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Abstract

The Single Dielectric Barrier Discharge (SDBD) plasma actuator is

currently considered as one among the many promising active flow-

control devices. Research interest in modeling the plasma actuator

is motivated by the fundamental principle of facilitating the predic-

tion of airflow over different object configurations, and gaining further

knowledge on plasma and flow properties in aerospace environments.

Two categories of plasma actuator models exist: Phenomenological

(or Simplified), and First-principles-based models. First-principles-

based models are generally more complex and computationally inten-

sive compared to Phenomenological models. This work focuses on

such numerical investigations of the plasma actuator. In specific, this

thesis is a comparative study of Kinetic, Hybrid, and Fluid models of

the SDBD plasma actuator.

Two particular models are considered including an Electrostatic (Fluid)

model proposed by Orlov et al. [1], and a Particle-in-Cell (Hybrid)

model constructed by the author.
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The two models are tested with different configurations and envi-

ronmental parameters commonly encountered in the SDBD plasma

actuator flow problem.

The codes are separately verified, and validated by the comparison of

results obtained to supporting literature. The electric field, electric

potential, and plasma body forces are accurately modeled, albeit with

minor differences.

Suggestions for corrections and modifications for model development,

and efficiency were also outlined, along with the necessary prerequisite

research and an agenda for future prospects.
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Chapter 1

Introduction

1.1 A Brief History of Flow Control

Historically, flow control research accompanied a human instinct to comprehend

the nature of fluid behavior about object configurations, and is the humble be-

ginning of the now expansive field of aerodynamics. The aeroplane is the founda-

tional invention of this field. Its successful commercialization in the modern era

has now fueled a growing interest in the developmental research of flow control

systems to further enhance its structure and efficiency.

As stated by Gad-el-Hak [2], flow control concerns the ability to manipulate a

flow for a desired change. Flow control devices come in two forms: Active, and

Passive (Figure 1.1). Active flow control devices involve the addition of energy

to a system via an actuator. The actuator requires auxiliary power, and is inte-

grated in a control loop [6]. Passive flow control devices require no such support,

and are largely mechanical in nature.

Mechanical flaps on an airplane wing are examples of active flow control devices.

These devices generate a kind of blowing at the beginning of the wing by increas-

ing the flow velocity close to the wall, and delaying the null velocity gradient that

is the onset of separation [7]. They also enlarge the area of the wing at the back

to enhance lift (Figure 1.2).
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Figure 1.1: Flow control classification [2].

Riblets and Large Eddy Break-up (LEBU) devices are passive flow control sys-

tems. As explained by Touchard [7], Riblets are small grooves aligned with the

free air-stream, and assist in modifying the boundary layer near the surface. The

best shapes have been found to be a sharp peak, and sharp or round valley (Fig-

ure 1.3). LEBUs help alter and breakup vortices that appear at the outer edge

of the turbulent boundary layer around an airfoil, but generally do not perform

as well as Riblets since they do not produce an efficient global reduction of the

resultant drag.
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(a) Front Flap (b) Back Slot

Figure 1.2: Convertible mechanical flaps [3].

Figure 1.3: Various shapes of riblets commonly utilized on airplane wings [3].

In recent years, one particular active flow control device known as the Single

Dielectric Barrier Discharge (SDBD) plasma actuator has shown great promise.

Its popularity stems from its properties: low weight, robustness, lower power

consumption, simplicity, and ability for real time control at high frequencies [8].

Like the mechanical flaps on an airplane wing, the plasma actuator is another flow

control device that uses blowing, or an injection of momentum at the near-wall

region to induce and modify a flow configuration. The use of plasma actuators for

flow control has promoted studies on the applications of plasmas towards tack-

ling flow control problems, and exemplifies the union of the two fields of plasma

physics and modern-day aerodynamics.

The common goal of flow control studies involves the use of the aforementioned

systems to achieve greater lift enhancement and drag reduction, noise suppression,

transition and separation delays. Such studies are beneficial towards progressive

economic and environmental industrial processes involving fluid flows, allowing

for prodigious energy savings in the use of land, air, and sea vehicles [2].

Several experiments have been conducted to look at the evolution of a variety

of plasma, and airflow effects with respect to different mechanical, and electrical
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properties of the SDBD plasma actuator [5; 6; 8; 9; 10]. Such preliminary ex-

periments have played a vital role toward progressive research in the field. With

the rapid growth of computing power and technology, these efforts have culmi-

nated in the development of numerical models for plasma actuators, paving the

way towards greater understanding of the device and the inherent plasma-fluid

processes involved.

1.2 Project Proposal, and Approach

In this thesis, we will begin by analyzing the physics of the SDBD plasma actu-

ator, and its operational principles. The beneficial effects of the SDBD plasma

actuator as an active flow control device arise from the electrohydrodynamic

(EHD) or plasma body force through which it is able to modify the boundary

layer of a flow along an arbitrary surface.

Since the development of the plasma discharge in time and space is complex,

it is understood predominantly through modeling and simulation without de-

tailed measurements at the microscopic level. But, the body force induced by the

plasma component at the macroscopic level can be measured.

Thus, we will briefly review the various numerical plasma body force models

that have been used to analyze the SDBD plasma actuator flow problem follow-

ing which we will discuss and compare two particular models including a fluid

Electrostatic model proposed by Orlov [1], and a hybrid Particle in Cell model

formulated by the author.

The objectives of this work will be to test the applicability of each model with

different configurations, and environmental parameters for the SDBD plasma ac-

tuator flow problem. An attempt will be made to generalize the results in order

to provide for wider applicability.
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The following goals will be met:

i. Comparison of the two SDBD plasma actuator models.

ii. Testing of the models based on different sets of parameters and require-

ments.

iii. Verification, and validation of the models.

iv. Generalization of the models, and their applicability.

v. Discussion of prospects for future research on the SDBD plasma actuator

flow problem, and the numerical models.
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Chapter 2

Physics of the Plasma Actuator

2.1 Fundamentals of Plasmas

All visible matter in the known universe can be categorized into four separate

states: solid, liquid, gaseous, and plasma. In fact, the visible universe is predom-

inantly composed of plasma (Figure 2.1).

Figure 2.1: A plasma is a quasi-neutral gas of charged particles interacting in
collective behavior.

The word plasma originates from the Greek language to describe something that

is molded. Tonks and Langmuir first used the word in 1929 to describe a glowing,

and ionized, but neutral gas produced by an electrical discharge in a tube [11]. If

left alone, a plasma has a strong tendency to become electrically neutral, where
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the charge densities of ions and electrons are equivalent. This is what is meant

when a plasma is said to be quasi-neutral.

This system of charged particles, including free electrons and ionized atoms or

molecules exhibits collective behavior, similar to a continuum, through interac-

tions via long-range electrostatic forces. Plasmas can also be identified as hot or

cold. A hot plasma is fully-ionized, while most industrial applications, including

plasma actuators, use cold plasmas where only a fraction of the plasma is ionized

[6].

2.2 Physics of the Plasma Actuator

2.2.1 Introduction

There are several configurations of plasma actuators that span existing literature.

Research on these devices is relatively recent, with preliminary studies first initi-

ated in the early 1950s in Europe, and the USA [8]. The steady development of

micro-scale technologies and plasma applications promoted scientific interest, re-

sulting in the publication of various experimental tests, and modeling techniques

supporting the use of plasma actuators as potential devices for active flow control.

Plasma actuators are now considered to be naturally superior to other commonly

used mechanical devices for flow control. Although they are efficient, mechanical

devices tend to be heavy, adding weight and volume, and are also sources of noise

and vibration [8]. Due to their inherent mechanical composition, such devices are

also at risk of wear and tear, and may completely breakdown through overuse.

Plasma actuators do not suffer these drawbacks.

The main advantages of the plasma actuator, contributing to its natural prefer-

ence over other traditional mechanical flow control devices, include its reduced

size and weight, which is particularly important in applications with high-g loads

[9], as well as an absence of moving parts, robustness, increased reliability, in-

expensiveness, fast time-response, and the ability to be applied onto surfaces
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without requiring holes or cavities [1; 5; 8; 9]. The plasma actuator’s efficient

conversion of input electric energy into output fluid momentum is of great sig-

nificance, and the straightforward nature of simulating the effects of the device

using numerical flow solvers is also an asset [9].

It is necessary to fully comprehend the operational principles of the plasma ac-

tuator, and revise the knowledge we have gleaned from the various experimental

results that have been procured on the physical properties of the device before

proceeding with its modeling, and analysis.

2.2.2 The SDBD plasma actuator

The SDBD is the most commonly used configuration of plasma actuators. It con-

sists of two electrodes asymmetrically positioned, and separated by a dielectric

material. One of the electrodes is exposed to the airflow while the other is encap-

sulated within the dielectric material. The electrodes are long and thin, arranged

in a span-wise direction on the aerodynamic surface, and connected to a DC or

AC voltage power source. The encapsulated electrode is usually grounded [1]. A

rough schematic of the asymmetric SDBD is provided in Figure 2.2.

Figure 2.2: Schematic of the asymmetric SDBD plasma actuator.

AC voltages are generally preferred as they provide for a more stable plasma dis-

charge in the presence of a dielectric barrier. Nevertheless, other methods have

been developed to enable the use of DC voltages to provide for stable plasma

discharges in the presence of a dielectric barrier. One method involves the use

of a high resistivity layer covering one of the electrodes, otherwise known as the

8



Resistive Barrier Discharge plasma actuator [12]. Another method involves the

use of a semiconductor layer of gallium arsenide (GaAs) to replace the dielectric

layer, allowing for the device to be driven by a DC voltage between 580 V and

740 V [13]. This will be discussed in greater detail through the course of our work.

For the SDBD plasma actuator, an AC voltage of a peak value of 5-20 kV is

usually applied to the electrodes at a frequency range from 3-15 kHz [1; 6]. This

results in the formation of a plasma discharge above the encapsulated electrode

on the surface of the dielectric, due to the ionization of air, aptly providing the

device its moniker as a plasma actuator. The plasma is blue in color, and of low

emission intensity [5; 9]. A dark space is required to view the plasma by eye. It

is this plasma discharge that modifies the airflow by injecting momentum into

the boundary layer region. This momentum addition can be used for flow control

purposes. We will elaborate on this process in the following sections.

2.2.3 Debye Length, and Shielding

The Debye length is the distance over which deviations from macroscopic neu-

trality can naturally occur. An individual charged particle can communicate its

electric field, its presence, to its neighboring particles in a plasma over the dis-

tance of a Debye length.

Debye shielding describes how the charged particles in a plasma can rearrange

themselves such that they shield out any electrostatic field within a distance on

the order of a Debye length. The shielding is attributed to the collective behavior

of the charged particles in a plasma, and helps sustain its quasi-neutrality. As

such, the influence of electrostatic interaction potentials caused by say, the inser-

tion of a single charged particle within the plasma, can be averted. Beyond the

Debye length, this shielding mechanism effectively vanishes and deviations from

macroscopic neutrality occur naturally. As Bittencourt states [11], the charged

particles now respond to large interaction potentials, and move freely to neutral-

ize other regions of excess space charge.
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The Debye length is defined as,

λD =
[e2n0

ε0

( 1

kTi

+
1

kTe

)
]

−
1

2

, (2.1)

where n0 is the background plasma density, k is the Boltzmann constant, ε0 is

the permittivity of free space, Ti and Te are the temperatures of the ion and

electron species. Roth [4] states that for industrial plasmas, the Debye length

is approximately 0.00017 m, and the density of charged particles is about 1016

particles/m3.

2.2.4 Plasma Frequency

A gradient in space-charge fields is formed when a plasma is disturbed from equi-

librium, resulting in collective wave-like oscillatory particle motions that work to

restore the original macroscopic neutrality.

The plasma frequency is the time-scale used to describe the collective natural

frequency of such oscillations. These oscillations are inherently related to the

stability of a plasma’s charge neutrality. Therefore, as Bittencourt [11] states,

the plasma frequency can be used to analyze the damping mechanisms that may

destroy the collective motion of charged particles in a plasma.

Electrons, due to their smaller mass relative to the heavier ions, constitute these

plasma oscillations, and provide the restoring force in a plasma. The electron

plasma frequency, ωpe, is defined as,

ωpe =

√

( nee2

meε0

)

, (2.2)

where ne is the electron number density, e is the elementary charge of an electron,

me is the mass of an electron, and ε0 is the permittivity of free space. In a typical

gas discharge, the electron plasma frequency is ≈ 6 GHz. Collisions between

electrons and neutral particles can be a source of oscillatory dissipation, resulting

in the dampening of the collective oscillations, and a reduction of their amplitude.

These collisions are generally dictated by the Coulomb force. In a plasma, a
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Coulomb collision rarely results in a large deflection, but the cumulative effect

of many small angle collisions is often larger than the effect of a few large angle

collisions. Thus, when it comes to plasmas, it is usually preferable to consider

collision dynamics involving the limit of small angle deflections. Particle collisions

and interactions in a plasma usually involve binary interactions with elastic, and

inelastic collisions. Common models of such interactions involve the Hard-Sphere,

and Coulomb Potential models. In order for the collisions to be only slightly

damped, it is necessary that the electron collision frequency νen is smaller than

the electron plasma frequency,

νpe > νen, (2.3)

where νpe =
ωpe

2π
. This condition can be rewritten as,

ωτ > 1, (2.4)

where τ = 1/νen representing the average time an electron travels between col-

lisions with neutral particles, and ω is the angular frequency of typical plasma

collisions. In other words, in a plasma, it is necessary that the time-scales at

which electron-neutral collisions transpire be large compared to the time-scale

during which the physical parameters of a plasma are changing.

In an interstellar gas, τ is relatively large with a small neutral particle num-

ber density. Therefore, electrons behave independently and the medium can be

treated as a plasma. But when the number density of neutral particles is far larger

than that of the number density of electrons, the motion of the electrons will be

coupled to the neutral particles resulting in nothing more than a neutral gas. The

Plasma Frequency, together with Macroscopic Neutrality and Debye Shielding,

are the three main properties that fundamentally define plasma behavior.

2.2.5 Operational Principles

Plasma actuators, in general, involve the use of non-thermal atmospheric pressure

plasmas or plasmas that are not in thermodynamic equilibrium. This can be due
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to either the ion and electron temperatures being different, or if the distribution

of velocities of either of the two species does not satisfy the Maxwell-Boltzmann

distribution [11]. Non-thermal plasmas can be produced by a variety of electrical

discharges, and are of low energy cost as most of the electrical energy is utilized

for the production of high energy electrons, rather than the heating of the sur-

rounding gas [8].

The formation of the SDBD plasma is based on the Townsend mechanism. This

is an electron avalanche process involving the multiplication of an initial set of

free electrons through cascade ionization [8]. The behavior of the SDBD plasma

actuator is strictly defined by this charge mechanism in alternating half-cycles

by the AC voltage power source. Simply put, when an AC voltage is applied to

the electrodes, a plasma discharge appears on the surface above the encapsulated

electrode, injecting momentum into the surrounding air during each half-cycle of

the applied voltage. This injection of momentum is characterized as a macro-

scopic EHD or plasma body force that can be measured, and is transferred to

the neutral continuum through collisions between charged and neutral particles.

In fact, while the plasma appears to be a relatively uniform diffuse discharge,

measurements have indicated that it is highly ordered in space, and time [1]. The

SDBD is widely preferred due to its ability to be able to sustain a large volume

discharge at atmospheric pressure without the discharge collapsing into a con-

stricted arc [9]. This is because the configuration of the SDBD plasma actuator

is inherently self-limiting; a behavior that is dictated by the build-up of charges

on the dielectric surface.

Let us consider this in more detail. We begin with the half-cycle of the discharge

where the exposed electrode is of greater negative potential compared to the

encapsulated electrode, as shown in Figure 2.3. In other words, the exposed elec-

trode acts as a cathode, while the encapsulated electrode, or rather, the dielectric

surface, acts as an anode. As stated by Orlov [1], electrons are emitted from the

exposed electrode when the electric potential is large enough, and are deposited

onto the dielectric surface. In the space between the electrodes, these primary

electrons induce an electron avalanche by ionization of neutral air particles as
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(a) AC voltage input for
the corresponding cycle.

(b) Deposition of electrons on the dieletric
layer.

Figure 2.3: Forward-Phase Charge Cycle

they continue their drift from the cathode to the anode. A plasma discharge

is then created. By definition, momentum is injected or transferred to the flow

through the collisions of these charged and neutral particles. Electrons contribute

little to the momentum transfer due to their small mass in contrast to the more

massive ions. The plasma is formed as the result of a series of discharges, as

electrons are transferred onto and off the dielectric surface.

Meanwhile, the dielectric surface opposes the applied voltage on the exposed elec-

trode in response to the charge buildup. As electrons move toward the positive

electrode, and ions move to the negative electrode, a charge imbalance similar to

an electric dipole is set at the edges of the plasma. This charge imbalance forms

an internal electric field that opposes the external electric field (due to the AC

voltage). The rearrangement of the charged particles continue until the net elec-

tric field in the plasma is neutralized. Thus, the discharge is self-limiting in that

it is shut off unless the magnitude of the applied voltage is continually increased.

In the opposite half-cycle, electrons return to the exposed electrode as presented

in Figure 2.4, where the dielectric surface is of greater negative potential playing

the role of the cathode. The charge available to the discharge is now delimited

to the amount that was deposited in the previous half-cycle onto the dielectric

surface. This self-limiting behavior of the SDBD plasma actuator helps avoid the

formation of an unfavorable arc-discharge. An arc discharge can have harmful

effects on electronic equipment and results in an unstable plasma [8]. A stable

glow discharge is instead observed. The net effect of the plasma on the flow is
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(a) AC voltage input for
the corresponding cycle.

(b) Deposition of electrons onto the exposed
electrode.

Figure 2.4: Backward-Phase Charge Cycle

measured, and observed as a localized body force.

2.2.6 Temporal Scales in the SDBD process

Temporal cycles within the plasma are dictated by the motion of the charged

species in response to the externally applied electric field. The formation of

the plasma discharge is a highly dynamic, spatially evolving, non-equilibrium

process. Time-resolved observations of the ionization process have shown that

the discharge’s features develop on the timescale of the AC period of milliseconds

or less [5]. Further observations and calculations made by Orlov [1], and Vidmar

et al. [14] have identified three distinct timescales in the SDBD process:

i. The shortest time scale, on the order of 10−8 s, is associated with the time

required for charge rearrangement for net neutrality in the plasma.

ii. The second timescale refers to the operational cycles of the plasma actuator,

and is defined by the period of the AC cycle that supports the alternating

electrical discharge. This is on the order of 10−4 s.

iii. Lastly, the third timescale corresponds to the collective motion of the neu-

tral continuum (airflow) in response to the plasma actuator, and is on the

order of 10−2 s.

2.2.7 Mechanical and Electrical properties

The primary mechanism behind the SDBD plasma actuator’s ability to manipu-

late or induce a flow configuration is the ionized air that appears over the dielectric
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(a) (b)

Figure 2.5: UMax as a function of electrode gaps, and widths [4].

surface. In the presence of the electric field produced by the electrode geometry,

the ionized air results in a body-force that acts on the ambient, neutrally charged

air. This effect is classically termed as an electric wind, directed from the exposed

electrode toward the dielectric surface, that modifies the boundary layer, and al-

lowing for the active manipulation of the airflow [7; 8; 9]. This act of producing

a mechanical output or kinetic energy, for an electrical input or electric energy,

without the use of mechanical moving parts, classifies the plasma actuator as a

Micro-Electro-Mechanical-System (MEMS) [8].

