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Abstract

Thanks to the rapidly dropping cost of digital cameras, multi-view imaging—using

a series of cameras capturing images from the same 3D scene simultaneously but

from different viewpoints—opens a wide variety of interesting research topics and

applications. Among them, free viewpoint TV and light field camera are two of

the most important applications, which enable users to observe a static 3D scene

by freely changing their viewpoints. However, the amount of multi-view data that

needs to be stored or transmitted is huge. Therefore, efficient image/video coding

and streaming are crucial points for the success of such applications.

We first investigate object contours in depth image coding. A depth image

provides partial geometric information of the captured 3D scene, which is important

for synthesizing images corresponding to different virtual camera viewpoints via

depth-image-based-rendering (DIBR). It has been shown that lossy compression

of object contours will lead to bleeding artifacts in DIBR synthesized view, while

losslessly coding of the exact object contours can be expensive at low rate. In this

thesis, we propose to approximate object contours to save coding bits. Specifically,

we first greedily approximate object contours based on an arithmetic edge coding

(AEC) model to lower the edge coding cost. To control the induced synthesized

view distortion due to contour approximation, we then introduce a rate-distortion

(RD) optimal scheme. We show that the object contours themselves can be suitably

approximated to save coding bits, while the synthesized objects remain sharp and

natural for human perception.
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We then study the problem of multi-view image/video streaming. In free view-

point TV, a user can pull color and depth videos captured from two nearby reference

viewpoints to synthesize his chosen intermediate virtual view for observation via

DIBR. A user may pull the same reference views from the server with other users so

that the streaming cost can be shared, while a reference view with further distance to

his chosen virtual view may increase the synthesized view distortion. In this thesis,

we divide users into groups, where a user simultaneously belongs to two groups and

each group shares the streaming cost of a single reference view. We also aim to find

a Nash Equilibrium (NE) solution of reference view selection for each user, so that

the shared streaming cost and the synthesized view distortion are optimally traded

off. Specifically, we first derive a lemma based on known property of synthesized

view distortion functions. We then design a search algorithm to find a NE solution,

leveraging on the derived lemma to reduce search complexity.

Interactively streaming light field multi-view images is another focus of this

thesis. Interactive light field streaming (ILFS) means that a user periodically

requests a viewpoint for observation, and in response the server transmits a pre-

synthesized and encoded viewpoint image to the user. The challenge is how

to design and pre-encode a storage-constraint frame structure to enable efficient

view navigation. In this thesis, using a Lloyd’s algorithm variant, we recursively

insert into a frame structure a set of “landmarks” at locally optimal locations

to improve ILFS performance, so as to trade off frame storage cost and the

expected transmission cost. Experimental results show that our proposed structure

has noticeably lower expected transmission cost for the same storage than other

previous methods.
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Chapter 1

Introduction

Thanks to the rapidly dropping cost of digital cameras, multi-view imaging—

using a series of cameras capturing images of the same scene simultaneously but

from different viewpoints—has attracted increasing attention recently. It opens

a wide variety of interesting research topics and applications, such as virtual

view synthesis, image/video segmentation, object tracking/recognition, industrial

inspection, and virtual reality. While conventional single view images/videos

are enough to handle some of these tasks, the availability of multiple views of

a 3D scene can significantly broaden the field of applications and enhance user

experience.

Three-dimensional TV (3DTV) [6] and free viewpoint television (FTV) [7]

are two of the most important applications of multi-view imaging system, which

expand user experience beyond what is offered by traditional media. Unlike

traditional TV in which users are provided with only a single view of a 3D

world and cannot control their viewpoint, 3DTV has more viewpoints and offers

a 3D depth impression of the observed scene, which is closer to what we

experience in the real world. Improving the drawback of 3DTV that the number of

viewpoints is fixed, FTV enables users to view a 3D scene by freely changing their

viewpoints, which could greatly contribute to improve immersive communication.

The entire processing chain of FTV in real world applications is shown in Fig. 1.1,

including multi-view image capturing, 3D scene representation, images coding and

transmission, virtual view image rendering and 3D display.
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3D Scene
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Transmission Rendering Display
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Fig. 1.1. Processing chain of a 3D multi-view images.

Another application of multi-view imaging is light filed (LF) images [8],which

can be captured by a LF camera such as Raytrix1 or Lytro2. Contrary to a

conventional analog or digital camera that only records light intensity of a scene,

a light field camera can capture not only the light intensity information of a scene

but also the direction that the light rays are traveling in space. By inserting a 2D

array of microlens in front of a regular, commercially available image sensor [3][8],

a LF camera can caputer a static 3D scene with multiple images from different

viewpoints. The capability of LF images that record the intensity and direction of

incident light rays brings a lot of new possibilities for LF image processing and

applications, such as refocusing [3], reducing glare [9], matting [10] and depth

image estimation [11][12].

In the following, we first briefly introduce the processing chain of FTV and the

LF images capturing system. Based on them, we then discuss the motivations and

contributions of this thesis. The thesis outline will be shown at the last.

1.1 Background

1.1.1 Multi-View Image Processing Chain of FTV

We first introduce how to capture the multi-view images in FTV. An example of

FTV capturing system is shown in Fig. 1.2(a), where a series of digital cameras are

set parallelly around a 3D scene, such that all the cameras capture the same scene

simultaneously but from different viewpoints. This multi-view image capturing

system allows users to freely control viewpoint of a real dynamic 3D scene in real-

1http://www.raytrix.de
2https://illum.lytro.com/illum
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time and enables users to choose whichever viewpoint they want. This developed

multi-view capturing system in Fig. 1.2(a) consists of one host-server PC and 100

client PCs, each equipped with a high-definition camera. This system is capable

of capturing 100 synchronized video signals and the camera positions can be

easily changed. Fig. 1.2(b) shows examples of generated free viewpoint images

at various time instants and viewpoints. Complicated natural scenes including

complex objects such as small moving fishes, bubbles from different viewpoint are

reproduced with high quality. The different shape and height of the pillar can show

the difference of viewpoints.

(a)

(b)

Fig. 1.2. A multi-view image capturing system and generated free viewpoint images in FTV
system [1]

To well represent a 3D scene, the depth of field information—distance from the

surfaces of scene objects to a viewpoint—plays a very important role. The depth

information can be provided through different methods. It can be estimated from

a multi-camera setup using stereo correspondence algorithms [13] or be directly
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recorded by special time-of-flight cameras [14]. The advent of depth sensing

technologies like Microsoft Kinect3 means that one can now easily acquire both

color images and depth images of a 3D scene at the same time. While a color

image provides the texture of a 3D scene, a depth image provides the geometric

information, namely the shape of physical objects captured from a particular

viewpoint. Hence, the color-plus-depth format, which consists of a pair of color

image and the corresponding per-pixel depth image from the same viewpoint, has

been widely used in 3D scene representation. As illustrated in Fig. 1.3, there are

two color-plus-depth image pairs from left ( (a) and (b) ) and right ( (d) and (e) )

viewpoints, respectively, where (a) and (d) are two color images, (b) and (e) are

their corresponding depth images from the same viewpoint for teddy4.

When multiple images/videos are recorded simultaneously and the 3D scene is

represented by both texture and depth information, the amount of data that needs to

be transmitted or stored is huge. Therefore, efficient compression is a key condition

for the success of such applications. Although classical 2D image/video coding

technique is very mature [15] [16], the correlation between color and depth images

and the specific characteristic of depth images lead to a lot of room for improvement

and optimization. Hence, 3D multimedia data compression has received a lot

of attention in research and development recently, especially for depth image

compression [17].

In general, the denser capturing of multi-view images with a larger number

of cameras provides a more precise 3D representation, resulting in higher quality

views. However, when the number of views is pretty large, the cost in bit-rate to

encode these views may be expensive. Moreover, even a large number of video

views are transmitted, it is still not capable to capture any arbitrary viewpoint. To

overcome these disadvantages, instead of capturing a large number of camera views,

color and depth image pairs from sparse camera arrangements are utilized to capture

3D scenes, while intermediate virtual views could be rendered. This kind of depth

3http://www.xbox.com/en-CA/xbox-one/accessories/kinect
4http://en.wikipedia.org/wiki/Von Mises distribution
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Fig. 1.3. Color and depth image pairs from left viewpoint ( (a) and (b) ) and right viewpoint ( (d)
and (e) ). Image (c) is the corresponding synthesized view from the virtual middle viewpoint. The
circled eggplant shows the differences of capturing viewpoints for the same 3D scene.

related virtual view synthesis has been explored, for example in Motion Picture

Experts Group (MPEG). The work in [2] proposed a depth-image-based-rendering

(DIBR) method to generate intermediate virtual views, where color and depth image

pair(s) captured from cameras are taken as input. DIBR essentially maps color

pixels in the camera views to appropriate pixel locations in a virtual view; such

locations are derived from the corresponding depth pixels in the reference views.

Fig. 1.4 shows an example of sparse cameras’ multi-view color-plus-depth system,

in which only three views (V1, V5, V9) plus their corresponding depth (D1, D5, D9)

are transmitted to the decoder. Additional intermediate views V2—V4 and V6—V8

then can be rendered using DIBR techniques after the three color-plus-depth image

pairs are reconstructed. As in Fig. 1.3, with the left and right reference color and
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depth image pairs, a synthesized virtual view by DIBR is shown in Fig. 1.3(c),

which is corresponding to a virtual camera viewpoint in the middle of the two

original viewpoints. The major differences among these three different viewpoints

are highlighted in Fig. 1.3 by circles.

        

 

  

 

 

 

  

 

DIBR DIBR

View

Decoded 

Data

Fig. 1.4. Example of multi-view color-plus-depth system (9 output views out of 3 input views plus
depth) [2]

1.1.2 Light Field Multi-View Imaging

Fig. 1.5. A conceptual schematic of LF camera [3].

A light field is a 2D array of closely spaced images of a static 3D scene. We

now briefly introduce the capturing system of LF images. LF acquisition process is

based on capturing not only the light intensity of a 3D scene but also the direction

information of light rays. One type of LF camera inserts a 2D microlens array in

front of a conventional 2D photo sensor [3][8]. A conceptual schematic of the LF

camera proposed in [3] is shown in Fig. 1.5, where a microlens array is inserted

between the main lens and the photosensor. Rays of lights from a single point on

the subject first translate to the main lens along its optical axis, to focus on a subject

of interest, which is exactly the same as in a conventional camera. Then, from the

main lens, rays of light are brought to a single convergence point on the focal plane
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of the microlens array. Based on the direction of these rays of light, the microlens

separates rays of light to create a focused image of the aperture of the main lens

on the photo sensor. Since the 2D array of microlens split up light rays passing

through the main lens into multiple individual light ray, each microlens forms a

tiny sharp image to measure the directional distribution of light at that microlens.

The resulting raw image is then a composition of as many tiny images as there are

microlens.

Fig. 1.6. An example of captured multi-view LF images [4].

The acquired data by a LF camera is characterized by considering the two-

plane light filed L, where L(u, v, s, t) denotes the light traveling along the ray

that interacts the main lens at position (u, v) and the microlens plane at (s, t). By

holding (u, v) fixed and considering all (s, t), the LF camera can generate an image

formed by extracting the same pixel under each microlens. Hence, a LF camera can

provide information of a 3D scene viewed from a continuum of possible viewpoints

bounded by the main lens aperture. An example of multi-view images captured by

an LF camera is shown in Fig. 1.6, where the images are simulated as been seen by

slightly shifting the view position up, down, left or right. These 2D array of densely
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spaced viewpoint images can be navigated freely by a user to create a sense of depth

in the captured static 3D scene via motion parallex5. With these captured multi-view

images, one can also estimate the depth-of-field information and synthesize images

from virtual viewpoint [8], [11], [12], or refocus sharp photographs at different

depths [3]. An example of refocusing images is shown in Fig. 1.7, where (a) is

focused at the front objects and (b) is focused at the background 6.

Fig. 1.7. One example application of LF images: refocusing.

1.2 Thesis Motivations and Contributions

This thesis focuses on improving depth image coding efficiency, optimizing peer

grouping for live free viewpoint video streaming, and optimally inserting landmarks

to improve interactive light filed streaming (ILFS) performance. We explain this

three works in the following.

5http://lightfield.stanford.edu/
6Screenshots from https://pictures.lytro.com/
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1.2.1 Object Contour Approximation and Depth Image Coding

A depth image provides important geometric information of a 3D scene, namely

the shapes of physical objects as observed from a particular viewpoint. To enable

decoder-side virtual view synthesis, depth and color image pairs from the same

viewpoints must be compressed for network transmission (usually, depth and color

images are transmitted in two separate bitstreams). Traditional image codecs

like JPEG, H.264 and HEVC [17] employ fixed block transforms like discrete

cosine transform (DCT), where coarser quantization of transform coefficients at

low bit rates will result in blurring of sharp edges. It has been demonstrated that

blurring of object contours7 in a depth image leads to unpleasant bleeding artefacts

in images synthesized via DIBR [19]. Thus state-of-the-art depth image coding

algorithms employ contour-adaptive transforms [18], [20]–[22] and wavelets [23] to

preserve sharp object contours, which are losslessly coded as side information (SI)

separately. The bitstreams of this SI and the smooth depth regions are considered

together for depth image decoding. However, the SI coding cost can be expensive

at low bit rate, amounting to 50% of the total depth bit budget in some cases [18].

In response, we pursue a new paradigm in depth image coding for color-plus-

depth representation of a 3D scene: in a pre-processing step, we pro-actively

simplify complex object shapes in a depth and color image pair to lower depth

coding cost. In Chapter 3, we propose a greedy algorithm to approximate object

contours based on a contour coding complexity model. The drawback of the greedy

algorithm is that it does not take the induced distortion into consideration. To

overcome this drawback, we then propose a rate-distortion (RD) optimal method

in Chapter 4, where we simplify object contours to lower depth coding cost at a

controlled increase in synthesized view distortion. This means that as the bit budget

becomes stringent, actual shapes of physical objects in the scene are simplified, but

rendering of the objects remains sharp and natural for human perception.

7Object contours can be detected via a gradient-based edge detection method [18]

9



1.2.2 Optimize Peer Grouping for Free Viewpoint Video Streaming

In FTV, a user can pull color and depth videos captured from two nearby reference

viewpoints to synthesize his chosen intermediate virtual view for observation

via DIBR. For users who are observing the same free viewpoint video (FVV)

synchronized in time—e.g., during a live video broadcast of a public event like

a piano recital—but not necessarily from the same viewpoint, they have incentive

to pull color and depth video streams from the same reference views, so that the

streaming cost can be shared. On the other hand, it has been shown [24], [25]

that in general distortion of the synthesized view increases with its distance to the

reference views. Thus, a user has incentive to select videos of reference views that

tightly “sandwich" his chosen virtual view, in order to minimize visual distortion.

This poses an interesting dilemma for users: how to best select and share video

streams of different reference views, so that the streaming cost and the resulting

collective synthesized view distortion are optimally traded off?

In Chapter 5, we investigate the reference view sharing strategies—ones that

optimally trade off shared streaming costs with synthesized view distortion. We

first divide users into groups. A user can simultaneously belong to two groups, and

each group shares the streaming cost of a single view. Given the number of users

and the virtual view that each user is watching, we aim to find a Nash Equilibrium

(NE) [26] solution of reference view selection for all the users. A NE solution is

stable, from which no user has incentive to unilaterally deviate. Specifically, we first

derive a lemma based on known properties of synthesized view distortion functions.

We then design a search algorithm to find a NE solution, leveraging on the derived

lemma to reduce search complexity.

1.2.3 Optimal Landmark Insertion for Interactive Light Field Streaming

Light field imaging enables a user to navigate and observe a static 3D scene from

different viewpoints. However, the volume of captured LF data is large, and

downloading the entire data prior to user’s viewpoint navigation would incur a large

start up delay. Instead, previous works proposed an interactive light field streaming
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(IFLS) framework [27]–[30], where a user periodically requests a desired view

for observation, and in response a server transmits a pre-synthesized and encoded

viewpoint image. The technical challenge is to design and pre-encode a storage-

constrained frame structure to facilitate user-requested view-switches during an

ILFS session. Pre-encoding only I-frames8 for all views would lead to a large

transmission cost, while pre-encoding P-frames9 for all possible user view-switch

requests from any view i to j for a LF array of N views would be O(N2) and thus

expensive in storage cost.

To lower transmission cost while reducing storage requirement, in Chapter 6, we

design a new frame structure to facilitate ILFS via optimal selection of landmarks.

A landmark is a designated view with P-frames to/from each neighborhood view,

so that any viewpoint image can transition to any other viewpoint image by first

visiting a landmark, and then from the landmark to the destination view. This

results in a transmission cost of only two P-frames, and the number of stored P-

frames is only O(2N). The crux is how to select the optimal number and locations

of landmark views, and P-frame connections to/from landmarks for the remaining

views. In Chapter 6, using a Lloyd’s algorithm variant, we first recursively insert

into a frame structure a set of “landmarks” at locally optimal locations. We then

employ a greedy algorithm to add/subtract P-frames based on a rate-storage criteria.

1.2.4 Summary of Major Contributions

In summary, we investigate three main problems in this thesis: object contour

approximation for depth image coding, optimize user grouping for FVV streaming

and optimal landmark insertion for ILFS. Fig. 1.8 highlights the roles of these three

works in a generalized multiview image/video streaming system (applicable to both

FTV and LF systems). After capturing the source multiview images/videos, a server

encodes and transmits them to users and the users then display the captured or

8An I-frame is an intra-coded picture, which does not need other video frames for decoding.
Due to the independent coding, the coding bit-count for an I-frame is large.

9A P-frame is differentially coded using another video frame as a predictor. Hence, a P-frame
can be decoded only when the predictor is reconstructed. Compared to an I-frame, a differentially
coded P-frame has a much smaller coding bit-count.
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synthesized images/videos for observation. Our proposed contour approximation

work is a pre-processing step before image coding, whose purpose is to improve

depth image coding efficiency. The optimal user grouping in FVV or the optimal

landmark insertion for ILFS is an important step to facilitate the server transmitting

multiview images/videos to users.

Source 

Images/Videos
Coding Transmission ObservingCoding Transmission Observing

Server User

Contour 

Approximation

User Grouping /

Landmark Insertion

Fig. 1.8. The roles of proposed works in multiview image/video streaming system.

1.3 Thesis Outline

The thesis is organized as follows. In Chapter 2, some related works are surveyed.

To improve depth image coding efficiency, we propose to first approximate

object contours and then edge-adaptively code depth images. A greedy contour

approximation method is first discussed in Chapter 3 and an RD optimization based

contour approximation method for virtual view synthesis is proposed in Chapter 4.

The optimization of peer grouping for live free viewpoint video streaming is

presented in Chapter 5. In Chapter 6, we improve the interactive streaming of light

field multi-view images by optimally inserting landmarks. Chapter 7 concludes the

thesis, and gives possible future research directions as well.
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Chapter 2

Literature Review

2.1 Depth Image

A depth image provides the geometric information in 3D representation, which

plays an important role in 3D imaging applications, such as 3D reconstruction [31]

and DIBR [2]. A depth image is a gray-scale image that represents the per-pixel

distances between physical objects’ surfaces and capturing cameras. A commonly

used depth representation format is as follows [2], [19], [32]:

Z =
1

Y
255
· ( 1

Znear
− 1

Zfar
) + 1

Zfar

(2.1)

where Y is the pixel value of depth image with a range bewteen 0 and 255; Znear

and Zfar are the nearest and the farthest depth distance values in the physical scene

and Z is the physical depth distance value for pixel value Y . With the knowledge of

the per-pixel distance between the object shapes and the capturing camera, a depth

image can be built. In such a depth image, pixel value 0 represents the farthest

3D point with depth being Zfar, and pixel value 255 represents the nearest 3D

point with depth value Znear. In a 3D scene, the distance Z from 3D scene to

the camera gradually radiates from Znear to Zfar. Hence depth images contain

areas with slowly varying sample values. Furthermore, depth images show step

function at the object boundaries. Thus, depth images show piece-wise smooth

(PWS) properties, i.e., smooth regions separated by sharp edges, which can be seen
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from Fig. 1.3 (b) and (e).

