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Abstract  

Estimating precipitation is currently one of the key challenges of accurate Fire Danger 

Rating. New gridded precipitation analysis systems such as the Canadian Precipitation Analysis 

System (CaPA) may be superior to the current analytical interpolation strategies, thin plate spline 

(TPS), and inverse distance weighting (IDW). To compare the performance of CaPA and 

interpolation methods in the forested area of Alberta, I evaluated precipitation estimates from 

CaPA and 17 algorithms of five interpolation methods, including IDW, smoothed TPS, non-

smoothed TPS, ordinary kriging, and regression kriging. Precipitation estimates were generated 

using station observations through leave-one-out cross-validation and were evaluated using a 

range of skill scores (MAE, Bias, ETS, and FBI). I also assessed impacts of these precipitation 

estimates on the Canadian Forest Fire Weather Index (FWI) System and examined the impacts of 

weather station density on model performance. 

Results show that CaPA was only a mid-tiered method (13
th

 of 18), except in Doppler 

radar covered areas, where CaPA performed second best. Regression kriging (with CaPA as a 

covariate) was the best method and produced precipitation estimates with 19.6% lower MAE 

compared with IDW. I found that the best method shifted with station density; CaPA was the 

best method when fire weather station density fell below 0.6 stations per 10 000km
2
 while 

regression kriging was the best method above this threshold. Additionally, this study showed that 

the FWI System responded to precipitation estimates differently due to their varying drying time 

lag of the indexes. Quick drying indexes (FFMC, ISI, FWI) preferred methods with lower MAE 

(e.g., regression kriging with smoothing), while slow drying indexes (DMC, DC, BUI) preferred 

methods with lower Bias (e.g., regression kriging without smoothing). Overall, I recommend the 

use of regression kriging with CaPA as a covariate to estimate fire danger across landscapes.  
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Chapter 1 Introduction 

1.1 Context    

Wildland fires, ranging from stand to landscape levels, frequently occur in the Canadian 

boreal forest ecosystem. Fire is a dominant disturbance in the boreal forest; it drives the physical 

and ecological dynamics of forest composition, density, productivity, as well as carbon cycling 

and storage (Rowe 1983). Fire also threatens communities in the boreal forest and causes 

damages measured in billions of dollars (e.g., the 2011 Slave Lake fire and the 2016 Fort 

McMurray fire). In Canada, fire is suppressed when it threatens human life, infrastructure, and 

valuable resources. Accurate prediction of fire activity is challenging but is needed for effective 

suppression. Fire activity is governed by factors like weather, fuel, topography, ignition sources, 

and humans (Johnson 1972; Flannigan et al., 2005). Of these factors, weather varies the most in 

space and time, but weather is the best predictor of daily fire activity (Flannigan et al., 2005; 

Parisien et al., 2011).   

To quantify the impacts of daily weather on fire danger, Canadian scientists developed 

the Canadian Forest Fire Weather Index (FWI) System (Van Wagner 1987). The FWI System is 

a strictly weather-based system and relies on noon LST weather observations of temperature, 

precipitation, wind speed, and relative humidity. Weather inputs of the FWI System are recorded 

on a station-by- station basis and outputs of the FWI System are typically accurate within a 40 

km radius (Turner and Lawson 1978). Thus, the usefulness of the FWI System for predicting 

conditions over large areas is dependent on the density and distribution of weather stations. 

However, weather stations are sparsely distributed in the boreal forest, making FWI System less 

accurate in areas without nearby stations. To obtain accurate FWI in these areas, fire 

management agencies interpolate observations from surrounding weather stations using 

algorithms such as inverse distance weighting (Englefield et al., 2000) and thin-plate splines 

(Flannigan et al., 1998). Other more sophisticated interpolation algorithms may lead to better 

predictions of FWI System. Alternative real-time spatial weather products have recently become 

available and may also result in more accurate fire danger rating in data scarce areas.   
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One of the biggest problems in estimating fire danger is the accuracy of summer 

precipitation (Flannigan and Wotton 1989). This is because most precipitation in the summer 

results from convective storms and thunderstorms, which is highly localized and varies over 

short distances. Other fire weather inputs (i.e., temperature, relative humidity, and wind speed) 

are spatially less variable compared with the precipitation field, making the usefulness of current 

interpolation algorithms constrained by the variability of precipitation. This thesis addresses the 

challenges of obtaining accurate precipitation estimates in data scarce areas by evaluating a 

gridded precipitation product and multiple advanced interpolation algorithms in the forested area 

of Alberta.  

1.2 Wildland fire in Canada  

Wildland fire is the dominant natural disturbance in the Canadian boreal forest; it alters 

the structure and function of the boreal ecosystem by reshaping vegetation composition, density, 

and biogeochemical cycling (Rowe 1983). From 2003 to 2013, an average of 7 000 wildland 

fires occurred each year burning over 2 million hectares in Canada (CIFFC 2013). The size of 

fires in Canada vary widely; with only 3% of fires growing larger than 200 hectares but 

representing 97% of the area burned (Stocks et al., 2003). Wildland fires in Canada are ignited 

by two common sources: human and lightning. Compared to human-caused fires, lightning-

caused fires only represent one-third of the total fires but account for 85% of the area burned 

(Krezek-Hanes et al., 2011). This is because lightning-caused fires can occur in remote areas of 

the boreal forest, where detection and suppression are often more challenging. Wildland fires are 

classified into three types: ground, surface, and crown. Ground fires burn in the organic matter 

below the litter layer where they can burn deep into the peat and smoulder over winter. Surface 

fires burn the litter and duff by flaming combustion with low intensity. Crown fires burn canopy 

or tree crowns at high intensity. Under favourable burning conditions and the presence of ladder 

fuel, ground fire and surface fires can turn into crown fires. In Canada, most of the areas burned 

are attributed to the stand-renewing, high-intensity crown fires (Stocks et al., 2003). 

In the past decade, an average of $800 million was spent annually on fire management in 

Canada (Stocks and Martell 2016). Fire management involves the activities concerned with 

protecting people, property, and forest areas from wildland fires and the use of prescribed 
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burning for the attainment of forest management and other land use objectives (Merrill and 

Alexander 1987). Fire management in boreal forest is the responsibility of each province and 

territory, whereas the federal government manages and suppresses fires within national parks and 

military bases. Not all fires are suppressed as the ecological impacts of fires have been 

recognized by the fire managers. In Canada, the levels of fire suppression range from complete 

extinguishment to “let it burn”, determined by a hierarchy of priorities (i.e., environmental, 

social, and economic criteria) set by the local fire management agency (Martell 2001).  