The SDBD plasma actuator usually involves electrodes with widths of a few mm,

and thicknesses between 0.1, and a few mm [8]. The electrode gap is equal to

zero, with a chosen dielectric among various materials from Teflon, Kapton, Glass,

Ceramics, or Plexiglass. The variance of the representative parameters concern-

ing these parts of the device can result in differing mechanical effects including:

electric wind velocity (measured using Particle-Image Velocimetry (PIV) or Laser

Doppler Velocimetry (LDV)), mechanical power, and electric force.

For example, Forte et al. [15] performed a parametric study to increase the

plasma actuator’s induced velocity. Figures 2.5a-2.5b present their observations

on the evolution of the maximum induced velocity as a function of the electrode

gap (g), and the encapsulated electrode width (w). The plasma actuator system

in these cases involve a 2 mm-thick Plexiglass plate, with two 5 mm-wide elec-
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trodes, with an applied voltage V = 20 kV , and frequency f = 700 Hz. A rough

schematic of the general configuration is provided in Figure 2.6.

Figure 2.6: Electrode Gaps and Widths in Forte’s experiments.

The influence of different parameters on the generated plasma, and the induced

velocities was observable. The maximum induced velocity was almost always

found to be at a distance of y=0.5 mm above the dielectric surface. An optimum

electrode gap of 5 mm was noted. For g greater than 5 mm it was postulated

that the electric field may fall down, and that the space charge may not be able

to make it to the downstream electrode.

A second series of measurements were made using the same actuator configura-

tion but with g = 0 and the encapsulated electrode width (wB) increased little

by little. Figure 2.5b shows that the induced velocity above the dielectric surface

increases with the electrode width, and eventually levels off. It could be said that

the wider the electrode, the greater the plasma extent. Thus, ions are accelerated

for a longer distance, resulting in an increase in induced velocity magnitudes. On

the other hand, since the process behind the formation of a self-sustaining plasma

is dissipative (as reviewed earlier in the formation of the plasma discharge dic-

tated by AC voltage half-cycles, the self-limiting nature of which delimits the

number of electrons deposited onto the dielectric surface, which can influecne the

plasma extent), the plasma was found to not expand more than about 20 mm.

This led to the conclusion that the best configurations involve g = 0 and wB =

20 mm, or g = 5 mm and wB = 15 mm.
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Another experiment by Forte [15] captures the velocity profiles for varying volt-

ages above the dielectric surface, as presented in Figure 2.7. Y in units of mm

represents the vertical distance above the dielectric surface. The plasma actuator

configuration here consisted of a 4 mm-thick glass plate, with an electrode gap

and electrode width equal to 5 mm. A constant frequency of 300 Hz is utilized

for all voltage values.

Figure 2.7: Variance of the velocity profile near the dielectric surface [4].

Along with various other experimental efforts as outlined by Moreau [8], a general

conclusion can be drawn that the plasma actuator’s influence on the induced flow

field and the plasma formation is a function of several parameters ranging from the

AC voltage amplitudes and frequencies, electrode configurations, and dielectric

materials etc.

2.3 Modeling of the Plasma Actuator

The effectiveness of plasma actuators in controlling flow separation has been thor-

oughly demonstrated by several researchers. Many such experiments, as discussed

in the previous section, focused on the modification of the physical and macro-

scopic parameters of the plasma actuator system. The major drawback with this

approach is the large number of parameters that are involved, making it incredi-

bly difficult to monitor the system’s dynamic behavior at short timescales.
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The macroscopic effects of the plasma actuator on the airflow is highly influenced

by its microscopic structure. The SDBD plasma is typically small in the physical

sense, ranging from 2-3 mm in height and 1-2 cm in width. It is composed of

multiple micro-discharges of short duration, around tens of nanoseconds, varying

significantly over the period of the source AC voltage at about 0.1-10 ms [16].

This makes direct measurements on microscopic properties such as the number

density of the charged species, and the electric field, extremely difficult.

Numerical modeling, and simulations serve as efficient alternatives providing use-

ful and flexible tools to model the development of the SDBD in space and time,

as well as monitor the continued evolution of such complex flow control systems.

The SDBD plasma actuator generates an EHD or plasma body force that inher-

ently depends on the electric field ~E(~r, t) produced by the electrode geometry,

and the charged particle densities ni(~r, t) as a function of position ~r and time t

integrated over the volume V of the plasma,

~Fi(t) =

∫

V

qini(~r, t)E(~r, t) dt, (2.5)

and summed over all species,

~FEHD(t) =
∑

i

~Fi(t), (2.6)

where qi is the corresponding charge of the particle species.

Over the years, various body force models have been proposed. These models

can be classified into two categories: Phenomenological (or Simplified), and First-

Principles-Based models. Phenomenological models involve approaches with re-

duced complexity providing reasonable qualitative correspondence with experi-

mental observations. Such models are limited in their ability to accurately pre-

dict, and explain the physics involved. Meanwhile, First-Principles-Based models

distinctly address the necessary knowledge required towards understanding the

fundamental physical processes involved [6; 10]. Let us begin by briefly review-
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ing the prominent models in the two categories. The reader is referred to the

corresponding literature, for more detail.

2.3.1 Phenomenological Models

2.3.1.1 Roth Model

This is one of the earliest models present in the literature, and is based on the

approximation that the body forces can be taken to be similar to forces in gaseous

dielectrics as given by Landau, and Lifshitz [17]. Thus, the body force is defined

as,

||~fb|| =
d

dx
(
1

2
ε0|| ~E||2). (2.7)

This model was deficient in its static formulation and inability to account for

the presence of charged particles, both of which are of great importance in ex-

periments [5; 18]. This was re-iterated by work done by Boeuf and Pitchford in

their derivation of (2.7) [19]. Enloe et al. also showed that the body force given

by this equation is correct only in the special case of a 1D condition, and is not

applicable to physical scenarios in two dimensions [20].

2.3.1.2 Electrostatic Model

This model utilizes the Enloe formulation of the plasma electromagnetics [18]

assuming that the electric field is due to two additive components: the external

electric field due to the voltage of the electrodes, and the electric field due to

the charged particles [21; 22]. A Gaussian charge distribution is assumed, and

is used to compute the body force produced by the plasma. The model’s main

advantage is its simplicity, making it fast and easy to implement. The separation

of the electric field into the two aforesaid components also allows the body force to

be decoupled from the flow field [6]. But, while the model is qualitatively correct

in its portrayal of the net body force vectors, the scaling of the AC voltage is

incorrect [5].
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Figure 2.8: Lumped-Element Circuit Model where the region over the encapsulated
electrode is divided into N sub-regions each representing a parallel arrangement
of circuit elements [5].

Figure 2.9: A closer look at the circuit model [5].

2.3.1.3 Lumped-Element Circuit Model

This model was suggested by Orlov et al. [23] to address the necessities of ef-

ficiently predicting the body forces produced by SDBD plasma actuators. As

reviewed by Corke [5], the model divides the area over the covered electrode

into N parallel networks, each of whose properties are unique depending on its

distance from the exposed electrode as seen in Figure 2.8. The corresponding

schematic of electric circuits is provided in Figure 2.9.

Each network is characterized by capacitors representing air and the dielectric

layer, along with a plasma-resistive element. The plasma’s time-dependent be-

havior, due to the AC voltage half-cycles, is applied within each of these lumped-

element circuits. The plasma is assumed to operate in a quasi-steady state. When

the charge distribution is disturbed, the charges cancel the external electric field

everywhere except near the electrodes or the plasma edge [6]. This assumption

can follow through when modeling the plasma, and computing the body force.
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Maxwell’s equations are used to obtain a function to describe the body force per

volume of plasma, which is then solved with a set of five equations using the

lumped-element circuit model.

In conclusion, while the lumped-element circuit model is computationally effi-

cient, it is not without its drawbacks as it requires empirically determined coef-

ficients which are functions of the frequency of the voltage supplied. Thus, it is

valid for only one single frequency [5; 6].

2.3.1.4 Other Models

Shyy et al. [24] have presented a model that assumes the linear decrease of the

electric field strength from the edge of the exposed electrode to the encapsulated

electrode. This assumption was later found to be inconsistent with empirical

measurements which showed an exponential spatial decay [20; 23]. The model

was also found to produce body force vectors that point away from the dielectric

surface, and with magnitudes being a linear function of the AC voltage rather

than V 3.5 as observed in experiments [5].

Likhanskii et al. [25] provide a model of a weakly ionized-air plasma that is a

mixture of four components including neutral molecules, electrons, positive, and

negative ions. This mixture included ionization and recombination processes,

and the simulations displayed the significance of the presence of negative ions

in the air [5]. Such charged-particle models have been helpful in understand-

ing the charging of the dielectric surface by electrons in the forward half-cycle

phase, and its significance in helping pull positive ions forward and accelerate the

gas in the backward half-cycle-phase. But, the models are time-consuming and

require enormous computational resources particularly when applied to natural

flow conditions at atmospheric pressures. These models are not suitable as prac-

tical design tools for the simulation and optimization of plasma actuators as flow

control devices.
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2.3.2 First-Principles-Based Models

2.3.2.1 Kinetic Models

Kinetic models describe the macroscopic properties of fluids by studying the in-

teractions of their molecular composition and motion [6]. With the SDBD, this

can include the interaction between a plasma and the electric field, or that be-

tween the plasma and neutral particles in the air. These models generally involve

solving the Boltzmann equation of the relevant species’ velocity or energy distri-

bution function in space and time, or particle simulations such as Monte-Carlo

methods [10].

The Boltzmann equation is defined as an equation for the distribution function

f(~r,~v, t) in phase space where ~r is the position of the particle, and ~v is the velocity

of the particle at time t such that,

∂fα
∂t

+ ~vα · ∇fα + ~aα · ∇vfα =
(∂fα

∂t

)

coll
, (2.8)

where the index α refers to the individual charged particle species. Using the del

operator notation,

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(2.9)

,

and similarly the del operator in velocity space is,

∇v = x̂
∂

∂vx
+ ŷ

∂

∂vy
+ ẑ

∂

∂vz
. (2.10)

The particle acceleration ~aα can be defined as,

~F (~r, t)α
mα

, (2.11)

or the force field acting on the particles in the fluid, where mα is the mass of

the particle species. In modeling the SDBD plasma, it is generally assumed that

the current is low enough such that self-induced magnetic fields can be ignored.
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Therefore, only electric forces are considered, hence the force is proportional to

the electric field, and particle charge,

~Fα = qα ~Eα. (2.12)

The term on the right hand side of Equation 2.8 is the collision term and describes

collisions between particles. In order to obtain a self-consistent solution, one needs

to solve for the electric field ~E using Poisson’s equation,

∇ · ~E =
ρ

ε0
, (2.13)

where ρ = e(
∑

ni − ne) is the charge density of the ions (assumed to be singly

ionized) and the electrons, and ε0 is the vacuum permittivity.

The solution of the Boltzmann equation is inherently a multi-dimensional and

time-dependent problem. Furthermore, given the short timescales of electron

collision and relaxation, this system of equations is exceedingly difficult to solve

without simplifying assumptions. The collision term in (2.8) is non-linear and is

modeled using the Monte-Carlo method.

Monte-Carlo methods are particle techniques. One such method, known as the

Direct Simulation Monte-Carlo (DSMC) method is used to model the collision

term in the Boltzmann equation [10]. The main assumption in DSMC methods is

that particle motion can be decoupled from particle collisions if an appropriately

small time-step is used. The collisions themselves are calculated using existing

statistical collision model.

Particle-in-Cell (PIC) techniques are also a common alternative in modeling the

collision term. The PIC method follows the motion of particles in prescribed force

fields, based on the fundamental, and deterministic laws of classical mechanics

[10]. The simulation region is divided into a cellular grid, which is then used

to solve for the force field helping determine the force on each particle inside a

given cell. The equations of motion of each particle are integrated to get the new
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position, and velocity.

All in all, Monte-Carlo methods are statistical in nature compared to their de-

terministic counterparts in PIC techniques. An integrated PIC-MC has been

demonstrated by Nitschke, and Graves [26]. A direct solution of the Boltzmann

equation is possible, but is time consuming.

2.3.2.2 Fluid Models

Unlike the computationally intensive Kinetic models, Fluid models incorporate

the use of transport equations for the charged and neutral species’ concentration,

momentum, and energy i.e. the moments of the distribution function. The nth

moment of a distribution function, about a mean value c is given by,

µn =

∫

∞

−∞

(x− c)nf(x) dx, (2.14)

with x being either the space or velocity coordinate. The distribution function is

usually not known. In order to solve for the moments, one can utilize any of the

following three methods [6; 11],

i. Assume the form of the distribution function.

ii. Use basis functions as a means to define and expand the distribution func-

tion.

iii. Use phenomenological equations to describe integrals of the distribution

function.

The governing equations for each species consist of the Continuity, Momentum,

and Energy equations. This forms a system of equations that can be solved

together with Poisson’s equation,

∇ · ~E =
e

ε0
(
∑

ni − ne). (2.15)

The various parameters used in these conservation equations are obtained either

by directly solving the Boltzmann equation, or from empirical data.
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2.3.2.3 Hybrid Models

Fluid models lose their validity at environments involving lower pressures less

than 100 mTorr [6]. Such models are also prone to error in cases where there are

large deviations from system equilibrium usually due to the presence of strong

gradients or transient effects. Kinetic models are highly descriptive but are com-

putationally expensive methods.

Hybrid models are utilized when there is a need for the high accuracy and the

descriptive results of the kinetic models, along with the computational efficiency

of fluid models. In using these models we try to strike a balance between obtaining

accurate and efficient results [10]. For example, if one were to use a hybrid model

to simulate a plasma environment, regions with small particle number densities

and strong fields would be computed using a particle model, while regions with

weak fields and large particle number densities would be treated with the fluid

model. A model interface would be used to monitor the transitions between the

two regimes [27].

2.4 Conclusion

It is up to the individual to choose appropriately between these modeling ap-

proaches with consideration of the phenomena being investigated. In this work,

we focus on two particular methods to understand and evaluate the SDBD plasma

actuator system: a fluid electrostatic model by Orlov [1], and a hybrid PIC model

formulated by the author. Both models are based on first-principles. Our goal

will be to provide a comparative study of the two models in their application to

the SDBD plasma actuator flow problem focusing specifically on the formation

of the plasma body force.
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Chapter 3

Orlov’s Electrostatic Model

3.1 Theoretical Overview

This chapter discusses the mathematical, and numerical formulation of Orlov’s

Electrostatic model for the SDBD plasma actuator. The governing equations for

the electrostatic theory of the SDBD plasma actuator flow problem will be pre-

sented, and the corresponding solution for the body force of the plasma will be

derived.

Some facts pertaining to this flow problem are that,

• Velocities for fluid transport processes are on the order of 10-100 m/s.

• Electron velocities, and the subsequent motion of electrons that describes

plasma formation, are on the order of 105 to 106 m/s for electron temper-

atures ranging between 1000-10000 K [4].

Orlov’s model utilizes the assumption of the differing velocity time scales in the

SDBD process to decouple the problem into two separate parts involving the

plasma body force formation, and the fluid flow response [1]. We will focus

mainly on the numerical formulation of the model involving the derivation of the

electrostatic equations concerning the solution for the plasma body force vector.
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3.2 The Electrostatic Model

3.2.1 Governing Equations

The plasma is a quasi-neutral system with an equal distribution of positive and

negative charges throughout its volume. It can be assumed that charged parti-

cles in the plasma have sufficient time to redistribute themselves to maintain this

quasineutrality.

The governing equations used to represent the electrostatics of the plasma actu-

ator flow problem can be derived by simplifying Maxwell’s equations,

∮

P
~H · d~L =

∫

( ~J + ∂ ~D
∂t
) · d~S, (3.1)

∮

P
~E · d~L = −

∫

∂ ~B
∂t

· d~S,
∮

A
~D · d~S =

∫

ρc dV,
∮

A
~B · d~S = 0,

where ~H is the magnetic field strength, ~B is the magnetic flux density, ~E is

the electric field, ~D is the electric displacement, ~J is the electric current density

(excluding the dielectric), ρc is the charge density (excluding the dielectric), while

P is the path of integration, and A is the bounding area or surface of the volume

V. In differential form, this system of equations is rewritten as,

∇× ~H = ~J +
∂ ~D

∂t
, (3.2)

∇× ~E = −
∂ ~B

∂t
,

∇ · ~D = ρc,

∇ · ~B = 0.

With reference to the temporal scales in the plasma actuator flow problem (Sec-

tion 2.2.6), the orders of magnitude difference in time scales between the col-

27



lective motion of the neutral continuum i.e. the fluid response and the charge

arrangement, justifies the assumption that the plasma formation and charge rear-

rangement processes are instantaneous. Due to this, Orlov considers the plasma

to be quasi-neutral-steady, resulting in the following simplifications:

• The electric current density, ~J , the magnetic field strength, ~H, and the

magnetic flux density, ~B, can be set to zero.

• The corresponding partial time derivatives of the electric displacement, ∂D
∂t
,

and the magnetic flux, ∂ ~B
∂t

can also be set to zero.

This leaves us with one Maxwell equation that describes the density of charged

particles in our system,

∇ · ~D = ρc. (3.3)

The electric displacement, ~D, is defined as,

~D = ε ~E, (3.4)

where ε = ε0εr with ε0 the vacuum permittivity, and εr the relative permittivity

or dielectric coefficient of the media. Similarly, the electric field can be defined

via the electric potential,

~E = −∇φ. (3.5)

Substituting equations (3.4), and (3.5) into (3.3) we arrive at Poisson’s equation,

which says,

∇(εr∇φ) = −
ρc
ε0
. (3.6)

In order to examine the mechanism by which the SDBD plasma strives to shield

itself from the disturbing influence of the external electric field due to the imposed

voltage on the electrodes, we consider the scenario of a plasma gas subjected to an

electric field. This is similar to the classic example in plasma physics where this

electric field is due to an external charged particle, or even one of the charged
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particles inside the plasma, isolated for observation. Our goal is to determine

the electrostatic potential φ(~r) and the corresponding internal electric field ~E(~r)

established in the plasma due to the combined influence of the external electric

field and the distribution of charged particles in the discharge. We are assuming

a two dimensional electric field such that ~r = (x, y) for the plasma actuator flow

problem.

A plasma can be considered as a conducting fluid, without specifying its composi-

tion of various individual species. Therefore, the macroscopic transport equation

to describe the behavior of the plasma as a whole can be written without con-

sidering the individual species present [11]. Each macroscopic variable is rather

combined by adding the contributions of the various particle species in the plasma.

