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Abstract

Sea lice are a threat to the health of both wild and farmed salmon and an economic

burden for salmon farms. Open-net salmon farms act as reservoirs for sea lice in

near coastal areas, which can lead to elevated sea louse levels on wild salmon. With

a free living larval stage, sea lice can disperse tens of kilometers in the ocean, both

from salmon farms onto wild salmon and between salmon farms. This larval dispersal

connects local sea louse populations on salmon farms and thus modelling the collection

of salmon farms as a metapopulation can lead to a better understanding of which

salmon farms are driving the overall growth of sea lice in a salmon farming region.

In this thesis I use metapopulation models to specifically study sea lice on salmon

farms in the Broughton Archipelago, BC, and more broadly to better understand the

transient and asymptotic dynamics of marine metapopulations.

I begin in Chapter 1 by presenting a brief background on the mathematical con-

cepts used in this thesis and on the biological systems on which it is focused. In

Chapter 2 I create a stage-structured metapopulation model for sea lice on salmon

farms using age-density equations to capture the complexities of the sea louse life

cycle. To identify which salmon farms are acting as sources or sinks of sea lice in a

salmon farming region I create a next-generation matrix which distills the essential

elements of sea louse dispersal and demography into a single operator. Using the

next-generation matrix I investigate the effect of interfarm spacing and environmen-

tal variables on the source-sink distribution of salmon farms and show that on the

generational scale it is possible for transient dynamics to be different than the long

term dynamics of this metapopulation.
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In Chapter 3 I further explore the transient dynamics which can occur in general

marine and other birth-jump metapopulations. I demonstrate that even in simple

linear metapopulation models the transient dynamics can be very different from the

asymptotic dynamics of these populations. I show how to connect reactivity and

attenuation, measures of the maximum and minimum growth rates that can occur

following perturbations, to the source-sink distribution of habitat patches and how

reactivity and attenuation can differ from the actual population growth rates when

measured in the commonly used ℓ2 norm. I then demonstrate how to meaningfully

measure reactivity in marine metapopulations, where adults typically produce a large

number of offspring and thus most would be considered reactive under the classical

definition.

In Chapter 4 I use the next-generation matrix developed in Chapter 2 to calculate

which salmon farms are acting as the largest source of sea lice in the Broughton

Archipelago, BC. The Broughton Archipelago has been ground zero for studying the

effects of sea lice on wild salmon and several of the farms are currently being removed

in an agreement between the provincial government and local First Nations. I find

that several of the farms that are not slated to be removed are acting as the largest

sources of sea lice in this region and occur in two distinct clusters. I also find that

warming temperatures coupled with high salinities could lead to increased sea louse

growth in the Broughton.

In Chapter 5 I calculate the distribution of arrival times for sea lice dispersing be-

tween salmon farms in the Broughton Archipelago to disentangle the factors affecting

dispersal and cross-infection of sea lice in this region. First, I calculate the arrival

time distribution directly using a hydrodynamic model of the Broughton to which I

then parameterize a simple advection diffusion model of the arrival time distribution.

I use the simple model to show that there an intermediate distance between farms can

maximize cross infection, and the specific distance which maximizes cross infection

depends on the magnitude of the current and temperature of the ocean. I conclude
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the thesis in Chapter 6 by contextualizaing the results within the broader literature

and discussing limitations, potential for future work, and management implications

of sea lice on salmon farms.
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Chapter 1

Introduction

Sea lice (Lepeophtheirus salmonis) are a marine ectoparasite that can feed on the

epidermal tissues, blood and muscles of salmon (Costello, 2006). They occur naturally

in low densities on wild salmon, but salmon farms in near coastal ecosystems provide

a stationary host for sea lice on which they can survive year round and the density

of salmon in the farms can lead to large sea louse outbreaks (Bateman et al., 2016;

Costello, 2009a; Frazer et al., 2012; Krkošek et al., 2011b; Rogers et al., 2013). With

a free living larval stage, sea lice can disperse tens of kilometers in the ocean between

different salmon farms and from salmon farms onto wild salmon. When salmon farms

are located along the migration routes of wild salmon, dispersal of sea lice away from

farms leads to elevated levels of sea lice on wild salmon, which can cause additional

mortality and morbidity (Brauner et al., 2012; Godwin et al., 2015; Godwin et al.,

2017; Krkošek et al., 2011a; Krkošek et al., 2006a; Krkošek et al., 2005; Peacock

et al., 2020). For pink salmon, high sea lice numbers on nearby salmon farms have

been correlated with population level declines (Krkošek et al., 2011b; Krkošek et al.,

2007).

The Broughton Archipelago is a group of islands on the west coast of Canada that

has been at the center of the debate of the effect of sea lice from salmon farms on

wild salmon (Brooks, 2005; Brooks and Stucchi, 2006; Krkošek et al., 2011b; Krkošek

et al., 2008; Krkošek et al., 2007; Krkošek et al., 2006a; Krkošek et al., 2005; Krkošek

et al., 2006b; Marty et al., 2010; Riddell et al., 2008). The area has historically had

several active salmon farms located along the migratory routes of wild pink and chum

salmon and much of the early debate was surrounding the ability of simple advection

diffusion equations to accurately capture the complex current patterns that govern

dispersal of sea lice in this region. Due to the concern around the threat that sea

lice from salmon farms pose to wild salmon, several farms are now being removed in

an agreement between governments of British Columbia and the Kwikwasut’inuxw
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Haxwa’mis, ’Namgis, and Mamalilikulla First Nations (Brownsey and Chamberlain,

2018) and after 2023 the remaining salmon farms must be approved by both the local

First Nations and the provincial government in order to continue to operate.

In the context of salmon farms and the threat of sea lice to wild salmon in the

Broughton Archipelago, the motivating idea behind this thesis is to model sea louse

populations as a connected metapopulation, in order to identify which salmon farms

were having the largest effect on the growth of sea lice in this region. Some of the focus

is on short timescales, so that the farms which are having the largest initial effect on

sea louse population growth can be identified and treated early. However, many other

species have juvenile stages which disperse between habitat patches and adult stages

which remain on a patch, sometimes referred to as birth-jump populations, which

can be modelled as a metapopulation. For marine species which are declining, the

metapopulation framework can be used to identify which habitat patches to protect

in order to maintain persistence of the metapopulation, and has been used to design

Marine Protected Areas and marine reserves (Bode et al., 2006; Botsford et al., 2009;

Burgess et al., 2014; Costello et al., 2010; Crowder et al., 2000; Figueira, 2009; Fox

et al., 2016; Kritzer and Sale, 2006; Watson et al., 2011).

Therefore there are two main threads in this thesis: using mathematics to under-

stand sea louse transmission between salmon farms in the Broughton Archipelago, and

contributing more broadly to the understanding of transient and asymptotic dynam-

ics of birth-jump metapopulations. The structure of this thesis is as follows. First, in

the remainder of Chapter 1 I provide a more extensive background on metapopulation

models and sea lice on salmon farms, including examples of marine and birth-jump

metapopulations, as well as an overview of the relevant mathematical concepts used

in this thesis. In Chapter 2 I construct a model for sea lice on salmon farms where

maturation and survival are age dependent and answer the following questions: How

do we classify habitat patches as sources or sinks in a continuous time, continuous

age metapopulation; and how does this relate to the contribution of sea lice popu-

lations on individual salmon farms located in a channel? In Chapter 3 I investigate

the transient dynamics that can occur in birth-jump metapopulations and answer the

questions: how are the transient dynamics different from the long-term dynamics of

birth jump metapopulations; and how can we connect the transient dynamics to the

source-sink classification of habitat patches? In Chapter 4 I apply the source-sink

classification developed in Chapter 2 to connectivity and demography data from the

Broughton Archipelago and answer the questions: Which farms are acting as the

largest sources of sea lice in this system; and what is the effect of farm removal the

sea louse metapopulation? In Chapter 5 I investigate the timing of arrival for sea lice
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dispersing between two salmon farms and answer the questions: can simple advection-

diffusion equations adequately describe the arrival of sea lice dispersing between two

farms; and how does the interaction between farm spacing and sea louse maturation

affect the level of cross-infection between farms. Lastly I conclude in Chapter 6 with

a discussion of the significance of the results of the thesis and their applications to

sea lice on salmon farms and other marine and birth-jump metapopulations.

1.1 Metapopulations

Ametapopulation is a collection of subpopulations located on discrete habitat patches,

where the subpopulations are connected via dispersal (Hanski, 1998). The interpatch

dispersal is not so low that the population dynamics of an individual patch can be

adequately captured in isolation of other patches or so high that the dynamics of the

entire metapopulation can be described without consideration of local subpopula-

tions. The metapopulation concept was originally formulated by Levins (1969) where

the fraction of occupied habitat patches was modelled in a metapopulation where sub-

populations on local habitat patches go extinct and are recolonized through dispersal

from other subpopulations. Since this original formulation metapopulation models

have grown to include spatially explicit patch occupancy models as well as models

where the population density on each patch is modelled explicitly (Amarasekare and

Nisbet, 2001; Bani et al., 2019; Botsford et al., 1994; Gyllenberg and Hanski, 1997;

Hanski and Thomas, 1994; Kritzer and Sale, 2004; Marculis and Hastings, 2021).

Modelling connected subpopulations under the metapopulation framework has been

successful in capturing the dynamics that occur in both terrestrial and marine systems

(Hanski, 1999; Kritzer and Sale, 2006; Ovaskainen and Saastamoinen, 2018; Watson

et al., 2012).

In most marine metapopulations, the dispersal between habitat patches occurs in

a pelagic larval stage and the remaining life stages are confined to the habitat patch

on which the larvae settle (Cowen and Sponaugle, 2009; White et al., 2019). Once

thought to be open subpopulations with continuous exchanges of larvae, it is now

recognized that most adult subpopulations depend directly on the degree of larval

exchange between habitat patches (Cowen et al., 2000; Cowen and Sponaugle, 2009;

White et al., 2019). Research into larval dispersal in marine metapopulations has

led to a greater understanding of the population dynamics of many marine species

including Dungeness crab, sea urchins, barnacles, corals and coral reef fish, sea turtles,

mussels and many benthic marine species (Botsford et al., 1994; Carson et al., 2011;

Cowen and Sponaugle, 2009; Jones et al., 2009; Mayorga-Adame et al., 2017; Robson
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et al., 2017; Roughgarden et al., 1988; White et al., 2019). In marine systems the

metapopulation concept has also been used in the planning of Marine Protected Areas

and the citing of marine reserves (Bode et al., 2006; Botsford et al., 2009; Burgess

et al., 2014; Costello et al., 2010; Crowder et al., 2000; Figueira, 2009; Fox et al.,

2016; Kritzer and Sale, 2006; Watson et al., 2011).

While most of this thesis is primarily focused on marine metapopulations, many of

the analyses apply more broadly to a class of biological metapopulation models where

dispersal occurs in the first life stage. These are a subset of birth-jump processes

(Hillen et al., 2015) and include all of the marine populations listed above, but also

include many plant species where seeds are carried between suitable habitat patches

(Husband and Barrett, 1996) and insect species where there is a large dispersal event,

such as the spruce budworm (Williams and Liebhold, 2000) and mountain pine beetle

(Safranyik and Carroll, 2007).

1.1.1 Sea lice on salmon farms

As mentioned at the start of the introduction, a specific birth-jump metapopulation

on which much of this thesis is focused is sea louse populations on salmon farms.

In high densities sea lice can lead to additional morbidity and mortality of adult

salmon (Pike and Wadsworth, 1999), and lesions and stress from sea louse infestation

make adult salmon susceptible to secondary infections, all of which have led to large

economic consequences for salmon farms (Costello, 2009b). At one point sea lice have

been estimated to cost the global aquaculture industry 6% of its product value a year

(Costello, 2009a), and cost the Norwegian salmon farming industry $436 million USD

a year (Abolofia et al., 2017). For wild juvenile salmon infestation with sea lice can

lead to physiological and behavioural effects (Brauner et al., 2012; Godwin et al.,

2015; Godwin et al., 2017; Krkošek et al., 2011a) and high infestation can result in

mortality (Krkošek et al., 2007).

Due to the economic and environmental consequences of sea lice on salmon farms,

sea lice are a well studied species. Since the 1990s there has been a growing body

of literature on the effect of temperature and salinity on the development time and

survival of sea lice through their life stages (Aldrin et al., 2017; Connors et al.,

2008; Groner et al., 2014; Johnson and Albright, 1991; Samsing et al., 2016; Skern-

Mauritzen et al., 2020; Stien et al., 2005; Stige et al., 2021). Higher temperatures

lead to faster development and higher salinities lead to increased survival, though

the estimates of development time and survival vary between studies. In the last

decade there has also been a growing body of literature quantifying the dispersal
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of sea lice away from salmon farms. Some of the work is statistical, relying on sea

lice population counts on salmon farms to infer seaway distance dispersal kernels

(Aldrin et al., 2017; Aldrin et al., 2013; Kristoffersen et al., 2013) but much of the

work on dispersal comes from coupling large scale computational ocean circulation

models to particle tracking simulations in order to estimate the trajectories of sea

lice larvae subject to realistic ocean currents (Adams et al., 2012; Adams et al., 2015;

Cantrell et al., 2021; Cantrell et al., 2018; Kragesteen et al., 2018; Samsing et al.,

2017; Samsing et al., 2019; Sandvik et al., 2021; Sandvik et al., 2020; Stucchi et al.,

2011). The development of realistic larval dispersal models, coupled with well studied

maturation and survival functions, make sea lice on salmon farms an ideal system to

study in the metapopulation framework.

1.2 Key concepts and mathematical frameworks

There are several key concepts and mathematical frameworks which I use in this

thesis to answer the questions posed at the start of the introduction.

1.2.1 Next-generation matrices

One of the primary mathematical frameworks that I use throughout this thesis is

the next-generation matrix. Next-generation matrices were originally popularized in

epidemiology as a simple method to calculate the basic reproduction number, R0, in

compartmental disease models (Diekmann et al., 1990; Diekmann et al., 2010; van

den Driessche and Watmough, 2002) to determine whether an epidemic will occur in a

susceptible population. In epidemiological models, the entries of the next-generation

matrix give the number of new infections produced in compartment i from an initial

infection in compartment j over one generation, and thus the next-generation matrix

maps the current infections in each stage to the new number of infections produced

after one generation. In ecological models, the next-generation matrix can be used

to track the number of new individuals produced in a compartment, rather than

the number of new infections. This is especially useful in metapopulation models

to track the number of new individuals produced on each habitat patch from an

initial individual on a specific habitat patch. As I show in Chapter 2 and Chapter 4,

the next-generation matrix can be calculated for metapopulation models formulated

in discrete time, continuous time, and continuous time and continuous age, in each

case distilling the processes of maturation, survival, and dispersal between patches

into a single matrix. In heterogeneous aquatic populations, next-operators have been
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used to calculate both the source-sink distribution and persistence of the population

(Huang et al., 2016; Huang and Lewis, 2015; Krkošek and Lewis, 2010; Mckenzie

et al., 2012a).

1.2.2 Sources and sinks

In the metapopulation framework habitat patches are often classified into sources

or sinks based on how the subpopulations on local habitat patches are estimated to

contribute to the metapopulation (Bode et al., 2006; Crowder et al., 2000; Figueira,

2009; Figueira and Crowder, 2006; Pulliam, 1988; Runge et al., 2006; Theuerkauf

et al., 2021). This was first formalized in work by Pulliam (1988) who defined source

patches as habitat patches on which the local population has a positive growth rate

at low densities in the absence of dispersal, and sink patches as habitat patches on

which the local population has a negative growth rate. However, in marine metapop-

ulations dispersal can play a large role in the effect of a specific habitat patch on the

metapopulation due to the large scale over which larvae can disperse. Recognizing

the limitations of the definition of source and sink patches in the absence of dispersal,

both Runge et al. (2006) and Figueira and Crowder (2006) created new classifications

of source and sink patches which include both the productivity of the local population

on a habitat patch (growth rate) and dispersal away from the habitat patch. Under

these new classifications a habitat patch will be a source if an adult can produce

more than one new adult over the entire metapopulation, and patch will be a sink if

an adult cannot self-replace over the entire metapopulation. For a source patch, the

adult does not need to produce more than one adult on that same habitat patch, but

rather on all habitat patches together, and so patches can be defined as sources under

this updated classification even if they were classified as sinks according to Pulliam

(1988).

Habitat patches can also be classified into sources and sinks by measuring the con-

tribution of an individual on one habitat patch to the entire metapopulation with

the next-generation matrix. The entries of the next-generation for metapopulation

models are the number of new individuals produced in patch i from an initial individ-

ual on patch j over a generation. Therefore the column sums give the total number

of new individuals produced in the metapopulation from an initial individual on a

given patch. If one individual on a patch produces more than one individual over the

entire metapopulation, then the habitat patch can be classified as a source, otherwise

habitat patch can be classified as a sink.

6



1.2.3 Metapopulation persistence

In marine metapopulations the scale of larval dispersal away from a local habitat often

means that habitat patches that are defined as sources, due to their positive contri-

bution over the entire metapopulation, cannot persist in isolation due to insufficient

larval retention around any specific patch (White et al., 2019). Therefore preserving

a persistent marine metapopulation and the establishment of successful marine pro-

tected areas or marine reserves may require more than preserving the source patches

in a metapopulation. For a marine metapopulation to persist if no single patch can

persist in isolation there must be sufficient larval exchange between closed loops of

habitat patches such that an individual can produce more than one new individuals

over all patches in the loop over several generations (Burgess et al., 2014; Hastings

and Botsford, 2006). Sink patches may be part of this closed loop if they exchange

sufficient larvae back to the source patches so on average over several generations an

individual can self-replace over the loop. Determining if a metapopulation can persist

can be difficult as it therefore requires estimating local demographic rates on habitat

patches as well as quantifying the level of dispersal between habitat patches, but is

necessary in designing Marine Protected Areas in which the protected habitat patches

can persist even if the unprotected patches are exploited (Burgess et al., 2014; Carson

et al., 2011; Dedrick et al., 2021; Garavelli et al., 2018; Puckett and Eggleston, 2016;

Theuerkauf et al., 2021; White et al., 2010). In terms of the next-generation matrix

for metapopulation models, persistence can be evaluated using the basic reproduc-

tion number, R0, calculated as the spectral radius of the next-generation matrix. The

basic reproduction number, R0, can be interpreted as the number of new individuals

produced by one average individual, and thus if R0 > 1, the metapopulation will

persist.

1.2.4 Transient dynamics

Transient dynamics can often be very different than the long term dynamics of eco-

logical systems (Caswell and Neubert, 2005; Hastings, 2001; Hastings, 2004; Hastings

et al., 2018; Hastings et al., 2021; Hastings and Higgins, 1994; Lloyd and May, 1996;

Lutscher and Wang, 2020; Mari et al., 2019; Mari et al., 2017; Morozov et al., 2020;

Neubert et al., 2002; Neubert et al., 2004; Wang et al., 2019). These transient dy-

namics can sometimes be long-lived and difficult to differentiate from the asymptotic

dynamics over intervals in which they are measured in ecological systems, or they can

be relatively short-lived. In patch occupancy metapopulation models, the length of

transients has been shown to be determined by both local population dynamics and
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connectivity of the landscape (Ovaskainen and Hanski, 2002). In marine metapopu-

lations where dispersal is asymmetrical, a small amount of stochasticity can even lead

to continued transient growth, so that the metapopulation can persist with stochastic

perturbations even if it would go extinct without them (Aiken and Navarrete, 2011).

To investigate the transient dynamics that can occur in birth-jump metapopula-

tions we use three metrics which quantify the degree of transient growth or decay

that can occur following the perturbation of an equilibrium. Reactivity, initially in-

troduced by Neubert and Caswell (1997), is the maximum possible growth rate of

a system over all possible perturbations to an equilibrium. If the maximum growth

rate is positive, then equilibrium is said to be reactive and there is a solution that will

initially grow even if it eventually decays. Along with reactivity Neubert and Caswell

(1997) also defined the amplification envelope, which measures the how large solutions

can grow over time following initial perturbations. In contrast, attenuation, defined

by Townley and Hodgson (2008), is the minimum initial growth rate of a system over

all possible perturbations to an equilibrium. If the minimum growth rate is negative

then the equilibrium attenuates, and thus there is a solution which initially decays

even if it eventually grows. Reactivity and attenuation are most interesting when they

are different from the long-term stability of a system: when an equilibrium is reactive

but stable so that certain solutions initially grow but eventually decay, or when an

equilibrium attenuates but is unstable so that certain solutions initially decay but

eventually grow. It is in these situations which reactivity and attenuation have been

extensively studied (Caswell and Neubert, 2005; Lutscher and Wang, 2020; Mari et

al., 2017; Neubert and Caswell, 1997; Stott et al., 2011; Townley and Hodgson, 2008;

Verdy and Caswell, 2008) and on which we focus in birth-jump metapopulations in

Chapter 3 of this thesis. In the context of sea lice of salmon farms, we demonstrate

that if salmon farm populations are located along the side of a channel, then the

system can be reactive and the introduction of small amount of sea lice on the first

farm can lead to large transient growth and cause outbreaks on downstream farms.

1.2.5 First passage time

For sea lice to successfully disperse between salmon farms they must both arrive in

the vicinity of the second farm and be infectious at the time of arrival. If salmon

farms are too close together they could be swept by before they become infectious

and if they are too far away then sea lice may not survive to arrive in the vicinity of

the second farm. The cross-infection between farms thus relies heavily on the time

is takes for sea lice to disperse between farms, and to investigate this process we use
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theory from first passage time.

The first passage time of an individual or a particle is defined as the time at

which they first pass by or arrive at given location (Berg, 1983; Redner, 2001). First

passage time models are common in physics but were first introduced in an ecological

context by Berg (1983). Since their introduction they have been used to understand

the effect of the landscape on animal movement and the time required for animals

to locate prey (Kurella et al., 2015; McKenzie et al., 2009; Mckenzie et al., 2012b).

Empirically calculated first passage times have been used to measure the habitat use

of an animal by measuring the time that it takes for the animal to leave a circle of

a given radius (Fauchald and Tveraa, 2003; Le Corre et al., 2014; Webber et al.,

2020). When modeling the first passage time of a group of individuals or particles,

different individuals may first arrive at the point of interest at different times, and

so to model the first passage time of any random individual it is useful to calculate

a distribution of first passage times. From this distribution, the mean first passage

time of a random individual can be calculated, as well as the variance of first passage

times among individuals and the overall probability that the individual arrives at

any point in time. Sea lice dispersing between and successfully arriving onto salmon

farms can be modelled as a first-passage time process, and in Chapter 5 of this thesis

I build on first passage time methods to calculate the arrival time distribution of sea

lice arriving on one salmon farm after leaving another farm.

1.3 Thesis overview

Each chapter of this thesis is generally focused on marine metapopulations, and some

are specifically focused on sea lice populations on salmon farms in the Broughton

Archipelago, as detailed at the start of the introduction. Chapters 2 through 5 are

meant to be understood independently of each other, as they have either been pub-

lished, are accepted for publication, or soon to be submitted for publication. As

detailed in the preface, Chapter 2 has been published in the Bulletin of Mathematical

Biology, Chapter 3 has been accepted in the SIAM Journal on Applied Dynamical

Systems, and Chapters 4 and 5 are soon to be submitted to journals for publication.

Below I detail the contents of each chapter, including how I will answer the questions

posed at the start of the introduction.

In Chapter 2 I construct a next-generation matrix for a marine metapopulation

model using age dependent maturation and survival functions and demonstrate how

it can be used to calculate source and sink habitat patches, as well as metapopulation

persistence. I investigate the effect of environmental variables on the contribution of
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habitat patches in a simplified system of sea lice on salmon farms in a channel and

show how the next-generation matrix can provide useful biological insight into the

transient and asymptotic dynamics of the metapopulation.

In Chapter 3 I analyse the transient dynamics that can arise in marine and other

birth-jump metapopulations. I provide simple examples of metapopulations where the

transient dynamics are very different than the asymptotic dynamics and show how

the choice of norm affects the calculations of reactivity and attenuation in metapop-

ulations. I then connect reactivity and attenuation to the source-sink classification

of habitat patches and demonstrate how to meaningfully measure reactivity when

metapopulations are stage-structured, with a focus on marine metapopulations.

In Chapter 4 I demonstrate how to use the next-generation matrix to calculate

the contribution of local habitat patches to marine metapopulations and evaluate

metapopulation persistence under a variety of modeling frameworks. I calculate a spe-

cific next-generation matrix for sea lice populations on salmon farms in the Broughton

Archipelago to identify which salmon farms are the largest sources of sea lice in this

region, evaluate the effect of the current farm removals, and investigate the effect of

environmental variables on metapopulation growth.

In Chapter 5 I develop a simple, mechanistic, advection-diffusion model for the

arrival time distribution of sea lice dispersing between two different salmon farms,

building on the theory of first passage times. I use the arrival time distribution to

calculate the level of cross-infection between salmon farms, given by the probability

that a sea louse leaving one farm eventually arrives onto the other farm. I then

calculate the arrival time directly for two farms in the Broughton Archipelago using

numerical flows from a hydrodynamic model, coupled with a particle tracking model,

to fit the simple mechanistic model and find realistic parameter estimates. I then

use the parameterized mechanistic model to investigate the effect of environmental

variables and farm placement on the cross infection between farms.

In Chapter 6 I discuss the significance of the results of this thesis, their limita-

tions, their implications for management, the potential for future work, and situ-

ate the thesis within the broader literature of sea lice on salmon farms and marine

metapopulations.

10



Chapter 2

A next-generation approach to
calculate source-sink dynamics in
marine metapopulations

2.1 Introduction

Source-sink theory was developed to better understand population dynamics in con-

nected populations. Originating from work by Levins (1969) using metapopulation

models, source-sink theory attempts to explain how certain population patches in

poor environments can be sustained by population patches in more favourable envi-

ronments. Population patches in poor environments are labelled ‘sinks’, because these

populations could not be sustained in the absence of dispersal. ‘Sources’ are then pop-

ulation patches that can sustain themselves in the absence of dispersal. Levins used

metapopulation models to study source-sink dynamics, with patch occupancy as the

state variable. These models as well as other types of related models have greatly

contributed to the rich body of work on source-sink theory (Amarasekare and Nisbet,

2001; Figueira and Crowder, 2006; Hanski, 1998; Pulliam, 1988).

Critical to the theory of source-sink dynamics is the concept of dispersal. Disper-

sal is the mechanism by which source populations can rescue sink populations from

extinction. Some theoretical models have modelled dispersal implicitly, and have in-

vestigated how dispersal rates can change the source-sink dynamics of a population

(Gyllenberg and Hanski, 1997). Others have modelled dispersal explicitly (Hastings,

1982), which is important when the rates or mechanisms of dispersal are understood.

The rates and mechanisms of dispersal also differ largely between terrestrial and ma-

rine systems. In terrestrial systems, it is often adults that are capable of dispersing

between population patches. In many marine systems, adults are confined to habi-

tat patches, and dispersal occurs through the release of pelagic larvae, which spread
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through the ocean to other patches (Cowen and Sponaugle, 2009).

For marine species, modelling dispersal explicitly has led to advancements in under-

standing the degree of connectivity between different marine subpopulations (Figueira

and Crowder, 2006). While there is evidence that some larval populations are well

mixed in an ocean environment (Cowen et al., 2000), both theoretical advection-

diffusion models for larval movement between patches (Alexander and Roughgarden,

1996; Botsford et al., 1994) and computational hydrodynamic models (Cowen and

Sponaugle, 2009; Watson et al., 2012), have been successful at reproducing patterns

of connectivity observed in marine systems. While hydrodynamic models are very

useful in understanding connectivity in the specific systems for which they are pa-

rameterized, advection-diffusion models can be applied more generally to give insights

into the connectivity of subpopulations. In either framework, modelling dispersal ex-

plicitly can illuminate the level of connectivity between marine subpopulations of

several species.

Corals and coral reef fish (Cowen et al., 2006; Jones et al., 2009), barnacles (Rough-

garden et al., 1988), Dungeness crabs (Botsford et al., 1994), sea urchins (Botsford

et al., 1994), and many benthic marine species (Cowen and Sponaugle, 2009) have

relatively sedentary adult stages that are confined to habitat patches, with larvae

that disperse between patches. In fact, it is estimated that up to 70% of benthic

invertebrates have a pelagic larval phase, capable of dispersal (Mileikovsky, 1971).

Adult subpopulations for these meroplanktonic species, species with a planktonic lar-

val stage, then act as connected metapopulations which are connected through larval

dispersal (Botsford et al., 1994). For these marine metapopulations, local environ-

mental conditions determine survival and productivity of adult population patches,

and regional environmental conditions determine the degree of pelagic larval disper-

sal, as environmental conditions between patches affect the growth and survival of

larvae. Both local and regional environmental conditions will then affect the source-

sink distribution of the different marine habitat patches. Accurately modelling the

source-sink distribution of marine metapopulations is especially important when this

information is used to design conservation management actions, such as marine pro-

tected areas. When creating marine protected areas, determining the level of dispersal

between population patches, as well as the productivity of local patches is critical.

Protecting productive source patches which are capable of dispersing to sink patches

may be essential in sustaining the connected metapopulations (Planes et al., 2009).

However, for certain parasitic or invasive marine species, we may be interested in

controlling the spread of the species, rather than conserving the existing population.

One such species of importance on which we focus specifically in our application
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section is Lepeoptheirus salmonis, also known as sea lice. Sea lice are a marine ec-

toparasite that feed on the epidermal tissues of salmon (Costello, 2006). When sea

lice are present in high densities their salmonid hosts can experience additional mor-

bidity and mortality (Costello, 2006; Krkošek et al., 2011b), as well reduced foraging

ability (Godwin et al., 2017). Salmon farms in coastal ecosystems present stationary

hosts for sea lice, on which sea lice can survive year round (Rogers et al., 2013). Sea

lice are a large economic issue facing salmon farms worldwide, and have previously

cost the global aquaculture industry 6% of its product value a year (Costello, 2009b).

These farms act as population patches on which sea lice can grow until maturity.

Adult females exude egg strings and release larvae which can spread between salmon

farms via coastal currents and ocean mixing. This larval dispersal between farms can

connect sea lice populations on different farms within a specific region (Aldrin et al.,

2017). The larval dispersal also transmits sea lice between farmed salmon and wild

salmon migrating past farms (Krkošek et al., 2006a), and has been shown to lead

to population declines in Pacific pink salmon populations (Krkošek et al., 2007). To

protect both farmed and wild salmon populations from the effects of sea lice, salmon

farms now use a variety of treatment measures to reduce sea lice levels when popula-

tions outbreak (Aaen et al., 2015). However, in many regions sea lice have developed

resistance to some of the most effective chemical treatments (Aaen et al., 2015), and

even in regions without resistance sea lice continue to pose a threat to wild salmon

(Bateman et al., 2016). Due to the economic and ecological importance of controlling

sea lice on salmon farms, we use salmon farms as an example to study the source-sink

distribution of habitat patches under different environmental conditions, as well as

the effect of treatment.

To study source-sink distributions in sea lice and other meroplanktonic marine

populations on habitat patches we use a next generation approach. Next generation

operators have a rich history in epidemiology (Diekmann et al., 1990; Diekmann et

al., 2010; van den Driessche and Watmough, 2002), and are often used to determine

whether an infectious epidemic will occur in a population, by calculating the basic

reproduction number, R0. Recently, next generation operators have been used to

analyse heterogeneous aquatic populations (Huang et al., 2016; Huang and Lewis,

2015; Krkošek and Lewis, 2010; Mckenzie et al., 2012a). The next-generation oper-

ator can be used to map the current number of individuals at each life stage in a

heterogeneous environment to the new number of individuals at each life stage after

one generation. If populations exist in discrete patches, then this next generation

operator can be formulated as a next generation matrix. The next generation ap-

proach distills the complex process of dispersal between patches and stage-structured
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survival and growth on a patch into a single operator. In ecological systems, the next

generation operator has been used to determine population persistence, but has also

been used to determine the source-sink distribution of a population (Huang et al.,

2016; Krkošek and Lewis, 2010; Mckenzie et al., 2012a).

Specifically, new measures of persistence, Rδ(x), Rloc(x), Ru and Rl have been

defined using next generation operators. Rloc(x) is the number of new individuals

produced at location x in the absence of dispersal, and thus can be used to measure

the fundamental niche of a population (Huang et al., 2016). Rδ(x) is the number

of new individuals produced over the entire population from one individual starting

at spatial position x (Huang et al., 2016). It takes into account both growth and

survival at location x, and dispersal from location x. If one individual at x produces

less than one individual over the entire landscape, then Rδ(x) < 1, and the location

x is defined as a sink. If Rδ(x) > 1, then x is defined as a source. Pulliam (1988)

originally defined a source habitat as a habitat that can sustain itself in isolation, and

a sink habitat as one that cannot sustain itself in isolation, assuming low poulation

density. However, this definition can give rise to connected patches of sink habitats

that persist (Armsworth, 2002). A benefit of the Rδ(x) measure, is that it does not

allow for connected patches of sinks to persist. Lastly, Ru and Rl are then defined

as the maximum and minimum Rδ taken over all possible locations, respectively,

and are shown to be the intergenerational growth rate under the best and worst

possible initial conditions (Huang and Lewis, 2015). They can therefore be useful in

determining bounds for intergenerational growth, as well as R0.

Another method of measuring the contribution that each patch provides to the total

population is to look at the contribution of each patch to R0 (Hurford et al., 2010).

This approach uses the left and right eigenvectors associated with R0 to determine

the contribution of each patch if the population were distributed according the right

eigenvector. In the application section we build on and apply all of these persistence

measures and next generation theory to determine the source-sink distribution on the

discrete population patches in our system under different environmental conditions.

The final concept in this chapter borrowed from epidemiology is the type repro-

duction number (Heesterbeek and Roberts, 2007; Lewis et al., 2019; Roberts and

Heesterbeek, 2003). The type reproduction number is a measure of the control effort

needed when control is targeted at a certain type of individual in a heterogeneous

population. For patch models, this is often the control effort required on a certain

patch so that the total population cannot grow. Type reproduction numbers need

not only be used to determine control, they can also determine the amount of en-

hancement effort required on a patch so that the entire population will grow. We
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use the concept of type reproduction number in the application section to determine

the treatment level required for sea lice on a salmon farm so that the entire sea lice

population is controlled.

In this chapter we use a next generation approach to quantify the source-sink

distribution of marine meroplanktonic populations where subpopulations are confined

to local habitat patches and are connected via larval dispersal. First we present a

stage-structured model for a general marine population, composed of several sessile

stages which survive and reproduce on a population patch. The final adult sessile

stage gives birth to planktonic larvae, which disperse between patches. The dispersal

of larvae is modelled explicitly by approximating hydrodynamic ocean movement

using the Fokker-Plank equation. Next, we construct a next generation matrix for this

model, and prove that the spectral radius of the next generation matrix determines

whether or not the species can persist. Lastly we apply different persistence measures

to sea lice populations on salmon farms, to answer several key questions around the

source-sink dynamics of sea lice on salmon farms:

1. What is the source-sink distribution of salmon farms in a channel?

2. How does the source-sink distribution change with respect to environmental

variables?

3. Are there certain parameter regions in which local outbreaks can occur, but not

global outbreaks?

4. What is the effect of treating a single salmon farm for sea lice control on the

transient and asymptotic dynamics?

5. What is the effect of an environmental gradient on patch contributions to R0

and the source-sink distribution?

2.2 The stage-structured patch model

To study the source-sink distribution of a marine metapopulation we consider a ma-

rine species with m life stages that is spreading between n spatial patches. We are

interested in identifying which habitat patches are acting as sources and which are

acting as sinks. Our focus is populations at low densities, typically near the extinction

equilibrium. Determining the source-sink distribution can also uncover transient dy-

namics that may be substantially different than the long term asymptotic dynamics

of the population. To investigate the source-sink distribution, we construct a next
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generation matrix for our model, and we show in a later section on applications (sec-

tion 3.5) how to use the column sums of the next generation matrix to determine the

source-sink distribution.

We are interested in modelling a marine meroplanktonic species where the larval

(first) stage is the only stage capable of dispersing between population patches. The

remaining juvenile and adult stages are confined to a single population patch. We

call these stages confined to a patch sessile stages, though in reality they could be

motile but restricted to the habitat patch; such is the case for sea lice or reef fish. We

assume that the last adult stage is the only stage capable of reproduction. This is the

case for sea lice, on which we focus specifically in the applications section, but is also

the case for other marine species mentioned in the introduction, depending on how

stages are grouped. During the larval stage, we assume there is a latent period during

which the newly released larva cannot attach to a new patch. Here we define larvae

not capable of attaching to a new patch as latent, and larvae capable of attaching to a

new patch as active. Larvae are therefore first released from a patch as latent larvae,

and then mature into active larvae, at which time they are capable of attaching to

a new patch. Some marine species have larval stages that are active directly after

release (Mileikovsky, 1971), and so for these species we can ignore the latent larval

stage.

In both larval and sessile stages an individual will either die or mature to the

next stage, with the exception of the last sessile stage where individuals give birth

instead of maturing. We choose to model the number of individuals in each stage

using density equations, so that we are tracking the density of individuals in a given

stage that have spent a time units in the stage at time t. Modelling the population

using density equations allows for the probability of survival in a stage, as well as the

probability of maturing to the next stage, to depend on a, the amount of time already

spent in the stage. When modelling populations using ordinary differential equations

(ODEs), it is assumed that stage durations are always exponentially distributed (Feng

et al., 2007). However, this assumption is oversimplistic for many marine populations

including sea lice.

While modelling using density equations allows for more generality in the survival

and maturation of an individual, it is more difficult to include density dependence

in this framework. However, source and sink populations are typically categorized

in the context of low population densities, especially when calculated through a next

generation operator (Krkošek and Lewis, 2010), and thus we do not expect density

dependence to play a crucial role in the context of source-sink dynamics for the

problems considered. Our metapopulation model will therefore ignore the density
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Figure 2.1: The structure of the life cycle graph for a marine species with m stages on
two patches. The top row shows the stages associated with patch i and the bottom
row shows the stages associated with patch j. The larval stages on the left have just
left their respective patches, and the recruitment onto a patch occurs as the larval
stage n1 arrives on a patch as a sessile individual in stage n2.

dependent effects that could influence survival and maturation at both high and low

densities. This model is then most useful for investigating the impact of connectivity

among habitat patches at low population densities, in populations where habitat

patches are not resource limited, or where populations are artificially managed to

remain at low densities. It is in this context of negligible density dependence that we

ask the five questions given at the end of the introduction.

2.2.1 Derivation of the stage-structured patch population
model

In this section we derive a system of density equations that model the change in

population density on each habitat patch in our connected metapopulation. The gen-

eral structure of the model, consisting of sessile stages confined to a habitat patch

connected by larval dispersal can be seen from the life cycle graph for two subpopu-

lations (Figure 5.1). To mathematically describe our model, we first give the general

structure for the density of sessile individuals in stage k on patch i.

Let ni
k(t, a) be the density of individuals with stage-age a at time t, in stage k on

patch i. Then

ni
k(t, a) =

⎧⎪⎪⎨⎪⎪⎩
Bi

k(t− a)Si
k(a)M

i
k(a) t > a

ni
k,0(a− t)

Si
k(a)M

i
k(a)

Si
k(a−t)M i

k(a−t)
0 < t < a

ni
k,0(a) t = 0

(2.1)

for k = 2, . . . ,m− 1. Here Bi
k(t) is the rate at which individuals are entering stage k

on patch i at time t, Si
k(a) is the probability that an individual survives longer than a
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Figure 2.2: A selection of M i
k(a) functions that have been used in sea lice population

models. When a constant maturation rate is assumed, as in Krkošek et al. (2012a),
M i

k(a) is represented as an exponential function, shown in a). b) The Weibull survival
function was used by Aldrin et al. (2017) to avoid strict minimum development times,
and constant maturation rates. c) The step function was used by Revie et al. (2005),
where it is assumed that all sea lice in a stage mature at the same time. d) A
combination of a step function and exponential function was used by Stien et al.
(2005), where the step function is used to enforce a minimum development time,
after which the exponential is used to capture a constant maturation rate.

time units in a stage, given that they have not yet matured, M i
k(a) is the probability

that an individual takes longer than a time units to mature to the next stage, given

that they have survived, and ni
k,0(a) is the initial density of individuals with age a.

We assume that both Si
k(a) and M i

k(a) are non-negative and non-increasing functions,

with Si
k(0) = M i

k(0) = 1, and that Si
k(a) andM i

k(a) are L
1 functions, so

∫︁∞
0

Si
k(a)da <

∞ and
∫︁∞
0

M i
k(a)da < ∞. We also assume that survival and maturation in a given

stage are independent. A selection of M i
k(a) functions that have been used for sea

lice models are shown in Figure 2.2.

Individuals with stage age a > t must have entered the stage at time t − a, with

rate Bi
k(t− a), and then survived until stage age a with probability Si

k(a)M
i
k(a); the

density of these individuals is given by the first line of Equation 4.5. If individuals

have stage age a < t, then they were already in the stage at t = 0, with density
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ni
k,0(a− t), and the probability that they survive to stage age a, given that they were

present at stage age a − t, is Si
k(a)M

i
k(a)/S

i
k(a − t)M i

k(a − t); the density of these

individuals is given by the second line of Equation 4.5. This formula for ni
k(t, a) is

also the solution to the McKendrick-von Foerster partial differential equation (Keyfitz

and Keyfitz, 1997; McKendrick, 1925):

∂ni
k(t, a)

∂t
+

∂ni
k(t, a)

∂a
= −µi

k(a)n
i
k(t, a)

ni
k(t, 0) = Bi

k(t)

ni
k(0, a) = ni

k,0(a)

µi
k(a) = −(M i

k(a)S
i
k(a))

′

M i
k(a)S

i
k(a)

,

which can be found by integrating along the characteristic curves, as shown in Ap-

pendix 2.6.1.

The larval (first) stage, which is capable of spreading between patches, includes

both a latent and active stage. During the latent larval stage, individuals spread away

from a patch, but are not capable of attaching to another patch. They then enter the

active stage, where they are capable of attaching to another patch. To distinguish

between the two stages, let n̄i
1(t, a) be the density of latent larvae released from patch

i with stage age a, and ni
1(t, a) be the density of active larvae. Let S̄i

1(a) be the

survival function for the latent stage, and let M i
1(a) the maturation function for the

larval stage, so that M i
1(a) is the probability that a latent larva has not yet matured

into an active larva, given it has survived.