Attitudes towards wildland fire suppression in Canada have shifted over the years. As 

described by Taylor and Alexander (2006), “fire management” in Canada is a term that was 

originally used to describe the unlimited use of wildland fire by rural and Aboriginal people as a 

part of traditional land management practices, such as to clear land for farming. In the late 19
th

 

century, suppression of wildland fire was formalized by the government and fire laws were 

instituted to restrict traditional wildland fire practices. In the early 20
th

 century, fire management 

agencies attempted to suppress all fires and restricted the use of prescribed burns for fuel 

management. Fire managers eventually realized that the unnatural suppression of all fires was 

undesirable to the boreal ecosystem and consequently led to an increase of homogenous and 

ageing stands. These stands were more likely to escape the initial attack and carried a greater risk 

of causing catastrophic fires. By the 1970s, the recognition of the need for fires on the landscape 

had grown. Therefore, fire management strategies in Canada shifted from strict suppression of all 

fires to allow fires burn in remote areas when lives or industry were not threatened.  

Currently, one of the biggest challenges in wildland fire management is responding to the 

recent increase in fire activity, most of which could be attributed to human-introduced climate 

change (Flannigan et al., 2009; Beverly et al., 2011; Moritz et al,. 2012). In Canada, warming 

temperatures have resulted in an increased fire season length and area burned compared to the 

past four decades (Gillett et al., 2004), all of which will continue with rise according to future 

projections (Wotton and Flannigan 1993; Flannigan et al., 2005). Although an increase of 

precipitation could compensate for the drying caused by warmer temperatures, Flannigan et al 

(2016) suggested that for each degree of warming, precipitation needs to increase by 5%-15% 

from the baseline (1971-2000) to compensate. Due to this sensitivity of fuel moisture to 

temperature and precipitation, Flannigan et al (2016) further suggested that temperature 
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increases will result in a future with more frequent extreme fire weather conditions. The increase 

of these extreme fire weather conditions could lead to a substantial increase in the days with 

active fire spread (Wang et al., 2015) and the occurrence of large fires (de Groot et al., 2013), all 

of which will challenge fire management capacity.  

The expansion of Wildland-Urban Interfaces (WUI) in recent decades also presents 

significant challenges to fire management (Johnston 2016). Fire suppression in the WUI is 

difficult because the WUI can create an environment in which fires can move rapidly between 

structural and vegetation fuels. A failure of initial attack in WUI often leads to the development 

of catastrophic fires that threaten human lives and cause millions of dollars’ worth of damages. 

Two recent examples are the 2011 Slave Lake fire, which has cost over $1 billion for 

suppression, evacuation, insurance, and recovery (Flat Top Complex Wildfire Review 

Committee 2012) and the 2016 Fort McMurray fire, which destroyed over 2 400 structures and 

led to the evacuation of 88 000 people (Benfield 2016).  

As fire management in Canada is challenged by the current and future uncertainties, it is 

necessary to improve current information systems to support the fire management decision-

making process (Lee et al., 2002). To accomplish this goal, we must have a better understanding 

of expected daily fire activity, which is largely influenced by the interactions between the 

surrounding environmental conditions, ignition sources, and human activities (Johnson 1972; 

Flannigan et al., 2005). In particular, one of the major areas for improvement is fire danger rating, 

which is largely impacted by the surrounding fire environment.   

1.3 Fire environment   

Fire environment is the surrounding conditions of fuel, topography, and weather that 

influence or modify the behaviour of fire (Countryman 1972). Predicting fire behaviour is 

challenging due to the complex interactions between fire environment components, where 

changes in one environmental component will influence the rest of the environmental component 

and resultant fire behaviour. Among the three components of fire environment, topography is 

relatively constant through time, while weather conditions change significantly in space and time. 

McArthur (1968) showed that head fire spread rates double on 10-degree slopes compared with 
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spread rates on flat terrain. These rates increase further when the combined effect of slope and 

wind are considered. Fuel (including load, type, structure, continuity, and moisture content) is 

critical to fire occurrence and spread. Fuel load and fuel continuity are necessary for fires to start 

and spread, while fuel structure is important for the interplay of fire dynamics. For example, 

understory shrubs on the forest floor can act as ladder fuels that may spread surface fires 

vertically and result in high-intensity crown fires (Flannigan et al.., 2009). Fuel moisture largely 

determines fire behaviour, suppression effectiveness, and has been correlated with area burned 

(Flannigan et al., 2005).  

The relative importance of topography, fuel, and weather in determining fire behaviour 

varies across the scale of landscape (Heyerdahl et al., 2011). At the stand level, fire behaviour 

varies mainly as a function of site-specific factors (e.g., fuel structure and slope effect). For 

example, study has shown that the burn probabilities modelled by Burn-P3 (a spatial fire 

simulation model, see Parisien et al., 2005) in Wood Buffalo National Park were attributed by  

fuels, weather, and ignition in 67.4%, 29.2%, and 3.4%, respectively (Parisien et al., 2011). On 

the other hand, weather-climate is the dominant factor influencing fire behaviour at the 

ecosystem level. This is because weather varies the most at space and time.  

Weather, including temperature, precipitation, wind speed, and atmospheric moisture, is 

arguably the best predictor of daily fire activity in the Canadian boreal forest (Flannigan and  

Harrington 1988; Flannigan et al., 2005; Cary et al., 2006). The impacts of weather on fire 

activity are two-fold: first, weather influences the fuel flammability and sources of ignition 

(lightning). Long term weather determines the climate of a region, which will affect the type and 

amount of fuel at a given location. Second, weather directly impacts fire activity. Studies have 

shown that temperature is the most significant factor in determining the annual wildland fire 

activity, as areas with warmer temperatures burn more (Gillett et al., 2004; Wang et al., 2014). 

Also, the variability of precipitation (i.e., timing and location) also impacts fire activity, where 

consecutive days without significant precipitation events may lead to extreme conditions and 

catastrophic fires (Holden et al., 2007, Jen and Martell 2005). Studies have shown that hot, dry, 

and windy conditions were of critical importance in promoting the occurrence of large fires in 

areas with sufficient fuels (Balshi et al., 2009). In Western Canada, these critical burning 

conditions are results of the summer blocking high-pressure patterns, which creates a long period 
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of dry days that is correlated with the area burned (Flannigan and Harrington 1988). A recent 

example of fire under these hot, dry, and windy conditions is the 2016 Fort McMurray fire. 

Therefore, a better understanding of the interplay between weather conditions and fire activity is 

necessary for efficient fire management.  

 1.4 Fire danger-weather interactions  

Fire danger rating is the assessment of fire environment factors (i.e., fuel, topography. 

and weather) that determine the ease of ignition, rate of spread, difficulty of control, and the 

impacts of fires (Merrill and Alexander 1987). In Canada, scientists have conducted research on 

fire danger rating since 1925, which led to the development of the Canadian Forest Fire Danger 

Rating System (CFFDRS). The CFFDRS (Stocks et al.,1989) is a semi-empirical modular 

system that assists fire managers in optimizing the management actions (e.g., preparedness 

planning, resources pre-positioning, alert levels) through four linked components. These 

components include Fire Weather Index (FWI) System, Fire Behavior Prediction (FBP) System, 

Fire Occurrence Prediction (FOP) System, and the Accessory Fuel Moisture (AFM) System. The 

CFFDRS is used by all Canadian fire management agencies during the fire season and has been 

adopted by other countries (e.g., New Zealand, Mexico, and Portugal). A detailed description of 

the CFFDRS components, inputs, and usage considerations could be found in Taylor and 

Alexander (2006), Lawson and Armitage (2008), and Wotton (2009).  