2.2 Virtual View Synthesis

Virtual view synthesis is one of the most important step in FTV, where users’ freely

choosing virtual viewpoint can be synthesized by captured camera viewpoints.

Here, we briefly introduce the procedures for DIBR [2], as shown in Fig. 2.1.

Data:
Left View 

Texture 

Left View 

Depth 

Parameters:

Left View 

Projection Matrix

Virtual View 

Projection Matrix

Right View 

Projection Matrix

Right View 

Depth

Right View 

Texture

Homography 

Matrix

Homography 

Matrix

Depth  

Synthesis

Depth  

Synthesis

Texture 

Synthesis

Texture 

Synthesis

Merging

Filling Holes

Synthesized View

Fig. 2.1. Block diagram of DIBR [2] algorithm

The main idea of DIBR is to synthesize a new virtual view from each of

reference views separately and then merging them all in one. In order to depict

the problem of view synthesis, a pinhole camera geometric model is utilized, which

is defined based on the world coordinate system, the camera coordinate system,

the image coordinate system and camera parameters. The camera parameters,

such as focal length, produce an intrinsic matrix and an extrinsic matrix. The

intrinsic matrix represents the transformation from a camera coordinate to its image

coordinate, while the extrinsic matrix transforms world coordinates to camera

coordinates. We mark them as projection matrices. The relationship among these
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three coordinates are as follows:

zC ·

�
u

v

1

�
= A3×3 ·

�
xC

yC

zC

�
(2.2)

�
xC

yC

zC

�
= R3×3 ·

�
xW

yW

zW

�
+ t3×1 (2.3)

where A3×3 is the intrinsic matrix, R3×3 and t3×1 are rotation matrix and a

translation vector, respectively, which compose the extrinsic matrix E = [R|t]. The

intrinsic matrix and extrinsic matrix can be computed given camera parameters. The

(u, v), (xC , yC , zC) and (xW , yW , zW ) are image, camera and world coordinates,

respectively.

We now look at how to map a pixel located at (ur, vr) in the image coordinate

system of the reference view to its correspondent location (uv, vv) in the virtual

view, with the provided reference depth image information. Given (ur, vr), from

(2.2) and (2.3), we first obtain the world coordinate of a 3D point corresponding to

(ur, vr) as�
xW

yW

zW

�
= R−1

3×3,r ·

�
zC,r · A−1

3×3,r

�
ur

vr

1

�
− t3×1,r

�
(2.4)

where the subscription r indicates an item (matrix or coordinate) related to the

given reference view, and zC,r is the depth value calculated from the reference depth

image using (2.1) given the depth pixel value located at (ur, vr). Again from (2.2)

and (2.3), since the world coordinate for reference and virtual views is the same, we
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can map this 3D point to the image coordinate system of the virtual view as

zC,v ·

�
uv

vv

1

�
= A3×3,v ·

�
R3×3,v

�
xW

yW

zW

�
+ t3×1,v

�
(2.5)

where a subscription v indicates an item related to the virtual view. When known

the distance zC,v between objects to the virtual camera, we can compute the

correspondent location (uv, vv) in the virtual view. We can then map the color

image pixel value located at (ur, vr) in the reference view to location (uv, vv) in the

virtual view. Above shows the general 3D rendering procedure.

Combining (2.4) and (2.5) together we get our homography matrix, which maps

depth pixel position from reference view to virtual view. With this homography

matrix and the color and depth information in referencing view, we do depth

and color synthesis for a single path of the virtual view. At the end of each

path, the synthesized images from all reference views (paths) are merged together.

Due to the fact that there are some pixel locations that never get mapped from

reference views—pixel locations are occluded in both reference views, black holes

are resulted in the merged view. Then depth-based inpainting techniques [33][34]

are utilized to complete the hole fillings.

In summary, DIBR essentially maps color pixels in the reference views to

appropriate pixel locations in a virtual view; such locations are derived from the

corresponding depth pixels in the reference views. Disoccluded pixels in the

synthesized view—pixel locations that are occluded in the two reference views—

can be recovered using depth-based inpainting techniques [33], [34]. Because

inpainting offers only a best-guess solution, the larger the disoccluded regions are,

the lower the synthesized view image quality will be in general.
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2.3 Contour Approximation and Depth Image coding for Vir-

tual View Synthesis

We divide the review of related work on object contour approximation and depth

image coding into three sections. We first discuss existing literature on depth image

coding. We then overview previous work on image contour coding. Finally, we

discuss existing work on shape approximation.

2.3.1 Depth Image Coding

Because of the popularity of color-plus-depth representation format of a 3D

scene [35], depth image compression has drawn a growing interest. Typical image

coding algorithms such as JPEG [15] and H.264/AVC standard [36] employ fixed

block-based transforms like 2D DCT on images. Then quantization and entropy

coding are applied to the transform coefficients. In practice, this conventional

DCT is implemented separately through two 1D transforms, one along the vertical

direction and the other along horizontal direction. As a result, DCT based image

coding algorithms can only well represent image patches with horizontal and

vertical edges. Considering that there exist some other directions of edges in

a image block that are perhaps as equally important as the vertical/horizontal

direction, the work in [37] proposes a directional DCT transform for image coding.

They develop their first transform following a main direction in the block other

than the vertical or horizontal one, while the second transform is arranged to be a

horizontal one. This directional DCT framework can be adapted to diagonal edges,

but it cannot deal with more arbitrarily shaped edges such as “L" and “V", as a

number of unnecessary non-zero alternating components (AC) coefficients will be

generated. Practically, this means that coarse quantization of the high-frequency

components in these transforms at low bit rates budget will lead to blurring of

arbitrarily shaped edges in the reconstructed depth image.

Observing that depth image contours play an important role in the quality of

the DIBR-synthesized view [19], contour-preserving image coding algorithms have

been proposed. Many of these works exploit depth images’ PWS characteristics:
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smooth interior surfaces separated by sharp contours. The work in [38] models

depth images with piecewise linear functions (platelet) in each image block. A

quadtree decomposition is adopted to sub-divide the image into variable sized

blocks until each block could be approximated with one platelet model depending

on its edge information. However, the representation inherently has a non-zero

approximation error even at high rates, since depth images are not strictly piecewise

linear but PWS. Works in [39] and [23] propose contour-adaptive wavelets using

lifting to avoid filtering across edges. Recently, the work in [20] proposes block-

based unweighted graph Fourier transform (GFT) for depth image coding. They

divide images into sub-blocks and in each block they build a 4-connected graph

in which each pixel is connected to its immediate neighbors only when they are

not separated by an edge. They then construct a GFT based on this graph. The

main advantage of GFT is that it only filters pixels that are connected in the graph,

which automatically avoids filtering across edges. Extending [20], the work in [18]

searches for an optimal weighted graph for GFT-based image coding in a multi-

resolution framework. In all these works, detected edges are encoded losslessly as

SI, which can cost up to 50% of the total budget at low rates.

Since depth images are usually used for synthesizing virtual views at the

decoder side and are not directly viewed, it is necessary to consider the resulting

synthesized view distortion, instead of depth distortion itself, for RD optimization

during depth image coding [19], [32]. How depth distortion is related to synthesized

view distortion has been investigated [40]–[42]. For example, the work in [40]

proposes a synthesized view distortion function as the multiplication of depth

distortion and local color information. In 3D-HEVC [43]–[45], the advanced 3D

video extension of HEVC, depth images are coded along with color images, where

a linear plane fitting model is used to describe a smooth region in depth images, and

a wedgelet partition or contour partition is adopted to code a depth block with edges

in order to preserve edge sharpness. Synthesized view distortion is considered for

optimal depth image coding mode selection. However, these methods assume peak

signal-to-noise ratio (PSNR) is the quality metric for the synthesized view when
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compressing depth images, which has been demonstrated to not correlate well with

actual human perception [5].

In [5], the authors show that while objects in a synthesized view may be slightly

shifted due to the DIBR-rendering process, the overall visual quality of the image

may still be acceptable. However, this type of artifacts is penalized by pixel-by-

pixel based quality metric such as PSNR. They thus propose a 3D synthesized

view image quality metric (3DSwIM) tailored specifically for artifacts in DIBR

synthesized views. They conclude that this metric has a higher correlation with

subjective quality assessment scores than PSNR. Using 3DSwIM as the chosen

metric, in Chapter 4 we approximate object contours and augment depth/color

image pairs for more efficient coding of 3D image content.

There are other pre-processing methods that attempt to improve video/image

coding efficiency. Works in [46]–[49] apply filters on input videos/images to

remove noise. The work in [50] corrects the color value of multi-view videos

to make them consistent, and the work in [51] evaluates the coding performance

of applying a color image guided filter on the estimated low quality depth image.

Different from these works, we propose to modify the geometry structure of a 3D

scene to improve color-plus-depth image coding efficiency.

2.3.2 Object Contour Coding

Freeman chain code [52] is widely used to efficiently encode object contours [53]–

[55]. Usually, object contours are first converted into a sequence of symbols, where

each symbol is from a finite set with four or eight possible absolute directions.

Alternatively, the relative directions between two neighbouring directions, which

is also known as differential chain code (DCC) [56], can also be used. Given the

probability of each symbol, the contour chain code is entropy-coded losslessly using

either Huffman [54] or arithmetic coding [57].

The works in [58] [59] introduce an arithmetic edge coding (AEC) method

employing a linear geometric model to estimate the probability of next edge.

Given a small window of previous edges, they first construct a best-fitting line that
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minimizes the sum of squared distances to the end point of each edge. Then the

probability for the next edge direction is assigned based on the angle difference

between the edge direction and the best fitted line, which is subsequently used

as context for arithmetic coding. The assigned probability for current edge only

depends on previous encoded edges. We will adopt AEC model to code object

contours during our contour approximation.

2.3.3 Image Contour Approximation

There exist some contour approximation methods in the compression literature. The

work in [60] proposes a polygon / spline-based representation to approximate a con-

tour. Vertices are encoded differentially and polygon curves between neighbouring

vertices are considered to approximate the original contours. Later, the authors

in [61]–[64] improve this vertex-based shape coding method. All of these works

take the maximum or mean distance between original and approximated contours

as distortion measure, which is not appropriate for assessment of visual quality of

synthesized views.

Some other works approximate contours from the chain code representation.

The method in [65] saves coding bits by omitting two neighboring turning points

if the slope between them is nearly vertical or horizontal. The algorithms in [59]

and [66] replace some pre-defined irregular edge patterns with a smooth straight

line. In Chapter 3, we propose to approximate object contours based on a contour

complexity model to lower contour coding rate. Later in Chapter 4, we take the

synthesized view distortion induced by contour approximation into consideration.

We propose to approximate contours using the 3DSwIM metric to control the

induced synthesized view distortion, which leads to more pleasant results in view

synthesis.

2.4 Peer Grouping in Live Video Streaming

We divide the overview for peer grouping of live video streaming into two areas.

We first discuss the literature on multi-view video streaming. We then discuss the

related work on collaborative streaming of single view video.

20



2.4.1 Multi-View Video Streaming

As technologies for compression of color and depth images for free viewpoint video

become more mature [67][68], research focus has shifted to the streaming and

distribution of this new media type. The work in [69] designs a multi-view video

compression algorithm in combination with an observer’s head position prediction

scheme, so that the likely captured video views to be observed by client in the near

future are automatically pulled from server. Works in [70][71] study the problem

of how smartly encoded multi-view video that facilitates view-switching can be

replicated in storage-constrained distributed servers across a network to minimize

view-switching delay. Works in [72][73] investigate how color and depth videos can

be unequally protected to minimize the synthesized view distortion when streaming

over a network is prone to packet losses. None of these prior streaming works study

the problem of how video streams of different views can be optimally selected and

shared among users observing different virtual views, which is one focus of our

work in this thesis.

2.4.2 Collaborative Video Streaming

On the other hand, video sharing for single-view video, mostly for Peer-to-

Peer (P2P) video streaming, has been studied extensively in the literature. For

example, the work in [74] derives a stochastic fluid model to analytically reveal the

characteristics of P2P streaming systems and exposes the key designing features to

achieve a satisfactory system performance. The work in [75] studies a real world

large-scale P2P streaming system to gain insights for successful deployment of such

systems. The work in [76] reviews different overlay network structures for both P2P

live streaming and video-on-demand. However, all these works studies single-view

video streaming, which is passive in nature (i.e., no view-switching), and the results

cannot be directly applied to the live free viewpoint scenario (i.e., each viewer can

freely select a virtual view for observation). How to select and share the reference

views to address the tradeoff between the streaming cost and the synthesized view

distortion is a key issue for live free viewpoint video distribution, which we study
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in our work.

2.5 Interactive Light Field Streaming

A light field is a 2D array of spatially correlated images of a static 3D scene. ILFS is

the application where users continuously request successive light field images along

a view trajectory, and in response the server transmits appropriate data to users so

that they can correctly reconstruct desired images.

ILFS is first studied in [28][27]. In [28], new switching mechanisms to adjacent

views based on Wyner-Ziv coding are proposed. However, the navigation model

(which only permits switches to horizontal and vertical adjacent views) is limited.

In our work, we discuss a more general view navigation model. The work in [27]

employs SP-frame [77] to improve compression efficiency during random accessing

light filed images. But they do not consider the storage cost at the server for storing

multiple representations of images. In contrast, we optimally trade off the storage

cost of the frame structure with expected transmission cost in our work. Works

in [78][79] propose rate-distortion optimized ILFS, where they study bit-stream

packetization and packets scheduling during light field image streaming. The work

in [80] focuses on streaming the dynamic real-time captured light filed video to

users in school network environment. All these three works are orthogonal to our

problem, where we investigate how to design a reasonable sized frame structure

of light field images a priori (without knowing eventual clients’ view trajectories)

storing at the server.

More recent studies on ILFS are proposed in [29][81], where they have

employed a more general view navigation model for ILFS. But the focuses are on

the use of new distributed source coding (DSC) frames [82] and merge frames [83]

for view-switching without coding drift. The work in [30] discusses the notion of

landmark to be used in ILFS but they did not provide an explicit landmark insertion

strategy. Orthogonally, the work in [84] partitions the 3D scene into segments for

efficient coding and streaming. In contrast, we focus on the optimal selection of

landmarks to facilitate ILFS. A landmark operates like an airline hub in commercial
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aviation1: by creating direct flights to / from a designated hub for all cities—O(2N)

flights for N cities—a passenger can travel from any city to any other city via

only two flights (one connecting flight). In our work, with the proper insertion

of landmarks, we can not only lower transmission cost, but also reduce storage

requirement.

1As an example, United Airline has its largest domestic hub in Chicago O’Hare International
Airport.
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Chapter 3

Contour Approximation and Depth Image

Coding: A Greedy Algorithm

In this chapter, object contour approximation for depth image coding is investigated.

A greedy algorithm is proposed to approximate object contours to save depth coding

rate. 1

3.1 Introduction

A depth image provides geometric information of a 3D scene, namely the shapes

of physical objects captured from a particular viewpoint. This information can

be used, together with texture images (color images like RGB) from the same

viewpoint(s), to synthesize novel images as observed from virtual viewpoints via

DIBR.

To enable decoder-side virtual view synthesis, depth and color image pairs

from the same viewpoints must be compressed together for network transmission.

As introduced before, depth contours play an important role in the quality of

synthesized virtual view and losslessly contour coding is expensive at low rates.

In this chapter, we argue that while it is important to maintain a depth image’s PWS

characteristic even during lossy compression, the object contours themselves can

be suitably approximated to reduce SI coding costs. Specifically, we first define

a notion of complexity that estimates the SI coding costs of object contours in a

1A version of this chapter has been published in 2015 IEEE 17th International Workshop on
Multimedia Signal Processing (MMSP).
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given depth image based on edge statistics. Given an initial rate estimation, we

then pro-actively approximate object contours in such a manner that guarantees

rate reduction when the simplified contours are coded using AEC [58]. Given the

sharp but approximated contours, finally we encode the depth image using an edge-

adaptive image codec with GFT for edge preservation [18], [21].

The outline of this chapter is as follows. We first discuss how the PWS

signal can be modeled and approximated for the 1D case. We then extend the

complexity model to 2D case and approximate 2D contours. Experimental results

and concluding remarks are presented at the end.

3.2 Geometry Approximation: 1D Case

We start our discussion on approximation of PWS signals with the simpler 1D case

first (depth pixel row). We first define a notion of “complexity" for 1D PWS signals,

which we use as a proxy for a signal’s coding cost during actual compression.

We then present an approximation algorithm that can reduce a signal’s complexity

while maintaining its PWS characteristic.

3.2.1 PWS Signal Complexity: 1D Case

α 

 β 

 1-α 
 1-β 

Fig. 3.1. A two-state Markov model for PWS signal

It is observed that depth images exhibit the PWS characteristic [20], [21], i.e.,

smooth surfaces divided by sharp edges. For a 1D discrete signal (a pixel row), PWS

means a smooth 1D signal interrupted occasionally by discontinuities. Given that

the smooth portions can be efficiently coded using edge-adaptive wavelets [23] and

transforms [18], [20], we are interested here only in the complexity of representing

the set of discontinuities. To model this set, we build a 2-state Markov model as

shown in Fig. 3.1: S and J are the “smooth" and “jump" (discontinuity) states,
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respectively, with state transition probabilities Pr(J|S) = α and Pr(S|J) = β.

We now define the complexity of the 1D PWS signal as the entropy H(φ) of state

random variable φ ∈ {S,J}, where

H(φ) = log(α + β)− α

α + β
logα− β

α + β
log β. (3.1)

Fig. 3.2 shows complexity H(φ) as a function of α (α ≤ 0.5) for different values of

β.

We assume that there cannot be two back-to-back discontinuities for a 1D

signal, hence β = 1 and the complexity becomes: H(φ) = log(1 + α)− α
1+α

logα.

The more discontinuities a PWS signal has, the larger Pr(J|S) = α is, and

the larger the complexity H(φ) is. We argue that complexity H(φ) of a PWS

signal is positively correlated with the bit count required to encode the signal’s

discontinuities. An empirical verification will be provided in section 3.3.2.
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Fig. 3.2. The entropy H(φ) in (3.1) as a function of α with different values of β

3.2.2 Approximation of 1D PWS Signal

If the complexity H(φ) of a PWS signal is large, a large coding cost is needed. One

can reduce the number of discontinuities in the signal, resulting in a smaller α and

H(φ). For simplicity, we further assume that the smooth segments in a 1D PWS

signal are constant values, i.e., we assume 1D PWS signal as piecewise constant

(PWC) (see F (x) in Fig. 3.3 as an example). We then have the following lemma

for 1D signal approximation.
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Lemma 1: If an original PWC signal containing N jumps is best approximated

(in mean squared error (MSE)) by a signal with only M jumps, M < N , then

the M jump locations in the approximated signal are a subset of the original N

jump locations, and the value of each new longer constant signal segment spanning

multiple original pieces is simply the average of those pieces. (Refer to Appendix

3.A for a proof.)

F(x)

x

F'(x)

x3 x4 x5x2x1

y

Y1

Y2

Y3

Y4

Y5

Y6(Y'3)

Y'2

Y'1

Fig. 3.3. An example of 1D PWC signal F (x) in black, and an approximated signal F ′(x) in red.

Fig. 3.3 shows one example of approximating original PWC signal F (x) (with 5

jumps and 6 constant pieces) to signal F ′(x) (with 2 jumps and 3 constant pieces).

The jump locations in F ′(x) are coincident with original jumps locations x3 and x5

in F (x). The constant value of each piece in F ′(x) is the mean value of the original

F (x) pieces which are spanned by this new piece, e.g. the value Y ′1 is given as
x1Y1+(x2−x1)Y2+(x3−x2)Y3

x3
.