During the active stage, instead of maturing, active larvae will be removed from

this stage when they arrive on another patch. Let f ij(a) be the arrival time density

function for an active larva spreading from patch j to patch i, where
∫︁ a2
a1

f ij(a)da is

the probability that the active larva arrives on patch i between stage age a1 and a2.

Let F ij(a) =
∫︁ a

0
f ij(τ)dτ , then 1−F ij(a) is the probability that the larva has not yet

arrived on a patch i by stage age a, given that it has not died. The physical process

underlying the arrival time density function is shown in detail in Section 2.2.4, and a

typical f ij(a) is shown in Figure 2.3. In Section 2.2.4, we also show that if we define

f j(a) as the arrival time density for an active larvae leaving patch j to arrive on any

patch, then f j(a) =
∑︁n

i=1 f
ij(a), and F j(a) =

∑︁n
i=1 F

ij(a).

Let Si
1(a) be the survival function for the active larvae leaving patch i. The density
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Figure 2.3: The arrival time density, f ij(t), as a function of time, t, for larvae leaving
patch j and arriving on patch i. Movement from patch j to patch i is described in
section 2.2.4. Here patch j was located at x = 0, patch i at x = 15, with additional
parameters v = 1, D = 5, α = 0.1, ∆ = 0.8. A 1 dimensional domain was used, with
no other patches present.

of latent larvae in stage k = 1 leaving patch i is:

n̄i
1(t, a) =

⎧⎪⎨⎪⎩
B̄i

1(t− a)S̄i
1(a)M

i
1(a) t > a

n̄i
1,0(a− t)

S̄i
1(a)M

i
1(a)

S̄i
1(a−t)M i

1(a−t)
0 < t < a

n̄i
1,0(a) t = 0

,

and the density of active larvae is:

ni
1(t, a) =

⎧⎪⎨⎪⎩
Bi

1(t− a)Si
1(a)(1− F i(a)) t > a

ni
1,0(a− t)

Si
1(a)(1−F i(a))

Si
1(a−t)(1−F i(a−t))

0 < t < a

ni
1,0(a) t = 0

.

The last sessile adult stage also requires a different density equation from rest of

the sessile stages, for during this stage individuals cannot mature any longer, they

can only survive. For k = m the density of individuals on a patch i is:

ni
m(t, a) =

⎧⎪⎨⎪⎩
Bi

m(t− a)Si
m(a) t > a

ni
m,0(a− t) Si

m(a)

Sj
m(a−t)

0 < t < a

ni
m,0(a) t = 0

.

To complete our model we need to define Bi
k(t), which is the rate that individuals

enter each stage. For stages 3, . . . ,m, Bi
k(t) will be the rate at which individuals from

stage i− 1 are maturing to stage i:
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Bi
k(t) =

∫︂ ∞

0

ni
k−1(t, a)m

i
k−1(a)da,

where mi
k(a) = −M i

k
′
(a)/M i

k(a) is the instantaneous maturation rate for individuals

in stage k with stage age a. Multiplying the current density by mi
k(a) and integrating

across all stage ages gives the total density of individuals maturing at time t.

Individuals in the last stage give birth to latent larvae in the first stage. Let bi(a)

be the stage age dependent birth rate in patch i, then B̄i
1(t) is given by:

B̄i
1(t) =

∫︂ ∞

0

ni
m(t, a)b

i(a)da.

The latent larvae then mature into active larvae in the first stage with rate:

Bi
1(t) =

∫︂ ∞

0

n̄i
1(t, a)m

i
1(a)da.

Individuals enter the second stage on patch i by arriving as active larvae, which

are spreading from all patches. The instantaneous rate that an active larva, travelling

from patch j to patch i, arrives on patch i as a larva in the second stage, is f ij(a)/(1−
F j(a)). Therefore we have

Bi
2(t) =

n∑︂
j=1

∫︂ ∞

0

nij
1 (t, a)f

ij(a)/(1− F j(a))da.

Combining all of these equations, the age density of individuals is
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n̄i
1(t, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B̄i
1(t− a)S̄i

1(a)M
i
1(a)⏞ ⏟⏟ ⏞

entered at t− a, survived to a

t > a

n̄i
1,0(a− t)

S̄i
1(a)M

i
1(a)

S̄i
1(a− t)M i

1(a− t)⏞ ⏟⏟ ⏞
present at a-t, survived to a

0 < t < a

n̄i
1,0(a)⏞ ⏟⏟ ⏞

initial density

t = 0

k = 1, (2.2)

ni
1(t, a) =

⎧⎪⎪⎨⎪⎪⎩
Bi

1(t− a)Si
1(a)(1− F i(a)) t > a

ni
1,0(a− t)

Sij
1 (a)(1−F i(a))

Si
1(a−t)(1−F i(a−t))

0 < t < a

ni
1,0(a) t = 0

k = 1,

ni
k(t, a) =

⎧⎪⎪⎨⎪⎪⎩
Bi

k(t− a)Si
k(a)M

i
k(a) t > a

ni
k,0(a− t)

Si
k(a)M

i
k(a)

Si
k(a−t)M i

k(a−t)
0 < t < a

ni
k,0(a) t = 0

k = 2, . . . ,m− 1,

ni
m(t, a) =

⎧⎪⎨⎪⎩
Bi

m(t− a)Si
m(a) t > a

ni
m,0(a− t) Si

m(a)
Si
m(a−t)

0 < t < a

ni
m,0(a) t = 0

k = m,

B̄i
1(t) =

∫︂ ∞

0

ni
m(t, a)b

i(a)da,

Bi
1(t) =

∫︂ ∞

0

n̄i
1(t, a)m

i
1(a)da,

Bi
2(t) =

n∑︂
j=1

∫︂ ∞

0

nj
1(t, a)f

ij(a)/(1− F j(a))da,

Bi
k(t) =

∫︁∞
0

ni
k−1(t, a)m

i
k−1(a)da k = 3, . . . ,m,

These equations can also be expressed in an integral form, by substituting the

equations for ni
k(t, a) into Bi

k(t), and tracking the total number of parasites in each

patch at each stage, N i
k(t) =

∫︁∞
0

ni
k(t, a)da. System 4.16 then becomes:
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N̄ i
1(t) =

∫︂ t

0

B̄i
1(t− a)S̄i

1(a)M
i
1(a)da⏞ ⏟⏟ ⏞

entered at t− a, survived to a

+

∫︂ ∞

t

n̄i
1,0(a− t)

S̄i
1(a)M

i
1(a)

S̄i
1(a− t)M i

1(a− t)
da⏞ ⏟⏟ ⏞

present at a-t, survived to a

N i
1(t) =

∫︂ t

0

Bi
1(t− a)Si

1(a)(1− F i(a))da

+

∫︂ ∞

t

ni
1,0(a− t)

Si
1(a)(1− F i(a))

Si
1(a− t)(1− F i(a− t))

da

N i
k(t) =

∫︂ ∞

0

Bi
k(t− a)Si

k(a)M
i
k(a)da

+

∫︂ ∞

t

ni
k,0(a− t)

Si
k(a)M

i
k(a)

Si
k(a− t)M i

k(a− t)
da, k = 2, . . . ,m− 1

N i
m(t) =

∫︂ t

0

Bi
m(t− a)Si

m(a)da+

∫︂ ∞

t

ni
m,0(a− t)

Si
m(a)

Si
m(a− t)

da

B̄i
1(t) =

∫︂ t

0

Bi
m(t− a)Si

m(a)b
i(a)da+

∫︂ ∞

t

ni
m,0(a− t)

Si
m(a)b

i(a)

Si
m(a− t)

da (2.3)

Bi
1(t) =

∫︂ t

0

B̄i
1(t− a)S̄i

1M
i
1(a)m

i
1(a)da

+

∫︂ ∞

t

n̄i
1,0(a− t)

S̄i
1(a)M

i
1(a)m

i
1(a)

S̄i
1(a− t)M i

1(a− t)
da

Bi
2(t) =

n∑︂
j=1

∫︂ t

0

Bj
1(t− a)Sj

1f
ij(a)da

+
n∑︂

j=1

∫︂ ∞

t

nij
1,0(a− t)

Sj
1(a)f

ij(a)

Sj
1(a− t)(1− F j(a− t))

da

Bi
k(t) =

∫︂ t

0

Bi
k−1(t− a)Si

k−1(a)M
i
k−1(a)m

i
k−1(a)da

+

∫︂ ∞

t

ni
k−1,0(a− t)

Si
k−1(a)M

i
k−1(a)m

i
k−1(a)

Si
k−1(a− t)M i

k−1(a− t)
da, k = 3, . . . ,m

Here we have constructed an stage-structured model for a marine population with

several sessile stages on local habitat patches connected by larval dispersal. We have

formulated our model as both a system of age density equations (system 4.16), which

we find most intuitive, as well as a system of integral equations (system 2.3).

2.2.2 Reduction to a system of ODEs

It is also possible to reduce Equation 4.16 to a system of ODEs under some strong

assumptions. We do not believe that these assumptions are sufficiently realistic for

benthic marine species with dispersing larvae. However, we include this reduction here
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as an illustrative example of how Equation 4.16 can be connected to the more familiar

ODE model structure. We start by assuming that time till maturation and time to

death are both exponential waiting times. We also need to make this assumption for

the arrival time. This arrival time distribution is no longer be directly solved through

the more realistic advection diffusion equation (2.7), given in section 2.2.4 and shown

in Figure 2.3. However, the new exponential rate could be an approximation by using

the average arrival time generated by the advection diffusion equation.

Here we will use the lower case letter as the exponential rate associated with the

survival or maturation function. For example, M i
k(a) = e−mi

ka, and Si
k(a) = e−sika.

For the arrival time, we now assume that there is a constant rate of arrival of larvae,

f ij, from a source patch j to a receiving patch i. We can then formulate f j(a), the

distribution of arrival times for a larva leaving patch j to arrive on any other patch,

as the exponential function f j(a) =
∑︁n

i=1 f
ije−

∑︁n
i=1 f

ija. By formulating the arrival

times using constant rates, we lose the spatial structure of the system, so that patches

are now only distinguished by their arrival time rates, f ij.

To reduce the system of density equations to a system of ODEs, it is easiest to

use the McKendrick-von Foerster formulation of the model (Appendix 2.6.1). We

simply integrate the different versions of Equation 2.14 of equations over all ages, so

N i
k(t) =

∫︁∞
0

ni
k(t, a)da. The resulting model is as follows:

d

dt
N̄ i

1(t) = biN i
m(t)− (s̄j1 +mj

1)N̄
j
1 (t) k = 1

d

dt
N j

1 (t) = mj
1N̄

j
1 − (sj1 +

n∑︂
i=1

f ij)N j
1 (t) k = 1

d

dt
N i

2(t) =
n∑︂

j=1

f ijN j
1 (t)− (si2 +mi

2)N
i
2(t) k = 2 (2.4)

d

dt
N i

k(t) = mi
k−1N

i
k−1(t)− (sik +mi

k)N
i
k(t) k = 3, . . . ,m− 1

d

dt
N i

m(t) = mi
m−1N

i
m−1(t)− simN

i
m(t) k = m

Here we have also assumed the birth rate of latent larvae on each patch is constant.

The reduction of our full system of equations (4.16) to a system of ODEs results in

the loss of the age structure present in our original model as well as stronger model

assumptions. However, formulating the model as a system of ODEs allows for a more

familiar comparison between our model and other population models.
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2.2.3 The next generation matrix for the patch model

In this section we define the next generation matrix for our model. In the application

section we show how this next generation matrix can be used to identify source and

sink habitat patches, using the column sums of this matrix. We also show how the

source-sink distribution can be used to determine transient dynamics in our model.

Next generation matrices are often used to describe new infections in compartmental

disease models (Diekmann et al., 1990; Diekmann et al., 2010; van den Driessche and

Watmough, 2002), though here we use the next generation matrix to describe the

growth and spread of marine organisms between patches. In the classic formulation

of a next generation matrix, the (i, j) entry describes the number of new infections in

the ith compartment produced by one new infection in the jth compartment. In our

model, since we are tracking individuals and not infections, we need to define “new”

individuals. We choose to define “new” individuals as those first entering a patch at

stage k = 2. We choose k = 2 as the first stage because this is the first sessile stage

where individuals arrive on a patch and can be counted.

In our model we have n patches and m stages so in total we have n×m compart-

ments. However, the only new individuals are produced in stage k = 2. We could

create a next generation matrix of size nm× nm, but it would only have n non-zero

rows, as there is only one stage on every patch where new individuals are produced.

This next generation matrix is referred to the next generation matrix with large do-

main, KL, by Diekmann et al. (2010). Instead we can group all stages together for a

single patch, so that the (i, j) entries of our next generation matrix are the number of

new individuals (stage k = 2) produced on patch i, from one new individual on patch

j. This is referred to as the next generation matrix K by Diekmann et al. (2010),

as we have removed all compartments which cannot have “new” individuals, and are

only tracking the production of “new” individuals in compartments that start with

“new” individuals. We will elaborate on the details of this process in section 2.3.1.

For our system (4.16), the (i, j) entry of the next generation matrix, K is

K(i, j) =
m−1∏︂
k=2

(︃∫︂ ∞

0

Sj
2(t)M

j
2 (t)m

j
2(t)dt

)︃(︃∫︂ ∞

0

Sj
m(t)b

j(t)dt

)︃
(︃∫︂ ∞

0

S̄j
1(t)M

j
1 (t)m

j
1(t)dt

)︃(︃∫︂ ∞

0

Sj
1(t)f

ij(t)dt

)︃
. (2.5)

In order to understand which patches may be acting as sources or sinks, we can look

at the column sums of the different spatial patches. The sum of column j is the

total number of new individuals (stage k = 2) produced on all patches from one

new individual on patch j. If the sum of column j is larger than one, then each
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new individual on patch j is producing more than one new individual on all patches.

Therefore patch j is a source. Similarly if the sum of column j is less than one then

patch j is a sink. We will expand on and formalize this quantification of source-sink

dynamics in section 3.5.

The general structure of our model and next generation matrix allows it to be

readily applied to a number of systems. However, in order to examine the effect of

changing biological environments on the next generation matrix, it is useful to look

at specific survival and maturation functions, Sj
k(t) and M j

k(t), for each stage k, and

on each patch j. Suppose we let Sj
k(t) be the survival function associated with the

exponential distribution: Sj
k(t) = e−µj

kt. This means that in each stage and on each

patch the instantaneous death rate, µj
k is constant, and does not depend on the time

spent in the stage. This is a common biological assumption, as mortality is often

governed primarily the external environment and is often independent of age. For sea

lice, this is assumed for most population models (Adams et al., 2015; Aldrin et al.,

2017; Krkošek et al., 2006a; Revie et al., 2005).

Next, we consider a simplifying case where the maturation probability density

function (p.d.f.), −M j
k(t)

′, is the gamma distribution. There are several reasons for

this choice. First, the gamma distribution can be unimodal, and therefore biologi-

cally represents a situation in which the highest probability of maturing to the next

stage is at some intermediate age. This is the case for sea lice, which have a min-

imum required development time before they can mature through a stage (Johnson

and Albright, 1991). Second, the gamma distribution can reduce to the exponential

distribution, and, in a limiting case, to the delta distribution. Exponential and delta

maturation p.d.f.s have both been used to model sea lice (Krkošek et al., 2012a; Revie

et al., 2005), and their maturation functionsM j
k(t) are shown in Figure 2.2. When the

gamma distribution is reduced to an exponential distribution, our system of density

equations (4.16) can be reduced to an ODE system (section 2.2.2). When the gamma

distribution is reduced to a Dirac delta distribution, our system could be formulated

as a system of discrete delay differential equations. The gamma distribution is also

similar to the Weibull distribution, which has been used to model sea lice (Aldrin

et al., 2017), as both distributions are continuous, unimodal, and can be reduced to

exponential distributions. Lastly, the integration of the gamma distribution multi-

plied by the exponential distribution is simple to evaluate analytically, and thus our

expression for the next generation matrix does not become overly complicated. If

we use βj
k as the rate parameter and ajk as the shape parameter then the maturation
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function becomes

− d

dt
M j

k(t) = M j
k(t)m

j
k(t) =

βj
k

ajkxajk−1e−βj
kx

Γ(ajk)
.

The last function to define explicitly is the age dependant birth rate, b(t). Here we

assume that the birth rate is constant, b(t) = b, so larvae are produced at a constant

rate as soon as an individual enters their final stage of maturation. This is a biolog-

ically reasonable assumption, and again simplifies our calculations analytically. Our

arrival time function, f ij(t) is derived in section 2.2.4, and thus cannot be assumed

to have any particular form.

Under all the stated assumptions, the next generation matrix simplifies to:

K(i, j) =
m−1∏︂
k=2

⎛⎝ βj
k

ajk

(βj
k + µj

k)
ajk

⎞⎠(︃ b

µj
m

)︃⎛⎝ βj
1

aj1

(βj
1 + µ̄j

1)
aj1

⎞⎠(︃∫︂ ∞

0

e−µj
1tf ij(t)dt

)︃
. (2.6)

Here we have shown that the next generation matrix distills the essential quanti-

ties of larval dispersal between population patches as well as growth and survival on

local patches into a single operator. From the next generation matrix we can calcu-

late the source-sink distribution of our connected metapopulation. By approximating

the maturation functions as gamma distributions and survival functions as exponen-

tial functions the form of the matrix can be simplified, while maintaining sufficient

generality to approximate several realistic biological systems.

2.2.4 The arrival time of larvae moving between patches

In this section we formally define and demonstrate the calculation of the arrival time

density, f ij(t). In previous sections we have focused on stages that grow on distinct

patches and now we turn our attention to the first, or larval stage, which is spreading

between patches. We allow the larval stage to have a latent period, where the larvae

cannot arrive at the second patch even if it passes by. The larvae then mature into

an active larvae, and during the active phase may arrive on a new patch. We include

this latent period to allow our model to be applicable to various marine organisms

where the first larval stage is not capable of attaching to a habitat patch, though the

latency period can also easily be removed.

To formally define the arrival time distribution, let T be a random variable which

describes the time from maturation that an active larva arrives on any patch, after

it is released as a latent larva from patch j. If the larva does not arrive on a patch

27



then we say T is infinite. Then
∫︁ t2
t1

f j(t)dt = Pr(t1 < T < t2), so that f j(t) is

the distribution of arrival times for larvae leaving patch j. We will also show that

f j(t) =
∑︁n

i=1 f
ij(t), where f ij is the distribution of arrival times for an active larvae

from patch j arriving on patch i. In order to determine f j(t) and f ij(t), we will first

solve an equation governing the movement of the larvae between patches, for both

the latent and active larval stages.

We are interested in approximating the movement of larvae between habitat patches

in a marine environment, so we approximate movement using the Fokker-Plank equa-

tion, or advection diffusion equation in the case of constant diffusion. This equation

has previously been used to model the dispersal of sea lice larvae away from salmon

farms (Krkošek et al., 2006a), as well as barnacle and crab larvae along the California

coast (Alexander and Roughgarden, 1996; Botsford et al., 1994). The diffusion term

represents the effect of tides and ocean mixing, and the advection term represents

any flow due to constant currents, potentially generated by river outflow, or other

sources.

To allow for local hydrodynamic movement in a protected patch, we divide the

total larvae produced at a patch into a fraction r that remain locally around the

patch, and the remaining fraction q that enter the larger ocean environment and are

then influenced by advection and diffusion. The fraction q that enter the channel are

still able to rearrive on their natal patch.

To determine movement between patches and subsequently arrival on habitat

patches in our model, we use the Fokker-Plank equation in a one dimensional domain.

We use a one dimensional domain because coastlines can typically be approximated

by a one-dimensional domain, and in the application section we apply our model to

salmon farms located in a channel. However, the advection diffusion equation could

easily be structured in its two dimensional form, if the model was to be used to analyse

marine species where patches did not simply lie in a channel or along a coastline.

Let p̄j(x, t) be the probability density function for the location of the latent larvae

leaving patch j into the channel environment as a function of time. The larvae are

released from patch j and then we assume the movement of the larvae between patches

is governed by the Fokker-Plank equation:

∂

∂t
p̄j(x, t) = − ∂

∂x

(︁
v(x)p̄j(x, t)

)︁
+

∂2

∂x2

(︁
D(x)p̄j(x, t)

)︁
(2.7)

p̄j(x, 0) = qh(x− xj)/∆,

where ∆ is the size of the patch, and h(x) = 1 when x ∈ [−∆/2,∆/2] and h(x) = 0

otherwise. D(x) is the diffusion coefficient and v(x) is the advection coefficient of the
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environment.

Latent larvae then mature into active larvae. In section 2.2 we defined M j
1 (a) as

the probability that a latent larvae released from patch j has not yet matured into

an active larva, and mj
1(a) as the instantaneous rate of maturation. Using these two

previously defined functions, M j
1 (a)m

j
1(a) is therefore the probability density function

associated with maturation. If T̄ is the time it takes for the latent larva to mature into

an active larva after it is released, then
∫︁ t2
t1

M j
1 (t)m

j
1(t)dt = Pr(t1 < T̄ < t2). Once

larvae mature into active larvae they continue to move according to the Fokker-Plank

equation, but now they arrive on patch i with rate αi as they pass by. Let pj(x, t)

be the probability density function of the active larvae travelling from patch j, then

pj(x, t) is given by:

∂

∂t
pj(x, t) =− ∂

∂x

(︁
v(x)pj(x, t)

)︁
+

∂2

∂x2

(︁
D(x)pj(x, t)

)︁
−

n∑︂
i=1

αih(x− xi)p
j(x, t)

(2.8)

pj(x, 0) =

∫︂ ∞

0

M j
1 (τ)m

j
1(τ)p̄

j(x, t)dτ.

Local larvae that remain at a patch also mature according to the same maturation

function. As they do not spread between patches, the density of active larvae that

are in local water column around patch j, P j, can be described by the ordinary

differential equation:

d

dt
P j(t) = −αr

jP
j(t) (2.9)

P (0) = r

∫︂ ∞

0

M j
1 (τ)m

j
1(τ)dτ,

where αr
j , is the rate of arrival of the local larvae. We allow αr

j to differ from αj, the

rate of arrival of larvae moving between patches.

We now consider the arrival time of an active larva. Let T be the time of arrival

of the active larva on any patch, starting from the time it became active. Let the

probability that the larva has not yet arrived on a patch at time t, Pr(T > t) be

given by A(t). Equation 2.8 also describes the density of parasites that have not

yet arrived on any patch, and so A(t) =
∫︁∞
−∞ pj(x, t)dx + P j(t). To determine the

relationship between f j(t) and A(t), we can see that
∫︁ t

0
f j(τ)dτ = Pr(T < t), and

A(t) = Pr(T > t), thus
∫︁ t

0
f j(τ)dτ = 1− A(t), or alternatively f j(t) = −dA(t)/dt.

Integrating equation 2.8 over all space, adding equation 2.9, and substituting

f j(t) = −dA/dt we find

f j(t) =
n∑︂

i=1

αi

∫︂ xi+∆/2

xi−∆/2

pj(x, t)dx+ αr
jP

j(t),
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as we require limx→∞ pj(x, t) = 0 and limx→∞
∂
∂x
pj(x, t) = 0 for Equation 2.8 to be

unique and well defined. We can then split the distribution for arrival time onto any

patch, f j(t), into a sum of the arrival time distributions for each patch i. Let

f ij(t) = αi

∫︂ xi+∆/2

xi−∆/2

pj(x, t)dx

be the distribution of arrival time for an active larvae produced from patch j arriving

on patch i, for i ̸= j. For i = j,

f jj(t) = αj

∫︂ xj+∆/2

xj−∆/2

pj(x, t)dx+ αj
rP

j(t).

Then we can rewrite f j(t) as

f j(t) =
n∑︂

i=1

f ij(t).

Therefore, if we can solve for pj(x, t), we can solve for f j(t) and f ij(t). In the appli-

cation section we solve for the arrival time numerically. The approximate analytical

solution of f ij(t) is the focus of Chapter 5.

Calculating the arrival time density function for larvae leaving one patch and arriv-

ing on another allows us to characterize the larval movement between a transmitting

and receiving patch using a single function. This arrival time density function is in-

corporated into our full model to characterize larval dispersal between patches. In this

section we have presented the derivation for our full model (system 4.16) and demon-

strated how larval dispersal between patches and growth and survival on patches

determine metapopulation dynamics. We have also constructed a next generation

matrix for our model, which distils the essential information required to determine

the source-sink distribution of our system.

2.3 Mathematical analysis of the model and next

generation matrix

In this section we present the details of the construction of the next generation matrix,

as well as proofs detailing the relationship between the stability of our model and the

spectral radius of the next generation matrix.

2.3.1 Constructing the next generation matrix

The next generation matrix extracts the essential information of our model into a

single operator. The elements of the matrix quantify the effect of an individual
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from one patch on other patches, and the column sums identify source and sink

patches. Here we present the details of the construction of the next generation matrix,

beginning with one patch and then abstracting to multiple patches.

The next general matrix for a one patch system

To construct the next generation matrix for a single patch we need to calculate the

number of new individuals produced on patch i from one initial individual on patch

i in each stage. To calculate the number of new (stage k = 2) individuals produced

on patch i by an initial individual at t = 0 starting on that same patch, we calculate

the rate of production of new individuals at time t. We call this rate γ(t). We then

integrate γ(t) over all t to calculate the total number of individuals produced.

For one initial individual in stage k = 2 to be producing new offspring, it must

survive and mature through each stage and produce larvae which spread back to

the patch. Let rk be the time that the individual spends in stage k. For stages

k = 2, . . . ,m − 1 the probability that the individual survives to rk in stage k is

Si
k(rk)M

i
k(rk) and the rate at which they mature to the next stage is mi

k(rk). For

stage k = m the probability that they survive to rm is Si
m(rm) and the rate at which

they are producing larvae is bi(rm). The probability that latent larvae survive to r̄1

is S̄i
1(r̄1)M

i
1(r̄1) and the rate at which they mature into active larvae is mi

1(r̄1). The

probability that active larvae (k = 1) survive to r1 is Si
1(r1)(1− F i(r1)) and the rate

at which they attach as k = 2 individuals is f ii(r1)/(1− F i(r1)).

To calculate the rate of production at time t, γ(t), we multiply the survival prob-

abilities and maturation rates in each of the stages and integrate over all possible rk.

At time t, we must have 0 ≤ r̄1+
∑︁m

1 rk ≤ t, so we can rewrite rm = t−
∑︁m−1

1 rk− r̄1

before integrating over all other possible rk. We calculate

γ(t) =

∫︂ t

0

∫︂ t−rm−1

0

∫︂ t−rm−1−rm−2

0

· · ·
∫︂ t−

∑︁m−1
2 rk

0

Si
2(r2)M

i
2(r2)m

i
2(r2) . . .

Si
m−1(rm−1)M

i
m−1(rm−1)m

i
m−1(rm−1)S

i
m(t−

m−1∑︂
1

rk − r̄1)b
i(t−

m−1∑︂
1

rk − r̄1)×

S̄i
1(r̄1)M

i
1(r̄1)m

i
1(r̄1)S

i
1(r1)f

ii(r1)dr̄1dr1 . . . drm−1.

Then, integrating γ(t) over all t and using the convolution theorem,∫︂ ∞

0

f(t) ∗ g(t)dt =
∫︂ ∞

0

f(t)dt

∫︂ ∞

0

g(t)dt

we calculate the number of new individuals on patch i produced from an initial

individual in stage k = 2 on patch i to be:
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(︄
m−1∏︂
k=2

∫︂ ∞

0

Si
k(t)M

i
k(t)m

i
k(t)

)︄(︃∫︂ ∞

0

Si
m(t)b

i(t)dt

)︃
(︃∫︂ ∞

0

S̄i
1(t)M

i
1(t)m

i
1(t)

)︃(︃∫︂ ∞

0

Si
1(t)f

ii(t)dt

)︃
.

To calculate the next generation matrix with large domain, KL, (Diekmann et al.,

2010), we can also calculate the number of new individuals (k = 2) produced on

patch i, from initial individuals in the other stages. Repeating the process described

above, we find that the number of new individuals produced on patch i from an initial

individual in stage k = l, for 2 ≤ l ≤ m, is

(︄
m−1∏︂
k=l

∫︂ ∞

0

Si
k(t)M

i
k(t)m

i
k(t)

)︄(︃∫︂ ∞

0

Si
m(t)b

i(t)dt

)︃
(︃∫︂ ∞

0

S̄i
1(t)M

i
1(t)m

i
1(t)

)︃(︃∫︂ ∞

0

Si
1(t)f

ii(t)dt

)︃
.

We can repeat the same process for k = 1 (where now we group the latent and

active larval stages for simplicity). The (i, j) entries of the next generation matrix

with large domain, KL, are the number of new (stage k = 2) individuals in stage i

produced from an initial individual in stage j. Therefore

KL(2, l) =

(︄
m−1∏︂
k=l

∫︂ ∞

0

Si
k(t)M

i
k(t)m

i
k(t)

)︄(︃∫︂ ∞

0

Si
m(t)b

i(t)dt

)︃
(︃∫︂ ∞

0

S̄i
1(t)M

i
1(t)m

i
1(t)

)︃(︃∫︂ ∞

0

Si
1(t)f

ii(t)dt

)︃
2 ≤ l ≤ m− 1,

KL(2,m) =

(︃∫︂ ∞

0

Si
m(t)b

i(t)dt

)︃(︃∫︂ ∞

0

S̄i
1(t)M

i
1(t)m

i
1(t)

)︃
(︃∫︂ ∞

0

Si
1(t)f

ii(t)dt

)︃
,

KL(2, 1) =

(︃∫︂ ∞

0

S̄i
1(t)M

i
1(t)m

i
1(t)

)︃(︃∫︂ ∞

0

Si
1(t)f

ii(t)dt

)︃
,

KL(i, j) = 0 i ̸= 2.

The next generation matrix with large domain, KL, can then be reduced to the

next generation matrix, K, through the process described by Diekmann et al. (2010).

Essentially we multiply KL from the left and right by matrices which isolate the

relevant entries where new individuals are produced from other new individuals. In
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this case, let E be an n × 1 matrix with a 1 in row 2, and zeros elsewhere. Then

K = ETKLE. The entries of the next generation matrix are the number of new

individuals (k = 2) in stage i produced by an individual in stage j, though here we

only include stages where new individuals can be produced. In our one patch example,

because new individuals can only be produced in stage k = 2, our next generation

matrix, K, for one patch is simply the scalar:

K =

(︄
m−1∏︂
k=2

∫︂ ∞

0

Si
k(t)M

i
k(t)m

i
k(t)

)︄(︃∫︂ ∞

0

Si
m(t)b

i(t)dt

)︃
(︃∫︂ ∞

0

S̄i
1(t)M

i
1(t)m

i
1(t)

)︃(︃∫︂ ∞

0

Si
1(t)f

ii(t)dt

)︃
.

While the next generation matrix, K, and next generation matrix with large domain,

KL, have different sizes and different entries, their spectral radii are equal (Diekmann

et al., 2010).

The next generation matrix for the multiple patch system

Calculating the remaining entries of the next generation matrix, K, for the multi-

ple patch model, using the same process as in the previous subsection, is relatively

straightforward. In this case we restrict ourselves to calculating K, and no longer KL,

though KL can also easily be calculated in the same way as in the previous section.

We want to calculate the number of new individuals produced on patch i from an

initial individual on patch j. In order for an individual to produce new individuals

on patch i, it must first survive and mature on patch j, and then produce larvae that

successfully travel to patch i. The majority of K(i, j) will be the same as K(j, j), as

the individual must mature on patch j before producing larvae. Only now, instead of

the larvae travelling back to j, they must successfully spread to i. Therefore the last

multiplication factor which will now be
∫︁∞
0

Sj
1(t)f

ij(t)dt, instead of
∫︁∞
0

Sj
1(t)f

jj(t)dt.

With this replacement we can see that we have the same formula for K(i, j) as given

by (2.5). In the following sections we will also make the assumption that K is irre-

ducible. Physically, this means that larvae have a positive probability of arriving on

any patch when leaving from a given patch. Recall that f ij(t) = αi

∫︁∞
−∞ pj(x, t)dx,

where pj(x, t) is the solution to the advection diffusion equation from section 2.2.4.

The solution to the advection diffusion equation is positive everywhere, so p(x, t) > 0,

and thus f ij(t) > 0 for all (i, j).

Here we have presented the construction of the next generation matrix for our stage-

structured model on one patch as well as on multiple patches. We have explicitly
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shown how to reduce the next generation matrix with large domain to the next

generation matrix on one patch, and we have demonstrated the process for multiple

patches.

2.3.2 Model stability analysis

In this section we will demonstrate that R0 = ρ(K) determines the stability of the

zero equilibrium for the system (4.16).

Calculating the model equilibrium

First, we show that the zero equilibrium is the only equilibrium in our system. It

should be noted here that system (4.16) is the solution to a linear system of age

structured PDEs, and so we expect the zero equilibrium to be the only equilibrium.

However, we include the details for completeness. Assume the system is at equilib-

rium, so that ni
k(t, a) = ni

k(a)
∗, and Bi

k(t) = Bi
k
∗
. Now we solve for Bi

1
∗
using system

(4.5):
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Bi
1

∗
=

∫︂ ∞

0

n̄1(a)
∗mi

1(a)da

=

∫︂ ∞

0

B̄i
1

∗
S̄i
1(a)M

i
1(a)m

i
1(a)da

=

∫︂ ∞

0

ni
m(a)

∗bi(a)da

∫︂ ∞

0

S̄i
1(a)M

i
1(a)m

i
1(a)da

=

∫︂ ∞

0

Bi
m

∗
Si
m(a)b

i(a)da

∫︂ ∞

0

S̄i
1(a)M

i
1(a)m

i
1(a)da

=

∫︂ ∞

0

ni
m−1(a)

∗mi
m−1(a)da

∫︂ ∞

0

Si
m(a)b

i(a)da

∫︂ ∞

0

S̄i
1(a)M

i
1(a)m

i
1(a)da

=

∫︂ ∞

0

Bi
m−1

∗
Si
m−1(a)M

i
m−1(a)m

i
m−1(a)da

∫︂ ∞

0

Si
m(a)b

i(a)da∫︂ ∞

0

S̄i
1(a)M

i
1(a)m

i
1(a)da

= Bi
2

∗
(︄

m−1∏︂
k=2

∫︂ ∞

0

Si
k(a)M

i
k(a)m

i
k(a)da

)︄(︃∫︂ ∞

0

Si
m(a)b

i(a)da

)︃
(︃∫︂ ∞

0

S̄i
1(a)M

i
1(a)m

i
1(a)da

)︃
=

n∑︂
j=1

∫︂ ∞

0

nj
1(a)

∗f ij(a)/(1− F j(a))da

(︄
m−1∏︂
k=2

∫︂ ∞

0

Si
k(a)M

i
k(a)m

i
k(a)da

)︄
(︃∫︂ ∞

0

Si
m(a)b

i(a)da

)︃(︃∫︂ ∞

0

S̄i
1(a)M

i
1(a)m

i
1(a)da

)︃
=

n∑︂
j=1

Bj
1

∗
(︃∫︂ ∞

0

Sj
1(a)f

ij(a)da

)︃(︄m−1∏︂
k=2

∫︂ ∞

0

Si
k(a)M

i
k(a)m

i
k(a)da

)︄
(︃∫︂ ∞

0

Si
m(a)b

i(a)da

)︃(︃∫︂ ∞

0

S̄i
1(a)M

i
1(a)m

i
1(a)da

)︃
.

Let us define a matrix S entry-wise such that

S(i, j) =

(︃∫︂ ∞

0

Sj
1(a)f

ij(a)da

)︃(︄m−1∏︂
k=2

∫︂ ∞

0

Si
k(a)M

i
k(a)m

i
k(a)da

)︄
(︃∫︂ ∞

0

Si
m(a)b

i(a)da

)︃(︃∫︂ ∞

0

S̄i
1(a)M

i
1(a)m

i
1(a)da

)︃
.

Then we can write the equations for Bi
1
∗
for each farm i in matrix notation as

B1
∗ = SB1

∗.

This equation can only have a solution if det(S−I) = 0. However, as we have general

functions f ij(a), Si
k(a), and M i

k(a), we therefore require B∗
1 = 0, from which we can
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recursively deduce that B∗
k = 0 for all k. Therefore the zero equilibrium is the only

equilibrium for this system.

Determining the stability of the equilibrium using R0

Next we prove that the spectral radius of the next generation operator, R0 = ρ(K),

determines the stability of the zero equilibrium of the full system (4.16). Again the

result would be generally expected, based on the theory in Diekmann et al. (2010),

but we include the details here for completeness.

Theorem 2.1. Assume the next generation matrix, K, is irreducible. Then

1. if R0 < 1 then the zero equilibrium of system 4.16 is globally stable.

2. if R0 > 1 then the zero equilibrium of system 4.16 is unstable.

Proof. To analyse the stability of the zero equilibrium we consider small perturbations

to the equilibrium and examine their growth or decay. At the equilibrium we have

Bi
k(t) = 0 for all k, i. Consider a small perturbation of the form Bi

k(t) = B̄i
ke

λt to

each of the Bi
k(t). Similar to the calculation of the equilibrium, we will construct a

recursive equation for B̄i
1 and then reformulate as a matrix equation for all patches.

Using the equation for Bi
k(t) in system (4.16) we find
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B̄i
1 = e−λtBi

1(t)

= e−λt

∫︂ ∞

0

n̄i
1(t, a)m

i
1(a)da

= e−λt

∫︂ ∞

0

B̄i
1(t− a)S̄i

1(a)M
i
1(a)m

i
1(a)da

= e−λt

∫︂ ∞

0

¯̄Bi
1e

λ(t−a)S̄i
1(a)M

i
1(a)m

i
1(a)da

= ¯̄Bi
1

∫︂ ∞

0

e−λaS̄i
1(a)M

i
1(a)m

i
1(a)da

= e−λtB̄i
1(t)

∫︂ ∞

0

e−λaS̄i
1(a)M

i
1(a)m

i
1(a)da

= e−λt

∫︂ ∞

0

ni
m(t, a)b

i(a)da

∫︂ ∞

0

e−λaS̄i
1(a)M

i
1(a)m

i
1(a)da

= e−λt

∫︂ ∞

0

Bi
m(t− a)Si

m(a)b
i(a)da

∫︂ ∞

0

e−λaS̄i
1(a)M

i
1(a)m

i
1(a)da

= e−λt

∫︂ ∞

0

B̄i
me

λ(t−a)Si
m(a)b

i(a)da

∫︂ ∞

0

e−λaS̄i
1(a)M

i
1(a)m

i
1(a)da

= B̄i
m

∫︂ ∞

0

e−λaSi
m(a)b

i(a)da

∫︂ ∞

0

e−λaS̄i
1(a)M

i
1(a)m

i
1(a)da

= B̄i
2

(︄
m−1∏︂
k=2

∫︂ ∞

0

e−λaSi
k(a)M

i
k(a)m

i
k(a)da

)︄
(︃∫︂ ∞

0

e−λaSi
m(a)b

i(a)da

)︃(︃∫︂ ∞

0

e−λaS̄i
1(a)M

i
1(a)m

i
1(a)da

)︃
=

n∑︂
j=1

B̄j
1

(︃∫︂ ∞

0

e−λaSj
1(a)f

ij(a)da

)︃(︄m−1∏︂
k=2

∫︂ ∞

0

e−λaSi
k(a)M

i
k(a)m

i
k(a)da

)︄
(︃∫︂ ∞

0

e−λaSi
m(a)b

i(a)da

)︃(︃∫︂ ∞

0

e−λaS̄i
1(a)M

i
1(a)m

i
1(a)da

)︃
.

Define

L(λ) =

⎡⎢⎢⎢⎣
L11
1 (λ)L̄1

1(λ)
∏︁m

k=2 L
1
k(λ) . . . L1n

1 (λ)L̄1
1(λ)

∏︁m
k=2 L

1
k(λ)

...
. . .

...

Ln1
1 (λ)L̄n

1 (λ)
∏︁m

k=2 L
n
k(λ) . . . Lnn

1 (λ)L̄n
1 (λ)

∏︁m
k=2 L

n
k(λ)

⎤⎥⎥⎥⎦
with

37



Li
k(λ) =

{︄∫︁∞
0

e−λaSi
k(a)M

i
k(a)m

i
k(a)da k = 2, . . . ,m− 1∫︁∞

0
e−λaSi

m(a)b
i(a)da k = m

L̄i
1(λ) =

∫︂ ∞

0

e−λaS̄i
1(a)M

i
1(a)m

i
1(a)da

Lij
1 (λ) =

∫︂ ∞

0

e−λaSij
1 (a)f

ij(a)da.

Then again we can write the equations for each B̄i
1 for each patch i in matrix notation

as

(L(λ)− I)B̄1 = 0.

We are looking for non-trivial solutions where B̄1 ̸= 0, and therefore require

det(L(λ)− I) = 0. (2.10)

This is the characteristic equation for our system. If the root λ satisfies ℜ(λ) < 0

then the zero equilibrium is stable, and if ℜ(λ) > 0 then the zero equilibrium is

unstable. Furthermore, as our system 4.16 is linear, if the equilibrium is locally

stable it will be globally stable.

We know that because λ is a root of (2.10) then 1 ∈ σ(L(λ)), where σ(L(λ)) is the

spectrum of L(λ). We also know from the definition of system 4.16 that B̄1 must be

non-negative, and from (2.10) that B̄1 is the eigenvector associated with an eigenvalue

of 1. L(λ) is irreducible, because K is irreducible, and the eigenvalue associated with

a non-negative eigenvector of an irreducible matrix is the spectral radius of the matrix

(Theorem 2.1, Li and Schneider (2002)). Thus ρ(L(λ)) = 1.

1) If R0 < 1, then ρ(L(0)) = ρ(K) = R0 < 1. If ℜ(λ) > 0 then L(0) ≥ L(λ) entry

wise, and so ρ(L(λ)) ≤ ρ(L(0)) < 1 (Corollary 8.1.19, Horn and Johnson (2012)).

Therefore in order for ρ(L(λ)) = 1 we require ℜ(λ) < 0.

