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Abstract— Graphics processing units (GPUs) have recently
attracted a lot of interest in several fields struggling with
massively large computation tasks. The application of a GPU for
fast and accurate transient stability simulation of the large-scale
power systems is presented in this paper. The computationally
intensive parts of the simulation were offloaded to the GPU to
co-operate with the CPU. As such, a hybrid GPU-CPU simulator
is configured. The accuracy of the proposed simulation approach
has been validated by using the PSS/E software. The computation
time of the simulation performed by co-processing of GPU-
CPU has been compared with that of the CPU-only simulation.
Several test cases have been used to demonstrate the significant
acceleration of the GPU-CPU simulation. A speed-up of 345 is
reported for a 320 generator and 1248 bus power system.

Index Terms— Graphics processors, Parallel programming,
Power system transient stability.

I. INTRODUCTION

TRANSIENT stability study is important for planning, op-
eration, and control of modern electrical power systems.

Transient stability simulation of a realistic multi-machine
power system requires the solution of a large set of non-linear
differential-algebraic equations in the time-domain that asks
for significant computational resources. The standard method
for transient stability simulation [1] involves three steps: (1)
discretization of the differential equations, (2) iterative solution
of the non-linear algebraic equations, and (3) solution of
the linear algebraic equations. Several approaches have been
developed in the past to perform this simulation faster on
parallel hardware [2]. The computations performed in these
implementations, however, were still sequential.

In this paper, we demonstrate how the application of a
Graphics Processing Unit (GPU) can yield significant speed-
up in large-scale transient stability simulation using multi-
threaded parallel programming. The GPU was originally de-
veloped to meet the needs for fast graphics in the gaming
and animation industries. The need for life-like rendering of
characters in these areas led to further advancement in its
processing capabilities and programmability. Taking advantage
of its massively parallel hardware architecture, starting in
the early 2000’s, the applications of GPU mushroomed to
include intensive general purpose computations such as those
in molecular biology, image and video processing, n-body
simulations, large-scale database management, and financial
services [3].
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Although there have been reported applications [4], [5]
where all the computation tasks are done in a single GPU
or a cluster of GPUs, the focus of this paper is a hybrid GPU-
CPU simulator where GPU and CPU co-operate to perform a
simulation. In these cases GPU acts as a co-processor beside
the CPU to do the intensive computation tasks, whereas CPU
is mostly responsible for the flow control of the simulation
or updating the required variables. The paper is organized as
follows: Section II gives an overview of the hardware structure
of the GPU, and the parallel computing philosophy. In Section
III mathematic formulation of the transient stability study in
power systems and the model used in this work are explained.
Section IV presents the GPU-CPU co-processing results for
transient stability simulation and related discussions. The
conclusion of this paper appears in Section V.

II. GRAPHICS PROCESSING UNIT

A. Hardware structure and specifications

Fig. 1 illustrates the Tesla GPU architecture introduced by
NVIDIA [7], and also its connection to a PC. The GPU runs
its own specified instructions independently from the CPU
but it is controlled by the CPU. A Thread is the computing
element in the GPU. When a GPU instruction is invoked,
blocks of threads (with the maximum size of 512 threads per
block) are defined to assign one thread to each data element.
All threads in one block run the same instruction on one
streaming multiprocessor (SM) or thread processing arrays
(TPAs), which gives the GPU a SIMD (Single-Instruction,
Multiple-Data) architecture. Each SM includes 8 stream pro-
cessor (SP) cores, an instruction unit, and on-chip memory
that comes in three types: registers, shared memory, and cache
(constant and texture). Threads in each block have access
to the shared memory in the SM, as well as to a global
memory in the GPU. Unlike a CPU, the inside structure of
a GPU is developed in such a way that more transistors
are devoted to data processing rather than data caching and
flow control. When a SM is assigned to execute one or
more thread blocks, the instruction unit splits and creates
groups of parallel threads called warps. The threads in one
warp are managed and processed concurrently. Depending on
the GPU model, 2 or 3 SM’s can be clustered to build a
thread processing cluster (TPC). Threads are assigned by the
thread scheduler which talks directly to each SM through a
dedicated instruction unit which in turn assigns the tasks to
the eight thread (or stream) processors. Moreover two special
function units (SFUs) have been included in each SM to
execute transcendental calculations (e.g. sin, cosine), attribute
interpolation and for executing floating point instructions.
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Fig. 1. Hardware architecture of GPU mounted on the PC motherboard.