Given the lemma, we now look at how to compute the best approximated signal

via dynamic programming (DP) to identify the best M jump locations among N

possible choices as follows.

Denote by x a PWC signal with N + 1 constant pieces and N jumps. A PWC

signal x′ with M jumps that best approximates x must eliminate (N −M) original

jumps. We define Dx(i, k) as a recursive function that returns the minimum MSE

of approximating from the i-th constant piece of x to the (N + 1)-th piece by

eliminating k jumps. We first define dx(i, j) as the MSE when a constant signal

segment approximates j− i+1 pieces with indices from i to j, where j ∈ [i, N+1]

and dx(i, i) = 0. dx(i, j) eliminates j − i jumps between i-th and j-th pieces and

leaves k− (j− i) more jumps to be eliminated starting from the (j+ 1)-th constant
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piece. Dx(i, k) selects the j-th piece that results in the minimum total distortion:

Dx(i, k) = min
j∈[i,N+1]

¦
dx(i, j) +Dx(j + 1, k − (j − i))

©
. (3.2)

Some base cases are defined as

Dx(i, k) =


0, if k = 0, ∀i ∈ [1, N + 2]

+∞, if k > 0 & (N + 1)− i < k

+∞, if k < 0.

(3.3)

The first case, k = 0, means no more jumps need to be eliminated and thus

Dx(i, 0) = 0. The second case means that from the i-th constant piece to the

end of the signal, the number of existing jumps is less than the required k. The last

case, k < 0, happens when (j − i) > k in Eq. (3.2). We define Dx(i, k) = +∞ for

the last two cases to imply a violation.

According to Eq. (3.2), a recursive call of Dx(1, N − M) would yield the

minimum total distortion for approximating signal x with M jumps. The best

M jump locations in x′ can be identified accordingly. This DP algorithm could

be implemented either by top-down with memorization or bottom-up method with

complexity O(N2) [85].

3.3 Geometry Approximation: 2D Case

We now generalize our previous approximation of 1D PWS signal to 2D. We will

first review one previous contour coding scheme—arithmetic edge coding (AEC).

Based on that, we then introduce a similar notion of complexity for contours in a

depth image—an estimate of the overhead for contour coding in the image. Finally,

to reduce the complexity we describe a procedure to approximate the contours to

simpler ones.

3.3.1 Arithmetic Edge Coding

Given a depth image, we first detect edges via a gradient-based method [18], where

the edges exist between pixels and outline contours of physical objects. Fig. 3.4
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Fig. 3.4. Edges in a 4× 4 block that separate foreground (F) from background (B).

shows an example of a 4 × 4 block with between-pixel edges—each edge exists

between a pair of vertically or horizontally adjacent pixels—separating foreground

and background depth values. The set of contiguous edges composing a contour

is described by a sequence of symbols E = {eT , . . . , e1} of some length T . Each

et, t > 1, is chosen from a size-three alphabet—et ∈ A = {l, s, r}—representing

relative directions left, straight and right respectively, with respect to the previous

edge et−1. In contrast, the first edge e1 is chosen from a size-four alphabet—

e1 ∈ Ao = {→, ↓,←, ↑}—denoting absolute directions east, south, west and north

respectively. This contour representation is also known as DCC [52].

To efficiently encode a symbol et+1 in sequence E , using a small window of K

previous edges {et, . . . , et−K+1} as context, AEC [58], [59] uses a linear regression

model to estimate probabilities Pr(et+1 = θ) of the three possible directions θ ∈ A,

which are subsequently used for arithmetic coding [57] of et+1. Specifically, using

{et, . . . , et−K+1}, a best-fitting line l with direction ul is constructed via linear

regression. “best-fitting" means that the line l minimizes the sum of squared

distances from the end point of each edge in {et, . . . , et−K+1} to line l. See

Fig. 3.5 for an illustration, where the line l is the best fitting line given three edges

{e3, e2, e1}.

In [58], [59], the angle γθ ∈ [0, π] between a relative direction θ ∈ A and ul is

first computed, then the probability P (et+1 = θ) for edge et+1 is defined such that

29



  

 

Line  

 

 
 

 

 

 

  
 

 

Fig. 3.5. Given edges {e3, e2, e1} to estimate the probability of edge e4. With the best-fitting line
l and its direction ul, the angel difference γθ and distance εθ for e4 = θ, θ ∈ A is illustrated. The
predicted direction vp = s.

smaller γθ leads to larger P (et+1 = θ). In our work, we consider also the minimum

distance εθ from the end point of et+1 to line l when determining P (et+1 = θ).

Specifically, We define P (et+1 = θ) as:

P (et+1 = θ) =
1

2πI0(κ)
· exp {κ cos γθ} · exp

¨
− ε2θ

2ω2

«
(3.4)

where I0(·) is the modified Bessel function of order 0. The parameter 1/κ is the

variance in the circular normal distribution. ω is a chosen parameter to adjust the

relative contribution of the distance term exp{− ε2θ
2ω2}. The distance term is added

to the Von Mises probability distribution model 2 to differentiate the case where

there exist two directions with the same γθ (e.g., a diagonal straight line). The

computed probabilities P (et+1), synchronously computed at both the encoder and

the decoder, are then used for arithmetic coding of the actual edge et+1, where a

larger probability leads to a smaller number of coding bits.

In words, (3.4) states that the direction probability increases as the angle γθ

and distance εθ decrease. In the previous example in Fig. 3.5, with the best-fitting

line l and line direction ul, the angle difference γθ and distance εθ for θ ∈ A are

2http://en.wikipedia.org/wiki/Von_Mises_distribution
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illustrated. The relative direction θ with the smallest angle and distance with respect

to ul is s in this example.

3.3.2 PWS Signal Complexity: 2D Case

Using the linear regression model to estimate edge direction probabilities, we can

define a notion of “smoothness" for contours in 2D: a smooth contour is one with

edges that are mostly predictable by the geometry-driven probabilistic model. We

can thus reuse our 2-state Markov model for 1D discontinuities to compute a

complexity measure for a given contour. Specifically, among the three possible

directions θ ∈ A for next edge et+1, we term the direction θ with the largest

estimated probability the predicted direction vp (e.g., the predicted direction is s

in Fig. 3.5). If et+1 = vp, then et+1 conforms to the prediction model and we

transition to the state S. Otherwise, et+1 does not match with the predicted vp, and

we transition to the state J. Thus we can trace state transitions in the same 2-state

Markov model as in Fig. 3.1 for a given sequence E and a given geometry-driven

prediction model.

In practice, the model parameters α and β can be computed using a training

dataset as follows. We first tabulate the number of visitsQ(φ) to state φ, φ ∈ {S,J},

in the training dataset. We then tabulate the number of occurrences of the four

possible state transition pairs, Q([a, b]), a, b ∈ {S,J}, for state transition from a

to b. We see that Q(φ) = Q([φ,S]) + Q([φ,J]). Finally, we calculate the model

parameters as: α = Q([S,J])/Q(S) and β = Q([J,S])/Q(J).

Hence, we can also define the complexity of contours in a 2D depth image as the

entropy H(φ) in Eq. (3.1). In Fig. 3.6, we plot the bit count of encoded contours

in a 2D depth image using AEC, versus our complexity metric of the contours

multiplied by the contour lengths. We observe a positive correlation between bits

per symbol and the complexity, which verifies that the complexityH(φ) of contours

is positively correlated with the bit count required to encode the contours.
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Fig. 3.6. The contour coding bits versus our complexity metric H(φ) for contours in a 2D depth
image multiplied by the length of contours Ne.

 

 

 

 

 

 

 

Fig. 3.7. Greedy Contour Approximation: the original contour Eo (in blue) is approximated by
contour E (in red). Here K = 3. Edges in black means original and approximated edges are
coincident.

3.3.3 Greedily Approximation of 2D PWS Signal

We now describe a procedure of contour approximation to reduce the complexity

H(φ) if it is too large (and hence bit count for coding the contours is too large).

Recall from Fig. 3.2 that a larger α results in a higher complexity. Hence to lower

complexity, we prefer smaller occurrences of Q([S,J]) and larger occurrences of

Q([S,S]). Specifically, We first define a horizon h, which is the size of a window

of candidate edges in which we will consider contour approximation. A larger h

will naturally lead to a larger search space, resulting in more approximation. At

a given edge eot+1, with a sequence of K previous edges {eot , . . . , eot−K+1} of an

original contour Eo, we compute the predicted direction vp for edge eot+1 using the
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previously described AEC model. We then consider an approximated contour E

that replaces the original edge eot+1 with vp, and continue to replace future edges

with next predicted vp, until either: i) a predicted edge vp is actually part of the

original contour Eo, or ii) the approximation has reached length h. If it is the former

termination condition, then we have successfully replaced a section of the original

Eo with a new segment that is perfectly predicted by the linear regression model,

thus lowering α and the complexity H(φ). If it is the latter termination condition,

then no approximation is executed, and the procedure repeats at edge eot+h.

Fig. 3.7 shows an example of approximating an original contour Eo withK = 3.

Given the first 3 edges and selecting the predicted direction based on AEC for

every next edge, a more predictable contour is shown in red as E . According

to our proposed scheme, if the horizon h ≥ 12, then we can replace edge

segment {eo4, · · · , eo11} on the original contour Eo with the segment {e4, · · · , e11}

on approximated contour E to lower coding cost. Otherwise, if h < 12, then

no approximation happens. Some subjective approximation results for the teddy

image are illustrated in Fig. 3.8, where a larger h leads to smoother contours.

(a) teddy

(b) (c) (d) (e)

Fig. 3.8. (a) teddy. (b) original interception of (a). (c) ∼ (e) are the approximation results with
increasing values of h. The contour becomes smoother with h increasing.
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3.3.4 Edge-adaptive Coding of Depth Blocks

Given the approximated contours, coded losselessly using AEC, we now describe

how actual pixel values of a depth image can be coded edge-adaptively block-by-

block via GFT [21], preserving the image’s PWS characteristic. First, some pixel

values on a depth image are modified according to the approximated contours, so

that foreground depth values fall on one side of a contour and background depth

values fall on the other side. Then, for each pixel block a 4-connected graph is

constructed, where each node corresponds to a pixel. An edge weight is assigned 1

if the connected pixels are on the same side of a contour, and 0 otherwise. Given

the constructed graph, the transform is the eigen-matrix of the graph Laplacian.

This weight assignment (deducible from the encoded contours) means that filtering

across sharp boundaries is avoided, preventing blurring of edges. The computed

transform is multiplied with the vectorized depth block signal for the transform

coefficients, which are quantized and entropy-coded into a bitstream. See [18] for

details.

3.4 Experimentation

3.4.1 Experimental Setup

Using color-plus-depth image sequences from the Middlebury dataset3, we perform

extensive experiments to validate the effectiveness of our proposed depth image

contour approximation method . The resolution of both color and depth images are

fixed at 368×416. For teddy and cones, the second and sixth views are used as the

left and right reference views, and the fourth view is used as the target virtual view

for DIBR view synthesis. For the other sequences, the first and fifth views are the

reference views, and the third view is the target virtual view. We first approximate

contours in each original depth image with different horizon scale α, where the

horizon value h is equal to the length of contours times the scale. We then deploy

GFT [20] to code pixel blocks in depth images (termed approximated GFT or AGFT

3http://vision.middlebury.edu/stereo/data/

34



TABLE 3.1
BG GAIN IN PSNR FOR MIDDLEBURY SEQUENCES

Sequences GFT JPEG
teddy 1.29 1.45
cones 0.92 3.34
Dolls 2.17 2.41
Rocks 2.30 7.14
Lampshade 1.72 9.01
Average 1.68 4.67

for short). Finally combining with original or JPEG compressed color images, we

synthesize middle views via DIBR [2], which are compared against original middle

view images for distortion computation.

3.4.2 Results: Comparing with GFT Compressed Original Depth Image

We first demonstrate the benefit of effectively approximating contours before edge-

adaptive image compression. Virtual images which are synthesized using depth

images compressed by GFT with losslessly coded original edges (termed GFT) are

adopted for comparison. We compare the RD curves of synthesized virtual view

by our proposed AGFT with GFT. The same color images compressed by JPEG are

used for synthesizing. Fig. 3.9 shows the RD curves for cones, Dolls, Rocks

and Lampshade sequences, respectively. The x-axis is the depth image coding

rate in bits per pixel (bpp), and the y-axis is the synthesized view quality in

PSNR. The computed Bjontegaard delta (BD) PSNR gains [86], [87] are shown

in Table 3.1, where we see that the average BG gain in PSNR achieves 1.68dB over

GFT compressed original depth image and 4.67dB over JPEG compressed original

depth image.

Our approximated depth images results in better RD performance at low bit

rates, since by approximating contours we can save significant coding bits while the

synthesized view distortion due to approximation is negligible. Subjective results

will be shown in the next subsection.
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Fig. 3.9. Synthesized virtual view RD curves for cones, Dolls, Rocks and Lampshade,
respectively. Here ’original’ means virtual view synthesized using depth images compressed
adaptive to original edges. “α" referred curves meaning virtual view synthesized with
correspondingly approximated depth image based on our proposed method.

3.4.3 Results: Comparing with JPEG Compressed Depth Image

We now demonstrate the importance of edge preservation in compressed depth

images. We compare synthesized images using depth images compressed by our

AGFT, which preserves sharp edges, with depth images compressed by JPEG. Fixed

DCT-transform coding in JPEG compression leads to blurred edges at low bitrates.

Since section 3.4.2 has shown our AGFT has better RD performance than GFT, and it

has already been demonstrated in [21] that GFT outperforms JPEG in depth image

compression in terms of RD performance, here we do not compare our AGFT with

JPEG in RD performance. Rather, we show here that even for similar depth image

PSNR, the resulting synthesized images using AGFT compressed depth images

outperform images synthesized using JPEG compressed depth images, since AGFT
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maintains the PWS characteristic.

Fig. 3.10 shows the AGFT and JPEG compressed depth images and the corre-

sponding synthesized virtual views. We observe that AGFT compressed depth image

(a) has sharper edges comparing with JPEG compressed result (c), even though

they have nearly equal PSNR values (the difference is less then 0.1dB for both left

and right depth images). (b) and (d) are the corresponding synthesized views. We

enlarge the right-bottom corner for each image to enhance the visual quality, where

there are corrupted edges in (d) while (b) looks clearer with sharp edges. This is

also reflected in the corresponding PSNR values. The results illustrate that even

for the similar PSNR quality of depth images, an edge-preserved depth image can

result in a higher quality of synthesized view, which supports the importance and

effectiveness of our edge adaptive approximation method.

(a) By AGFT, 34.93dB (b) Virtual View, 29.54dB

(c) By JPEG, 34.87dB (d) Virtual View, 27.60dB

Fig. 3.10. For teddy, depth images with nearly equal PSNR, compressed by AGFT (a) (coding bits:
0.20 bpp) and JPEG (c) (coding bits: 0.72 bpp), respectively. Together with original color images,
the corresponding synthesized views are shown in (b) and (d). Visually, (d) has a lot of noise around
edges while (b) is very clean. The right-bottom corner is enlarged for better visual quality.
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Sub-regions of the synthesized views for the previous mentioned four sequences

are shown in Fig. 3.11. The first row views are synthesized by AGFT compressed

depth images and second row views are by JPEG compressed depth images, where

the depth image quality are of nearly the same PSNR values. There are a lot

of corrupted edges in the JPEG compressed results, which badly affected visual

quality. For AGFT compressed results, although there is also some distortion around

edges due to approximation, the edges in synthesized views still look very sharp.

(a) cones (b) Dolls (c) Rocks

Fig. 3.11. Sub-regions of the synthesized views by original color images and AGFT / JPEG
compressed depth images, respectively, where the PSNR quality of depth images compressed by
AGFT and JPEG are almost the same. The first row views are by AGFT compressed depth images,
while the second row views are by JPEG compressed depth images. Rocks is enlarged to be more
distinct. (We strongly recommend readers to read an electronic version of this thesis to distinguish
the differences of the color images.)

3.5 Conclusion

Efficient coding of depth image is essential for decoder-side virtual view synthesis

via DIBR. Existing works either employ fixed transforms like DCT that blur depth

image’s sharp edges at low rates, or use edge-adaptive transforms that require
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lossless coding of detected edges as side information, which accounts for a large

share of the bit budget at low rates. In this chapter, we propose to first approximate

object contours to lower the edge coding cost, then use edge-adaptive GFT for

block-based coding so that sharp edges are preserved and the PWS characteristic

is maintained. Experiments show noticable performance gain over previous coding

schemes using either fixed transform (e.g., JPEG codec) or edge-adaptive transform

(e.g., GFT) with lossless coding of detected contours.

3.6 Appendix 3.A: Proof of Lemma 1

It is straightforward that in an MSE manner, the value of one new longer constant

signal segment is the average of original constant pieces spanned by this new

segment. Here we mainly want to prove that the M jump locations in approximated

signal are coincident with original jump locations. Based on this property, the best

M jump locations can be identified by a DP algorithm with Eq. (3.2).

Denote by x a PWC signal with N jump locations {x1, · · · , xN} and N + 1

constant pieces {c1, · · · , cN+1}. For notational convenience, we will include the

starting and ending points of signal x into the set of jump locations as x0 and xN+1.

We also define the length of each constant piece as ∆xi, where ∆xi = xi−xi−1, for

i ∈ {1, N+1}. Considering a PWC signal x′ with M jumps that best approximates

x, where the jump locations are labeled as {y1, · · · , yM} and the M + 1 constant

pieces are labeled as {f1, · · · , fM+1}.

Given the i-th jump location yi of x′, suppose on signal x, the closest jump

location to the right of yi is xti , where ti ∈ {1, N + 1}. We define ki = xti − yi as

an integer showing how far yi is away from xti , and ki ∈ (0,∆xti ]. See Fig. 3.12 for

an illustration. In the following, we want to find the best value of ki that minimizes

the total approximation MSE.

Considering two neighboring jump locations of x′: yi = xti − ki and yi−1 =

xti−1
− ki−1, where yi−1 < yi. In an MSE manner, the new constant piece fi is the
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Fig. 3.12. An illustration of original and approximated jump locations.

average of the original signal x from yi−1 to yi. Thus, fi can be computed as

fi =

ti∑
j=ti−1+1

cj∆xj − kicti + ki−1cti−1

ti∑
j=ti−1+1

∆xj − ki + ki−1

(3.5)

,
qi − kicti + ki−1cti−1

pi − ki + ki−1

where qi =
∑
j cj∆xj is the sum of x from jump location xti−1

to xti , and pi =∑
j ∆xj = xti − xti−1

is the length. Here, we use
∑
j to stand for

ti∑
j=ti−1+1

for

simplicity. By using fi to approximate the original signal x from yi−1 to yi, the

induced MSE di of this new segment can be computed as

di =
∑
j

(fi − cj)2∆xj − ki(fi − cti)2 + ki−1(fi − cti−1
)2. (3.6)

And the total MSE D of approximating x with x′ becomes

D =
M+1∑
i=1

di. (3.7)

To check which ki gives the minimum value of D, we do a partial derivative of

D with respect to ki. It is easy to see that ki is only related to MSE di and di+1.

Hence, we have

∂D

∂ki
=
∂di
∂ki

+
∂di+1

∂ki
. (3.8)
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We calculate ∂di
∂ki

first, as follows:

∂di
∂ki

= 2
∑
j

(fi − cj)∆xj
∂fi
∂ki
− (fi − cti)2 − [2ki(fi − cti)− 2ki−1(fi − cti−1)]

∂fi
∂ki

(3.9)

= 2
[
(pi − ki + ki−1)fi − (qi + kicti − ki−1cti−1)

] ∂fi
∂ki
− (fi − cti)2

= −(fi − cti)2,

where the last equality is due to the fact that (pi − ki + ki−1)fi − (qi + kicti −

ki−1cti−1
) = 0 , which is from Eq. (3.5).