The FWI System is one of the core components of CFFDRS and is used as the 

fundamental unit of fire danger rating in Canada. The FWI System (Van Wagner 1987) is a 

weather-based system that relies on solar noon daily weather observations of screen-level 

temperature and relative humidity, 10 m open space wind speed, and 24-hour precipitation. The 

FWI System produces three indicators of fuel moisture content at different forest floor depths 

and three indicators of the maximum daily fire behaviour potential in a standard pine forest type. 

Fuel moisture content of the surface fine dead fuel is tracked by Fine Fuel Moisture Code 

(FFMC), which is used to inform the sustainability of surface fire spread (Beverly and Wotton 

2007) and is linked to the occurrence of human-caused fires (Wotton et al., 2003). Fuel moisture 

content of the loosely compacted organic material is tracked by Duff Moisture Code (DMC), 

which is important to the sustainability of shouldering and is linked to the occurrence of lighting-
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cause fires (Wotton and Martell 2005). Fuel moisture in the deep compacted organic soil layer is 

tracked by Drought Code (DC), which is a useful indicator of drought conditions. FWI System 

fuel moisture codes are also directly related to three fire behaviour indexes. FFMC combined 

with wind speed produces an indicator of the potential spread of a fire without consideration of 

fuel types (Initial Spread Index, ISI); DMC and DC are combined to produce the potential total 

fuel consumption (Buildup Index, BUI). Finally, BUI and ISI are combined to generate the Fire 

Weather Index (FWI), which is used as an overall indicator of the intensity of a spreading fire 

and is used as the main indicator of fire danger in a specific area to inform public. 

Outputs of the FWI System are also used as inputs to the FBP System. The FBP is 

another core component of the CFFDRS and takes the outputs of the FWI System along with 

site-specific inputs (e.g., slope and moisture content of live fuels) to provide quantitative 

estimates of fire growth and fire intensity for 16 benchmark fuel types (Forestry Canada Fire 

Danger Group 1992). These two core components of the CFFDRS have been used to support the 

predictions of fire growth and the mapping of burn probability. For example, two widely used 

fire management tools; the Prometheus Fire Growth Simulation Model (Tymstra et al., 2010) 

and the Burn-P3 model (Parisien et al., 2005) both use the FWI and FBP System models. The 

FWI system has also been used extensively in training fire management crews and understanding 

the interactions between wildland fires and climate change (Flannigan et al., 2009). 

1.5 Previous studies on fire weather interpolation  

As mentioned in Section 1.1, Turner and Lawson (1978) indicated that the FWI System 

was only representative of a 40 km radius surrounding the weather station or where they were 

calculated. This radius varies according to topography and proximity to large water bodies. Since 

weather stations in the boreal forest are sparse, there is a need to interpolate the available station 

data to build reliable spatial FWI System products. The goal of interpolation is always the same: 

each method tries to estimate a weather variable at an unmeasured location by applying weights 

to observations from the surrounding areas. Canadian fire management agencies use either 

inverse distance elevation weighting or more sophisticated strategies such as cubic splines for the 

interpolation of fire danger across the landscape. According to Flannigan and Wotton (1989), 

both of these methods may not address the spatial variability of fire weather variables, especially 

accumulated daily precipitation. 
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 Overview of various interpolation algorithms in environmental sciences can be found in 

Daly (2006) and Li and Heap (2011), while basic concepts of interpolation can be found in 

Cressie (1993). Recent algorithms developed using machine learning and random forests can be 

found in Sanabria et al (2013). Among the many types of the interpolation algorithms as 

reviewed by Li and Heap (2014), ordinary kriging, thin-plate spline, and universal kriging were 

the most frequently compared algorithms. Consensus suggests that in regions without 

topographical features, inverse distance weighting and ordinary kriging are sufficient if the 

weather stations can capture the major climate patterns (Daly 2006; Yang et al., 2015). Regions 

characterized by significant topographical features can be reasonably addressed by interpolation 

algorithms that account for elevation, such as trivariate thin-plate spline smoothing (Hutchinson 

1995) and regression kriging with elevation as an auxiliary variable (Ly et al., 2011). Overall, 

the best performing interpolation algorithm varies as a function of the spatial structure of 

interpolated variables, station density, and terrain features. 

Most studies evaluate interpolation algorithms using various climate variables (e.g., daily 

min/max temperature, monthly temperature, and precipitation), while few studies focus primarily 

on interpolating daily precipitation. Summer Precipitation is difficult to interpolate because 

precipitation in summer is primarily convective in nature, which could vary over short distances 

(Flannigan and Wotton 1989). Thin-plate spline was found to be superior to the distance 

weighting algorithm in interpolating monthly precipitation across Canada (Price et al., 2000). 

However, thin-plate spline may have difficulty in simulating the daily precipitation data over a 

mountainous region (Shen et al., 2001, Hutchinson et al., 2009). There are some studies that 

have evaluated using precipitation from radar or gridded weather products to estimate FWI 

Indexes, such as Flannigan et al (1998) and Horel et al (2014). These two studies both reported 

that gridded weather information resulted in improvement of FWI System other than indexes like 

DMC and DC, which is sensitive to seasonal accumulated precipitation. Recently, the 

geostatistical interpolation algorithm (i.e., regression kriging) was found to be an improvement 

in estimating hourly precipitation and could be used to combine station observations with radar 

data (Haberlandt 2007). To date, advanced geostatistical interpolation algorithms such as 

regression kriging have not been tested in the FWI System.  
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1.6 Canadian Precipitation Analysis (CaPA) System  

Gridded precipitation analysis systems have been recently developed to improve the 

estimates of precipitation in data scarce regions. Three precipitation analysis systems cover 

Canada, including the Canadian Precipitation Analysis (CaPA) System (Mahfouf et al., 2007) 

and two satellite-based precipitation estimates, the Global Precipitation Measurement (GPM) 

(Smith et al., 2007) and Precipitation Estimation from Remote Sensing Information using 

Artificial Neural Network (PERSIANN) (Sorooshian et al., 2005). Currently, none of these 

precipitation estimates has been used in support of fire danger rating in Canada. In this study, the 

CaPA System was chosen to compare with multiple interpolation methods in estimating 

accumulated daily precipitation in Alberta.     

Environment and Climate Change Canada (ECCC) developed the CaPA System to 

improve precipitation estimates with sparse station network. The CaPA System is a data 

assimilation system that produces near real-time gridded precipitation analysis at a 10km 

resolution over North America (Mahfouf et al.,2007). The CaPA System applies an optimal 

interpolation technique (Daley 1991) to merge station observations, radar quantitative 

precipitation estimates (QPEs), and Global Environment Multiscale (GEM) model forecasts 

(Fortin et al.,2015).  

The development of CaPA System started in 2003, and its first operational applications 

were released in 2011. Mahfouf et al (2007) first documented described introduction in 

algorithms of CaPA System.A bias-correction method was later recommended to reduce the 

negative bias caused by a cubic root transformation of the CaPA system inputs (Evans 2013). 