In this work, the GPU is an NVIDIA GeForce GTX 280
(30 SMs consisting of 240 SPs clocked at 1296MHz with
1GB of GPU device memory with a bandwidth of 141.7GB/s).
Each SM in the GPU can process 32 active warps at a time
with 32 threads per warp, resulting in concurrent processing
of 1024 threads. Supporting both the single-precision and
double-precision floating point numbers, the theoretical peak
performance of GTX 280 is 933 GFLOPS. Fig. 3 shows the
detailed architecture of the GTX 280. The GPU is plugged into
the motherboard of a 2.5GHz quad-core AMD Phenom CPU
supported by 4GB of RAM. The GPU and CPU communicate
via the PCIe 2.0x16 bus that supports up to 8GB/s transfer
rate.

B. SIMD-based parallel programming

In the SIMD-based architecture each data element is
mapped to one processor core and is executed independently.
For example two vectors can be added sequentially on a CPU,
as follows:
for(i = 0; i < 100; i+ +)

a[i]← b[i] + c[i]
This operation can be performed on a SIMD device in paral-

lel, if each element of arrays b and c are added simultaneously.
Therefore, all 100 iterations in the above for loop can be
executed concurrently, as follows:
if(index < 100)

a[index]← b[index] + c[index]
where index is the ID of the threads assigned to elements

of two vectors. Designed for general purpose GPU computing
applications, CUDA (Compute Unified Device Architecture)
is the environment for NVIDIA’s GPU programming [7].
CUDA is an extension of the C language, and it allows a
programmer to define functions called kernels. Whenever a
kernel is invoked it is run N times in parallel in N separate
threads on a CUDA-enabled device (i.e. GPU) that operates
as a co-processor for the host (i.e. CPU), which runs the C
program. A kernel is executed on a grid consisting of several
blocks with equal numbers of threads. As illustrated in Fig.
2, each block within a grid, and each thread within a block

block(0,1) block(1,1)

…
block(0,0) block(1,0) block(2,0)

…

Grid

…

…
…

Block(1,1)
thread(0,0) thread(1,0) thread(2,0)

thread(0,1) thread(1,1) thread(2,1)

Fig. 2. Hierarchy of computing structure in a GPU (figure modified from
[7]).

are identified and accessible by individual indices. The general
syntax to invoke a kernel, called testKERN, is as follows:

testKERN<<<dimGrid, dimBlock>>>(A, B);
where arguments of the kernel are enclosed in parentheses,

and the dimensions of the grid and its blocks are specified
by dimGrid and dimBlock respectively. Moreover on top of
CUDA a library of the basic linear algebraic functions is
provided that allows the integration with C++ code. By using
this library, called CUBLAS, portions of a sequential C++
program can be executed in parallel on the GPU, Fig. 4,
while other parts of the code , which are in C++ language,
are executed sequentially on the CPU [8]. Therefore, in an
application with highly intensive computations, the onerous
computation tasks can be offloaded to the GPU, and performed
faster in parallel, whereas the flow control of the program,
required initial calculations, or the updating and saving of
the variables can be done by the CPU. This co-processing
configures a hybrid GPU-CPU simulator.