Similarly, we can derive

∂di
∂ki−1

= (fi − cti−1
)2, (3.10)

and by substituting i with i+ 1, we have

∂di+1

∂ki
= (fi+1 − cti)2. (3.11)

Thus the first-order derivative of D is expressed as

∂D

∂ki
= (fi+1 − cti)2 − (fi − cti)2. (3.12)

We now look at the second-order derivative of D with respected to ki. We first

check the partial derivative of P , (fi − cti)2 with respect to ki as

∂P

∂ki
= 2(fi − cti)

∂fi
∂ki

. (3.13)

Since

fi − cti =
qi − picti + ki−1(cti−1

− cti)
pi − ki + ki−1

, (3.14)
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and

∂fi
∂ki

=
qi − picti + ki−1(cti−1

− cti)
(pi − ki + ki−1)2

, (3.15)

and pi − ki + ki−1 is the segment length between yi−1 and yi, which is always

positive, we can get that ∂P
∂ki
≥ 0. With a similar derivation process, we have

∂Q
∂ki
≤ 0, where Q , (fi+1 − cti)2. Hence, we can conclude that ∂2D

∂2ki
≤ 0, which

means that given ki ∈ (0,∆xti ], the best ki that results in the minimum D is when

ki = ∆xti (which means yi = xti−1) or when ki = 0 (which means yi = xti).

Above discussion proves that when considering to minimize the approximation

MSE, each jump location on the approximated signal x′ should be coincident with

one of the original jump locations on x. Thus, the M jump locations of x′ should

be a subset of the original N jump locations of x. Hence Lemma 1 is proved. �
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Chapter 4

Contour Approximation and Depth Image

Coding: A RD Optimal Algorithm

In previous chapter, a greedy algorithm is proposed to approximate object contours

to reduce depth coding cost, where the edge direction with the largest estimated

probability computed by AEC is selected every time. However, since depth

images are usually used for synthesizing virtual viewpoint at the decoder side, it

is necessary to consider the resulting synthesized view distortion caused by depth

contour approximation. Hence, in this chapter, we pursue a new paradigm in depth

image coding for color-plus-depth representation of a 3D scene: we pro-actively

simplify complex object shapes in a depth and color image pair to lower depth

coding cost, at a controlled increase in synthesized view distortion. This means that

as the bit budget becomes stringent, actual shapes of physical objects in the scene

are simplified, but rendering of the objects remains sharp and natural for human

perception.

Specifically, we execute our proposed object shape approximation in our color-

plus-depth coding system as follows (See Fig. 4.1 for an overview). Given an input

color-plus-depth image pair from the same viewpoint, we first approximate object

contours via a DP algorithm to optimally trade off the cost of contours coded using

AEC and the synthesized view distortion induced due to contour approximation.

The color and depth images are then modified according to the approximated

object contours to ensure inter-view consistency. Finally, the modified depth
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Fig. 4.1. Overview of our proposed color-plus-depth image coding system.

image is coded using a contour-adaptive image codec based on GFT for edge

preservation [18], and the modified color image is coded by HEVC intra. At the

decoder, the decoded depth and color images are then used for free-view synthesis

via DIBR.

To measure the induced synthesized view distortion, we propose to use

3DSwIM [5]—a quality metric tailored specifically for DIBR-synthesized images.

However, the complex definition of 3DSwIM makes it too expensive to directly

quantify distortion due to contour approximation. In response, we mathematically

derive a local distortion proxy that serves as an upper bound of 3DSwIM with

reduced inter-dependencies across pixel rows to ease optimization.

Given the contour coding rate by AEC introduced in Section 3.3.1, in this

Chapter, we first discuss synthesized view distortion induced by contour approx-

imation. Based on the contour coding rate and distortion, an RD optimal method

for depth contour approximation is proposed. We then introduce depth and color

image coding using the approximated object contours. Finally, experiments and

conclusion are presented. 1

4.1 Distortion: A Proxy of 3DSwIM

Given that contour coding rate can be estimated by AEC, we now consider how

to quantify distortion due to contour approximation. We first review 3DSwIM [5],

1A version of this chapter has been accepted to IEEE Transactions on Circuits and Systems for
Video Technology, August, 2017.An arxiv version can be find on: https://arxiv.org/abs/1612.07872.
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a new metric designed specifically to measure visual quality distortion of virtual

view images synthesized via DIBR [2]. To control the extent of errors introduced

during contour approximation, we need a notion of distortion stemming from

the resulting geometric errors. Unfortunately, the 3DSwIM metric is difficult to

optimize directly. We thus propose a simpler proxy that serves as an upper bound

of 3DSwIM.

Block 

partition

Synthesized View Reference View

DWT DWT

Histogram 

Computation

Histogram 

Computation

KS Distance

Block Distortion

Image Distortion

S

Target Block Best-matched Block

Fig. 4.2. Block diagram of 3DSwIM, from [5].

4.1.1 3D Synthesized View Image Quality Metric

The operations to compute 3DSwIM between a reference image and a DIBR-

synthesized image is shown in the flow diagram in Fig. 4.2. First, the synthesized

image is divided into B non-overlapping blocks, each of size N × N . For a target

block in the synthesized image, the best-matched block (using MSE as the matching

criteria) is searched in the reference image within a search window of size 2W

pixels in the horizontal direction, via a search algorithm like [88]. This horizon

search procedure is based on the observation that objects may be horizontally

shifted during DIBR’s 3D warping of pixels in rectified images.
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According to [89]’s analysis of DIBR distortions, the DIBR rendering errors

are typically located near vertical edges of objects, and they appear as extraneous

horizontal details. Hence in [5], the authors apply wavelet transform on each image

block and measure the synthesized image degradation by analyzing the wavelet

coefficients that describe the horizontal details. In our implementation of 3DSwIM,

a multi-resolution 1D Haar wavelet transform (DWT) [90] is applied on each row

of a target block to extract the horizontal details.

Since 3DSwIM is only concerned with horizontal image details, here we

analyze the AC coefficients (details) of 1D DWT to compute a synthesized image

quality measure. Performing a Haar DWT to each row of anN×N target block and

its corresponding best-matched block in the reference image, each row generates

an AC coefficient vector with length (N − 1). Stacking the coefficient vectors for

different rows into a matrix, we construct two AC coefficient matrices cs and co with

size N × (N − 1) corresponding to synthesized and reference blocks respectively.

We then construct the histograms Hs and Ho for each AC coefficient matrices:

we divide the coefficients range into L bins of size τ and count how many

coefficients fall into each bin, where τ is:

τ =
cmax − cmin

L
, (4.1)

cmax = max{co, cs} and cmin = min{co, cs} are the maximum and minimum

values of the two AC coefficient matrices.

Finally, with the cumulative distribution functions (CDF) Fs and Fo of the

histograms Hs and Ho for the synthesized and the best-matched reference blocks

respectively, the block distortion Db for block b ∈ {1, · · · , B} is defined as the

Kolmogorov-Smirnov (KS)[91] distance between the two CDFs, i.e.

Db = max
j∈{1,··· ,L}

|Fo(j)− Fs(j)| . (4.2)

The overall normalized image distortion d and the final image quality score S are
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then computed as:

d =
1

D0

B∑
b=1

Db, and S =
1

1 + d
, (4.3)

where D0 is a normalization constant. The score S ranges in the interval [0, 1],

where a lower distortion corresponds0 to a higher score and vice versa.

4.1.2 A Proxy of 3DSwIM

When approximating a contour in a pixel block, given a window of K previous

edges {et, . . . , et−K+1}, it is desirable to evaluate the effects on aggregate rate

and distortion of choosing an edge et+1 locally without considering edges globally

outside the window. The complex definition of 3DSwIM, however, makes

this difficult. When computing distortion between a target and a reference

block, 3DSwIM identifies the maximum difference between the CDFs of the

two corresponding histograms of wavelet coefficients. Hence the effects on

distortion due to changes in one edge et+1 are not known until all other edges are

decided, which together determine the bin populations of wavelet coefficients in

the histogram. This inter-dependency among edges in a block makes it difficult

to minimize distortion systematically without exhaustively searching through all

possible edge sequences.

In response, we propose a simple proxy to mimic 3DSwIM during contour

approximation. Specifically, we first prove that the sum of local distortions (for

individual pixel rows) is an upper bound of global 3DSwIM (for the entire pixel

block). Thus, we can minimize the sum of local distortions to minimize the upper

bound of the global distortion. Second, by assuming that the CDF of wavelet

coefficients for a pixel row follows a certain model, we compute the local distortion

as the maximum difference between two CDFs, which reduces to a simple function

of respective model parameters. The sum of local distortions in a block is then used

as a distortion proxy for contour approximation.

47



4.1.2.1 Local Distortion Upper Bound

In 3DSwIM, the 1D wavelet detail coefficients for different pixel rows in an N ×N

block are collected and sorted into L bins to construct a histogram. Fs and Fo

are the CDFs of the histograms for the synthesized and the best-matched reference

blocks respectively. Suppose that instead we divide coefficients in each row into

the same L bins, and define the cumulative distribution of the L bins for each row

i as f is and f io, for the synthesized and best-matched blocks respectively. We see

easily that Fo =
∑N
i=1 f

i
o and Fs =

∑N
i=1 f

i
s. Thus the block distortion in (4.2) can

be rewritten as:

Db = max
j∈{1,··· ,L}

∣∣∣∣∣∣
N∑
i=1

f io(j)−
N∑
i=1

f is(j)

∣∣∣∣∣∣ . (4.4)

To derive an upper bound for Db in (4.4), we see that

Db ≤ max
j∈{1,··· ,L}

N∑
i=1

∣∣∣f io(j)− f is(j)
∣∣∣ (4.5)

≤
N∑
i=1

max
j∈{1,··· ,L}

∣∣∣f io(j)− f is(j)
∣∣∣

,
N∑
i=1

Di
b

where Di
b denotes the maximum difference between the CDFs of the coefficient

histograms for pixel row i; we call this the row distortion. The equality can be

reached when there is one bin j∗ that has the largest difference for all the N rows

and f io(j
∗) is always no smaller or no larger than f is(j

∗), i.e.,

j∗ = arg max
j∈{1,··· ,L}

∣∣∣f io(j)− f is(j)
∣∣∣, ∀ i ∈ {1, · · · , N}, and (4.6)

f io(j
∗) ≤ f is(j

∗) or f io(j
∗) ≥ f is(j

∗), ∀ i ∈ {1, · · · , N}.

Hence, we argue that
∑N
i=1 D

i
b is the supremum of the block distortion Db. We can

now write our distortion proxy D̂b that mimics 3DSwIM as the sum of individual
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row distortions, i.e.

D̂b =
N∑
i=1

Di
b. (4.7)

4.1.2.2 A Model for Row Distortion

We now investigate how to compute row distortion Di
b efficiently. We first model

the wavelet coefficients of a color pixel row using a Laplace distribution similar

to [92]. We then compute the row distortion as a function of the model parameters.

In [92], Wouwer et al. show that for a color image block with size 64 × 64,

the histogram of the AC wavelet transform coefficients on each subband can be

modelled by a generalized Gaussian density function:

fσ,ρ(c) =
ρ

2σ · Γ(1
ρ
)
· e−(

|c|
σ

)ρ , c ∈ R (4.8)

Γ(x) =
∫ ∞

0
e−ttx−1dt, x > 0

where σ is the variance, and ρ is a shape parameter (ρ = 2 or 1 for a Gaussian or

Laplace distribution). Histogram fσ,ρ(c) can also be interpreted as the probability

of a coefficient taking on value c.

Inspired by [92], in our work we assume also that the AC wavelet coefficients

on a color pixel row follow the same distribution (4.8). For simplicity, we assume

further that ρ = 1, i.e., the AC wavelet coefficients follow a Laplace distribution

with parameter σ, where

fσ(c) =
1

2σ
· e−

|c|
σ , c ∈ R (4.9)

since Γ(1) = 1. In practice, given M observed AC wavelet coefficients

{c1, · · · , cM}, the best estimate of model parameter σ using the maximum likelihood

estimation (MLE) [93] criteria is

σ =
1

M

M∑
i=1

|ci|. (4.10)
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The derivation for (4.10) is in Appendix 4.A.

Assuming that the AC wavelet coefficients of a pixel row on the synthesized

and its best-matched reference blocks are both Laplace distributions with respective

parameters σs and σo, we now compute the row distortion Di
b as a function of σs

and σo. Since Di
b computes the maximum difference between the CDFs of two

histograms, we first write the CDF of fσ(c) as:

Fσ(c) =
∫ c

−∞
fσ(x)dx (4.11)

=


1
2

exp
¦
c
σ

©
, if c < 0

1− 1
2

exp
¦
− c
σ

©
, if c ≥ 0 .

Then we define g(c) = |Fσo(c)− Fσs(c)|, and Di
b is equivalent to finding the

maximum value of g(c), c ∈ R.

For simplicity, we define σmax = max{σo, σs} and σmin = min{σo, σs}. When

σmax = σmin, g(c) = 0. When σmax > σmin, ignoring the constant weight 1/2, we get

g(c) =

 exp
¦

c
σmax

©
− exp

¦
c

σmin

©
, if c < 0

exp
¦
− c
σmax

©
− exp

¦
− c
σmin

©
, if c ≥ 0 .

(4.12)

The first-order derivative function of g(c) becomes

g′(c) =


1
σmax

exp
¦

c
σmax

©
− 1

σmin
exp

¦
c

σmin

©
, if c < 0

1
σmin

exp
¦
−c
σmin

©
− 1

σmax
exp

¦
−c
σmax

©
, if c ≥ 0.

(4.13)

When we set g′(c) = 0, we get the optimal c as:

c =


σmaxσmin
σmax−σmin ln σmin

σmax
, c∗, if c < 0

−c∗, if c ≥ 0 .
(4.14)

We thus conclude that g(c∗) is a maximum for c < 0 and g(−c∗) is a maximum for

50



c ≥ 0. Since g(c∗) = g(−c∗), the maximum value of g(c) becomes

gmax = g(c∗) =

�
σmin
σmax

� σmin
σmax−σmin

−
�
σmin
σmax

� σmax
σmax−σmin

. (4.15)

In summary, for a pixel row in the synthesized and best-matched blocks with

respective histograms fσs and fσo , the row distortion Di
b can be computed as:

Di
b = 〈fσo , fσs〉 (4.16)

,

(σmin
σmax

)
σmin

σmax−σmin − (σmin
σmax

)
σmax

σmax−σmin , if σmax > σmin

0, if σmax = σmin

where σmax = max{σo, σs} and σmin = min{σo, σs}.

Together with (4.7), our proposed distortion proxy that mimics 3DSwIM

becomes

D̂b =
N∑
i=1

〈fσio , fσis〉, (4.17)

where σis and σio are the respective Laplace distribution parameters for coefficients

on the pixel row i for the synthesized and best-matched blocks.
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P
ro
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y
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3DSwIM vs Proxy

Fig. 4.3. x-axis: block distortion calculated by 3DSwIM; y-axis: mean value of distortion
calculated by our proposed proxy

To verify the accuracy of our distortion proxy, we tested 17 image sequences
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from the Middleburry dataset2. Virtual views are synthesized by a simple

implementation of 3D warping [2] and each image is divided into around 600 blocks

with size 16 × 16 for distortion computation. The result is shown in Fig. 4.3, in

which the x-axis is Db by 3DSwIM and the y-axis is the mean value of our proxy

D̂b in the corresponding blocks. This result clearly shows a positive linear trend

between Db and D̂b, demonstrating the effective approximation of our proposed

distortion proxy.

4.2 RD Optimal Object Contour Approximation

Given the AEC-based contour coding and our proposed distortion proxy discussed

in Sections 3.3.1 and 4.1 respectively, we now discuss how to approximate a

detected contour.

4.2.1 Dividing Contour into Segments

When approximating a contour detected in a depth image, we first divide the

contour into segments, where each segment is composed of edges with only two

non-opposite directions: {↓,→}, {↓,←}, {↑,←} or {↑,→}. We then approximate

each segment separately. We require each approximated segment to start and end

at the same locations as the original segment. Given that edges in a segment can

only take non-opposite directions, it implies that the length T of the approximated

segment must be the same as the original. Thus the search space of candidates is

only
�
T
V

�
, where V (≤ T ), is the number of vertical edges (↓ or ↑) in the original

segment. To efficiently search for an RD-optimal approximated segment within this

space, we propose to use a DP algorithm. Finally, the approximated segments are

combined to form an approximated contour.

4.2.2 DP Algorithm to Approximate One Segment

4.2.2.1 Efficient Computation of the Distortion Proxy

We first discuss how to efficiently compute our distortion proxy during segment

approximation. Our distortion proxy Eq. (4.17) is computed by comparing

2http://vision.middlebury.edu/stereo/data/
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a pixel block in a synthesized view image with a best-matched block in the

reference image. To avoid laboriously augmenting the input color/depth image

pair and synthesizing a virtual view image to compute distortion for each segment

approximation, we propose to use only the input color image and a simple shifting

window procedure to compute our distortion proxy. We describe this next.

We first divide the input color image into non-overlapping N ×N pixel blocks.

The block distortion—the sum of row distortions according to our proxy of Eq.

(4.17)—is computed for blocks that contain parts of the segment. See Fig. 4.4 for

an illustration of blocks of a color image containing contour segments (in green).

When a segment is approximated and altered, vertical edges in the original segment

are horizontally shifted. As an example, in Fig. 4.5, the vertical edge eo3 in the

original blue segment is shifted left by one pixel to e4 in the approximated red

segment.

At a given pixel row, assuming that the contained vertical edge has horizontally

shifted, we compute the resulting row distortion using a shifting window procedure

as follows. Suppose that an original vertical edge starting from 2D coordinate

(po, qo) (specifying respective row and column indices) is horizontally shifted by

k pixels (positive/negative k means shifting to the right/left) to a new vertical edge

with starting point (po, q), where k = q−qo. Delimiting the pixel row in the original

block with an N -pixel window, we shift the window by −k pixels to identify a

new set of N pixels that represent the pixels in the corresponding block of the

synthesized view after segment modification.

An example of shifting window is illustrated in Fig. 4.4. One pixel row (black)

in an original 8× 8 block contains the pixel set u = {I1, · · · , I8}. During segment

approximation, the original vertical edge between pixels I4 and I5 shifts left by 2

pixels (k = −2) to a new edge. As a result, we shift the delimiting window right

by 2 pixels, and identify a different set of eight pixels, v = {I3, · · · , I10}. We

see that the original edge in the shifted window is located two pixels from the left,

and the new edge in the original window is also located two pixels from the left.

Because of this alignment, we can simply use window v as a representation of the
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pixel row after segment approximation, instead of the original pixels u plus image

augmentation due to the vertical edge shift.

We can now compute the row distortion using (4.16) using two sets of N pixels

delimited by the window before and after the shift operation. Because 3DSwIM

only searches for a best-matched reference block within a window of size 2W

pixels, when |k| > W , pixels in the shifted window no longer well represent the

best-matched pixel row. We thus set the distortion to infinity in this case to signal a

violation. We can now write the row distortion dpo(qo, q) induced by a horizontally

shifted vertical edge from start point (po, qo) to (po, q) for the po-th pixel row as

dpo(q
o, q) =

 〈fσu , fσv〉, if |q − qo| ≤ W

∞, otherwise
(4.18)

where σu and σv are the respective Laplace distribution parameters computed using

pixels in the original and the shifted windows u and v. Continuing with the example

in Fig. 4.5, d2(3, 2) is the distortion of edge eo3 (starting from (2, 3)) being shifted

to edge e4 (starting from (2, 2)).

Fig. 4.4. An example of shifting window. The detected contours are shown in green in the color
image. The white blocks contain part of contour segments. The original edge crossing one pixel row
(black) in a block is shifted left by 2 pixels to a new edge. We shift the original window right by 2
pixels and identify the shifted window.
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4.2.2.2 DP Algorithm

We next design a DP algorithm to approximate a contour segment composed of

edges with directions {↓,←}. The algorithms for segments composed of edges

with other different non-opposite direction pairs are similar, and thus are left out

for brevity. We first define distortion and rate terms. Then we define a DP recursive

equation based on Lagrangian relaxation.