2) If R0 > 1, then ρ(L(0)) > 1. If ℜ(λ) < 0 then L(0) ≤ L(λ) entry wise and so

ρ(L(λ)) ≥ ρ(L(0)) > 1. Therefore in order for ρ(L(λ)) = 1 we require ℜ(λ) > 0.

Corollary 2.2. If the number of new individuals produced on a given patch k, from

an initial individual starting on patch k, is greater than one, so K(k, k) > 1, then

R0 > 1.

Proof. If K(k, k) > 1, then we can decompose K = A+B, where

B(i, j) =

{︄
1 i = j = k

0 otherwise,
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and A is still non-negative. Because A is non-negative, we can see that K > B, and

so by Corollary 8.1.19 Horn and Johnson (2012), ρ(K) > ρ(B) = 1.

Here we have demonstrated that R0 = ρ(K) determines the stability of the zero

equilibrium for system 4.16. Earlier in this section we presented the details of the

construction of the next generation matrix, K, for the stage-structured population

on both one and multiple habitat patches.

2.4 Applications

In this section we discuss applications of the next generation matrix and the effect of

different environmental variables on the next generation matrix. The next generation

matrix is a useful tool to quantify the effect of individuals from one patch on other

patches. Here we will show how to use the column sums in the matrix to determine

the source-sink dynamics of the network, and how this relates to R0. We will also

show how the column sums can be used to investigate the transient dynamics of the

system, and how these may differ from the asymptotic dynamics. We then investigate

how the left and right eigenvectors can provide insight into the contributions of each

patch to R0. Using salmon farms as a motivating example we structure the application

section to answer the key questions posed at the end of the introduction.

2.4.1 Salmon farms distributed in a channel

Here we present an example of patches in a linear array and in the following sec-

tions will demonstrate how both the source-sink distribution and persistence measures

change as a function of the distance between patches. This example is motivated by

sea lice spreading between salmon farms in a channel. Salmon farms act as habitat

patches for sea lice, as the non-larval sea lice stages require a salmonid host on which

to feed, and the salmon are themselves confined to the net pens in the farms. The

larval sea lice stages are released into the water column and are capable of spreading

between salmon farms in a given region. In both Norway and Canada, many salmon

farms are located in sheltered coastal channels or fjords (Aldrin et al., 2017; Krkošek

et al., 2006a). We therefore use a one dimensional domain to calculate the arrival

time of sea lice spreading between farms.

In the following examples we consider 5 patches or farms of width ∆, each separated

by some distance x0 (Figure 2.4). We consider systems where there is no maturation

delay from the latent to active larval stage, and where all larvae enter the channel, so

that none remain locally. The absorption rate for larvae when they pass by a patch
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Patch 1 Patch 2 Patch 3 Patch 4 Patch 5

∆

x0

Figure 2.4: Patches, or salmon farms arranged in a channel. The width of each patch
is ∆ and the distance between the center of each patch is x0. The arrow above the
patches indicates the direction of advection.

is small, and in most examples diffusion is larger than advection. This represents

a coastal channel environment in which ocean mixing is more prevalent than any

constant currents generated by river outflow. It is in this environment that we answer

the five questions posed above.

2.4.2 What is the source-sink distribution of salmon farms
in a channel?

First, we show how to use the next generation matrix to determine the source-sink

distribution of farms. Recent work has used R0 theory to define two measures of

persistence of a species on a continuous landscape, Rloc(x) and Rδ(x), using the

next generation operator (Huang et al., 2016; Krkošek and Lewis, 2010; Mckenzie

et al., 2012a). Rloc(x) is the number of new individuals produced at location x in the

absence of dispersal, and can be used as a measure of the fundamental niche in certain

scenarios. In our model, dispersal is a key environmental feature for the larval stage

of the marine organism, and while we allow some percentage of larvae to remain at a

patch, it is not realistic that any large percentage would remain and avoid dispersal.

Therefore Rloc(x) is not relevant for our model.

The second persistence measure, Rδ(x), is the number of new individuals produced

over the entire network from one individual at location x. It takes into account both

growth and survival at location x, and dispersal from location x. If one individual at

x produces less than one individual over the entire landscape, then Rδ(x) < 1, and the

location x is defined as a sink. If Rδ(x) > 1, then x is defined as a source. The spectral

radius of the next generation operator, R0, determines species persistence over the

entire landscape. When using this measure it is not possible for connected patches of

sinks to persist. In this section we build on and apply this theory to determine the

source-sink distribution on the discrete population patches in our system using the

next generation matrix.

In our system of n patches, let Rδ(j) be the number of new individuals on all

patches produced from one individual on patch j. In terms of our next generation
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matrix K (Equation 2.5),

Rδ(j) =
n∑︂

i=1

K(i, j).

If for patch j, Rδ(j) > 1, then j is a source, and if Rδ(j) < 1, then j is a sink.

R0 = ρ(K) is still needed to determine if the populations on the connected patches

will persist or perish, however there are some nice persistence results that follow

directly from Rδ(j).

First, a connected network consisting only of sinks cannot persist. Using this new

measure, for a connected network of sinks, we have Rδ(j) < 1 for all j. There is a

nice result concerning R0 for non-negative irreducible matrices (Horn and Johnson,

2012) which states that

min
1≤j≤n

n∑︂
i=1

K(i, j) ≤ ρ(K) ≤ max
1≤j≤n

n∑︂
i=1

K(i, j).

Substituting the definition of Rδ and R0 this can be restated as

min
1≤j≤n

Rδ(j) ≤ R0 ≤ max
1≤j≤n

Rδ(j). (2.11)

Therefore if Rδ(j) < 1 for all j, then R0 < 1 as well. Secondly, a connected network

consisting only of sources cannot perish. Here, Rδ(j) > 1 for all j, and so R0 > 1 as

well. Similarly, if any diagonal entry of the next generation matrix is greater than

one, K(j, j) > 1, then R0 > 1. This can be seen from Corollary 2.2. Biologically, this

result means a population on a network will persist if the network contains at least one

patch which is self sustaining in the absence of dispersal from other patches. However,

there are also other situations in which the network can persist. In summary, Rδ(j),

the jth column sum of the next generation matrix, is necessary to determine if a patch

j is a source or a sink, and R0, the spectral radius of the next generation matrix, is

necessary to determine the persistence of the total population.

2.4.3 How does the source-sink distribution change with re-
spect to environmental variables?

In this section we examine the effect of advection and diffusion on R0 and Rδ, using

the example of 5 patches in a channel, shown in Figure 2.4. First we study the

effect of varying diffusion on R0 across different interfarm separation distances, x0.

In Figure 2.5 the diffusion coefficient, D, is decreased from 5 to 1 and the change in

R0 is shown as a function of x0. For small values of x0, R0 is larger when there is

less diffusion. When there is less diffusion, each patch has a greater probability of
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self infecting, because there is less immediate dispersal away from the patch. When

the patches are overlapping, they act as one patch, which is why R0 is larger at small

x0 when there is less diffusion. This is also why the horizontal asymptote for R0 is

larger for smaller diffusion. For intermediate values of x0 an interesting phenomenon

occurs. As the separation distance, x0 increases, R0 for low diffusion drops below

R0 for high diffusion. When diffusion is low, it is more difficult for individuals to

disperse against the direction of advection, and so as x0 increases, individuals from

Patch 5 begin to only contribute to other individuals on Patch 5. As will be shown

when examining the effect of advection, Patch 5 becomes a sink for small values of

x0, and so the other patches are contributing individuals to Patch 5, which cannot

sustain them.
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Figure 2.5: R0 as a function of x0, for D = 5, v = 1, solid line; D = 1, v = 1,
dashed line. The remaining parameter values are α = 0.1, gij(t) = 0, ∆ = 0.8,
Sij(t) = e−0.05t. The survival, maturation, and birth functions for the sessile stages
were combined so that
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j
2 (t)m

j
2(t)dt

)︁ (︁∫︁∞
0

Sj
m(t)b
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)︁
= 10.

Next, we study the effect that advection has on R0 and Rδ across different interfarm

distances, x0. For different values of advection, both R0 and Rδ, as functions of

x0, have the same shape as R0 shown in Figure 2.5. Therefore we find it most

illuminating to examine the effect of advection on the ratio of Rδ/R0. Biologically,

R0 is the number of new individuals produced in the population, from one typical

individual, and Rδ(j) is the number of new individuals produced in the population,

from one individual starting on patch j. Therefore the ratio Rδ(j)/R0 can be seen as

the relative multiplication factor of the number of new individuals in the population

produced by one individual starting on patch j, compared to one typical individual.
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If Rδ(j)/R0 > 1 then an individual on patch j is contributing more than the typical

individual, and if Rδ(j)/R0 < 1, then it is contributing less. Of course, it is also

important to also track if each Rδ and R0 are greater or less than one, so that it

is known which patches are sources, which are sinks, and whether or not the total

population is growing.

In Figure 2.6, Rδ/R0 is plotted as a function of the interfarm separation distance,

x0 for different values of v. The switch in each curve from black to grey marks

where Rδ ≤ 1. Using the Rδ measure, we can see that for low x0 all patches are

sources. As x0 increases, Patch 5 becomes a sink, with R0 > 1, and then as x0

continues to increase, R0 falls below 1. Therefore in this linear array, there is some

critical separation distance, beyond which the population patches are not sufficiently

connected for the total population to persist. Even after this critical distance, some

patches are still sources with Rδ > 1, and it takes a larger separation distance x0 for

all patches to become sinks.

Both R0 and Rδ change when v increases from 0.1 to 1. As v increases, it takes

a much smaller separation distance, x0, for R0 to fall below 1. Increasing v not

only reduces retention of individuals on each patch, but also inhibits individuals from

better dispersing against the direction of advection. Therefore when v is lowered,

there is greater dispersal among neighbouring patches, but less long distance dispersal

in the direction of advection, from Patch 1 to Patch 5. There are two other interesting

behaviours that should also be highlighted. First, is that max1≤i≤nRδ(i) is achieved

at Patch 3 when advection is low, compared to Patch 1 when advection is high. We

can see the transition as Patch 1 becomes a larger source as v increases. Second, the

critical separation distances, for which each Rδ falls below one and becomes a sink,

come closer together, as the decrease in advection makes the behaviour on all patches

more similar.

In both examples where diffusion and advection were changed, for large separation

distances, R0 < 1. However, this is due to the parameters controlling the birth,

survival, and maturation functions for these examples. For other parameter values,

certain values of v and D could result in R0 > 1 for large x0 and some could result

in R0 < 1. Here we have shown how R0 and the source-sink distribution, quantified

by Rδ, change as a function of the diffusion and advection in the system, as well as

the interfarm seperation distance, x0.
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(b) Medium advection (v = 0.4)
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(c) High advection (v = 1)

Figure 2.6: Rδ/R0 for each patch when D = 5. When each curve is black Rδ > 1,
and when the curve is grey Rδ ≤ 1. The switch from black to grey on the solid line
indicates when R0 = 1. The remaining parameters are the same as in Figure 2.5.
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2.4.4 Are there certain parameter regions in which local out-
breaks can occur, but not global outbreaks?

Interesting transient dynamics can occur if we consider networks of patches with R0 <

1, but where some patches are sources, and networks with R0 > 1, but where some

patches are sinks. In these network arrangements, the value of R0 still determines the

global persistence of the total population, but the initial conditions determine whether

the population will begin by increasing or decreasing. To consider these dynamics we

let N(g) be the vector of sea lice populations on each patch, in generation g. Then,

in terms of generational time, the population will update according to

N(g + 1) = KN(g),

with the initial condition N0, which is a vector of the initial sea lice populations on

each patch. For example, consider the next generation matrix K with parameter

values that are the same as for Figure 2.6c. At x0 = 8, R0 > 1, but Rδ(5) < 1.

Therefore the total population (
∑︁

i Ni(g)) will increase eventually, but will start by

decreasing if our initial population is all in Patch 5 (N0 = [0 0 0 0 1]T ). In fact, for

x0 = 8, if we begin with 1 individual in Patch 5, it takes 23 generations before the

total population increases above 1, as shown in Figure 2.7. Similarly, for x0 = 10,

R0 < 1 but Rδ(1) > 1. In this case the population will eventually decrease, but will

begin by increasing if the initial population is in Patch 1 (N0 = [1 0 0 0 0]T ). If we

start with 1 individual in Patch 1, it takes 41 generations before the total population

falls below 1. In this configuration, this means that there would be a local outbreak,

but not a global sea lice outbreak.

To attempt to quantify the effect of the source and sink patches on transient

dynamics more formally, we use notation from Huang and Lewis (2015). They define

Rl = min
1≤j≤n

n∑︂
i=1

K(i, j) = min
1≤j≤n

Rδ(j),

which is shown to be the intergenerational growth rate under the worst possible initial

conditions, and

Ru = max
1≤j≤n

n∑︂
i=1

K(i, j) = max
1≤j≤n

Rδ(j),

which is shown to be the intergenerational growth rate under the best possible initial

conditions (Huang and Lewis, 2015). Equation 2.11 can then be restated using Rl

and Ru as

Rl ≤ R0 ≤ Ru.

45



0 5 10 15 20 25
0

0.5

1

1.5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5

5

5
5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0 10 20 30 40 50
0

1

2

3

4

5

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 23

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 34

4

4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5
5

5

5

5
5 5 5 5

5
5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Figure 2.7: The population of sea lice (Ni(g)) on each patch i in each generation
(g) after one initial individual is released on a patch. Let N(g) be a vector of patch
populations, then in generational time the population updates according to N(g +
1) = KN(g), with the initial condition N0, which is a vector of the initial sea lice
populations on each patch. The black line shows the total population size (

∑︁
i Ni(g)).

Parameter values are the same as Figure 2.6. In a), we fix x0 = 8, so that R0 > 1,
and release the initial individual on patch 5 (N0 = [0 0 0 0 1]T ). In b) we fix x0 = 10,
so that R0 < 1, and release the initial individual on patch 1 (N0 = [1 0 0 0 0]T ).
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In essence, Rl is the growth rate in the first generation if our population is initially

at the worst sink patch, and Ru is the growth rate if we are at the best source patch.

Therefore Rl and Ru are useful measures to quantify potential transient dynamics,

and also retain key information about the source-sink distribution. If Rl < 1 then

there is at least one patch acting as a sink, and if Ru > 1 then there is at least one

patch acting as a source. In the following section, we examine how Rl, Ru, and R0

change with different variables, instead of considering Rδ for every patch.

2.4.5 What is the effect of treating a single farm on the tran-
sient and asymptotic dynamics?

In this section we examine the effect that treating specific farms have on Rl, Ru, and

R0. We define treatment as reduced survival and maturation on a patch or farm,

affecting stages k through m, but not affecting the larval stage. On salmon farms,

treatment is used to reduce sea lice levels and is typically administered orally to

farmed salmon (Rogers et al., 2013). Reduced survival and maturation could also

be the result of poor environmental conditions at a patch, such as low salinity and

temperature in the case of sea lice. We also view treatment through the lens of type

reproduction numbers, and the effort required for control on a patch to reduce R0 = 1.

First Middle Last
0

0.5

First Middle Last
0

0.1

0.2

First Middle Last
0

0.05

C
ha

ng
e 

in
 g

ro
w

th
 r

el
at

iv
e 

to
 p

at
ch

 o
ut

pu
t

Patch

Figure 2.8: The change in Rl, R0, and Ru when the output from the First patch (Patch
1), Middle Patch (Patch 3) or Last Patch (Patch 5) is reduced from 10 to 1. Parameter
values for this figure are α = 0.1, D = 5, v = 1, gij(t) = 0, ∆ = 0.8, Sij(t) = e−0.05t,
x0 = 8.4. The survival, maturation, and birth functions for the sessile stages were
combined so that O =
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To first examine the effect of treatment on the transient and asymptotic dynamics,

we treat Patch 1, Patch 3, and Patch 5 separately. In the direction of advection these
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patches are the first, middle, and last patches respectively (Figure 2.4). Figure 2.8

shows the change in Rl, Ru, and R0 for the system when either the first, middle, or

last patch has a reduced output (∆O), from treatment. Perhaps the most interesting

result is that if either the first or last patch has reduced output, the change in the

R0 value remains the same. The first patch is the patch that produces the most

individuals on other patches, and the last patch is the patch that receives the most

individuals from other patches. If we consider the reduced output as treatment, then

if we treat either the patch that produces the most individuals, or the patch that

receives the most individuals, the effect on R0 will be the same. However, if we treat

the middle patch, we have a larger change in R0. Therefore treating the middle patch

is more effective if we want to reduce long term population growth.

If treating the first or last patch has the same effect on R0, then how might it

change the transient dynamics of the system? We can see that if we treat the first

patch, then the change in Ru is larger than if we treat either the middle or last patch,

where there is no change. Therefore if we treat the first patch, the maximum possible

growth rate is reduced, and thus we can reduce the severity of a local outbreak.

However, if we treat the first patch the change in Rl is less than if we treat either the

middle or last patch. Therefore treating the first patch results in a larger minimum

possible growth rate.

We can also examine the effect of treatment using the type reproduction number

(Heesterbeek and Roberts, 2007; Lewis et al., 2019; Roberts and Heesterbeek, 2003).

The type reproduction number measures the control effort required to control a certain

patch to reduce R0 = 1 . The type reproduction number can also been generalized to

the target reproduction number, if control is not applied to an entire patch, to specific

inter patch infections. To define the type reproduction number we divide the next

generation matrix K = [kij] into two matrices, K = B + C, where C is the target

matrix associated with control, and B is the residual matrix. If we are interested

in controlling patch i, then Ci = [cij], with cij = kij for 1 ≤ i ≤ n and j = i, and

cij = 0 otherwise. Then B = K − C. To control patch i such that we can reduce

R0 = 1, we require ρ(B) < 1. The type reproduction number TCi
is then defined

by ρ(Ci(I − B)−1), and 1 − 1/TCi
is the fraction that output from patch i must be

reduced in order for R0 = 1. The controlled next generation matrix would then be
1

TCi
Ci + (K − Ci), and would have ρ(K) = 1.

Consider the patch arrangement and parameter values as shown in Figure 2.8. In

this case R0 > 1, but when we are considering control of either the first, middle, or last

patch, and creating target matrices C, we still have ρ(B) < 1. To create the target

matrix C1 associated with control on the first patch, we take the first column of K as
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the first column of C1, and put zeros in all other entries. Likewise to treat the middle

patch we take the 3rd column of K as the third column of C3, with zeros elsewhere,

and to treat the last patch we take the last column of K as the last column of C5 with

zeros elsewhere. Using the formula for the type reproduction number given above,

we calculate TC1 = TC5 = 3.6, and TC3 = 1.2. This demonstrates that it requires a

greater control effort to treat the first or last patch, to reduce R0 = 1, than is required

if treating the middle patch.

Here we have shown that either using the type reproduction number or directly

examining the effect of treatment, that more treatment is required to control the first

or last patch than the middle patch. Moreover, treating the first patch produces the

largest change in Ru, the largest intergeneration growth rate, and treating the last

patch produces the largest change in Rl, the minimum intergenerational growth rate.

2.4.6 What is the effect of an environmental gradient on
patch contributions to R0 and the source-sink distri-
bution?

A different approach to measuring the contribution of each patch to the metapop-

ulation is to use the right and left eigenvectors associated with R0 (Hurford et al.,

2010). This approach measures the contributions that each patch has on R0 if the

population is proportioned relative to the right eigenvector of the next generation

matrix.

First, from the Perron-Frobenius Theorem, we know that the eigenvalue for which

the spectral radius of K is achieved is real. Then, we can write this eigenvalue, R0,

using the left eigenvector, w, and the right eigenvector, v, as

R0 =
wTKv

wTu
.

If we rescale w and v so that wTv = 1, then we can rewrite R0 as

R0 = v1

n∑︂
i=1

K(i, 1)wi + v2

n∑︂
i=1

K(i, 2)wi + · · ·+ vn

n∑︂
i=1

K(i, n)wi. (2.12)

Equation 2.12 can then be interpreted as the sum of the contributions of each patch

to R0, when the population is proportioned relative to the right eigenvector (Hurford

et al., 2010). If we look at the first term in this sum, which is the contribution

of patch 1, v1 is the relative proportion of the population that is in patch 1. This

proportion, v1, is then multiplied by
∑︁n

i=1K(i, 1)wi, where each K(i, 1) is the number

of new individuals produced on patch i from one individual on patch 1, and wi is the
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reproductive value of patch i. Therefore the first term in Equation 2.12 measures the

proportion of the population that is in patch 1 multiplied by the effect that individuals

from patch 1 will have on future growth after they give birth to larvae which disperse

to other patches. For ease of future reference, we define

Rc(j) = vj

n∑︂
i=1

K(i, j)wi

as the contribution of patch j to R0. We can therefore rewrite equation 2.12 as

R0 =
n∑︂

j=1

Rc(j) (2.13)

Interestingly, the relative source-sink measure of a patch, Rδ(j), can be very dif-

ferent from the relative contribution measure, Rc(j). In certain instances, for a given

patch j, we can have Rδ(j) = min1≤i≤nRδ(i) < 1, so that patch j is the largest sink

in the population. However, that same patch j, may have Rc(j) = max1≤i≤nRc(i),

with R0 > 1, so that if the population is distributed according to v, patch j has the

largest contribution to R0. R0 is greater than 1, so the population is growing. This

means that in one generation, one individual from patch j is contributing the least

to the total population, but over several generations, patch j is having the largest

contribution to the total growth of the population.

As an example, we examine how the intergenerational growth measures change

if we put the patches in an environmental gradient. Salmon farms are often located

along ocean channels, where rivers feed into the source of these channels. This creates

a salinity gradient along the channel, where farms located closest to the river have

the lowest salinity and farms furthest from the river have the highest salinity. Lower

salinity results in a reduction in sea lice survival at each stage (Johnson and Albright,

1991). Often the river output at the source of the channel is also the source of

advection in the channel, though there may be systems in which the average advection

is in the opposite direction due to strong ocean currents. First we consider the less

likely case, where the first patch (or farm) has the largest output, and the last patch

has the least. In this case output decreases in the direction of advection. Next we will

consider the more realistic case where output increases in the direction of advection.

This would be the common case for salmon farms in a channel where the first farm is

located closest to the river output, which is where salinity is lowest and so the patch

output is also the lowest, and the river is the source of advection in the system. For

reference, the average output from all patches is the same as the output for a single

patch when there is no gradient.
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Figure 2.9: Rδ/R0 and Rc/R0 are shown as a function of x0. Subfigures 2.9a and 2.9c
are when the output decreases in the direction of advection, and 2.9b and 2.9d are
when output increases. For subfigures 2.9a and 2.9b, when each curve is black Rδ > 1,
and when the curve is grey Rδ ≤ 1. The switch from black to grey on the solid line
indicates when R0 = 1. Parameter values for this figure are α = 0.1, D = 5, v = 1,
gij(t) = 0, ∆ = 0.8, Sij(t) = e−0.05t. The survival, maturation, and birth functions
for the sessile stages were combined so that in the case of constant patch output, the
output is O =

∏︁m−1
k=2

(︁∫︁∞
0

Sj
2(t)M

j
2 (t)m

j
2(t)dt

)︁ (︁∫︁∞
0

Sj
m(t)b

j(t)dt
)︁
= 10. To construct

the environmental gradient, the largest output was 1.4 × O, then 1.2 × O, then O,
then 0.8×O, then 0.6×O.
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We use Rδ/R0 and Rc/R0 as the intergenerational growth measures, for which we

examine the effect of an environmental gradient. While Rδ/R0 can be thought of as

the relative multiplication factor of the number of new individuals in the population

produced by one individual on patch j, compared to a typical individual, Rc/R0 is

simply the relative contribution of the patch to R0, within the framework of left and

right eigenvectors. In Figure 2.9, both Rδ/R0 and Rc/R0 are plotted as a function of

x0, for an environmental gradient in the direction of advection and for a gradient in

the opposite direction.

First, what cannot be seen easily from Figure 2.9, is that R0 is the same when

patch output increases or decreases in the direction of advection. Interestingly, both

of these R0 values are larger than for patches without any gradient. When comparing

Rδ/R0 values, the relative spread of Rδ/R0 is larger when patch output decreases in

the direction of advection. Here, Patch 1 has the largest Rδ/R0 value. Interestingly,

when we look at Rc/R0, the relative contribution to R0, we can see that there is an

intermediate distance x0 where if the population is distributed relative to the right

eigenvector, Patch 2 would be contributing more to R0 than Patch 1, even though

Patch 1 is the larger source.

We observe even more interesting behaviour when we look at Rδ/R0 and Rc/R0

when patch output increases in the direction of advection. Here, the relative ordering

of Rδ(j)/R0 values change for different values of x0. Patch 3 and 4 are the largest

sources for most x0, until they become sinks (when numbers switch from black to

grey). Patch 5 starts as the largest source when x0 = 0, but is the first to become a

sink (along with Patch 1), around x0 = 9. However, if we look at the plot of Rc, then

for some x0, Patch 5 is the largest contributor to R0. In fact, at x0 = 9, Patch 5 is a

sink with the smallest Rδ, Rδ(5) = min1≤i≤5Rδ(i) < 1. Therefore in the absence of

dispersal from other patches, the population on Patch 5 would perish. However, for

x0 = 9, R0 > 1 and Rc(5) = max1≤i≤5Rc(i). Therefore the population is growing,

and moreover Patch 5 would be the largest contributor to growth if the population

was distributed according the right eigenvector.

What we can also see from Figures 2.9a and 2.9b is that when the patch output

decreases in the direction of advection, the relative ordering of the Rδ/R0 values of the

patches are the same as when there is no gradient (Figure 2.6c). However, when patch

output increases in the direction of advection, the relative ordering of Rδ depends on

the interfarm separation distance x0. In this case the farm with the largest output is

not the largest source, nor is the farm with the lowest output the largest sink. Here,

knowing the local environmental conditions that determine sessile output does not

directly inform the source-sink distribution of the patch network.
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In this application section we have demonstrated how the next generation matrix

can be used to determine the source-sink distribution of a metapopulation, as well as

other persistence measures, each of which quantifies some useful information about

our population. We applied these different persistence measures to examine popula-

tions of sea lice on salmon farms, and to answer the five questions posed at the end

of the introduction.

2.5 Discussion

In this chapter we constructed a model for a meroplanktonic marine species, in which

the larval stage is capable of dispersing between habitat patches, and the later sessile

stages remain confined to a single habitat patch. This type of model is applicable to

corals and coral reef fish (Cowen et al., 2006; Jones et al., 2009), barnacles (Roughgar-

den et al., 1988), Dungeness crabs (Botsford et al., 1994), sea urchins (Botsford et al.,

1994), and many benthic marine species (Cowen and Sponaugle, 2009). We modelled

the growth and survival of sessile stages on a habitat patch using arbitrary survival

and maturation functions so that our model is applicable to a breadth of different

systems. To model the dispersal between patches in the larval stage, we approximated

hydrodynamic movement, so that rates of larval movement between patches have an

underlying mechanistic model. We then constructed the next generation matrix, K,

for this model. The next generation matrix distils the key elements of the model into

a matrix from which we can determine the source-sink distribution among patches

using the column sums. We denote the jth column sum by Rδ(j) and showed that

if Rδ(j) < 1 then patch j is a sink and if Rδ(j) > 1 then patch j is a source. We

also proved that the basic reproduction number R0 = ρ(K) determines the stability

of the zero equilibrium of our model, so that if R0 > 1 then the population grows,

and if R0 < 1 then the population goes extinct.

Using salmon farms as an example, we investigated how the source-sink distribution

can change as a function of patch separation distance, and how often there is a critical

separation distance for each patch, at which point a patch changes from a source to

a sink. We demonstrated that increasing the ratio of advection to diffusion between

patches increases the difference in critical separation distance between patches. We

also demonstrate how Rδ(j) can be used to determine the transient dynamics of

the salmon farm system, and how these transient dynamics can persist over several

generations, and differ from the asymptotic dynamics determined byR0 (Section 2.4.4,

Figure 2.7). We investigated the effect of treatment of a single patch on the patch

dynamics using the concept of type reproduction numbers and found that treating the
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middle patch in a channel results in the greatest reduction in R0, but that treating

the first patch results in the greatest reduction in the maximum Rδ. Lastly, we looked

at differing local productivity on patch dynamics, determined the contribution that

each patch has to R0, and demonstrated how this can also differ from Rδ(j).

Next generation matrices have a long history in epidemiology, where they have been

used to calculate the number of new infections produced in one compartment when a

newly infectious individual is introduced in another compartment (Diekmann et al.,

1990; Diekmann et al., 2010; van den Driessche and Watmough, 2002). Our approach

in constructing a next generation matrix for a stage-structured model with arbitrary

stage durations and larval flow between patches extends recent use of next generation

operators in ecology (Huang et al., 2016; Huang and Lewis, 2015; Krkošek and Lewis,

2010; Mckenzie et al., 2012a). Much of the previous work has used continuous space

next generation operators to determine the source-sink distribution of populations

in streams or lakes. There, the movement of individuals through the water is also

described by partial differential equations, though individuals can be produced at

any point in space. In our work, we describe the movement of larvae between patches

using advection diffusion equations, though, as larvae can only be produced on certain

population patches, our linear operator can be formulated as a matrix. Our work

also extends work of Huang and Lewis (2015), where the next generation matrix was

used to determine the transient dynamics in a system and how they differ from the

asymptotic dynamics determined by R0 in a model of salmonids. The minimum Rδ

was shown to determine whether it is possible for the population to initially decline,

even if it eventually grows, and the maxiumum Rδ was shown to determine whether

it is possible for the population to initially grow, even if it declines. We re-emphasize

the finding that while R0 determines the long term dynamics of a system, it cannot

also characterize the transient dynamics. We also advocate for further use of the next

generation approach in ecology, as the next generation operators are often able to

distil relevant ecological information into a simple operator.

Our model formulation as a set of age density equations, rather than a set of

distributed delay equations, or partial differential equations, follows the work of Feng

and Thieme (2000). There, arbitrary survival and maturation functions were used

to model the progression of an infection with a finite number of infections stages,

all of which have general length distributions. The generality of the survival and

maturation functions used in our model allow us to calculate the next generation

matrix for a wide breadth of model formulations. For example, in models of sea lice

populations on salmon, studies have used a variety of different maturation functions.

When discrete differential equations are used (Adams et al., 2015; Revie et al., 2005),
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all lice of a given stage mature at the same age. The maturation function, M i
k(a),

can then be formulated using step functions, as M i
k(a) = 1−H(a− τ). Here H(a) is

the Heaviside function and τ is the development time. When linear delay differential

equations are used to model sea lice development (Stien et al., 2005), there is some

minimum development time, after which sea lice mature at a constant rate. The

maturation function for our model could then be written as M i
k(a) = 1 − H(a −

τ)(1−e−m(a−τ)), where τ is now the minimum development time, andm is the constant

rate of maturation. Weibull functions have the nice property that the probability of

maturing is largest at some intermediate age, and have thus also been used to describe

maturation functions, without requiring a fixed minimum development time or fixed

maturation time (Aldrin et al., 2017). Here the maturation function can be written

as M i
k(a) = e(−λa)p , where λ is the scale parameter, and p is the shape parameter

for the Weibull distribution. Even though all of these models are formulated using

different equations, by identifying the maturation and survival functions used, we

can reformulate these models as age density equations, given by system 4.16, and

therefore calculate the next generation matrix for all these different types of models

using equation 2.5. However, our model explicitly calculates rates of larval movement

using the Fokker-Plank equation, and therefore the arrival time component of our

model and next generation matrix will remain different from the above mentioned

models.

While the general structure of our model allows us to calculate the next genera-

tion matrix for a variety of survival and maturation functions, one of the limitations

of our model is that we do not include density dependence. To include density de-

pendence in our model, the partial differential equation formulation of the model

would no longer be set a of McKendrick-von Foerster equations (Keyfitz and Key-

fitz, 1997; McKendrick, 1925), as shown in Appendix 2.6.1. They could, however,

be reformulated as a series of Gurtin McCamy equations (Gurtin and MacCamy,

1974), where now µi
k(a) = µi

k(a,N
i
1, . . . , N

i
m), and Bi

k(t) = Bi
k(t, N

i
1, . . . , N

i
m) where

N i
k =

∫︁∞
0

ni
k(t, a)da. Most of the sea lice population models previously mentioned

(Adams et al., 2015; Aldrin et al., 2017; Revie et al., 2005; Stien et al., 2005) do

not include density dependence in their model formulations, as the assumption is

that sea lice are regulated before they reach high enough densities to exhibit nega-

tive density dependence, and that there is no Allee affect at low densities. However,

using Anderson-May host parasite equations, Krkošek et al. (2012b), demonstrated

evidence of an Allee effect of sea lice on wild salmon, so that at low densities there is

mate limitation, and thus a reduced birth rate. Modifying the birth rate of larvae to

include mate limitation at low densities would be interesting future work. In mod-
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elling the populations of other marine species on habitat patches, it has been shown

that if external recruitment to populations is much larger than self-recruitment, then

it is not necessary to include negative density dependence at high population densities

to control for unbounded growth (Armsworth, 2002). However the inclusion of neg-

ative density dependence is necessary to prevent unbounded growth of populations

when self recruitment to a population is large. The addition of density dependence

to our model would therefore allow it to be applicable to a broader set of species at

equilibrium densities.

With respect to sea lice on salmon farms, we use the advection diffusion equation

to approximate hydrodynamic ocean flow between farms due to the success of mod-

elling the transmission of nauplii onto wild salmon with the same advection diffusion

equation. In the Broughton Archipelago, a region at the center of the debate of the

effect of salmon farms on wild salmon, advection diffusion equations were used to

model nauplii and copepodid movement, where nauplii were released as point sources

from salmon farms (Krkošek et al., 2006a). Copepodids could then attach to wild

salmon migrating past these salmon farms, and Krkošek et al. (2006a) were able to

correlate the spatial distribution of sea lice on wild salmon with the spatial position of

salmon farms. The accuracy of the approximation of ocean current using an advection

diffusion equation in the Broughton Archipelago has been debated (Brooks, 2005), as

well as the use of a constant maturation rate from nauplii to copepodids. We believe

that the advection diffusion equation is a useful approximation to ocean circulation

in channels, especially when hydrodynamic models are not available, though we in-

clude a general maturation delay in our model, so that the maturation of larvae can

parameterized accurately to different species.

In the context of sea lice on salmon farms, we also estimated the effect of sea lice

treatment on a salmon farm network using measures of both transient and asymptotic

dynamics. In the next generation framework, we defined treatment as a reduction

in the survival and/or maturation in the sessile stages on a farm. Salmon farms

typically apply a parasiticide, emamectin benzoate, into the salmon feed to treat sea

lice infestations (Rogers et al., 2013). We assumed that treating a salmon farm is

therefore equivalent to reducing the survival through the different sessile stages on

farm. We investigated the effect of treating the first, middle, and last farm in a

channel. We found that treating the middle farm resulted in the greatest reduction

in R0, and that if either the first or last farm where treated, then the reduction in R0

was the same. However, treating the first farm resulted in the greatest reduction in

Ru, the maximum intergenerational growth rate, and treating the last farm resulted

in the greatest reduction in Rl, the minimum intergenerational growth rate.
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If we are interested in preventing long term outbreaks, reducing R0 is important.

However, in the case of the salmon aquaculture industry, frequent sea lice treatments

prevent long term growth of sea lice. In this case it may be more important to

prevent local outbreaks, as even local outbreaks of sea lice on salmon farms can

have negative effects on migrating wild salmon (Bateman et al., 2016). Treating the

first farm would thus most reduce the magnitude of a local outbreak. This result

contradicts simulation studies of salmon farm dynamics in Scotland (Adams et al.,

2015). This study found the farm influx (number of lice coming into a farm), was

a better predictor of management impact than farm outflux (number of lice coming

from a farm), even though when unmanaged lice density was accounted for, influx and

management impact were only weakly correlated. In our work, relative influx can be

calculated using the difference in row sums, and relative outflux could be calculated

using relative column sums. In our model the first farm has the highest outflux, and

the last farm in the channel has the highest influx. Perhaps this difference is due to

the fact that the farm with the highest influx is most likely to outbreak, and thus

treating that farm will be the most effective at reducing the total sea lice population.

Whereas, if the farm with the highest outflux is treated, then the worst possible initial

outbreak decreases, even if this initial outbreak is less likely to happen. The difference

between the results found in this chapter and from Adams et al. (2015) highlight the

complexity of designing effective management actions to control sea lice.

The largest limitation of our model, if applied to specific biological systems, is

the use of the advection diffusion equation to approximate ocean movement, rather

than a hydrodynamic model. While the advection diffusion equation may be a good

approximation in a channel environment (Krkošek et al., 2006a), the use of a hy-

drodynamic model to approximate larval movement between patches rather than an

advection diffusion equation would greatly improve the accuracy and relevance of

the model to a specific region. Recently, there have been several studies which have

used hydrodynamic models to accurately model the transmission of sea lice between

salmon farms (Adams et al., 2015; Cantrell et al., 2018; Foreman et al., 2009), as well

as the transmission of other marine larvae between population patches. These studies

often quantify the amount of larval connectivity between patches by pairing particle

tracking models with ocean circulation models, such as FVCOM (Chen et al., 2006).

Connectivity matrices can then be constructed by tracking the number of particles

released from one patch that pass by another patches. Most recently, Cantrell et al.

(2018) used kernel density estimation on the output of the particle tracking model to

quantify infection pressure of sea lice from a particular salmon farm. Depending on

the method that these models use to estimate larval connectivity between patches, the
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arrival time that we calculate in this chapter from the advection diffusion equation,

could easily be calculated from these detailed hydrodynamic models. The connec-

tivity matrices often calculated in these papers could then be reformulated as next

generation matrices using survival and maturation functions specific to the species

studied, so that the source-sink distribution of populations can be directly calcu-

lated, and so that the entries have a more relevant biological meaning. We believe

that the combination of connectivity matrices from hydrodynamic models with next

generation matrices is an exciting area of future work to understand the population

dynamics of specific systems, and is our focus in Chapter 4 of this thesis.

2.6 Appendix for Chapter 2

2.6.1 Derivation from McKendrick-von Foerster PDE

Here we derive equation 4.5 by solving the McKendrick von-Foerster PDE:

∂ni
k(t, a)

∂t
+

∂ni
k(t, a)

∂a
= −µi

k(a)n
i
k(t, a)

ni
k(t, 0) = Bi

k(t)

ni
k(0, a) = ñi

k(a)

µi
k(a) = −(M i

k(a)S
i
k(a))

′

M i
k(a)S

i
k(a)

(2.14)

First, for simplicity we drop the indexes k and i so that ni
k(t, a) = n(t, a). Then,

we solve this linear partial differential equation using the method of characteristics.

The goal is to reduce the partial differential equation into an ordinary differential

equation of one variable along certain characteristic curves in a and t. To do this

we parameterize a = a(s) and t = t(s), so that n(t(s), a(s)) is now a function of the

single variable s. Differentiating n(t(s), a(s)) with respect to s:

dn

ds
=

∂n

∂t

dt

ds
+

∂n

∂a

da

ds
(2.15)

Now we choose the characteristic curves a(s) and t(s) such that

da

ds
= 1 and

dt

ds
= 1.

Then substituting equation 2.14 into equation 2.15 we arrive at the ordinary differ-

ential equation:
d

ds
n(t(s), a(s)) = −µ(a(s))n(t(s), a(s)) (2.16)
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Solving for the characteristic curves, t(s) and a(s), we find

t(s) = s+ t0 and a(s) = s+ a0.

Then, solving for n(t(s), a(s)) in equation 2.16 we find:

n(t(s), a(s)) = n(t(0), a(0))e−
∫︁ s
0 µ(x+a0)dx

= n(t(0), a(0))e
−

∫︁ a0+s
a0

µ(y)dy

= n(t(0), a(0))e
∫︁ a0+s
a0

(M(y)S(y))′
M(y)S(y)

dy

= n(t(0), a(0))e
∫︁ a0+s
a0

d
dy

log(M(y)S(y))dy

= n(t(0), a(0))
M(a0 + s)S(a0 + s)

M(a0)S(a0)
(2.17)

Now we have two boundary conditions to impose, one at t = 0 and one at a = 0.

Together, the two boundaries intersect all characteristic curves, and so equation 2.17

is the unique solution to equation 2.14 for all a ≥, t ≥ 0. From the form of our

characteristic equations for a(s) and t(s), it is clear that all characteristics are lines

t = a+ b in the a-t plane. The line t = a divides the a-t plane into two regions: t ≤ a

and t > a. Characteristic curves for which t ≤ a intersect the boundary t = 0 at

some point (t, a) = (0, a0). Substituting t = s and a = s + a0 into equation 2.17 we

find

n(t, a) = n(0, a− t)
M(a)S(a)

M(a− t)S(a− t)

= n0(a− t)
M(a)S(a)

M(a− t)S(a− t)
.

Similarly, characteristic curves for which t > a intersect the a = 0 boundary at some

point (t, a) = (t0, 0). Substituting t = s+ t0 and a = s into equation 2.17, we find

n(t, a) = n(t− a, 0)M(a)S(a)

= B(t− a)M(a)S(a).

Therefore together we have

n(t, a) =

⎧⎪⎨⎪⎩
B(t− a)M(a)S(a) t > a

n0(a− t) M(a)S(a)
M(a−t)S(a−t)

0 < t < a

n0(a) t = 0
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Chapter 3

Reactivity, Attenuation, and
Transients in Metapopulations

3.1 Introduction

Transient dynamics, those that occur over short timescales, can often be vastly dif-

ferent from the asymptotic or long term dynamics of ecological systems. However,

throughout the history of mathematical biology much of the work has focused on

determining the asymptotic dynamics of biological systems. While the study of long-

term dynamics has given ecologists many tools to analyze the behaviour of popula-

tions, these tools are often not the same as those required to understand transient

dynamics. Recently Hastings et al. (2018) have shown that transient dynamics are

much more ubiquitous than previously assumed and long transients occur in many

different ecological systems, from plankton and coral to voles and grouse. Studying

the transient dynamics of an ecological system can give useful insight into the different

processes that may occur after a disturbance, change in environmental conditions, or

change in human intervention to a system. In some marine systems that are driven

by environmental fluctuations, such as the Dungeness crab, transient dynamics may

in fact be key to understanding how these systems behave (Higgins et al., 1997).