The equation of motion for a plasma gas subjected to an electric field acting along

a single direction s can then be written as,

mn
[∂~u

∂t
+ (~u · ~∇)~u

]

= qn ~E −∇ · P, (3.7)

where mn represents the mass density of the charged particles (ions and elec-

trons) in the plasma gas, and ~u is the mean velocity of the plasma gas, since the

velocity of each species is weighted proportionally to its mass density. qn is the

corresponding electric charge density, and P is the total kinetic pressure dyad of

the plasma gas. The kinetic pressure dyad for each particle species in the plasma

is generally defined as,

Pα = nαmα < ~cα~cα >, (3.8)

where ~cα = ~v − ~uα is the peculiar or random velocity of the type α particles

relative to the average velocity ~uα. The peculiar velocity is associated with the

random or thermal motions of the particle species. The term −∇ · P is the force

exerted in a unit volume of plasma due to the random variations of the particles’

peculiar velocities. This volumetric force also accounts for forces associated with

the scalar pressure and viscous forces. Viscous effects are relatively unimportant

in plasmas [11]. Additionally, if the distribution of peculiar velocities is isotropic,

P corresponds to a scalar kinetic pressure p.
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Orlov’s model neglects viscous effects and assumes an isotropic velocity distribu-

tion which makes −∇ · P = −∇p. Thus, (3.7) can be rewritten as,

mn
[∂~u

∂t
+ (~u · ~∇)~u

]

= qn ~E −∇p. (3.9)

(3.9) is in fact the momentum equation for a collisionless plasma system of ions

and electrons. Given the plasma’s quasi-neutral-steady behavior, the left hand

side of (3.9) vanishes giving,

qn ~E = ∇p. (3.10)

Now, according to thermodynamics, there is a mean thermal energy of kT/2

associated with each translational degree of freedom (i = x, y, z) such that,

1

2
kTαi =

1

2
mα < c2αi >, (3.11)

where α denotes the relevant particle species, and k is Boltzmann’s constant.

Now, the scalar pressure p is defined as one-third the trace of the pressure tensor,

pα =
1

3

∑

i,j

Pαijδij =
1

3

∑

i

Pαii =
1

3
(Pαxx + Pαyy + Pαzz), (3.12)

where δij is the Kronecker delta, defined such that δij = 1 for i = j and δij = 0

for i 6= j. The pressure tensor elements Pαii, with i = x, y, z, are the hydrostatic

pressures normal to the surfaces described by i = constant such that [11],

pα =
1

3
nαmα < c2α >, (3.13)

where c2α = c2αx + c2αy + c2αz. Since the distribution of random velocities in the

plasma is assumed to be isotropic, we have c2αx = c2αy = c2αz = c2α/3, and therefore,

pα = nαmα < c2αi > . (3.14)

Combining (3.11) and (3.14) gives,

pα = nαkTα, (3.15)
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which is the equation of state of an ideal gas. Substituting (3.15) in (3.10) we

get,

qnα
~E = kTα

∂nα

∂~r
. (3.16)

The plasma discharge is in the presence of a conservative force due to an electro-

static field as defined by (3.5). Such a system is characterized by a distribution

function that differs from the Maxwell-Boltzmann distribution by an exponential

factor known as the Boltzmann factor. Substituting, ~E = −∂φ

∂~r
for the electric

field we get,

−q
∂φ

∂~r
=

kTα

nα

∂nα

∂~r
, (3.17)

the solution of which is the Boltzmann relation [11],

nα(~r) = n0exp
(−qφ(~r)

kTα

)

, (3.18)

where q is the charge of the particle, e for ions, and -e for electrons, while n0 is

the number density of the charged particles in the plasma, otherwise known as

the background plasma density. The Boltzmann relation expresses the number

density of charged particles as a function of the electric potential. The total

electric charge density ρc can be expressed as,

ρc = −e(ne(~r)− ni(~r)) = −en0

[

exp
(eφ(~r)

kTe

)

− exp
(−eφ(~r)

kTi

)]

, (3.19)

where Ti and Te are the ion and electron temperatures. Assuming that the per-

turbing electrostatic potential is weak so that the electrostatic potential energy

is much less than the mean thermal energy,

eφ(~r) << kT, (3.20)

we can make the approximation using a power series expansion that,

exp
[

±
eφ(~r)

kTα

]

≈ 1±
eφ(~r)

kTα

, (3.21)
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leading to the simplification,

ρc = −e(ne − ni) ≈ −en0

(eφ(~r)

kTe

+
eφ(~r)

kTi

)

. (3.22)

Therefore, substituting (3.22) into (3.6) we arrive at the fundamental equation

that describes the electrostatic formulation of the plasma actuator flow problem,

∇(εr∇φ(~r)) =
φ(~r)

λ2
D

, (3.23)

where λD is the Debye length, defined as,

λD =
[e2n0

ε0

( 1

kTi

+
1

kTe

)
]

−
1

2

. (3.24)

As mentioned earlier, the Debye length is the characteristic distance over which

the electric field influence of an individual charged particle can be felt by other

particles in the system. In other words, free charges in the plasma are shielded

from this electric influence to a distance given by the Debye length. Roth [4]

states that for industrial plasmas the Debye length is approximately 0.00017 m,

and the density of charged particles is about 1016 particles/m3. Debye shielding

is valid if there are enough particles in the charge cloud. The dimensionless

parameter that characterizes this criteria is Λ which for unmagnetized plasma

systems, is defined as,

Λ =
4

3
πλ3

Dne. (3.25)

If the plasma parameter Λ >> 1 it follows that the plasma is weakly-coupled and

that Debye shielding is valid. Roth’s values provide Λ = 3.5× 105, indicating the

assumption that Debye shielding is valid.

A rough schematic of the computational domain for our problem is shown in

Figure 3.1. The plasma actuator is configured in an asymmetric arrangement

with one electrode exposed to air while the other is completely encapsulated

in a dielectric material.The electrostatic equation (3.23) is solved throughout

this domain. The boundary conditions on our domain are said to represent the

condition at infinity, where the electric potential, φ, is set to zero,
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Figure 3.1: Computational domain for the SDBD plasma actuator flow problem.

φ|Boundary = 0. (3.26)

However, the value of the electric potential on the electrodes is set to a constant,

φ|Electrodes = ±φ0. (3.27)

The lack of complex boundary conditions in the Orlov model will be discussed in

detail during the analysis of the model’s computational results. But for now, what

is left is the solution for two fundamental values including the electric potential

from (3.23) and the plasma body force. Using equations (3.6) and (3.23), the

charge density ρc can be found as,

∇(εr∇φ(~r)) =
−ρc
ε0

=
φ(~r)

λ2
D

, (3.28)

or,

ρc = −
ε0
λ2
D

φ(~r). (3.29)

Due to the electric field in the plasma, in regions where there is a net charge

density, a plasma body force exists. Using the Lorentz equation for electric force,
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~fb(~r) = q ~E(~r), (3.30)

the plasma body force for a given charge density ρc is,

~fb(~r) = q ~E(~r) = ρc ~E(~r) = −
( ε0
λ2
D

)

φ(~r) ~E(~r). (3.31)

This body force is at the crux of the plasma actuator’s macroscopic influence on

the neutral continuum, and the subsequent modification of the flow’s boundary

layer. The plasma body force acts in the vector direction as that of the internal

electric field in the plasma, and as such is directed from the exposed electrode

to the dielectric surface or the encapsulated electrode. It is important to note

that Orlov’s model treats ions and electrons as a fluid background through the

Boltzmann relation making it similar to a quasistatic approach to the plasma

actuator flow problem.

3.3 Conclusion

This completes our discussion of Orlov’s Electrostatic model used in this thesis.

Orlov’s model treats the electrons and ions, via the Boltzmann relation, as a

fluid background. The following chapter will detail the collisionless Electrostatic

Particle-In-Cell method formulated by the author to model the SDBD plasma

actuator flow problem.
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Chapter 4

Particle-in-Cell Model

4.1 Particle Models for Plasmas

Particle models have been highly successful in the simulation of plasmas, and in-

volve tracking the motions of a large number of charged particles interacting via

external and self-induced electromagnetic fields. These models are mainly lim-

ited by computational standards as even the most advanced computers can only

follow the motion of a few million particles for a considerable amount of time.

In comparison, laboratory and space plasmas typically have number densities of

1012 cm−3, and 1018 cm−3 [28].

Thus, in particle models, there are two predominant methods which are used in

the representation of large numbers of particles. One can either view each particle

in a simulation as a super-particle i.e. a particle which represents many particles

or one may focus the computational domain such that the simulation can be

viewed as modeling a very small region of the plasma. Various particle models

have been used throughout history ranging from one-, two-, and three-dimensional

models that are either electrostatic, magnetostatic, or electromagnetic in nature.

In this thesis, we utilize a collisionless Electrostatic Particle-in-Cell (PIC) model.
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4.2 Theoretical Overview

4.2.1 Introduction

In this thesis, we consider the behavior of charged particles in a low-density

plasma. The modeling of plasmas is difficult due to the high number of charged

particle interactions through external and self-induced electromagnetic fields, the

presence of solid objects, and most importantly the differing time-scales of prop-

agation for electrons and ions. Simplifying assumptions have to be made in order

to make the PIC method computationally efficient, and suitable.

We begin by assuming that the plasma current is low enough such that self-

induced magnetic fields can be ignored. Furthermore, unlike the Orlov model

where both the ions and the electrons are modeled as a fluid background, the

PIC model considers ions to be kinetic while the electrons are modeled as fluidic

via the Boltzmann relationship. This is done so that the equations are time in-

tegrated over the larger ion time scale allowing for an increase in computational

speed. Lastly, the plasma density is sufficiently low such that particle collisions

can be neglected. The use of full dynamic ions along with massless or Boltzmann

electrons defines the PIC model’s hybrid approach.

Charged particles interact such that particles of opposite charge are attracted to-

wards each other, while particles of like charge repel. This is classically described

by Coulomb’s law which states,

~F =
1

4πε0

q1q2
r2

~r12, (4.1)

where q1 and q2 represent the charges of the two particles, r is the distance

between the two particles, and ε0 is the vacuum permittivity constant. In plasma

simulations, rather than computing the Coulomb force directly, the force acting

on charged particles is given by the Lorentz Force,

~F = q( ~E + ~v × ~B), (4.2)
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where q is the particle charge, ~E is the electric field, ~v is the particle velocity,

and ~B is the magnetic field. In the electrostatic case, the magnetic field term in

the Lorentz force equation can be ignored. As mentioned earlier, it is exceedingly

difficult to simulate every single charged particle and track their motions. Our

method uses the approach where each computational particle is in fact a super-

particle representing a large collection of particles. A specific weight is assigned

to each particle, describing the ratio of real particle per super-particle.

4.2.2 Governing Equations

There are three main equations used in the PIC model to describe the fundamen-

tal particle processes in a plasma:

i. Newton’s Second Law is used to dictate the motion of each super-particle,

and is given by,

~v =
d~r

dt
, (4.3)

~F = m
d~v

dt
= q ~E, (4.4)

where q is the particle charge, and m is the mass of the charged particle.

ii. Poisson’s equation is solved for the electric field,

∇(εr∇φ(~r)) =
−ρc
ε0

, (4.5)

where φ(~r) is the electric potential, ρc is the charge density, ε0 is the vacuum

permittivity, and εr is the dielectric constant of the media. ~r = (x, y)

represents the notion that we are once again considering a two-dimensional

system. The total electric charge density is defined as,

ρc = e(ni(~r)− ne(~r)). (4.6)
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The plasma body force is calculated by substituting for the electric field

and electric potential in (3.31).

iii. Boltzmann’s relation is used to simplify the complications arising from the

differing time-scales of propagation of ion, and electrons. Extremely small

computational time steps are required if we are to observe the motion of

electrons without the introduction of numerical errors, but this leaves the

method unusable in studying large-scale problems. In the reference frame

of an ion, the electrons move instantaneously. Thus, this PIC model defines

electrons as a fluid,

ne(~r) = n0exp
(e(φ(~r)− φ(0))

kTe

)

, (4.7)

and leaves the ions (positive) to be kinetic.

4.2.3 Solution Algorithm

The PIC model’s solution algorithm consists of seven iterative steps [29],

i. Compute, and distribute charge density : Particles positions are distributed

within the computational domain.

ii. Compute the electric potential : Solve Poisson’s equation.

iii. Compute the electric field : Solve for the electric field using ~E = −∇φ.

iv. Move the particles : Update the positions, and velocities of particles using

Newton’s Second Law.

v. Generate particles : Sample sources for new particles.

vi. Output results : Save information on simulation state at preset time-steps.

vii. Repeat : Repeat the loop, iterating until either the maximum number of

time-steps is achieved, the tolerance criterion is met, or the simulation

reaches a steady state.
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4.3 Conclusion

This completes our brief review on the theory of the PIC model. The PIC model

treats the electrons as a fluid background via the Boltzmann relation, while the

ions remain dynamic. This makes it a hybrid model compared to Orlov’s fluid

model where the ions and electrons are both modeled as a fluid background. The

following chapter will discuss how these two models are numerically implemented.

39



Chapter 5

Applying the Orlov and PIC

Models

5.1 Overview

Having reviewed the theory behind the Orlov and PIC models, this chapter will

discuss how this knowledge is applied in a computational framework. To begin

with, the Orlov and PIC model solvers were both implemented using MATLAB

software. Two-dimensional cellular grids with discrete cell widths (input by the

user) were utilized as computational domains. Finite-difference schemes were used

to discretize the relevant equations in the two models meaning the computational

iterations largely involved the manipulation of matrices that quantified the var-

ious parameters in the two methods over iterative procedures. The MATLAB

codes for both models have been included in the Appendices.

5.2 Orlov’s Original Framework

The SDBD plasma actuator configuration consists of two electrodes in an asym-

metric arrangement with one exposed to the airflow, and the other encapsulated

in a dielectric medium. It has been proven via several experiments [4; 5; 8] that

the plasma discharge appears and exists only above the encapsulated electrode.

In fact, the plasma extent can be modeled to die off linearly away from the en-
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capsulated electrode [10].

Orlov modeled the SDBD plasma actuator flow problem by solving the electro-

static equation (3.23) over a 201 × 201 square grid domain. The electrodes were

provided with normalized potential values of,

φ|ExposedElectrode = 1.0, (5.1)

φ|EncapsulatedElectrode = −1.0.

All four boundaries of the square domain were assigned electric potential values

of zero,

φ|Boundaries = 0. (5.2)

The encapsulated electrode was set within a 3× 10−3 inches thick dielectric layer

of Kapton at the center of the domain. A Debye length value of 0.001 inches

(25.4 µm) was assumed for the characteristic plasmas being considered [4]. Rel-

ative dielectric permittivity constants for air, and the Kapton layer were used to

differentiate the two environments:

εr,air = 1.0, (5.3)

εr,kapton = 2.7.

Orlov then partitioned the domain as illustrated in Figure 5.1. The electrostatic

equation has a non-zero charge term, ρc, on the right hand side (3.6), for the region

right above the encapsulated electrode. Meanwhile, in all other sub-regions of the

computational domain, the electrostatic equation is modeled with zero charge

density, such that it takes the form of Laplace’s equation,

∇(εr∇φ) = 0. (5.4)

Orlov resolved the electric field in the high charge density region of the plasma
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Figure 5.1: Solving the electrostatic equation in the computational domain (not
to scale) of the SDBD plasma actuator.

formation near the dielectric surface above the encapsulated electrode. It is noted

that the length of this region of high charge density is primarily determined

by the Debye length. The smaller the Debye length, the narrower the region.

Using Robert’s stretching formulation [30], Orlov configured the domain into a

non-uniform grid such that the grid lines clustered near the inner edge of the

electrodes- to resolve the plasma body force coupled to the neutral air- while

becoming coarser in the distance, and using the Gauss-Seidel procedure to solve

the electrostatic equation accordingly. The convergence criterion for the iterative

algorithm was defined by an error parameter of the maximum absolute difference

in the electric potential between two consecutive iterative steps,

ERR = max(|φn+1
i,j − φn

i,j|). (5.5)

Convergence was achieved if ERR is less than 10−10. This particular value was

chosen for sufficient accuracy in the results of the plasma body force calculations.

However, various facets of the Orlov model have been modified to accommodate

for the objectives of this thesis:

i. Orlov solved the Navier-Stokes equations involving the stream and vor-

ticity functions, in tandem with Maxwell’s equations, providing for a more
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detailed analysis of the flow problem. This is not utilized here, as this thesis

focuses mainly on the plasma dynamics and electrostatics of the problem.

ii. Unlike the non-uniform grid (via Robert’s stretching formulation) used to

resolve the electric field and body force, this work utilizes a uniform grid.

This largely simplified the original electrostatic equations as presented in

Orlov’s dissertation [1].

iii. The base set-up used in this thesis for the Orlov model follows the con-

figuration presented in Figure 5.1 with the exception that the electrostatic

equation is not partitioned accordingly but solved over the entire domain

with a non-zero charge density.

We will now detail the numerical formulation of Orlov’s electrostatic model as

utilized in this thesis.

5.3 Numerical Formulation of Orlov’s Model

The governing electrostatic equation of the Orlov model is solved over the com-

putational domain, which is discretized into a two dimensional uniform cellular

grid. Along with the corresponding boundary conditions on the electrodes, and

the domain, the equations are discretized using the standard centered second

order scheme. We begin by expanding equation (3.23) as

εr∇
2φ(~r) +∇εr · ∇φ(~r) =

1

λ2
D

φ(~r). (5.6)

The gradient operator is defined as,

~∇ =
∂

∂x
î+

∂

∂y
ĵ, (5.7)

which gives the following,

εr
∂2φ

∂x2
+ εr

∂2φ

∂y2
+

∂εr
∂x

∂φ

∂x
+

∂εr
∂y

∂φ

∂y
=

φ

λ2
D

. (5.8)

Using centered-difference approximations for the first, and second derivatives,
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∂φ

∂x
=

φi,j+1 − φi,j−1

2∆x
, (5.9)

∂φ

∂y
=

φi+1,j − φi−1,j

2∆y
,

∂2φ

∂x2
=

φi,j+1 − 2φi,j + φi,j−1

∆x2
,

∂2φ

∂y2
=

φi+1,j − 2φi,j + φi−1,j

∆y2
,

this results in a final equation of the form,

Ai+1,jφi+1,j +Bi−1,jφi−1,j + Ci,j+1φi, j + 1 +Di,j−1φi, j − 1 = Ei,jφi,j, (5.10)

where the numerical coefficients A, B, C, D, and E can be computed at every

node of the computational grid before the iteration procedure:

A(i, j) =
εr(i,j)
∆y2

+
εr(i+1,j)

(2∆y)2
−

εr(i−1,j)

(2∆y)2
, (5.11)

B(i, j) =
εr(i,j)
∆y2

+
εr(i−1,j)

(2∆y)2
−

εr(i+1,j)

(2∆y)2
,

C(i, j) =
εr(i,j)
∆x2

+
εr(i,j+1)

(2∆x)2
−

εr(i,j−1)

(2∆x)2
,

D(i, j) =
εr(i,j)
∆x2

+
εr(i,j−1)

(2∆x)2
−

εr(i,j+1)

(2∆x)2
,

E(i, j) =
2εr(i,j)
∆x2

+
2εr(i,j)
∆y2

.

This system of equations, along with the boundary conditions stated earlier is

then solved using the standard Gauss-Seidel procedure for the electric potential.

Using Poisson’s equation, the electric field values at every point of the domain

can also be computed,

~E = −
φi,j+1 − φi,j−1

2∆x
−

φi+1,j − φi−1,j

2∆y
. (5.12)
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The electric field and electric potential can then be substituted accordingly into

(3.31) allowing the plasma body force vector to be computed over the domain.

Note that we have maintained the same boundary conditions as utilized by Orlov

in his original formation where the potential is set to zero at the four corners of

the square domain. The upper electrode, and lower electrode are also set with

normalized potentials of ± 1. On the other hand, relevant parameters such as

the grid resolution, relative permittivities, and Debye lengths will be modified

through the course of our evaluations. The schematics, and relevant details as

such will be discussed in great detail in the following chapter where we will address

our numerical results.