4.2.2.2.1 Problem Formulation Denote by Eo and E the original and approxi-

mated segments respectively, and by T the length of Eo. Further, we define (p1, q1)

as the 2D coordinate of the first edge’s start point. Given V vertical edges with

direction ↓ in Eo, the coordinate of the last edge’s end point can be computed as

(pT+1, qT+1) = (p1 + V, q1 − (T − V )). Given our constraint that E must start and

end at the same locations as there in Eo, the search space S for E is restricted to the

rectangle region with opposite corners at (p1, q1) and (pT+1, qT+1). As an example,

the original blue segment in Fig. 4.5 has length T = 6 and V = 4, with start point

(p1, q1) = (1, 4) and end point (p7, q7) = (5, 2). The search space is the green

rectangle region.

 

  

 

 

 

 

 

 

 

 

 

   

  

 

 

 

 

 

  

 

 

  

 

 

Fig. 4.5. An example of segment approximating. The original segment Eo = {eo1, · · · , eo6}
separating foreground (F) and background (B), where the approximated segment E = {e1, · · · , e6}.
The vertical edge e4 is shifted by edge eo3. The pixel with the top left corner (2, 2) need to be altered
after approximation.
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Given that the row distortion is induced by a horizontally shifted vertical

edge, the total distortion induced by an approximated segment is the sum of row

distortions induced by all shifted vertical edges. Using the defined row distortion

dpo(q
o, q) for the po-th row, given an approximated segment E = {eT , · · · , e1} with

two non-opposite directions {↓,←}, the total distortion for approximating Eo with

E is:

D(E , Eo) =
∑

ei∈E|ei=↓
dpoi (q

o
i , qi) (4.19)

where (poi , qi) is the 2D coordinate of edge ei’s starting point in E , and qoi is the

column index of a vertical edge on Eo crossing the poi -th pixel row.

To approximate a segment Eo, we solve the following RD cost function:

min
E

D(E , Eo) + λR(E) (4.20)

whereR(E) is the coding rate of segment E using AEC edge coding (Section 3.3.1).

Given a window of K previous edges st = {et−1, · · · , et−K} and the computed

probability P (et|st) based on AEC, we use the entropy to estimate the coding bits

of edge et, i.e., r(et|st) = − log2 P (et|st) 3. Thus the total segment coding rate

becomes

R(E) =
T∑
t=1

r(et|st). (4.21)

4.2.2.2.2 DP Algorithm Development We propose a DP algorithm to solve

(4.20). First, we define J (st, pt, qt) as the recursive RD cost of a partial segment

from the t-th edge to the last edge, given that the K previous edges are st ∈ {↓,←

}K , and (pt, qt) is the coordinate of the t-th edge et’s starting point. J (st, pt, qt)

can be recursively solved by considering each candidate et inside the search space

3Given a segment, when t ≤ K, we define st as the combination of the first t − 1 edges in the
current segment and the last K − t + 1 edges in the previous segment. As to the the first segment
in a contour, when t ≤ K, we define st = et−1 ∪ st−1 with s1 = ∅, and P (e1|s1) = 1/4 since
e1 ∈ Ao with |Ao| = 4, and P (et|st) = 1/3 for t > 1, since et ∈ A with |A| = 3.
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S (the rectangle box):

J (st, pt, qt) = min
et∈
¦
{↓,←}|(pt+1,qt+1)∈S

© §λ · r(et|st) (4.22)

+ dpot (q
o
t , qt) · δ↓ + J (st+1, pt+1, qt+1) · δ(pt+1, qt+1)

ª
where pot = pt and δ↓ is a binary indicator that equals 1 if et =↓ and 0 otherwise.

The value st+1 is updated by combining et with the first K − 1 elements in st. The

pixel position (pt+1, qt+1) equals (pt + 1, qt) or (pt, qt − 1) if et =↓ or et =←,

respectively. Finally δ(p, q) indicates the termination condition, which is

δ(p, q) =

 0, if (p, q) = (pT+1, qT+1)

1, otherwise
(4.23)

Eq. (4.22) is considered a DP algorithm because there are overlapping sub-

problems during recursion. Each time a sub-problem with the same argument is

solved using (4.22), and the solution is stored as an entry into a DP table. Next time

the same sub-problem is called, the previously computed entry is simply retrieved

from the DP table and returned.

Starting from the first edge, the recursive call results in the minimum cost of the

segment approximation. The corresponding segment E∗ = arg min J
�
s1, p1, q1

�
is

the new approximated segment.

4.2.2.3 Complexity of DP Algorithm

The complexity of a DP algorithm is upper-bounded by the size of DP table times

the complexity to compute each table entry. The size of the DP table can be bounded

as follows. The argument st in J(st, pt, qt) can take on O(2K) values. On the other

hand, the argument (pt, qt)—the starting point of et—can take on O(V × (T − V ))

locations in search space S . Thus the DP table size isO(2KV (T−V )). To compute

each DP table entry using Eq. (4.22), a maximum of two choices for et need to be

tried, and each choice requires a sum of three terms. The second term involves row

distortion dpot (q
o
t , qt), which itself can be computed and stored into a DP table of
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size O(VW ), each entry computed in O(N2). Thus, the complexity of computing

dpot (q
o
t , qt) is O(VWN2). Hence, the overall complexity of (4.22) is O(2KV (T −

V ) + VWN2).

In our experiments, we set K = 3 as done in [58], W = 10 and N = 16. The

number T − V of horizontal edges in a segment is usually smaller than N2. Thus

the overall complexity of the algorithm can be simplified to O(VWN2).

4.2.3 Greedy Segment Merging

We next discuss how two consecutive segments can be merged into one to further

reduce edge coding cost. Given the start point l0 of the first segment and the end

point l2 of the second, we first delimit the feasible space of edges by the rectangle

with opposing corners at l0 and l2. The original edges which are outside this feasible

space are first projected to the closest side of the rectangle, so that edges in the

feasible space become a new segment. This edge projection leads to edge shifting

and thus induce distortion; we call this the merge distortion. We then execute the

aforementioned DP algorithm on this new simplified segment to get a new minimum

cost. If this cost plus the merge distortion is smaller than the cost sum of the original

two segments, we merge the two original segments to this new simplified segment.

 

 

 

Fig. 4.6. An example of segment merging.

As illustrated in Fig. 4.6, a segment with directions {→, ↓} starts from point

l0 and ends at l1. Another segment with directions {←, ↓} exists between l1 to l2.
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The feasible space is marked as the green rectangle region. The original blue edges

outside the feasible space are projected to the dash red edge, such that the new

segment from l0 to l2 only contains two directions {→, ↓}.

The procedure of approximating one contour using our proposed DP algorithm

and greedy segment merging method is summarized in Algorithm 1.

Algorithm 1: Depth Contour Approximation
1: Divide a contour into M segments;
2: Given a λ, execute Eq. (4.22) on each segment to get the RD cost;
3: Greedily merge two neighbouring segments until there is no cost decrease;
4: Finally get M ′ segments, where M ′ ≤M .

4.3 Image Coding With Approximated Contours

Given a set of approximated contours in an image that are coded losselessly using

AEC [58], we now describe how to code depth and color images at the encoder. We

also discuss inter-view consistency issues.

4.3.1 Depth and Color Images Modification

Approximating object contours means modifying the geometry of a 3D scene.

Accordingly, both depth and color images from the same viewpoint need to be

modified to be consistent with the new geometry. Specifically, for the depth image,

we exchange foreground and background depth pixel values across a modified edge,

so that all foreground (background) depth values fall on the same side of an edge.

In Fig. 4.5, the pixel with the top left corner index (2, 2) needs to be replaced by a

background pixel.

For the color image, pixels corresponding to the altered pixels in the depth

image are removed and labeled as holes. An image inpainting algorithm [94] is then

used to inpaint the identified holes, with a constraint that only existing background

(foreground) pixels can be used to complete holes in the background (foreground).

Fig. 4.7 shows an example of contour approximation and image value modifi-

cation for one depth and color image pair. The two images (a) and (e) are part of

the original depth and color image pair for Aloe. Depth contours are approximated
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by our proposed method with an increasing value of λ for images from (b) to (d).

We alter depth pixel values, and the PWS characteristic is still preserved in the

approximated depth images. Images (f) to (h) are the corresponding inpainted color

images, which look natural along its neighboring foreground / background regions.

The geometry structure in the altered depth and color image pairs are consistent

with the approximated contours.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 4.7. Example for contour approximation and image value alteration.

4.3.2 Inter-View Consistency

Given that the encoder needs to encode two color-plus-depth image pairs of the

same 3D scene (e.g., left and right views) for synthesis of an intermediate virtual

view at the decoder, we can perform contour approximation in an inter-view

consistent manner as follows.

First, we approximate object contours of the left view and augment the

corresponding depth and color images. We then project the approximated and
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modified left depth image to the right viewpoint via DIBR. With the projected

depth image, we augment the original right depth and color image pair accordingly,

such that the approximation on the left view is mapped to the right view. Finally,

we approximate the augmented right depth and color images. To penalize the

inter-view inconsistency when approximation happens on the right view, we add

a penalty term to the row distortion (4.18), i.e. we define the row distortion for right

view approximation as

d′po(q
o, q) = dpo(q

o, q) + ρ|q − qo|2, (4.24)

where |q − qo| takes an additional meaning that the shifted edge on the augmented

right view is now inconsistent with the approximated left view. The weight

parameter ρ is set very large to penalize the inter-view inconsistency. By doing

so, the depth and color image pair on the right view is very likely consistent with

that of the left view after contour approximation.

4.3.3 Edge-Adaptive Image Coding

The remaining task is to code the depth and color images, which have been modified

accordingly after our contour approximation.

We first describe how edge-adaptive GFT [18] can be used to code the altered

depth image. For each pixel block in the altered depth image, a 4-connected graph is

constructed, where each node corresponds to a pixel. The edge weight between two

neighbouring pixels is defined based on their weak or strong correlations. Given

the constructed graph, the transform is the eigen-matrix of the graph Laplacian

(see [18] for details). The edge weight assignment (deducible from the encoded

contours) means filtering across sharp boundaries are avoided, preventing blurring

of edges.

Since our work is mainly about approximating object contours, here we focus

on how contour approximation influences the depth coding rate. For color images,

we code them with a state-of-the-art image coding method—HEVC HM 15.0 [17].
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4.4 Experimentation

4.4.1 Experimental Setup

We perform extensive experiments to validate the effectiveness of our proposed

contour approximation method using color-plus-depth image sequences from the

Middlebury dataset, Undo Dancer and GFTly [95]. View synthesis for Undo

Dancer and GTFly is performed using VSRS software4. Due to the lack of camera

information, DIBR for the Middlebury sequences is performed using a simple

implementation of 3D warping [2].

For each image sequence, we first approximate the depth and color image pair

with different values of λ based on our proposed approximation method. We then

deploy the GFT based edge-adaptive depth coding [18] to code the approximated

and altered depth image using different quantization parameters (QP), where the

approximated contours are losslessly coded as SI. The approximated and inpainted

color image from the same viewpoint is compressed by HEVC intra HM 15.0 [17].

Depth and color image pairs from different viewpoints but approximated by the

same λ are then transmitted to the decoder for virtual view synthesis. The ground

truth (reference image) is synthesized by the original depth and color images (no

approximation and compression) for distortion computation. 3DSwIM with block

size 16× 16 is used to evaluate the quality of the synthesized views, where a higher

score means a better quality. As an additional metric, we also evaluate synthesized

view quality with PSNR. For the Middleburry sequences, we encode view 1 and

view 5, and synthesize the intermediate virtual views 2 to 4. For Undo Dancer and

GFTly sequences, view 1 and view 9 are encoded and the intermediate views 2 to

8 are synthesized. The average distortion of all the intermediate views is taken

to evaluate the contour approximation performance. For each image sequence,

the convex hull of all operational points represents the rate-score (RS) or RD

performance of our proposed method.

4wg11.sc29.org/svn/repos/MPEG- 4/test/trunk/3D/view_synthesis/VSRS
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Fig. 4.8. Synthesized virtual view RS curves for cones, Moebius, Lampshade and Aloe,
respectively.

4.4.2 Objective Results Compared to MR-GFT and HEVC

To demonstrate the efficiency of our proposed contour approximation method

(termed as Proposed), we compare our method with the MR-GFT method (depth

images are compressed by multi-resolution GFT [18] directly with the original

detected contours that are losslessly coded). We also consider using HEVC intra

to compress the original depth images (termed as HEVC). The corresponding color

images for both MR-GFT and HEVC methods are also compressed by HEVC intra.

Since here we want to assess how object contour approximation affects depth image

coding efficiency, we only consider the depth images with almost the same coding

rate by all these three methods. For the corresponding color images, we select an

identical QPC to compress them (meaning that color images coding rates are also
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Fig. 4.9. Synthesized virtual view RD curves for cones, Moebius, Lampshade and Aloe,
respectively.

almost the same for these three methods). As recommend in the standard [43],

the QP offset ∆QP for the depth QP in relation to the color QPC is determined as

QP = QPC +∆QP, where ∆QP ≤ 9. Finally, we synthesize virtual views using the

decoded depth and color image pairs.

Fig. 4.8 shows the RS curves for cones, Moebius, Lampshade and Aloe

image sets. The x-axis is the depth image coding rate in bits per pixel (bpp),

and the y-axis is the synthesized view quality—scores measured by 3DSwIM.

These figures show that our proposed method outperforms both MR-GFT and HEVC.

The improved coding performance compared to MR-GFT validates the benefit of

effectively approximating contours before edge-adaptive depth image compression.

It demonstrates that a depth contour can be properly approximated with little
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TABLE 4.1
BG RATE GAIN (RG) AND PSNR GAIN (PG) FOR RATE-SCORE (RS) AND RATE-DISTORTION

(RD) CURVES

RS-RG (rate%) RD-RG (rate%) RD-PG (dB)
MR-GFT HEVC MR-GFT HEVC MR-GFT HEVC

teddy 15.78 17.51 11.11 39.54 0.55 1.66
cones 26.10 29.98 15.01 52.90 0.92 2.84
Dolls 19.38 11.46 9.64 27.70 0.19 1.28

Moebius 19.01 19.17 13.02 40.60 1.03 2.48
Books 26.69 23.68 20.53 43.68 0.47 1.86
Lamp. 18.35 27.78 16.66 44.51 1.29 3.30
Aloe 18.82 36.41 16.35 38.55 1.20 2.90

Dancer 7.31 19.47 3.89 45.30 0.23 5.94
GTFly 8.52 20.03 4.34 48.29 1.55 7.70
Avg. 18.11% 22.83% 12.28% 42.34% 0.83dB 3.33dB

degradation to the synthesized view quality. Both our proposed method and MR-GFT

have better performance than HEVC, since the multi-resolution GFT on PWS image

compression is more efficient than DCT based transform [18]. Fig. 4.9 illustrates

the corresponding RD curves, where the x-axis is the depth coding rate and the

y-axis is the PSNR value of synthesized virtual view. They also show that our

proposed method has the best performance especially when the bit rate budget is

low.

The computed BD gains [87] are shown in Table 4.1. Comparing with MR-GFT

and HEVC, we compute the rate gain (RG) (in percentage) for both RS and RD

curves. We also compute the PSNR gain (PG) (in dB) for RD curve. The results

in Table 4.1 show that our proposed method can save a maximum of 29.69% bit

rate in RS measure compared to MR-GFT and the average rate gain achieves non-

trivial 18.11%. We also achieve an average of 22.83% rate gain in RS measure

compared to HEVC. In RD measure, our method can also achieve 12.28% rate gain

and 0.83dB PSNR gain compared to MR-GFT, and a 42.34% rate gain and 3.33dB

PSNR gain compared to HEVC. These results prove the efficiency and effectiveness

of our proposed method.

We also compare the performance of our proposed two contour approximation
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Fig. 4.10. Performance comparison: greedy versus RD optimal, for sequence cones.

methods: greedy algorithm in Chapter 3 and RD optimal algorithm proposed in this

chapter. The resulting RS curve for image sequence cones is shown in Fig. 4.10,

where our RD optimal contour approximation method has better performance

than the greedy approximation algorithm. The reason is that the RD optimal

method controls the induced distortion on synthesized virtual view during contour

approximation.

4.4.3 Subjective Results Compared to HEVC

We generated selected subjective results to visually examine images outputted by

our proposed method, namely: sub-regions from the synthesized views of teddy,

Dolls and cones, as shown in Fig. 4.11.

In Fig. 4.11, the first row corresponds to images synthesized from compressed

color and depth images by our proposed method, and images on the second row are

synthesized from compressed images by HEVC. In each column, the coding bit rates

for the depth and color images by the two methods are almost the same. We observe

that the synthesized images from our proposed method are more visually pleasing

since edges in these images remain sharp. In contrast, there are noticeable bleeding

effects around edges in the synthesized images from HEVC. The results show that

edge-adaptive depth image coding can lead to better synthesized view quality than

fixed block transforms in compression standards like HEVC, which is consistent

with results in previous edge-adaptive coding work [18], [23], [39].
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(a) teddy (b) Dolls (c) cones

Fig. 4.11. Sub-regions of the synthesized views for teddy, Dolls and cones, respectively. Images
in the first row is synthesized by approximated and multi-resolution GFT compressed depth images
(proposed), where the second row is synthesized by HEVC compressed depth images. The depth
and color coding rates are almost the same for each image sequence. (We strongly recommend
readers to read an electronic version to distinguish the differences.)

4.4.4 Results Compressed by 3D-HEVC intra

The results demonstrated thus far show that our proposed object contour approxima-

tion can improve coding performance of edge-adaptive transform coding schemes

like [18]. In theory, smoother contours can also improve other depth image codecs.

To validate this point, we employ 3D video coding standard 3D-HEVC [43] intra

HTM 6.0 to compress the original and the approximated color and depth images.

We test 3D-HEVC intra on Undo Dancer and GTFly sequences. We first

approximate and alter the color-plus-depth image pairs with different values of

λ. We then compress the original and the approximated color-plus-depth image

pairs using 3D-HEVC, where the depth QP and color QPC pairs are the same for

all the image pairs. The resulting RS curves are shown in Fig. 4.12. We see
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that using contour approximation, depth coding rate can be reduced by 6.84%

and 11.55% for Undo Dancer and GTFly, respectively. The coding gain can be

explained as follows. In 3D-HEVC, a depth block is approximated by a model that

partitions the block into two smooth sub-regions according to detected edges. The

simplified (smoothed) contours can facilitate the partitioning of blocks into smooth

sub-regions, resulting in lower depth coding rates.
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Fig. 4.12. RS curve by 3D-HEVC, where “No Approx." and “With Approx." mean using 3DHEVC
to compress original and approximated color-plus-depth image pairs, respectively.

4.5 Conclusion

Efficient coding of depth image is essential for decoder-side virtual view synthesis

via DIBR. Existing works employ either fixed transforms like DCT that blur a depth

image’s sharp edges at low rates, or edge-adaptive transforms that require lossless

coding of detected edges as side information, which accounts for a large share of

the bit budget at low rates. In this chapter, we pro-actively alter object contours

in an RD-optimal manner. We first propose a distortion proxy that is an upper

bound of the established synthesized view quality metric, 3DSwIM. Given coding

rate computed using AEC and our distortion proxy, contours are approximated

optimally via a DP algorithm in an inter-view consistent manner. With the

approximated contours, depth and color images are subsequently augmented and

coded using a multi-resolution codec based on GFT [18] and HEVC respectively.

Experiments show significant performance gain over previous coding schemes
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using either fixed transform or edge-adaptive transform with lossless coding of

detected contours.

4.6 Appendix 4.A: Derivation of the Maximum Likelihood Esti-

mation of Parameters σ in (4.9)

Assuming the M coefficients {c1, · · · , cM} are independent and identically dis-

tributed and follow the probability density function (4.9), the likelihood function

for M coefficients becomes

Lσ(c) =
M∏
i=1

1

2σ
exp

�
−|ci|
σ

�
(4.25)

= (2σ)−M · exp

(
− 1

σ

M∑
i=1

|ci|
)
.