There has also been a recent push to characterize the different types of systems

that display long transient dynamics that differ significantly from their asymptotic

dynamics (Hastings, 2001; Hastings, 2004; Hastings et al., 2018; Morozov et al.,

2020). Hastings et al. (2018) have loosely categorized four different drivers of long

transient dynamics in ecological systems: ghost attractors and crawl-bys, slow-fast

dynamics, high dimensionality, and stochastic noise. These categories are not always

distinct and certain systems may indeed fall into multiple categories. For example,

a predator prey system may have a crawl-by past a saddle that drives the transient
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dynamics in this system, but this could also be thought of as a difference in timescales

of the predator decline due to lack of prey. For metapopulations the main driver of

transient dynamics is often the high dimensionality arising due to spatial structure,

though these transient dynamics may be exacerbated by the other drivers as well.

Some of the earliest studies of systems that could generate long transients were

systems with spatial structure (Hastings and Higgins, 1994; Lloyd and May, 1996).

It seems intuitive that spatial structure or spatial heterogeneity can drive some sort

of transient dynamics in a system. If individuals start in one location in a habitat,

especially a poor habitat, then it will take time before they can spread over the entire

habitat and the long-term population dynamics begin to emerge. What is surprising

is that spatial structure can also give rise to so called long-lived transients, where the

transient dynamics are extensive enough that they continue on timescales past which

we typically measure biological populations (Hastings and Higgins, 1994).

One method of adding spatial structure to a population is to formulate it as a

metapopulation, where distinct populations live on habitat patches that are con-

nected via dispersal or migration. Metapopulation models were originally proposed

by Levins (1969) to model patch occupancy in habitats consisting of isolated habitat

patches, but these early models used space implicitly rather than explicitly. Later

metapopulation models have included space explicitly by allowing for differing habi-

tat quality on patches or differing dispersal between patches (Gyllenberg et al., 1997;

Hanski and Thomas, 1994), though often these models are focused on the proportion

of occupied patches rather than the population size on each patch. However, many

marine metapopulation models as well as epidemiological metapopulation models ex-

plicitly track the number of individuals on each patch as well as movement or dispersal

between patches (Arino and van den Driessche, 2003; Armsworth, 2002; Figueira and

Crowder, 2006; Lloyd and May, 1996). In this chapter we model the metapopulation

structure following this spatially explicit framework where individuals are tracked

rather than the proportion of occupied patches.

Another benefit of the metapopulation framework is that habitat patches can be

classified into source patches and sink patches. This classification can occur in many

different ways (Figueira and Crowder, 2006; Krkošek and Lewis, 2010; Pulliam, 1988),

but commonly a source is a productive habitat patch and a sink is a poor habitat

patch. Early measures of sources and sinks were mainly focused on connectivity

between patches, however more recently it has been understood that it is the in-

terplay between patch connectivity and local patch productivity that characterizes

patches as sources or sinks, especially in marine metapopulations. One of the new

and easily tractable metrics that embodies this relationship comes from the theory of

61



next-generation matrices and the basic reproduction number, R0. This framework,

originally developed in epidemiology, has been used to characterize sources and sinks

in populations of mussels, salmon, and sea lice on salmon farms (Harrington and

Lewis, 2020; Huang and Lewis, 2015; Krkošek and Lewis, 2010).

While metapopulation theory has previously been used to classify patches as sources

and sinks, other metrics have been used to characterize the transient dynamics of sys-

tems. Reactivity was initially introduced by Neubert and Caswell (1997) to measure

the maximum initial growth rate of a system over all possible perturbations from

an equilibrium. If the maximum initial growth rate is positive, then the system is

reactive. Complementing reactivity is the amplification envelope, which is a measure

of how large solutions can grow over time after initial perturbations. Later, Townley

and Hodgson (2008) introduced attenuation as the opposite metric to measure initial

decline of populations; a system attenuates if the minimum possible growth rate de-

clines following a perturbation. Reactivity and attenuation are then most interesting

when they are different from the stability of the equilibrium of a system — when

a system attenuates but is unstable, or is reactive but stable — and it is on these

situations that we focus this chapter. Biologically these are populations that begin

by declining but eventually increase, or begin by increasing but eventually decline.

It should be noted that reactivity, attenuation and the amplification envelope are

all defined from the linearization of a non-linear system about an equilibrium. These

measures are therefore most useful around hyperbolic equilibria, where the dynamics

of the non-linear system can be well approximated by the dynamics of the linear

system. If an equilibrium is not hyperbolic, then the trajectories in the non-linear

system may no longer be similar to the linearization by which reactivity, attenuation,

and the amplification envelope are defined. Even around a hyperbolic equilibrium

the trajectories of the non-linear and linearized systems may diverge as they move

away from the equilibrium. Here we use the technique of linearization to determine

reactivity and attenuation as others have before us, but want to emphasize these

caveats as they are often brushed over in the transient literature.

In this chapter we apply these transient measures of growth to a class of biological

metapopulation models where there is no migration between population patches, only

birth on new patches. These are a subset of birth-jump processes (Hillen et al.,

2015) and include models for marine meroplanktonic species, where larvae can travel

through the ocean between population patches but adults remain confined to a habitat

patch. Specific species that exhibit this structure include sea lice (Adams et al.,

2015), corals and coral reef fish (Cowen et al., 2006; Jones et al., 2009), barnacles

(Roughgarden et al., 1988), Dungeness crabs (Botsford et al., 1994), sea urchins
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(Botsford et al., 1994), and many other benthic marine species (Cowen and Sponaugle,

2009). This type of system also encompasses many plant species where seeds are

carried between suitable habitat patches (Husband and Barrett, 1996), and depending

on the census timing could also include insect species where there is one large dispersal

event between habitat patches, such as the spruce budworm (Ludwig et al., 1978;

Morris, 1963; Williams and Liebhold, 2000) and mountain pine beetle (Safranyik and

Carroll, 2007). Lastly this class of models also includes multi-patch or multi-city

epidemiological metapopulation models where infections can spread between patches,

for example infected residents of a city may travel and infect residents of other cities

before returning home (Arino and van den Driessche, 2003). We focus on the transient

dynamics that can occur around the extinction state of these systems.

The aims of this chapter are threefold. The first is of a technical nature: if we

want to study reactivity and attenuation, what norm should we use and how do we

calculate these quantities from the dynamical system? In section 3.2 we demonstrate

how to calculate reactivity and attenuation using the biologically intuitive ℓ1 norm

in birth-jump metapopulations, and in section 3.6 we show how to add a weighting

to this norm to calculate reactivity and attenuation if the metapopulation is stage-

structured. The second aim of this chapter is pedagogical, to provide simple examples

of metapopulations that exhibit interesting transient behaviour that is different from

their asymptotic behaviour as well as transient behaviour that is different depending

on the norm. In section 3.2 we provide examples that illuminate the difference between

reactivity and attenuation in the ℓ1 and ℓ2 norms, in section 3.3 we provide examples

that illustrate the potential difference between the transient and asymptotic dynamics

of metapopulations, and in section 3.4 we provide an example of how increasing the

number of habitat patches can accentuate this difference. The last aim of this chapter,

and the focus of section 3.5, is to connect reactivity and attenuation to the source-sink

classification of habitat patches, of which there exists a large body of literature in

marine metapopulations, thus relating these instantaneous and generational transient

measures of growth and decay.

Chronologically the chapter is structured as follows. In section 3.2 we use the

ℓ1 norm as a biologically intuitive measure of reactivity and attenuation in birth-

jump metapopulations and provide examples to demonstrate how measurement in

this norm differs from the commonly used ℓ2 norm. In section 3.3 we use simple

two-patch metapopulation examples to demonstrate that the transient dynamics of

these systems can be vastly different from their asymptotic dynamics, and in sec-

tion 3.4 we provide an example of how increasing the number of habitat patches in a

metapopulation can enhance this difference. In section 3.5 we show how to connect
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the reactivity and attenuation of a metapopulation to the source-sink classification of

habitat patches, and in section 3.6 we show how to appropriately measure the reac-

tivity and attenuation of a metapopulation when the population is stage structured

using a weighted ℓ1 norm.

3.2 Extending the general theory of transients to

metapopulations

In this section we apply the metrics of reactivity (Neubert and Caswell, 1997) and

attenuation (Townley and Hodgson, 2008) to the zero equilibrium of general systems

of single-species metapopulations and thus focus on the transient dynamics that can

occur around the extinction state of these systems. In order to present our work in

a general form, we model the dynamics of a metapopulation of a single species on n

patches around the zero equilibrium with the system:

x′(t) = Ax(t) x(0) = x0, (3.1)

where A = [aij] is a real irreducible Metzler matrix (aij ≥ 0 for all i ̸= j) of order

n, x(t) is a population vector containing the population of the species on each patch,

and the initial condition x0 is a small perturbation of the zero equilibrium. This

most often represents the linearization of a non-linear system, which more completely

captures the dynamics of the population, but could also represent the full dynamics of

a linear system if density dependence was not important to the population dynamics.

For the analyses in this chapter we focus on biologically realistic single-species

metapopulations where the entries of x(t) are non-negative when beginning with a

non-negative initial perturbation, x0. This condition is equivalent to requiring that A

be an essentially non-negative (Metzler) matrix, such that all the off-diagonal entries

of A are non-negative (Thm 2.4, Thieme (2009)). Biologically this means that the

presence of individuals on one patch cannot contribute to the decline of a population

on another patch and that the population on each patch will not become negative.

3.2.1 Reactivity and attenuation using the ℓ1 norm

To analyze the transient dynamics of this metapopulation we begin by introducing

some definitions from Neubert and Caswell (1997). An equilibrium is reactive if there

is an initial perturbation x0 such that the initial growth rate of the total population is

positive. The mathematical definition of reactivity from Neubert and Caswell (1997),
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using notation from Lutscher and Wang (2020), is:

σ̄ω = max
||x0||ω ̸=0

[︃
1

||x(t)||ω
d||x(t)||ω

dt

⃓⃓⃓⃓
t=0

]︃
, (3.2)

where x(t) is a solution to eq. (3.1) and ω specifies the norm to be used to calculate

reactivity, if the ℓ1 norm is used then ω = 1 and if the ℓ2 norm is used then ω = 2.

If σ̄ω > 0 then the equilibrium is reactive, and if σ̄ω ≤ 0 then the equilibrium is not

reactive. Neubert and Caswell (1997) use the ℓ2 norm to measure the population size

and show that σ̄2 is the maximum eigenvalue of (A + AT )/2. However, the ℓ2 norm

lacks a reasonable biological interpretation, and so others have instead used the ℓ1

norm to define reactivity (Huang and Lewis, 2015; Stott et al., 2011; Townley et al.,

2007). Biologically, the ℓ1 norm,

||x||1 =
n∑︂

i=1

|xi|, (3.3)

can be interpreted as the total population on all patches of a metapopulation whereas

the ℓ2 norm,

||x||2 =

⌜⃓⃓⎷ n∑︂
i=1

x2
i , (3.4)

is the Euclidean distance of the total population away from the origin. We show in

this work that the ℓ1 norm is convenient to determine reactivity from the population

matrix A in single species metapopulations.

In contrast, an equilibrium attenuates if there is an initial perturbation x0 for which

the initial growth rate of the total population declines (Townley and Hodgson, 2008).

This is formally defined as

σω = min
||x0||ω ̸=0

[︃
1

||x(t)||ω
d||x(t)||ω

dt

⃓⃓⃓⃓
t=0

]︃
. (3.5)

If σω < 0 then the equilibrium attenuates, and if σω ≥ 0 then the equilibrium does

not attenuate.

Comparing the definitions of attenuation and reactivity we can see that it is possible

for an equilibrium to be both reactive and to attenuate, if there are certain initial

perturbations for which σ̄ω > 0 is achieved and others such that σω < 0. In relation

to the stability of an equilibrium, all stable equilibria attenuate and all unstable

equilibria are reactive (Theorem 3.3). Reactivity and attenuation are then most

interesting when they are different from the stability of the equilibrium: when an

equilibrium is reactive but stable, so that the total population initially grows but
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eventually declines, or when an equilibrium attenuates but is unstable, so that the

total population declines but eventually grows. It should also be noted that the

only systems that are not reactive and do not attenuate are those in which the total

population size remains constant for all time. In this chapter we sometimes refer to

the reactivity and attenuation of a system, rather than an equilibrium, and in this

case we are referring to the reactivity and attenuation of the zero equilibrium, around

which we have linearized a system.

The last measures that we define here to use in some later sections are the ampli-

fication envelope and the maximum amplification. The amplification envelope is the

maximum possible deviation of a solution away from the steady state at time t after

any initial perturbation x0, which Neubert and Caswell (1997) define mathematically

as:

ρ(t) = max
||x0||̸=0

||x(t)||
||x0||

. (3.6)

The maximum amplification is simply the maximum of the amplification envelope

over all time:

ρmax = max
t≥0

ρ(t) = max
t≥0

||x0||̸=0

||x(t)||
||x0||

. (3.7)

We do not use ω to differentiate between norms here as we only use the amplification

envelope and maximum amplification with the ℓ1 norm in sections 3.3.1 and 3.4. The

amplification envelope need not be achieved by a single perturbation that produces a

maximal solution for all time, rather different perturbations may produce the maximal

deviation for different times. While reactivity and attenuation quantify the short time

response to a perturbation, the amplification envelope and maximum amplification

quantify how large a perturbation can become and how long growth can last. It is for

these purposes that we use the amplification envelope and maximum amplification in

sections 3.3.1 and 3.4.

Now before quantifying the reactivity and attenuation of the entire metapopulation,

let us first determine the initial growth rate of the population if we begin with one

individual on patch j. We call this initial growth rate λj, and mathematically we

define

λj =
n∑︂

i=1

x′
i(0),

with x0 = ej, where ej is the vector of length n with 1 in the jth entry and 0s

elsewhere. In terms of system 3.1 this simplifies to the jth column sum of A,

λj =
n∑︂

i=1

aij.
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The initial growth rate for a given patch j, λj, can also be calculated from the lifecycle

digraph as the sum of all the outgoing birth rates from a patch minus the death rate

on that patch, where any paths describing movement of individuals between patches

are ignored. See figs. 3.3, 3.5, 3.7 and 3.8 for examples of lifecycle graphs and Caswell

(2000) for further reference. We can then connect this patch specific initial growth

rate with the total growth rate, or reactivity, using the following lemma.

Lemma 3.1. Reactivity under the ℓ1 norm in eq. (3.2) is equal to the maximum

column sum of A in system (3.1),

σ̄1 = max
1≤j≤n

λj = max
1≤j≤n

∑︂
i

aij.

Proof. Since xj ≥ 0 for all j, the absolute value signs in eq. (3.2) can be dropped and

so

σ̄1 = max
||x0||1=1

[︃
d||x||1
dt

⃓⃓⃓⃓
t=0

]︃
= max

||x0||1=1

[︄
d

dt

n∑︂
i=1

xi

⃓⃓⃓⃓
t=0

]︄

= max
||x0||1=1

[︄
n∑︂

i=1

d

dt
xi

⃓⃓⃓⃓
t=0

]︄
= max

||x0||1=1

[︃
1Tx′

⃓⃓⃓⃓
t=0

]︃
where 1T is a row vector where every entry is equal to 1. Substituting x′ = Ax from

(3.1) gives

σ̄1 = max
||x0||1=1

[︁
1TAx0

]︁
= max

||x0||1=1

[︄
n∑︂

j=1

(︄
n∑︂

i=1

aij

)︄
x0j

]︄
.

Now let k be such that
∑︁n

i=1 aik = max1≤j≤n

∑︁n
i=1 aij. Then, with ||x0||1 = 1,

n∑︂
j=1

(︄
n∑︂

i=1

aij

)︄
x0j ≤

(︄
n∑︂

i=1

aik

)︄
n∑︂

j=1

x0j =

(︄
n∑︂

i=1

aik

)︄
,

with equality when x0j =

{︄
1 j = k

0 j ̸= k
. Therefore

σ̄1 = max
1≤j≤n

(︄
n∑︂

i=1

aij

)︄
= max

1≤j≤n
λj.

With a similar proof we can connect the patch specific initial growth rate to at-

tenuation via the following lemma:
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Lemma 3.2. Attenuation under the ℓ1 norm in eq. (3.5) is equal to the minimum

column sum of A in system (3.1),

σ1 = min
1≤j≤n

λj = min
1≤j≤n

∑︂
i

aij.

It should be noted, as can be seen in the proof of Lemma 3.1, that the maximum

possible growth rate occurs if the initial population is all on the patch with the

maximum λj, and the minimum possible growth rate occurs if the initial population

is all on the patch with the minimum λj.

3.2.2 Comparing reactivity in the ℓ1 and ℓ2 norms

Here we present some examples of systems that are reactive in ℓ1 but not in ℓ2 and vice

versa to illuminate the difference between measuring reactivity in the two norms. It

has previously been noted that reactivity depends on the norm and scaling (Lutscher

and Wang, 2020; Neubert and Caswell, 1997) and the following examples help clarify

the underlying biological and mathematical meaning of the two norms.

Example 1

First, we present an example that is reactive in ℓ2 but not in ℓ1. Reactivity in ℓ2, σ̄2,

can be calculated as the maximum eigenvalue of (A + AT )/2 (Neubert and Caswell,

1997). Take system (3.1) with

A =

⎡⎣−1 0

1 0

⎤⎦ .

This system simply redistributes individuals from patch 1 to patch 2, and the phase

plane is shown in fig. 3.1. It is not reactive in the ℓ1 norm (σ̄1 ≤ 0) because the total

population size is not increasing, but it is reactive in ℓ2 (σ̄2 > 0). This highlights

how measuring reactivity in the ℓ2 norm can at times defy our biological expectation

of what reactivity should mean — the growth of a population — and reinforces our

rationale for using the ℓ1 norm to measure reactivity in metapopulations. While the

matrix A is reducible and this system is only semi-stable, and thus may be considered

a borderline example, if a22 is replaced by a small negative number, −ϵ, and a12 is

replaced by a small positive number, ϵ/2, then for sufficiently small ϵ, A will be

irreducible and the system will now be stable, but will still be reactive in ℓ2 and not

in ℓ1.
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Figure 3.1: The phase plane for system (3.1) with A =

⎡⎣−1 0

1 0

⎤⎦ , which is reactive

in ℓ2 but not in ℓ1. The line x1 + x2 = 1 and the circle x2
1 + x2

2 = 1 geometrically
depict ||x|| = 1 in the ℓ1 and ℓ2 norms respectively. The derivative vectors for the
phase plane are shown in red and two different initial trajectories are shown in green
and blue. The green trajectory is an example that is reactive in ℓ2, but not in ℓ1, and
the blue trajectory is another example that is not reactive in ℓ1.

Example 2

The second example, which is reactive in ℓ1 but not in ℓ2 is system (3.1) with

A =

⎡⎣−1 3/2

1/3 −1

⎤⎦ ,

where the phase plane is shown in fig. 3.2. Now the system is reactive in ℓ1 (σ̄1 > 0)

because if we start with one individual on the second patch (the dynamics governed

by the second row of A) the total population grows, but in such a way that it will not

be reactive in ℓ2 (σ̄2 ≤ 0). This example demonstrates that again reactivity in ℓ2 can

defy our biological expectation of reactivity, but now in the opposite way. Here the

total population grows, yet the system is not reactive in ℓ2. Note that this system is

equivalent to system (3.9) with ϵ = 3.

Together, the two examples highlight the differences that can occur when measuring

reactivity in different norms and the caution that should be taken when interpreting
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reactivity in the ℓ2 norm biologically. Here we only present examples that are reactive

in ℓ2 but not in ℓ1 and vice versa but it is also possible to find examples of systems

that attenuate in ℓ2 but not in ℓ1.
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Figure 3.2: The phase plane for system (3.1) with A =

⎡⎣−1 3/2

1/3 −1

⎤⎦ , which is reactive

in ℓ1 but not in ℓ2. The line x1 + x2 = 1 and the circle x2
1 + x2

2 = 1 geometrically
depict ||x|| = 1 in the ℓ1 and ℓ2 norms respectively. The derivative vectors for the
phase plane are shown in red and two different initial trajectories are shown in green
and blue. The green trajectory is an example that is reactive in ℓ1, but not in ℓ2, and
the blue trajectory is another example that is not reactive in ℓ2.

3.2.3 The relationship between stability and reactivity/at-
tenuation

Now that we have presented two examples that demonstrate the difference between

reactivity in the ℓ1 and ℓ2 norms, we show that in any norm if an equilibrium is

asymptotically stable it attenuates, and if an equilibrium is unstable it is reactive.

Theorem 3.3. If the x = 0 equilibrium for x′(t) = Ax(t) is asymptotically stable and

A is a Metzler matrix, then the system attenuates in any norm. Likewise if the x = 0

equilibrium is unstable then the system is reactive in any norm.
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Proof. Let µ(A) be the eigenvalue of A with the largest real part. The matrix A

is Metzler and so µ(A) is a real eigenvalue of A with an associated nonnegative

eigenvector v (Thm A.43, Thieme (2003)). The system with initial condition x(0) = v

then has solution of the form x(t) = eµ(A)tv. Due to the absolute homogeneity property

of all norms, ||x(t)|| = ||eµ(A)tv|| = |eµ(A)t|||v|| = eµ(A)t||v||. Therefore differentiating

and setting t = 0 yields
1

||x(t)||
d||x(t)||

dt

⃓⃓⃓⃓
t=0

= µ(A).

Now if the x = 0 equilibrium is asymptotically stable then µ(A) < 0 and therefore

the minimum in the definition of σω in eq. (3.5) is negative so the system attenuates.

If the x = 0 equilibrium is unstable then µ(A) > 0 and therefore the maximum in

the definition of σ̄ω in eq. (3.2) is positive so the system is reactive.

In this section we have shown how to calculate reactivity and attenuation using

the ℓ1 norm in metapopulations, proven that if the equilibrium of a system is unsta-

ble/stable then the system must be reactive/attenuate in any norm, and demonstrated

the difference between reactivity in the ℓ1 and ℓ2 norms using two salient examples.

We now return to the motivating feature of this chapter — systems that are reactive

and stable or attenuate and are unstable — and in the following section we provide

examples of long lived transients in these systems.

3.3 Metapopulations with arbitrarily large tran-

sient growth or decay

Here we examine two different metapopulations, one of which is reactive and can ex-

hibit arbitrarily large transient growth, and the other that attenuates and can decline

to arbitrarily small levels. In each case this transient growth differs from the system’s

long term growth trajectory: the metapopulation that exhibits large growth eventu-

ally declines, and the system that declines eventually grows. Both of these example

metapopulations are linear systems, and therefore the addition of non-linearities to

construct more realistic models could further exacerbate the length of the transient

period. These examples are not meant to imply that there are realistic biological

metapopulations that can grow arbitrarily large before decaying, but rather to em-

phasize that the difference between transient dynamics and asymptotic dynamics can

be quite stark even in linear systems.
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3.3.1 Arbitrarily large transient growth

First we present a reactive metapopulation that can exhibit arbitrarily large transient

growth, but eventually declines. In this metapopulation individuals can either give

birth to new individuals on the same patch, or give birth to individuals on the other

patch, but there is no migration of individuals between patches. As mentioned in

the introduction, this type of model is applicable to many marine metapopulations

where adults are sedentary but larvae can disperse, to plant populations where seeds

can be carried between habitat patches, or other populations governed by birth-jump

processes. Let the metapopulation be described by:

x′ = rx+ b12y (3.8)

y′ = b21x+ ry

so that r is the on patch birth rate minus the death rate, b12 is the birth rate of

individuals on patch 2 producing new individuals on patch 1, and b21 is the birth rate

of individuals on patch 1 producing new individuals on patch 2. The system is linear,

so assuming that r2 ̸= b12b21 the only steady state is x = y = 0.

For the metapopulation to eventually decline, both eigenvalues need to be negative.

For system (3.8) the eigenvalues are r+
√
b12b21 and r−

√
b12b21 and thus we require

that r < 0 and r2 > b12b21. Now in order for the metapopulation to be reactive in

the ℓ1 norm we need either b12 > −r or b21 > −r. Here we choose b21 > −r, so that if

we start with one individual on patch 1, i.e. x(0) = 1, y(0) = 0, the metapopulation

initially grows.

To prove that the metapopulation can grow arbitrarily large, we show that the limit

as some parameter approaches 0 of maxt(x(t) + y(t)) is unbounded. Along with the

initial condition x(0) = 1, y(0) = 0, this is equivalent to showing that the limit of the

maximum amplification in the ℓ1 norm, ρmax, becomes unbounded. This equivalence

is because the initial growth rate for patch 1, λ1, is greater than the initial growth

rate for patch 2, λ2, and thus by Lemma 3.1 and the linearity of the system, the

maximum amplification will be achieved by the unit perturbation x(0) = 1, y(0) = 0.

To take the limit, we must first reduce the parameters in our system until we are

left with a single parameter that we can let approach 0, while still maintaining the

inequalities above that govern the stability and reactivity of the system. Let r = −1,

b12 = ϵ/2, and b21 = 1/ϵ, where ϵ is a small positive parameter that approaches 0.
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Figure 3.3: General life cycle digraph for a two-patch model, x = Ax, where

x =
[︂
x y

]︂T
, and A =

⎡⎣a11 a12

a21 a22

⎤⎦ . The directed edges represent the birth rate of

individuals on the outgoing patch producing new individuals on the incoming patch.
The self loops are the birth rate minus the death rate on a patch. In system (3.9),
a11 = −1, a12 = ϵ/2, a21 = ϵ−1, and a22 = −1. In system (3.12) a11 = −1, a12 = ϵ,
a21 = ϵ, and a22 = ϵ. In system (3.15) if x1 = x and x2 = y then a11 = b11 − d1,
a12 = b12, a21 = b21, and a22 = b22 − d2.

Our reduced system can now be written as:

x′ = −x+
ϵ

2
y (3.9)

y′ =
1

ϵ
x− y

x(0) = 1 y(0) = 0.

This system is stable and the digraph for this system is shown in fig. 3.3. This system

is reactive in ℓ1 and ℓ2 for small ϵ and the solution is:

x(t) =
1

2

(︂
e
−(1− 1√

2
)t
+ e

−(1+ 1√
2
)t
)︂

(3.10)

y(t) =
1√
2ϵ

(︂
e
−(1− 1√

2
)t − e

−(1+ 1√
2
)t
)︂
. (3.11)

For each fixed t, limϵ→0 y(t) = ∞, and thus the metapopulation can grow arbitrarily

large. For further details, see section 3.8.2.

Therefore even in a two patch metapopulation that is asymptotically stable, there

is always a parameter combination for which the total population, and thus also

the maximum amplification in the ℓ1 norm, ρmax, can initially grow arbitrarily large

before they decay. This is not meant to imply that there are realistic biological

metapopulations that can grow arbitrarily large before decaying, but to emphasize

how different the transient and asymptotic dynamics of a system can be.

3.3.2 Transient decay to arbitrarily small levels

We now present an example of a metapopulation that attenuates and can decay

to an arbitrarily small population size before eventually growing. We again use a
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metapopulation where individuals can either give birth to new individuals on their

patch or on the other patch, but cannot migrate between patches. The difference

between this metapopulation and the example used in the previous section, is that

now the on patch birth and death rates differ between patches, but the between patch

birth rates are the same. Let the metapopulation be described by:

x′ = r1x+ ϵy

y′ = ϵx+ r2y

where r1 is the birth rate minus the death rate on patch 1, r2 is the birth rate minus

the death rate on patch 2, and ϵ is the interpatch birth rate for both patches.

In order for the metapopulation to eventually grow, we assume that the birth rate

is greater than the death rate on one of the patches. We choose this to be patch 2,

thus we require r2 > 0. We also want our population to initially decline when starting

on patch 1, for this to occur we assume r1+ ϵ < 0. To prove that the metapopulation

can decay to an arbitrarily small population size we reduce the system to have a

single parameter and then show that the limit as the parameter approaches 0 of

mint(x(t) + y(t)) = 0. Let r1 = −1 and r2 = ϵ, then our system can be written in

terms of a single positive parameter, ϵ, as:

x′ = −x+ ϵy (3.12)

y′ = ϵx+ ϵy

x(0) = 1 y(0) = 0.

This system is unstable and the corresponding digraph is shown in fig. 3.3. It atten-

uates in both the ℓ1 and ℓ2 norms for small ϵ.

It is possible to show that the minimum population size can grow arbitrarily small

in a manner similar to the previous section, though the calculations are somewhat

more complicated. Instead in this section, we perform an asymptotic expansion in

terms of ϵ to demonstrate the limiting behaviour of system (3.12). Let x(t) = x0(t)+

ϵx1(t) +O(ϵ2) and y(t) = y0(t) + ϵy1(t) +O(ϵ2). Then the zero order system is:

x′
0(t) = −x0(t)

y′0(t) = 0

x0(0) = 1 y0(0) = 0,

that has the solution x0(t) = e−t and y0 = 0. We can proceed in a similar manner to
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solve the first order terms, and then our solution up to order ϵ is given by:

x(t) = e−t +O(ϵ2)

y(t) = ϵ(1− e−t) +O(ϵ2).

This solution is valid for small t, and is therefore our inner approximation. To find

our outer approximation for large t, we rescale t = τ/ϵ and arrive at the system:

ϵX ′ = −X + ϵY

ϵY ′ = ϵX + ϵY.

We can again solve the zero order and first order equations and arrive at the

following solution with two undetermined coefficients:

X(τ) = ϵCeτ +O(ϵ2)

Y (τ) = Ceτ + ϵ(Cτeτ + (C +K)eτ ) +O(ϵ2).

To solve our undetermined coefficients we require that limt→∞ x(t) = limτ→0X(τ),

and limt→∞ y(t) = limτ→0 Y (τ). From x(∞) = X(0+), we find C = 0. Substituting

C = 0 into y(∞) = Y (0+) to solve for K we find K = 1. Adding our inner and outer

solutions together and subtracting the overlap (x(∞) = X(0+) = 0 and y(∞) =

Y (0+) = ϵ) we find

x(t) = e−t +O(ϵ2)

y(t) = ϵ(eϵt − e−t) +O(ϵ2),

thus our total population size behaves as

x(t) + y(t) = e−t + ϵ(eϵt − e−t) +O(ϵ2). (3.13)

We can see from eq. (3.13) and fig. 3.4 that for very small ϵ, the total population size

behaves similarly to e−t before eventually growing. Thus for a minimum population

threshold, we can always find an ϵ small enough, such that the solution crosses the

threshold before the population grows. Alternatively, this can be proved by solving

the full system and taking the minimum.

In this example the zero equilibrium is a saddle and as ϵ becomes arbitrarily small

the initial condition becomes arbitrarily close to the stable manifold of the saddle.

Therefore the trajectory remains close to the stable manifold for a long time be-

fore heading towards the unstable manifold. The construction and dynamics of this

example are thus qualitatively different from the previous example where the zero

equilibrium is stable and there is no unstable manifold present.
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Figure 3.4: Asymptotic approximation of the total population size (red) compared to
the true total population size (blue) for system (3.12), with ϵ = 0.01. The asymptotic
approximation is given by eq. (3.13).

Here we have shown that there are metapopulations for which the transient pop-

ulation can grow arbitrarily large or small, no matter the asymptotic stability of the

system. In the next section we demonstrate how increasing the patch number can

increase transient growth in certain metapopulations.

3.4 Increasing patch number increases transient

timescale

In this section we show how in certain scenarios increasing the number of habitat

patches in birth-jump metapopulations can prolong the transient growth away from a

stable equilibrium. In aquatic systems, habitat patches may be quite productive, but

strong drift downstream can sweep most larvae to the next patch, leading to large

transient growth on downstream patches before the population eventually disappears

from the last patch. This phenomenon can occur in metapopulations situated in

rivers, ocean channels, or reef systems where reefs are arranged along a coastline

with a directional current. Here we explore how advection, or drift, can cause large

transient growth in these metapopulations.

Consider a metapopulation on n patches where the dynamics are described by the
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Figure 3.5: Digraph for system (3.14). The directed edges represent the birth rate of
individuals on the outgoing patch producing new individuals on the incoming patch.
The self loops are the birth rate minus the death rate on a patch.

following system of equations:

x′ = Ax x(0) = x0 (3.14)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r ϵ 0 . . . 0

b2 r ϵ
. . .

...

0 b2 r
. . .

...
. . . . . . . . . ϵ

0 . . . 0 b2 r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where r is the birth rate minus the death rate on each patch, b2 is the birth rate

of patch j − 1 on patch j, ϵ is the birth rate from patch j + 1 to patch j, and e1

is a vector with 1 in the first entry and 0s elsewhere. The parameters b2, and ϵ are

positive and r is negative. The digraph for this system is shown in fig. 3.5.

The instantaneous measures of growth, λj, and reactivity in the ℓ1 norm, σ̄1, are

therefore λ1 = r+b2, λj = r+b2+ϵ for j = 2, . . . , n−1, λn = r+ϵ, and σ̄1 = r+b2+ϵ.

Let r+ ϵ < 0 and r+ b2 > 0, then the system is reactive (σ̄1 > 0), and this maximum

initial growth rate is achieved if the initial population is all on any patch except for

patch 1 or n, though if the initial population starts on patch 1 the initial growth

rate is still positive. In system (3.14) A is a tridiagonal Toeplitz matrix, so it has

eigenvalues (Noschese et al., 2013)

λh = r + 2
√︁

b2ϵ cos

(︃
hπ

n+ 1

)︃
h = 1, . . . , n,

and corresponding right eigenvectors, vh, where the kth entry is given by

vh,k = (b2/ϵ)
k/2 sin

(︃
hkπ

n+ 1

)︃
k = 1, . . . , n;h = 1, . . . , n.

The solution to system (3.14), with initial condition x0 = e1, can therefore be

written as

x(t) = WeJtW−1e1,
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where W is a matrix containing the eigenvectors, vh, and J is a diagonal matrix

with the eigenvalues, λh, on the diagonal. For all but very small t the solution x(t)

is approximately equal to the amplification envelope in the ℓ1 norm, ρ(t), defined

by eq. (3.6). Through examination of the eigenvalues, this system is stable if ϵ is

small enough such that r + 2
√
b2ϵ < 0. Parameters that satisfy the inequalities that

determine stability and reactivity in the ℓ1 norm can be found in the caption of fig. 3.6.

In this case the maximum total population size, and also maximum amplification, are

given by

xmax = ρmax = max
t≥0

1TWeJtW−1e1,

with the corresponding time tmax, which is the value of t for which the maximum

occurs. The last measure of transience that is useful in this system is the total

transient time, ttotal, which we define as the time it takes for the population size to

decline below one, after initially starting with one individual, or

ttotal = min{t > 0 : 1TWeJtW−1e1 ≤ 1}.

So how does the number of patches affect the magnitude and length of transients?

In fig. 3.6, which compares a 5 and 15 patch system, we can see that increasing the

patch number increases both the magnitude of growth and the duration.

Here it can be difficult to see the duration of transience exhibited by all patches

on a regular scale, but on the log scale we can see that all patches except for patch

1 experience a large period of transient growth, before they decay below 1 individual

(fig. 3.6, dashed line). Patch 1 does not experience a large period of growth because

the internal growth rate, r, is negative and the birth rate from patch 2 to patch 1, ϵ,

is too small to overcome this negative internal growth rate.

What cannot be seen from fig. 3.6 is the dependence of transient growth on system

parameters. We find that decreasing b2 in system (3.14) results in a large decrease

in the maximum population size (and maximum amplification), xmax (ρmax), and

the total transient time, ttotal, but only a small decrease in the time at which the

maximum population size is achieved, tmax. Decreasing r however, results in a large

decrease in xmax (ρmax), tmax, and ttotal.

The relationship between increased transient time and number of patches can also

be found for a linear metapopulation where all patches have negative initial growth

rates, λj, except for the last patch which has a positive initial growth rate. In this

case the total population size decays for a long time before it eventually grows, and

the time that it decays depends on the number of patches.

We can see then that for a linear metapopulation, the length of the linear array
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Figure 3.6: The population sizes on each patch for the advective system (3.14) with
the initial condition x0 = e1, so that one individual is initially on patch 1. In a) the
population sizes are shown on a log scale for a metapopulation of 5 patches, and in
b) and c) the population sizes are shown for a metapopulation of 5 and 15 patches
respectively. On the untransformed scale only the population size on the last patch
can be seen as it is far larger than on any of the other patches, whereas on the log
scale the population sizes of all patches can be seen. Parameters for this simulation
are r = −0.00345, ϵ = 0.000001, and b2 = 2, chosen so that system (3.14) is reactive
but stable.

can accentuate the transient growth that is possible in the system and that this is

especially true for advective systems where there is some sort of directed birth in

one direction in the array. Systems with this type of advective flow include marine

metapopulations located in channels near the mouth of rivers, or long coral reefs

that are captured inside of a dominant coastal current flow. To the best of our
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knowledge, this form of advection-driven transient has not been previously reported

in the literature. However, related literature (eg. Byers and Pringle (2006)) models

the effect of advection on population persistence and range shifts.

Having presented some illuminating metapopulation examples that demonstrate

the magnitude that transient dynamics can differ from asymptotic dynamics, we now

turn back to the general theory of transients in metapopulations and connect it to

the source-sink classification of habitat patches.

3.5 Connecting the source-sink dynamics to the

transient dynamics

In this section we demonstrate how to connect the transient measures of initial popula-

tion growth to the source-sink classification of habitat patches in the metapopulation,

with a focus on marine metapopulations. There are several marine metapopulations

for which habitat patches have been classified as sources or sinks (Bode et al., 2006;

Figueira, 2009; Theuerkauf et al., 2021) as defining the contribution of a habitat patch

and the classification of habitat patches as sources or sinks is an important aspect

in the design of marine reserves (Figueira and Crowder, 2006). Here we connect the

source-sink classification of a habitat patch to the transient dynamics that may occur

if metapopulations are perturbed at low densities.

For the transient measure of the patch specific contribution to the initial growth of

the total population we use λj, previously defined in section 3.2. To classify habitat

patches as sources or sinks we use the next-generation matrix, K. Next-generation

operators have previously been used to classify source and sink regions in heterogenous

environments (Harrington and Lewis, 2020; Huang et al., 2016; Krkošek and Lewis,

2010; Mckenzie et al., 2012a). In order to calculate the next-generation matrix for

system (3.1) we decompose A = F−V , where F is a non-negative matrix with positive

entries that describe the birth of new individuals in the metapopulation, and V is

a non-singular M matrix (Berman and Plemmons, 1994) with entries that describe

the transfer of individuals between compartments or in this case habitat patches,

and also includes the death of individuals (van den Driessche and Watmough, 2002).

Examples 3, 4, and 5 illustrate the decomposition of A into F and V . Because

V is a non-singular M matrix, V −1 is non-negative. The next-generation matrix,

K = [kij], can then be calculated as K = FV −1 (van den Driessche and Watmough,

2002). This next generation matrix is then commonly used to calculate the basic

reproduction number R0, which is the average number of new individuals produced

by one initial individual, and is defined as the spectral radius of K. However we can
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also define Rj as the number of new individuals produced on all patches from one

initial individual starting on patch j, that can then be calculated as:

Rj =
n∑︂

i=1

kij.

In Chapter 2 of this thesis we used the notation Rδ(j) to denote the jth column sum

of K, as we were differentiating between Rδ(j), Rc(j), R0, Ru, and Rl. In this chapter

and the remaining chapters we use Rj instead to simplify the notation as we now only

refer to Rj and R0. We classify patch j as a source if Rj > 1, as then one individual

on patch j would produce more than one individual in the total metapopulation.

Likewise we classify patch j as a sink if Rj < 1, because in this case an individual

cannot replace itself in the metapopulation. In the following sections we often refer

to Rj as the source-sink classification of a habitat patch because while Rj is a number

it can also be used to classify habitat patches as sources (Rj > 1) or sinks (Rj < 1).

3.5.1 Expressing R0 as a weighted sum of Rj

Before examining the connection between Rj and the initial growth λj, we first high-

light a connection between Rj and R0. It turns out, as shown in the following Lemma,

that R0 can be calculated as a weighted sum of each Rj, and surprisingly this relation-

ship between the spectral radius and the column sums of a matrix does not require

any further assumptions on the matrix structure, though if the matrix is not non-

negative, the components of the right eigenvector need not be real. Here 1T is the

row vector with each entry equal to 1, and ej is the vector with the only non-zero

entry being 1 in the jth row.

Theorem 3.4. Let v = [vi] be the right eigenvector associated with the dominant

eigenvalue of the next-generation matrix, R0, normalized so
∑︁

1≤i≤n vi = 1. Then the

basic reproduction number R0 =
∑︁

1≤j≤nRjvj, where Rj = 1TKej =
∑︁n

i=1 kij.

Proof. First, we can rewrite R0 as

R0 = R01
Tv = 1TR0v,

because the eigenvector has been normalized to sum to 1. Then, as R0 is the eigen-

value of K associated with v and the column sums of K are Rj,

R0 = 1TR0v = 1TKv =
[︂
R1 R2 . . . Rn

]︂
v =

n∑︂
j=1

Rjvj.
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The entries vj of the right eigenvector can be interpreted as the probability that a

new individual begins on patch j (Cushing and Diekmann, 2016). Therefore R0 can

be interpreted as the sum over all patches, of the probability that an individual is

born on patch j, multiplied by the number of new individuals it will produce on all

other patches over its lifetime.

Similarly, if we define λ0 to be the dominant eigenvalue of A, with the associated

normalized eigenvector u, then

λ0 = 1TAu =
n∑︂

j=1

n∑︂
i=1

aijuj =
n∑︂

j=1

λjuj,

where it should be noted that λj is the jth column sum of A, rather than an eigenvalue

of A.

3.5.2 Connecting the source-sink classification, Rj, to the ini-
tial growth rate, λj

Now that we have decomposed the dominant eigenvalues, R0 and λ0, into weighted

sums of the columns of K and A respectively, we proceed to connect the source-sink

classification of a particular patch, Rj, to the initial growth from an individual on

that patch, λj. To do so there are some restrictions that we need to impose on our

metapopulation system and this is where we limit our study to marine or birth-jump

metapopulation models where juveniles or seeds can disperse between patches while

adults remain confined to habitat patches. The mathematical restriction defined by

this class of models comes from the decomposition of A into F − V . Here V contains

all entries that describe the transfer of individuals between compartments or patches.

For the results presented in this section, we require that V has the following reducible

form:

V =

⎡⎣V11 0

V21 D

⎤⎦ ,

where V11 is k×k, D = diag(dk+1, . . . , dn) with dk+1, . . . , dn all positive, 0 ≤ k ≤ n−1,

and V is a non-singular M matrix.