5.4 Numerical Formulation of the PIC Model

In the previous chapter, we summarized the various steps that contribute to the

PIC solution algorithm ranging from the distribution of the charge density to the

generation of particles. Let us look into each individual step with further detail

and how we apply the PIC method to model the SDBD plasma actuator flow

problem.

5.4.1 Computing the Charge Density

The computational domain is in essence a two-dimensional mathematical grid

used to measure charge, and if necessary, current densities. It is from the charge

density that one is subsequently able to calculate and obtain values for the electric,

and magnetic fields on the grid. The spatial grid, used for obtaining the field from

the charge density has grid points,

xi = i∆x, (5.13)

yj = j∆y.

The charge density on the grid is defined as the number of charge units per

unit volume. In other words, each cell is attributed with an infinitesimal charge
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Figure 5.2: Charge density weighting.

density; the charge of all particles are distributed onto the nodes of each cell,

from which the charge density at each cell is computed by dividing by the cor-

responding nodal volume. This distribution of particle charge among the nodes

of a cell the particle occupies adheres to the name of the method, Particle-In-Cell.

A first-order linear scatter operation is used for the distribution of the charges

along the nodes, and is schematically shown in Figure 5.2. Super-particles are

used to represent a large number of particles, a property defined by their specific

weights. Therefore, the total charge carried by each super-particle is offset by

a value, specific weight×q. The weight factors [29] for the four area fractions

presented in Figure 5.2 are,

wa = (hx)(1− hy), (5.14)

wb = (1− hx)(1− hy),

wc = (hx)(hy),

wd = (hy)(1− hx),

where,

hx =
x

∆x
, (5.15)
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hy =
y

∆y
,

represent the fractional distance of the particle from the cell origin (at the cen-

ter) in the x -, and y-directions. Nodal volumes are defined by the product of the

cell’s dimensions, ∆x∆y. The weights are all multiplied by the charge density uni-

formly filling each cell (q/cell area). The charge densities at all grid points then

are included in the solution of Poisson’s equation. Domain boundaries and edges

do result in exceptions in computing charge distributions within cells, requiring

complicated boundary conditions. The corresponding boundary conditions uti-

lized for the model in this work also play a major role in the determination of

the electric potential.

5.4.2 Computing the Electric Potential

The electric potential is solved for using Equation (3.23) that can be expanded

as,

εr
∂2φ

∂x2
+ εr

∂2φ

∂y2
+

∂εr
∂x

∂φ

∂x
+

∂εr
∂y

∂φ

∂y
= −

e

ε0

[

ni − n0exp
(e(φ− φ0)

kTe

)]

. (5.16)

Using centered-difference approximations for the first, and second derivatives,

∂φ

∂y
=

φi,j+1 − φi,j−1

2∆y
, (5.17)

∂φ

∂x
=

φi+1,j − φi−1,j

2∆x
,

∂2φ

∂y2
=

φi,j+1 − 2φi,j + φi,j−1

∆y2
,

∂2φ

∂x2
=

φi+1,j − 2φi,j + φi−1,j

∆x2
,

resulting in a final equation of the form,

(5.18)
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Ai+1,jφi+1,j +Bi−1,jφi−1,j + Ci,j+1φi,j+1 +Di,j−1φi,j−1 + Ei,jφi,j (5.19)

= −
e

ε0

[

ni − n0exp
(e(φ− φ0)

kTe

)]

.

The numerical coefficients A, B, C, D, and E can be computed at every node of

the computational grid before the iteration procedure:

A(i, j) =
εr(i,j)
∆x2

+
εr(i+1,j)

(2∆x)2
−

εr(i−1,j)

(2∆x)2
, (5.20)

B(i, j) =
εr(i,j)
∆x2

+
εr(i−1,j)

(2∆x)2
−

εr(i+1,j)

(2∆x)2
,

C(i, j) =
εr(i,j)
∆y2

+
εr(i,j+1)

(2∆y)2
−

εr(i,j−1)

(2∆y)2
,

D(i, j) =
εr(i,j)
∆y2

+
εr(i,j−1)

(2∆y)2
−

εr(i,j+1)

(2∆y)2
,

E(i, j) = −
2εr(i,j)
∆x2

−
2εr(i,j)
∆y2

.

Note, the Boltzmann relation has been substituted on the right hand side of (5.20)

for the electron charge density. Now, Poisson’s equation is an elliptic equation,

which is a boundary-value problem. Two types of boundaries exist: Dirichlet,

and Neumann. Dirichlet boundary conditions specify the electric potential values

along the boundary of the computational domain. Neumann boundary conditions

specify the values of the electric field, the derivative of the electric potential, along

the boundary of the computational domain. The specifications for the boundary

conditions is varied throughout our use of the PIC model, and will be analyzed

in further detail in the following chapter. The solution for the electric potential

is achieved by transposing (5.16) into matrix form,

Ax = b, (5.21)

where A represents the multiplication matrix for the potential solver containing

the coefficients of the left hand side of the equation, while b is the multiplication

matrix for the right hand side of the same equation expressing the difference in

ion and electron charge densities. x is the electrostatic potential, the solution we

seek. Using an iterative method, one obtains a sequence of approximations to
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this solution,

xk, k = 0, 1, 2, ..., (5.22)

such that (b − Axk) → 0 as k → ∞. The superscript k is an iteration counter.

The condition for convergence with this iterative method is defined such that the

iterations continue until,

‖rk‖

‖b‖
< ε. (5.23)

rk refers to the residual of the kth iteration,

rk = b− Axk. (5.24)

ε is a specified tolerance, and is typically between 5 × 10−3 > ε > 1 × 10−6 [31],

but can vary depending on the problem under question. This is the method used

to solve for the electric potential in the PIC model.

5.4.3 Computing the Electric Field

The electric field is computed over the two dimensions as,

Ex,i = −
φi+1,j − φi−1,j

2∆x
, (5.25)

Ey,j = −
φi,j+1 − φi,j−1

2∆y
.

The plasma body force is calculated by substituting for the electric field and

electric potential in (3.31).

5.4.4 Moving the Particles

Particle positions, and velocities are updated using the classical Leapfrog method

(Figure 5.3). Firstly, the particle velocities are integrated through the time-step

∆t following which the particle positions are updated. The two quantities are
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Figure 5.3: Leap-Frog integration method

offset from each other by half a time-step as prescribed by the Leapfrog method.

The fundamental equations of this method are,

~vk+0.5 = ~vk−0.5 +
q

m
~E∆t, (5.26)

~xk+1 = ~xk + ~vk+0.5∆t.

Using a gather operation, the electric field at the position of each particle can

be computed with the corresponding specific weights, in a manner inversely anal-

ogous to the computation of charge densities. After the particles have been

updated, it is important to make sure that the particles are within the com-

putational domain. Two particular interactions are made possible, namely that

particles can either exit the domain, be reflected, or collide with solid objects.

Thus, there are two further cases of computational boundaries presented in the

model: absorbing, and reflective. Details of such interactions will be considered

in the following chapter.

5.4.5 Generating New Particles

New particles are generated by sampling sources [29]. This is quite specific to the

problem that is considered, but in general, the simulation begins by loading all

the particles, following which it computes their final distribution state through

its progress. In this work, the particle generator is sampled using the Maxwellian

Distribution. As given in Birdsall [29], this is approximated as,
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vM = vt

(M

12

)

−
1

2

[

M
∑

i=1

Ri −
M

2

]

. (5.27)

Here, M is an integer, and Ri is an i-th random number in the range [0:1). vt

is the thermal velocity. The respective value for M controls the accuracy of

the model. Birdsall [29] uses M=12 to prevent entries larger than six times the

thermal velocity. This work uses M=3. The method basically works directly with

a uniform set of random numbers R1, R2, ..., RM between 0 and 1, generating a

random normal distribution. So we begin with the expression,

M
∑

i=1

(

Ri −
1

2

)

, (5.28)

where we are basically adding a series of random numbers distributed uniformly

between the range −0.5 and 0.5 such that they have a mean of 0. In the limit

of taking an infinite number of such random deviates, we can, according to the

Central Limit Theorem, obtain a Maxwellian distribution. In probability theory,

the Central Limit Theorem states that under certain conditions, the arithmetic

mean of a large number of iterations of independent random numbers, each with

a unique and well-defined expected value and finite variance, will be normally

distributed, no matter what the underlying distribution may be.

The fundamental idea is that since the Ri are assumed to be statistically inde-

pendent, the average of the products of such random numbers is the same as the

product of the averages leading to us finding the variance (which is the square

of the standard deviation) of (5.28) for M such values to be M/12. Now, the

standard deviation of (5.28) if I were to add M such numbers would be
(

M
12

)
1

2

.

In order to produce a Maxwellian, we basically take (5.28) and multiply it by
(

M
12

)

−
1

2

to provide us a standard deviation of 1. Multiplying this final product

with the thermal velocity as seen in (5.27) provides us a Maxwellian distribution.
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5.4.6 Outputting Results, and Loop Repetition

During each iteration, a set criteria of results pertaining to various geometric, and

physical properties of our system will be output for display, and analysis. The

main body of the PIC algorithm is computed over a set series of iterations. In each

individual iteration, the five previous steps are repeated. This loop/algorithm

continues until a certain convergence criterion is satisfied or a tolerance level is

met.

5.5 Conclusion

This brings to an end our discussion on the numerical implementations of the

two models. We will now begin our analysis of the various results procured in

modeling the SDBD plasma actuator with these two models.
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Chapter 6

Modeling Results, and Analyses

6.1 Introduction

We will now present the results pertaining to the Orlov and PIC models in an-

alyzing the SDBD plasma actuator flow problem. Results from the Orlov model

will largely be utilized as a referential bookmark while being compared regularly

with those from the PIC model. This approach will help generalize the utilization

of both methods, and evaluate their validity as fluid and hybrid models for the

SDBD plasma actuator.

Table 6.1: Orlov Model Parameters

Variable Description
Nx, Ny Number of nodes in x̂, and ŷ
Lx, Ly Domain length in x̂, and ŷ
dx, dy Domain discretization in x̂, and ŷ
λD Debye length
Err Iteration error
Tol Convergence criterion

Tables 6.1-6.2 list the main parameters in the Orlov and PIC models. Three

specific parameters including the electric potential, electric field, and the plasma
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Table 6.2: PIC Model Parameters

Variable Description
ε0 Vacuum permittivity constant
qe Elementary charge
kB Boltzmann’s constant
amu Atomic mass unit
M Ion mass
n0 Initial number density
Te Electron temperature
Ti Ion temperature

vDrift Drift/Particle injection velocity
λD Debye length

vThermal Thermal velocity
Nx, Ny Number of nodes

ts Total number of time-steps
dcell Cell size

npinsert Number of particles per cell
dt Discretization of time-steps

Lx, Ly Domain length in x̂, andŷ
ωpi Ion plasma frequency
flux Flux of entering particles
npt Number of real particles created per time-step
spwt Specific weight
mpq Macro-particle charge

maxparticles Maximum particle buffer

body force will be analyzed in every simulation. As shown in Figure 3.1, we

expect the plasma discharge to exist on the dielectric surface directly above the

encapsulated surface, and decreasing in its extent away from the encapsulated

electrode. Thus, it is natural to also presume that the highest magnitudes for

the electric field and body force will be found by the inner edge between the two

electrodes. As reviewed earlier, we also expect the electric field vector to be di-

rected from the dielectric surface to the exposed electrode, and the plasma body

force vector to be directed in the opposite direction from the exposed electrode

to the dielectric surface.
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Let us begin by first examining the benchmark cases utilized for the two models.

6.2 Orlov and PIC - Benchmark Cases

The relevant parameters utilized in the benchmark cases for the two models are

summarized as follows:

i. The physical area of the square computational domain is 34.225 mm2 (25

× 25 cells).

ii. The length and width of each cell in the grid is equivalent to a Debye length

(λD) of 7.4 mm.

iii. The thicknesses of the electrodes and the dielectric layer are equivalent to

a cell width (7.4 mm). The electrode widths are set to 59.2 mm (8 cells).

iv. A Kapton dielectric is the dielectric layer of choice.

v. A particle density of 1012 particles/m3 is assumed along with an electron

temperature (Te) of 1 eV and an ion temperature (Ti) of 0.1 eV . (Only

applicable to the PIC model.)

vi. A particle injection velocity of 70000 m/s is utilized. (Only applicable to

the PIC model.)

The boundary conditions in the benchmark Orlov model are such that the exposed

electrode has a fixed potential of 1 V , and the encapsulated electrode has a fixed

potential of -1 V . The electric potential is initialized to zero at the boundaries

and everywhere else throughout the computational grid. Following the algorithm

provided in the previous chapter, and assuming a uniform grid division, the elec-

trostatic equation is solved iteratively using the Gauss-Seidel procedure over the

computational domain. The solver tolerance is set to a value of 0.1 (equivalent to

that in the benchmark PIC model). Convergence is achieved if the error calcu-

lated in the differences of electric potential between consecutive iterations is less

than this value. Using (3.31), the body force is calculated throughout the entire

computational domain.
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Figure 6.1: Boundary conditions on the computational domain for the benchmark
case of the PIC model.

Similarly, Figure 6.1 presents a schematic involving the boundary conditions uti-

lized in the benchmark PIC model. Particles travel from the left hand side of the

domain, and exit out the right hand side, replicating an airflow over the SDBD

plasma actuator configuration. Ions are modeled to be kinetic, while the electrons

are a fluid background. Thus, it is the ion motion that is described in the flow of

the particles.

The exposed electrode is set to an electric potential of 1 V and the encapsulated

electrode is set to an electric potential of -1 V . A total of 400 iterations is used

for the simulation with time-steps of ∆t ≈ 1.06×10−8 s. At the beginning of each

simulation, a preliminary check is made to ensure that the parameters maintain,

and follow the stability criterion for a plasma that ωpi∆t < 1. About 375 particles

are inserted per cell with a maximum particle buffer of 50000 particles. This can

be modified if necessary. A tolerance of 0.1 is set for the electric potential solver.

The PIC model outnumbers the Orlov model in the number of parameters it

uses to characterize the problem. This is essential, and greatly contributes to the

PIC model’s scope of detail in analyzing the plasma actuator, and the types of

56



Figure 6.2: Determination of dielectric constants over the computational domain.

results obtained. Furthermore, a variety of boundary conditions have also been

used between the two models. In that vein, Orlov’s model is indeed highly sim-

plified. The primary boundary condition is that the electric potential is set to

zero at the domain boundaries. On the other hand, the default PIC model in-

cludes a combination of Dirichlet, and Neumann boundary conditions used in the

calculation of the elliptic Poisson’s equation (5.16) among the internal nodes of

the domain. This is further supplemented by a mix of absorbing, and reflecting

boundary conditions at the domain boundaries, electrodes, and dielectric surface.

In both models, the electrodes have the same dielectric constant or relative per-

mittivity (εr) as the surrounding medium they are exposed to i.e. Last but not

least, in order to characterize the different environments the system is exposed

to, we assume that the electrodes have the same relative permittivity or dielectric

constant as the surrounding medium they are exposed to i.e. the upper electrode

has the dielectric constant of air (εair=1.0), and the encapsulated electrode has

the dielectric constant of the dielectric in which it is buried. At the interface be-

tween the dielectric medium, and air, a mean value of the corresponding dielectric

constants are assumed, as shown in Figure 6.2. Thus, at the interface between

the Kapton dielectric medium, and air, εInterface = mean(εKapton + εAir) = 1.85.
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Figure 6.3: Electric potential contours for the benchmark Orlov simulation.

This concludes our discussion on the main parameters involved in the two models.

Working knowledge of these parameters is important in order to formulate valid

comparisons of results. Figures for the electric potential, electric field, and plasma

body force values will be presented when appropriate. The x -, and y-axis on the

figures correspond to the nodal coordinates. A colorbar will also be provided to

identify with field magnitudes.

6.2.1 Orlov Benchmark Case - Analysis

A view of the contours of constant electric potential is shown in Figure 6.3. The

structure of the potential field is such that they are densely collected about the

electrode surface, and their inner edges, while decaying off rapidly in space away

from the structure. The lines circle around the electrodes, with lines of higher

electric potential clustered about the upper electrode (0.0937 V to 0.4000 V ),

and lines of lower electric potential clustered around the encapsulated electrode

(-0.1208 V to -0.3496 V ).

The electric field structure corresponding to the electric potential contours is

shown in Figure 6.4. The magnitude of the electric field is highest about the

inner edge between the two electrodes at ≈ 60 N/C, with consistently high val-

ues about the dielectric surfaces, and decaying at greater distances. This can

be attributed to the gradients in electric potential resulting in a strong electric
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Figure 6.4: Electric field contours overlaid with corresponding vector plot for the
benchmark Orlov simulation.

Figure 6.5: Body force field overlaid with corresponding vector plot for the bench-
mark Orlov simulation.
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Figure 6.6: Electric potential contours for the benchmark PIC simulation.

field at this selective location. The electric field is directed from the encapsulated

electrode to the upper electrode matching our earlier expectations.

The body force calculated from the electric field is presented in Figure 6.5. This

is a volumetric body force, and exists only where free charges are present in the

air. The body force is concentrated at the inner edge between the two electrodes,

and is mainly distributed along the dielectric surfaces with a maximum value

of ≈ 2.05 × 10−6N . Elsewhere about the domain, the body force is essentially

zero. Momentum addition to the airflow by way of this body force allows for

the modification of the airflow. The body force is directed downward toward the

dielectric surface as expected. The injection of the body force along the dielectric

layer is also observable.

6.2.2 PIC Benchmark Case - Analysis

The basic characteristics presented in the results of the benchmark Orlov simula-

tion follow suit in the results procured from the benchmark PIC simulation. The

electric potential contour field is presented in Figure 6.6.

While the PIC model allows for greater detail in its analysis, the results find

common grounds with those obtained from Orlov’s model. The structure of the
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Figure 6.7: Electric field overlaid with corresponding vector plot for the benchmark
PIC model.

potential field is such that the contour lines are once again densely collected about

the exposed electrode surface, and the inner edges between the two electrodes,

while decaying off rapidly in space away from the structure. The color field also

displays the fact that there is a greater electric potential distribution about the

exposed electrode compared to the encapsulated electrode. The exposed elec-

trode is maintained at a positive potential of 1 V , and the encapsulated electrode

is maintained at a negative potential of -1 V . The behavior is such that the elec-

tric potential decays the further one moves away from either electrode, sinking

towards smaller and negative potential values as is evident in the color field.

The electric field structure is shown in Figure 6.7. The magnitude of the electric

field is highest about the inner edge between the two electrodes, registering a

maximum value of ≈ 230 N/C. Here too, the gradients in electric potential have

resulted in a strong electric field close to the electrodes surface, directed from the

encapsulated electrode to the upper electrode. Once again there is a remarkable

similarity to the results from Orlov’s model.

Similarly, we find that the body force magnitudes along the dielectric surface
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Figure 6.8: Body force field overlaid with corresponding vector plot for the bench-
mark PIC simulation.

range from a minimum 1.22 × 10−4N by the edge of the encapsulated electrode

to a maximum of 0.0010 N closer to the inner edge by the exposed electrode.