Take the log likelihood function as lσ(c) = log(Lσ(c)) and we get

lσ(c) = −M ln(2σ)− 1

σ

M∑
i=1

|ci|. (4.26)

Take the derivative of lσ(c) with respect to σ

∂l

∂σ
= −M

σ
+

1

σ2

M∑
i=1

|ci|. (4.27)

To solve ∂l
∂σ

= 0, the maximum likelihood estimation of σ is

σ =
1

M

M∑
i=1

|ci|. (4.28)
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Chapter 5

Live Free Viewpoint Video Streaming: Peer

Grouping Optimization

Having investigated how contour approximation can improve depth image coding

efficiency in term of synthesized virtual view quality, we now look at how we can

improve free viewpoint video streaming1.

5.1 Introduction

In free viewpoint video [7], a user can select any virtual view from which an image

of the 3D scene is rendered for observation. Specifically, given a 1D array of

cameras with positions V = {1, . . . , V }, an image of virtual view u is typically

synthesized using color and depth images from two nearby captured reference

views, vl and vr, where vl < u < vr and vl, vr ∈ V , via DIBR. For users who

are observing the same free viewpoint video synchronized in time—e.g., during a

live video broadcast of a public event like a piano recital—but not necessarily from

the same viewpoint, they have incentive to pull color and depth video streams from

the same reference views, so that the streaming cost can be shared. On the other

hand, it has been shown [24], [25] that in general distortion of the synthesized view

increases with its distance to the reference views. Thus, a user also has incentive

to select video of reference views that tightly “sandwich” his chosen virtual view,

in order to minimize visual distortion. This poses an interesting dilemma for users:

1A version of this chapter has been published in IEEE International Conference on Image
Processing (ICIP), Melbourne, Australia, September, 2013.
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how to best select and share video streams of different reference views, so that the

streaming cost and the resulting collective synthesized view distortion are optimally

traded off?

In a previous work [96], reference view sharing strategies are studied for the

case where users are first divided into groups, and then each group independently

pulls and shares the streaming cost of two reference views, using which virtual

views of the group’s users are synthesized. While the developed algorithms are

simple and intuitive, it is easy to see that this type of groupings is sub-optimal. First,

it is possible for multiple groups to be independently pulling the same video view,

when the cost of this common view can actually be shared by the union of these

groups. Second, members belonging to the same group must share both reference

views. But it may be more beneficial for them to share only one reference view,

and separately find appropriate groups to share a different second reference view

for view synthesis.

In this chapter, we propose to generalize the previous notion of user grouping,

so that a user can simultaneously belong to two groups, and each group pulls one

reference view and shares the streaming cost of a single view. If two groups have

the same reference view, we merge the two groups into one single group. Doing

so means that a video view is never pulled more than once, and its cost is shared

only by those who are using this view as reference for view synthesis. To study

a stable user grouping, we exploit tools from game theory [26], and seek a Nash

Equilibrium (NE) solution of reference view selection, from which no one has

incentive to unilaterally deviate. Specifically, we first derive a lemma based on

known properties of synthesized view distortion functions. We then design a search

algorithm to find locally optimal groupings, leveraging on the derived lemma to

reduce search space, thus reducing computation complexity.

The outline of the chapter is as follows. We first formulate our problem. We

then derive our lemma and the corresponding optimization algorithm. Finally,

experimental results and conclusion are presented respectively.
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5.2 Problem Formulation

In this section, we first describe the free viewpoint video model we choose for

our problem formulation. We then describe properties of the synthesized view

distortion and subscription fee sharing.

5.2.1 Free Viewpoint Video Model

Let V = {1, . . . , V } be a discrete set of captured views for V equally spaced

cameras in a 1D array. Each camera captures both a color image and a depth

image at the same resolution. The color image from an intermediate virtual view

between any two cameras can be synthesized using color and depth images of the

two camera views (reference views) via a DIBR technique like 3D warping [97].

DIBR essentially maps color pixels in the reference views to appropriate pixel

locations in a virtual view; such locations are derived from the corresponding depth

pixels in the reference views. Disoccluded pixels in the synthesized view—pixel

locations that are occluded in the two reference views—can be completed using

depth-based inpainting techniques [33], [34]. Because inpainting offers only a best-

guess solution, the larger the disoccluded regions are, the lower the synthesized

view image quality will be in general.

More specifically, let u be the virtual view that a peer currently requests for

observation. We assume u can be written as u = v + k
K

, v ∈ {1, . . . , V − 1}

and k ∈ {0, . . . , K}, for some large pre-determined constant K. In other words,

u belongs to an ordered discrete set of intermediate viewpoints—the set of views

between (and including) camera views 1 and V , spaced apart by integer multiples

of 1/K. A discrete distribution function qu describes the fraction of peers who

currently request the virtual view u. Hence, Nqu is the number of users requesting

the virtual view u, where N is the total number of all the users.

5.2.2 Synthesized View Distortion

Typically, to construct a virtual view u that is not itself a camera-captured view,

DIBR requires left and right reference views vl and vr such that vl < u < vr,
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where vl, vr ∈ {1, · · · , V }. Note that vl and vr do not have to be the closest

captured views to u. The distortion of the synthesized view, du(vl, vr), varies with

the choices of reference views, vl and vr. We assume that du(·) has the following

three properties.

First, further away reference views vl and vr to virtual view u induce no smaller

distortion, that is,

du(v
l, vr1) ≤ du(v

l, vr2) if vr1 < vr2, and

du(v
l
2, v

r) ≥ du(v
l
1, v

r) if vl2 < vl1. (5.1)

We call this the monotonicity in reference view distance for synthesized view

distortion. This is reasonable in general, since further reference views usually result

in more disoccluded pixels in the virtual view image. The disoccluded regions

can be filled using inpainting algorithms [98], [99], but in general the larger the

disocclusion, the higher the penalty in virtual view quality. Experiments on a

large number of multi-view image suqences in [24], [25] also demonstrate this

monotonicity assumption.

Second, given virtual view u and left and right reference views vl and vr, define

ε = min
�
|vl − u|, |vr − u|

�
as the minimum reference view distance between u and

vl, vr. We assume that a smaller ε induces no larger distortion, i.e.,

du1(v
l, vr) ≤ du2(v

l, vr) if ε1 < ε2

where ε1 = min
�
|vl − u1|, |vr − u1|

�
and ε2 = min

�
|vl − u2|, |vr − u2|

�
. (5.2)

We call this the monotonicity in minimum reference view distance. This is also

reasonable, since it is observed empirically that when both reference views are

encoded at the same quality (using the same quantization parameter (QP)), the worst

synthesized view distortion tends to take place at the middle view (with the largest

ε) [24]. Further, as the minimum reference view distance ε approaches zero, the
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synthesize virtual view point is essentially one of the two reference views with

no distortion since there is no need for synthesis. Our monotonicity in minimum

reference view distance assumption ensures that synthesized view distortion for

ε = 0 is the minimum.

Third, we assume that the rate of distortion increase with respect to minimum

reference view distance is no smaller if the current distortion is higher. Mathemati-

cally, we write:

∂du(v
l, vr)

∂vr
= φ(du(v

l, vr)), if |vr − u| ≤ |vl − u| (5.3)

where the left side of the equation means the rate of distortion increase with respect

to vr if virtual view u is closer to vr than it is to vl. The right side φ(·) is a

monotonically non-decreasing function; a larger du results in a no smaller φ(du).

Similar assumption applies when virtual view u is closer to the left reference view.

We call this the monotonicity in reference view slope. We give below two examples

of du(vl, vr) that follow this property: i) du(vl, vr) is a linear function of vr, thus

φ(·) = ∂du
∂vr

= c for a constant c; ii) du(vl, vr) is an exponential function of vr, in

which case φ(·) = c · du(vl, vr).

Using the chain rule, one can see that this assumption implies convexity of

distortion du(vl, vr) in vr:

∂2du(v
l, vr)

∂2vr
=
∂φ(du(v

l, vr))

∂du(vl, vr)

∂du(v
l, vr)

∂vr
≥ 0. (5.4)

The first term ∂φ(du(vl,vr))
∂du(vl,vr)

is non-negative since φ(·) is a monotonically non-

decreasing function. The second term ∂du(vl,vr)
∂vr

is also non-negative since du(vl, vr)

is a monotonically non-decreasing function in reference view vr by the first

assumption. Hence the second-order derivative ∂2du(vl,vr)
∂2vr

is non-negative, and

du(v
l, vr) is convex in reference view vr. The assumption of convexity in distortion

function is common in classical rate-distortion analysis. An example of distortion

function du(·) satisfying the above properties is shown in Fig. 5.1, where both u′
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a n d u ar e cl os er t o ri g ht r ef er e n c e vi e w. d u (v l, vr ) ≥ d u (v l, vr ) is d u e t o pr o p ert y

of m o n ot o ni cit y i n mi ni m u m r ef er e n c e vi e w dist a n c e. W h e n v r c h a n g es fr o m v r
1 t o

v r
2 , t h e dist orti o n i n cr e as e δ u a n d δ u s atisf y δ u ≥ δ u

v r

v r
2

d  ( v , v )d  ( v , v ) rrl l

uu’

u’ u

v r
1

δ

δ

u

u’

.

Fi g. 5. 1.  E x a m pl e of s y nt h esi z e d vi e w dist orti o n as f u n cti o n of ri g ht r ef er e n c e vi e w v r f or t w o
virt u al vi e ws u a n d u .

F or a virt u al vi e w u t h at its elf is a c a m er a- c a pt ur e d vi e w, it c a n als o b e

s y nt h esi z e d b y a p air of l eft a n d ri g ht r ef er e n c e vi e ws v l a n d v r w h er e v l <

u < v r . T h e dist orti o n d u (v l, vr ) f oll o ws t h e s a m e pr o p erti es as dis c uss e d a b o v e.

Alt er n ati v el y, it c a n b e p erf e ctl y c o nstr u ct e d wit h t h e c a m er a- c a pt ur e d vi e w u wit h

z er o dist orti o n. B as e d o n t h e a b o v e dis c ussi o n, f or a n y virt u al vi e w u , l et V u d e n ot e

its s el e ct e d r ef er e n c e vi e w s et, a n d t h e c orr es p o n di n g dist orti o n is:

D u (V u ) =






d u (v l, vr ), if V u = { v l, vr } ,

0 , if u is a n c a m er a vi e w a n d V u = { u } .

( 5. 5)

5. 2. 3 S u bs c ri pti o n F e e S h a ri n g

We ass u m e t h at t h e s er v er c h ar g es s u bs cri pti o n f e e A f or str e a mi n g o n e vi d e o vi e w

( c ol or a n d d e pt h). Ass u mi n g N us ers ar e cl os e t o e a c h ot h er i n n et w or k dist a n c e,

a n d us ers w h o r e q u est t h e s a m e c a m er a vi e w c a n r e q u est o nl y o n e c o p y fr o m t h e

s er v er, a n d s h ar e t h e vi e w a n d t h e s u bs cri pti o n f e e A wit h e a c h ot h er. R e c all t h at q u

is t h e fr a cti o n of us ers w h o ar e r e q u esti n g t h e virt u al vi e w u . L et n v = u q u I [v ∈

V u ] b e t h e fr a cti o n of us ers utili zi n g vi e w v as r ef er e n c e, w h er e I [x ] is a n i n di c at or
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function that equals 1 if clause x is true and 0 otherwise. Thus, each user requesting

view v can access view v with the subscription payment s(v) = A/(Nnv).

Based on the above discussion, given reference view selection Vu, a user of

virtual view u has the overall cost cu(Vu) that includes two terms: synthesized view

distortion and the subscription payment

cu(Vu) = Du(Vu) + λ
∑
v∈Vu

s(v), (5.6)

where λ is a parameter adjusting the weight between synthesized view distortion

and subscription fee.

5.3 Aggregate Performance Optimization

Assuming that multiple users watching the same virtual view u will select the same

reference views Vu. Given the number of users and the virtual view each user

is watching, we now derive an algorithm to find a stable NE solution for users’

reference view selections {V∗u}. It means that user of any virtual view u cannot

deviate from the NE solution V∗u and further reduce its own cost, given that users

at all other virtual views u′ follow the NE solution {V∗u′}. Mathematically, we

have cu(V∗u) ≤ cu(Vu) for any u given that all other virtual views follow {V∗u′}.

Thus, no one has incentive to unilaterally change his reference view selection. We

first describe a condition for reference view selection in an NE solution. We then

propose an efficient algorithm to find an NE solution {V∗u}.

5.3.1 Condition for an Equilibrium Solution

Given the properties of the synthesized view distortion described in Section 5.2.2,

we state formally the following important lemma on the selection of right reference

views in the equilibrium solution.

Lemma 1: In the equilibrium solution, suppose user of virtual view u chooses

left and right reference views vl and vr1, where |vl − u| > |vr1 − u|. Then, user

of view u′ < u with left reference view wl, where wl ≤ vl, cannot choose right

reference view vr2 that satisfies vr2 ≥ vr1. In other words, vr2 cannot be within the
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range
�
vr1,min{2u′ − wl, 2u− vl}

�
.

        

Fig. 5.2. Relative positions of wl, vl, u′, u, vr1 , uT , where uT = min{2u − vl, 2u′ − wl}. The
black points means the anchor (reference) views. Virtual viewpoints between neighboring anchor
views are not shown in this figure.

The relative positions of wl, vl, u′, u, vr1, uT are illustrated in Fig. 5.2, where

uT = min{2u− vl, 2u′ − wl}. Lemma 1 can be explained as follows. Considering

that user of view u′ with a left reference view wl now needs to choose the proper

right reference view vr2 ∈ {du′e, · · · , V }, where V is the maximum number of

reference views. If there is user of view u that already selects left and right reference

views vl and vr1, and these views satisfy |vl − u| > |vr1 − u|, u′ < u and wl ≤ vl,

then the range δ =
�
vr1,min{2u′ − wl, 2u− vl}

�
can be taken out when selecting

vr2. The condition |vl− u| > |vr1 − u| makes sure u is more closer to right reference

view 2. We now prove the above lemma as follows.

Proof of Lemma 1 We prove by contradiction. Suppose that in the equilibrium

solution, a user of virtual view u′, u′ < u, with left reference view wl, where wl ≤

vl, selects right reference view vr2 ∈
�
vr1,min{2u′ − wl, 2u− vl}

�
. We consider

two cases: i) wl = vl and ii) wl < vl.

Consider first the case where wl = vl. Since vr2 ∈
�
vr1,min{2u′ − wl, 2u− vl}

�
and u′ < u, the largest value that vr2 can take is 2u′ − vl. Hence

vr2 ≤ 2u′ − vl, (5.7)

which leads to

vr2 − u′ ≤ u′ − vl. (5.8)

That means virtual view u′ is always closer to right reference view vr2 than it is to

2If u is closer to its left reference view, a similar lemma can be written for the selection of left
reference views in the equilibrium solution as well.
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left reference view vl. Given u′ < u, virtual view u is also closer to right reference

view vr2 than it is to left reference view vl, and we have |vr − u′| > |vr − u|, for

vr ∈ [vr1, v
r
2]. Further, by monotonicity in minimum reference view distance, u′ < u

means:

du′(v
l, vr) ≥ du(v

l, vr) , ∀ vr ∈ [vr1, v
r
2]. (5.9)

Consequently, by monotonicity in reference view slope, we have

∂du′(v
l, vr)

∂vr
≥ ∂du(v

l, vr)

∂vr
, vr1 ≤ vr ≤ vr2. (5.10)

Hence, we can conclude that:

du′(v
l, vr2)− du′(vl, vr1) ≥ du(v

l, vr2)− du(vl, vr1)

> λ (s(vr1)− s(vr2)). (5.11)

The last inequality stems from the fact that user of virtual view u selects right

reference view vr1 over vr2 in the NE solution, which means that du(vl, vr1)+λs(vr1) <

du(v
l, vr2) + λs(vr2). Eq. (5.11) also means

du′(v
l, vr2) + λs(vr2) > du′(v

l, vr1) + λs(vr1) (5.12)

which implies user of virtual view u′ can achieve a lower cost by choosing right

reference view vr1 over vr2. A contradiction happens.

We next consider the case where wl < vl. Because wl < vl < u, user of

virtual view u can also select wl as left reference view for view synthesis. From the

assumption of monotonicity in reference view distance, we have

du(w
l, vr) ≥ du(v

l, vr) , ∀ vr ∈ [vr1, v
r
2]. (5.13)

Again, by monotonicity in reference view slope, we have

∂du(w
l, vr)

∂vr
≥ ∂du(v

l, vr)

∂vr
, vr1 ≤ vr ≤ vr2. (5.14)
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Given the above two observations, we can conclude that

du(w
l, vr2)− du(wl, vr1) ≥ du(v

l, vr2)− du(vl, vr1)

> λ(s(vr1)− s(vr2)), (5.15)

which leads to du(wl, vr2)+λs(vr2) > du(w
l, vr1)+λs(vr1). It means that if using the

left reference view wl, user of virtual view u still prefers choosing right reference

view vr1 over vr2 to achieve a lower cost.

Following similar steps as in the first case, it can be shown that

du′(w
l, vr2)− du′(wl, vr1) ≥ du(w

l, vr2)− du(wl, vr1)

> λ(s(vr1)− s(vr2)), (5.16)

which leads to du′(wl, vr2) + λs(vr2) > du′(w
l, vr1) + λs(vr1). This also contradicts

the assumption that user of virtual view u′ selects vr2 over vr1 in the NE solution.

Since both cases are shown to be contradictions, the lemma is proven. �

Lemma 1 shows that when a user of virtual view u selects left and right reference

views vl and vr, for users in any virtual view u′, u′ < u, with left reference

view wl, wl ≤ vl, they will not select right reference view wr in the range

δ =
�
vr,min{2u′ − wl, 2u− vl}

�
. Lemma 1 can help reduce the search space

when we seek for the equilibrium solution.

Consider first an exhaustive search algorithm, where for each virtual view u′, it

tries all possible left and right reference views wl and wr and chooses the optimal

pair to minimize cost for view u′. If we apply lemma 1 for each virtual view u′

and left reference wl, we first need to find out the excluded range δ and then try the

remaining candidate right reference views. In practice, determining δ can itself be

computation-expensive since we need to check every possible view u > u′. When

the length of δ, denoted as |δ|, is small, the saving in a reduced search space is

outweighed by the computation of δ. Thus lemma 1 should only be selectively

applied to speed up a search algorithm.
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It is clear that when (2u′ − wl) or (2u − vl) is small, |δ| will also be small.

Further, if u′ is close to V , this means there are not many candidate right reference

views in the first place. Thus, we set two necessary conditions before applying

lemma 1 to a search algorithm: i) 2u′ − wl ≥ τ1, and ii) u′ ≤ τ2, where τ1 and τ2

are pre-determined parameters. We detail our search algorithm next.

5.3.2 Efficient Algorithm for Nash Equilibrium Solution

Using lemma 1, we describe an algorithm that finds an NE solution.

Algorithm 2: Nash Equilibrium Solution Search
1: Identify range [ul, ur] that contains all peers.
2: Initialize Vu = {bulc, dure}, ∀u.
3: repeat
4: for each virtual view u′ with viewers do
5: for each left reference wl ∈ [bulc, bu′c] do
6: δ = ∅.
7: if (2u′ − wl) ≥ τ1 and u′ ≤ τ2 then
8: for each virtual view u > u′ do
9: δ = δ

⋃
(vr,min{2u′ − wl, 2u− vl}].

10: end for
11: end if
12: for each wr ∈ [du′e, dure] \ δ do
13: if cu′({wl, wr}) is the smallest cost so far then
14: Update Vu′ = {wl, wr}.
15: end if
16: end for
17: end for
18: end for
19: until {Vu} is stable.