With this structure, individuals on patches j = k+1, . . . , n cannot migrate between

patches, but can still give birth to new individuals on any patch. Under this structure,

we first present proofs connecting our instantaneous and generational growth mea-

sures, λj and Rj, before presenting a two patch example. If V is completely diagonal,

then there is no migration between any patches, only birth on other patches. This is
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the case for models of plants with seed dispersal, or simplified marine metapopulation

models if the juvenile stage is not explicitly modelled.

Theorem 3.5. Let A = F − V for system (3.1), where F is non-negative, and V is

a non-singular M matrix with the following form:

V =

⎡⎣V11 0

V21 D

⎤⎦ ,

where V11 is k× k, D = diag(dk+1, . . . , dn) with dk+1, . . . , dn all positive, and 0 ≤ k ≤
n− 1. For k + 1 ≤ j ≤ n, λj is positive if and only if Rj > 1.

Proof. First, we can write λj as

λj =
n∑︂

i=1

aij = 1TAej.

Then decomposing A into F − V , and inserting V −1V

λj = 1T (F − V )ej = 1T (F − V )V −1V ej = 1T (FV −1 − I)V ej.

For k + 1 ≤ j ≤ n, V is diagonal, so V ej = djej. Therefore

λj = 1T (FV −1 − I)djej = (Rj − 1)dj.

Now dj > 0, and thus λj > 0 if and only if Rj > 1.

Corollary 3.6. In the notation of Theorem 3.5, if V is diagonal, then λj > 0 if and

only if Rj > 1 for j = 1, . . . , n.

Corollary 3.7. Under the same conditions as Theorem 3.5, σ̄1 > 0 if

maxk+1≤j≤n Rj > 1, and σ1 < 0 if mink+1≤i≤nRi < 1.

Proof. Under the conditions in Theorem 3.5, we know that Rj − 1 has the same sign

as λj for k + 1 ≤ j ≤ n. Therefore if maxk+1≤j≤nRj > 1 then σ̄1 = max1≤j≤n λj > 0,

i.e. the system is reactive. Similarly if mink+1≤j≤nRj < 1 then σ1 = min1≤j≤n λj < 0,

i.e. the population attenuates.

Corollary 3.8. Under the same conditions of Theorem 3.5, only with V diagonal,

then σ̄1 > 0 if and only if max1≤j≤nRj > 1 and σ1 < 0 if and only if min1≤j≤nRj < 1.

Proof. From Corollary 3.6, λj > 0 if and only if Rj > 1 for each patch j. Therefore if

σ̄1 = max1≤j≤n λj > 0, then max1≤j≤nRj > 1, and likewise if max1≤j≤nRj > 1, then

σ̄1 > 0. The same argument holds for min1≤j≤n λj and min1≤j≤nRj.
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Now that we have presented theory connecting the initial growth rate, λj, to the

source-sink classification of patch, Rj, we present an example to illustrate how to cal-

culate these growth rate and source-sink measures and how Theorem 3.5 and Corol-

laries 3.6 and 3.8 can be used to connect them.

Example 3

Here we present an example of a metapopulation consisting of two habitat patches,

patch 1 and patch 2. New individuals can be born on either patch, but no individuals

can migrate between patches. This system represents a simplification of the adult

dynamics of many marine meroplanktonic metapopulations, where dispersal between

patches occurs at the larval stage, rather than the sedentary adult stage. This system

could also represent plant metapopulations that spread through seed dispersal, if the

habitat landscape is patchy. The metapopulation dynamics can be represented with

the following set of ODEs:

x′
1 = b11x1 + b12x2 − d1x1 (3.15)

x′
2 = b21x1 + b22x2 − d2x2,

where bij is the birth rate for births from patch j to patch i, and di is the death rate

on patch i. The lifecycle graph for this system is shown in fig. 3.3.

We then decompose A = F − V and construct the next generation matrix, K =

FV −1:

A =

⎡⎣b11 − d1 b12

b21 b22 − d2

⎤⎦ , F =

⎡⎣b11 b12

b21 b22

⎤⎦ , V =

⎡⎣d1 0

0 d2

⎤⎦ ,

K = FV −1 =

⎡⎣b11/d1 b12/d2

b21/d1 b22/d2

⎤⎦ .

For an initial individual starting on patch 1, the expected lifetime is 1/d1, and the

rate that the individual is producing new individuals on both patches is b11 + b21.

Therefore R1 = (b11+ b21)/d1 is the total number of individuals born onto both patch

1 and patch 2 over one generation. It is clear that λ1 = b11+b21−d1 > 0 if and only if

R1 =
b11
d1

+ b21
d1

> 1, in accordance with Corollary 3.6. Similarly λ2 = b12+ b22−d2 > 0

if and only if R2 =
b12
d2

+ b22
d2

> 1. The system is therefore reactive if max(R1, R2) > 1

(Corollary 3.8).

At first glance it seems obvious that if an individual starts on a source patch the

population should have a positive initial growth rate or if the population starts on
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a sink patch it should have a negative initial growth rate, and we have shown from

Corollary 3.6 and 3.5.2 that this is indeed the case for marine metapopulations. What

is perhaps surprising is that this is not the case for general metapopulations when

adults can migrate between habitat patches, and thus when the conditions of Theorem

3.5 and Corollary 3.6 are not met. In the general case it is possible to start with an

individual on a source patch, but for the population to initially decline and likewise

to start on a sink patch but for the population to initially grow. An example of such

a metapopulation is shown in section 3.8.1.

Here in this section we have shown that for marine metapopulations and other

metapopulations where the population dynamics are defined by birth-jump processes,

there is a one-to-one relationship between the source-sink classification of a patch and

the initial growth rate when starting with one adult on a patch. That is, the initial

population growth rate is positive if we start with one adult on patch j if and only

if patch j is a source, and the initial growth rate is negative if and only if patch

j is a sink. This is a useful relationship biologically as there are several marine

metapopulations where patches have already been classified into sources and sinks,

and thus the transient dynamics for these systems can now be better understood.

3.6 Stage structure

In this section we add stage structure to demonstrate some of the nuances in analysing

transients in stage structured metapopulation models. The main issue with analysing

reactivity and attenuation in models with stage structure is due to the fact that

adults often give birth to many more juveniles than will survive to become adults,

and that juveniles cannot normally give birth to new juveniles. This presents a few

complications.

The first complication is the fact that if we want to analyse the initial growth or

decay of a population, starting with an individual in a patch, it now depends if the

individual is a juvenile or an adult. If we start with a juvenile, then there is no way

that the total population, or even the patch population, can grow, given that the

juvenile has to first survive to the adult stage to give birth to new juveniles. Thus

we want to start with one adult on a patch.

However, if we start with an adult in a patch, and it gives birth to new juveniles,

how do we count these new juveniles? If we are considering a marine metapopulation

do we count every larvae as a new individual? If so, every marine metapopulation

would exhibit transience, as each adult often produces thousands of larvae. This

then begs the question: in a stage structured metapopulation, can we scale the ju-
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venile population so that transient measures of population growth, such as reactivity

and attenuation, are useful for stage structured models and measure the biologically

relevant quantities?

To motivate the necessity of an honest scaling we highlight a discrete time example

of transients in Dungeness crabs from Caswell and Neubert (2005). Dungeness crabs

give birth to an enormous number of larvae, many of which do not survive to settle and

become juveniles after one year. In this case the discrete time model requires a census

time to measure new crabs after one year. If the census is taken pre breeding, then

the system exhibits little reactivity, as many of the larvae that where initially born

have not survived to become one year old juveniles. However, it the census is taken

post breeding, then all of the eggs or larvae are counted and the initial amplification

is increased by 105. The models considered in this chapter are continuous time and

do not face this exact problem, but it is easy to see that the addition of a larvae stage

in a marine stage structured metapopulation has large effects on the reactivity of the

system.

Returning then to our stage structured model with only juvenile and adult stages,

how should the juvenile stage be scaled so that an initial growth in juveniles also

corresponds in some sense to growth in the total population? Ideally, we would scale

the juvenile population so that each juvenile is scaled by the probability that it will

become an adult. If we scale our population in this way then the measures of reactivity

and attenuation regain their original meaning. If the maximum initial growth rate

of our population, now scaled to be in terms of adults, is positive then our system is

reactive, and if the minimum is negative then it attenuates.

A biologically relevant measure of reactivity in a stage structured model must then

be focused on the initial growth rate of the population, calculated so that the growth

rates of juveniles are scaled by their contribution to the adult population. Under

this scaling if any adult on any habitat patch produces many juveniles, but less than

one become viable adults, then such a metapopulation is not reactive. Whereas if

there is a patch such that one adult produces many juveniles and more than one sur-

vive to adulthood then the metapopulation is reactive, because the stage structured

population, where juveniles are scaled according to their contribution to the adult

population, is growing.

In the following sections we formally define such a scaling using a weighted ℓ1 norm,

and contrast it with the unweighted ℓ1 norm that we have previously been using to

calculated reactivity in metapopulations without stage structure.
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3.6.1 Unweighted ℓ1

We want to measure reactivity and attenuation as the total initial growth rate of the

population, measured using either the weighted or unweighted norm, when we start

with one adult on a patch. We first present the unweighted ℓ1 measure of the initial

growth rate to demonstrate the mathematical framework that we use to examine

reactivity in a stage-structured population with juveniles and adults.

Consider a population with juvenile and adult stages on n patches. Let the popu-

lation dynamics be described by

x′(t) = Ax(t), (3.16)

where A is a 2n× 2n matrix, arranged A so that all ODEs describing the change in

the adult populations are in rows n+ 1 to 2n. Decompose A into A = F − V , where

F is non-negative with positive entries that describe the birth of new individuals

in the metapopulation, and V is a non-singular M matrix (Berman and Plemmons,

1994) (V −1 is non-negative) with entries that describe the transfer of individuals be-

tween compartments or in this case habitat patches, and also includes the death of

individuals (van den Driessche and Watmough, 2002). We are interested in metapop-

ulations where adults can give birth to juveniles, but juveniles cannot give birth to

new juveniles, so F and V can be written in block form as follows:

F =

⎡⎣0 F12

0 0

⎤⎦ , V =

⎡⎣V11 0

V21 V22

⎤⎦ . (3.17)

With this decomposition F12 contains all the new juvenile births from each adult

patch, V11 is a diagonal matrix that contains the rates of juvenile mortality on each

patch as well as the maturation from juveniles to adults, V22 is a diagonal matrix that

contains the rates of adult mortality on each patch, and V21 contains the negative of

the rates of maturation/migration from juveniles to adults.

We define λ̃j to be the initial population growth rate, starting with one adult

on patch j, measured using the ℓ1 norm. This can be defined mathematically for

1 ≤ j ≤ n as

λ̃j =
n∑︂

i=1

x′
i(0)⏞ ⏟⏟ ⏞

juvenile

+
2n∑︂

i=n+1

x′
i(0)⏞ ⏟⏟ ⏞

adult

, x(0) = ej+n.

In terms of F and V

λ̃j =
n∑︂

i=1

f12ij −
n∑︂

i=1

v22ij,
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where f12ij and v22ij are the (i, j) entries of F12 and V22 respectively.

We use the tilde to differentiate the initial growth rate in the stage structured

population, where we specifically begin with one adult on a patch, from the initial

growth rate in a population without stage structure, where there is no difference

in the type of individual that we start with. Having presented the mathematical

framework that we use to measure reactivity in a stage structured population using

the unweighted ℓ1 norm, we now use a weighted ℓ1 norm that better captures the

biological meaning of reactivity.

3.6.2 Weighted ℓ1 for each patch

In order to measure reactivity in a biologically meaningful fashion, we introduce a new

measure of the initial population growth rate, λ̃p
j . This initial population growth rate

is calculated using a weighted ℓ1 norm so that the adult population is still measured

using the regular ℓ1 norm, but the juvenile population on each patch is scaled by the

probability that the juveniles survive to adulthood; the patch specific nature of the

weighing is why we denote the initial growth rate λ̃p
j . In this fashion λ̃p

j measures the

initial growth rate of the total population if every member of the metapopulation was

weighted according to how much they will contribute to the adult population. Adults

are therefore not weighted, and juveniles are weighted by the probability that they

survive to adulthood. This weighting recaptures the biological meaning of reactivity,

where a system will only be reactive if the adult population will grow, and a system

will not be reactive if there is only an initial spike in the juvenile population.

We use the same framework as in the previous section to mathematically calculate

λ̃p
j , where we decompose A = F−V and F and V are shown in block form in eq. (3.17).

Then we weight the juvenile population growth on each patch i by a factor si, where

si is the probability that a juvenile from patch i eventually becomes an adult. From

the block form V , si can be calculated as

si =
n∑︂

k=1

(−V21V
−1
11 )ki. (3.18)

To see how this corresponds to the probability of survival of a juvenile on patch i,

consider the different block components of F and V . The matrix V −1
11 is diagonal, with

the (j, j) entry representing the average residence time of a juvenile born onto patch

j. The matrix −V21 contains the rates of maturation/migration of juveniles becoming

adults on different patches, so the (i, j) entry is the rate of maturation/migration of a

juvenile on patch j becoming an adult on patch i. This means that when we multiply

−V21 by V −1
11 we are multiplying each of these rates by the residence times of the
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juveniles in the appropriate patches. In this way, the (i, j) entry of −V21V
−1
11 is then

the probability that a juvenile leaving patch j arrives on patch i. Therefore the jth

column sum of −V21V
−1
11 is the probability that a juvenile starting on patch j becomes

an adult on any other patch.

The initial growth rate using the weighted norm, λ̃p
j , can then be calculated as the

sum of the juvenile growth rates, each multiplied by the patch specific survival si,

and the adult growth rates. Mathematically, this is defined as:

λ̃p
j =

n∑︂
i=1

six
′
i(0)⏞ ⏟⏟ ⏞

juvenile

+
2n∑︂

i=n+1

x′
i(0)⏞ ⏟⏟ ⏞

adult

, x(0) = ej+n

=
n∑︂

i=1

sif12ij −
n∑︂

i=1

v22ij.

In order to demonstrate that the initial growth rate calculated using the weighted

ℓ1 norm, λ̃p
j , indeed measures the growth rate of the population if all individuals are

weighted according to their contribution to the adult population, we show that λ̃p
j is

equivalent to scaling the juvenile population on each patch by the probability of sur-

vival to adulthood, and then measuring the initial growth rate using the unweighted

ℓ1 norm, defined previously as λ̃j.

Theorem 3.9. If each juvenile population in system (3.16) is rescaled by the patch

specific survival probability, si =
∑︁n

k=1(−V21V
−1
11 )ki, then the initial growth rate using

the unweighted ℓ1 norm, λ̃j, is equal to the patch specific weighted initial growth rate,

λ̃p
j for the unscaled system.

Proof. Rescale the juvenile population on patch i by the patch specific survival prob-

ability si given in eq. (3.18). In terms of system (3.16) this means that x∗
i = sixi for

i = 1, . . . , n, x∗
i = xi for i = n+ 1, . . . , 2n. Rewriting the system of equations

x∗′ = A∗x∗

A∗ = F ∗ − V ∗, F ∗ =

⎡⎣0 SF12

0 0

⎤⎦ , V ∗ =

⎡⎣ V11 0

V21S
−1 V22

⎤⎦ ,

where S = diag(s1, . . . , sn). The unweighted initial growth rate for the scaled system

is then

λ̃∗
j =

n∑︂
i=1

(SF12)ij −
n∑︂

i=1

v22ij =
n∑︂

i=1

sif12ij −
n∑︂

i=1

v22ij = λ̃p
j .

Thus the unweighted initial growth rate for the scaled system is equal to the patch-

weighted initial growth rate of the unscaled system, λ̃p
j .
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We believe that it is more intuitive to measure reactivity in a stage-structured sys-

tem using a weighted norm, rather than scaling the juvenile population and using the

unweighted ℓ1 norm, but for other systems this may not be the case. Recently Mari

et al. (2017) have developed a new measure of reactivity called generalized reactivity,

or g-reactivity, so that the reactivity of any specific combination of state variables in

a system can be measured, and we demonstrate how to place our work in this con-

text. The general framework of g-reactivity allows the reactivity of only the predator

to be measured in a predator-prey system, or a single patch in a metapopulation

model. Moreover in a stage-structured model, g-reactivity can be used to allow for

a differential contribution of the juvenile and adult populations to the reactivity of

the system, and so we can compare the calculation of g-reactivity to our calculation

using the weighted ℓ1 norm. To calculate the g-reactivity of a system x′ = Ax, a

linear transformation is introduced, y = Cx, where C is a matrix that defines the

required contribution of each of the state variables, and then reactivity is calculated

for y using eq. (3.2). For system (3.16), if C is a 2n × 2n identity matrix, but with

the first n diagonal entries replaced with s1, . . . , sn, then g-reactivity is the ℓ2 norm

equivalent of reactivity under our weighted ℓ1 norm, maxj λ̃
p
j .

Returning to our measure of initial growth rate using a patch weighted norm, we

present two examples below to illustrate the calculation of λ̃p
j in different systems.

Example 4

Consider a two patch system where juveniles are born onto all patches but only mature

into adults on the patch where they were born:

j′1 = b11a1 + b12a2 −m1j1 − dj1j1 (3.19)

j′2 = b21a1 + b22a2 −m2j2 − dj2j2

a′1 = m1j1 − daa1

a′2 = m2j2 − daa2.

Here ji is the number of juveniles on patch i, ai is the number of adults on patch i, bij

is the birth rate of juveniles on patch i from adults on patch j, mi is the maturation

rate of juveniles on patch i into adults on patch i, dji is the death rate of juveniles on

patch i, and da is the death rate of adults, which is the same on both patches. The

lifecycle graph for this system is shown in fig. 3.7.

In this case
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j1 j2

a1 a2

b11 m1

b21

b12
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dj2

da2

Figure 3.7: Digraph for system (3.19). Here bij is the birth rate of juveniles on patch
i from adults on patch j, mi is the maturation rate of juveniles on patch i to adults
on patch i, dji is the death rate of juveniles on patch i and dai is the death rate of
adults on patch i.

F12 =

⎡⎣b11 b12

b21 b22

⎤⎦ , V11 =

⎡⎣m1 + dj1 0

0 m2 + dj2

⎤⎦ , V21 =

⎡⎣−m1 0

0 −m2

⎤⎦ ,

V22 =

⎡⎣da 0

0 da

⎤⎦ , −V21V
−1
11 =

⎡⎣ m1

m1+dj1
0

0 m2

m2+dj2

⎤⎦ ,

λ̃p
1 = s1b11 + s2b21 − da, λ̃p

2 = s1b12 + s2b22 − da,

s1 =
m1

m1 + dj1
, s2 =

m2

m2 + dj2
.

If we look at λ̃p
1, we see that s1 is the probability that a juvenile born onto patch 1

survives to become an adult and it is multiplying b11, the birth rate of juveniles onto

patch 1 from adults on patch 1. Therefore the first component of λ̃p
1 represents the

rate of birth of new juveniles onto patch 1 from one adult on patch 1, but scaled by

the probability that these juveniles survive to become adults. Likewise the second

component, s2b21, is the rate of birth of new juveniles onto patch 2 from one adult on

patch 1, scaled by the probability that those juveniles also become adults. Thus λ̃p
1

is the initial growth rate of the total population, scaled in terms of the contribution

to the adult population, when the population begins with one adult on patch 1.

Example 5

We also consider a system in which juveniles are born onto the same patch as adults,

but can then migrate between patches as they mature into adults:
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Figure 3.8: Digraph for system (3.20). Here bii is the birth rate of juveniles on patch
i from adults on patch i, mij is the maturation rate of juveniles on patch j to adults
on patch i, dji is the death rate of juveniles on patch i and dai is the death rate of
adults on patch i.

j′1 = b11a1 −m11j1 −m21j1 − dj1j1 (3.20)

j′2 = b22a2 −m22j2 −m12j2 − dj2j2

a′1 = m11j1 +m12j2 − daa1

a′2 = m22j2 +m21j1 − daa2.

from which we calculate

F12 =

⎡⎣b11 0

0 b22

⎤⎦ , V11 =

⎡⎣m11 +m21 + dj1 0

0 m12 +m22 + dj2

⎤⎦ ,

V21 =

⎡⎣−m11 −m12

−m21 −m22

⎤⎦ , V22 =

⎡⎣da 0

0 da

⎤⎦ , −V21V
−1
11 =

⎡⎣ m11

m11+m21+dj1

m12

m12+m22+dj2

m21

m11+m21+dj1

m22

m12+m22+dj2

⎤⎦
λ̃p
1 = s1b11 − da, λ̃p

2 = s2b22 − da

s1 =
m11 +m21

m11 +m21 + dj1
s2 =

m12 +m22

m12 +m22 + dj2
.

Now if we examine the first component of λ̃p
1, s1 = (m11 +m21)/(m11 +m21 + dj1),

we can see that because juveniles from patch 1 can now migrate (as they mature) to

both patches, s1 is the probability that juveniles from patch 1 become adults on either

patch. Likewise s2 is the probability that juveniles from patch 2 become adults on

either patch. Biologically we are scaling the birth rate on a patch by the probability

that a juvenile survives to adulthood on any patch.

Here we have shown that if we use a weighted ℓ1 norm to scale the initial growth rate

so that the juvenile population is scaled by the patch specific probability that juveniles

become adults, then our scaled initial growth rate, λ̃p
j matches the biological intuition

that we would like when measuring initial growth of the population. It is positive if
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the population, scaled so that every individual is measured by its contribution to the

adult population, is growing, and negative if the population is decreasing. Measures

of reactivity and attenuation then also represent their intuitive biological properties,

and we are no longer in the situation (as if the initial growth rate was unscaled) that

most marine metapopulations are reactive.

It is also possible to create a weighted norm where the juvenile populations on each

patch are weighted by the same probability of survival, rather than by patch-specific

probabilities si. In some cases it may be useful to scale all patches by the same survival

probability, though under this weighted norm reactivity no longer corresponds exactly

to the intuitive biological meaning mentioned previously.

3.7 Discussion

Transient dynamics often differ drastically from the asymptotic dynamics of a system

and require different analytical tools. In this chapter we have presented a framework

for analysing transient dynamics in birth-jump metapopulations, from the choice of

norms to the incorporation of stage structure. We began by using the ℓ1 norm to de-

fine reactivity and attenuation in single species metapopulations and used examples

to compare reactivity in the ℓ1 norm with reactivity in the more commonly used ℓ2

norm. We presented two models that gave rise to long transients: one stable system

that exhibits a long period of growth before eventual decay, and one unstable system

that exhibits a long period of decay before growth. In birth-jump metapopulations,

where patches are connected via larval dispersal, we showed how strong advective

flow, coupled with a large number of patches, can lead to large transient growth. We

believe that this could be a key new mechanism giving rise to transient dynamics in

marine metapopulations where habitat patches are found in a linear array, such as

salmon farms along a fjord (see, for example Harrington and Lewis (2020)). We then

connected the initial growth rate of the metapopulation to the source-sink classifica-

tion of patches and lastly we demonstrated how to measure reactivity meaningfully

in stage-structured marine metapopulations.

We are by no means the first to analyze the transient dynamics of systems, and in

fact there has been an increase in the study of transient dynamics over the last few

decades. In a pair of recent papers, several authors have identified mechanisms as the

main causes of long transients in ecological systems (Hastings et al., 2018; Morozov et

al., 2020). These identified mechanisms that cause the long transients present in the

examples in this chapter are slow-fast systems, crawl-bys, and high dimensionality.

Slow-fast systems cause long transients when the system rapidly converges to a slow

93



manifold, then moves slowly towards or away from an equilibrium, depending on the

stability of the system. This occurs in both examples in section 3.3. The second

example in section 3.3 is also an instance of a crawl-by where the initial perturbation

is near a saddle equilibrium but the movement away from the equilibrium occurs over

a long timescale. Lastly in section 3.4 we explicitly demonstrated how increasing the

dimension of a system, by increasing the patch number in a linear metapopulation,

leads to longer transients.

Our work also reinforces the fact that reactivity is a property specific to the norm

under which it is measured. This has been mentioned in the first paper on reactivity

by Neubert and Caswell (1997), who also recognize that it is always possible to find a

norm such that a stable system is never reactive. It has also been noted by Lutscher

and Wang (2020), who mention that reactivity must be analysed in the dimensional

version of a system rather than the non-dimensionalized version. The reactivity may

be different between the two systems but the dimensional system is where the measure

of reactivity is biologically meaningful. When analysing reactivity in metapopulations

this fact is significant in two ways: first by using the ℓ1 norm rather than the ℓ2 norm

to measure reactivity we can explicitly measure the growth rate of a population,

and second by using a weighted ℓ1 norm we prevent the juvenile population from

disproportionately affecting the reactivity of the system.

Differentially weighting certain classes of a population to calculate reactivity has

been mentioned in passing by Verdy and Caswell (2008), and more extensively by Mari

et al. (2017) who developed a new measure of reactivity called general reactivity, or

g-reactivity. This is a method of only measuring the reactivity of the components of

interest in a population, e.g. predators in a predator-prey model, and can also be used

more generally to scale the contribution of different components of the population.

Our method of using a weighted ℓ1 norm for stage-structured models has an equivalent

formulation using g-reactivity that is discussed in section 3.6.2, though Mari et al.

(2017) use the ℓ2 norm to measure reactivity, rather than the ℓ1 norm, and are thus

using a different measure of population growth.

While we believe the ℓ1 norm is the most biologically relevant norm to measure

reactivity, we are among the first to use it to analyse reactivity in continuous time

models. Townley et al. (2007) show how to calculate reactivity for stage-structured

models in continuous time using the ℓ1 norm, but in following papers proceed to

analyse reactivity in the ℓ1 norm only in discrete time systems (Stott et al., 2010;

Stott et al., 2011; Townley and Hodgson, 2008). Most authors measure reactivity

with the ℓ2 norm, presumably due to the nice mathematical property that reactivity

in the ℓ2 norm is given simply as the maximum eigenvalue of (A + AT )/2 (Caswell
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and Neubert, 2005; Lutscher and Wang, 2020; Neubert and Caswell, 1997; Neubert

et al., 2002; Neubert et al., 2004; Snyder, 2010; Verdy and Caswell, 2008). But while

mathematically tractable, the biological meaning of Euclidean distance (ℓ2) is less

clear than population size (ℓ1) and as shown in section 3.2.2, there are times when

reactivity in ℓ2 does not correspond to an increase in population size.

The reactivity of an equilibrium can also be understood geometrically, as shown

in figs. 3.1 and 3.2. Under the ℓ1 norm the zero equilibrium of a single species

metapopulation (2.1) is reactive if the dot product of the derivative vector of any

initial perturbation and the outward normal vector of the plane x1 + x2 + . . . xn = 1

is positive. This geometric interpretation is applicable when the matrix A describing

the dynamics of the linearized system, x′(t) = Ax(t), is Metzler. If instead we want to

examine the reactivity of a positive steady state of a metapopulation, x∗, where the

dynamics are given by (x(t)−x∗)′ = A(x(t)−x∗) and A is no longer Metzler, then we

need to extend our geometric interpretation of the ℓ1 norm. In this case an equilibrium

is reactive if the dot product of the derivative vector of any initial perturbation and

the outward normal vector to the hypercube |x1 − x∗
1|+ |x2 − x∗

2|+ . . . |xn − x∗
n| = 1

is positive. We could no longer use maxj
∑︁n

i=1 aij > 0 to calculate reactivity, because

x(t) − x∗ need not remain in the non-negative cone. Thus an interesting area for

future work would be to mathematically formulate reactivity in terms of the matrix

A for positive equilibria of metapopulations.

No matter the norm in which reactivity and attenuation are measured, they are

defined in terms of the linearization of a non-linear system around an equilibrium. As

mentioned in the Introduction, reactivity and attenuation are therefore most relevant

around hyperbolic equilibria, where the dynamics of the non-linear system are well

approximated by the linearized system. In section 3.3 we have shown that even in

the linearized system it is possible for the population size to grow arbitrarily large

before decaying or decay arbitrarily small before growing. In the latter case the zero

equilibrium is unstable mathematically, but biologically the metapopulation could

first go extinct if the total population size decays below one individual before it

eventually increases.

It is also possible for an equilibrium of a non-linear system to not be reactive, but

for a perturbation of the non-linear system to still cause a large excursion away from

the stable equilibrium before eventually returning. Excitable systems, such as the

FitzHugh-Nagumo system, have stable equilibria with attracting regions, but small

perturbations still trigger large excitations (FitzHugh, 1961; Nagumo et al., 1962).

These systems may not be reactive from the linearized definition of reactivity, but can

still exhibit similar behaviour to reactivity in the non-linear system, given a sufficient
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perturbation.

In this chapter we use systems of differential equations to study reactivity, at-

tenuation, and transients in birth-jump metapopulations. It may also be possible to

study transients in metapopulations using methods by Wang et al. (2019) for reaction-

diffusion equations, where the spread of individuals between patches can be modelled

mechanistically.

The final extension that we would like to highlight is the relationship between

reactivity of continuous time models and reactivity of their discrete counterparts.

Many marine metapopulations are modelled in discrete time due to yearly breeding

cycles, however some are modelled in discrete time due to ease of simulation. For

these models, where the time step is on the order of hours or days, we can connect the

reactivity of the continuous time system with the discrete time system using a Taylor

expansion. The continuous time system, x′ = Ax, has the solution x(t) = eAtx0

that could be sampled at discrete time steps τ to create the discrete time system

x(t+ τ) = Bx(t), where B = eAτ .

The continuous time system x′ = Ax is reactive in ℓ1 if A has a positive column

sum (Theorem 3.1). In discrete time the system x(t + τ) = Bx(t) is reactive in ℓ1 if

B has a column sum that is greater than 1 (Townley et al., 2007). Assuming τ is a

small timestep then we can approximate B = eAτ = I + Aτ + O(τ 2). Thus we can

see that if the system is reactive in continuous time, i.e. there is a positive column

sum of A, then we can find a sufficiently short time step τ such that the discrete

time system is also reactive, i.e. there is a column sum of B greater than 1. However

for a predetermined time-step τ there are continuous time systems x′ = Ax that are

reactive but for which their discrete counterparts x(t+ τ) = eAτx(t) are not reactive.

One such example is system (3.9) with ϵ = 0.9 and τ = 1.

Lastly, we hope our work can be used to better understand the transient dynamics

in marine metapopulations for which habitat patches have already been classified

as sources and sinks. For these systems the transient dynamics that may occur

following a disturbance depend directly on the new distribution of the population. If

the remaining population is distributed amongst sink patches then it initially declines,

even if it eventually recovers. Likewise if the population is distributed amongst source

patches then it initially grows, though this growth may not necessarily occur on the

source patch itself. In addition, the relationship between transient dynamics and

sources and sinks in marine metapopulations may also be useful when examining the

dynamics that can occur following the protection of new marine environments, such

as newly implemented Marine Protected Areas.
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x1 x2

m21

m12

b11 − d1 b22 − d2

Figure 3.9: Digraph for system (3.21). The directed edges represent the movement
of individuals from the outgoing patch to the incoming patch. The self loops are the
birth rate minus the death rate on a patch.

3.8 Appendices to Chapter 3

3.8.1 Two patch example with migration

Here we present an example of a two-patch metapopulation where individuals are

born only onto their patch, but can now also migrate between patches. This is the

case for many terrestrial species that live on patchy landscapes, where individuals

can migrate between habitat patches. We present this example to demonstrate how

Theorem 3.5 breaks down when V is not of the correct form. The dynamics of this

metapopulation are described by the following set of ODEs:

x′
1 = b1x1 −m21x1 +m12x2 − d1x1 (3.21)

x′
2 = b2x2 −m12x2 +m21x1 − d2x2,

where bi is the birth rate on patch i, mij is the migration rate from patch j to patch

i, and di is the death rate on patch i. The lifecycle graph for this system is shown in

fig. 3.9.

We again decompose A = F − V and construct our next generation matrix, K =

FV −1, though now V is not diagonal nor in the same form as required for Theorem

3.5.
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A =

⎡⎣b1 −m21 − d1 m12

m21 b2 −m12 − d2

⎤⎦
F =

⎡⎣b1 0

0 b2

⎤⎦
V =

⎡⎣d1 +m21 −m12

−m21 d2 +m12

⎤⎦
K = FV −1 =

⎡⎣ b1(d2+m12)
d1d2+d1m12+d2m21

b1m12

d1d2+d1m12+d2m21

b2m21

d1d2+d1m12+d2m21

b2(d1+m21)
d1d2+d1m12+d2m21

⎤⎦
The entries of K may seem counter intuitive, but they represent the infinite sum

of a geometric series. Consider the first entry, k11. If we are tracking the total

number of new individuals produced by one individual starting on patch 1, then

this individual can either produce new offspring in patch 1 immediately, or it can

migrate to patch 2, then back to patch 1 and produce offspring, or migrate again and

produce more offspring. The entry k11 is then the birth rate in patch 1 multiplied

by the residence time in patch 1, multiplied by a geometric series where the ratio is

the probability of surviving the migration from patch 1 to patch 2 and then back to

patch 1. Mathematically

k11 =
b1

m21 + d1

[︄
∞∑︂
i=0

(︃
m21

m21 + d1

m12

m12 + d2

)︃i
]︄

Now consider λ1 and R1, the measures of transient growth for patch 1:

λ1 = b1 − d1

R1 =
b1d2 + b1m12 + b2m21

d1d2 + d1m12 + d2m21

.

We can see that

lim
d2→∞

R1 =
b1

d1 +m21

.

Therefore even if λ1 > 0, and so b1 > d1, as m21 becomes large, R1 < 1.

In the other direction, if d1 = 2b1, then

lim
b1→0

R1 =
b2
d2

.
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Therefore even if R1 > 1, we can still have λ1 = b1−d1 < 0. We present this example

to demonstrate that if the assumptions of theorem 3.4 are not met, there is no longer

a one-to-one relationship between λj and Rj.

Now we might also consider moving the off diagonal entries of V into F so that

V becomes diagonal. This is similar to considering migrating individuals as new

individuals entering a patch. In this case

F =

⎡⎣ b1 m12

m21 b2

⎤⎦
V =

⎡⎣d1 +m21 0

0 d2 +m12

⎤⎦
K = FV −1 =

⎡⎣ b1
d1+m21

m12

d2+m12

m21

d1+m21

b2
d2+m12

⎤⎦
Here λ1 = b1 − d1 > 0 is equivalent to b1 > d1, which is then equivalent to

R1 = (b1 +m21)/(d1 +m21) > 1. However, in this case R1 no longer tracks the total

number of new individuals produced on all patches over one generation. This new

R1 could perhaps be interpreted as the total number of new individuals produced on

patch 1 by a single individual on patch 1 before that individual dies or migrates, plus

the probability that the individual migrates to patch 2 before it dies. However, this

will no longer be a biologically useful measure of a source or a sink.

3.8.2 Details for proof in section 3.3.1

Here we provide further details for the proof at the end of section section 3.3.1 that

follow after system (3.11). We want to show that

lim
ϵ→0

max
t

(x(t) + y(t)) = lim
ϵ→0

ρmax = ∞.

Normally to calculate the maximum we would take the derivative of (x(t)+ y(t)), set

it equal to 0, solve for t, and then evaluate (x(t) + y(t)) at this value of t. However

it turns out this is rather complicated, so we will simplify this process by first noting

that x(t) > 0 for all t. Therefore

max
t

(x(t) + y(t)) > max
t

y(t).

Now we only have to perform the above process on y(t), rather than (x(t) + y(t)).
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Setting y′(t) = 0 and solving for t, we find that the time that the maximum of y(t)

is achieved, tmax, along with the corresponding maximum in y, y(tmax), are:

tmax =
1√
2

(︂
log(1 +

√
2)− log(−1 +

√
2)
)︂

y(tmax) =

√
2

ϵ
(1 +

√
2)

(− 1
2
− 1√

2
)
(−1 +

√
2)

( 1√
2
− 1

2
)
.

We can clearly see that limϵ→0 y(tmax) = ∞ and thus also limϵ→0maxt x(t) + y(t) =

limϵ→0 ρmax = ∞.
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Chapter 4

Next-generation matrices for
marine metapopulations: the case
of sea lice on salmon farms

4.1 Introduction

Metapopulations consist of subpopulations located on isolated habitat patches that

are connected via dispersal (Hanski, 1998; Kritzer and Sale, 2004; Levins, 1969). In

most benthic marine species, this dispersal comes from the pelagic larval stage (Cowen

and Sponaugle, 2009). Larvae disperse between, and then settle on habitat patches,

and once settled the remaining stages are sedentary and remain confined to a specific

habitat patch. In marine systems the metapopulation concept, where subpopulations

are connected but have their own demographic rates, has been used in the planning of

Marine Protected Areas and the citing of marine reserves (Bode et al., 2006; Burgess

et al., 2014; Costello et al., 2010; Crowder et al., 2000; Figueira, 2009; Watson et al.,

2011).

In a metapopulation framework, habitat patches are often classified into sources

and sinks based on how the subpopulations on these patches contribute to the overall

metapopulation. The source-sink classification of habitat patches was first described

concretely by Pulliam (1988), where habitat patches were classified as sources if they

could persist in isolation and sinks if they could not. However, this classification

ignores the effect of dispersal, which is especially critical in marine metapopulations,

and so Runge et al. (2006) and Figueira and Crowder (2006) updated the classification

of source and sink patches to include both the local productivity of a patch, as well as

dispersal away from the habitat patch. Under this new classification a source patch is

a patch on which an adult will more than self replace over the entire metapopulation

and a sink is a patch on which an adult will not. Self-replacement need not occur on
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the same habitat patch as the adult originated, and thus under this classification a

source patch may not be able to persist in isolation.

Due to the large scale larval dispersal that occurs in most marine species, it is

common that source patches cannot persist in isolation (White et al., 2019), and

thus preserving a persistent metapopulation, especially in the context of MPAs, often

requires more than simply preserving source patches. To maintain persistent ma-

rine metapopulations it is necessary to preserve sufficient larval exchange between

closed loops of habitat patches in the metapopulation so that an average adult can

eventually self replace over multiple generations (Burgess et al., 2014; Hastings and

Botsford, 2006). This may require preserving both source and sink patches, if the

sink patches provide sufficient larval exchange back to the source patches to create a

closed loop of habitat patches over which an adult can self replace. Evaluating the

persistence of marine metapopulations is difficult as it requires accurate measures

of larval connectivity between habitat patches, as well as accurate local demographic

rates of adult stages on each habitat patch (Burgess et al., 2014). Despite the difficul-

ties, evaluating metapopulation persistence is critical in designing Marine Protected

Areas in which the protected habitat patches can persist even when outside patches

are exploited (Carson et al., 2011; Dedrick et al., 2021; Garavelli et al., 2018; Puckett

and Eggleston, 2016; Theuerkauf et al., 2021; White et al., 2010).

Next-generation matrices are a useful tool that can both be used to evaluate the

persistence of a metapopulation as well as identify the contribution of local habitat

patches under a variety of moedling frameworks. Originally popularized in epidemiol-

ogy as a simple method of calculating the basic reproduction number, R0, in compart-

mental models (van den Driessche and Watmough, 2002), they convert population

models into generational time, so that the entries are the number of new individuals

produced in each compartment, or patch in the case of metapopulations, after one

generation. The individual contribution of habitat patches or evaluation of metapop-

ulation persistence can therefore be measured for different model structures (discrete

time, continuous time, etc.) under the same framework of the next-generation matrix.

The column sums can be used to measure the contribution of each habitat patch over

a generation and the spectral radius can be used to evaluate metapopulation persis-

tence. Next-generation operators have previously been used in ecology to calculate

source and sink regions in heterogeneous environments (Harrington and Lewis, 2020;

Huang et al., 2016; Krkošek and Lewis, 2010; Mckenzie et al., 2012a), and to evaluate

the level of control required to suppress invasive species (Lewis et al., 2019).

In this chapter we focus on using the next-generation matrix for evaluate local

patch contribution and metapopulation persistence in marine metapopulations, but
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the framework used here is also applicable to many other birth-jump metapopulations

(Hillen et al., 2015), where there is a single juvenile stage which can disperse between

habitat patches and the remaining stages remain on a single habitat patch. Examples

of non-marine species that exhibit this structure include plant species where seeds are

caried between habitat patches (Husband and Barrett, 1996), or insect species with

a single large dispersal event such as the spruce budworm (Williams and Liebhold,

2000) or mountain pine beetle (Safranyik and Carroll, 2007) . In fact, the next-

generation matrix approach can even be extended to metapopulations in which adults

also disperse, though the calculations become more complicated and so here we focus

on species with a single dispersing stage.

Specifically, to demonstrate the utility of the method, we use the next-generation

matrix to calculate the contribution of a single salmon farm to the spread of sea lice

in a salmon farming region on the west coast of British Columbia. Sea lice are a

parasitic marine copepod that feed on the epidermal tissues, muscles, and blood of

salmon (Costello, 2006). With a free living larval stage they can disperse tens of

kilometres, spreading between salmon farms in a region and between wild and farmed

salmon (Krkošek et al., 2006a; Peacock et al., 2020; Stucchi et al., 2011). Lesions and

stress from high sea lice infestation make adult salmon more susceptible to secondary

infections, leading to large economic consequences for the salmon farming industry

(Costello, 2009b). On wild juvenile salmon, infestation with sea lice can lead to

mortality and elevated exposure to sea lice from salmon farms can contribute to pop-

ulation level declines in pink salmon (Krkošek et al., 2007). In the context of sea lice

on salmon farms we are not concerned with preserving a persistent metapopulation of

sea lice parasites, but instead we use the next-generation matrix to evaluate the effect

of environmental variables on the overall growth of the sea louse metapopulation.

The specific salmon farming region that we focus on to calculate farm contribution

is the Broughton Archipelago. The Broughton Archipelago is located on the west

coast of Canada, between Vancouver Island and the mainland of British Columbia

and has been central in evaluating the effect of sea lice from salmon farms on wild

salmon (Brooks, 2005; Brooks and Stucchi, 2006; Krkošek et al., 2011b; Krkošek et

al., 2008; Krkošek et al., 2007; Krkošek et al., 2006a; Krkošek et al., 2005; Krkošek

et al., 2006b; Marty et al., 2010; Riddell et al., 2008). The area has historically

had around 20 active salmon farms (Foreman et al., 2015), though currently certain

farms are being removed from this region in an agreement between the government of

British Columbia and the Kwikwasut’inuxw Haxwa’mis, ’Namgis, and Mamalilikulla

First Nations (Brownsey and Chamberlain, 2018). After 2023 many of the remaining

farms will have be approved by both the local First Nations and the government in
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order to continue to operate and thus determining the farms which are acting as the

largest sources of sea lice is critical during this transition period.