In particular, the structure of the body force field is reminiscent of a modified

flow about an activated plasma actuator when one graphs the vector fields for

the body forces of the individual particles (Figure 6.8).

6.2.3 Further comparisons

So far, this chapter describes the basic premise of the thesis to compare the

PIC and Orlov algorithms, and evaluate their efficiency in modeling the plasma

actuator. Results involving the electric potential, electric field, and the plasma

body force were presented for the benchmark cases of each model. But, despite

the qualitative agreements in the results between the two models there is quite

a discrepancy in the numerical results. The Orlov model produces a maximum

electric field magnitude of 60 N/C compared to the PIC’s 230 N/C. Similarly,

the Orlov model results with a maximum body force magnitude of ≈ 2.05×10−6N

compared to the PIC’s 0.0010 N . Furthermore, the two models are divisive in the

degree of detail relegated upon their results. It is essential that these differing

aspects of the two models be considered in detail, and in order to do so, the

effects of further parametric variations are explored:
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i. Modifying the computational domain, we made two simulations of the Orlov

model with the use of a 50 × 50, and a 201 × 201 grid. All other parameters

including the Debye length and the solver tolerance are set equivalent to

those used in the benchmark model with corresponding values of 0.0074 m

and 0.1. Having maintained the choice of a Kapton dielectric layer, and

equivalent values for the Debye length and the convergence criterion, the

main difference is elicited in the the physical lengths of the domains. For

the 25 × 25 grid used in the benchmark case the domain length (x- and y-

axes) was 0.1859 m, for the 50 × 50 grid it is 0.3700 m, and for the 201 ×

201 grid it is 1.4874 m. But, neither of these differences in grid resolutions

or physical domain lengths proved influential as the contour structures and

the corresponding maxima of the electric potential, the electric field, and

the plasma body force were identical to the results found in the benchmark

simulation.

ii. Using the 201 × 201 grid resolution, a series of simulations were run with

varying Debye length values, ranging from 0.0074 m (as in the benchmark

simulation) to 35.4 µm, and smaller. Tables 6.3-6.5 present the correspond-

ing values for the electric potential, electric field, and body force found in

each case, at the inner edge between the two electrodes,

Table 6.3: Electric field magnitudes for varying Debye Lengths

Debye Length (m) Electric Field (N/C)
0.010 2512.3
0.0074 2512.1

0.0000354 484.8970
0.0000254 278.3433
0.0000154 110.9881
0.000001 0.4924

A few generalized observations can be made from these tables. Beginning

with Tables 6.3-6.4 we see that the magnitudes of the electric field, and

the electric potential decrease as the Debye length decreases. On the other
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Table 6.4: Electric potential magnitudes for varying Debye lengths

Debye Length (m) Electric Potential (V )
0.010 0.1064 to 0.5,-0.25 to -0.3819
0.0074 0.1064 to 0.5,-0.25 to -0.3814

0.0000354 0.0202 to 0.0562,-0.0474 to -0.0973
0.0000254 0.0114 to 0.0306,-0.0261 to -0.0571
0.0000154 0.0045 to 0.0117,-0.0106 to -0.0232
0.000001 1.9881× 10−5 to 5.0496× 10−5, −1.0413× 10−4 to −4.6705× 10−4

Table 6.5: Body force magnitudes for varying Debye lengths

Debye Length (m) Body Force (N)
0.010 5.4961× 10−5

0.0074 1.0036× 10−4

0.0000354 0.1625
0.0000254 0.0530
0.0000154 0.0440
0.000001 2.0360× 10−4

hand, in Table 6.5 we see that the plasma body force does not follow such

a one to one relationship increasing to reach a maximum value of 0.1625 N

at λd = 35.4 µm, and decreasing afterward.

iii. Another simulation was done using the PIC model, where the Debye length

was modified to the value of 25.4 µm originally used in Orlov’s thesis [1],

along with the corresponding number density of 8×1016 particles per cubic

meter. Here too, we maintained the choice of a Kapton dielectric layer,

and equivalent values for all other major parameters, as in the benchmark

PIC simulation. The results basically showed that the electric potential,

electric field, and the plasma body force values were of higher magnitude

compared to those obtained in the benchmark PIC simulation while main-

taining similar structures about the plasma actuator configuration. About
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the inner edge of the two electrodes, the electric field, and body force took

on maximum values of ≈ 6.71 × 104N/C, and ≈ 2.19 × 104 N . The elec-

tric field magnitude is two orders of magnitude greater than that from the

benchmark PIC simulation (230 N/C). Similarly, the body force magni-

tude is seven orders of magnitude greater than that from the benchmark

PIC simulation (0.0010 N). Moreover, there is not much agreement either,

when these results are compared to those from the benchmark Orlov simu-

lation where we found a maximum electric field of 60 N/C and body force

of 2.05× 10−6N .

6.3 Analyzing the PIC Model

The benchmark simulations for the Orlov and the PIC model, and the various

cases considered so far have reinforced the importance in individually examining

the major parameters and conditions in both models, and their relationship to

other variables. It is now the basis of our motivation to further understanding the

mechanisms of these two models, their limitations, and evaluate their efficiency

in modeling the plasma actuator flow problem. A glaring weakness of the Orlov

model has been its highly simplified approach that is vastly efficient, but failing

to provide results with the degree of detail as in the PIC model. This is an

inherent attribute of the fluid model. Similarly, there are various facets of the

PIC model that can be manipulated to allow for the simulation of different flow

environments. The number of parameters utilized in the hybrid PIC model also

outnumber those in the fluid Orlov model. While this may allow for a higher

degree of detail in the analysis of the phenomenon, it also contributes to the

method’s selective applicability. So, focusing on the PIC model we will cover a

series of simulations that help validate, generalize, as well as review the various

properties that differentiate it from the Orlov model. Results from the benchmark

Orlov simulation will be referenced whenever appropriate.
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6.3.1 Boundary Conditions

The PIC model uses a variety of boundary conditions. For the benchmark simula-

tion, a set criteria of boundary conditions were used along the domain boundaries,

the electrodes, and the dielectric layer (Figure 6.1). In order to test particle flow

behavior, as well as provide a simple validation of the PIC model, various com-

binations of boundary conditions were tested:

i. Reflective conditions on the upper electrode, dielectric surface, and on the

domain boundaries.

ii. Reflective conditions on the upper electrode and on the domain boundaries,

with absorbing conditions on the dielectric surface.

iii. Absorbing conditions on the domain boundaries, the upper electrode, and

the dielectric surface.

iv. Reflective conditions on the electrodes, lower (y = 0) and upper (y = Ly)

domain boundaries, with absorbing conditions at the left (x = 0) and right

(x = Lx) domain boundaries.

The settings for the evaluation of Dirichlet and Neumann conditions at the bound-

aries have been maintained as utilized in the benchmark PIC model shown in

Figure 6.1. It suffices to consider one particular example, Case (iv), for analy-

sis. The main parameter concerns the evolution of particle positions through the

course of the simulation. The evolution of the particle flow can be seen in Figures

6.9-6.12.

As was expected, due to the reflecting conditions on the electrodes, as well as the

upper and lower domain boundaries, the simulation registered a higher particle

count, and particles tend to pile up at the edges of the exposed electrode and

the dielectric layer. Having maintained the same values for all other parameters,

results involving the electric potential, electric field, and the body force contours

are structurally similar, and to a certain extent, numerically equivalent to those

obtained in the benchmark PIC simulation. Focusing on the body force and the

electric field as our primary candidate variables for comparison, Case (iv) results
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Figure 6.9: Particle Positions at ts =100.

in a maximum body force of 0.0015 N , and a maximum electric field of ≈ 232

N/C. These values agree very well with the range of maxima found in the bench-

mark PIC simulation which involves a maximum body force value of 0.0010 N ,

and a maximum electric field of 230 N/C. The maxima that have been identified

for the body force, and the electric field generally refer to the region at the inner

edge between the two electrodes, where the electric potential and electric fields

are most concentrated. Henceforth, we will mainly list the maxima found for

these parameters in our results.

While the results for the plasma body force fields are similar in structure in all

the cases considered, the density of contour lines about the inner edges, between

the electrodes, and the surface of the dielectric above the encapsulated electrode

is the greatest in Case (iv). The maxima for the plasma body force fields from

Cases (i) to (iii) are as follows: 4.4325×10−5 N (Case (i)), 3.8464×10−5 N (Case

(ii)), and 0.0011 N (Case (iii)). The magnitude of the plasma body force tends
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Figure 6.10: Particle Positions at ts=200.

to gradually increase until we get to Case (iv) where we have a maximum body

force of 0.0015 N .

Furthermore, the periodicity that could be attributed to the electric potential, as

observed in the benchmark PIC and Orlov simulations, reaching a unique steady

state at the end of the simulation, is not seen in Cases (i) and (ii) (Figures 6.13-

6.14) as compared to Cases (iii) and (iv). Similarly, the uniform electric field

calculated from these cases also lack in the structure found in the results from

the benchmark PIC simulation, for example as in Case (ii), shown in Figure 6.15.

While we registered a maximum electric field of 230 N/C in the benchmark PIC

simulation, Cases (i) and (ii) result with electric field magnitudes of ≈ 124 N/C,

and 125 N/C. Similarly, the area above the encapsulated electrode, registers a

less negative electric potential compared to the benchmark PIC simulation with

a smaller potential fallout of -0.0596 V , -0.4306 V , ..., in Case (i), and -0.0588 V ,

-0.4294 V , ..., in Case (ii), compared to -0.6702 V , -1.6707 V , ..., in the bench-
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Figure 6.11: Particle Positions at ts=300.

mark simulation.

The numerical values of the electric potential and the electric field along the

surface of the dielectric, above the encapsulated electrode, as discussed in Cases

(i), and (ii) attest to the smaller body force values obtained in those simulations,

and the necessity to run the simulation for a longer duration of time in order for

the system to achieve a steady state, which may or may not be possible.
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Figure 6.12: Particle Positions at ts=400.

Figure 6.13: Electric potential contours for Boundary Conditions Case (i).
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Figure 6.14: Electric potential contours for Boundary Conditions Case (ii).

Figure 6.15: Electric field overlaid with corresponding vector plot for Boundary
Conditions Case (ii).
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6.3.2 Electrode Size

The physical size of the electrode, as would be found in a lab environment, does

not match the representation provided in the benchmark PIC simulation. With

reference to Figure 2.5b, it is understood that the wider the electrode the greater

the plasma extent, with ions getting accelerated for a longer distance, subse-

quently resulting in an increase in the induced velocity at the plasma-dielectric

interface. A maximum is achieved at an electrode width of 0.02 m, beyond which

there is no significant change in the maximum induced velocity. The benchmark

PIC simulation (25 × 25 grid) involves electrode widths of 8 cells (≈ 0.0592 m,

where the cell size is 0.0074 m). Modifying only the widths of the electrodes,

while maintaining the default constants, and conditions of the PIC model, three

different cases were considered,

i. Electrodes are 2 cells long (≈ 0.0148 m).

ii. Electrodes are 4 cells long (≈ 0.0296 m).

iii. Electrodes are 14 cells long (≈ 0.1036 m).

The contours for the electric potential, as well as the vector fields for the electric

field, and the plasma body force were representative of the electrode widths. In

Case (i), we get the following magnitudes for the body force, and the electric

field: ≈ 6.21× 10−4 N , and 227 N/C. In Case 2 we have ≈ 7.28× 10−4 N , and

221 N/C, and lastly in Case 3, we have 0.0012 N , and 217 N/C. The electric

potential field is such that for smaller electrode widths we observe a faster drop in

the electric potential, and a more negative dielectric surface. For example, in Case

(i) we evidence a drop in the following order from -0.6575 V , -1.3805 V , -1.8022

V ...compared to Case (ii) where we have -0.6340 V , -1.3236 V , -1.6721 V ...For

smaller electrode widths, we also find the contour fields for these parameters to

be restricted and clustered about the electrodes, while falling off rapidly beyond

the domain of the encapsulated electrode (particularly observable in the electric

potential contours). On the other hand, in Case (iii), we find contour structures

quite similar to the default PIC simulation. Figures 6.16-6.18 display the contours

involving the electric potential in all three cases.
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Figure 6.16: Electric potential contours for Electrode Size Case (i) (PIC model).

Taking Case (ii) for example, we tried to replicate the same procedure with the

benchmark Orlov model, for the specific electrode width. Figure 6.19 presents

the electric potential contours involving Case (ii), from the corresponding Orlov

simulation. The results from the Orlov model show a maximum electric field

magnitude of 58.0799 N/C, and a maximum body force of 2.0492 × 10−6 N .

Electric potential isolines about the exposed electrode range from magnitudes of

0.0937 V to 0.04 V , and -0.1208 V to -0.3496 V about the encapsulated electrode.

Just as we had observed in the prior chapter, the PIC and Orlov model results

do not agree numerically, or even remotely, though they seem to agree on the

general characteristics of the contour fields for each parameter. It seems that

smaller electrode widths lead to a faster decay of the aforementioned parameters,

as one moves away from the plasma actuator. This can be due to the greater

plasma extent involving larger electrode widths, resulting in higher magnitudes

for the electric field, electric potential, and the plasma body force, in the vicinity
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Figure 6.17: Electric potential contours for Electrode Size Case (ii) (PIC model).

of the space above the encapsulated electrode, and a slower decay rate in all three

parameters. This may lead to more prominent flow field configurations in cases

involving longer electrode widths since the plasma extent is longer due to the

larger surface area and width of the encapsulated electrode.
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Figure 6.18: Electric potential contours for Electrode Size Case (iii) (PIC model).

Figure 6.19: Electric potential contours for Electrode Size Case (ii) (Orlov model).
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6.3.3 Electrode Gap

With reference to experimental work performed by Forte [15], and Corke [5; 9],

the gap between the electrodes can be modified to reinforce, and strengthen

the plasma body force exerted by the plasma actuator. Forte presented the

evolution of the maximum induced velocity of the volumetric SDBD plasma as

a function of electrode gap (Figure 2.5a). An ideal gap value of 5 mm provided

the maximum induced velocity. This was done using a 2 mm-thick plexiglass

dielectric plate, with two 5 mm-wide electrodes, an AC voltage of 20 kV , and

frequency of 700 Hz. The optimum electrode gap is considered to be 5 mm, as

for higher gap values, it is surmised that the electric field may drop down, and the

space charge cannot continue onward to the encapsulated electrode downstream.

We specifically consider the following four cases where a cell width of 0.0074 m

is assumed.

i. Electrode gap of 2 cells (0.0148 m).

ii. Electrode gap of 4 cells (0.0296 m).

iii. Electrode gap of 5 cells (0.037 m).

iv. No electrode gap, but the encapsulated electrode is moved one cell width

deeper into the dielectric.

Figures 6.20-6.23 present the plasma body force fields for the various gap scenarios

listed above superimposed on electric field contours. Rather than vector plots for

the electric field, we are presenting the figures using contours to show that despite

the modification of electrode gaps, the plasma body force and electric fields are

most concentrated by the edge of the exposed electrode, as has been noted in

all our results so far. Beginning with Case 1-3, we get body force maxima,

in that order, of 9.02 × 10−4N N , 9.42 × 10−4N , and 9.95 × 10−4 along with

electric field maxima of 223 N/C ,225 N/C, and 227 N/C. This shows that by

increasing the electrode gap we are proceeding towards higher magnitudes for the

set parameters. Case (iv) presents the largest resultant magnitudes for both the

body force, and the electric field with 0.0010 N , and 230 N/C.

76



Figure 6.20: Body force vector field superimposed on Electric field contours for
Electrode Gap Case (i) of 2 cells.

Figure 6.21: Body force vector field superimposed on Electric field contours for
Electrode Gap Case (ii) of 4 cells.
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Figure 6.22: Body force vector field superimposed on Electric field contours for
Electrode Gap Case (iii) of 5 cells.

Figure 6.23: Body force vector field superimposed on Electric field contours for
Electrode Gap Case (iv).
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6.3.4 AC Voltage

In the approaches considered so far, the electrodes are provided with a constant

potential value of ± 1 V . This would correspond to the use of a DC voltage, which

in reality, would not be suitable for a SDBD actuator, as a direct current cannot

cross the dielectric barrier, and may not provide for a stable plasma discharge.

In fact, DC voltages would be more appropriate for a DC discharge/Coronal dis-

charge actuator, both of which utilize slightly different configurations compared

to the SDBD plasma actuator. Thus, it is necessary that unlike the constant

voltages used in the original PIC simulations, an AC voltage involving a simple

time-dependent structure, be used as follows,

φ(t) = φmax(t)f(t) (6.1)

where,

f(t) = sin(2πωt). (6.2)

φmax is the amplitude of the sine wave, while ω = 2πf is the angular frequency,

and f is the frequency of the wave. The exposed electrode is generally provided

with an AC voltage while the encapsulated electrode remains grounded. Four

simulations were made with varying ranges of amplitudes (A), and frequencies

(f) for the AC voltage (while maintaining the benchmark PIC conditions on all

other parameters):

i. A = 2 V , f = 3 Hz.

ii. A = 2 V , f = 100 Hz.

iii. A = 50 V , f = 100 Hz.

iv. A = 100 V , f = 3 Hz.

It was observed that in all four cases, a secondary area of concentrated electric

fields formed at the edge of the encapsulated electrode, as in Cases (iii), and (iv),

for example, shown in Figures 6.24 - 6.25.
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Figure 6.24: Electric field contours for AC Voltage Case (iii) superimposed with
the corresponding vector field.

Figure 6.25: Electric field contours for AC Voltage Case (iv) superimposed with
the corresponding vector field.
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Starting with Case (i), we have a maximum plasma body force near the inner

edge of the two electrodes of 8.1 × 10−4 N . The corresponding magnitudes of

the electric field at the primary and secondary regions are 155 N/C, and 140

N/C. The electric potential of the exposed electrode at the end of the simulation

is 0.0010 V . There is a progressive increase in the magnitudes of the primary

parameters when larger frequencies are used for the AC voltage supplied to the

electrodes. For example, in Case (ii), we have primary and secondary electric

field magnitudes of 158 N/C, and 140 N/C. The plasma body force involved has

a maximum magnitude of 8.5 × 10−4 N . The electric potential on the exposed

electrode at steady state is now 0.0335 V . Note, the secondary regions for the

electric field do not experience any changes in magnitudes.

Corresponding increases in the amplitude of the voltage waveform also accommo-

dates for similar behavior, as in Case (iv), where the amplitude of the waveform

is increased to 100 V , while maintaining a frequency of 3 Hz as in Case (i). This

resulted in primary and secondary electric field magnitudes of 158 N/C, and

140 N/C. The electric potential on the exposed electrode is now 0.0503 V . A

maximum plasma body force of 8.34× 10−4N is also noted. Similarly, Case (iii)

combines an increase in the amplitude as well as the frequency of the AC voltage

waveform, giving us primary and secondary electric field magnitudes of 207 N/C,

and 140 N/C. The results present a maximum plasma body force magnitude of

0.0010 N .

In the end, it is by changing the frequency of the waveform that we achieve greater

magnitudes for the resultant primary electric field magnitudes, and the plasma

body force parameters. This is of great interest as the related region is where we

would prefer the plasma actuator to impart the most momentum into the airflow

in order for it to be diverted smoothly along the dielectric surface.