III. TRANSIENT STABILITY SIMULATION OF LARGE-SCALE

SYSTEMS

A widely used method for detailed modeling of synchronous
generator for transient stability simulation is to use Park’s
equations with an individual dq reference frame fixed on the
generator’s field winding [9]. The network, including trans-
mission lines and loads, is modeled using algebraic equations
in a common dq reference frame. Representation of AVR and
PSS increases the number of differential equations and hence
the complexity of the model. The validity of the dynamic
response in a network with a lot of interconnections and in
a time frame of few seconds highly depends on the accuracy
of the generator model and other components which can
have effects on the dynamics of the system. The general
form of differential-algebraic equations which describe the
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Fig. 3. The GTX 280 GPU architecture: it consists of 10 TPCs, 3 SMs/TPC, and a total of 240 SPs; TPC: thread processing cluster, SM: streaming
multiprocessor, SP: stream processor (figure modified from [6]).
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dynamics of a multi-machine power system assuming single-
phase, positive sequence, and fundamental frequency behavior,
is given as:

ẋ = f(x,V, t), (1)

0 = g(x,V, t), (2)

x(t0) = x0, (3)

where x is the vector of state variables, x0 is the initial
values of state variables, and V is the vector of bus voltages.
In this work the detailed model (Appendix A) of synchronous
generator including AVR and PSS is used. Therefore, each
generating unit consists of 9 state variables. In a power
network with m synchronous generators and n buses, x is
a 9m× 1 vector and V is a 2n× 1 vector.

The numerical method to perform transient stability study
is finding the solution of this set of nonlinear differential-
algebraic equations (i.e. (1) and (2)) over the interested period
of time. The standard approach consists of three major steps:
discretization of non-linear differential equations, linearization
of non-linear algebraic equations, and solution of linear al-
gebraic equations. Discretizing (1) results in a new set of
non-linear algebraic equations. In this work we used the
trapezoidal rule as the implicit integration method to discretize
the differential equations as follows:

0 = x− h

2
[f(x,V, t) + f(x,V, t− h)] , (4)

where h is the integration time-step. (2) and (4) can be lin-
earized by the Newton-Raphson method (for the jth iteration)
as:

J(zj−1) ·Δz = −F(zj−1), (5)

where J is the Jacobian matrix, z = [x,V], Δz = zj−zj−1,
and F is the vector of nonlinear function evaluations. (5) is
a set of linear algebraic equations that can be solved with
Gaussian Elimination and back substitution method.

Benchmarking revealed that a majority of execution time in
a transient stability simulation is spent for steps (2) and (3),
i.e. the nonlinear iterative solution using Newton-Raphson, and
the linear algebraic equation solution. By exploiting a hybrid
GPU-CPU simulator, as defined in the previous section, these
two steps of the simulation were off-loaded to the GPU to
be processed in parallel, whereas the remaining tasks such
as discretizing, updating, and computation of intermediate
variables were executed sequentially on the CPU.

IV. IMPLEMENTATION RESULTS

This section verifies the accuracy and efficiency of the hy-
brid GPU-CPU co-processing for transient stability simulation
of large-scale systems.
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A. Simulation accuracy evaluation

In this part we show the results of applying the simulation
code, prepared by integrating C++ and CUBLAS library, on
a case study. The sincerity of our simulation code will be
validated by using the PTI’s PSS/E software program. The
case study used in this section is the IEEE 39 bus New
England test system whose one-line diagram is plotted in Fig.
5. All generator models are detailed and equipped with AVR
and PSS described in Appendix A. The complete system can
be described by 87 non-linear differential and 20 algebraic
equations. Several fault locations have been tested and the
results were compared with those of PSS/E. In all cases results
from GPU-CPU co-processing method match very well. This
paper presents a sample of these results. A three-phase fault
happens at Bus 21, at t=1s and it is cleared after 100ms.Gen10
is the reference generator and the relative machine angles are
shown in Fig. 6 and Fig. 7. To show the comparison the similar
results found from PSS/E are superimposed on top of these
two figures. As can be seen our transient stability code is
completely stable during the steady-state of the system, i.e.
t<1s. During the transient state and also after the fault is
cleared, our program results closely follow the results from
PSS/E. The maximum discrepancy between generator angles
resulted in GPU-CPU co-processing simulation and PSS/E was
found to be 1.46%, based on (6):

εδ =
max|δPSS/E − δGC |

δPSS/E
, (6)

where δPSS/E and δGC were defined as the relative machine
angles from PSS/E and GPU-CPU co-processing simulation,
respectively.