The chapter is structured as follows. First we demonstrate how to use the next-

generation matrix to calculate the contribution of local habitat patches to the metapop-

ulation and evaluate metapopulation persistence. Next, we highlight how to construct

the next-generation matrix for different types of models. Then we calculate a next-

generation matrix for sea louse populations in the Broughton Archipelago to idenfity

which salmon farms are the largest sources of sea lice in this region, evaluate the effect

of the current farm removals, and investigate the effect of environmental variables on

metapopulation growth. Finally, we discuss how the calculations of patch contribu-

tion and metapopulation persistence from other studies compare to the calculations

using the next-generation matrix.

4.2 Materials and Methods

In this section we present details on the construction of the next-generation matrix

and show how it can be used to determine the contribution of a population on a

single habitat patch to the metapopulation as well as determine the persistence of

the metapopulation. We then present the explicit construction of the next-generation

matrix for models with age dependent demography, and present the construction

for ordinary differential equation models and discrete time models in the appendix.

Finally, we detail the construction of the next-generation matrix for a system of sea

lice populations on salmon farms in the Broughton Archipelago.

4.2.1 Next-generation matrices

Next-generation matrices, as they were first introduced in epidemiology, track the

number of new infections produced in each compartment of a multi-compartment

model by a single infected individual in a given compartment after one generation

(Diekmann et al., 1990; van den Driessche and Watmough, 2002). In ecology, next

generation matrices have been used to track the number of new individuals produced

in different compartments, rather than new infections. For marine metapopulations,

next-generation matrices can be used to couple the local demographic rates on habitat

patches with larval connectivity between patches to determine the relative contribu-

tion that each patch has to the metapopulation and to classify habitat patches as

sources or sinks, as will be shown in section 4.2.2.

We use the next-generation matrix to calculate local patch contribution to the
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metapopulation in the context of low population density. To calculate the next-

generation matrix it is necessary to linearize a potentially density dependent model

around the zero equilibrium so that the effect of density dependence at higher popu-

lation sizes is ignored when calculating patch contribution. This approach of ignoring

density dependence is common when determining persistence or patch contribution

of marine metapopulations, as the focus is either on determining if a metapopula-

tion can persist at all, or determining which habitat patches are acting as population

sinks and which are acting as population sources (Burgess et al., 2014; Harrington and

Lewis, 2020; Hastings and Botsford, 2006; Krkošek and Lewis, 2010). Alternatively

it is also useful for determining patch contribution in metapopulations of species that

are being actively controlled to remain at low densities, such as sea lice on salmon

farms, which is our focus in section 4.2.4. Another common assumption in the theory

of persistence also made here is that there is no discernible Allee effect in any of the

patches.

We construct the next generation matrix for a single species marine metapopulation

with a single larval stage that can disperse between patches and where the remaining

stages are confined to the habitat patch on which the larvae settle. Here we assume

that the last stage is the only stage that produces new larvae. This assumption

can be relaxed, though the entries of the next-generation matrix become slightly

more complicated. We construct the next-generation matrix for models where the

metapopulation is divided into l patches and the m attached stages are modelled

explicitly. The larval stage is modelled implicitly, so that the birth rate into the

first attached stage includes both the birth rate of larvae and the probability of

larvae successfully dispersing between patches and attaching on a new patch. The

lifecycle diagram for such a metapopulation is shown in Figure 5.1. Before specifying

a particular model structure we describe the entries of the next generation matrix

so that intuition around the next generation matrix can be gained for all model

structures.

Under any model structure, the element in row i and column j of the next-

generation matrix gives the number of new individuals produced on patch i by one

new initial individual on patch j. However, how ‘new’ individuals are defined is

subject to interpretation. Here, we use construct the next-generation matrix under

modeling frameworks that only consider the sessile stages explicitly, and so ‘new’ in-

dividuals will be newly attached stage 1 individuals. Then, when the number of new

individuals on patch i produced from one new individual on patch j are tracked, the

new individual must first survive and reproduce on patch j, before larvae disperse

and arrive on patch i. In this way patch contribution, as will be calculated in section
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Figure 4.1: The lifecycle graph for two patches in a metapopulation of a species with
a single larval stage that disperses between habitat patches and m sessile stages that
remain on a habitat patch. The population on patch i in stage k is given by ni

k.

4.2.2, is primarily a function of the local patch demography which is then coupled with

dispersal to other patches. Under this framework, the entries of the next-generation

matrix, K, for all model structures can be given by:

kij = Pr(survival through sessile stages on patch j)×# larvae produced on patch j×

Pr(dispersal from patch j to patch i). (4.1)

However if the next-generation matrix is constructed for models that explicitly

model the larval stage, then the larval stage is often considered the first stage. The

next-generation matrix will be slightly different in this case as well as the calculation

of patch contribution, though the calculation of metapopulation persistence will be

the same. We illustrate the differences between constructions of the next-generation

matrix in the Discussion and show how the calculation of persistence remains the

same under all constructions.

4.2.2 Determining patch contribution and metapopulation
persistence

Here we show how to use the next-generation matrix,K, to determine the contribution

of each patch to the metapopulation and evaluate metapopulation persistence. To

determine the contribution of a specific patch to the metapopulation we track the total

number of new individuals produced across the metapopulation after one generation

from an initial individual starting on that patch. The entries of the next-generation

matrix, kij give the number of new individuals produced on patch i from an initial
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individual on patch j. Therefore if we define

Rj =
∑︂
i

kij, (4.2)

so that Rj is the jth column sum of K, then Rj is the total number of new individuals

produced across all patches from an initial individual starting on patch j and can be

used to define the contribution of patch j to the entire metapopulation.

This definition of patch contribution easily lends itself to classifying local habitat

patches as population sources or sinks. If Rj < 1, then an individual on patch j cannot

replace itself over the entire metapopulation, and thus patch j is defined as a sink

(Harrington and Lewis, 2020). If Rj > 1 then one individual on patch j is producing

more than one individual over the entire population and so patch j is defined as a

source. To calculate persistence we can use the basic reproduction number, R0, which

can be calculated as

R0 = ρ(K), (4.3)

where ρ() is the spectral radius. If R0 > 1 then the metapopulation will persist and if

R0 < 1 then the metapopulation will go extinct, a relationship which holds under any

of the model formulations considered here (Cushing and Yicang, 1994; Harrington

and Lewis, 2020; Li and Schneider, 2002; van den Driessche and Watmough, 2002).

The only condition required is that K be irreducible, which is biologically satisfied if

there is some small positive probability that larvae leaving one patch can arrive on

any other patch.

There are several biological reasonable properties that also exist mathematically

under this framework. First, it is easy to show that if the population on any single

habitat patch can persist on its own, so that kii > 1, then the entire metapopulation

will persist and R0 > 1 (Harrington and Lewis, 2020). Second, a metapopulation

consisting only of sink patches cannot persist and a metapopulation consisting only

of sources cannot go extinct. The mathematical underpinning of these relationships is

that the spectral radius must be between the minimum and maximum column sums

of a matrix, so in terms of our metapopulation quantities

min
j

Rj ≤ R0 ≤ max
j

Rj. (4.4)

Having defined patch contribution and persistence in terms of the next-generation

matrix, we now demonstrate how to calculate the next-generation matrix for a model

with age dependent demography, as this is the modeling structure commonly used

for sea lice on salmon farms. We also present the construction of the next-generation

matrix for discrete time models and ordinary differential equation models in the
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Appendices 4.6.1 and 4.6.2, so that the details are present for the most commonly

used population models

4.2.3 Calculating the NGM for models with age dependent
demography

Here we calculate the next-generation matrix for models which allow for the matura-

tion, survival, birth, and dispersal rates to depend not only on the stage and patch

location of an individual, but also on the time that they have spent in a stage. This

time is often referred to as stage-age and so in these models there are two time vari-

ables: the global time of the system, t, and the time that an individual has spent

in a particular stage, their stage-age, a. These models can be specified either as

McKendrick von-Foerster partial differential equations, integrodifferential equations,

or renewal equations (Feng and Thieme, 2000). In all cases, the dependence of the

maturation rate on time spent in a stage allows for the addition of more realistic

maturation functions where most individuals mature at some intermediate stage-age,

or after some minimum time spent in the stage. In contrast, if models are formu-

lated using ordinary differential equations the time in a stage is always exponentially

distributed.

However, the specification of the model equations for these models can be rather

complicated and so here we construct the next-generation matrix directly from the

maturation, survival, birth, and dispersal functions, but the full model and the deriva-

tion of the next-generation matrix can be found in Appendix 4.6.3 as well as in Har-

rington and Lewis (2020). Essentially the construction involves tracking the prob-

ability that an individual survives through the different stages on a specific patch,

the number of larvae that they produce, and the probability that they successfully

disperse from one patch from another. If the probability of survival in stage k on

patch j at stage-age a is Sj
k(a), the maturation rate from stage k to k + 1 is mj

k(a),

the birth rate of larvae on patch j is bj(a), and the probability of a larva leaving patch

j and successfully attaching on patch i is pij, then the entries of the next-generation

matrix, K, are given by

kij =

[︄
m−1∏︂
k=1

Pr(stage k → k + 1)⏟ ⏞⏞ ⏟(︃∫︂ ∞

0

Sj
k(a)M

j
k(a)m

j
k(a)da

)︃]︄
⏞ ⏟⏟ ⏞

survival through sessile stages

(︃∫︂ ∞

0

Sj
m(a)b

j(a)da

)︃
⏞ ⏟⏟ ⏞

# larvae produced

×

Pr(patch j to patch i)⏟⏞⏞⏟
pij

(4.5)

where M j
k(a) is the probability that an individual has not yet matured from stage k
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to k + 1 and can be calculated as M j
k(a) = exp(−

∫︁ a

0
mj

k(τ)dτ).

4.2.4 Application: sea lice on salmon farms in the Broughton
Archipelago

In this section we construct a next-generation matrix to determine the contribution of

a single salmon farm to the spread of sea lice in a salmon farming region on the west

coast of British Columbia, the Broughton Archipelago. The Broughton Archipelago is

a group of islands between the northeast coast of Vancouver Island and the mainland

of British Columbia. The region has historically had around 20 active salmon farms,

though several of these farms are currently being removed in an agreement between

local First Nations and the government of British Columbia. To determine the level of

sea lice dispersal away from salmon farms, a hydrodynamic model has been run for the

region and sea lice particles were released from 20 historical farms in the Broughton

Archipelago. We construct one next-generation matrix for the 20 historical farms in

the region (Cantrell et al., 2018) for which the hydrodynamic particle tracking model

was run, as well as one for the 11 remaining farms in the area after 2023, subject for

First Nations and governmental approval (Brownsey and Chamberlain, 2018).

Modeling framework

Sea lice maturation through stages is often modelled with stage-age dependent matu-

ration functions (Aldrin et al., 2017; Revie et al., 2005; Stien et al., 2005) and thus we

construct the next-generation matrix for sea lice using age dependent demography,

as shown in section 4.2.3.

Dispersal

The probability that a sea louse larvae leaves from one farm and successfully arrives on

another depends on several factors including ocean current, temperature, and salinity

and to accurately capture this probability it is necessary to use a computational

hydrodynamic model that can track the spread of larvae originating from a given

farm and the dependence of larval survival on temperature and salinity. To determine

the probability of larvae dispersing between farms we use connectivity matrices from

Cantrell et al. (2018). These connectivity matrices are calculated by applying Kernel

Density Estimation (KDE) to particle tracking simulations to calculate the infectious

density of sea lice at each farm, originating from a given farm. The particle tracking

simulations are run on output generated by a Finite Volume Community Ocean Model

(FVCOM) which uses data on tides, wind surface-heating, and river discharge to
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simulate three-dimensional ocean velocity, temperature, and salinity. In the particle

tracking simulation the survival of sea louse particles is dependent on temperature and

their maturation from non-infectious to infectious larvae is dependent on temperature.

Details on the calculation of the KDEs as well as the particle tracking simulations

and FVCOM model can be found in Cantrell et al. (2018) and Foreman et al. (2009),

as well as Chapter 5 of this thesis.

The infectious densities of sea lice are calculated for each particle release day by

applying Kernel Density Estimation to accumulated daily snapshots over 11 days of

particle locations for particles which are still alive and are able to attach to salmon

over the lifetime of sea louse larvae. A connectivity matrix is then calculated for

each particle release day, where the entry in row i and column j of the connectivity

matrix is the infectious density of larvae over farm i, produced by larvae initially

leaving farm j. In Cantrell et al. (2018) the infectious densities were calculated from

24 hours of particle releases, where 50 particles were released each hour and so to

calculate the infectious density of one initial release particle we divide the entries

in each connectivity matrix by 1200 (50×24). Then, to create a single connectivity

matrix, C, for the 20 farms in the Broughton Archipelago we take the average over

all the connectivity matrices created for particles released between March 14th and

July 20th, 2009.

The necessary quantity to construct the next-generation matrix is pij, the proba-

bility that larvae leaving farm j will successfully attach on farm i. To estimate pij

from the entries of the connectivity matrix, cij, there are several assumptions that

need to be made. As will be shown in Chapter 5, if we assume that the number of

lice that arrive onto farms is small compared to the total number of lice in the water

column, so that lice arriving onto farms do not significantly affect the density of lice

in the water column, then

pij =

∫︂ ∞

0

β

∫︂
farm i

pjh(x, t)dΩdt,

where pjh(x, t) is the two dimensional density of infectious lice produced from farm j

that are still alive in the water column at position x and time t, and β is the arrival

rate of lice moving over the farm arriving onto the farm. However the entries of the

connectivity matrix, cij, are the infectious density of larvae over farm i, produced

by larvae leaving farm j. The infectious densities are calculated by applying Kernel

Density Estimation to daily snapshots of infectious particles over 11 days, starting at

time t = 0, so roughly

cij = pjh(xi, 0) + pjh(xi, 1) + · · ·+ pjh(x1, 11).
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We can therefore roughly calculate pij from cij by assuming that the integrals over

time and space can be approximated using their Riemann sums, and that the area of

a farm is roughly 0.01 km2, where

pij =

∫︂ ∞

0

β

∫︂
farm i

pjh(x, t)dΩdt (4.6)

≈ β × Area of farm i× 1 day×
(︁
pjh(xi, 0) + pjh(xi, 1) + · · ·+ pjh(xi, 11)

)︁
(4.7)

= β × 0.01× cij. (4.8)

Therefore to calculate pij from cij we need to estimate the arrival rate β. However,

very little is known about the arrival rate of lice dispersing from one farm to another,

and so the estimate presented here is very uncertain and could be orders of magnitude

off from the true arrival rate. We assume here that β = 100/day, and thus the

average waiting time for infectious sea lice in the water column surrounding the farm

to arrive on the farm is roughly 15 minutes (1/β = (1 day/100) × (24 hrs/1 day) ×
(60 minutes/1 hr) = 14.4 minutes). However the waiting time could be as little as 1

minute or as long as 1 hour. Moreover, this is ignoring the fact that some infectious lice

may never attach, and the estimates of the proportion of lice which successfully attach

at all varies from 80% to 0.5% under different lab conditions (Skern-Mauritzen et al.,

2020). The purpose of this paper is not to accurately estimate the basic reproduction

number, R0, for the Broughton Archipelago, or to accurately estimate the contribution

of an individual farm, Rj, but rather to compare the relative contributions of different

salmon farms in the system, and to investigate the effect of environmental variables

on the basic reproduction number. Therefore we present our estimate of the arrival

rate for these purposes only, and our estimate of R0 found in the results should not

be taken as an accurate estimate.

Demography

Once infectious sea lice larvae attach to their salmonid hosts they must survive and

mature through several attached life stages before they can produce offspring. These

demographic rates are dependent on salinity and temperature, and thus some salmon

farms may be more productive than others due to favourable environmental condi-

tions. To capture the dependence of demography on salinity and temperature we

simplify the attched sea lice life cycle down to three main stages: chalimus, pre-adult,

and adult. Survival in each stage is salinity dependent, maturation is temperature

dependent, and egg viability and production depends on both salinity and tempera-

ture. The demographic functions that we use are from models which have previously

been fit to sea louse population data and are shown in Table 4.1.
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We calculate the on-patch component of the elements of next-generation matrix,

kij, by integrating the demographic functions over all time,

[︄
m−1∏︂
k=1

Pr(k → k + 1)⏟ ⏞⏞ ⏟(︃∫︂ ∞

0

Sj
k(a)M

j
k(a)m

j
k(a)da

)︃]︄
⏞ ⏟⏟ ⏞

sessile stages

(︃∫︂ ∞

0

Sj
m(a)b

j(a)da

)︃
⏞ ⏟⏟ ⏞

# larvae

, (4.9)

and refer to this as the productivity of patch j. To determine the specific temperature

and salinity dependent demographic rates at each farm we find the temperature and

salinity that each sea louse particle experiences in the particle tracking simulation

when initially released from a farm. We then use the average temperature and salinity

of particles over all releases.

We also investigate the effect of varying temperature and salinity on the relative

growth and persistence of the metapopulation. To do so, we must calculate survival

and maturation rates for temperatures and salinities that farms may not experience

in the period for which the FVCOM was run. To keep the variability of temperatures

and salinities that exists between farms, we multiply the new temperature or salinity

at which we want to evaluate persistence, by the ratio of the mean farm temperature

or salinity divided by the mean total temperature or salinity experienced by all farms.

4.3 Results

In this section we present the next-generation matrix for sea lice populations on

salmon farms in the Broughton Archipelago, the construction of which is detailed in

section 4.2.4, and determine the relative patch contribution of each farm. We use this

system to highlight to potential differences between the connectivity matrix, which

only contains information surrounding the probability of dispersal from one farm to

another, and the next-generation matrix, which combines dispersal between farms

and local productivity of sea lice on a salmon farm. We then demonstrate how the

next-generation matrix can be used to investigate the effect of changing demographic

rates on growth and persistence in this system. Finally, in the context of salmon farm

removal from the Broughton Archipelago, we investigate how the removal of habitat

patches affects patch contribution and persistence in this sea louse metapopulation.

The next-generation matrix for sea lice populations on salmon farms in the Broughton

Archipelago is shown in Figure 4.3a). The patch contribution of each salmon farm is

given by Rj, the jth column sum, which is presented at the bottom of each column.

We also present the row sums to the left each row, to identify which farms are receiv-

ing the most sea lice from other farms in the region. Farm 2 is the largest contributor
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Figure 4.2: Map of the 20 historically active salmon farms in the Broughton
Archipelago, for which the next-generation matrix is calculated.

of sea lice to the metapopulation, followed by farms 17 and 18, whereas farm 12 has

the lowest contribution. The farms receiving the most sea lice, in declining order, are

farms 3, 16, and 7.

To better understand the details and construction of the next-generation matrix, we

also present the connectivity matrix for this system in Figure 4.4 and the productivity

(total number of new larvae produced from one attached chalimus louse) of each farm

in Table 4.1. The (i, j)th entry of the connectivity matrix, cij, is the infectious

density over farm i of lice leaving farm j and the (i, j)th entry of the next-generation

matrix is constructed by multiplying the productivity of farm j (equation 4.2.4) pij =

β×0.01×cij, the probability that a larvae leaving farm j attaches on farm i (4.8). The

farms with the largest column sums of the connectivity matrix are, in declining order,

farms 18, 2, and 17. However, farm 2 has a higher productivity than farms 17 or 18,

and when the productivity of farm 2 is multiplied by the connectivity then it becomes

the largest source of sea lice in the region, as identified by the next-generation matrix.

A further look into the connectivity matrix and productivity table provides more

insight into the underlying drivers of the contribution of each farm to the sea louse

population. Many of the farms with low connectivity also have low productivity, which

may be due to the fact that temperature and salinity affect on farm demographic rates

as well as survival and maturation in the particle tracking simulation which underlies

the connectivity matrix. However, there are certain farms, such as 11 and 15, which

have a comparably high productivity compared to their connectivity. These farms

are located in favourable environments with respect to temperature and salinity, but
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low connectivity due to either distance from other farms or unfavourable currents

prevents these farms from acting as larger sources of sea lice.

Here we also examine how temperature and salinity affect the overall growth and

relative persistence of the sea louse metapopulation, as shown in Figure 4.5. The

persistence of the metapopulation is determined by the basic reproduction number,

R0, which is calculated as the spectral radius of the next-generation matrix. As we

do not have an accurate estimate for β, we examine the effect of temperature and

salinity on the relative change in persistence or growth of the metapopulation, but

refrain from commenting on the absolute growth, as measured by R0. We can see

that as both temperature and salinity increases, the overall growth of the metapopu-

lation increases, and that salinity has a larger effect on metapopulation growth than

temperature. What is also interesting, but cannot be seen from the figure, is that as

salinity increases, the farm that receives the most lice switches from farm 3 to farm

7.

In light of the removal of salmon farms in the Broughton Archipelago we also

create a next-generation matrix consisting only of the farms which will remain after

2023 subject to First Nations and government approval, shown in Figure 4.3b), and

examine the differences between this matrix and the next-generation matrix with all

farms. Most of the farms which are acting as the largest sources of sea lice in this

region remain, with the exception of farm 11, the fifth largest source in the original

network, which has now been removed. Farm 11, while not the largest source, did

have the largest betweenness score based solely on the connectivity matrix (Cantrell

et al., 2018), and thus may have been acting as a connecting farm between the two

large clusters of source farms. However, since none of the other large source farms

have been removed, the overall growth of the metapopulation has only decreased

from R0 = 2.33 (original next-generation matrix) to R0 = 2.25. Again these numbers

are calculated using a very rough estimate of the arrival rate onto farms, detailed

in section, and thus it is their relative similarity that is important, rather than the

absolute magnitude.

4.4 Discussion

In this chapter we demonstrated how to use the next-generation matrix to calcu-

late the contribution of each habitat patch to the metapopulation and measure the

overall persistence of a metapopulation. We detailed the construction of the next-

generation matrix under different model structures to demonstrate the breadth of the

approach to several systems. We then constructed the next-generation matrix under
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Figure 4.3: a) The next-generation matrix for the 20 historically active farms in
the Broughton Archipelago, and b) the next-generation matrix containing only the
farms remaining in the Broughton Archipelago after 2023, subject to First Nations
and governmental approval (Brownsey and Chamberlain, 2018). The entries of the
next-generations matrices, kij are the number of new chalimus stage lice produced
on farm i from one initial chalimus on farm j. The column sums, Rj, are the total
number of chalimus produced on all farms from an initial chalimus on farm j and are
shown below each column. Likewise the row sums are the number of new chalimus
received by each farm from all other farms and are shown on the left of each row.
These numbers should be taken as relative, rather than absolute, as we do not have
a very accurate estimate for the arrival rate of sea lice onto farms, β.
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Figure 4.4: The connectivity matrix for sea lice larvae dispersing between salmon
farms. The (i, j)th entry is the infectious density of larvae (1/km2) over farm i that
have left from farm j. Column and row sums are shown below and to the left of each
column and row, respectively.
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Figure 4.5: The effect of temperature and salinity on the overall growth or persis-
tence of the original sea lice metapopulation of 20 farms, as described by the basic
reproduction number, R0. We do not have a good estimate for the arrival rate of sea
lice onto farms, β, and so the R0 values should only be interpreted relative to each
other, rather than as absolute values.

Table 4.2: The number of new larvae produced on each farm by a single louse starting
in the chalimus stage. The first row is the farm number and the second row is the
number of larvae produced.

1 2 3 4 5 6 7 8 9 10

1355 1582 1462 239 244 612 1064 111 56 1060

11 12 13 14 15 16 17 18 19 20

1529 33 331 175 1255 1143 1483 1348 584 464
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an age dependent modeling framework for sea lice populations on salmon farms in

the Broughton Archipelago to illustrate how this approach can be applied to a real

system. We determined which salmon farms may be acting as the largest sources of

sea lice in this region, how the metapopulation will change once certain farms are

removed, and examined the effect of temperature and salinity on the relative growth

and persistence of this metapopulation.

Next-generation matrices have been used extensively in epidemiology to study the

spread of infectious diseases but have recently been introduced in ecology (Huang

and Lewis, 2015; Krkošek and Lewis, 2010; Lewis et al., 2019; Mckenzie et al., 2012a)

and evolutionary analysis (Hurford et al., 2010). One of the key benefits of using

next-generation matrices in epidemiology is that the basic reproduction number, R0,

for a disease can be calculated as the spectral radius of the NGM, which is often much

simpler than calculating the eigenvalues of the full system to determine spread. In

ecology, one main advantage of this approach is that the mathematical calculation of

R0 can be broken down into biologically relevant quantities, for example the contribu-

tion of different dispersal pathways to growth in a population (De-Camino-Beck and

Lewis, 2007) or the contribution of populations on different habitat patches (Harring-

ton and Lewis, 2020). While not novel, we hope next-generation matrices can be used

more frequently as a simple and easily biologically interpretable method to measure

the contribution of local habitat patches to a metapopulation and determine overall

persistence.

We are also by no means the first to attempt to calculate the contribution of

a local population, classify patches into sources and sinks, or attempt to measure

the persistence of metapopulations. In the context of low densities Pulliam (1988)

defined a source as a habitat patch that would grow in the absence of immigration

and emigration and a sink as a habitat patch that would decline in the absence

of immigration and emigration. This is similar to only using the entries along the

diagonal of the next-generation matrix to classify sources or sinks, except growth or

decline was measured after one time step in a discrete time model, rather than one

generation. However, as discussed at the end of section 4.2.2, it is possible to have

a metapopulation composed only of sinks based on this definition (kii < 1 for all i),

that persists.

Recognizing that dispersal between patches should also considered when classify-

ing habitat patches as sources or sinks, both Runge et al. (2006) and Figueira and

Crowder (2006) defined new metrics to classify habitat patches that track the contri-

bution of adults on a patch in one time step to the total population on all patches

in the next timestep. These metrics are similar to our patch contribution metric Rj,
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except they measure the contribution over one time step rather than one generation,

similar to using the dominant eigenvalue of the projection matrix A to determine the

stability of the discrete system n(t + 1) = An(t), rather than the spectral radius of

the next-generation matrix K. However, the calculations can become complicated if

the population is stage structured and A is large (Appendix A, Runge et al. (2006))

and the metrics do not easily generalize to systems described by ordinary differential

equations.

There are other measures of persistence in metapopulations which do track the

number of new individuals contributed to the metapopulation after one generation

from an initial individual on one patch, though they use different starting stages for

the initial and new individuals. Krkošek and Lewis (2010) define a next-generation

operator for general heterogeneous populations which tracks the number of new adults

produced in the population from one initial adult after one generation. If bj is the

reproductive output on patch j, pij is the probability of larvae dispersing between

patch j successfully arrives on patch i, and ai is the survival to adulthood on patch

i, then the contribution of patch j to patch i according to Krkošek and Lewis (2010)

can be calculated as bjpijai. This patch contribution metric cannot be calculated

directly from the next-generation matrices shown in this chapter unless there is only

one stage. Burgess et al. (2014), following Hastings and Botsford (2006), track the

number of new larvae on all patches produced by an initial larvae. The entries of their

‘connectivity matrix’ (similar to our next-generation matrix), cij, are given by pijaibi.

The entries of their connectivity matrix would be the entries of the next-generation

matrix if it was calculated from a model with an explicit larval stage. However under

this construction the contribution of patch j, as calculated by the jth column sum of

their connectivity matrix, is primarily a function of the demography of the patches

on which larvae dispersing from j settle, rather than the local patch demography of

patch j itself, as it is when using the next-generation matrix as we have formulated

it in this chapter.

The contribution of each habitat patch to the metapopulation will depend on

the stage at which the generational output is measured, but the persistence of the

metapopulation is equivalent under all of these frameworks. This is because there

is only one component of the life cycle where movement can occur between patches

(larval stage) and at all other stages individuals remain on a patch. Let P be a

matrix with entries pij, B be a diagonal matrix with entries bj and A be a diagonal

matrix with entries aj, where pij, bj and aj are the same as the preceding paragraph.

If we measure generational output starting at the first attached stage, as we do

in this chapter, the next-generation matrix can be written as PBA, if we measure
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generational output starting at the larval stage according to Burgess et al. (2014), the

matrix can be written as BAP , and if we measure generational output starting at the

adult stage according to Krkošek and Lewis (2010) then the matrix can be written as

APB. This is because when P is multiplied by a diagonal matrix on the right, the

entries of the diagonal matrix multiply each column of P and when P is multiplied on

the left, the entries multiply each row. Now the matrices XY and Y X have the same

eigenvalues, and because matrix multiplication is associative each of the matrices

PBA, BAP , and APB all have the same eigenvalues as well, and therefore also the

same spectral radius. Therefore in any of the formulations the metapopulation will

only persist if ρ(PBA) = ρ(BAP ) = ρ(APB) > 1.

While the metapopulation persistence criteria is equivalent to other formulations

(Burgess et al., 2014; Hastings and Botsford, 2006; Krkošek and Lewis, 2010) we be-

lieve using the next-generation matrix provides several advantages. First, the frame-

work is the same for discrete time, continuous time, and age structured systems of

equations. Second, it is easy to convert between the full system of equations and the

next-generation matrix, thus if a system of equations has already been parameterized

for a given region, it is easy to calculate the contribution of each habitat patch using

the next-generation matrix. Third, there is natural extension of the next-generation

matrix to systems where multiple stages can reproduce, or when adults can migrate

between patches. In discrete time and continuous time the composition of the matrix

in terms of the fecundity and transition matrix still holds, only the formulas given in

terms of the survival, maturation, and birth rates no longer hold. The next-generation

matrix can also be extended as an operator to integro-difference equations (Krkošek

and Lewis, 2010; Mckenzie et al., 2012a). Lastly, in continuous time systems it is pos-

sible to connect the patch contribution computed from the next-generation matrix,

Rj, and the transient dynamics of the metapopulation (Chapter 3 of this thesis).

When calculating the next-generation matrix for a specific system, such as our

application of sea lice populations on salmon farms, there are some technical aspects

which should be considered. In order to use the next-generation matrix to calculate

patch contribution or persistence we are assuming that our system is autonomous,

and that the demographic rates do not change with time. In reality for most sys-

tems, including sea lice on salmon farms, environmental variables will fluctuate over

time, potentially changing the demographic rates of the population. In our case

temperature and salinity change over the course of the spring, but we calculate the

next-generation matrix using the mean temperature and salinity that sea lice expe-

rience during the particle tracking simulation window. Therefore the entries in our

next-generation matrix may be slightly different than the true number of newly at-
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tached lice produced on other farms from one initially attached louse, depending on

the exact time that the louse began its lifecyle during the spring. For temporally

oscillating systems it is possible to correct for this difference, though the entries of

the next-generation matrix no longer have a simple form and must be computed

computationally (Rittenhouse et al., 2016).

Over time periods where temperature and salinity are relatively constant, we can

use the next-generation matrix to examine the overall effect of environmental variables

on the growth of the metapopulation. The demographic rates at each stage depend

explicitly on temperature and salinity but alone, or in a full system of equations,

it can be difficult to examine the overall effect of changing environmental variables.

However, the basic reproduction number R0, calculated from the spectral radius of

the next-generation matrix, provides a useful metric of the overall effect. We can infer

how the growth of the metapopulation may change among seasons, or as the ocean

warms. For sea lice on salmon farms in the Broughton Archipelago the effect that

of temperature and salinity on R0 is very similar to previous results found for a sin-

gle farm (Rittenhouse et al., 2016). With updated temperature and salinity at each

farm, we could calculate the change in growth over years in the springtime, which

may help explain the recent sea louse outbreaks during warm years in the Broughton

Archipelago (Bateman et al., 2016). When examining the effect of temperature and

salinity on R0 we do not rerun the hydrodynamic and particle tracking models to

recreate the connectivity matrices under new temperature and salinity scenarios, as

this is very computationally intensive, but we expect connectivity to increase as tem-

perature and salinity increases due to higher survival of sea lice and faster maturation.

However, we believe it would be valuable to rerun hydrodynamic models under differ-

ent projected ocean scenarios, to investigate the precise changes in connectivity that

may occur.

Specific to management of sea lice populations on salmon farms in the Broughton

Archipelago, there are several insights to be gained from our results. The first is

that the farms that in the most productive environments are also the most highly

connected, and thus become the largest contributors of sea lice to this sea louse

metapopulation. They occur in two main clusters (shown in Figure 4.3) and both

clusters of farms will remain in the Broughton Archipelago in the current removal

plan, subject to First Nations and governmental approval (Brownsey and Chamber-

lain, 2018). It should be noted that these farms may not necessarily be producing

the most number of lice compared to other farms in the region at a given time if their

louse population is currently lower than other farms, rather they are the farms that

have the largest potential to contribute to spread when sea louse numbers are even
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across farms. However, due to the highly connected nature of these clusters, coordi-

nated treatment between farms in the clusters or all farms in the region could reduce

the number of treatments required and number of sea lice produced on all farms (Pea-

cock et al., 2016). An interesting avenue of future research would be to connect the

productivity of the remaining farms in the Broughton Archipelago with the Kernel

Density Estimates of sea louse dispersal from Cantrell et al. (2018) to measure the

exposure of migrating wild salmon to sea louse infection from these farms.

4.5 Conclusion

We have illustrated how to use the next-generation matrix to calculate the contribu-

tion of each habitat patch in a metapopulation and how to measure metapopulation

persistence. The measures of patch contribution, Rj, and metapopulation persistence,

R0, have useful biological interpretations in terms of the number of new individuals

produced after one generation and can easily be calculated. We presented the general

construction of the next-generation matrix for different formulations of metapopula-

tion models to demonstrate how to apply the approach to many different systems.

Then, we constructed the next-generation matrix for sea louse populations on salmon

farms in the Broughton Archipelago to show how this approach can be applied to

real systems and to provide insight into which farms may be the drivers of spread in

this system. Finally, we discussed how previous measures of patch contribution and

metapopulation persistence relate to our measures from the next-generation matrix

for different systems. Overall, we believe that the next-generation matrix provides

a simple and broadly applicable connection between explicit population models and

the calculation of patch contribution and persistence in metapopulations.

4.6 Appendices for Chapter 4

4.6.1 Calculating the NGM for differential equation models

Here we briefly formalize the calculation of the next-generation matrix for differential

equation models. Again, we are considering a model for a species withm sessile stages

on l patches with a larval stage that can disperse between patches and all other stages

are sedentary and confined a patch. Let nj
k be the population in sessile stage k on

patch j, then the population dynamics at low population densities can be described

by
dn

dt
= An (4.10)
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where n is a population vector of sizem×l describing the population size on all patches

at all stages and A is a matrix describing the population dynamics at low population

densities. We model the population size at low densities because we are interested in

identifying which patches are acting as sources and supporting the population at low

densities and which are acting as sinks. Therefore equation 4.10 should be thought of

as the linearization about the zero equilibrium of a potentially more complex model

that may include density dependence. The elements of A contain the maturation

and death rates of sedentary stages confined to patches as well as the rates of larval

dispersal and attachment between patches.

The next-generation matrix for this system can be calculated by first decomposing

A = F − V where F is a non-negative matrix with entries that describe the rates

of larval birth and probability of dispersal between patches and attachment as the

first sedentary phase, and V is a non-singular M matrix (Berman and Plemmons,

1994) with entries that describe the maturation rates between stages and death rates

in a stage (van den Driessche and Watmough, 2002). Because V is a non-singular

M matrix, V −1 is non-negative. Following van den Driessche and Watmough (2002)

with notation from Diekmann et al. (2010), the next-generation matrix with large

domain, KL, can then by calculated as

KL = FV −1. (4.11)

The elements of KL contain the number of new individuals in each stage and patch

produced by one initial new individual in each stages and patch. However, since

new individuals are only produced in stage 1, KL will only have l non-zero rows. If

equation 4.10 is arranged so that the populations of stage 1 individuals are in the first

l rows, then KL will have a l× l submatrix in the upper left-hand corner (Diekmann

et al., 2010). This submatrix is the next-generation matrix K, where the elements of

K, kij, give the number of new (stage 1) individuals produced on patch i from one

initial stage 1 individual on patch j. In equation 4.10, if the maturation rates from

stage k to k+1 on patch j are mj
k, the death rates in stage k are djk, the birth rate in

the last stage on patch j is bj, and the probability of successful attachment on patch

i as a larvae leaving patch j is pij, then the entries of K can be written as:

kij =

[︄
m−1∏︂
k=1

Pr(stage k → k + 1)⏟ ⏞⏞ ⏟(︄
mj

k

mj
k + djk

)︄ ]︄
⏞ ⏟⏟ ⏞
survival through sessile stages

×
(︃

bj

djm

)︃
⏞ ⏟⏟ ⏞

# larvae produced

×

Pr(patch j to patch i)⏟⏞⏞⏟
pij . (4.12)
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Example of the next-generation matrix for a two patch metapopulation

Here we illustrate the construction of the next-generation matrix using a two patch

example for a species which has two sessile stages. The population of sessile stage k

on path j is given by nj
k and the maturation rates, death rates, birth rate, probability

of dispersal are defined as in the preceding paragraph. The dynamics of the system

can be described by

⎡⎢⎢⎢⎢⎢⎢⎣
n1
1

n2
1

n1
2

n2
2

⎤⎥⎥⎥⎥⎥⎥⎦

′

=

⎡⎢⎢⎢⎢⎢⎢⎣

A⏟ ⏞⏞ ⏟
−d11 −m1

1 0 b1p11 b2f 12

0 −d21 −m2
1 b1p21 b2f 22

m1
1 0 −d12 0

0 m2
1 0 −d22

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
n1
1

n2
1

n1
2

n2
2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where we have arranged the system of equations so that individuals in the first stage

appear in the top rows. We decompose A = F −V where F contains all the births of

new stage 1 individuals and V contains all the remaining transitions, so that F and

V are given by

F =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 b1p11 b2p12

0 0 b1p21 b2p22

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , V =

⎡⎢⎢⎢⎢⎢⎢⎣
d11 +m1

1 0 0 0

0 d21 +m2
1 0 0

−m1
1 0 d12 0

0 −m2
1 0 d22

⎤⎥⎥⎥⎥⎥⎥⎦ .

The next-generation matrix with large domain, KL, can then be calculated as KL =

FV −1, where

KL =

⎡⎢⎢⎢⎢⎢⎢⎣

m1
1

m1
1+d11

b1

d12
p11

m2
1

m2
1+d21

b2

d22
p12 b1

d12
p11 b2

d22
p12

m1
1

m1
1+d11

b1

d12
p21

m2
1

m2
1+d21

b2

d22
p22 b1

d12
p21 b2

d22
p22

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
and then the next-generation matrix, K, will be given by the 2× 2 submatrix in the

upper left-hand corner of KL, so

K =

⎡⎣ m1
1

m1
1+d11

b1

d12
p11

m2
1

m2
1+d21

b2

d22
p12

m1
1

m1
1+d11

b1

d12
p21

m2
1

m2
1+d21

b2

d22
p22

⎤⎦ .
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The contribution of patch 1 is therefore

R1 =
m1

1

m1
1 + d11

b1

d12⏞ ⏟⏟ ⏞
productivity

(︁
p11 + p12

)︁⏞ ⏟⏟ ⏞
connectivity

and the contribution of patch 2 is

R2 =
m2

1

m2
1 + d21

b2

d22

(︁
p12 + p22

)︁
.

In order for a patch to be a source (Rj > 1), both the on-patch productivity and the

connectivity to other patches need to multiply to be larger than 1. If either is too

low, i.e. if a patch is highly productive but not well connected, or highly connected

but not productive, then the patch will be a sink (Rj < 1). There are two ways for

the entire metapopulation to persist. Either a single patch can persist on its own

(kii > 1), or there must be sufficient production and connectivity within patches such

that R0 = ρ(K) > 1.

4.6.2 Calculating the NGM for discrete time models

The construction of the next-generation matrix for discrete time models is very similar

to that of continuous time, though with some minor differences. The population

dynamics can now be described by

nt+1 = Ant (4.13)

where again n is a population vector of size m × l (number of stages × number of

patches) describing the population size on all patches at all sessile stages, but now A

is a population projection matrix with transition and survival probabilities as well as

births.

To calculate the next-generation matrix for the discrete time system, we now de-

compose A = F + T , where again F is a matrix that contains all the birth rates and

probabilities of successful of larval dispersal between patches, and now T is a ma-

trix that contains all of the survival probabilities and transition probabilities between

stages. Under this decomposition, the next-generation matrix with large domain, KL,

can by calculated by

KL = F (I − T )−1. (4.14)

If Equation 4.13 is arranged so that the populations of all stage 1 individuals are in

the top l rows, then again the next-generation matrix, K, will be the l× l submatrix

in the upper left hand corner of KL. In the discrete time framework if the probability
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of transitioning from stage k to k + 1 is mj
k, the probability of survival in stage k is

sjk, the fecundity in patch j is bj, and the probability that a larvae leaving patch j

successfully arrives on patch i is pij, then the entries of K can be written as

kij =

[︄
m−1∏︂
k=1

Pr(stage k → k + 1)⏟ ⏞⏞ ⏟(︄
mj

k

1− sjk

)︄ ]︄
⏞ ⏟⏟ ⏞
survival through sessile stages

×
(︃

bj

1− sjm

)︃
⏞ ⏟⏟ ⏞

# larvae produced

×

Pr(patch j to patch i)⏟⏞⏞⏟
pij . (4.15)

4.6.3 Details of the model with age dependent demography
in section 4.2.3

The full set of age density equations for the density of individuals in sessile stage k

on patch i at time t and age a, ni
k(t, a), is

ni
k(t, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bi
k(t− a)Si

k(a)M
i
k(a)⏞ ⏟⏟ ⏞

entered at t− a, survived to a

t > a

ni
k,0(a− t)

Si
k(a)M

i
k(a)

Si
k(a− t)M i

k(a− t)⏞ ⏟⏟ ⏞
present at a− t, survived to a

0 < t < a

ni
k,0(a)⏞ ⏟⏟ ⏞

initial density

t = 0

k = 1, . . . ,m− 1, (4.16)

ni
m(t, a) =

⎧⎪⎨⎪⎩
Bi

m(t− a)Si
m(a) t > a

ni
m,0(a− t) Si

m(a)
Si
m(a−t)

0 < t < a

ni
m,0(a) t = 0

k = m,

Bi
1(t) =

l∑︂
j=1

∫︂ ∞

0

ni
m(t, a)b

i(a)pijda k = 1

Bi
k(t) =

∫︁∞
0

ni
k−1(t, a)m

i
k−1(a)da k = 2, . . . ,m,

where Sj
k(a) is the probability of survival in stage k on patch j at stage-age a, mj

k(a)

is the maturation rate from stage k to k+1, bj(a) is the birth rate of larvae on patch

j, and the probability of a larva leaving patch j and successfully attaching on patch

i is pij. M j
k(a) is the probability that an individual has not yet matured from stage k

to k + 1 and can be calculated as M j
k(a) = exp(−

∫︁ a

0
mj

k(τ)dτ). Additional details of

the model equations can be found in Harrington and Lewis (2020), though there the

first larval stage is modelled explicitly and so the set of equations is slightly different.