6.3.5 Material Considerations

A variety of materials can be utilized for the dielectric layer. The benchmark

PIC model uses a Kapton dielectric layer (εr,Kapton = 2.7). Two additional cases

81



were analyzed using the benchmark PIC setup, each involving a different dielectric

medium, including Teflon (εr,Teflon = 2.1), and Plexiglass (εr,P lexiglass = 3.4). The

dielectric constant at the interface for each medium is found to be,

i. εr,Teflon−Air = mean(2.1 + 1.0) = 1.55

ii. εr,P lexiglass−Air = mean(3.4 + 1.0) = 2.2

Simulations involving the two dielectric media were also made using Orlov’s

model, with the benchmark setup. Beginning with Teflon, the PIC results reg-

ister a maximum body force of 0.0011 N , and a maximum electric field of 231

N/C at the inner edges of the two electrodes. A Plexiglass dielectric medium

results in a body force of 0.0010 N , and an electric field of 227 N/C. With a

Plexiglass medium, the system registers a weaker negative potential line along

the surface (-0.6479 V , -1.3375 V , -1.6743 V...) compared to a Teflon medium

(-0.6900 V , -1.3905 V , -1.7235 V ...). Figures 6.26 and 6.27 present the electric

potential contours resulting from the use of the two dielectric media.

Note that in the benchmark PIC simulation, which uses a Kapton dielectric

medium, the system sustains a maximum body force of 1.22 × 10−4 N , and

an electric field of 230 N/C. These results portray Teflon as the most favorable

dielectric medium for the plasma actuator system. When compared to the results

obtained from Orlov’s model, we are once again faced with numerical discrepan-

cies in the individual magnitudes of each parameter. Otherwise, the Orlov results

also prove Teflon as the most favorable dielectric medium for the plasma actuator

system. The Teflon medium results with a body force of 2.10 × 10−6 N , and an

electric field magnitude of 60 N/C, compared to 2.03 × 10−6 N , and 56 N/C

for the Plexiglass medium. The behavior of the electric potential is equivalently

similar with the Plexiglass medium registering weaker electric potential isolines

about the two electrodes ranging from 0.0714 V to 0.4000 V (for the exposed

electrode), and -0.1096 V to -0.3425 V (for the encapsulated electrode), versus

0.1198 V to 0.4000 V , and -0.1356 V to -0.3590 V for the Teflon medium.
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Figure 6.26: Electric potential contours for a Teflon dielectric.

6.3.6 Flight Conditions

The benchmark PIC model involves a particle injection velocity of 70000 m/s.

This is not practical considering the flow speeds generally encountered in cruise

flight conditions. Four cases of varying flow speeds have been tested, while main-

taining the benchmark PIC parameters for all other variables. This has allowed

us to test possible scenarios which could involve system instabilities. The four

cases are as follows,

i. vDrift = 260 m/s

ii. vDrift = 990 m/s

iii. vDrift = 977.55 m/s

iv. vDrift = 500 m/s

The cruising flight speed on commercial airliners is 926 km/h or ≈ 260 m/s. It

was noted that with the benchmark PIC conditions (where n0 = 1012 particles per
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Figure 6.27: Electric potential contours for a Plexiglass dielectric.

cubic meter, along with a cell width of 0.0074 m), Cases (i), and (iv) violated the

plasma stability criterion as ωpi∆t > 1. We are considering here the plasma ion

frequency rather than the plasma electron frequency as noted in (2.4) as the PIC

model involves kinetic ions with a fluid electron background. Cases (ii), and (iii)

registered values of ≈ 0.9920, and ≈ 0.9999 for the same product nearly avoiding

violation of the stability criterion. We are mainly interested in addressing the

evolution of particle positions through the course of these simulations.

The particle positions are defined via the equations of motion, which requires

knowledge of the electric potential, and the subsequent electric field at a given

location in the computational domain. Figures 6.28-6.31 illustrate the particle

distributions for these four cases.

Unlike the benchmark simulation, where the particles travel from the left, to the

right, while being absorbed at the dielectric surface, and the upper electrode, the
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Figure 6.28: Particle Positions for Case (i) for 260 m/s.

particles here encounter a divergence in the speeds listed above, resulting in a

flow that is reminiscent to that of an airfoil, surrounding the plasma actuator.

As observed, the airfoil-like distribution of the particles dips lower towards the

dielectric surface as vDrift → stable conditions where the plasma stability crite-

rion is satisfied (Cases (ii), and (iii)). We also find that by approaching flight

speed conditions, the system presents higher magnitudes for the electric field, and

plasma body force.

6.4 Conclusion

This chapter involved several parametric tests of the Orlov and PIC models. A

variety of simulations involving different scenarios were made. In the following

chapter, we will shed some perspective on these collective results with a thorough

discussion of their meaning, significance, and end with closing remarks on the

prospects for future research on this subject.
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Figure 6.29: Particle Positions for Case (iv) for 500 m/s.
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Figure 6.30: Particle Positions for Case (iii) for 977.55 m/s.
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Figure 6.31: Particle Positions for Case (ii) for 990 m/s.
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Chapter 7

Discussing the Results

7.1 Summary

A variety of simulations have been considered so far. Having analyzed the results

from the benchmark PIC and Orlov simulations, we moved on to Case (i) where

two simulations were made with the Orlov model using 50 × 50, and 201 × 201

grids. The Debye length utilized in both cases was 0.0074 m, along with a tol-

erance level of 0.1 for the potential solver. We noted that the physical lengths

of the domains were different in these latter cases compared to the benchmark

Orlov simulation but despite this found our final results from the two simulations

to be identical to those from the benchmark Orlov simulation. This was an in-

dication that the differing physical lengths of the computational domain do not

have much of an influence in the problem. This left us with the parameters for

the dielectric materials, solver tolerance, and the Debye lengths. One of these

scenarios, involving the Debye length, was tested in Case (ii) where we found that

the magnitudes of the electric field and electric potential decrease as the Debye

length decreases. This one-to-one relationship did not translate to the results

involving the plasma body force.

Now in analyzing these results, it is necessary to consider the practicality of the

Debye length values used to characterize the SDBD plasma. Discharge plasmas

used for airflow control are usually atmospheric corona discharges and dielectric
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barrier discharges. Their characteristics are typically as follows: high voltages

of a few kV to several tens of kV with DC or AC excitation, with frequencies

from 50 Hz to 50 kHz, electrical currents from a few µA to a few mA. In these

conditions, the density of charged species is between 109 and 1013 cm−3, and

the electron temperature is a few eV . Unlike the PIC model, the Orlov model

lacks in the number of parameters used to characterize the plasma actuator. In

fact, it is only the Debye length that serves as the primary variable in the Orlov

model’s simulation of the SDBD plasma. Industrial plasmas in general involve

Debye lengths of 25.4 µm. The Debye lengths utilized in Case (ii) from 25.4

µm, and in the range between ± 0.01 mm of this value are applicable in reality.

Alternatively, Debye lengths within the range of 10−2 m to 10−3 m can be used

to model plasmas in the atmosphere, specifically, the ionosphere, while a Debye

length of 10−6 m would be found in environments such as a fusion reactor or the

solar core. These choices do not necessarily make for practical implementation

in modeling the SDBD discharge. Thus, we have shown the significance of the

Debye length in the Orlov model. In comparing results from this model to that

of the PIC model, it is necessary that practical and correct values for the Debye

length are used.

This paved the way to the discussion of Case (iii), where the Debye length was

modified in the benchmark PIC model to the value of 25.4 µm along with the

corresponding number density of 8 × 1016 particle per cubic meter. While the

output values for the electric potential, electric field, and the plasma body force

registered higher values compared to the benchmark PIC simulation, there was

also no room for agreement with the results from the benchmark Orlov simula-

tion. But most importantly, the results found in Case (iii) are impractical as the

physical area of the domain is an unrealistic 4.03225 × 10−7 m2. Nevertheless,

the simulation certainly indicated that the electric field and plasma body force

magnitudes are also influenced by changes in number density.

Through these simulations we have been able to show that even the smallest of

parameters used to characterize the SDBD plasma actuator flow problem have

a great influence on our results. This is particularly evident in the PIC model.
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Unlike the Orlov model, the PIC model involves the use of codependent vari-

ables, like the Debye length, in its formulation. In the PIC model, the cell size is

set equivalent to the Debye length. The cell is generally the smallest size across

which we can resolve changes in various properties. Thus, the cell size is also

a function of whatever phenomena we are trying to resolve. For example, if we

a have a beam that is 5 cm across, a 2 cm cell size will only provide for two

to three nodes across the beam. This will not be enough to resolve the beam’s

detailed structure. The physical lengths of our domain is computed by taking the

number of nodes in the grid, and multiplying it to the cell size. In Case (iii), the

PIC simulation used λD = 25.4 µm, in a 25 × 25 grid, such that the area of our

domain is an impractical 4.03225× 10−7 m2.

It is important that the Debye length value is chosen such that the code satisfies

the plasma stability criterion, where if ωpi∆t > 1, the plasma is unstable. Fur-

thermore, we must also consider the values utilized for the number density, the

temperature of the particle species, the particle injection velocities etc. Altering

the physical length by using the correct proportionality factor does not solve the

problem, as this conflicts with the random number particle generator used for

particle generation in the code. The particle generator is set such that particles

are randomly distributed in ŷ and the first cell. The cell size, and the length of

the domain come into play in determining this factor which subsequently is uti-

lized in the calculations for particle propagation. In the end, to get a reasonable

physical length for the domain with a set Debye length, a larger grid would be

required. This would require a larger number of iterations toward the solution,

and is ultimately a time consuming procedure. These concepts are at the crux

of this thesis. In the end, the results procured from the benchmark simulations

emphasized the importance of individually examining the major parameters and

conditions in both models, as well as their relation to other variables.

Consequently, a select number of simulations were made relating these concepts,

and allowing us to decipher the various pros and cons of the two methods in their

modeling of the SDBD plasma actuator flow problem. These simulations were

also a means through which we provided for the validation and generalization of
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the Orlov, and PIC models, as they surveyed a variety of scenarios:

i. Evaluating differing boundary conditions.

ii. Analyzing the influence of various electrode sizes, and configurations.

iii. Running an AC voltage through the plasma actuator system.

iv. Consideration of different dielectric materials.

v. Testing the PIC model’s validity under flight conditions.

7.1.1 On Differing Boundary Conditions

Let us begin by discussing the evaluation of differing boundary conditions. Much

of this section emphasized the importance of boundary conditions in accurately

characterizing the plasma actuator mechanism and particle interactions, involv-

ing a fixed configuration, for an optimal mechanical output. The simulations also

provided for the validation of the benchmark PIC model, and its construction.

Case (iii) was most similar to the benchmark PIC simulation, and provided an

accurate characterization of the plasma actuator with a maximum electric field

magnitude of 228 N/C, and a maximum body force of 0.0011 N . These values

agree within 1 % of those computed in the benchmark simulation. Case (iv), on

the other hand, provided values within the same range of error with an electric

field of 232 N/C, and a body force of 0.0015 N . Case (iv) also correctly modeled

the expected pile-up phenomena about the electrodes, and the dielectric surface,

as one would expect in reality, unlike Case (iii) and the benchmark PIC simula-

tion, which both use absorbing boundary conditions on the electrodes, and the

dielectric surface.

Cases (i) and (ii) were lacking in their results, as they unrealistically portrayed

the system with reflecting conditions to the domain’s left, and right, or even at

all its boundaries. The lack of structure in the electric fields, along with a loss

of the periodic behavior in the electric potential, often observed as the system

settles into a steady state, the numerical discrepancies in the magnitudes of the
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plasma body force and the electric field when compared to the benchmark PIC

simulation supports this fact.

While Case (iii) was closest in construction to the benchmark PIC simulation,

in the end, it was Case (iv) that served to be the most realistic of all the sce-

narios considered, with a great degree of agreement to the results conceived in

the benchmark PIC simulation. The study also highlighted an obvious deficiency

in the Orlov model which is the lack of complex boundary conditions in model-

ing the SDBD plasma actuator flow problem. This is of great importance if one

wishes to analyze plasma sheath physics, or is interested in plasma phenomena

occurring at the edges of the electrodes.

7.1.2 On Varying Electrode Sizes, and Gaps

We then moved on to analyzing the influence of various electrode widths/sizes,

and gap configurations on the mechanical output of the plasma actuator system.

Due to the nature of the code and the MATLAB programming environment used

extensively in this thesis, it was difficult to account for fractional discretization

involving structural modifications of the electrode widths and gaps.

Beginning with the three cases considered for varying electrode widths, we worked

with the knowledge that an optimum electrode width of 0.02 m achieved a maxi-

mum induced velocity as presented by Forte [15]. Forte also states that while the

wider the electrode, the greater the plasma extent, causing ions to be accelerated

for a longer distance, and resulting in a velocity increase. But, there is a limit.

While the phenomenon behind the plasma formation may be self-sustaining, it is

a dissipative process, leaving the plasma to expand not more than 20 mm. Roth

concludes in his work that the best SDBD plasma actuator configuration would

involve an electrode gap of 0, and an electrode width of 20 mm, or a gap of 5

mm, and an electrode width of 15 mm. The electrode widths mentioned pertain

to the encapsulated electrode, over which the plasma forms.
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In our study, we considered three cases involving electrode widths of 0.0148 m

(Case (i)), 0.0296 m (Case (ii)), and 0.1036 m (Case (iii)). An electrode gap

of 0 m was utilized in all three cases. As expected, we observed a faster drop

in the electric potential for smaller electrode widths. This was shown by com-

paring the electric potential values along the dielectric surface for Cases (i) and

(ii). The result agrees with the fact that longer electrodes provide for a greater

plasma extent, which brings us to Case (iii) involving the largest electrode width.

Interestingly enough, while Case (iii) provides for a smaller drop in the electric

potential along its surface with values of -0.6763 V , -1.3759 V , -1.7129 V , hinting

at a longer plasma extent, and resulting in the largest magnitude for the plasma

body force (0.0012 N), but the smallest magnitude in the electric field (217 N/C).

These seemingly contradictory results can be a consequence of the fact that unlike

Forte, the electrode width modifications were utilized on both the exposed and

the encapsulated electrode (Forte only modified the width of the encapsulated

electrode) making direct comparisons to his results impractical. One must also

note that Forte’s plasma actuator configuration involved a 2 mm thick plexiglass

plate, with the electrodes supplied an alternating voltage of 20 kV , and frequency

700 Hz. Our simulations do not account for this, where a constant potential of

± 1 has been used on the electrodes with a Kapton dielectric layer.

Moving on, through the evaluation of different electrode gaps it was observed

that the highest concentration of the electric field and the body force is restricted

exclusively to the inner edge of the upper electrode, while the fields dissipate at

faster rates, along the gap region for larger gaps. This was later identified to be

a consistent behavior of the SDBD plasma actuator system throughout all the

simulations discussed in this work. Another result of interest was that Case (iv)

(electrode gap of zero, but the encapsulated electrode is moved one cell width

(0.0074 m) deeper into the dielectric) displayed the largest resultant magnitudes

for the plasma body force force (0.0010 N), and the electric field (230 N/C).

This result agreed with the experimental observations of Erfani [32] where it was

found that actuators with a deeper encapsulated electrode are able to induce

higher velocities (which implies a greater injection of momentum in the bound-
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ary layer, and subsequently a larger plasma body force magnitude). We initially

presumed that the electric field, and plasma body force quantities are directly

coupled to the equations of particle motion, and as such these results confirmed

our expectations. At the same time, we cannot deny that our results are not

comparatively valid, as unlike Erfani, we used a DC voltage implementation on

our plasma actuator system.

Implementing these varied gap configurations in the Orlov model, we found that

the results for the body force, electric field, and electric potential were identical

over all four cases. A maximum body force magnitude of 1.3521 × 10−6 N was

found at the inner edge of exposed electrode, corresponding to an electric field of

40.3536 N/C. The electric potential contours about the exposed electrode varied

in a range from 0.0937 V to 0.4000 V , and -0.1208 V to -0.3496 V about the en-

capsulated electrode. The identical results served to illustrate the Orlov model’s

weakness in representing the influence of structural changes in the plasma actu-

ator configuration.

In the future, in order to make valid comparisons to the work presented by Erfani,

Forte, and Corke on the use of electrode gaps to optimize the mechanical output of

the plasma actuator, it will be fruitful to consider modeling the plasma actuator

problem with a smaller cell width. The four cases that have been explored in this

thesis utilize a cell width of 0.0074 m. As mentioned earlier, Forte states that

the best SDBD plasma actuator configuration would involve an electrode gap of

0 and an electrode width of 20 mm, or a gap of 5 mm and an electrode width of

15 mm. Thus, a suitable simulation would involve modifying the cell width, or

configuring the electrode positions to match the optimal scenario.

7.1.3 Running an AC Voltage

With respect to the deductions made regarding the use of different electrode

widths and gaps, it was natural to follow up by considering the use of an AC

voltage on the electrodes. The AC voltage was applied on the exposed electrode

while the encapsulated electrode remained grounded. Four simulations involving
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waveforms of different amplitudes, and frequencies were considered.

Unlike earlier results, a secondary area of concentrated electric fields was ob-

served at the edge of the encapsulated electrode. This was most prominent in

Cases (iii) (A= 50 V , f = 100 Hz), and (iv) (A = 100 V , f = 3 Hz). Between

changing the amplitudes, and frequencies of the waveforms, we found that we

can achieve greater magnitudes for the plasma body force, and primary electric

field magnitudes for waveforms of higher frequencies. This was exemplified by the

results provided in Case (iii), where the plasma body force (0.0010 N), primary

(207 N/C), and secondary electric field (140 N/C) magnitudes were the highest

among the four cases.

The small magnitudes for the amplitude, and frequency of the sine waveforms

were chosen specifically to avoid instabilities that afflicted the particle flow with

the choice of larger values for the same parameters. This manifested in the form

of a clear loss of structure in the electric potential contours, the electric, and the

plasma body force fields. Thus, the PIC model, in its current state, is unable

to accommodate for such modifications. This can also be a natural limitation of

the system as the stability of the plasma discharge is linked to the magnitudes

of frequencies and amplitudes used for the AC voltage [8]. To construct a stable

glow discharge and avoid the unfavorable filamentary phase or glow-to-arc tran-

sitions, experiments generally focus on low magnitudes for the amplitude and

frequencies of the AC waveform as during said transitions the electrical currents

are concentrated within a few filaments, sparks may appear, and the discharge

would be difficult to control.

Future work would focus on addressing this flaw of the PIC model. Further op-

timization can also be made in the selection of the AC waveform to improve the

performance of the plasma actuator. Corke et al. [9] have proven that the use of

a sawtooth waveform with a long rise time corresponding to the forward-charge

cycle phase when electrons are deposited on the dielectric surface, produces more

induced thrust compared to sine waves. In fact, it has been generally understood

that triangle waves are an optimal choice compared to sine, square, or rectangular
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pulses that are less favorable in providing for the cascade ionization of the neutral

air in SDBD plasma actuators. It will be imperative to explore these waveforms,

and analyze the differences they make in our simulations.

Alterations along the same line could be made to facilitate for the use of an AC

voltage in the Orlov model. Currently, the absence of a time-dependent factor or

a time counter bars the Orlov algorithm from using an AC voltage to model the

plasma actuator problem and allow for comparison with the results from the PIC

model. By setting grounds for such modifications, we would be able to combine

our results with the deductions made involving the use of optimal electrode gaps

and widths, and replicate Erfani’s measurements.