We first initialize a tight virtual range [ul, ur] that contains all peers. The

tightest reference views that sandwich this range are bulc and dure, which we use

to initialize Vu’s.

Then, given solution {Vu} in the last iteration, for each virtual view u′ with

viewers, we search its optimal reference view selection Vu′ assuming that users of

other views follow {Vu}. Specifically, for each possible left reference wl, we search

its optimal right reference wr that gives the lowest cost cu′({wl, wr}). The search

range for wr can be decreased by δ, if the two conditions (2u′ − wl) ≥ τ1 and
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u′ ≤ τ2 are satisfied and lemma 1 is applied. The algorithm is repeated until the

solution {Vu} is stable or when a pre-defined maximum number of loops is reached.

5.4 Experimentation

For our experiments, we use the same synthesized view distortion function as that

in [96]:

du(v
l, vr) = γeα(vr−vl)(eβ∗min(u−vl,vr−u) − 1) (5.17)

which meets all the properties described in Section 5.2.2. We also use the same

parameters: γ = 0.06, α = β = 0.2. We set λ = 1 for Eq. (5.6). For

available views for free viewpoint navigation, we assume 21 captured views and 221

virtual views. We further assume each user’s view distribution follows a uniform

distribution, and he selects a particular view with probability 1/221. We test our

system under different network size N (i.e., the number of users) and subscription

fee A. We run each simulation for 200 times and will show the average results in

the following discussions.
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Fig. 5.3. Overall cost and number of captured views pulled versus subscription fee. In (a), NE, OS
and GA are compared for fixed network size N = 5000. In (b), network size varies N = 5000, 8000
and 10000.

Fig. 5.3(a) shows the performance of our proposed NE solution (NE) comparing

with the optimal reference view selection (OS) and the grouping algorithm (GA)

studied in [96]. The OS assumes that all users cooperatively purchase a subset of

reference views V ′ ⊆ V , and each peer will select the tightest left/right references
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from V ′ to minimize its distortion. OS aims to find the optimal V ′ to minimize the

overall cost (i.e., the total distortion and the total subscription payment of all users).

Although OS gives the global optimal reference selection, it is not stable; it does not

take into account users’ selfish tendency to seek to reduce their own cost instead of

the overall cost. In GA, all users between two neighboring camera-captured views

form a group, and each group independently requests the tightest left and right

reference views. The users in the same group share the subscription fee together.

Fig. 5.3(a) shows the overall cost of the three algorithms. We first observe that GA

gives the highest overall cost, since different groups do not share reference views.

We also observe that NE results in a slightly higher overall cost than OS. Thus, it can

be concluded that NE provides incentive for users to form stable reference selection

with only a small loss of the overall performance.

Fig. 5.3(b) shows the total number of requested reference views selected by

users via NE for different network sizes. We first observe that the number of

requested reference views decreases when subscription fee A increases. This is

because when A is larger, users request a smaller number of reference views with

more users for each reference to share the fee. We observe also that the number of

requested reference views increases with increased network size. This is because

a larger network has more users to share the cost. Since more reference views can

effectively reduce users’ distortions, each user can have a lower cost on average in

a larger network.

5.5 Conclusion

In this chapter, we study the challenging problem of the optimal reference view

selection in a cooperative free viewpoint streaming system, where a user can

simultaneously belong to two groups and share the streaming cost of a single view

in each group. To do this, we first derive a lemma based on known properties of

synthesized view distortion functions. We then design a search algorithm to find

locally optimal groupings (NE), leveraging on the derived lemma to reduce search

space, thus reducing computation complexity. Experimental results show that the
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NE gives a stable reference view selection, from which no user has incentive to

unilaterally deviate. The stable NE does not increase the overall cost much, when

compared with the unstable optimal reference selection that gives the lowest overall

cost. Furthermore, a larger network has the ability to request more reference views

to reduce users’ distortion without much increase of the subscription fees shared by

each user. Thus, everyone can reach a lower cost in a larger network.

83



Chapter 6

Interactive Light Field Streaming: Land-

marks Inserting

We now look at how to improve the performance of interactively streaming light

field images. 1

6.1 Introduction

Light field (LF) cameras such as Lytro2 employ a 2D array of microlenses before

the image sensor to capture multiple light ray intensities and directions per pixel,

so that a user can navigate and observe a static 3D scene from different viewpoints

post-capture. However, the volume of captured LF data is large, and downloading

the entire data prior to user’s viewpoint navigation would incur a large startup delay.

Previous works propose an interactive light field streaming (ILFS) framework

[27]–[30], where a user periodically requests a desired view, and in response a

server transmits a pre-synthesized and encoded viewpoint image to the user for

his observation. The image can either be independently encoded as an I-frame,

or be differentially encoded as a P-frame using another image as a predictor,

where the coding bit-count for a P-frame is much smaller than coding an I-frame.

The technical challenge is to design and pre-encode a storage-constrained frame

1A version of this chapter has been accepted by IEEE International Conference on Image
Processing (ICIP), Beijing, China, September, 2017. An extension of a journal version is in
preparation.

2https://illum.lytro.com/
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structure containing I- and P-frames3 to facilitate user-requested view-switches

during an ILFS session. Pre-encoding only I-frames for all views would lead to

a large transmission cost, while pre-encoding P-frames for all possible user view-

switch requests from any view i to j for an LF array of N views would require

O(N2) P-frames to be stored in advance in the server and thus is expensive in

storage cost of the server.

To lower transmission cost while reducing storage requirement, we design a new

frame structure4 to facilitate ILFS via optimal selection of landmarks. A landmark

operates like an airline hub in commercial aviation5: by creating direct flights

to/from a designated hub for all cities—O(2N) flights for N cities—a passenger

can travel from any city to any other city via only two flights (one connecting

flight to the hub first, then from the hub to the destination). Similarly, adding P-

frames to/from a landmark view for all the remaining views means that a user’s

request to switch from any viewpoint image to any other view can be essentially

accomplished by decoding two differential P-frames (transition to landmark first,

then to designation view). Hence the number of stored P-frames is only O(2N).

The crux is how to select locations of landmark views, and P-frame connections

to/from landmarks for the remaining views.

In this chapter, we propose to optimally insert landmarks for ILFS. We first use

a Lloyd’s algorithm variant [100] to recursively find locally optimal locations of

landmarks. We then add P-frames connecting the remaining views to/from their

closest landmarks and P-frames connecting among landmarks. Finally, we greedily

add/remove P-frames from the initialized structure based on a rate-storage criterion.

The outline of the chapter is as follows. We first discuss our ILFS system and

view navigation model. We then compute the expected ILFS transmission cost. We

next discuss our frame structure design using landmarks. Results and conclusion

3To be discussed in Section 6.2, an M-frame [83] is also needed after decoding each P-frame to
identically merge to a target I-frame reconstruction.

4Here frame structure means which I-, P- and M-frames will be pre-encoded and stored at the
server.

5As an example, United Airline has its largest domestic hub in Chicago O’Hare International
Airport.
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are presented at the end, respectively.

6.2 System Overview

For smooth transition to later sections describing our core contribution on optimally

inserting landmarks to facilitate ILFS, as introduction materials we first review

the ILFS system model. We then present a view navigation model for ILFS that

describes a typical user’s view-switching behavior. We also describe I-, P- and

merge (M-) frames [83] in our coding structure to facilitate a user’s view-switching

requests.

6.2.1 System Overview

LF 

Camera

LF Image 

Source
Server

Interactive

Client

View Demands

Requested View

0-hop, 1-hop or 2-hop?

Fig. 6.1. Interactive light field streaming system.

The system model we consider for ILFS problem is shown in Fig. 6.1. An LF

camera first captures a static 3D scene with spatially correlated LF images from

multiple viewpoints. A server encodes these source images offline, building an

optimal frame structure θ∗ containing I-, P- and M-frames for each image. The

server stores the structured representations of the LF source images locally, using

which the server serves multiple streaming clients subsequently. This process

results in a storage cost at the server. The clients interactively request demanding

images along their view-switching trajectory from the server. The server then sends

the requested views to clients by choosing from three different transmission types:

0-hop, 1-hop or 2-hop (to be discussed in Section 6.3.3), resulting in a transmission

cost. The problem is to find out an optimal frame structure θ∗ stored at the server,

so as to best trade off the storage cost and the expected transmission cost. An

alternative approach for the server to interact with clients is to real-time encode
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a path traversal tailor-made for each client’s interactivity. However, real-time

encoding for each client is computational prohibitive if the number of clients is

large.

6.2.2 View Navigation Model for ILFS

 

 

Fig. 6.2. An example of 2D grid of 9× 9 views. The green and blue arrows respectively represent
possible view-switching walk and jump from view i with K = 3.

To discuss view navigation model for ILFS, we first assume that the N

viewpoints of a static scene captured by an LF camera are arranged into a
√
N×
√
N

2D grid. Existing common LF user interfaces6 allow different kinds of view-

switches, which we categorize into two types: i) switch to a horizontal / vertical

adjacent view; ii) jump to a horizontal / vertical view that are K views apart, where

K is a constant.

Specifically, at a viewpoint (x, y), one can choose either walk or jump to a next

view. walk means that a user can switch from view (x, y) to a vertical (x ± 1, y)

or a horizontal (x, y ± 1) adjacent view. By jump, we mean a user can switch a

view K distance apart, i.e., from view (x, y), one can switch to views (x ± K, y)

or (x, y ± K). An example of view switching for a 9 × 9 2D grid of views with

K = 3 is shown in Fig. 6.2, where the green and blue arrows represent possible

view-switching walk and jump, respectively.

6For example, http://lightfield.stanford.edu/
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We assume that the probability of switching to each of the four adjacent views

and the four distant views is the same. Thus, from view i, a user can switch to a

view j ∈ N (i) with probability pj|i = 1
8
, where N (i) contains the four adjacent

views and four distant views which can be switched to, starting from view i.

6.2.3 Frame Types in Coding Structure

In our proposed frame structure, by default we assume each view i has one

independently encoded I-frame, denoted by Ii, which does not require any predictor

frame for decoding. A pre-encoded I-frame ensures that a server can always enable

a user to switch to view i by transmitting Ii to the user, albeit at a large transmission

cost. To more efficiently facilitate a view-switch from view j to i, view i may

contain in addition a differentially coded P-frame Pi(j), which uses I-frame Ij of

view j as a predictor. Thus, Pi(j) is transmitted only if the user has Ij in the buffer,

since the decoding of P-frame Pi(j) requires an existing Ij . Moreover, the further

view i is away from view j, the bigger the residual difference between view i and

view j, and hence the larger coding bit-rate of Pi(j).

Note that view i may also be used as a predictor for future view-switches. If

view i contains only one P-frame, we can directly use the reconstruction of view i

from this P-frame as the predictor for the next view-switch. However, in general,

view i may contain multiple P-frames Pi(j) for view-switches from different views

j to i. The reconstructions of view i from different P-frames may differ slightly due

to transform domain quantization of encoding the different prediction residuals for

these P-frames. If we directly use the reconstructions of view i from these P-frames

as predictor, the different reconstructions may lead to prediction mismatch and thus

a misaligned reconstruction of the next view in trajectories. Hence, to avoid future

coding drift, an identical version of Ii is necessary to be the predictor for future

view-switches. Thus, we employ a merge frame (M-frame) Mi [83] to merge the

different reconstructions of view i (from different P-frames) into an identical one.

M-frame in [83] is a new design that uses shift and rounding operations to

achieve desired merging results. Specifically, the authors employ a PWC function
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f(x) as the merge operator to merge quantized transform coefficients from different

reconstructions to the same value, where

f(x) =
�x+ c

W

�
W +

W

2
− c. (6.1)

W stands for step size and c stands for horizontal shift. An example of f(x) is

shown in Fig. 6.3.

Merged

 Signal

 

  

 

 

  

 

Fig. 6.3. An example of the PWC function f(x) with step size W and horizontal shift c. f(x)
merges two quantized coefficients X1

b (k) and X2
b (k) into an identical value Xo

b (k).

Considering the I-frame Ii as a target for merging the different reconstructions

of view i from multiple different P-frames, for each quantized transform coefficient

Xj
b (k) of the k-th frequency in a block b of the reconstruction from P-frame Pi(j),

a proper selection of W and c of f(x) can round down the coefficient Xj
b (k) to a

value Xo
b (k), i.e.

Xo
b (k) =

⌊
Xj
b (k) + c

W

⌋
, ∀j s.t. Pi(j) exists , (6.2)

where Xo
b (k) is the quantized k-th frequency in the block b of the I-frame Ii. The

proper selection ofW and c for each coefficient of each block, which is optimized in

a RD optimal manner in [83], is then coded as M-frame. By definition, an M-frame

Mi plus any decoded Pi(j) will result in an identically reconstructed Ii. See Fig. 6.4

for an illustration. Like Ii, Mi is also pre-encoded by default in our structure.

When a user requests switching from view j to i, the server can either transmit

an I-frame Ii, or an M-frame Mi plus a P-frame Pi(j). The technical challenge is
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Fig. 6.4. Example for frame types of view i and j, with I-(circle), P-(square) and M-frames
(diamonds).

how to select an appropriate set of P-frames for pre-encoding in the frame structure

to facilitate user’s view-switch requests, when the server’s storage size is limited.

We focus on this problem in the sequel. We will first introduce how to compute

the expected transmission cost given a frame structure θ. We then discuss how to

insert landmarks to help design an optimal frame structure θ∗ that optimally trades

off expected transmission cost and storage cost.

6.3 Expected Transmission Cost

We can compute the expected transmission cost of an ILFS session for a given frame

structure θ using a set of recursive equations. To keep the computation tractable,

we first describe a Poisson distribution of the lifetime of an ILFS session and then

describe a flexible one-frame reference buffer model.

6.3.1 A Poisson Distribution of Lifetime

We assume that a user starting an ILFS session at time t = 0 at an initial center view

s switches its view at each time instant until T view-switches (called lifetime) are

performed, upon which he exits the session. As often done in lifetime modeling,

we assume that random variable T follows a Poisson distribution [101], and the

probability of T = k view-switches is

p(T = k) =
µke−µ

k!
(6.3)
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where µ is the expected lifetime of an ILFS session and k! is the factorial of k.

Since the Poisson probability will be small when k becomes very large and to avoid

an infinity computation, we define a certain large To as a threshold of the maximum

lifetime. Defining instant t as the t-th view-switch, the probability g(t) that there

are at least t view-switches in a session can be computed as

g(t) = 1(t ≤ To)
To∑
k=t

p(T = k) (6.4)

= 1(t ≤ To)e
−µ

To∑
k=t

µk

k!

where 1(x) is an indicator function that equals 1 if clause x is true and 0 otherwise.

Hence g(t) is the total probability that the lifetime T is no smaller than t.

6.3.2 Flexible 1-frame Reference Buffer

A flexible one-frame reference buffer means that, besides a current frame in the

display buffer for the user’s observation, there is in addition a reference buffer to

store one additional frame. When a user observing view i with frame (view) γ in

the reference buffer switches to view j, the user can use either frame γ or frame

i as predictor to decode P-frame Pj(γ) or Pj(i) for view-switch to j. It means

that, if there is a landmark view γ in the user’s reference buffer, using the flexible

one-frame buffer a user can switch from view i to j by directly decoding Pj(γ)

without first decoding Pγ(i) to reconstruct the landmark view. To facilitate future

view switches, the most valuable frame will be selected to be stored in the reference

buffer.

Using a flexible one-frame reference buffer, we consider three different trans-

mission types during a view-switch: 0-hop, 1-hop and 2-hop transmissions as

follows.

• 0-hop transmission means that an I-frame Ij is transmitted for the requested

view j, resulting in an overhead rIj = |Ij|, where | · | stands for the coding

rate of a frame.
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• 1-hop transmission means that a P-frame Pj(γ) or Pj(i) is transmitted with

an M-frame Mj , resulting in an overhead rPj (γ) = |Pj(γ)|+ |Mj| or rPj (i) =

|Pj(i)|+ |Mj|, respectively.

• 2-hop transmission means that a P-frame Pη(γ) or Pη(i) is first transmitted

along with an M-frame Mη to transition to an intermediate view η, then P-

frame Pj(η) and Mj are transmitted to arrive at the designation view j. The

overhead is thus rPη (γ) or rPη (i) plus rPj (η). 2-hop transmission enables a user

to first switch to a landmark, which may facilitate future view switching.

6.3.3 Expected Transmission Cost

Given a frame structure θ, we now derive recursive equations to compute the

expected minimal transmission cost. Denote by c(t)
i (γt) the expected transmission

cost from current instant t to the end of an ILFS session, given that at instant t a

user is at view i and with view γt in the reference buffer. We can write c(t)
i (γt) as a

recursive formula:

c
(t)
i (γt) =

∑
j∈N (i)

pj|i min
[
h

(t)
i (γt, j), ḣ

(t)
i (γt, j), ḧ

(t)
i (γt, j)

]
(6.5)

where pj|i is the view switching probability from view i to view j, and h(t)
i (γt, j),

ḣ
(t)
i (γt, j) and ḧ(t)

i (γt, j) are transmission cost of a user from current instant t to the

end of an ILFS session, given that the user (who is at view i and with view γt in

the reference buffer at instant t) switches to view j at instant t + 1 by using 0-hop,

1-hop and 2-hop transmissions, respectively.

The 0-hop transmission cost h(t)
i (γt, j) is the sum of rIj plus the recursive cost

c
(t+1)
j (γt+1) if the maximum lifetime To has not been reached. The frame γt+1 that

will be stored in the reference buffer for the (t + 1)-th instant should be selected

between views γt and i, whichever has smaller subsequent transmission cost. Thus

h
(t)
i (γt, j) can be written as

h
(t)
i (γt, j) = rIj + g(t+ 1) min

γt+1∈{γt,i}
c

(t+1)
j (γt+1), (6.6)
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where g(t+ 1) is computed by Eq. (6.4).

The 1-hop transmission cost is the sum of either rPj (γt) or rPj (i) plus the

recursive cost c(t+1)
j (γt+1). The frame γt or i which is used as predictor to view j

will become the new reference in the recursive future term. Thus we write ḣ(t)
i (γt, j)

as

ḣ
(t)
i (γt, j) = min

γt+1∈{γt,i}

[
rPj (γt+1) + g(t+ 1)c

(t+1)
j (γt+1)

]
. (6.7)

We define rPj (γt+1) = ∞ to signal a violation if P-frame Pj(γt+1) is not in the

structure θ.

The 2-hop transmission cost is, for an intermediate view η, the sum of either

P-frame cost rPη (γt) or rPη (i), plus P-frame cost rPj (η), plus recursive cost c(t+1)
j (η).

ḧ
(t)
i (γt, j)=min

η

�
rPj (η)+g(t+ 1)c

(t+1)
j (η)+ min

τ∈{γt,i}
rPη (τ)

�
. (6.8)

In this case, the reference frame for (t+ 1)-th view-switch is γt+1 = η.

Examples of 0-hop, 1-hop and 2-hop transmissions for view-switching with

flexible 1-frame reference buffer are shown in Fig 6.5. For a user observing view

i with reference view γt in the buffer at time instant t, he can switch to view j by

either 0-hop, 1-hop or 2-hop transmission. If the 0-hop or 1-hop transmission is

used, the reference frame γt+1 must be selected between view i and view γt. If the

2-hop transmission is used, then the reference frame γt+1 must be the intermediate

view η.

Having defined the above, c(0)
s (∅) will compute the expected transmission cost

starting from an initial given view swith an empty reference buffer ∅. The definition

of c(0)
s (∅) is similar to (6.5):

c(0)
s (∅) =

∑
j∈N (s)

pj|s min
�
h(0)
s (∅, j), ḣ(0)

s (∅, j), ḧ(0)
s (∅, j)

�
. (6.9)
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Fig. 6.5. Example transmissions for view-switching with flexible 1-frame reference buffer, with I-,
P- and M- frames shown with solid circles, squares and diamonds, respectively.