To construct the next-generation matrix for this system, we need to track the num-

ber of stage 1 individuals produced on each patch from one initial stage 1 individual
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on a given patch. We briefly present the idea of the construction here, and more

details can be found in Harrington and Lewis (2020).

Let γij(t) be the rate of production of new stage 1 individuals on patch i from

an initial stage 1 individual on patch j. For an initial individual to be producing

offspring it must survive through each of the sessile stages and then produce larvae

which settle on another patch. Let rk be the time that an individual spends in stage

k. Then in the first m − 1 sessile stages k = 1, . . . ,m − 1 the probability that the

individual survives up to rk is Sj
k(rk)M

j
k(rk) and the rate that they are maturing to

the next stage at rk is mj
k(rk). In the last stage the probability that they survive

up to rm is Sj
m(rm) and the rate that they are producing larvae from patch j which

successfully arrive on patch i is bj(rm)p
ij.

To calculate the rate of production at time t, γij(t) we multiply all the survival

probabilities, maturation rates, and birth rate in each stage and integrate over all

possible rk, where 0 ≤
∑︁m

k=1 rk ≤ t. To ensure this bound we rewrite rm = t −∑︁m−1
k=1 rk. Thus

γij(t) =

∫︂ t

0

∫︂ t−rm−1

0

∫︂ t−rm−1−rm−2

0

· · ·
∫︂ t−

∑︁m−1
2 rk

0

Sj
1(r1)M

j
1 (r1)m

j
1(r1) . . .

Sj
m−1(rm−1)M

j
m−1(rm−1)m

j
m−1(rm−1)S

j
m(t−

m−1∑︂
1

rk)b
j(t−

m−1∑︂
1

rk)p
ijdr1 . . . drm−1.

(4.17)

Then we can integrate the rate of production, γij(t) over all time to find the total

number of new individuals produced on i from an initial individual on j, this is the

entry in the ith row and jth column of the next-generation matrix, kij. We can use

the convolution theorem,∫︂ ∞

0

f(t) ∗ g(t)dt =
∫︂ ∞

0

f(t)dt

∫︂ ∞

0

g(t)dt (4.18)

to calculate
∫︁∞
0

γij(t)dt = kij as

kij =

[︄
m−1∏︂
k=1

(︁
Sj
k(t)M

j
k(t)m

j
k(t)dt

)︁ ]︄(︃∫︂ ∞

0

Sj
m(t)b

j(t)dt

)︃
pij. (4.19)
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Chapter 5

Calculating the timing and
probability of arrival for sea lice
dispersing between salmon farms

5.1 Introduction

Marine populations are often connected over large distances due to larval disper-

sal. Once thought to be open populations with continuous exchanges of larvae, it

is now understood that many marine populations depend directly on the degree of

larval exchange between population patches, and that these connected patches act

as metapopulations (Cowen et al., 2006; Cowen et al., 2000; Cowen and Sponaugle,

2009). The degree of connectivity between habitat patches in a metapopulation is a

function of many variables, including the strength of the ocean currents on which the

larvae depend to disperse and the environmental conditions of the ocean which impact

biological processes such as maturation and survival. Research into larval dispersal

in marine metapopulations has led to a greater understanding of the population dy-

namics of corals (Mayorga-Adame et al., 2017), coral reef fish (Jones et al., 2009) and

sea turtles (Robson et al., 2017), as well as the efficacy of Marine Protected Areas

(Botsford et al., 2009; Fox et al., 2016). It has also been used to determine the level

of sea lice dispersal between salmon farms and the effect of coordinated treatment

plans in salmon farming regions (Adams et al., 2015; Cantrell et al., 2018; Kragesteen

et al., 2018; Samsing et al., 2017).

Sea lice (Lepeophtheirus salmonis) are parasitic marine copepods that feed on the

epidermal tissues, muscle, and blood of salmon (Costello, 2006). A free living nauplius

stage allows sea lice to disperse tens of kilometers in the ocean while developing into

infectious copepodites that can attach to their salmonid hosts, on which sea lice

complete the remainder of their life cycle (see Figure 5.1) (Amundrud and Murray,
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Free-living

Copepodite

Nauplius

Attached

Chalimus

Pre-adult

Adult

Figure 5.1: A simplified schematic of the life cycle of the sea louse, Lepeophtheirus
salmonis. The attached stages live on wild or farmed salmon and the free-living stages
disperse in the water column. Larvae must mature through the nauplius stage into
the copepodite stage before they are able to attach to a salmonid host.

2009; Stucchi et al., 2011). High infestation levels on adult salmon have been shown

to lead to mortality and morbidity (Pike and Wadsworth, 1999), and lesions and

stress from infestations make adult salmon susceptible to secondary infections, which

have led to large economic consequences for the salmon farming industry (Costello,

2009b). On wild juvenile salmon, infestation with sea lice can lead to mortality

(Krkošek et al., 2007) or other physiological (Brauner et al., 2012) and behavioural

effects (Godwin et al., 2015; Krkošek et al., 2011a). In near coastal areas, elevated

levels of sea lice from salmon farms have been detected on juvenile salmon up to tens

of kilometers away and these high levels of infection have contributed to population

level declines in pink salmon (Krkošek et al., 2007; Krkošek et al., 2006a; Krkošek

et al., 2005; Peacock et al., 2020).

In dense salmon farming regions such as Norway, Scotland, and Canada there is

evidence that sea lice populations on salmon farms are connected via larval dispersal

and thus act as a connected metapopulation (Adams et al., 2015; Aldrin et al., 2017;

Aldrin et al., 2013; Cantrell et al., 2021; Cantrell et al., 2018). In Norway, where

most salmon farms are located in fjords along the coast, seaway distance has been

used as a simple measure of farm connectivity over a large scale (Aldrin et al., 2013).

At a smaller scale, hydrodynamic models have been used to measure the level of

connectivity between farms (Adams et al., 2015; Cantrell et al., 2018; Foreman et al.,

2015; Samsing et al., 2017) in several salmon farming regions. Hydrodynamic models

simulate ocean currents and can then be coupled with particle tracking models to
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(a)

Glacier Falls Burdwood
0 Lx0

v

(b)

Figure 5.2: The two salmon farms that are used to calculate the time and proba-
bility of arrival for sea lice dispersing between farms. a) A map of the Broughton
Archipelago with all active farms from 2009 shown in grey, and the two farms used
in this study highlighted in red. The release farm is the eastern farm, Glacier Falls,
which is located in Tribune Channel and the receiving farm is the western farm,
Burdwood. b) The one dimensional representation of Tribune Channel used in the
mathematical analysis. Note that the position of the farms has been switched so the
advective coefficient, v, is positive.
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determine how sea lice disperse when released from a farm (Stucchi et al., 2011).

The degree of interfarm connectivity, even between two farms, can have large

consequences in terms of treating for sea louse outbreaks, and can even lead to chaotic

dynamics under threshold treatment regimes (Peacock et al., 2016). Calculating the

probability of sea lice dispersing to other farms is integral in determining which farms

may be the largest sources of sea lice spread in a salmon farming region and thus which

may be driving spread (Cantrell et al., 2018; Harrington and Lewis, 2020). Lastly and

perhaps most importantly, determining the probability of sea lice arrival onto other

farms is critical in understanding where to place farms in a salmon farming region,

or which to first remove.

To date, most of the research into the degree of connectivity between salmon farms

has either been region specific, using hydrodynamical models (Cantrell et al., 2018;

Samsing et al., 2017) or at a large scale, with statistical analyses (Aldrin et al., 2013;

Kristoffersen et al., 2013). Hydrodynamic models can be very useful in determining

connectivity in the specific regions for which they are run, but results from these

specific regions may be difficult to generalise to other regions. Conversely, statisti-

cal analyses are useful at determining the broad drivers of spread over large regions

but often do not allow for detailed investigations into how certain parameter interac-

tions affect the degree of connectivity between two farms. Thus there are still many

general questions surrounding interfarm connectivity that require new approaches to

investigate.

In this chapter, we aim to answer the following questions surrounding the proba-

bility of sea lice dispersing between salmon farms:

(i) How does the degree of cross-infection, giving by arrival probability, depend on

the spacing between farms?

(ii) Are there scenarios where an intermediate spacing between farms leads to the

highest level of cross-infection?

(iii) Does the relationship between cross-infection and farm spacing change in ad-

vection dominated versus diffusion dominated systems?

(iv) How does the maturation time for nauplii to develop into infectious copepodites

affect cross-infection?

In order to answer these questions it is necessary to have a mechanistic model

that is both sufficiently simple to investigate analytically and numerically in detail,

but sufficiently realistic to capture the essential components of ocean circulation and
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sea louse biology. For credible analysis the simple model must be fit to realistic sea

lice dispersal data to ensure accurate estimates of oceanic advection and diffusion

as well as sea louse maturation times. The approach here is to use numerical flows

from a three dimensional computational hydrodynamic model, along with a parti-

cle tracking model, to fit a simple one dimensional analytical model that describes

the movement of sea lice between two salmon farms in a channel in the Broughton

Archipelago, British Columbia(Figure 5.2). The calibrated model is then used to

investigate questions (i)-(iv).

The numerical flows are generated from a Finite Volume Community Ocean Model

(FVCOM) which has been applied to the Broughton Archipelago, located between

the northeast coast of Vancouver Island and the mainland of British Columbia. The

Broughton Archipelago has many active salmon farms and has been at the center of

the debate of the effect of sea lice on wild salmon (Brooks, 2005; Brooks and Stucchi,

2006; Krkošek et al., 2011b; Krkošek et al., 2008; Krkošek et al., 2007; Krkošek et al.,

2006a; Krkošek et al., 2005; Krkošek et al., 2006b; Marty et al., 2010; Riddell et al.,

2008). The rivers in the Broughton are major migration routes for both pink and

chum salmon, and sea lice from salmon farms in this region have contributed to pop-

ulation level declines in pink salmon (Krkošek et al., 2007). Currently, certain salmon

farms are being removed under a new agreement between the governments of British

Columbia and the Kwikwasut’inuxw Haxwa’mis, ’Namgis, and Mamalilikulla First

Nations (Brownsey and Chamberlain, 2018). The abundance of sea lice data from

counts on farmed and wild salmon as well as the complex hydrodynamical particle

tracking simulations run for this region make the Broughton Archipelago an ideal

area to investigate the cross-infection of sea lice between salmon farms.

In this chapter we develop a simple mechanistic model for the arrival time distri-

bution of sea lice dispersing between two different salmon farms. The arrival time

distribution is necessary to calculate the level of cross-infection between farms, which

is given by the probability of arrival for sea lice dispersing between salmon farms. We

begin by presenting the analytical results for simple particles dispersing, ignoring the

maturation required for sea lice to become infectious, before presenting the full arrival

time distribution for sea lice that encompasses the non-infectious nauplius stage and

infectious copepodite stage. Next, we calculate the arrival time directly using the nu-

merical flows from FVCOM coupled with a particle tracking model to fit our simple

mechanistic model and find parameter estimates. Lastly, we use our parameterized

mechanistic model to investigate the questions (i)-(iv) surrounding cross-infection and

farm placement.
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5.2 Methods

5.2.1 Mechanistic model

In order to calculate the arrival time of sea lice travelling between salmon farms and

the probability of arrival, we first need a model for how sea lice disperse along a

channel and arrive at a salmon farm. We begin by ignoring the maturation time

required for newly released nauplii to develop into infectious copepodites to gain

a comprehensive understanding of the arrival time distribution and to simplify the

details of the initial mathematical analysis. Therefore we are assuming that all sea

lice released from a salmon farm are infectious and model their dispersal using the

following advection-diffusion equation:

∂

∂t
p(x, t) = − ∂

∂x
(vp(x, t))⏞ ⏟⏟ ⏞
advection

+
∂2

∂x2
(Dp(x, t))⏞ ⏟⏟ ⏞
diffusion

−µp(x, t)⏞ ⏟⏟ ⏞
mortality

− h(x)αp(x, t)⏞ ⏟⏟ ⏞
arrival onto farm

(5.1)

p(x, 0) = p0(x) (5.2)

h(x) =

{︄
1 x ∈ [0, L]

0 otherwise
, (5.3)

where p(x, t) is the density of sea lice at position x and time t, p0(x) is the initial

distribution of sea lice, and the farm at which sea lice are arriving is located between

[0, L]. The rate at which sea lice arrive onto the farm, through successful attachment

to salmonid hosts, is given by α; the mortality rate of lice is µ; advection, which

represents the general seaward flow due to river output, is given by v; and diffusion,

representing mixing due to winds and tidal flow, is given by D. This equation has

previously been used to model sea lice movement in the Broughton Archipalego, to

demonstrate the distribution of sea lice on wild salmon caused by salmon farms along

salmon migration routes (Krkošek et al., 2006a; Krkošek et al., 2005; Peacock et al.,

2020). The necessary boundary conditions that accompany equation 5.1 are:

lim
x→−∞

p(x, t) = 0 (5.4)

lim
x→∞

p(x, t) = 0 (5.5)

lim
x→−∞

∂

∂x
p(x, t) = 0 (5.6)

lim
x→∞

∂

∂x
p(x, t) = 0 (5.7)
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To calculate the time of arrival onto the farm, we first rescale the density of lice

by their probability of survival up to time t, p(x, t) = e−µtp̃(x, t), so that p̃(x, t)

represents the probability density that lice are in the channel at position x at time

t given that they have survived, and e−µt is the probability that they have survived

up to time t. The reasoning behind this rescaling is that now when we are tracking

p̃(x, t), the probability density function for the movement of lice that have survived,

the only way that lice can be removed from the channel is by arriving onto the farm.

The equation describing p̃(x, t) is

∂

∂t
p̃(x, t) = − ∂

∂x
(vp̃(x, t)) +

∂2

∂x2
(Dp̃(x, t))− h(x)αp̃(x, t) (5.8)

p̃(x, 0) = p0(x) (5.9)

h(x) =

{︄
1 x ∈ [0, L]

0 otherwise
, (5.10)

with the same necessary boundary conditions as before.

Let T be the random variable describing the time of arrival onto the farm. We

are interested in calculating f(t), the distribution of arrival times, where
∫︁ t

0
f(τ)dτ =

Pr(T < t). Now consider
∫︁∞
−∞ p̃(x, t)dx. This is the probability that lice are still

in the water column and have not yet arrived onto the farm, thus
∫︁∞
−∞ p̃(x, t)dx =

Pr(T > t) = 1− Pr(T < t). The arrival time distribution f(t) can therefore be given

by

f(t) = − d

dt

∫︂ ∞

−∞
p̃(x, t)dx.

If we integrate equation 5.8 in space from −∞ to ∞, then the advection and

diffusion terms disappear due to the boundary conditions and we are left with

d

dt

∫︂ ∞

−∞
p̃(x, t)dx = −α

∫︂ L

0

p̃(x, t)dx.

Substituting this equation into the one for f(t) we find that

f(t) = α

∫︂ L

0

p̃(x, t)dx. (5.11)

Therefore in order to solve f(t) we must in turn solve p̃(x, t). Before turning our

attention to this solution, there are a couple details which are important to note.

First, because f(t) is the distribution of arrival times of sea lice that arrive on the

farm,
∫︁∞
0

f(t)dt will only equal 1 if all lice are eventually arrive onto the farm. While
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this will be the case if v = 0, if v > 0 or v < 0 then this need not be the case. In fact

for sea lice passing by salmon farms, the arrival rate α will probably be quite small, as

farms are often located on the edge of large channels, and we are approximating the

entire channel with a one dimensional domain. Therefore most of the lice released will

not arrive onto the farm, an assumption which we will make explicit in the following

section. Second, because we have removed mortality from the equation describing

p̃(x, t), f(t) is the probability density of arrival at time t, given that lice survive up

to time t. The probability density that lice survive up to time t and then arrive onto

the farm is e−µtf(t).

Calculating arrival time via asymptotic analysis

The solution, p̃(x, t), to equation 5.8 is difficult to solve exactly and so to find an

analytical solution to p̃(x, t) and f(t) we perform an asymptotic analysis and solve

the first order solution. For simplicity of asymptotic analysis we will assume that

p0(x) = δ(x− x0), so that all lice are initially released from another farm at position

x0. To find a small parameter around which to perform the asymptotic analysis we

first need to non-dimensionalize our system. There are many different possibilities

for non-dimensionalization, but in our case we choose to non-dimensionalize time as

t̃ = D
L2 t and space as x̃ = x

L
. Using these non-dimensional parameters we can re-write

equation 5.8 as

∂

∂t̃
p̃(x̃, t̃) = − ∂

∂x̃

(︃
vL

D
p̃(x̃, t̃)

)︃
+

∂2

∂x̃2
p̃(x̃, t̃)− h(x̃)

αL2

D
p̃(x̃, t̃) (5.12)

p̃(x̃, 0) = δ(x̃− x0

L
) (5.13)

h(x̃) =

{︄
1 x̃ ∈ [0, 1]

0 otherwise
. (5.14)

Along with non-dimensionalizing the equations for p̃(x̃, t̃), we must also write f(t)

in terms of its non-dimensional form so that it is clear how to redimensionalize f(t)

to fit to data. Previously, we demonstrated that f(t) could be calculated as

f(t) = − d

dt

∫︂ ∞

−∞
p̃(x, t)dx.

In terms of the new non-dimensional time and space variables, t̃ and x̃, this can

be rewritten as

f(t̃) = −D

L

d

dt̃

∫︂ ∞

−∞
p̃(x̃, t̃)dx̃.
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From the formulation of p̃(x̃, t̃) in equation (5.12) we can see that the non-dimensional

rate of removal of p̃ will be −d/dt̃
∫︁∞
−∞ p̃(x̃, t̃)dx̃, in the same manner as the dimen-

sional removal rate, f(t), was calculated in the previous section. Therefore if we

let

f̃(t̃) = − d

dt̃

∫︂ ∞

−∞
p̃(x̃, t̃)dx̃

be the non-dimensional arrival time distribution, then we can write the dimensional

arrival time as

f(t̃) =
D

L
f̃(t̃). (5.15)

In the non-dimensionalization process of p̃(x̃, t̃) three dimensionless parameters

appear: x0/L, vL/D, and αL2/D. In the Broughton Archipelago, advection and

diffusion have previously been estimated as v = 0.0645 km/hr and D = 0.945 km2/hr

(Table 5.2), and the length of the average farm is around L = 0.1 km. To roughly

estimate the magnitude of the arrival rate in 1 dimension, α, we must first make some

assumptions about the arrival rate of sea lice over a salmon farm in two dimensions.

Let β be the actual rate of arrival of lice onto a farm when they are in the water

column directly over a farm. In the previous chapter of this thesis we assumed

that β = 100/ day, and thus the average waiting time for infectious sea lice in the

water column surrounding the farm to arrive on the farm is roughly 15 minutes

(1/β = (1 day/100) × (24 hrs/1 day) × (60 minutes/1 hr) = 14.4 minutes). In this

chapter the timescale that we use is hours, and so β = 25/6 hrs = 4.17/ hrs. Even

if infectious lice pass over a farm, there may be only some proportion which attach

successfully at all, and this proportion has been estimated to be as high as 80% and

as low as 0.5% under different lab conditions (Skern-Mauritzen et al., 2020). Because

of the variability in these estimates we do not scale β by the proportion of lice that

eventually attach, but note that our estimate may be large and for the purposes of

asymptotic analysis we assume our estimate of β is at the upper end of the true

estimate. Then, we assume that the ratio of α/β = 0.012, which in physical terms

means that the two dimensional area taken up by the farm is roughly 0.012 of the area

of the channel at the location of the farm. At the particular farm we fit the model

to the farm is roughly 50m wide and the channel is 4km wide, and 0.05/4=0.0125).

When we fit the model we find that the estimate of α/β in fact ranges from 0.012

to 0.006 (Table 5.1). Thus taking the values of α/β = 0.012 and β = 4.17 as rough

maximum estimates, we assume α ≤ 0.05. Based on these parameter estimates and

assumptions we choose αL2/D to be the small parameter around which we perform

our asymptotic approximation.
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Let z = x0/L, ϵ = αL2/D (< 5.29× 10−4) and ω = vL/D (6.83× 10−3). Then we

can rewrite equation 5.12 as

∂

∂t̃
p̃(x̃, t̃) = − ∂

∂x̃

(︁
ωp̃(x̃, t̃)

)︁
+

∂2

∂x̃2
p̃(x̃, t̃)− ϵh(x̃)p̃(x̃, t̃) (5.16)

p̃(x̃, 0) = δ(x̃− z) (5.17)

h(x̃) =

{︄
1 x̃ ∈ [0, 1]

0 otherwise
. (5.18)

In terms of f̃(t̃), if we integrate both sides of equation 5.16 on space from −∞ to

∞, then we can write

f̃(t̃) = ϵ

∫︂ 1

0

p̃(x̃, t̃)dx̃.

We assume that p̃(x̃, t̃) can be expressed as a regular asymptotic expansion in

epsilon,

p̃(x̃, t̃) = p̃0(x̃, t̃) + ϵp̃1(x̃, t̃) +O(ϵ2)

and then can express f̃(t̃) as

f̃(t̃) = ϵ

∫︂ 1

0

p̃0(x̃, t̃)dx̃+O(ϵ2).

Substituting the expansion for p̃(x̃, t̃) into equation 5.16 and matching terms of

order ϵ0, we have

∂

∂t̃
p̃0(x̃, t̃) = − ∂

∂x̃

(︁
ωp̃0(x̃, t̃)

)︁
+

∂2

∂x̃2
p̃0(x̃, t̃) (5.19)

p̃0(x̃, 0) = δ(x̃− z), (5.20)

which has the solution

p̃0(x̃, t̃) =
1√
4πt̃

e−(x̃−z−ωt̃)2/4t̃. (5.21)

Therefore f̃(t̃), up to order ϵ2, is given by

f̃(t̃) = ϵ

∫︂ 1

0

p0(x̃, t̃)dx̃+O(ϵ2) (5.22)

= ϵ

∫︂ 1

0

1√
4πt̃

e−(x̃−z−ωt̃)2/4t̃dx̃+O(ϵ2) (5.23)

Returning to our original dimensional parameters, the dimensional form of the

arrival time distribution is
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f(t) = α

∫︂ L

0

1√
4πDt

e−(x−x0−vt)2/4Dtdx (5.24)

=
α

2

(︃
erf

(︃
x0 + vt√

4Dt

)︃
− erf

(︃
x0 + vt− L√

4Dt

)︃)︃
. (5.25)

5.2.2 Including survival and maturation

In the previous section we ignored the fact that sea lice larvae can be divided into two

main stages: a non-infectious nauplius stage, and an infectious copepodite stage. In

the nauplius stage, sea lice larvae cannot attach to salmonid hosts even if they come

in close contact, it is only in the copepodite stage that sea lice are able to attach

to hosts. To capture this infectious stage, we model the densities of the nauplius

(pn(x, t)) and copepodite (pc(x, t)) stages with the following differential equations:

∂

∂t
pn(x, t) = − ∂

∂x
(vpn(x, t))⏞ ⏟⏟ ⏞
advection

+
∂2

∂x2
(Dpn(x, t))⏞ ⏟⏟ ⏞
diffusion

− µnpn(x, t)⏞ ⏟⏟ ⏞
nauplius mortality

−m(t)pn(x, t)⏞ ⏟⏟ ⏞
maturation

(5.26)

pn(x, 0) = δ(x− x0) (5.27)

∂

∂t
pc(x, t) = m(t)pn(x, t)⏞ ⏟⏟ ⏞

maturation

− ∂

∂x
(vpc(x, t))⏞ ⏟⏟ ⏞
advection

+
∂2

∂x2
(Dpc(x, t))⏞ ⏟⏟ ⏞
diffusion

(5.28)

− µcpc(x, t)⏞ ⏟⏟ ⏞
copepodite mortality

−αh(x)pc(x, t)⏞ ⏟⏟ ⏞
arrival onto farm

pc(x, 0) = 0 (5.29)

h(x) =

{︄
1 x ∈ [0, L]

0 otherwise
, (5.30)

where µi is the mortality rate in stage i, and m(t) is the maturation rate of nauplii

to copepodites.

We are again interested in calculating the time it takes for larvae leaving one farm

to arrive on another. Now that we have divided the larvae into a non-infectious stage

and an infectious stage, the larvae must mature into the infectious stage in order to

arrive onto the second farm. Therefore to calculate the arrival time of larvae onto the

second farm, we are really interested in the removal rate of infectious larvae from the

water column. However, we do not want to count infectious larvae that die, so first we

need to separate out mortality from the two equations. Let pc(x, t) = e−µctp̃c(x, t) and

pn(x, t) = e−µntp̃n(x, t), where e−µct and e−µnt are the probabilities that lice survive
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up to time t in the copepodite and nauplius stages respectively. In the previous

section where there was only one stage the arrival time distribution was given by

f(t) = −d/dt
∫︁∞
−∞ p̃(x, t)dx, but now that there are two stages with different death

rates the arrival time distribution will be given by

e−µctf(t) = −eµct
d

dt

∫︂ ∞

−∞
p̃c(x, t)dx− e−µnt

d

dt

∫︂ ∞

−∞
p̃n(x, t)dx. (5.31)

To calculate the arrival time we can rewrite equations (5.26)-(5.30) as

e−µnt
∂

∂t
p̃n(x, t) = −e−µnt

∂

∂x
(vp̃n(x, t)) + e−µnt

∂2

∂x2
(Dp̃n(x, t))− e−µntm(t)p̃n(x, t)

(5.32)

p̃n(x, 0) = δ(x− x0) (5.33)

e−µct
∂

∂t
p̃c(x, t) = e−µntm(t)p̃n(x, t)− e−µct

∂

∂x
(vp̃c(x, t)) + e−µct

∂2

∂x2
(Dp̃c(x, t))

− e−µctαh(x)p̃c(x, t) (5.34)

p̃c(x, 0) = 0 (5.35)

h(x) =

{︄
1 x ∈ [0, L]

0 otherwise
. (5.36)

Then adding them together, integrating over all space, and substituting the resulting

expression into equation 5.31 we have

fc(t) = α

∫︂ L

0

p̃c(x, t)dx,

where we use the subscript c to denote the arrival time of lice which have matured

into copepodites.

Once again, to calculate the arrival time density we will need to solve the equations

governing the lice distribution in the channel using an asymptotic analysis, this time

with the addition of Green’s functions.

First, let us formulate the copepodid density, p̃c(x, t), in terms of a Green’s func-

tion. The Green’s function describes the movement of copepodites, as described by

equation (5.34), but without the source of maturing nauplii. The Green’s function is

then convolved with the source function: the maturing nauplii which are entering the

copepodid stage. The copepodid density can then be written as

p̃c(x, t) =

∫︂ t

0

∫︂ ∞

−∞
G(x− ξ, t− τ)s(ξ, τ)dξdτ, (5.37)

where s(ξ, τ) = e(µc−µn)τm(τ)p̃n(ξ, τ) and G(x, t) solves
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∂

∂t
G(x, t) = − ∂

∂x
(vG(x, t)) +

∂2

∂x2
(DG(x, t))− αh(x)G(x, t) (5.38)

G(x, 0) = δ(x) (5.39)

h(x) =

{︄
1 x ∈ [0, L]

0 otherwise
. (5.40)

Similar to before, the equation governing G(x, t) is difficult to solve directly,

and so we non-dimensionalize the equations and then perform an asymptotic anal-

ysis in a small parameter. We non-dimensionalize equations (5.38)-(5.40) and non-

dimensionalize the formula for p̃c(x, t) (equation (5.37)) directly. As before, let t̃ = D
L2 t

and x̃ = x
L
, then the nauplius and copepodid system can be reformulated in a non-

dimensional form as:

∂

∂t̃
p̃n(x̃, t̃) = − ∂

∂x̃

(︃
vL

D
p̃n(x̃, t)

)︃
+

∂2

∂x̃2
p̃n(x̃, t̃)−

L2

D
m(t̃)pn(x̃, t̃) (5.41)

p̃n(x̃, 0) = δ(x̃− x0

L
) (5.42)

∂

∂t̃
G(x̃, t̃) = − ∂

∂x̃

(︃
vL

D
G(x̃, t̃)

)︃
+

∂2

∂x̃2
G(x̃, t̃)− αL2

D
h(x)G(x, t) (5.43)

G(x̃, 0) = δ(x̃) (5.44)

h(x) =

{︄
1 x ∈ [0, L]

0 otherwise
(5.45)

p̃c(x̃, t̃) =
L3

D

∫︂ t̃

0

∫︂ ∞

−∞
G(x̃− ξ̃, t̃− τ̃)e(µc−µn)(L2τ̃/D)m(t̃)p̃n(ξ̃, τ̃)dξ̃dτ̃ . (5.46)

Similar to the previous section, we also need to write f(t) in terms of the new

non-dimensional space and time variables. Rescaling equation (5.31) we have

e−µc(L2 t̃/D)fc(t̃) =
D

L

(︃
−eµc(L2 t̃/D) d

dt̃

∫︂ ∞

−∞
p̃c(x̃, t̃)dx̃− e−µn(L2 t̃/D) d

dt̃

∫︂ ∞

−∞
p̃n(x̃, t̃)dx̃

)︃
,

(5.47)

so if we let the non-dimensional version of our arrival time distribution be given by

e−µc(L2 t̃/D)f̃c(t̃) =

(︃
−eµc(L2 t̃/D) d

dt̃

∫︂ ∞

−∞
p̃c(x̃, t̃)dx̃− e−µn(L2 t̃/D) d

dt̃

∫︂ ∞

−∞
p̃n(x̃, t̃)dx̃

)︃
(5.48)

then the relationship between the dimension and non-dimensional forms of the arrival

time is

fc(t̃) =
D

L
f̃c(t̃).
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For our small parameter we again choose ϵ = αL2/D, around which we perform

our expansion, and ω = vL/D as the other non-dimensional parameter. We can

then expand G(x̃, t̃) = G0(x̃, t̃) + ϵG1(x̃, t̃) + O(ϵ2), along with the corresponding

p̃c(x̃, t̃) = p̃c0(x̃, t̃) + ϵp̃c1(x̃, t̃) +O(ϵ2).

Then using these new parameters and adding together the terms on the right hand

side of equation (5.48), the non-dimensional version of the arrival time distribution,

f̃(t̃), is

f̃c(t̃) = ϵ

∫︂ 1

0

p̃c0(x̃, t̃)dx̃+O(ϵ2). (5.49)

Therefore to find f̃c(t̃) we need to calculate G0(x̃, t̃) and p̃0(x̃, t̃). Focusing first on

G(x̃, t̃) we can match terms of order ϵ0 in equation (5.43) to arrive at

∂

∂t̃
G0(x̃, t̃) = − ∂

∂x̃

(︁
ωG0(x̃, t̃)

)︁
+

∂2

∂x̃2
G0(x̃, t̃) (5.50)

G0(x̃, 0) = δ(x̃) (5.51)

which has the solution

G0(x̃, t̃) =
1√
4πt̃

e−(x̃−ωt̃)2/4t̃ (5.52)

with the corresponding solution in p̃c0(x̃, t̃),

p̃c0(x̃, t̃) =
L3

D

∫︂ t̃

0

∫︂ ∞

−∞
G0(x̃− ξ̃, t̃− τ̃)e(µc−µn)(L2τ̃ /D)m(t̃)p̃n(ξ̃, τ̃)dξ̃dτ̃ . (5.53)

Therefore the arrival time distribution, up to order ϵ2, is given by f̃c(t̃) = ϵ
∫︁ 1

0
p̃c0(x̃, t̃)dx̃+

O(ϵ2) along with equations (5.52) and (5.53). Before writing out f̃c(t̃) explicitly, we

will first redimensionalize the arrival time distribution, as this is what will be fit to

data. In its dimensional form with the original time and space variables we have:

fc(t) ≈ α

∫︂ L

0

∫︂ t

0

∫︂ ∞

−∞
G0(x− ξ, t− τ)e(µc−µn)τm(t)p̃n(ξ, τ)dξdτ (5.54)

G0(x, t) =
1√
4πDt

e−(x−vt)2/4Dt (5.55)

p̃n(x, t) =
1√
4πDt

e−(x−vt)2/4Dte−
∫︁ t
0 m(u)du (5.56)
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5.2.3 Coupled biological-physical particle tracking simulation

The region in which we are interested in fitting the arrival time model to data is the

Broughton Archipelago, located between the northeast coast of Vancouver Island and

the mainland of British Columbia. To measure the arrival time for sea lice dispersing

between farms in the Broughton Archipelago we use a bio-physical particle tracking

simulation. This particle tracking simulation uses an underlying ocean circulation

model, the Finite Volume Community Ocean Model (FVCOM) (Chen et al., 2006).

The simulation period of the FVCOM was between March 1st and July 31st 2009, to

coincide with the outmigration of juvenile pink and chum salmon in that year. More

details on the FVCOM simulation can be found in Foreman et al. (2009) and Cantrell

et al. (2018), but briefly the FVCOM uses data on tides, wind, surface heating,

and river discharge from the six major rivers in the Broughton as input to simulate

three-dimensional ocean velocity, temperature and salinity. The FVCOM uses an

unstructured grid to solve the necessary hydrodynamic equations, which allows for

a more realistic simulation of ocean circulation near the complex coastlines of the

Broughton Archipelago. The FVCOM currents arising from this 2009 simulation

were compared with observations from twelve current meter moorings and found to

be in relatively close agreement (Foreman et al., 2009).

Hourly output from the FVCOM model was used as input into an offline bio-

physical particle tracking simulation, details of which can be found in Cantrell et al.

(2018). The physical component of the particle tracking simulation determines how

sea lice particles move based on the current that they experience from the output of

the FVCOM model, and the biological component determines how they survive and

mature based on the local salinity and temperature that they experience. Particles

are first released from farms as pre-infectious nauplii and then mature into infec-

tious copepodites. The development time from nauplii to copepodite is based on the

temperature (T ) that particles experience, and is given by the simplified Bělehrádek

function

τ(T ) =

[︃
β1

T − 10 + β1β2

]︃2
. (5.57)

As a particle will experience different temperatures over its lifetime, to track maturity

each particle is given a maturity value (M). The maturity value starts at 0 for a newly

released nauplius and then updates via

Mt = Mt−1 +∆t/τ(T ). (5.58)

Once the maturity value, M , reaches 1, the particle molts into a copepodite.
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The survival probability of each particle is given by

S(t) = e−µt,

where the survival coefficient, µ, is constant at 0.31 per day when salinity (S) is above

30 ppt for the nauplius stage, and at less than 30 ppt is given by

µ = 5.11− 0.16S. (5.59)

Once the particles mature into copepodites (with a maturity coefficient ≥ 1), then the

survival coefficient is constant at 0.22 per day. The constant survival in the mature

copepodite stage is due to a lack of consensus among studies on how copepodite

survival changes with temperature and salinity.

To determine the trajectories of sea lice originating from farms in the Broughton

Archipelago, 50 particles were released per hour from each of the 20 active farms

(during 2009) and tracked for 11 days using the offline particle tracking model. The

first day of release was March 14, and the last day of release was July 20, 2009. In this

chapter, to fit the analytical arrival time distribution, we use the particles released

on May 2, 2009 as this is a typical release day from 2009 (CRD 50 in Cantrell et al.

(2018)).

The 24 hours of particle releases (24 releases × 50 particles per release) on May 2,

2009 were combined into one cohort so that the time of release of the entire cohort

begins at t = 0. The amalgamation of 24 hours of releases on one day is to smooth

out the effect that the tidal cycle may have on any given individual release. For this

particular cohort, Kernel Density Estimates (KDEs) were created using the particle

locations at every hour over the 11 days that they were tracked, for a total of 265

KDEs. The idea behind kernel density estimation is to create a distribution from

individual particle locations by applying a smoothed Gaussian kernel around each

particle location and then adding each kernel to create a distribution. The specific

details behind the Kernel Density Estimation process for the sea lice particles can be

found in Cantrell et al. (2018).

5.2.4 Model fitting

In order to fit the analytical model of arrival time to the Kernel Density Estimates

calculated from the particle tracking simulation we need to calculate a form of arrival

time from the KDEs. The first step in this process is to determining which farm to

set as the release farm for sea lice and which to use as the receiving farm. In the

Broughton Archipelago the use of a one dimensional advection diffusion model to
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determine the distribution of sea lice on wild salmon from source farms has been fit

to data mainly in Tribune channel and so to compare parameter estimates we choose

farms also in Tribune. Our release farm is Glacier Falls, located in the center of

Tribune channel, and our receiving farm is Burdwood, which lies at the opening of

Tribune (see Figure 5.2).

The KDE represents the distribution of particles over space and has units of par-

ticles per kilometer squared. In order to convert this density distribution into a

probability distribution, we first must divide the KDE by the total number of par-

ticles released, in this case 1200 (50 particles × 24 releases (1 per hour)). Then the

new KDE represents the two dimensional probability distribution of particles, with

the integral over the entire domain equal to one; this is now the two dimensional

equivalent of p(x, t).

Recall that in the one dimensional mechanistic model, arrival time was calculated

as

f(t) = α

∫︂ L

0

p(x, t)dx

and so to calculate the arrival time for the particle tracking simulations we take the

value of the rescaled KDE at the position of the receiving farm and multiply it by the

area of the raster cell (approximately the size of the farm), which is 0.01 km2. The

only unknown quantity is the rate of arrival of lice onto the farm over which they are

passing, which we call β, this is the two dimensional equivalent of α. In Chapter 4

of this thesis we assumed that the arrival rate was roughly β = 25/6 hr, but we did

not scale the arrival rate by the proportion of lice that may successfully attach upon

arrival, and so the actual estimate of β is very uncertain. No matter the rate, the key

assumption that we make here is that the number of lice that arrive onto the farm is

small compared to the total number of lice in the rest of the domain, and thus we do

not discount future KDEs by any proportion of lice that have potentially arrived on

a farm.

The hydrodynamic equivalent of the arrival time distribution can then be calculated

as

fh(t) = β

∫︂
farm

ph(x, t)dΩ,

to which we want to fit our original arrival time distribution f(t) = α
∫︁ L

0
p(x, t)dx.

We could use our assumption of the arrival rate for the hydrodynamic model, β, to

fit the arrival rate of the one dimensional model α, however due to the uncertainties

in β we instead fit (︃
α

β

)︃∫︂ L

0

p(x, t)dx
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to
∫︁
farm

ph(x, t)dΩ, calculated from kernel density estimation. For simplicity we use

β = 1 rather than β = 25/6 to calculate the arrival time in Figures 5.4 through 5.8.

There are three different mechanistic models that we fit to the arrival time from

the Kernel Density Estimates: arrival time of inert particles, arrival time of particles

which have survived, and arrival time of sea lice particles that have survived and

matured to their infective stage. These three models each use slightly different KDEs.

For the inert particles, the KDEs are constructed solely from the positions of the sea

lice particles at each time step. For the arrival time of only the particles that have

survived up to t, the KDEs are constructed by weighting each particle by its individual

survival coefficient, which depends on the local salinity that it has experienced, as

described in the previous section. Details on this weighting can be found in Cantrell

et al. (2018). Lastly, for the arrival time of sea lice particles that have both survived

up to time t and matured into infectious copepodites, the KDEs are constructed

using only particles that have a maturity value greater or equal to 0.8, and then these

particles are again weighted by their survival coefficient during the construction of

the KDEs. The value of 0.8 was chosen as it has been previously been found that

using a maturity value of 1 may be overly sensitive to temperature (Cantrell et al.,

2018).

To fit our arrival time models to the arrival time from the KDEs we use non-linear

least squares, with the size of the farm and distance of release farm fixed at L = 0.1 km

and x0 = −13.5 km respectively. All of the other parameters were allowed to vary

during the fitting process and the best fit parameter estimates can be found in Table

5.1.

In the arrival time model which includes maturation, it is necessary to specify

a maturation function in order to fit the model to the KDE data. We choose to

use a Weibull maturation function, also used by Aldrin et al. (2017) to model sea

lice maturation, as it gave a much better fit to our maturation data (Figure 5.3)

than the alternatives often used in the sea lice literature: a constant maturation rate

(Krkošek et al., 2006a; Peacock et al., 2020) or strict minimum development time

followed by a constant maturation rate (Adams et al., 2015; Revie et al., 2005). The

Weibull distribution is a two parameter distribution and can be parameterized in a

number of ways. We choose to follow Aldrin et al. (2017) and use the median time to

development, δm, and a shape parameter, δs, to define the distribution. Using these

parameters the maturation rate (often called the hazard rate in survival analysis) is

m(t) = log(2)δs(δm)
−δstδs−1.
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Figure 5.3: The proportion of larvae that have not yet reached a maturation level of
0.8 in the hydrodynamic model, with the best fit lines for three different maturation
functions. The dotted line is the maturation function corresponding to a constant
maturation rate (e−mt), the dashed line is the maturation function for a minimum de-
velopment time followed by a constant maturation rate (1−H(t−tmin)(1−e−m∗(t−tmin)),
and the solid line is the Weibull maturation function (e− log(2)(t/δm)δs ).

5.3 Results

5.3.1 Arrival time of inert particles

First we present the arrival time distribution of inert sea lice particles, which do not

have any survival or maturation characteristics associated with them, but are still

confined to the top five meters of the water column. The formula for the arrival time

distribution from the analytical model, given in section 5.2.1, is

f(t) = α

∫︂ L

0

1√
4πDt

e−(x−x0−vt)2/4Dtdx.