7.1.4 Dielectric Material Considerations

Following this, we studied the use of different dielectric materials. Two dielectric

media of choice including Teflon and Plexiglass were tested. Having thoroughly

compared the magnitudes registered for the plasma body force, electric field, and

the electric potential between the two dielectric media, we found Teflon to be the

most favorable dielectric medium for the plasma actuator system registering a

maximum body force of 0.0010 N , and an electric field of 227 N/C. We reached

the same conclusion with the results from the Orlov model where we registered a

maximum body force magnitude of 2.10×10−6 N , and an electric field magnitude

of 60 N/C. Through these simulations we were able to accomplish our objective

to show that different dielectric materials do have an influence in the mechanical

output of the SDBD plasma actuator. Future work would involve similar tests

being made with the use of an AC voltage supplied to the electrodes, while also

addressing questions pertaining to certain characteristics of the plasma actuator

system such as:

i. Does the use of particular dielectric surfaces restrict or even regulate the

AC voltage magnitudes supplied to the electrodes?

ii. Which dielectric surfaces are most effective in sustaining the plasma dis-

charge mechanism of the SDBD plasma actuator?
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7.1.5 Flight Speeds

Last but not least, we tested the PIC model under flight conditions. While Cases

(i) (260 m/s), and (iv) (500 m/s) violated the plasma stability criterion, Cases

(ii) (990 m/s), and (iii) (977.55 m/s), nearly avoided the same fate registering

values of 0.9920, and 0.9999 for the product ωpi∆t. We observed that as vDrift

approaches stable conditions, the airfoil-like distribution of particles dipped lower

towards the dielectric surface. Furthermore, we found that by approaching flight

speed conditions, the system presents higher magnitudes for the electric field, and

body force contours. In Case (iii), we find the maxima for the electric field, and

the plasma body force to be 178 N/C, and 3.2843 × 10−4 N . Case (i) results

with a maximum plasma body force magnitude of 9.1× 10−4 N , and a maximum

electric field magnitude of 223 N/C. While these values tend to agree with the

observations mentioned earlier, Case (i) violates the plasma stability criterion,

and thus its results are invalid.

The plasma stability criterion involves the variables ωpi, the ion plasma frequency,

and dt, the particle propagation time-steps. The plasma frequency can be modi-

fied by changing the particle number density, n0, used in the simulation. dt can

be modified by changing both the cell size (which we generally equate with the

Debye length, and so as mentioned earlier, making the correct choice for this

parameter is highly influential to our results), and the drift velocity of the par-

ticles. Having maintained the default values for all parameters, while singularly

modifying the drift speed, Cases (i) and (iv) are found to be in violation of the

plasma stability criterion. This begs the question on what the results may be if

the appropriate number densities, and cell sizes were used in these simulations,

for the selective flight speed of 260 m/s.

7.2 Conclusion

Throughout this thesis, we have been plagued by the discrepancies between the

results from the Orlov and PIC models. While we found that our results agreed

upon a patterned characterization of the phenomena, for example, in the con-
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sideration of dielectric materials, where Teflon was identified as the favorable

dielectric medium in both the Orlov and the PIC models, the results did not

agree numerically.

Hoping to set these differences straight, we also tried an additional test where we

played around with the magnitudes of the two model’s solver tolerances. Three

cases were tested for varying tolerance levels,

i. Tol = 0.0001

ii. Tol = 0.00001

iii. Tol = 1× 10−10

but no discernible differences were found in the results for all three cases, in both

the Orlov and the PIC models. In fact, the results were practically identical.

There was literally zero margin for difference. Case (iii) resulted in a failure for

convergence involving the potential solver in the PIC model. The smaller the

tolerance level, the greater the number of iterations that were required. This was

disadvantageous in the case of the PIC model where the given tolerance was not

only beyond the typical range used for the matrix solver, but also because of the

necessity for a greater number of iterations. Unlike the Orlov model, which is

quite flexible in this criteria, the PIC model is computationally intensive, thus

making the necessity for a greater number of iterations, an additional complica-

tion. In the end, we were unable to label a unique reason behind the numerical

differences that persist in the results between the two models.

So what is the purpose of all this experimentation? Through the cases we have

considered in Chapter 6, we have furthered our knowledge on the functionality,

and various aspects of the two models. By doing so, we were able to identify their

advantages and deficiencies in modeling the plasma actuator. It is now partic-

ularly suggestive that a simulation compiling the various aspects of each of the

cases considered in this chapter be made, and can be easily accomplished.
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Such a simulation would have the SDBD plasma actuator system configured with

the optimal electrode gaps, widths, dielectric materials, as have been identified in

our simulation, while supplied with a sawtooth AC voltage waveform, and tested

under flight conditions that satisfy the plasma stability criterion, where the cell

width will be resolved to a Debye length that provides for the best resolution in

our results along with an acceptable tolerance criterion specific to each model.

Nevertheless, there still remains a bounty of questions on the observations we

have made so far. While our analyses have provided for the distinctions between

the two models, there is much left to do towards a complete understanding of

their properties, and inherent differences. This will be the subject of the follow-

ing chapter, where the basis of these questions will be laid bare, along with a

conclusive note on further work that can be pursued on this subject.
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Chapter 8

Toward the Future

8.1 A Brief Recap

The primary objective of this thesis was to model the SDBD plasma actuator flow

problem. Two approaches involving different models, Orlov’s fluid Electrostatic

model and the author’s hybrid Particle-In-Cell model, were considered. Having

outlined the theory involved in implementing the two models, they were then

tested using different sets of parameters and constraints. The corresponding re-

sults were summarized and discussed in Chapters 6 and 7. So what did we learn

from this? Much of this work focused on understanding the basic properties of the

SDBD plasma actuator using these two simplified computational models. Conse-

quently we were able to identify key parameters and configurations, specifically

in the PIC model, that can influence the dynamic behavior of the SDBD plasma

actuator system such as:

i. The use of different dielectric materials for the dielectric barrier.

ii. The correct choice of the Debye length, and the appropriate discretization

of the computational grids.

iii. The use of varying electrode geometries involving different electrode widths

and gaps.

iv. The use of AC and DC voltages, and their influence in the formation of
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a stable plasma, and subsequently, the magnitude of the resultant plasma

body force field.

v. The appropriate use of particle boundary conditions to replicate a realistic

airflow at flight speed conditions.

Through the models, we have successfully learned to distinguish between the

inherent limitations of our methods in modeling the SDBD plasma actuator sys-

tem, as well as explore the myriad characteristics of the flow control device itself.

These observations serve as the foundation to a larger effort in learning about

the inherent mechanics of the two models,and their applicability to the SDBD

plasma actuator flow problem. There is now a necessity for larger effort towards

the optimization of both models in order to accommodate for the discrepancies

detailed in the numerical results.

Therefore, this chapter will focus on further generalizing the two models with

consideration of what we have learned from their numerical results, and the ques-

tions that we have encountered. We will end this thesis with a conclusive note

on the future work that could be pursued on this subject, and contribute to its

applicability in industrial research.

8.2 Questions to Consider

Variables that are known to influence plasma formation and its intensity in the

SDBD plasma actuator system include the DC/AC voltage amplitudes and fre-

quencies, electrode configurations, dielectric materials, dielectric thickness, and

dielectric temperature, to name a few. It has been shown through various ex-

periments that the correct choice, and selection of these parameters influence the

performance of the plasma actuator device.

The tests that have been conducted with the two models form the basis of an

optimization problem, involving the plasma actuator system. In that vein, it

is normal to question why we chose to use the specific numerical values for the

relevant parameters as we did in these two models. The source of our decisions
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can be relegated to the myriad articles that were utilized for reference, and as

supplementary materials in this thesis. In particular, the experimental work of

Roth, Orlov, Corke, Enloe, and Moreau et al. [1; 4; 5; 8] assisted greatly in the

correct choice of preliminary parameters that could be used test these simplified

models. For example, the PIC code uses an electron temperature of 1 eV, and

ion temperature of 0.1 eV both of which characterize the plasma temperatures

encountered in the SDBD plasma actuator system. The thicknesses of the elec-

trodes were set equivalent to that of a cell width, which in most cases was 7.4 mm

which is also fairly representative of the general order of magnitude thicknesses

of the electrodes in real experiments. Similarly, the use of set Debye length mag-

nitudes, Particle Injection velocities, and Grid resolutions were also referenced,

setting the stage for the myriad tests conducted in Chapter 6. In many ways, our

goal was to probe the SDBD plasma actuator system with our models. Therefore

the varied parametric values between the PIC and Orlov models were purposely

set to facilitate this goal, evolving from preliminary trial values to testing realistic

values, ultimately allowing us to explore the basic tenets of the plasma actuator

system, the applicability of the two models, and ascertain the great influence of

our numerical choices for the system’s variables.

In this manner, we gained ample knowledge on the physical nature of the SDBD

plasma actuator system. But, along with this knowledge came an equivalent share

of questions that must be answered. Our incentive is not to provide a definitive

answer to each and every question (as in various cases a unique solution does not

exist), but to probe the alternatives, and plausible solutions that may reinforce

progress in our research.

8.2.1 Boundary Conditions

Four cases of boundary conditions were analyzed, and were the first of the many

results that validated the PIC model and its application to the SDBD plasma

actuator flow problem. Unfortunately, it was not possible to compare said results

with those of Orlov’s model, namely because the electrostatics of the model do

not facilitate for the same level of detail in its boundary conditions. This can be
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readily fixed.

The benchmark Orlov model was set such that it maintained our interest in the

plasma physics of the flow problem. This restriction only allowed for selective

comparisons to the PIC model. By incorporating the Navier- Stokes equations,

the governing equations for the flow problem, the fluid nature of the model can

be implemented, and through the use of vorticity and stream functions, provide

for greater detail, and flexibility in the configuration of boundary conditions as

well as modeling the effects of viscosity. In fact, this was the original approach

proposed by Orlov.

8.2.2 Grid Resolutions

One of the main disadvantages of using the MATLAB programming environment

was the inability to account for fractional positions in the structural configura-

tions of the electrode sizes and gaps. This could be circumvented by the use of

advanced multiphysics software such as Comsol.

The modeling of the plasma actuator flow problem would also benefit from the

use of Finite Element Analyis which provides several advantages compared to the

basic PIC method constructed in this thesis, such as:

i. The accurate representation of complex geometry.

ii. Capturing local flow effects, which is particularly beneficial if we are to

incorporate the Navier-Stokes equation in the Orlov model with that of the

electrostatics in the PIC model.

iii. Mesh structure flexibility, particularly with regards to the fractional dis-

cretization of the computational domain, adding further precision, and de-

tail to the results.

iv. Inclusion of varying material properties that are encountered in modeling

the flow problem.

104



This method can be applied to great precision in understanding the influence of

structural modifications of the plasma actuator system involving the electrodes.

Having explored various electrode sizes and gaps, we could also test the influ-

ence of different electrode thicknesses. In physical experiments, the electrodes

are usually quite thin, on the order of millimeters. Increasing the thickness of the

electrode may be influential in the formation of the plasma discharge. Turbulent

flows at the end of the electrode may help sweep electrons released about that

area into a recirculating region above the encapsulated electrode, further helping

sustain the plasma discharge. Such local flow effects involving the dynamics of

the charged particles in the plasma, and edge behavior can be easily captured

with the use of the Finite Element Analysis method.

Much of this would be influential to our current inability to compare the results

obtained from the simulations between the two models, specifically those exer-

cising different electrode gaps and widths. We quoted Forte’s analysis of the

evolution of the maximum induced velocity of the volumetric SDBD plasma as a

function of electrode gap, but were unable to compare it directly to the results

obtained in our corresponding simulations, as we did not utilize an AC voltage in

our simulations. Although we were able to replicate the use of a Plexiglass dielec-

tric medium in our simulation, the magnitudes presented for the AC voltage, and

the wave frequency, were also far too large to simulate, leading to instabilities in

our results.

Nevertheless, the results that we compiled from our simulations for varying elec-

trode gaps generally agreed with the observed performance of the SDBD plasma

actuator. For example, in one simulation, locating the encapsulated electrode

deeper within the dielectric medium resulted in greater magnitudes for the elec-

tric field, as well as the body force. This agreed with proven experiments that

higher velocities can be induced along the dielectric surface for a given voltage,

for similar configurations [32].
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8.2.3 AC Voltage

The PIC model was constructed using a constant potential of ± 1 V on the ex-

posed, and encapsulated electrode. Orlov utilizes the same configuration in his

electrostatic model. It would be necessary to incorporate the application of an AC

voltage, as in reality, a DC voltage may not provide for the most stable plasma. To

accommodate for this, a few simulations were made with the PIC model using an

AC voltage on the exposed electrode, while grounding the encapsulated electrode.

In said simulations, apart from small amplitudes and frequencies, the PIC model

suffered from instabilities when higher voltage, and frequency magnitudes were

utilized (for example, the specifications used in Forte’s measurements for the evo-

lution of the induced velocity, with respect to electrode gaps.) This is a limitation

of the system but it would be beneficial to address a solution to this problem.

Furthermore, exploring the use of various waveforms, such as the highly efficient

saw-tooth waveform [9], may help in ultimately canceling the current restrictions

on the PIC model where there is a preference towards a DC versus an AC voltage.

8.2.4 Dielectric Materials

We found that using a Teflon dielectric resulted in the highest value for the elec-

tric field, along with the slowest rate of decay of the field away from the upper

electrode, compared to the other two dielectric surfaces (Kapton, and Plexiglass).

Therefore, the correct choice of dielectric materials has a significant influence in

SDBD plasma formation. Erfani et al. [32] have shown that correct material se-

lection can lead to great performance gains, and a reduction in dielectric heating.

Dielectric heating is the process in which a high-frequency alternating electric

field (in SDBD actuators, the AC voltage would be the primary source), leads

to the heating of the dielectric surface. If the electric field is too strong, this

may lead to the rupture of the dielectric material, so it is desirable to not apply

extremely high voltages, but rather use high frequencies.
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This is why the correct choice of materials for the dielectric surface is very im-

portant. Future work on this topic would also consider the following aspects:

i. The various issues or problems that accompany dielectric heating, such as

non-uniform heating, voltage gradients etc.

ii. The effects of the dielectric surface on the flow behavior.

iii. The constraints on the AC voltage for the system depending on the dielectric

surface to avoid corona, and arcing.

iv. The influence of the dielectric surface on plasma stability.

v. General factors that affect dielectric heating (including electrode gaps).

8.3 Conclusion

Much of the future work to be done on the PIC and Orlov models in simulating

the SDBD plasma actuator flow problem will begin with consideration of the

following,

i. The PIC model, by way of its potential solver, is restricted in its range

of convergence criteria. The current solver involves the use of an iterative

method involving residuals, and a matrix solver. Alternative approaches

could be considered in the works of Birdsall et al. [29], allowing the PIC

model to be enhanced for greater precision, and accuracy in its results.

Similar considerations have to be made for the Orlov model. The current

solver in the Orlov model utilizes a simplified tolerance criterion. To further

improve the accuracy of both methods, higher order finite difference schemes

can be utilized to discretize the fundamental equations.

ii. In conjunction with what is mentioned above, various modifications can be

made to enhance the PIC model, such as the incorporation of Monte-Carlo

collisions, interactions with neutral particles, smoothing and noise aspects,

finite size particle simulations, Fourier particle distribution functions etc.

The reader is referred to existing literature by Dawson, and Birdsall et

al.[28; 29] for details.
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iii. Plasma stability conditions are very significant in the PIC model. Various

parameters including the domain length, Debye length, particle tempera-

tures, and particle injection velocities must be considered carefully. The

simulations that have been performed in this thesis maintained the bench-

mark settings on the aforementioned parameters. Thus, the next obvious

step would be to allow for the correct, and realistic modifications of said

parameters such that we can replicate the results of successful physical

experiments. A simple case of this issue was addressed in our analysis

involving simulations with different particle injection velocities.

The greatest advantage of the hybrid PIC model is its potential to reliably pre-

dict the dynamics involved in the SDBD plasma actuator, from the formation

of micro-discharges to flow generation. Discharge processes dominate the perfor-

mance of plasma actuators. The PIC model presented in this thesis is simplified

in its approach to the plasma actuator flow problem. Such a hybrid model should

achieve the high computational efficiency of the fluid model without compromis-

ing the detailed physical description found in a particle model.

In order to optimize the hybrid PIC model, the next step, as mentioned in the

list earlier, would be to account for particle interactions. Currently, the hybrid

model is configured such that ions are kinetic, while electrons are approximated

as a fluid background. The particles do not interact. By incorporating Monte

Carlo methods into the model we would be able to simulate charged-particle in-

teractions (ion-electron, electron-electron, ion-ion etc.), and particle-neutral gas

collision effects.

The basic equation of motion for binary collisions is the Boltzmann equation, and

is given as,

∂(nf)

∂t
+ ~c ·

∂(nf)

∂~x
+ ~F ·

∂(nf)

∂~c
= n2

∫ ∫

[f(~c′)f(ζ ′)− f(~c)f(ζ)]gσdΩdζ, (8.1)

where f denotes the velocity distribution function. ζ and ~c′ are the post-collision

velocities of a colliding pair, and are determined from pre-collision velocities ζ
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and ~c. g is the relative velocity of the colliding pair. σdΩ is the differential cross

section. The Monte Carlo Collision (MCC) method uses a large number of parti-

cles to sample random collisional events. The change in position, and momenta

of the particles involved in such interactions are estimated stochastically during

each time-step of the simulation. The PIC method covers the grounds for electric

interactions between charged particles. The inclusion of the MCC method will

treat for particle interactions via collisions, and optimize the hybrid PIC method

in accurately modeling the plasma dynamics of the SDBD plasma actuator. There

is an expansive literature by Birdsall [29] discussing the methods used to simu-

late electron-neutral elastic collisions, electron-ion Coulomb collisions, such as the

Lorentz gas model that have been used to represent such interactions, and how

to assimilate such interactions into the PIC model. Such a hybrid model could

also be configured to include an interface that would allow for computing between

particle, and fluid domains during simulations. Regions with low electric fields,

and high charge densities may be treated by the fluid model, and vice-versa by

the particle model. This would effectively unite the two models discussed in this

thesis. But, at first, it will be necessary to focus our efforts in addressing the

lingering questions and doubts, to be resolved between the individual methods.