Lespinas et al (2015) compared estimates of CaPA System with the raw GEM forecasts over 

Canada; this study showed that the CaPA System was significantly superior to GEM forests 

when ECCC station density exceeded 1.17 weather stations / 10 000km
2
. Lespinas et al (2015) 

also suggested that the CaPA System performed worse in summer as the GEM models can not 

accurately predict the convective precipitation. To improve the performance of CaPA System, 

Fortin et al (2015) successfully calibrated the radar Quantitative Precipitation Estimates (QPEs) 

into CaPA System, all of which has proved to be a significant improvement in prediction 

accuracy.   
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1.7 Research objectives    

In this study, I address the challenges of estimating precipitation between weather 

stations and assess the implications of improved precipitation estimates on fire danger rating. To 

accomplish these objectives, I first compare the performance of the CaPA System with the 

current operationally-used interpolation algorithms (IDW and TPS based algorithms) and kriging 

based interpolation algorithms in estimating precipitation. I also compare the performance of the 

CaPA System and multiple interpolation algorithms in regions with or without Doppler radar 

coverage. Second, I examine how precipitation estimation errors will impact the fuel moisture 

codes and the fire behaviour indexes of the FWI System. Lastly, I study how the performance of 

interpolation algorithms changes with different scenarios of weather station densities. In this 

study, the forested area of Alberta, Canada was chose as study area.   
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Chapter 2 Data and methods 

2.1 Study area 

This study was performed in the forested portion of the province of Alberta, Canada, 

which lies between 49
o 
- 60

o
 N and 110

o 
- 120

o 
W (Figure 2.1a). With an area of ~661,000 km

2
, 

Alberta is classified into six natural regions due to its diverse geography (Figure 2.1b). The 

northern half of the province is primarily covered by the Boreal forest with a small portion of the 

Canadian Shield in the northeast corner. The Foothills transition between the Boreal forest in the 

north and the Rocky Mountain along the south-west border. Much of south-east Alberta is 

covered by Aspen Parkland and Grassland (Natural Regions Committee 2006). The study areas 

fall primarily within the Boreal, Foothills, and parts of the Rocky Mountain natural regions, 

where wildland fire activity and suppression mainly occur.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 (a) Location of the study area and (b) the natural region types in the study area.  
Data obtained from Alberta Agriculture and Forestry. 

a

) 
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The climate in the study area is characterized by cold, dry winter, and short warm 

summers (Natural Regions Committee 2006). Historical mean January temperatures range from 

below -24
o
C in the Boreal to -12

o
C in the Foothills; mean July temperatures range from below 

13
o
C in the Rocky Mountains to 15

o
C in the Boreal (Government of Alberta 2015). Annual 

precipitation in the study area ranges from a minimum of 400 mm in the northeast to more than 

600 mm in the south-west (Figure 2.2). In general, the Foothills natural region is wetter than the 

Boreal natural region. In Alberta, about 60% of the annual total precipitation falls in the summer 

months; most of which is a result of highly localized convective storms and thunderstorms 

(Strong and Leggar 1992). Due to the convective nature of summer precipitation (e.g., rain of 

40mm at one location while no rain 15 km away), interpolating fire danger is difficult in areas 

without nearby weather station. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Annual precipitation (mm) from 1971 to 2000 in study area 
Map displayed on generalized townships. Data obtained from Environment and Climate Chance Canada. 
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Elevations in the study area range from ~200 m in the north to ~3500 m in the south-west 

(Figure 2.3). Much of the study area is relatively flat with an elevation below 700 m, while the 

mountainous areas in the south-west exceed 3000 m (Figure 2.3). Elevation influences the 

weather, for example, annual total precipitation in our study area decreases with elevation, and 

so does annual mean temperature for areas within similar latitudes. 

Fuel types in the study area are common tree species in the Boreal forest, including 

trembling Aspen (Populus tremuloides), balsam poplar (Populus balsamifera), jack pine (Pinus 

banksiana), white sprue (Picea glauca), black spruce (Picea mariana), lodgepole pine (Pinus 

contorta), and tamarack (Larix laricina). These species are fire prone and some of them rely on 

wildland fires to regenerate. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 2.3 Elevation and hydrological networks in study area 
Data obtained from Alberta Agriculture and Forestry.  

(m) 
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2.2 Data   

Fire weather station observations and Canadian Precipitation Analysis (CaPA) System 

outputs were used in this study. These data were collected from July 14
th

 to August 31
st
, 2014 

(N=49 days) and from May 1
st
 to August 31

st
, 2015 (N=124 days) in the study areas. The 2014 

study period is shorter because the newest CaPA System that incorporated radar precipitation 

began to produce reliable outputs on July 14, 2014 (Fortin et al., 2015).  

To reduce the edge effect caused by the lack of stations beyond the Alberta border, we 

buffered the study area inwards by 75 km and divided the study area into a validation area and a 

buffer area (Figure 2.4). Weather stations within the validation area were used as validation 

points, where the precipitation was estimated with a variety of methods. The validation area was 

also partitioned in two different ways: (1) radar and non-radar sub-areas using the 120 km 

Doppler radar range and (2) Boreal and Foothills sub-regions (Figure 2.4).  

2.2.1 Fire weather station data  

Alberta Agriculture and Forestry (AAF) operates a weather station network (Figure 2.4),  

recording daily observations of surface temperature (Temp), relative humidity (RH), 10 m wind 

speed (WS), and 24h precipitation (PCP) at 1200 hour Local Standard Time. These observations 

are used to calculate fuel moisture codes and fire behaviour indexes using the FWI System (see 

Section 2.4 for details). In this study, weather observations of AAF stations and indexes of the 

FWI System calculated by these observations were used as true values.  

AAF station network is unevenly distributed in the study area with fewer stations in 

Northern Alberta (Figure 2.4). The station network consists of five types of stations: Lookout 

Towers (LO), Ranger Stations (RS), Contract Stations (RZ), Remote Automatic Weather 

Stations (RAWS), and Environment Canada METARS (MET). We excluded MET observations 

from the analysis because it is already calibrated into the CaPA System station networks (see 

Section 2.2.2. for details). In 2014 and 2015, 100 and 81 weather stations, respectively remained 

in validation areas after data cleaning (Table 2.1). In areas of radar and non-radar, the station 

density is similar; while Foothills had ~150% higher station density than the Boreal (Table 2.1). 

AAF station network details are presented in Appendix 1.  
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Figure 2.4 Alberta Agriculture Forest station network in (a) 2014 and (b) 2015  
Study areas are divided into validation area and 75km buffer area. Validation area is divided into radar and non-

radar sub-regions using the 120km Doppler radar range; validation area is also divided into Boreal and Foothills 

sub-regions. Stations are displayed by type. 