B. Computational efficiency evaluation

To investigate the efficiency of the proposed hybrid GPU-
CPU simulator for transient stability study of large-scale power
systems, we show the comparative results in this section.
Several systems have been used for this evaluation which their
specifications are listed in Table I. The system with Scale 1
is the IEEE’s New England test system, illustrated in Fig. 5
and verified in the previous section. The Scale 1 system was
duplicated several times to create systems of larger scales.
Therefore we obtained test systems of 78, 156, 312, 624, and
1248 buses. In these systems we used a flat start, i.e. voltage
and angle of all buses set to 1.0∠0◦p.u., and modeled them in
the PSS/E software to find the load flow results. These results
were then fed into the prepared simulation codes.

Two separate simulation codes were prepared: one code is
purely in C++ to be run sequentially on the CPU, and the
other is C++ integrated with CUDA to be run on the hybrid
simulator (this code was used and validated in the previous
section). The GPU-CPU co-processing was compared with a
CPU-only processing. In Table I the columns indicated by
CPU and GPU-CPU list the computation time to simulate a
duration of 1580ms with a time-step of 10ms for all systems.
GPU is truly advantageous for parallel computing on a large
set of input data. For small size of data, the communication
overhead and memory latency in GPU are not insignificant in
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Fig. 6. Comparison of relative machine angles collected from hybrid
simulator and PSS/E simulation for IEEE 39 bus test system: δi,10 = δi−δ10;
i = 1 . . . 5.

comparison with the computation time. As such, we do not
expect better performance for Scale 1 and Scale 2 systems.
When the size of system increases, however, the latency is
dwarfed by the computation time, and GPU shows a very
high speed-up. For example, for Scale 32, GPU takes 1m
44.4s for simulation, whereas the CPU needs 10hrs. The
effect of SIMD-based parallel computing on the acceleration of
simulation can be observed from the speed-up graph in Fig. 8.
Speed-up is the ratio of the CPU and GPU-CPU computation
times. We can see that for Scale 32 GPU-CPU co-processing
is more than 340 times faster than CPU-only processing.

The maximum achievable speed-up by parallelizing some
portions of a sequential algorithm can be verified by Amdahl’s
law, which states that if f (0 � f � 1) is the fraction of the

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2022 at 19:47:06 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



5

0 5 10 15

30

40

50

60

70

80

Time (sec)

R
el

at
iv

e 
m

ac
hi

ne
 a

ng
le

s 
(d

eg
re

es
)

6,10

8,10

9,10

7,10

GPU-CPU
PSS/E

Fig. 7. Comparison of relative machine angles collected from hybrid
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TABLE I

SYSTEM SIZE AND COMPUTATION TIME FOR A SIMULATION DURATION OF

1580MS

Scale Gens Buses Lines CPU GPU-CPU Speed-up
1 10 39 34 0.9s 2.8s ×0.3
2 20 78 71 6.4s 5.2s ×1.2
4 40 156 145 49.8s 10.5s ×4.7
8 80 312 302 7.2m 21.1s ×20.5
16 160 624 616 1hr 44.8s ×80.3
32 320 1248 1244 10hr 1m44.4s ×344.8

algorithm which is non-parallel, then the speed-up using p
parallel processors is less than 1/[f + (1 − f)/p] [10]. Since
the number of SPs being used in the GPU at any given instant
varies depending on the number of threads being executed,
therefore, Amdahl’s law does not strictly apply to SIMD-
processing in the GPU. This law, however, can still be used to
predict the maximum achievable speed-up. The mean value for
f in our case study is 0.21%, which means a large portion of
the algorithm has been parallelized. Therefore the maximum
speed-up predicted by Amdahl’s law, as p → ∞, is 476.2,
while the speed-up achieved in our simulations is 344.8.