6.3.4 Complexity Analysis

The complexity of computing c(0)
s (∅) can be analyzed as follows. To avoid

re-computation of recurring sub-problems, assuming a DP table is used. The

complexity of DP algorithm is upper-bounded by the size of the DP table multiplied

with the complexity to compute each table entry. In our case, the size of the DP

table is bounded by O(8N2To), where the maximum size of N (i) for each view

i is 8. The steps required to compute (6.5), (6.6), (6.7) and (6.8) are bounded by

O(N). Thus, the overall complexity of computing the expected transmission cost

is O(N3To), which is in polynomial time.

6.4 Frame Structure Design

6.4.1 Problem Formulation

Given I- and P- frames coded by HEVC [17] and M-frames coded by [83]—all at a

sufficiently fine pre-fixed quantization parameter (QP) for a target image quality—

our problem is to determine which P-frames to be differentially encoded a priori

at the server to minimize the weighted sum of expected transmission cost and the

storage cost. For a given structure θ, we define the storage cost b(θ) as the total size
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of all the pre-encoded differential P-frames:

b(θ) =
∑

Pj(i)∈θ
|Pj(i)| (6.10)

where |Pj(i)| is the HEVC coding rate of P-frame Pj(i). I- and M-frames are not

considered since they are pre-encoded by default for each view in the structure.

Having defined the expected transmission cost and the storage cost for a given

structure θ, we next define the optimal frame design problem: find a frame structure

θ∗ that optimally trades off the expected transmission cost and the storage cost, i.e.,

θ∗ = arg min
θ
c(θ) + λb(θ). (6.11)

where λ is a given weight parameter and each λ corresponds to one tradeoff

of expected transmission cost and storage cost. c(θ) = c(0)
s (∅) is the expected

transmission cost computed by Eq. (6.9) for a given frame structure θ.

6.4.2 Structure Design Algorithm

In this subsection, we design our frame structure. Our basic idea is as follows. We

first divide all the views into partitions each associated with a landmark view by

assuming that: 1) in each partition the landmark view has a P-frame to and from

any other view, and 2) any two landmark views have P-frames from each other.

Then we use a greedy algorithm to remove or add some P-frames. This is because

it may be beneficial to remove some P-frames within a partition or add some P-

frames between two non-landmark views in two different partitions. An example is

shown in Fig. 6.6 (to be discussed later).

To minimize (6.11), we propose to initialize a frame structure θ with “land-

marks” first. Similar to an airline hub in functionality, by adding P-frames to/from

a landmark view for all neighboring views, any view can transition to any other

view by decoding essentially only two P-frames (transition to landmark, then to

designation view). Further, having multiple landmarks means that the P-frames

used to arrive at/depart from a landmark can be smaller; however, the transition
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between two views connected to two different landmarks can become costly. The

challenge then is to identify the appropriate number and locations of landmarks.

To select landmarks, we adopt a tree-structure vector quantizer (TSVQ) method

[102], which we define recursively as follows. At a recursive instant, a landmark l

is associated with a neighborhood of views or partition Ψ; all views in the partition

have P-frames to/from the landmark. In terms of two cost function φ(·) and δ(·),

this instant must decide whether to split the partition Ψ into two sub-partitions Ψ1

and Ψ2 (with corresponding landmarks l1 ∈ Ψ1 and l2 ∈ Ψ2), where Ψ = Ψ1 ∪Ψ2.

Specifically, given that φ(·) stands for the cost of transitions within a partition and

δ(·) stands for the cost of transitions between two views connected to two different

partitions (partition boundary crossing), if

φ(Ψ1, l1) + φ(Ψ2, l2) + δ(Ψ1,Ψ2, l1, l2) < φ(Ψ, l), (6.12)

it means that the splitting would be more beneficial and hence the instant Ψ will be

replaced by two new instants Ψ1 and Ψ2 that are also solved recursively following

the same splitting strategy. The definition of φ(·) and δ(·) and the optimal partition

splitting will be discussed in the following.

6.4.2.1 Definition of φ(·) and δ(·)

One choice of the cost function φ(Ψ, l) is a version of (6.11) computed for views in

a partition Ψ. However, recursively computing expected transmission cost is costly.

Hence, we define a simpler cost function φ(Ψ, l) for views in the partition Ψ as

follow:

φ(Ψ, l) =
∑
i∈Ψ

�
qiT

�
rPi (l) + rPl (i)

�
+ λ ( |Pi(l)|+ |Pl(i)| )

�
(6.13)

where qi is the probability that a view i would be visited during lifetime T

transitions (which can be computed in advance). rPi (l) is the transmission overhead

with a P-frame Pi(l) plus an M-frame Mi. A P-frame Pi(l) or Pl(i) may be

requested when a user switches from (to) any other view to (from) view i. Hence,
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the qiT
�
rPi (l) + rPl (i)

�
is a simple proxy of the expected transmission cost for

view switching to/from view i. The ( |Pi(l)|+ |Pl(i)| ) is the corresponding storage

cost. Hence, φ(Ψ, l) defined in (6.13) is a simpler version of (6.11) for view-

switches within the partition Ψ.

Consider the case with two partitions Ψ1 and Ψ2, to facilitate transitions

between views that are connected to two different landmarks, we also add P-frames

Pl1(l2) and Pl2(l1) that connect between the two landmarks into structure θ, such

that a new landmark can be reached and stored in the reference buffer to facilitate

future view switching after a 2-hop transmission. For example, given that view i and

j are connected to two landmarks l1 and l2, respectively, and l1 is in the reference

buffer for view i switching to view j, the two P-frames Pl2(l1) and Pj(l2) can enable

the user to first switch to landmark l2 and then switch to view j by 2 hops. It also

enables landmark l2 to be stored in the reference buffer for future view-switches

starting from view j. The increased transition cost and storage cost of dealing with

partition boundary crossings is then monitored by:

δ(Ψ1,Ψ2, l1, l2) = (6.14)

λ ( |Pl1(l2)|+ |Pl2(l1)| )︸ ︷︷ ︸
term 1

+
∑
i∈Ψ1

∑
j∈N (i)|j∈Ψ2

�
qiTpj|i · rPl2(l1) + qjTpi|j · rPl1(l2)

�
︸ ︷︷ ︸

term 2

,

where in term 2 of (6.14), qiTpj|i computes the expected occurrences of view-

switching from view i to view j, during which the P-frame Pl2(l1) is required for

the 2-hop transmission. Note that when view i can switch to view j, i.e., j ∈ N (i),

we can also get i ∈ N (j). Hence, in (6.14), term 1 and term 2 are respective

the increased storage cost and expected transmission cost for dealing with partition

boundary crossings after splitting a partition into two sub-partitions.

6.4.2.2 Optimal Partition Splitting

After defining the two functions φ(Ψ, l) and δ(Ψ1,Ψ2, l1, l2) for computing the total

cost for views in a partition Ψ and for dealing with partition boundary crossings,

respectively, we next look at how to optimal split a partition Ψ. To choose
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the best landmarks l1 and l2 and sub-partitions Ψ1 and Ψ2 during splitting, we

use the Lloyd’s algorithm [100] that iterates between two alternating steps until

convergence. First, given sub-partitions Ψk, k ∈ {1, 2}, we find each locally

optimal landmark lk by minimizing the following:

lk = arg min
l∈Ψk

φ(Ψk, l), (6.15)

where φ(Ψk, l) is defined in (6.13). In words, an optimal view lk ∈ Ψk that

minimizes the total cost in a partition Ψk is selected as a new landmark.

Second, given landmarks l1 and l2, we assign each view j in partition Ψ to the

closer of the two landmarks:

z = arg min
m∈{1,2}

|Pj(lm)|+ |Plm(j)|, (6.16)

where z is the partition to which view j is assigned. We iteratively solve (6.15)

and (6.16) until convergence. Empirical data show that the Lloyd’s algorithm can

converge quickly.

Our proposed TSVQ algorithm to optimally select landmarks is operated as

follows. Given an initialized partition Ψ with all the views in 2D grids, we first

find the landmark l by solving Eq. (6.15). Then, by iterating between (6.15) and

(6.16), we optimally split Ψ into two sub-partitions Ψ1 and Ψ2, as well as find the

two corresponding landmarks l1 and l2. Computing Eq. (6.13) and (6.14) based

on these partitions and applying the results on Eq. (6.12), if Eq. (6.12) holds, we

confirm splitting partition Ψ with two sub-partitions Ψ1 and Ψ2. We keep applying

the same splitting strategy on partitions Ψ1 and Ψ2 until Eq. (6.12) does not hold

any more.

6.4.3 Frame Structure Design

Having identified landmarks via TSVQ, we now look at how to find the optimal

frame structure using landmarks. We first initialize a frame structure θ in

which there are P-frames connecting any view to/from its landmark and P-frames
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connecting any two landmarks. Recall that we assume each view has an I-frame

in our structure and one can choose from 0-hop, 1-hop and 2-hop transmissions

for each view-switching, our initialized frame structure θ may not be the optimal

frame structure that best trades off the expected transmission cost and storage cost.

Thus, we adopt the greedy algorithm proposed in [81] to iteratively add/remove P-

frames to θ using Eq. (6.11) until the object function cannot be further improved.

Specifically, at each iterative step, we check each P-frame as follows: if the P-

frame is not in θ, we check whether adding the frame to θ reduces the objective

cost function; if P-frame is in θ, we check whether removing the frame from θ

reduces the objective cost function. Then, at each iteration step, we select the most

“beneficial” P-frame (which induces the largest objective cost decrease) to be added

or removed. We stop the iteration if no more cost decrease happens. Hence, the

optimal frame structure θ∗ can be achieved.

During ILFS, with our proposed optimal landmarks insertion and frame struc-

ture designing methods, the server first figures out an optimal frame structure and

stores the corresponding frames in advance. When a client sends a view-switching

request to the server, based on the client’s currently watching view and the reference

buffer view, the server sends to the client an I-frame, a P-frame plus an M-frame , or

a pair of P-frames plus M-frames which minimizes the expected transmission cost

to meet the client’s view-switching request. Meanwhile, the server tells the client

which view to be stored in the reference buffer.

An example of the designed frame structure θ∗ by inserting landmarks is shown

in Fig. 6.6, where the dash blue line divides the nine views {1, · · · , 9} into two

sub-partitions {1, 4, 5, 7, 8} and {2, 3, 6, 9} connecting to two different landmarks

4 and 6, respectively. The black arrows stand for the P-frames in θ∗, e.g., the arrow

from view 6 to view 2 means that P-frame P2(6) is in θ∗. To show how ILFS works,

we give some view-switching examples starting at instant t in the following.

• when a user requests a view switching from view 5 to view 8 (within a

partition), if γt = 4, i.e., the user’s reference buffer stores the landmark view

4, the server may send a P-frame P8(4) for a 1-hop transmission and ask the
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user to continue storing view 4 in the reference buffer (γt+1 = 4) for future;

if γt 6= 4, the server may send a pair of P-frame P4(5) and P8(4) for a 2-hop

transmission and ask the user to store γt+1 = 4.

• When a user requests switching from view 4 to view 1, view 7 or view 8,

no matter what γt is, the server may send P1(4), P7(4) or P8(4) for a 1-hop

transmission and ask the user to store γt+1 = 4.

• When a user requests switching from view 5 to view 2 (partition boundary

crossing) with reference view γt = 4, the server has two options to send

either a P-frame P2(5) (1-hop) or a pair of P-frames P6(4) and P2(6) (2-hop)

depending on how far an ILFS session will end after this view-switching. For

example, if this is the last view switch, i.e., t = To, the server may send

P2(5) directly and do not care about γt+1; if t < To, to facilitate future view-

switching starting from view 2, the server may send P-frames P6(4) and P2(6)

and ask the user to store γt+1 = 6.

• When a user requests switching to view 3 starting from view 2 or view 6, since

there is no P-frame connecting to view 3, the server should send an I-frame

I3 for a 0-hop transmission; the selection of reference view γt+1 depending

on γt and the current watching view with Eq. (6.6) (6.7) (6.8).

• When a user requests view-switching from view 8 to view 9, if γt = 4, the

server may send P-frames P6(4) and P9(6) for a 2-hop transmission and ask

the user to store γt+1 = 6; if γt 6= 4, 1-hop and 2-hop transmission is

not applicable, and thus, the server should send the I-frame I9 for a 0-hop

transmission.
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Fig. 6.6. An example of designed frame structure with landmarks.

6.5 Experimentation

6.5.1 Experiment Setup

To test the performance of our designed structure using landmarks, we download

two LF image sets Swans and Flowers from [103] 7. We select a subset of 9×9 2D

grid of images for each set, where each image is of size 432× 624. We use HEVC

HM 15.0 [17] to code I- and P-frames, and use [83] to code M-frames. Quantization

parameters are set so that PSNR of the encoded frames are around 36dB.

We compare our proposed method with a greedy algorithm proposed in [81],

where a locally optimal single P-frame or pair of P-frames are iteratively added to

the structure at a time to reduce the objective function in (6.11). Both these two

methods use a flexible 1-frame reference buffer. The maximum lifetime To of a

session is set to two third of the number of LF images and the expected lifetime µ

is set as half of To. To optimally insert landmarks with TSVQ method, the lifetime

T used in Eq. (6.13) and (6.14) is defined as the expected lifetime. We vary λ in

(6.11) to induce different tradeoffs between the expected transmission and storage

costs.

6.5.2 Experiment Results

Fig. 6.7 shows plots of expected transmission cost versus the storage cost for

our designed structures (red) and the greedy structures [81] (blue). To reach

7http://mmspg.epfl.ch/EPFL-light-field-image-dataset
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Fig. 6.7. Expected transmission cost versus storage size of frame structure for Flowers and Swans.

the same expected transmission cost, our proposed method can save 31.92% and

28.61% storage cost compared to the greedy algorithm for Flowers and Swans,

respectively, using the computation method proposed in [86]. This is because, in our

method, a landmark is usually preferred to be stored in the reference buffer. Thus

only one P-frame connected from the landmark to the designated view is needed

for each view-switch. Even when views switch across partition boundaries, the 2-

hop transmission can enable switching from current landmark to a new landmark.

However, the greedy algorithm in [81] does not generate landmarks in the frame

structure by considering one frame at a time. This is because a landmark view is

not useful in reducing the objective until a sufficient number of P-frames to/from

neighboring frames are added. The complexity of our proposed method is also

much lower than the greedy algorithm in [81], since our initialized frame structure

already contains a lot of well-selected P-frames—connecting to/from landmarks

and only a minor adjustment to remove/add P-frames is required during the greedy

step. The computation expense for greedily removing/adding P-frames is much

smaller than the method proposed in [81], where there is no P-frame in the

initialized frame structure.

On the red curve in Fig. 6.7 (our proposed method), the black square dots

correspond to structures with 2 landmarks, where the other dots correspond to
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structures with 1 landmark.8 When there are more than one landmark in a frame

structure, the size of P-frames connecting a landmark to its neighboring views can

be smaller since each view always selects a closer landmark. Although multiple

landmarks may increase the transmission cost to deal with partition boundary

crossings, the smaller size of P-frames will decrease the storage cost and the

transmission cost within a partition. With proper selection of multiple landmarks,

the total cost saving on smaller P-frames may outweigh the increased transmission

cost. Hence, for the black square dots on the red curves, the structures with 2

landmarks work better than structures with 1 landmark.

6.6 Conclusion

To efficiently facilitate ILFS, we design a frame structure composed of pre-encoded

I-, P- and M-frames using the idea of landmarks. We use a variant of the

Lloyd’s algorithm to recursively locate landmark views, then greedily add/remove

P-frames subject to a rate-distortion criterion. Experimental results show that our

designed frame structure has lower expected transmission costs than structures from

a previous proposal [81].

8In Fig. 6.7, our proposed method does not generate three or more partitions.
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Chapter 7

Conclusion and Future Work

This chapter summarizes the contribution of this thesis and discuss future works.

7.1 Conclusions

The ability of multi-view imaging to capture a static 3D scene simultaneously but

from different viewpoints enables users to freely choose their preferred viewpoints

for observation. When multiple images/videos are recorded and the 3D scene is

represented by both color and depth information, the amount of data that needs to

be stored and transmitted is huge. Being the major focus of this thesis, we study two

major topics. The first topic is about object approximation, to lower depth image

coding rate. A greedy algorithm and a rate-distortion (RD) optimal algorithm are

proposed respectively. The second topic is related to behavior analysis of users and

servers during multi-view image/video streaming. We first study users’ optimal

reference view selection problem in a cooperative live free viewpoint streaming

system. We then investigate how to efficiently facilitate interactive light field

streaming framework with landmarks. The effectiveness and efficiency of our

proposed strategies in the two topics are verified numerically.

Specifically, In Chapter 3, a greedy contour approximation method is proposed,

where the edge direction with the largest estimated probability computed by

arithmetic edge coding (AEC) is selected to reduce depth coding cost. To further

control induced synthesized virtual view distortion due to contour approximation, in

Chapter 4 we then propose a RD optimal method for object contour approximation.
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We first propose a distortion proxy that is an upper bound of the established

synthesized view quality metric, 3DSwIM. Given coding rate computed using AEC

and our distortion proxy, contours are approximated optimally via DP algorithm in

an inter-view consistent manner. Experiments show significant performance gain

over previous depth coding schemes.

In Chapter 5, we study the optimal reference view selection problem in a

cooperative free viewpoint streaming system, where a user can simultaneously

belong to two groups and share the cost of a single reference view within each

group separately. Leveraging on the properties of the synthesized video distortion,

we propose an efficient search algorithm to study a NE reference selection, which

optimally trades off shared streaming reference view cost and synthesized view

distortion for users.

In Chapter 6, to efficiently faciliate interactive ILFS framework, we design

a frame structure composed of pre-encoded I-, P- and merge frames using the

idea of landmarks: for all neighboring views, add P-frames to/from a landmark

view means that any view can transition to any other view in the neighborhood

by decoding only two P-frames. We use a variant of the Lloyd’s algorithm to

recursively locate landmark views, then greedily add/subtract P-frames subject to

a RD criteria. Experimental results show that our designed frame structure have

lower expected transmission cost than structures from a previous greedy proposal.

7.2 Future Work

Given the advent technologies that one can acquire both color and depth images

of a static 3D scene at the same time easily, the additional geometric information

captured by a depth image can help improve a lot of traditional applications which

utilize only 2D color images, such as image/video segmentation, image inpainting,

object tracking/recognition, pose estimation, sleep monitoring, etc.. Among them,

depth assisted front shape segmentation during video conferencing (VC) could

be a very interesting research topic. With the advent of networking technologies

enabling high-bandwidth and low-delay transmission, VC connecting two parties
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separated by large physical distance is now quite ubiquitous. Efficiently segmenting

the frontal shape of users who are taking VC will be very useful in applications such

as gaze correction [104], face beautification [105], video compression/transmission

and so on. Since a depth image shows PWS properties, i.e. smooth regions

separated by sharp edges, it is important to investigate how this additional geometry

information can improve segmentation results.

Recently, virtual reality (VR) or augmented reality (AR) has attracted world-

wide research interests. VR typically refers to computer technologies that gen-

erate 3D realistic images, sounds and other sensations that can be explored and

interacted with by a person. VR leads to new and exciting discoveries in a

wide variety of applications which include sports, medicine, video games, cinema

and entertainment. Although some VR products, such as VR headset [106] and

Vive1, have been in use presently, the technologies on VR are far from mature.

There is still a lot of room for further study. The contents (images and videos)

of VR products are usually captured by omnidirectional cameras, also known

as 360-degree cameras [107] or VR cameras, that have the ability to capture a

3D scene from all directional viewpoints. The post-processing technologies of

these captured multiple viewpoints images/videos, such as compression, streaming,

frame rendering and resolution adjusting, are very essential steps to build a VR

system and to decrease the latency of building virtual spaces [108]. All of these

multi-view image/video processing technologies in VR are very interesting topics

to be investigated in the future.

1https://www.vive.com/ca/
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