 

Table 2.1 Summaries of weather stations in study areas in 2014 and 2015 

Year Region Area (km
2
) No. of stations 

No. of stations per  

10 000 km
2
 

2014 

Study area 505 964 179 3.54 

Validation area 280 679 100 3.56 

radar
 

  28 010 9 3.21 

non-radar
 

252 669 91 3.60 

Boreal
 

229 248 64 2.79 

Foothills
 

  49 128 36 7.33 

2015 

Study area 505 964 136 2.69 

Validation area 280 679 81 2.89 

radar
 

  28 010 8 2.86 

non-radar
 

252 669 73 2.89 

Boreal
 

229 248 53 2.31 

Foothills
 

  49 128 28 5.70 

a b 



 

 16 
 

We cleaned the AAF station data in two steps: 1) we excluded extreme values such as 

Temp >45
o
C or <-45

o
C; 24h PCP >200 mm; RH >100%; and WS >150 km/h; 2) we estimated 

missing data to produce continuous records for FWI System calculations. For stations with less 

than three consecutive days of missing data, the missing data were interpolated from the 

surrounding stations using thin plate spline interpolation method; for stations that had more than 

3 consecutive days of missing data, the stations were dropped from the analysis to ensure the 

reliability of the dataset.  

In summary, the summer months of 2014 and 2015 were both drier than the 30 years 

historical normal (i.e., 1984-2013) (Figure 2.5). In 2014 and 2015, the distribution of rain events 

was uneven across the validation areas and was highly skewed toward zero (Table 2.2). In 2015, 

the mean daily precipitation in the Foothills region was 31% larger than the Boreal region; but 

radar and non-radar areas received similar amounts of mean daily precipitation (Table 2.2). The 

probability of 24h precipitation >0.5 mm, >1.5 mm, and >2.8 mm, (i.e., the minimal precipitation 

amounts needed to change fuel moisture codes of the three fuel layers as described in the FWI 

System, see Section 2.4 for details) was low (Table 2.2). 

Table 2.2 Distribution of daily precipitation in study areas 

 

 

Year Region 

24h precipitation distribution 

and means (mm)
1
 

 
Probability of effective PCP for 

fuel moisture codes
2
 

mean 50th 75th 90th max  >0.5 mm
 

>1.5 mm
 

>2.8 mm
 

2014 

Validation area
 

1.7 0 0 4.5 94.4  27.6% 19.9% 14.5% 

radar
 

2.0 0 0.6 5.4 94.4  27.6% 20.0% 16.0% 

non-radar
 

1.7 0 0.8 4.8 75.8  27.3% 19.6% 14.3% 

Boreal
 

1.3 0 0.4 3.3 49.7  22.5% 15.8% 11.1% 

Foothills 2.4 0 1.9 6.8 94.4  36.5% 27.2% 20.5% 

2015 

Validation area 1.8 0 1.2 5.33 64.2  31.6% 22.8% 16.0% 

radar 2.0 0 1.4 6.8 44.1  34.3% 24.8% 18.1% 

non-radar 1.7 0 1.2 5.2 64.2  31.3% 22.6% 15.8% 

Boreal 1.6 0 1.1 4.8 52.6  31.2% 22.3% 15.3% 

Foothills
 

2.1 0 1.3 6.8 64.2  32.2% 23.7% 17.3% 
 

1 
There are 4900 (49 days x100 weather stations) and 10044 (124 days x 81 weather stations) observations in 2014 

and 2015 respectively.     
2
PCP amount starts to change the value of fuel moisture codes FFMC, DMC, and DC (Van Wagner 1987). 
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Figure 2.5 Daily precipitation frequency in 2014, 2015 and 30-years average (1984 -2013) 
Amount of station (n) in 2014 is n=179, 2015 is n=136, and 30-years average is n=151 

 

2.2.2 CaPA System precipitation estimates 

CaPA System estimates are near real-time 6h accumulated precipitation at 10km 

resolution produced at 00, 06, 12, and 18 UTC. CaPA System estimates were produced by 

Environment and Climate Change Canada (ECCC).  CaPA System estimates combined with 

AAF station observations of WS, Temp, and RH were used to calculate FWI System indexes.  

CaPA System (Mahfouf et al., 2007) merges station observations and radar quantitative 

precipitation estimates (QPEs) with a background precipitation grid field provided by the Global 

Environment Multiscale (GEM) model using an optimal interpolation method (Daley 1991) 

through a series of processes. First, differences between the station observations and 10km GEM 

forecasts are calculated at locations where precipitation is observed. GEM forecasts are used as 
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the background field due to the low station density in northern Canada (Figure 2.7a). Second, 

these differences are interpolated using simple kriging through experimental variogram analysis, 

and the resulting increment is added to the background field. A cubic root transformation is 

applied to both the observations and GEM forecasts before the interpolation to reduce the 

skewness. A back-transformation is applied to the background field. Finally, the radar QPEs are 

up-scaled to 10km and are assimilated into the analysis with consideration of horizontal 

correlations in the rain gauges and radar composite (Fortin et al., 2015). Doppler range of 120km 

is used to calculate radar QPEs because there is greater confidence within this range. To avoid 

the errors associated with the model spin-up, each 6h analysis of CaPA uses GEM forecasts 

produced 6h before the start of the accumulation period. Since GEM forecasts are modelled 

outputs, CaPA System has the greatest confidence in areas close to ground observations and 

radar (Lespinas et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6 Data assimilation workflow of CaPA System 
Information is adapted from Lespinas et al., (2015) and Fortin et al., (2015) 
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ECCC operates ~80 weather stations (1.58 stations / 10 000 km
2
) in the study area; these 

stations are concentrated on the edge of the study area (Figure 2.7b). The ECCC station network 

and AAF station network (Figure 2.4) are unique station networks operated by different agencies. 

Our study area is covered by four radar stations using a 120km Doppler range (Figure 2.7b). The 

6h CaPA System outputs were post-processed in two steps. First, the four 6hrs analysis (00, 06, 

12, and 18 UTC) were added together to generate the 24h precipitation at 18 UTC (12:00 LST). 

Second, the 24h CaPA accumulations were extracted to the AAF stations located in the 

validation area (Figure 2.4) using the nearest neighbour search; these extractions were used as 

CaPA estimated precipitation at each weather station and were used for further analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.7 Stations networks and radar composite of CaPA System (a) in Canada and (b) 

in study areas  
The station networks include manual and automatic synoptic station (SYNOP); aviation routine weather report 

(METAR); and two cooperative networks, the American Meteorological cooperative (SHEF) and the Réseau 

Météorologique Coopératif du Québec (RMCQ). There are 31 Canadian radars are integrated into CaPA System and 

4 of them cover the study area. The radar composite is constructed using the Doppler range (120km). 

a 

b 
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2.3 Interpolation algorithms   

Canadian fire management agencies interpolate weather observations from surrounding 

stations to estimate fire danger in areas between weather stations. In this study, I selected five 

types of interpolation algorithms to compare with the CaPA System in estimating daily 

precipitation in data scarce area (a review of fire weather interpolation is presented in Section 

1.2.4). These five interpolation algorithms were classified into three groups: 1) non-geostatistical 

methods – inverse distance weighting, smoothed thin-plate spline, and non-smoothed thin-plate 

spline; 2) univariate geostatistical method – ordinary kriging; and 3) hybrid method –regression 

kriging (i.e., a regression of precipitation observations with CaPA System estimates and kriging 

on the regression residuals).  