Another useful observation found from the achieved results
is the scalability of the proposed hybrid simulator. A system
whose performance improves after adding specific hardware
component, proportionally to the capacity added, is said to
be a scalable system. In a single GPU expanding the size of
data-under-process asks for co-operation of more SPs which
translates to adding more computing resources. In our experi-
ments the size of test systems and hybrid simulator’s elapsed
computation time change approximately at the same rate. In
the CPU-only simulation cases, however, the computation time
increases at a rate that is approximately the cube of the system
size increment rate.
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Fig. 8. Speed-up of GPU-CPU co-processing.

V. CONCLUSION

This paper demonstrates how an off-the-shelf inexpensive
GPU can provide significant speed-up of large-scale transient
stability simulations using SIMD-based parallel computing.
The accuracy of the hybrid GPU-CPU simulator was verified
by comparing simulation results with those obtained from the
PSS/E software. The maximum discrepancy in the generator
angles resulted in GPU-CPU and PSS/E simulations was found
to be 1.46%. Although we used the standard method for tran-
sient stability solution, the achieved efficiency is substantial.
In the largest system used in this study the hybrid GPU-
CPU simulator is more than 340 times faster than CPU-only
simulation. Another advantage of the GPU, investigated in this
paper, is that its computation time increases linearly when the
data size expands. This is due to the GPU’s massively parallel
architecture. Since the numerical methods used in this study
are common to most power system studies, the application of
this approach can be extended to load flow, harmonics, fault
and electromagnetic transient simulations.
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APPENDIX I
SYSTEM MODEL FOR THE TRANSIENT STABILITY ANALYSIS

The detailed model of a synchronous generator used in this
paper is given here.

1) Equations of motion (swing equations or rotor mechani-
cal equations): In transient stability studies it is assumed
that mechanical torque (Tm) is constant during the
transient phenomena, and is the negative of the steady-
state value of the electrical torque (Tm = −Te(0)).
Therefore, the turbine and governor systems are not
modeled for the transient duration.

δ̇(t) = ωR.Δω(t), (7)
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Δ̇ω(t) =
1

2H
[Te(t) + Tm −D.Δω(t)].

2) Rotor electrical circuit equations: This model includes
two windings on the d axis (one excitation field and one
damper) and two damper windings on the q axis.

ψ̇fd(t) = efd(t)−Rfdifd(t), (8)

ψ̇1d(t) = −R1di1d(t),

ψ̇1q(t) = −R1qi1q(t),

ψ̇2q(t) = −R2qi2q(t).

3) Excitation system: Fig. 9 shows a bus-fed thyristor
excitation system, classified as type ST 1A in the IEEE
standard [11]. This system includes an AVR and PSS.

v̇1(t) =
1
TR

[vt(t)− v1(t)], (9)

v̇2(t) = Kstab.Δω(t)− 1
Tw

v2(t),

v̇3(t) =
1
T2

[T1v̇2(t) + v2(t)− v3(t)].

4) Stator voltage equations:

ed(t) = −Raid(t) + L′′
q iq(t)− E′′

d (t), (10)

eq(t) = −Raid(t)− L′′
did(t)− E′′

q (t),

where

E′′
d ≡ Laq[

ψq1

Lq1
+
ψq2

Lq2
], (11)

E′′
q ≡ Lad[

ψfd

Lfd
+
ψd1

Ld1
].

5) Electrical torque:

Te = −(ψadiq − ψaqid), (12)

where

ψad = L′′
ad[−id +

ψfd

Lfd
+
ψd1

Ld1
], (13)

ψaq = L′′
aq[−iq +

ψq1

Lq1
+
ψq2

Lq2
].

where ωR, H , D, Rfd, R1d, R1q, R2q , Ra, Lfd, Ld1, Lq1,
Lq2, L′′

d , L′′
q , Lad, Laq, L′′

ad, L
′′
aq, TR, Tw, T1, T2, and Kstab

are constant system parameters whose definition can be found
in [12].

According to this formulation the vector of state variables
in (1) and (2) of the synchronous generator is:

x = [δ Δω ψfd ψ1d ψ1q ψ2q v1 v2 v3]t. (14)
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