This concludes our discussion of the work established in this thesis. Two methods

including Orlov’s fluid Electrostatic model, and the author’s hybrid PIC model

were evaluated. Their results were accordingly verified, and validated. The gen-

eralization of the models, and the necessary requirements for their applicability

to simulating physical experiments were extensively analyzed, setting the grounds

for future work to be accomplished in the hope of accurately modeling the SDBD

plasma actuator flow problem.
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Appendix A- Orlov’s

Electrostatic Model MATLAB

Code

%---

%The Default Electrostatic Code

%Number of Nodes

%(Nx-1), (Ny-1) = # of square of grids

Nx = 26;

Ny = 26;

%---

%---

%Error and Tolerance

err = 1;

tol = 0.1; %Potential Solver Tolerance

%---

%---

%Domain Lengths

Lx = 0.04; %in m

Ly = 0.04; %in m

%---

%---

%Grid Discretization

dx = Lx/(Nx-1);

dy = Ly/(Ny-1);

Debyeconstant = 0.0000254;

%---
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%---

%Initialization of Potential, and Dielectric Matrices

V = zeros(Nx, Ny);

eps = zeros(Nx, Ny);

%---

%---

%Potential Boundaries

V(1,1:Ny) = 0.0;

V(Nx,1:Ny) = 0.0;

V(1:Nx,1) = 0.0;

V(1:Nx,Ny) = 0.0;

%---

%For the 25x25 Grid

V(22:23,5:13) = 1.0;

V(24:25,13:21) = -1.0;

epskapton = 2.7;

epsair = 1.0;

%New Dielectric Constant conditions over the domain for 201 x 201 grid

for i=1:23

for j=1:Nx

eps(i,j) = 1.0;

end

end

for i=24

for j=1:Nx

eps(i,j) = 1.85; %Kapton-Air interface

end

end

for i=25:26

for j=1:Nx

eps(i,j) = 2.7;

end

end

%---

Vkpl = V;

A = zeros(Nx, Ny);

B = zeros(Nx, Ny);

C = zeros(Nx, Ny);

D = zeros(Nx, Ny);

E = zeros(Nx, Ny);

115



%We are considering uniform gridding (no Robert's stretching), and a

%non-uniform dielectric constant.

while err > tol

for i=2:Ny-1

for j=2:Nx-1

x = j*dx;

y = i*dy;

%First derivatives of eps with respect to x and y.

Firstdepsx = (eps(i,j+1)-eps(i,j-1))/(2*dx);

Firstdepsy = (eps(i+1,j)-eps(i-1,j))/(2*dx);

A(i,j) = (eps(i,j)/(dy*dy)) + (Firstdepsy/(2*dy));

B(i,j) = (eps(i,j)/(dy*dy)) - (Firstdepsy/(2*dy));

C(i,j) = (eps(i,j)/(dx*dx)) + (Firstdepsx/(2*dx));

D(i,j) = (eps(i,j)/(dx*dx)) - (Firstdepsx/(2*dx));

E(i,j) = (2*eps(i,j)/(dx*dx)) + (2*eps(i,j)/(dy*dy))

+ (1/(Debyeconstant*Debyeconstant));

Vkpl(i,j) = (A(i+1,j)*V(i+1,j) + B(i-1,j)*V(i-1,j)

+ C(i,j+1)*V(i,j+1) + D(i,j-1)*V(i,j-1))/E(i,j);

end

end

V = Vkpl;

err = max(abs(Vkpl-V));

end

FirstdVx = zeros(Nx,Ny);

FirstdVy = zeros(Nx,Ny);

Efield = zeros(Nx,Ny);

Bforce = zeros(Nx,Ny);

for i=2:Ny-1

for j=2:Nx-1

FirstdVx(i,j) = (V(i,j+1) - V(i,j-1))/(2*dx);

FirstdVy(i,j) = (V(i+1,j) - V(i-1,j))/(2*dy);

Efield(i,j) = (-1)*FirstdVx(i,j) + (-1)*FirstdVy(i,j);

end

end

for i=2:Ny-1

for j=2:Nx-1

Bforce(i,j) = ((-1)*(8.854E-12)*(Debyeconstant)ˆ-2)

*V(i,j)*Efield(i,j);

end
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end

%Let's graph our results

uelect(1,:) = [5 13];

uelect(2,:) = [22 23];

lelect(1,:) = [13 21];

lelect(2,:) = [24 25];

object1 = zeros(26,26);

object2 = zeros(26,26);

for i=uelect(1,1):uelect(1,2)

object1(i,uelect(2,1):uelect(2,2)) = ones(uelect(2,2)-uelect(2,1)+1,1);

end

for i=lelect(1,1):lelect(1,2)

object2(i,lelect(2,1):lelect(2,2)) = ones(lelect(2,2)-lelect(2,1)+1,1);

end

[j,i] = meshgrid(1:1:Nx,Ny:-1:1);

a=figure(1);

hold on;

contour(j,i,V);

contour(flipud(object1'),[1 1],'-k','LineWidth',2);

contour(flipud(object2'),[1 1],'-k','LineWidth',2);

hold off;

title('Potential Field')

xlabel('Lx')

ylabel('Ly')

z1 = colorbar;

ylabel(z1, 'Electric Potential (V)');

b=figure(2);

hold on;

contour(j,i,Efield);

contour(flipud(object1'),[1 1],'-k','LineWidth',2);

contour(flipud(object2'),[1 1],'-k','LineWidth',2);

hold off;

title('Electric Field')

xlabel('Lx')

ylabel('Ly')

z2 = colorbar;
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ylabel(z2, 'Electric Field (N/C)');

c=figure(3);

hold on;

contourf(j,i,Bforce);

contour(flipud(object1'),[1 1],'-k','LineWidth',2);

contour(flipud(object2'),[1 1],'-k','LineWidth',2);

hold off;

title('Body Force')

xlabel('Lx')

ylabel('Ly')

z3 = colorbar;

ylabel(z3, 'Body Force (N)');
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Appendix B - The Hybrid PIC

Model MATLAB Code

global eps0 qe den A n0 phi0 phi p u phi p l Te Ti uelect lelect kapton

eps0= 8.854E-12; %Permittivity of free space

epsair = 1.0; %Dielectric constant for air

epskapton = 2.8; %Dielectric constant for kapton

qe = 1.602E-19; %Elementary charge

k = 1.381E-23; %Boltzmann constant

amu = 1.661E-27; %Atomic mass unit

M = 32*amu; %Ion mass (Molecular oxygen)

%Input settings

n0 = 1E12; %Particle number density in #/mˆ3

phi0 = 0; %Reference Potential

Te = 1; %Electron temperature in eV

Ti = 0.1; %Ion temperature in eV

v drift = 70000; %Ion injection velocity in m/s

%Voltage on the electrodes

phi p u =1;

phi p l = -1;

%Plasma parameters

Debye = sqrt(eps0*Te/(n0*qe)); %DebyeLength

vth = sqrt(2*qe*Ti/M); %Thermal velocity
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%Domain paramaters

nx = 26; %Number of nodes in x-direction

ny = 26; %Number of nodes in y-direction

ts = 400; %Number of time steps

dcell = Debye; %Cell Size

np insert = (ny-1)*15; %Insert np insert particles per cell

nn = nx*ny; %Total number of nodes

dt = 0.1*dcell/v drift; %Time steps

Lx = (nx-1)*dcell; %Domain Length in x direction

Ly = (ny-1)*dcell; %Domain Length in y direction

wpi = sqrt(n0*qe*qe/(amu*eps0)); %Ion plasma frequency

if((wpi*dt)>1)

disp('(wpi*dt) > 1!! Unstable Conditions!');

break

end

%Electrode dimensions for 26 x 26 grid

uelect(1,:) = [5 13];

uelect(2,:) = [4 5];

lelect(1,:) = [13 21];

lelect(2,:) = [2 3];

%We create an object domain for visualization.

object1 = zeros(nx,ny);

object2 = zeros(nx,ny);

for j=uelect(2,1):uelect(2,2)

object1(uelect(1,1):uelect(1,2),j) = ones(uelect(1,2)-uelect(1,1)+1,1);

end

for j=lelect(2,1):lelect(2,2)

object2(lelect(1,1):lelect(1,2),j) = ones(lelect(1,2)-lelect(1,1)+1,1);

end

%Specific Weight calculations

flux = n0*v drift*Ly; %Flux of entering particles

npt = flux*dt; %# of real particles created per timestep

spwt = npt/np insert; %Specific weight

mp q = 1; %Macroparticle charge

max part = 50000; %Buffer size
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%Setup particle array for allocation

part x = zeros(max part, 2); %Particle positions

part v = zeros(max part, 2); %Particle velocities

%Set up multiplication matrix for potential solver

A = zeros(nn);

eps = zeros(nx,ny);

%Dielectric Constant conditions over the domain for 25 x 25 grid

%Region above Upper Electrode

for i=1:nx

for j=4:ny

eps(i,j) = 1.0;

end

end

%Within the Dielectric

for i=1:nx

for j=1:2

eps(i,j) = 2.7;

end

end

%At the Dielectric Interface

for i=1:nx

for j=3

eps(i,j) = 1.85;

end

end

%Set up the stencil on the internal nodes

for i=2:nx-1

for j=2:ny-1

u = (i-1)*ny+j;

Firstdepsx = (eps(i+1,j) - eps(i-1,j))/(2*dcell);

Firstdepsy = (eps(i,j+1) - eps(i,j-1))/(2*dcell);

A(u,u) =

-4*eps(i,j)/(dcell*dcell);

A(u,u-1) =

(eps(i,j)/(dcell*dcell))-(Firstdepsx)/(2*dcell);

A(u,u+1) =

(eps(i,j)/(dcell*dcell))+(Firstdepsx)/(2*dcell);
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A(u,u-nx)=

(eps(i,j)/(dcell*dcell))-(Firstdepsy)/(2*dcell);

A(u,u+nx)=

(eps(i,j)/(dcell*dcell))+(Firstdepsy)/(2*dcell);

end

end

%y=0

for i=1:nx

%j=1

u=(i-1)*ny+1;

%phi(i,j)

A(u,u) = -1/dcell;

%phi(i,j+1)

A(u,u+1) = 1/dcell;

end

%y=Ly

for i=1:nx

%j=ny

u =(i-1)*ny+ny;

%phi(i,j-1)

A(u,u-1) = 1/dcell;

%phi(i,j)

A(u,u) = -1/dcell;

end

%x=Lx

for j=1:ny

%i=nx

u=(nx-1)*ny+j;

A(u,:) = zeros(1,nn); %clear row

%phi(i-1,j)

A(u,u-nx) = 1/dcell;

%phi(i,j)

A(u,u) = -1/dcell;

end
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%x=0

for j=1:ny

%i=1

u=j;

A(u,:) = zeros(1,nn); %clear row

A(u,u) = 1; %phi(i,j)

end

for j=uelect(2,1):uelect(2,2)

for i=uelect(1,1):uelect(1,2)

u=(i-1)*ny+j;

A(u,:)=zeros(1,nn);

A(u,u)=1;

end

end

for j=lelect(2,1):lelect(2,2)

for i=lelect(1,1):lelect(1,2)

u=(i-1)*ny+j;

A(u,:)=zeros(1,nn);

A(u,u)=1;

end

end

phi = ones(nx,ny)*phi0;

np=0; %Clear number of particles

disp('Solving potential for the first time.

Please be patient, this could take a while.');

%%%%%%%%%%%%%%%%%%%%

%MAIN LOOP

%%%%%%%%%%%%%%%%%%%%

for it=1:ts %Iterate for ts timesteps

%Reset Field Quantities

den = zeros(nx,ny); %Number density

efx = zeros(nx,ny); %Electric field, x-component

efy = zeros(nx,ny); %Electric field, y-component

chg = zeros(nx,ny); %Charge distribution
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%*** 1. CALCULATE CHARGE DENSITY ***

%Deposit charge to nodes

for p=1:np %Loop over particles

fi = 1+part x(p,1)/dcell; %Real i index of particle'scell

i = floor(fi); %Integral part

hx = fi-i; %Remainder

fj = 1+part x(p,2)/dcell; %Real j index of particle's cell

j= floor(fj); %Integral part

hy = fj-j; %Remainder

%Interpolate charge to the nodes. This follows the method of

%weighted averaging

chg(i,j) = chg(i,j) + (1-hx)*(1-hy);

chg(i+1,j) = chg(i+1,j) + hx*(1-hy);

chg(i,j+1) = chg(i,j+1) + (1-hx)*hy;

chg(i+1,j+1)= chg(i+1,j+1) + hx*hy;

end

%Calculate Density

den = spwt*mp q*chg/(dcell*dcell);

%Apply boundaries

den(1,:) = 2*den(1,:);

den(nx,:) = 2*den(nx,:);

den(:,1) = 2*den(:,1);

den(:,ny)= 2*den(:,ny);

%Add density floor for plotting and to help the solver

den = den + 1E4;

%*** 2. CALCULATE POTENTIAL ***

phi = PotentialSolver(phi);

%*** 3. CALCULATE ELECTRIC FIELD ***

efx(2:nx-1,:) = phi(1:nx-2,:) - phi(3:nx,:);

efy(:,2:ny-1) = phi(:,1:ny-2) - phi(:,3:ny);

efx(1,:) = 2*(phi(1,:)-phi(2,:));
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efx(nx,:) = 2*(phi(nx-1,:)-phi(nx,:));

efy(:,1) = 2*(phi(:,1)-phi(:,2));

efy(:,ny) = 2*(phi(:,ny-1)-phi(:,ny));

efx = efx/(2*dcell);

efy = efy/(2*dcell);

uniformE = zeros(nx,ny);

%Calculate Electric Field using Poisson's equation

uniformE = efx + efy;

bforce = zeros(nx,ny);

%Calculate the body force

bforce = -(eps0/(Debye*Debye))*phi*uniformE;

%*** 4. GENERATE NEW PARTICLES ***

if(np+np insert>=max part)

np insert = max part-np;

end

part x(np+1:np+np insert,1) = rand(np insert,1)*dcell;

part x(np+1:np+np insert,2) = rand(np insert,1)*Ly;

part v(np+1:np+np insert,1) = v drift+(-1.5+rand(np insert,1)

+ rand(np insert,1)+rand(np insert,1))*vth;

part v(np+1:np+np insert,2)= 2*(-1.5+rand(np insert,1)

+rand(np insert,1) +rand(np insert,1))*vth;

np = np+np insert;

%*** 5. MOVE PARTICLES ***

p = 1;

while(p<=np)

fi = 1+part x(p)/dcell; %i index of particle's cell

i = floor(fi);

hx = fi-i; %fractional x position in cell

fj = 1+part x(p,2)/dcell; %j index of particle' cell

j = floor(fj);

hy = fj-j; %fractional y position in cell

%gather electric field

E=[0 0];
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E = [efx(i,j) efy(i,j)]*(1-hx)*(1-hy); %from (i,j)

E = E + [efx(i+1,j) efy(i+1,j)]*hx*(1-hy); %(i+1,j)

E = E + [efx(i,j+1) efy(i,j+1)]*(1-hx)*hy; %(i,j+1)

E = E + [efx(i+1,j+1) efy(i+1,j+1)]*hx*hy; %(i+1,j+1)

%update velocity and position

F = qe*E; %Lorentz force, F=qE

a = F/M; %acceleration

part v(p,:) = part v(p,:)+a*dt; %update velocity

part x(p,:) = part x(p,:)+part v(p,:)*dt; %update position

%process boundaries

%DEFAULT BOUNDARY CONDITIONS

%reflective boundary on bottom

if (part x(p,2)<0) %y<0

part x(p,2) = -part x(p,2); %move particle back to domain

part v(p,2) = -part v(p,2); %reverse y-velocity

end

%see if particle is inside upper electrode

in uelect=false;

if ((i>=uelect(1,1) && i<uelect(1,2)) && ...

(j>=uelect(2,1) && j<uelect(2,2)))

in uelect=true;

end

in kapton=false;

if ((i>=1 && i<nx) && ...

(j>0 && j<lelect(2,2)))

in kapton=true;

end

%absorbing boundary on left, right, top or if in object

if (part x(p,1)<0 | | part x(p,1)>=Lx | | part x(p,2)>=Ly

| | in uelect | | in kapton)

part x(p,:) = part x(np,:);

%kill particle by replacing it with last particle,

%i.e. absorbing conditions

part v(p,:) = part v(np,:);
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np = np - 1; %reduce particle count

p = p-1;

%reduce particle index so this entry will be processed again

end

p=p+1; %move to the next particle

end

%*** 6.PLOT RESULTS ***%

if(mod(it,25) == 0 | | it==ts) %plot only every 25 time steps

a=figure(1);

hold on;

contourf(den');

contour(object1',[1 1],'-k','LineWidth',2);

contour(object2',[1 1],'-k','LineWidth',2);

hold off;

title(sprintf('Density-26x26- %i', it));

xlabel('Lx')

ylabel('Ly')

z1=colorbar;

ylabel(z1,'Density (1/mˆ3)');

b=figure(2);

hold on;

contourf(phi');

contour(object1',[1 1],'-k','LineWidth',2);

contour(object2',[1 1],'-k','LineWidth',2);

hold off;

title(sprintf('Potential-26x26- %i', it));

xlabel('Lx')

ylabel('Ly')

z2=colorbar;

ylabel(z2,'Electric Potential Density (V)');

c=figure(3);

contour(object1',[1 1],'-k','LineWidth',2);

contour(object2',[1 1],'-k','LineWidth',2);

scatter(part x(1:np,1)/dcell,part x(1:np,2)/dcell,5,'fill');
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title(sprintf('Particle Positions-26x26- %i', it));

xlabel('Lx')

ylabel('Ly')

hold off;

d=figure(4);

hold on;

contourf(uniformE');

contour(object1',[1 1],'-k','LineWidth',2);

contour(object2',[1 1],'-k','LineWidth',2);

hold off;

title(sprintf('uniformE-26x26- %i', it));

xlabel('Lx')

ylabel('Ly')

z3=colorbar;

ylabel(z3,'Electric Field (N/C)');

e=figure(5);

hold on;

contour(bforce1');

contour(object1',[1 1],'-k','LineWidth',2);

contour(object2',[1 1],'-k','LineWidth',2);

hold off;

title(sprintf('bforce1-26x26- %i', it));

xlabel('Lx')

ylabel('Ly')

z4=colorbar;

ylabel(z4,'Body Force Fields (N)');

end

disp(sprintf('Time Step %i, Particles %i',it, np));

end

disp(sprintf('Complete!\n')); %exit

toc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%POTENTIAL SOLVER

function [x] = PotentialSolver(phi)

global A den n0 phi0 Ti Te phi p u phi p l uelect lelect qe eps0 kapton

tol = 0.1; %Solver Tolerance

nx = size(den,1);

ny = size(den,2);

nn = numel(den);

b0 = reshape(permute(den,[2 1]),numel(den),1);

x = reshape(permute(phi,[2 1]),numel(phi),1);

%Solve

for it=1:2000

%Recalculate RHS

b = b0 - n0*exp((x-phi0)/Te);

b = -b*(qe/eps0);

b(1:nx) = phi0; %Fixed potential on x = 0

b(nn-nx+1:nn) = 0; %Zero Electric field on x = L

b(nx:nx:nn)= 0; %Zero Electric field on y = L;

b(1:nx:nn) = 0; %Zero Electric field on y = 0;

for i=uelect(1,1):uelect(1,2)

b([uelect(2,1):uelect(2,2)]+(i-1)*ny)

= ones(uelect(2,2)-uelect(2,1)+1,1)*phi p u;

end

for i=lelect(1,1):lelect(1,2)

b([lelect(2,1):lelect(2,2)]+(i-1)*ny)

= ones(lelect(2,2)-lelect(2,1)+1,1)*phi p l;

end

%Update nodes

for i=1:nn

%xold = x;

x(i) = (b(i) - A(i,1:i-1)*x(1:i-1)-A(i,i+1:nn)*x(i+1:nn))/A(i,i);

end

%Compute residue to check for convergence, do only every 10 iterations

if mod(it,10)==0

R=norm(b-A*x); %Residue

%disp(R);

if(R<=tol)

%disp(sprintf(' GS converged in %i iterations with norm

%g',it,R));

break;
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end

end

end

%Check if the solver converged to the specified tolerance

if(R>tol)

disp('GS Failed to converge!!');

end

%Return solution as a nx*ny array

x=reshape(x,nx,ny);

x=reshape(reshape(permute(x,[2 1]),nx,ny),nx,ny);
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