Smoothing the observed data is often implemented in interpolation algorithms to reduce 

the skewness of climate variables. There is a debate regarding which smoothing technique – 

square root (Hutchinson 1995), cubic root (Stidd 1973), or natural log – is the best for 

precipitation data. We implemented all three smoothing to find an appropriate smoothing 

technique for this study. Overall, we evaluated 18 algorithms of 6 methods (i.e., CaPA System 

and 5 interpolation methods as listed in Table 2.3). There was no transformation technique 

applied to inverse distance weighting because inverse distance weighting was used as a control 

group in the analysis as it is the interpolation method used by the Canadian Wildland Fire 

Information System (CWFIS) (Natural Resource Canada 2008).  

 For each interpolation algorithm, precipitation estimates were generated using a leave-

one-out cross-validation (LOOCV) procedure (Stone 1974). The LOOCV removed one station 

from the AAF station network in the validation area (Figure 2.4) at a time. Then, precipitation of 

the removed station was estimated using the rest of the AAF stations in the study area for every 

interpolation algorithm. After the interpolation, the removed station was put back into the dataset 

and the next station was removed in sequence until all the stations in the validation area had been 

removed once. The LOOCV procedure was repeated every day in the study period to generate 

consecutive estimates of precipitation.  
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Table 2.3 Candidate algorithms used to estimate daily precipitation in this study   

Candidates Transformation of PCP
1
 Acronym 

Inverse distance weighting
 

n/a IDW 

Canadian Precipitation Analysis System
2
 n/a CaPA 

Smoothed Thin-plate spline  n/a tps_s 

Smoothed Thin-plate spline  square root tps_s_ sqrt 

Smoothed Thin-plate spline  cubic root tps_s_ cbrt 

Smoothed Thin-plate spline natural log tps_s_ln 

Non-smoothed Thin-plate spline  n/a tps_ns 

Non-smoothed Thin-plate spline square root tps_ns_sqrt 

Non-smoothed Thin-plate spline cubic root tps_ns_cbrt 

Non-smoothed Thin-plate spline natural log tps_ns_ln 

Ordinary kriging n/a ok 

Ordinary kriging square root ok_sqrt 

Ordinary kriging cubic root ok_cbrt 

Ordinary kriging natural log ok_ln 

Regression kriging with CaPA n/a rk(capa) 

Regression kriging with CaPA square root rk(capa)_ sqrt 

Regression kriging with CaPA cubic root rk(capa)_cbrt 

Regression kriging with CaPA natural log rk(capa)_ln 
1
Transformation of PCP was applied to PCP observations prior to the interpolation, and a back-transformation 

is applied to the interpolated PCP estimates. Among the three transformations, we will choose one technique 

that produces the best PCP estimates for the rest of the analysis.  
2
The CaPA system estimates were extracted from CaPA System grids using the nearest neighbour search 

algorithm.
 

 

The five interpolation methods (Table 2.3) share the same general estimation formula: 

                                                 �̂�(𝑥0) = ∑ 𝜆𝑖𝑍
𝑛
𝑖=1 (𝑥𝑖)                                                              [1] 

Where �̂� is the estimated precipitation value at the point of interest 𝑥0, 𝑍 is the observed 

precipitation at the sampled point 𝑥𝑖, n is the sampled points used for the interpolation, and 𝜆𝑖 is 

the weight assigned to the sampled point (Webster and Oliver 2007 ). The difference among 

these interpolation algorithms lies in the way of calculating the weights (𝜆𝑖). Detailed 

descriptions of these algorithms are documented in Li and Heap (2011 ). Descriptions for each 

method were provided as follows and the R codes of each algorithm are presented in Appendix 2.  
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2.3.1 Non-geostatistical algorithms  

Currently, fire management agencies use interpolation algorithms ranging from simple 

weighted averages to more sophisticated cubic splines to assess fire danger across landscapes; all 

of these interpolation algorithms fall into the category of non-geostatistical methods.  

Inverse Distance Weighting  

Inverse Distance Weighting (IDW) is a simple interpolation algorithm based on the 

function of inverse distance (Shepard 1968), where the weight, 𝜆𝑖, decreases with the distance to 

the point of interest increases. The weight is expressed as 𝜆𝑖 = 1 𝑑𝑖
𝑝 ∑ 1 𝑑𝑖

𝑝⁄𝑛
𝑖=1⁄⁄ , where 𝑑𝑖is the 

distance between 𝑥0 and 𝑥𝑖, and p is the power parameter that determines how much the weights 

diminish with distance. As p increases, more weight is placed on the nearby observations, and a 

p of zero means the interpolated value is the average of sampled observations. I used a p of 2 

according to the current interpolation algorithm used by the CWFIS. Calculations of the 

precipitation estimates for the IDW algorithm were completed in the R programming language 

(R Development Core Team 2016) using the gstat package (Pebesma 2004).  

Smoothed Thin-Plate Spline  

 Smoothed Thin-plate spline (TPS) uses the sampled observations to fit a spline surface 

with the constraint of smoothing (Wahba 1990). TPS can be viewed as a generalization of linear 

regression where the parametric model is replaced by a smooth non-parametric function 

(Haylock et al., 2008). Smoothed TPS optimizes the amount of the data smoothing to minimize 

the predictive error measured by generalized cross validation (GCV). TPS surface is fitted by 

univariate spline function of location variables (latitude and longitude) (Hutchinson 1998a), or 

multivariate spline function with an additional variable of elevation (also called cubic spline) 

(Hutchinson 1998b). The inclusion of elevation in TPS surface is beneficial for climate fields 

(Tait et al., 2006), but preliminary analysis of the data showed that precipitation in validation 

area was not well correlated with elevation, which is a result of relatively small variations in 

elevation (Figure 2.3). Therefore, I only used location variables for the spline function in this 

study; equations of the smoothed TPS are given in Wahba (1990) and Hutchinson (1993).  

 Smoothed TPS is robust to the interpolation of many climate variables across large 

domains (Price et al., 2000). The assumption of smoothed TPS is that the interpolated surface is 
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perfectly smooth, which is often not true for many climate fields (e.g., summer precipitation). In 

addition, the smoothing effect may violate the sampled observations and produce unrealistically 

smooth results (Wahba 1990).  

Non-smoothed Thin-Plate Spline 

Non-smoothed TPS fits the spline surface without the constraint of smoothing, that is, the 

spline surface is fitted exacted with the sampled observations. Compared to the smoothed TPS, 

the exact spline may produce local artifacts of excessively high or low values, but non-smoothed 

TPS may be superior to smoothed TPS when extreme values are of critical concerns. 

Precipitation estimates for smoothed and non-smoothed TPS were calculated using the fields 

packages (Douglas et al., 2016) in R. 

