together determine memory
outcome. Experimental Brain Research, 232 (10), 3175–3190.

Cockburn, J., & Holroyd, C. B. (2018). Feedback information and the reward positivity.
International Journal of Psychophysiology , 132 , 243–251.

Cohen, M. X., Elger, C. E., & Ranganath, C. (2007). Reward expectation modulates
feedback-related negativity and EEG spectra. Neuroimage, 35 (2), 968–978.

Collins, A. G., & Frank, M. J. (2018). Within-and across-trial dynamics of human EEG reveal
cooperative interplay between reinforcement learning and working memory. Proceedings
of the National Academy of Sciences , 115 (10), 2502–2507.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning , 20 (3),
273–297.

Coutanche, M. N. (2013). Distinguishing multi-voxel patterns and mean activation: why,
how, and what does it tell us? Cognitive, Affective, & Behavioral Neuroscience, 13 (3),
667–673.

Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: A framework for memory
research. Journal of Verbal Learning and Verbal Behavior , 11 (6), 671–684.

Criss, A. H., Wheeler, M. E., & McClelland, J. L. (2013). A differentiation account of
recognition memory: evidence from fmri. Journal of Cognitive Neuroscience, 25 (3),
421–435.

Curran, T. (1999). The electrophysiology of incidental and intentionalretrieval: ERP
old/new effects in lexical decision and recognition memory. Neuropsychologia, 37 (7),
771–785.

Curran, T. (2004). Effects of attention and confidence on the hypothesized ERP correlates
of recollection and familiarity. Neuropsychologia, 42 (8), 1088–1106.

D’Ardenne, K., McClure, S. M., Nystrom, L. E., & Cohen, J. D. (2008). BOLD responses re-
flecting dopaminergic signals in the human ventral tegmental area. Science, 319 (5867),
1264–1267.

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-
trial EEG dynamics including independent component analysis. Journal of Neuro-
science Methods , 134 (1), 9–21.

Diedrich, O., Naumann, E., Maier, S., Becker, G., & Bartussek, D. (1997). A frontal positive
slow wave in the erp associated with emotional slides. Journal of Psychophysiology ,
11 , 71–84.

Dolcos, F., LaBar, K. S., & Cabeza, R. (2005). Remembering one year later: role of
the amygdala and the medial temporal lobe memory system in retrieving emotional
memories. Proceedings of the National Academy of Sciences , 102 (7), 2626–2631.

208



Dunn, J. C. (2008). The dimensionality of the remember–know task: a state-trace analysis.
Psychological Review , 115 (2), 426-446.

Eldridge, L. L., Sarfatti, S., & Knowlton, B. J. (2002). The effect of testing procedure on
remember–know judgments. Psychonomic Bulletin & Review , 9 (1), 139-145.

Ernst, B., & Steinhauser, M. (2012). Feedback-related brain activity predicts learning from
feedback in multiple-choice testing. Cognitive, Affective, & Behavioral Neuroscience,
12 (2), 323–336.

Ezzyat, Y., Kragel, J. E., Burke, J. F., Levy, D. F., Lyalenko, A., Wanda, P., . . . Ka-
hana, M. J. (2017). Direct brain stimulation modulates encoding states and memory
performance in humans. Current Biology , 27 (9), 1251–1258.

Fabiani, M., Karis, D., & Donchin, E. (1990). Effects of mnemonic strategy manipulation in a
Von Restorff paradigm. Electroencephalography and Clinical Neurophysiology , 75 (1-2),
22–35.

Finnigan, S., Humphreys, M. S., Dennis, S., & Geffen, G. (2002). Erp ‘old/new’ effects:
memory strength and decisional factor (s). Neuropsychologia, 40 (13), 2288–2304.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of
Eugenics , 7 (2), 179–188.

Frank, M. J., Woroch, B. S., & Curran, T. (2005). Error-related negativity predicts rein-
forcement learning and conflict biases. Neuron, 47 , 495–501.

Friedman, D. (1990). Cognitive event-related potential components during continuous recog-
nition memory for pictures. Psychophysiology , 27 (2), 136–148.

Fukuda, K., & Woodman, G. F. (2015). Predicting and improving recognition memory
using multiple electrophysiological signals in real time. Psychological Science, 26 (7),
1026–1037.

Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural
system of error detection and compensation. Psychological Science, 4 , 385–390.

Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid
processing of monetary gains and losses. Science, 295 , 2279–2282.

Gershman, S. J., & Daw, N. D. (2017). Reinforcement learning and episodic memory in
humans and animals: an integrative framework. Annual Review of Psychology , 68 ,
101–128.

Goyer, J. P., Woldorff, M. G., & Huettel, S. A. (2008). Rapid electrophysiological brain
responses are influenced by both valence and magnitude of monetary rewards. Journal
of Cognitive Neuroscience, 20 , 2058–2069.

Green, D. M., & Swets, J. A. (1966). Signal Detection Theory and Psychophysics (Vol. 1).
Wiley New York.

Greve, A., Cooper, E., Kaula, A., Anderson, M. C., & Henson, R. (2017). Does prediction
error drive one-shot declarative learning? Journal of Memory and Language, 94 ,
149–165.

Guo, C., Duan, L., Li, W., & Paller, K. A. (2006). Distinguishing source memory and
item memory: Brain potentials at encoding and retrieval. Brain Research, 1118 (1),
142–154.

Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2006). The feedback-related
negativity reflects the binary evaluation of good versus bad outcomes. Biological Psy-
chology , 71 (2), 148–154.

209



Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It’s worse than you
thought: The feedback negativity and violations of reward prediction in gambling
tasks. Psychophysiology , 44 (6), 905–912.

Halpern, D., Tubridy, S., Wang, H. Y., Gasser, C., Popp, P. O., Davachi, L., & Gureckis,
T. M. (2018). Knowledge tracing using the brain. International Educational Data
Mining Society .

Hart, A. S., Rutledge, R. B., Glimcher, P. W., & Phillips, P. E. (2014). Phasic dopamine
release in the rat nucleus accumbens symmetrically encodes a reward prediction error
term. Journal of Neuroscience, 34 (3), 698–704.
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