The fit of this distribution to the output from the hydrodynamic simulation can

be seen in Figure 5.4, along with the best fit parameter estimates in Table 5.1.

5.3.2 Arrival time including survival

Next, we present the fit of the arrival time distribution of particles that have survived,

to Kernel Density Estimates that are weighted by survival, as described in section

5.2.3. Therefore the distribution we are now fitting is

e−µtf(t) = αe−µt

∫︂ L

0

1√
4πDt

e−(x−x0−vt)2/4Dtdx.
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Figure 5.4: Arrival time distribution of inert particles. The points are the arrival
time densities calculated from the hydrodynamic model and the curve is the best fit
line of the simple analytical model fit to these points via non-linear least squares.
Parameter estimates for the model are given in Table 5.1, with β = 1.

The survival function, e−µt, is the probability that a sea louse has survived up to

time t, and
∫︁ t+ϵ

t−ϵ
f(τ)dτ is the probability that a sea louse arrives on the second

farm between t − ϵ and t + ϵ, given that it has survived. The fit of e−µtf(t) to the

hydrodynamic model is shown in Figure 5.5.

5.3.3 Arrival time of sea lice (maturation and survival)

Lastly, we present the fit of the arrival time distribution of infectious sea lice particles.

In the hydrodynamic simulation these particles each mature and have a survival

probability based on the local salinity and temperature that they experience over

their lifetime. For the one dimensional mechanistic model, we are fitting the arrival

time distribution of copepodites, f(t), offset by the probability that a copepodite

survives up to time t, e−µct. In short, we are fitting

e−µctfc(t) = α

∫︂ L

0

∫︂ t

0

∫︂ ∞

−∞
G0(x− ξ, t− τ)e−µc(t−τ)e−µnτm(τ)pn(ξ, τ)dξdτ (5.60)

G0(x, t) =
1√
4πDt

e−(x−vt)2/4Dt (5.61)

pn(x, t) =
1√
4πDt

e−(x−vt)2/4Dte−
∫︁ t
0 m(u)du (5.62)

m(t) = log(2)δs(δm)
−δstδs−1 (5.63)

to the Kernel Density Estimates of sea lice particles that have survived and have

matured from nauplii to infectious copepodites. The fit of e−µctfc(t) is shown in
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Figure 5.5: Arrival time distribution of particles with survival included. The points
are the arrival time densities calculated from the hydrodynamic model with KDE
estimates weighted by survival and the curve is the best fit line of the simple analytical
model fit to these points via non-linear least squares. Parameter estimates for the
model are given in Table 5.1, with β = 1.

Figure 5.6 and the best fit parameters are in Table 5.1. The probability of arrival of

sea lice on the farm is given by ∫︂ ∞

0

e−µctfc(t)dt,

which is how we will measure the level of cross infection between farms.

5.3.4 Applications

Now that we have fit our arrival time model to the hydrodynamic simulation, we

aim to answer the questions posed in the Introduction, surrounding the placement of

salmon farms in a channel:

(i) How does the degree of cross-infection, giving by arrival probability, depend on

the spacing between farms?

(ii) Are there scenarios where an intermediate spacing between farms leads to the

highest level of cross-infection?

(iii) Does the relationship between cross-infection and farm spacing change in ad-

vection dominated versus diffusion dominated systems?

(iv) How does the maturation time for nauplii to develop into infectious copepodites

affect cross-infection?
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Figure 5.6: Arrival time distribution of infectious copepodites. The points are the
arrival time densities calculated from the hydrodynamic model and the curve is the
best fit line of the simple analytical model fit to these points via non-linear least
squares. Parameter estimates for the model are given in Table 5.1, with β = 1.

We have a model for the distribution of arrival times of sea lice coming from a

second farm, and so there are a variety of analyses that can be done with such a

distribution. In this section we will focus on how various factors affect cross infection

between farms, as measured by the probability of arrival,
∫︁∞
0

e−µctfc(t)dt. but one

could also investigate how the mean arrival time or variance of the distribution also

changes. For our analyses we will use our full arrival time model that includes both

maturation and survival of sea lice, as we focus on how different parameters affect

the total probability that lice arrive on the farm, but for other questions relating to

how the advection and diffusivity affect the arrival of particles, the simpler models

may be more suitable.

To answer the above questions we explore how three different interactions of pa-

rameters affect the probability of arrival: advection (v) and diffusion (D), advection

and initial farm placement (x0), and median maturation time (δm) and initial farm

placement. Each of these interactions reveals a glimpse into a different component of

the model, as it is difficult to gain insight if all of these parameters are changed at

once. Apart from the parameters that are varying, all others will be held constant at

their best fit estimates from the non-linear least squares fit, shown in Table 5.1. We

begin by answering the last three questions before turning our attention to the first.
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Are there scenarios where an intermediate spacing between farms leads to
the highest level of cross-infection?

By examining the effect of varying the advection coefficient and the placement of

the first farm, we can see from Figure 5.7b) there are indeed scenarios where an

intermediate spacing leads to the highest level of cross infection. At even small

advection coefficients, for example v = 0.05, the arrival probability is maximized

when the second farm is placed around 14km away from the first. However, even if

transmission to a farm 1km away may be lower than transmission to a farm 14km

away, when considering self infection of a farm, local currents may allow sea lice to

directly mature around the farm so that within farm infection remains high, as sea

lice outbreaks on farms in the Broughton have been shown to be primarily driven by

self-infection (Krkošek et al., 2012a).

In fact, the probability of arrival is maximized along the line v = mx0+b, for some

slope m and intercept b, and the probability decrease symmetrically as the intercept

b moves away from the intercept at which the probability is maximized. Intuitively

this seems to be due to the relationship between the spatial mean of the solution to

equation 5.1, when the initial condition is a delta function. The solution is

p(x, t) =
1√
4πDt

e−µt−(x−x0−vt)2/4Dt,

which has the spatial mean x0 + vt. So for a fixed maturation time, the probability

of arrival should be maximized if most lice have matured before the mean density of

lice moving through the channel passes by the second farm.

Does the relationship between cross-infection and farm spacing change in
advection dominated versus diffusion dominated systems?

The relationship between the advection and diffusion of the system and the arrival

probability is shown in Figure 5.7a). We can see that for any diffusion coefficient,

there is a single advection coefficient that maximizes the probability of arrival. At this

maximized advection coefficient, increasing the diffusion coefficient simply reduces

the probability of arrival. Now this is in the context of a fixed release location and

median maturation time, but for these fixed parameters the advection coefficient plays

a large role in determining whether lice will arrive at all, and the value of the diffusion

coefficient determines how large the probability of arrival will be.
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How does the maturation time for nauplii to develop into infectious cope-
podites affect cross-infection?

The relationship between the median maturation time, δm, the placement of the re-

lease farm, x0, and the arrival probability is shown in Figure 5.7c). Here we chose

the minimum median development time of 70 hours as this was approximately the

lower end of the 95% confidence interval for the median maturation time at 10 de-

grees found in a large analysis of salmon farms in Norway (Aldrin et al., 2017), and

thus is most likely the fastest that nauplii would develop into copepodites in the

Broughton Archipelago. Again we can see that for many median maturation times,

the arrival probability is maximized at intermediate values of release farm position,

x0, and therefore placing farms closer to each other may not always lead to higher

transmission. However for a given release farm position, the arrival probability is

always maximized at the lowest possible development time. Therefore for two farms

at fixed locations, warmer temperatures that cause faster louse development times

will lead to higher spread between farms.

How does the degree of cross-infection, giving by arrival probability, de-
pend on the spacing between farms?

We can see that the degree of cross-infection between farms depends on a variety

of factors, and there is no specific farm spacing that minimizes or maximizes cross-

infection across all variables. If there is very little advection in the system then

cross-infection will be highest when farms are closest together. In channels with an

underlying advective current, cross-infection will be maximized at some intermedi-

ate spacing, though the spacing leading to maximum cross-infection depends on the

current. This is due in part to the maturation time required for sea lice to become

infectious, if lice are swept by the farm before they have a chance to mature then cross-

infection will be low. Complicating this relationship further is that for a given farm

spacing, cross-infection may change throughout the year or among years as advection

changes with river discharges and winds, as diffusion changes over spring-neap and

longer tidal cycles, and as maturation time changes due to changing temperatures.

5.4 Discussion

The degree of sea louse connectivity between salmon farms has been well studied in

specific salmon farming regions but there are few general models that can answer

broad questions surrounding the effect of farm spacing and environmental variables

on interfarm connectivity. In this chapter we used a simple mechanistic model to
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Figure 5.7: Total probability of sea lice arriving from one farm to another,∫︁∞
0

e−µctf(t)dt, as different parameters vary: a) advection and diffusion, b) advec-
tion and initial farm placement, c) initial farm placement and median development
time. Apart from the parameters that are varying, all other parameters are held
constant at their best fit estimates shown in Table 5.1, with β = 1.
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calculate the timing and probabilty of arrival for sea lice dispersing between salmon

farms. We then calculated the same quantities directly from complex hydrodynamical

and particle tracking simulations in the Broughton Archipelago and demonstrated

that our simple model captures the necessary effects of environmental and physical

variables on timing and probability of arrival for sea lice in this region. Using our

simple model calibrated to the Broughton Archipelago, we then investigated the effect

of farm spacing, maturation time, and ocean advection and diffusion on the degree

of cross-infection between farms and found that there are several scenarios in which

intermediate farm spacing leads to the highest levels of cross infection.

Previous studies from the Broughton Archipelago have used hydrodynamic simula-

tions and mechanistic models to model the dispersal of sea lice from salmon farms onto

wild salmon and these studies provide useful comparisons of parameter estimates in

this region (Table 5.2). The main parameters to compare are the advection coefficient

v, the diffusion coefficient D, the mortality rates µc and µn. There were no parameter

estimates for the nauplius mortality rate from Krkošek et al. (2005) or Krkošek et

al. (2006a), as in these studies nauplius mortality rate was estimated in conjunction

with nauplius maturation rate, but most of our other parameters estimates are similar

to those found previously, lending support to the accurate calibration of our simple

model. The only parameter estimate which seems high compared to other studies is

the advection coefficient v. This could be because in the other studies the advection

coefficient is estimated over a larger region of Tribune channel than our study, and

so varying coefficients in other parts of the channel could lead to a lower overall ad-

vection coefficient. In particular, Cantrell et al. (2018) found that sea lice from farms

in the lower part of the channel move in the opposite direction as the advection is

estimated from Krkošek et al. (2006a), which would therefore lead to a lower overall

advection coefficient when estimated over the entire channel. Alternatively, our ad-

vection estimate is taken from the particle tracking simulation for a single day and

may change if our model is fit against a simulation from a different time period.

In addition to confirming our parameter estimates, previous studies in the Broughton

Archipelago also support our result that the highest density of farm origin sea lice in

a channel may be at an intermediate distance away from the farm, leading the highest

degree of cross-infection of sea lice. In particular, Cantrell et al. (2018) found that the

simulated density of infectious copepodites from the five south-easterly farms (Figure

5.2) was highest further than fifteen kilometers away from the nearest farm using

a hydrodynamic model. Less drastically, Peacock et al. (2020) also found that the

highest density of copepodites was a few kilometers away from each farm along the

measured migration corridor using a mechanistic model fit to empirical data. These
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differing results may be a result of the different scales or methods used and are per-

haps accentuated by the different maturation functions. Cantrell et al. (2018) used

the same maturation process as described in this chapter (equation (5.58)), which

can be well approximated by a Weibull function (5.3) and allows for a delay before

sea lice larvae can become infections, whereas the exponential maturation function

used by Peacock et al. (2020) does not allow for such a delay and thus some larvae

will instantly become infectious.

When farms are not located in a channel but on nearby islands or along a com-

mon coastline the ocean dynamics will likely be diffusion dominated and thus cross

infection will decrease as farms become further apart, rather than cross-infection be-

ing maximized at intermediate distances in the presence of advective currents. We

found that our simple model also fits well to these scenarios (fits not shown), though

in this case the absorption rate will be lower as the one dimensional approximation

now effectively represents a radial slice of a two dimensional diffusion process. In

these cases the probability of arrival is likely to be well-approximated by the seaway

distance kernels used in other studies (Aldrin et al., 2017; Aldrin et al., 2013).

The simplicity of our mechanistic model coupled with the knowledge of how me-

dian development time changes with respect to temperature also allows us to inves-

tigate how connectivity may change as ocean temperatures warm. We found that for

any fixed farm separation distance, shorter development times, which are caused by

warmer temperatures, increased the probability of sea lice dispersing between farms.

This result confirms previous work demonstrating that warmer temperatures increase

the connectivity of farms, using a bio-physical model (Cantrell et al., 2020), and

the failure to control sea louse outbreaks on wild salmon in 2015 when the water

temperature was anomalously warm (Bateman et al., 2016). Moreover, the simple

analytical nature of our arrival time model and the dependence of maturation time

on temperature allows us to explicitly demonstrate the dependence of connectivity on

temperature, so that for the temperature of a given year, we can calculate the level

of interfarm connectivity.

While our simple model can be used to understand how connectivity changes as

temperatures warm, it may be beneficial to updated connectivity estimates in future

years. In this case GPS drifters released from farms could be used to calculate the

advection and diffusion of the ocean and determine spatial spread while average tem-

perature and salinity data could be used to determine the appropriate maturation

and survival times (equations 5.57-5.59). GPS drifters have previously been used to

determine ocean diffusivity (Corrado et al., 2017; De Dominicis et al., 2012), and

could be used to update connectivity as re-running the hydrodynamic model is com-
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putationally expensive. In British Columbia, particle tracking models with sea lice

releases from farms have only been run in the Broughton Archipelago and so drifters,

combined with temperature and salinity data, could be used to estimate connectivity

between salmon farms in other regions across BC.

In this chapter we have estimated the timing and probability of arrival using ad-

vection and diffusion estimates from particle releases that have been averaged over

24 hours to smooth the effect of the tidal cycle. However, there may be certain sit-

uations where the timing of arrival needs to be estimated at a specific point in the

tidal cycle. It is also possible to calculate the arrival time distribution for this case

and we present the results in the Appendix. We calculate the arrival time using two

different methods and compare to the arrival time calculated from the complex hy-

drodynamical simulations with a single particle release. One method simply allows

the advection coefficient to oscillate in magnitude with the tidal cycle, and the second

builds on the first and also allows sea lice move between the main channel and small

bays or connecting channels where they are free of the oscillating tidal flow.

Lastly, this chapter has been written in the context of the current agreement be-

tween the governments of British Columbia and the Kwikwasut’inuxw Haxwa’mis,

’Namgis, and Mamalilikulla First Nations to remove salmon farms from their tradi-

tional territories (Brownsey and Chamberlain, 2018). Currently 9 farms are being re-

moved before 2023 and after 2023 7 of the remaining 11 farms will require agreements

with the Kwikwasut’inuxw Haxwa’mis, ’Namgis, and Mamalilikulla First Nations and

valid DFO licenses to continue to operate. Our work reinforces the notion that it is

not always obvious how farm placement affects sea louse spread between farms, as

there are certain instances where placing two farms further away from each other

can lead to more spread than if they were closer. We hope that our work builds on

past research to help understand the level of sea louse spread between salmon farms

Broughton Archipelago and that our research may help understand which farms could

be the primary drivers of sea louse spread in other regions as well.

5.5 Appendix for Chapter 5

5.5.1 Model extension — including tidal flow

In this chapter we have modelled larval dispersal from a farm using an advection-

diffusion equation, as others have done in this region (Krkošek et al., 2006a; Krkošek

et al., 2005; Peacock et al., 2020). When modelling dispersal using this framework,

the constant advection coefficient captures directional water movement due to river
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runoff and the diffusion coefficient captures the average mixing due to tidal flow and

wind currents. In order to capture the average mixing due to tidal flow we have fit

our arrival time model to hydrodynamic data where the spatial distribution of sea

lice is drawn from 24 hours of release times. The strongest constituent tide in the

Broughton is M2, which has a period of 12.4 hours, and so by sampling 24 hours of

releases we capture releases from approximately two tidal periods.

However, it is also possible to augment the advection-diffusion equation with con-

stant coefficients that governs larval dispersal so that tidal flow is explicitly captured,

which can then be compared to the hydrodynamic model consisting of only one release

time. We briefly present two different models of larval dispersal with time varying

advection coefficients to capture tidal flow and discuss their implications. Both mod-

els describe the dispersal of larvae that have survived, p̃(x, t), and so their constant

advection counterpart is given by equation 5.8. For simplicity we will also ignore the

maturation period required for nauplii to develop into infectious copepodites before

arriving onto a farm, similar to the first model presented in this chapter.

The first method of modeling larval dispersal subject to tidal flow is to replace

the constant advection coefficient, v, by an oscillating advection coefficient, v0 +

v1 cos(
2π
12
(t−t0), where v0 is the constant advection of the system, v1 is the magnitude

of the tidal flow oscillation and t0 is the time in the tidal cycle at which sea lice are

initially released. We assume a period of 12 hours here to demonstrate the method,

though in reality the tidal period is slightly longer and would be better approximated

by a summation of sinusoids each with different amplitudes, phase lags, and periods

to capture the different tidal constituents. The first model for larval dispersal is then

given by:

∂

∂t
p̃(x, t) = − ∂

∂x

(︃
(v0 + v1 cos(

2π

12
(t− t0))p̃(x, t)

)︃
+

∂2

∂x2
(Dp̃(x, t))− h(x)αp̃(x, t)

(5.64)

p̃(x, 0) = δ(x− x0) (5.65)

h(x) =

{︄
1 x ∈ [0, L]

0 otherwise
. (5.66)

The benefit of this framework is that it is again possible to non-dimensionalize, per-

form an asymptotic expansion in the small parameter, ϵ = αL2/D, solve for the

arrival time distribution, f(t), up to order ϵ2, and then re-dimensionalize f(t) which
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is then given by:

f(t) =
α

2

(︄
erf

(︄
x0 + v0t+ v1

12
2π

(︁
sin
(︁
2π
12
(t− t0)

)︁
+ sin

(︁
2π
12
(t0)
)︁)︁

√
4Dt

)︄
(5.67)

− erf

(︄
x0 + v0t+ v1

12
2π

(︁
sin
(︁
2π
12
(t− t0)

)︁
+ sin

(︁
2π
12
(t0)
)︁)︁

− L
√
4Dt

)︄)︄
, (5.68)

shown in Figure 5.8a). The downside to this approach is that the average over all

tidal release times, t0, is simply the constant advection diffusion equation with the

same diffusion coefficient as the oscillating advection case. This seems somewhat

biologically unrealistic, as the addition of modeling tidal flow was meant to allow for

a smaller diffusion coefficient, as the mixing due to tidal flow should now be accounted

for in the oscillating advection term.

In order to construct more realistic equations where the oscillating tidal flow mim-

ics the diffusion in the constant advection diffusion equation, for the second model we

split the ocean environment into two compartments, a lateral compartment that rep-

resents movement along the channel, and a cross channel compartment where larvae

remain stationary in the lateral direction. This cross channel compartment represents

larvae that may be swept into eddies, small bays along the shore, or into any con-

necting channels that are perpendicular to the lateral channel. We let p̃(x, t) denote

the larvae that are in the lateral compartment, q(x, t) to be the larvae that are in

the cross channel compartment, λ1 to be the rate of transfer from the lateral to cross

channel compartment, and λ2 to be the rate of transfer between the cross channel

and lateral compartment. The model is

∂

∂t
p̃(x, t) = − ∂

∂x

(︃
(v0 + v1 cos(

2π

12
(t− t0))p̃(x, t)

)︃
+

∂2

∂x2
(Dp̃(x, t))− h(x)αp̃(x, t)

− λ1p̃(t, x) + λ2q(t, x) (5.69)

d

dt
q(x, t) = λ1p̃(x, t)− λ2q(x, t) (5.70)

p̃(x, 0) = δ(x− x0) (5.71)

q(x, 0) = 0 (5.72)

h(x) =

{︄
1 x ∈ [0, L]

0 otherwise
. (5.73)

With the addition of this cross channel compartment, where larvae can remain sta-

tionary along the channel, this model can replicate similar arrival times as the previous

model but with much smaller diffusion coefficients. The cross channel compartment
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allows some larvae to be swept forward in the lateral compartment, transfer to the

cross channel compartment and remain there while other larvae may be swept back,

before re-entering the lateral compartment and moving forward. The only downside

to this model is it is no longer simple to perform an asymptotic analysis and arrive

at an analytical expression for the arrival time.

To demonstrate that this model can replicate a similar arrival time distribution as

the previous model, we compare the arrival time distributions for the two models and

the arrival time calculated from a single louse release in the hydrodynamic mode in

Figure 5.8. For this figure we set λ1 = λ2 = 1/12, so that the average time spent

in either compartment was 12 hours, the same as the tidal period. Here we can see

that the two arrival time distributions are similar, but the arrival time from the two

compartment model has a much lower diffusion coefficient.
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Figure 5.8: Arrival time distribution incorporating tidal flow. In a) the arrival time
is calculated from equations 5.64 and 5.68, where the parameters are the same as the
best fit parameter estimates in Table 5.1 for the model which includes survival, with
the addition of v1 = 1, and β = 1. In b) the arrival time is calculated from equation
5.69, with α/β = 0.012, β = 1, v0 = 0.3, v1 = 1, D = 0.01, and λ12 = λ21 = 1/12.
In c) the arrival time is calculated directly from the KDEs and the hydrodynamic
model, for a single hourly release.

161



Chapter 6

Conclusion

In this thesis I used mathematics to understand sea louse transmission between salmon

farms in the Broughton Archipelago, and contributed more broadly to the understand-

ing of transient and asymptotic dynamics of birth-jump metapopulations. As posed

at the start of the introduction this thesis was focused on answering the following

questions:

� Chapter 2:

– How do we classify habitat patches as sources or sinks in a continuous

time, continuous age metapopulation?

– How does this relate to the contribution of sea lice populations on individ-

ual salmon farms located in a channel?

� Chapter 3:

– How are the transient dynamics different from the long-term dynamics of

birth jump metapopulations?

– How can we connect the transient dynamics to the source-sink classification

of habitat patches?

� Chapter 4:

– Which farms are acting as the largest sources of sea lice in the Broughton

Archipelago?

– What is the effect of farm removal the sea louse metapopulation?

� Chapter 5:
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– Can simple advection-diffusion equations adequately describe the arrival

of sea lice dispersing between two farms?

– How does the interaction between farm spacing and sea louse maturation

affect the level of cross-infection between farms?

In this concluding chapter I summarize the main results of this thesis, discuss their

significance, limitations, connections to future work, and their applications to sea lice

on salmon farms and other marine and birth-jump metapopulations.

6.1 Summary

In Chapter 2 I used next-generation matrices to classify habitat patches into sources

and sinks in stage-structured marine metapopulations where dispersal occurs in a

larval stage and where survival and maturation in each stage depend on age. To

capture the age dependent survival and maturation, and so that dispersal between

patches could be accurately described by advection diffusion equations, I formulated

the model using continuous age-density equations. These allow for the probability

of transitioning between stages to depend on the amount of time already spent in

the stage. While most species must spend some minimum time in each stage before

transitioning to the next stage, a general modelling framework that can accommodate

this minimum time is especially necessary for sea lice, where many models explicitly

require a minimum development time in each stage or use a non-exponential distribu-

tion of maturation times (Adams et al., 2015; Aldrin et al., 2017; Revie et al., 2005;

Stien et al., 2005). The general age-density modeling framework is complex, and thus

to classify specific patches as sources or sinks I used the next-generation matrix to

distill the essential elements of the model required to calculate the contribution of a

local habitat patch to the metapopulation. I proved that the basic reproduction num-

ber of the next-generation matrix determines the stability of the zero steady state of

the system of age-density equations, and that the column sums of the next-generation

matrix determine whether a specific habitat patch is a source or sink.

In the context of sea lice on salmon farms in a channel I demonstrated how the

spacing between farms affects both the source-sink distribution of farms, as well as the

overall growth of the sea louse metapopulation. I showed how increased advection in

this system can increase the difference in metapopulation contribution between farms

and affect the overall growth of the sea louse metapopulation. I also demonstrated how

the additional of environmental gradients can complicate the source-sink distribution

of habitat patches and showed that on a generational time scale that the transient
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dynamics can be very different than the asymptotic dynamics in these advective

systems.

In Chapter 3 I further investigated how transient dynamics can be different than

the asymptotic dynamics of marine and related birth-jump metapopulations. To sim-

plify the analysis the metapopulations were formulated using ordinary differential

equations, rather than age-density equations. I presented examples of simple two

patch metapopulation models where the populations could grow arbitrarily large be-

fore eventually decreasing or grow arbitrarily small before eventually growing. While

it has previously been recognized that transient dynamics can be very different than

the asymptotic dynamics of systems (Hastings et al., 2018; Morozov et al., 2020),

here I have shown that they can in fact be arbitrarily different even in very simple

linear models. For marine metapopulations in advective environments, increasing the

number of habitat patches can increases the length of the transient dynamics that

can occur. Focusing on the early transient behaviour of birth-jump metapopulations,

I demonstrated that reactivity and attenuation, measures of the maximum possible

initial growth rate that occur after a perturbation and the minimum possible growth

rate that can occur, are different depending on whether they are measured in the

ℓ1 or ℓ2 norms. The ℓ1 norm measures actual population size, whereas the ℓ2 norm

measures the Euclidean distance of the population away from the equilibrium, and

thus there are systems that are reactive in the commonly used ℓ2 norm, but where

the actual population size does not increase. Using the ℓ1 norm I connected the

initial growth rate following a perturbation to the source-sink classification of habi-

tat patches in birth jump metapopulations, and demonstrated that if an individual

starts on a source patch the population will initially grow and if it starts on a sink

the population will initially decline. This at first seems intuitive, but is not the case

when adults can migrate between habitat patches. Lastly, I demonstrated how to

meaningfully measure reactivity when marine metapopulations are stage structured,

where adults typically produce a large number of offspring and thus most systems

would be considered reactive under the classical definition.

In Chapter 4 I extended and applied the results from Chapter 2 to demonstrate

that the next-generation matrix can be used to determine the contribution of local

habitat patches to the metapopulation and determine metapopulation persistence.

These results were derived for cases where metapopulation models are formulated

in continuous time and discrete time, as well as with the age-density formulation of

Chapter 2.

I then specifically constructed next-generation matrix for sea louse populations on

salmon farms in the Broughton Archipelago to determine which farms are the largest

164



sources of sea lice in this region. Temperature and salinity dependent maturation

and survival functions were used to accurately capture sea louse sea louse demogra-

phy and local farm productivity. The connectivity of larval dispersal between farms

was calculated by applying Kernel Density Estimation to particle tracking simula-

tions computed from a computational hydrodynamic model previously run in the

Broughton Archipelago. In the Broughton, the most highly connected farms were

found to often also the most productive, and thus contributed the most to the overall

production of sea lice in this region. In the context of removal of salmon farms in the

Broughton (Brownsey and Chamberlain, 2018), the farms that are the largest sources

of sea lice in the farm network are currently slated to remain in the Broughton if

they can be approved by both the local First Nations and BC government. I used

the basic reproduction number of the next-generation matrix, R0, to investigate how

temperature and salinity affect the overall growth of the sea louse metapopulation,

distilling the complex dependence of temperature and salinity dependent maturation

and survival at each stage into a single operator. Finally I compared how the source-

sink classification of habitat patches and calculations of metapopulation persistence

under the next-generation matrix compare to other metrics of patch contribution and

persistence under other currently used metrics.

In Chapter 5 I calculated the arrival time distribution of sea lice dispersing between

two salmon farms. First, I calculated the arrival time for lice dispersing according

to a simple-advection diffusion equation and use an asymptotic approximation to

calculate the arrival time distribution. Then, I calculated the arrival time directly

from the output of a particle tracking simulation run on numerical flows from a

realistic hydrodynamic model of the currents in the Broughton Archipelago. I fit the

simple mechanistic arrival time model based on the advection diffusion equation to

the arrival time calculated from the hydrodynamic model to find realistic parameter

estimates and to demonstrate that the simple model could accurately capture the

complexities of larval dispersal between two farms in the Broughton Archipelago.

Using the parameterized model, I investigated how farm spacing affected the cross-

infection between farms, as measured by the probability that sea lice leaving one

farm eventually arrive on the other farm. I found that often there is an intermediate

farm spacing that maximizes the cross infection between farms, and that the farm

spacing that maximizes cross infection depends on the degree of advection between

the farms as well as the median maturation time required for non-infectious larvae

to develop into infectious larvae. If farms are too close together, then high advection

or low maturation time can sweep most larvae past the second farm before they are

infectious and able to attach.
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Having summarized the main chapters of this thesis, I now contextualize the results

of this thesis within the two main themes: transient and asymptotic dynamics of

marine and other birth-jump metapopulations, and sea louse transmission between

salmon farms in the Broughton Archipelago.

6.2 Dynamics of marine and other birth-jump

metapopulations

This thesis has two main contributions to the theory of birth-jump metapopulations:

the use of the next-generation matrix to calculate the contribution of a habitat patch

and determine the persistence of the metapopulation, and the analysis of reactivity

and attenuation in these metapopulations. In Chapters 2 and 4 I demonstrate how the

column sums of the next-generation matrix determine the number of new individuals

produced over the entire metapopulation from an initial individual on a patch, and

how the spectral radius of the next-generation matrix determines the overall persis-

tence of the metapopulation. In Chapter 2 I construct the next-generation matrix for

a stage-structured metapopulation model that allows for age-dependent maturation

and survival, and to my knowledge I am the first to do so. Then in Chapter 4 I also

show how the framework of next-generation matrices can also be used more broadly

to determine patch contribution in metapopulation models formulated as ordinary

differential equations or in discrete time.

I am not the first to calculate the contribution of individual habitat patches to the

overall metapopulation or to calculate metapopulation persistence. Pulliam (1988)

originally calculated the contribution of habitat patches based on local birth and death

rates in the absence of immigration and emigration and classified source patches as

those with positive growth rates and sink patches as those with negative growth rates,

however it is possible under this classification for a metapopulation consisting only

of sink patches to persist (Armsworth, 2002). In order to rectify this, both Figueira

and Crowder (2006) and Runge et al. (2006) created classifications that account for

productivity on a patch and dispersal away from patches, and in this framework a

metapopulation consisting of sink patches cannot persist. Their classification is very

similar to classifying sources and sinks with the next-generation matrix. However

their classification is only applicable to discrete time (models), whereas the next-

generation matrix is also applicable to ordinary differential equation models and as

well as models formulated as age density equations, and can easily be extended into

continuous space systems as well (Krkošek and Lewis, 2010).

In terms of metapopulation persistence, Hastings and Botsford (2006) demon-
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strated that, in order for marine metapopulations to persist, either a single patch

must be able to persist in isolation, or there must be closed loops with sufficient

larval production between them that an adult can more than self-replace over many

generations. This result was originally formulated in discrete time, and the result

relies on the non-negativity of the population projection matrix to identify closed

loops of patches. In this thesis I simply use the spectral radius of the next-generation

matrix to determine metapopulation persistence, but their results could be extended

from discrete to continuous time systems using the next-generation matrix, as the

next-generation matrix also has the necessary qualities on which the discrete time

proof relies. Both their results and ours demonstrate that it is important to consider

both productivity of local habitat patches as well as connectivity between patches in

order to determine metapopulation persistence.

In terms of transient dynamics in metapopulations, to our knowledge I am the first

to consider reactivity and attenuation in the ℓ1 norm for continuous time systems,

even though the ℓ1 norm provides the true biological measure of population growth.

Most other studies use the ℓ2 norm to measure reactivity, perhaps because it can

be easily calculated around both zero and non-zero steady states, but as I have

shown in this thesis reactivity is not always the same under both norms. A more

in-depth comparison of reactivity under the two norms for metapopulation models

parameterized to real systems would be an exciting area of future work to understand

how often reactivity differs between the norms. I am also the first to connect reactivity

and attenuation to the source-sink classification of habitat patches, which can only

be done in the ℓ1 norm.

The two main limitations of the work in this thesis in the area of marine metapopu-

lations are that non-linear interactions and stochasticity are not included when mod-

eling the transient dynamics of metapopulations, or calculating the source-sink classi-

fication of habitat patches and persistence of the metapopulation. Non-linear interac-

tions could either be in the form of Allee effects or negative density dependence, and

thus by not including them in the models here I am assuming they are not essential

at the level of the questions being asked in this thesis. This could either be because

they are not present, or because populations are small and so can be approximated by

a linearization of the true non-linear dynamics. This is a common assumption when

determining the persistence of marine metapopulations and calculating the contribu-

tions of local habitat patches so that linear models can be used (Burgess et al., 2014;

Hastings and Botsford, 2006; Krkošek and Lewis, 2010). It would be an interesting

area of future research to explicitly include non-linear interactions when calculating

metapopulation persistence and patch contribution so that the they can be applied
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more widely to systems where Allee effects or density dependence are significant.

When calculating the reactivity or attenuation around an equilibrium I also ignore

non-linear interactions, and am assuming that the system is either linear or that the

true non-linear system is well approximated by its linearization. The linear system is

used to calculate the amplification envelope, which measures the maximum transient

growth that can occur around an equilibrium, and in this thesis I show that the

amplification envelope can grow arbitrarily large in a two patch metapopulation and

that the amplification envelope increases with patch size in a metapopulation where

dispersal is dominated by advection. However, as the population grows away from the

equilibrium the linearization may no longer well approximate the non-linear system,

and the non-linearities could either amplify or diminish the level of transient growth

that could occur. Transient dynamics may be extremely common in natural systems,

and the existence of many long transients in ecology may come from non-linearities

in the system, such as those driven by ghost attractors, chaotic saddles, and stable

limit cycles (Hastings et al., 2018; Morozov et al., 2020).

While not considered in this thesis, stochasticity can also affect the transient dy-

namics of systems, and can either shorten or lengthen transient timescales (Hastings

et al., 2021). In some species such as the Dungeness crab, stochasticity due to environ-

mental fluctuations may be the primary driver of transient dynamics (Higgins et al.,

1997). In advective systems, stochasticity has been shown to allow metapopulations

to persist in environmental conditions in which they would not be able to with-

out stochasticity, as the stochastic perturbations cause recurring transient dynamics

(Aiken and Navarrete, 2011). In the system of habitat patches where dispersal was

dominated by advection considered in Chapters 2 and 3, environmental stochasticity

may in fact allow these metapopulations to persist, even in regions where R0 < 1.

6.3 Sea lice on salmon farms in the Broughton

Archipelago

The main contributions of this thesis to the study of sea lice on salmon farms involve

the use of the next-generation matrix to calculate the contribution of specific salmon

farm to the overall sea louse population on all farms, identifying which salmon farms

are acting as the largest sources in the Broughton Archipelago, and determining the

arrival time of sea lice dispersing between two farms.

In Chapter 2 I constructed a next-generation matrix for a general stage-structured

sea louse metapopulation with age dependent survival and maturation. The next-

generation matrix is a method of distilling the complexities of the age structure model

168



down to a simple matrix, from which the contribution of each farm can be calculated.

Various different survival and maturation functions can be used to calculated farm

contribution. In Chapter 4 I follow Aldrin et al. (2017) and use a Weibull distribution

to parameterize the median maturation time as a function of temperature, but instead

I could have used a strict maturation time, as used by Revie et al. (2005), or a

minimum maturation time followed by a constant maturation rate, as used by Stien

et al. (2005). The ability for many different modeling structures to be compared in

the same framework is one of the advantages of using the next-generation matrix to

calculate the contribution of different salmon farms, and it would be a useful future

investigation to examine the sensitivity of the relative farm contributions to different

maturation and survival functions.

Due to the complexities of the sea louse life cycle, some studies simply use larval

connectivity to identify the contributions of individual farms, and have used graph

theoretic clustering algorithms to determine connected clusters of farms (Adams et al.,

2012; Cantrell et al., 2018; Samsing et al., 2017; Samsing et al., 2019). Running these

same graph theoretic clustering algorithms on the next-generation matrix instead of a

connectivity matrix of larval connectivities would be a useful way to incorporate the

demographic information stored in the next-generation matrix. In this way stronger

connections would represent a higher production of lice occurring between certain

farms, rather than simply higher connectivity. This could be especially fruitful in

identifying clusters of farms for coordinated management, as the effectiveness of co-

ordinated treatment between farms at reducing overall sea louse levels depends both

on farm connectivity as well as differences in local farm productivity (Peacock et al.,

2016).

In Chapter 4 I identified which farms were the largest sources of sea lice in this

network of salmon farms. I found that there were two main clusters of farms that pro-

duced relatively higher levels of sea lice than other farms. The cluster with the highest

source farm is also located directly on the migration route of wild juvenile salmon,

and this cluster of farms produces the highest density of larvae that wild salmon

must migrate through in the Broughton Archipelago (Cantrell et al., 2018; Peacock

et al., 2020). Moreover, this cluster of farms is not being currently removed under

the agreement between the BC government and the Kwikwasut’inuxw Haxwa’mis,

’Namgis, and Mamalilikulla First Nations (Brownsey and Chamberlain, 2018). If it

is approved to remain by both the First Nations and the BC government after 2023

sea lice levels on the farm should be carefully monitored so as to not present a risk to

migrating wild salmon. A useful avenue of future research should the farms remain

would be to couple the local productivity of farms with the dispersal kernels from
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Cantrell et al. (2018) to determine if there are other migratory routes that pose a risk

to wild salmon if sea lice levels on farms are elevated.

With respect to identifying the largest source farms in the Broughton Archipelago

with the next-generation matrix, there are several limitations to note. First, our

estimation of the arrival rate onto farms (β) is very uncertain, and thus the next-

generation matrix should be primarily be used to look the relative contribution of

farms in this system, rather than the absolute generational output given by the column

sums. Second, while I believe that the hydrodynamic model captures the spread of

sea lice between farms with relative accuracy, the resolution of the hydrodynamic

model may not be fine enough to capture the local hydrodynamics of a salmon farm

that may keep some lice in the vicinity of the farm, so that even if the model shows

that most lice disperse away from a farm there may be some proportion that remain.

Again this would not change the relative farm contributions, but would change their

absolute contributions, as well as the estimated value of R0. Lastly, I assume for these

analyses that all farms have similar numbers of salmon, but if the next-generation

matrix is to be used to determine the contribution of specific farms at a given time,

the entries should be scaled by the salmon on each farm.

In Chapter 5, to calculate arrival time and investigate the effect of farm spacing on

cross infection, I model larval dispersal with a simple advection diffusion equation and

fit the resulting arrival time distribution to the arrival time calculated directly from a

complex hydrodynamic model that accurately captures the intricacies of the currents

in the Broughton Archipelago. Some of the earliest work connecting elevated sea lice

levels on wild salmon with sea lice numbers on salmon farms used the same advection

diffusion equations I use in this thesis to model dispersal away from salmon farms

(Krkošek et al., 2006a; Krkošek et al., 2005). There the dispersal model was fit using

empirical data of sea lice on wild salmon to detect elevated lice levels on salmon that

were migrating past the farms. However, hydrodynamic models of sea lice dispersal

were used to question these results, as the particle tracking simulations estimated

that lice would be swept further away from the farm than the stationary distribution

estimated (Brooks, 2005; Brooks and Stucchi, 2006). This is the first study which

compares the arrival time calculated from a simple advection diffusion equation and a

hydrodynamic model to determine dispersal of sea lice in the Broughton Archipelago

and it shows that the simpler model yields a good approximation to the more complex.

Fitting dispersal models using advection diffusion equations to those with hydrody-

namic models could also be useful in other marine metapopulations, especially those

located along the coast with a directional coastal current, so that questions can be

investigated using the simple advection diffusion equation, with the knowledge that
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it is well parameterized to capture dispersal in the metapopulation. In California, the

dispersal of several species along the coastline have been modelled using advection

diffusion equations, and at certain scales, alongshore larval dispersal kernels gener-

ated by hydrodynamic models can be adequately captured by those generated by

advection-diffusion equations (Botsford et al., 1994; Largier, 2003; Lubina and Levin,

1988; Mitarai et al., 2008; Roughgarden et al., 1988; Siegel et al., 2003).

6.4 Concluding remarks

Overall, the work in this thesis contributes to a new understanding of marine metapop-

ulations and specifically to sea louse populations on salmon farms in the Broughton

Archipelago. I have demonstrated how to use the next-generation matrix to calculate

the contribution of local habitat patches and overall growth of the metapopulation for

sea louse and other marine metapopulations and investigated the transient dynamics

that can occur in these and other birth-jump metapopulations. In the Broughton

Archipelago I determined how various factors affect the dispersal of sea lice between

salmon farms and found which salmon farms may be the largest sources of sea lice in

this region. The results in these thesis have both broad implications for theoretical

ecologists interested in marine metapopulations and specific management implica-

tions for salmon farms in the Broughton Archipelago. In the Broughton Archipelago,

connectivity between salmon farms is complex, and even in channels seaway distance

may not be a useful measure of connectivity in this region. Therefore accurate esti-

mates of sea louse dispersal should be used when evaluating the removal of farms or

placement of new farms, to reduce the level of cross infection between farms. Loca-

tion is also important, as some areas have higher sea louse productivity due to higher

temperatures and salinities, and in the Broughton the farms in the most productive

areas are also the most highly connected. These farms are also slated to remain in

the current removal plan of farms from the Broughton, subject to local First Nations

and provincial governmental approval, and thus careful management of these farms

is necessary to reduce the spread of sea lice between the network of salmon farms in

the Broughton, and to reduce the spread of sea lice from farms onto wild salmon.
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salmon, and foraging competition: Lousy fish are lousy competitors”. Can. J. Fish.
Aquat. Sci. 72.7, pp. 1113–1120.
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Krkošek, M., M. A. Lewis, J. P. Volpe, and A. Morton (2006b). “Fish farms and sea
lice infestations of wild juvenile salmon in the Broughton Archipelago - A Rebuttal
to Brooks (2005)”. Rev. Fish. Sci. 14.1-2, pp. 1–11.

Kurella, V., J. C. Tzou, D. Coombs, and M. J. Ward (2015). “Asymptotic Analysis
of First Passage Time Problems Inspired by Ecology”. Bull. Math. Biol. 77.1,
pp. 83–125.

Largier, J. L. (2003). “Considerations in estimating larval dispersal distances from
oceanographic data”. Ecol Appl 13.sp1, pp. 71–89.

Le Corre, M., C. Dussault, and S. D. Côté (2014). “Detecting changes in the an-
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