2.3.2 Geostatistical algorithm - ordinary kriging  

Ordinary Kriging (OK) is a commonly used geostatistical method that provides the best 

linear unbiased estimates (BLUE), where the estimated value for the point of interest is a 

weighted linear combination of sampled observations (i.e., the sum of weights is 1) 

(Matheron1963). OK is similar but more advanced than IDW, as the weight 𝜆𝑖 of OK is 

estimated by minimizing the variance of the prediction errors (Isaaks and Srivastava 1989). This 

is achieved by constructing a semi-variogram that models the difference between neighboring 

values. Details about the semi-variogram can be found in Li and Heap (2008). Semi-variograms 

can be fitted with simple models such as Nugget, Exponential, Spherical, Gaussian; and the 

nested sum of one or more simple models (Burrough and McDonnell 1998 ). In this study, I 

fitted the semi-variogram using a spherical model that is commonly used in interpolation studies. 

Additionally, a different semi-variogram was built for each point of interest.  

Compared to non-geostatistical algorithms, the strength of ordinary kriging is its ability 

to model the spatial structure (variance) of the sampled observations. An assumption of ordinary 

kriging is data stationarity, that is, the mean of the interpolated variable is constant within the 

search window, which is often not true. This makes OK unsuitable for interpolation over large 

domains and often requires data transformation (Li and Heap 2014).  
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2.3.3. Hybrid algorithm – regression kriging  

Regression kriging (RK) is a hybrid method that combines a regression of the sampled 

observations on secondary variables with the simple kriging of the regression residuals (Odeh et 

al.,1995). Equations of regression kriging can be found in Li and Heap (2008). In this study, I 

implemented the regression kriging algorithm in three steps. For each point of interest, I first 

fitted a linear regression of sampled precipitation observations and CaPA System estimates. 

Then, a simple kriging of the regression residual (predicted value minus observation) was 

performed by constructing semi-variogram with a spherical model. Finally, I summed the 

predicted value of linear regression and the kriged value to generate the final estimate. 

Precipitation estimates for ordinary kriging and regression kriging were calculated using the 

gstat package (Pebesma 2004) built in R.  

Compared to ordinary kriging, regression kriging does not require the interpolated data to 

be stationary within the search window. Regression also can extend its algorithm to a broader 

range of regression techniques such as GLM by allowing separate interpretation of the two 

interpolated components (Hengl et al.,2007). 

2.4 Canadian Forest Fire Weather Index (FWI) System  

 The FWI System (Van Wagner 1987) uses daily noon weather station records of ground 

temperature, relative humidity, 10m open wind speed, and 24h precipitation to produce six 

indicators of the relative fire danger in a local region (Figure 2.8). I used precipitation estimates 

(i.e., CaPA System and interpolation algorithms) and AAF station observations (i.e., Temp, WS, 

and RH) to calculate the indexes of FWI System. The FWI System calculated using all the AAF 

station observations were treated as true values. 

 FWI System moisture codes (i.e., FFMC, DMC, and DC, see Figure 2.8) are modelled 

using a dynamic bookkeeping system that tracks the drying and wetting of fuel layers. The three 

fuel moisture codes are strongly influenced by precipitation; with the occurrence of rain events 

increasing the fuel moisture content of the fuel layers, thus decreasing the values of the fuel 

moisture codes (Van Wagner 1987). However, these fuel moisture codes are influenced by 

precipitation of different magnitudes and a minimal precipitation amount (effective rain) of 
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0.5mm, 1.5mm, and 2.8mm is required to reduce the code values of FFMC, DMC, and DC 

respectively (Van Wagner 1987). The effectiveness of precipitation at reducing the values of the 

fuel moisture codes is negatively correlated to the amount of precipitation and is positively 

correlated with the code values prior to the rain, all of which is determined by the absorption rate 

of fuel layers (Lawson and Armitage 2008). The FFMC, DMC, and DC have a rain capacity of 

0.62mm, 15mm, and 100 mm respectively, that is, depending on the previous day’s code values, 

precipitation over that capacity becomes run-off and has no effect on reducing the code values. 

Fuel layers also start to dry in the absence of rain, leading to the increase of fuel moisture code 

values. The drying time lags (the time it requires for fuel to lost ~2/3 of its free moisture toward 

equilibrium moisture content) are 2/3 day, 12 days, and 52 days respectively for the FFMC, 

DMC, DC under standard condition (Temp 20°C, RH 45%, WS 13km/h) (Van Wagner 1987).  

 Initial analysis showed that errors of the precipitation estimates were accumulated (error 

propagation) in DC and DMC due to their long drying time lag. I did not adjust this error 

propagation and used the estimated previous day’s fuel moisture codes to calculate today’s fuel 

moisture codes because this is the approach used by the CWFIS for fire danger mapping 

(personal communication with Bo Lu). The calculation of FWI System was conducted in R using 

the "cffdrs" package (Wang et al., 2017 ) which follows the equations and calculations 

described in Van Wagner (1987). 

   

 

 

 

 

 

 

Figure 2.8 Structure of the Canadian Forest Fire Weather Index System (Van Wagner 1987) 
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2.5 Model evaluation 

2.5.1 Skill scores  

 I used continuous and categorical scores to evaluate the candidates in estimating 

precipitation of any amounts and the effective precipitation for the FWI System fuel moisture 

codes. The formulas of skill scores used in this study are summarized in Table 2.4.  

Table 2.4 Definition of skill scores used in this study. 

 

Mean Absolute Error (MAE) is a natural, unambiguous measure of average error 

(Willmott and Matsuura, 2005). MAE describes the errors in the same unit as the precipitation 

(mm) with the best score of zero. I did not choose the commonly used Root Mean Square Error 

(RMSE) because its sensitivity to outliers (here, extremely large PCP events) could inflate the 

skill, especially when tested dataset does not follow a normal distribution (Willmott and 

Matsuura 2005). Chai (2014) also suggested MAE is a better choice to evaluate precipitation 

errors than RMSE because RMSE tends to overemphasize outliers.  

Skill Score Equations
1
 

Mean Absolute Error (MAE) MAE =
1

n × k
∑ ∑|Pi,j − Oi,j|

k

j=1

n

i=1

 

Mean error (Bias) Bias =
1

n × k
∑ ∑(Pi,j − Oi,j)

k

j=1

n

i=1

 

Equitable Threat Score (ETS)                 ETS =
a−R(a)

a+b+c−R(a)
; R(a) =

(a+b)(a+c)

a+b+c+d
 

Frequency Bias Index (FBI) FBI =  
a + b

a + c
− 1 

1
Explanation of the variables: 𝑃𝑖,𝑗 is the predicted PCP value at weather station i on day j, 𝑂𝑖,𝑗 is the observed 

PCP value at the same weather station i on the same day j. n is the number of validation stations and k is the 

number of days in the study.  a, b, c, d are defined using the contingency table as described by Wilks (2011). 

Specifically, a is the fraction of hits (e.g., PCP>0.5mm in the estimates and PCP>0.5mm in the observations); b 

is the fraction of false alarms (e.g., PCP>0.5mm in the estimates and PCP<0.5mm in observations); c is the 

fraction of misses (e.g., PCP<0.5mm in the estimates and PCP>0.5mm in the observations; d is the fraction of 

correct rejections (e.g., PCP<0.5mm in the estimates and PCP<0.5 in the observations). 
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Mean error (Bias) is a continuous measure of the direction of the average errors between 

estimates and observations (Stanski HR 1989). The best score of Bias is zero; a positive/negative 

score means over-prediction /under-prediction.  

 Equitable threat score (ETS) is a categorical measure of the fraction of 

estimates/observations that are correctly predicted, adjusting by R(a), which is the expected 

amount of estimates that would be correctly classified if the estimate were completely random 

(Wilks 2011). R(a) makes ETS insensitive to the climatology of the event (e.g., dryness and 

wetness) and it is often used in the verification of rainfall in NWP models (Wilks 2011). ETS 

ranges from -1/3 to 1, with a perfect score of 1 and values less than 0 indicating no skill.  

Frequency bias index (FBI) is a categorical measure of the ratio between the frequency of 

estimates and the frequency of observations (Wilks 2011). FBI indicates whether the forecast 

system has a tendency to under-prediction (FBI < 0) or over-prediction (FBI > 0) events. FBI 

does not measure how well the estimate corresponds to the observations. Note that I have 

subtracted 1 from the conventional definition of FBI, so the perfect score of FBI is 0. 

 The categorical indexes ETS and FBI were calculated by grouping the minimal 

precipitation thresholds for fuel moisture codes, i.e., 0.5 mm, 1.5 mm, and 2.8 mm for FFMC, 

DMC, and DC respectively. Therefore, the following bins were used for the calculation: 0< 

precipitation ≤0.5 mm; 0.6 mm< precipitation ≤ 1.5 mm; 1.6 mm < precipitation ≤ 2.8 mm; 

precipitation>2.9 mm.  

2.5.2 Statistical tests  

In this study, I also performed a hypothesis test to identify statistical significance in the 

precipitation and FWI System estimates with algorithms listed in Table 2.3. Because the 

precipitation data are often spatially and temporally correlated (Livezey and Chen 1983), I used a 

resampling hypothesis test procedure (Hamill 1999) that simultaneously accounts for these 

correlations by building a distribution through repeated random sampling of the tested data, 

which satisfies the independence requirement in the tests (Wilks 1997). 
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The resampling hypothesis test includes two major steps. First, a resampling one-way 

ANOVA is applied to precipitation / FWI System estimates from all the algorithms to determine 

if there were statistical differences between these estimates. Then, a resampling posthoc test was 

applied to identify which pair of algorithms produced significantly different estimates. The 

resampling posthoc test combines the resampling paired t-tests (Hamill 1999) and Holm-

Bonferroni p-values adjustment (Holm 1979) to accommodate for multiple comparisons. Details 

of the resampling posthoc test were summarized in Appendix 3. I provided a description of the 

resampling procedure as follows. 

Stationary Block Bootstrapping  

The resampling is achieved through stationary block bootstrapping (SBB) (Politis and 

Romano 1994), which was used by Lespinas et al., (2015) to evaluate the performance of the 

CaPA system in Canada. SBB is based on resampling blocks of observations with random length 

to form a stationary pseudo-time series. The length of each block follows a geometric 

distribution that is defined as Pr (𝑋 = 𝑚) =  (1 − 𝑝)𝑚−1 ∙ 𝑝; where p is a fixed number in [0, 1];  

search algorithm to a time-space data series through the following processes: 1) an initial date 

was randomly selected for each bootstrap sample; 2) a block contains b days of observations 

from the initial date was enforced, where b follows the geometric distribution with a mean block 

length of m. A m of 3days was chosen for precipitation due to its averaged temporal 

autocorrelation (Figure 2.9); 3) to preserve the spatial correlation, observations from all the 

locations within the block were collected; 4) the resampling of the time-space blocks is repeated 

with replacement until the reconstructed sample contains as many observations as the original 

sample; and 5) steps 1 to 4 were repeated 1000 times to generate 1000 resamples. The mean 

block length for precipitation and FWI System were chosen according to their average temporal 

autocorrelation as plotted in Figure 2.9.  
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Figure 2.9 Temporal autocorrelation of daily precipitation and FWI System  
Autocorrelation are averaged for all stations (n=81) in 2015.Error bars are calculated as the averaged temporal autocorrelation plus or minus the 

standard deviation of the temporal autocorrelation for all stations

  

 

 

 

The length of mean block length, m, was chosen to meet the independence 

requirement for each resampled block of PCP / FWI System Indexes. In this 

study, I chose an m of 3 days for PCP; m of 4 days for FFMC; m of 5 days for 

FWI; m of 12 days for DMC according to their temporal autocorrelation 

displayed here. The resampling hypothesis was not performed for DC and BUI 

because their temporal autocorrelation was too large.  
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2.6 Sensitivity analysis of weather station density  

 Because the performance of the interpolation methods is highly related to weather station 

density (Daly 2006; Hofstra et al., 2010), I performed a sensitivity analysis of weather station 

density. This analysis involved random sampling of fire weather stations at densities defined in 

Table 2.5. The sensitivity analysis applied all the aforementioned analysis steps and its process 

can be summarized as the following: 1) 10 % of the fire weather stations in the study area were 

randomly selected (includes stations in the validation area and buffer area); 2) LOOCV 

procedure was performed to generate precipitation estimates in the selected stations using 

interpolation method listed in Table 2.3 (estimates of CaPA System were extracted from the 

closest grid cell); 3) FWI System were calculated using the precipitation estimates with observed 

Temp, RH, and WS; 4) precipitation and FWI System estimates were evaluated using the skill 

scores listed in Table 2.5 (with emphasis on MAE); 5) step 1 to step 4 were repeated 100 times 

and the mean of the resulted skill scores were calculated; 6) steps 1 to 5 were repeated with 

random sampling 25%, 50%, 75% and 90% of available stations.  

Table 2.5 Weather station density used in the sensitive analysis 

 

 

 

 

 

 

 

 

 

 

 

 

Year Scenario Area (km
2
) No. of stations 

No. of stations per 

10 000km
2
 

2014 

10% selected 

505 964 

18 0.36 

25% selected 45 0.89 

50% selected 90 1.78 

75% selected 135 2.67 

90% selected 162 3.20 

2015 

10% selected 

505 964 

14 0.28 

25% selected 34 0.67 

50% selected 68 1.34 

75% selected 102 2.02 

90% selected 123 2.43 
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Chapter 3 Results 

3.1 Overall model performance  

3.1.1 Continuous scores and the choice of smoothing  

In 2014 and 2015, the kriging related algorithms ok_cbrt, rk(capa)_cbrt, and ok_sqrt, 

produced precipitation estimates with the smallest MAE values (Figure 3.1a, 3.1c). Compared to 

IDW, these algorithms had ~23.5%, 21.3%, and 21.7% lower MAE, respectively (Table 3.1). 

CaPA System had lower mid-tiered performance (13
th

 of 18) and was 7% lower in MAE than 

that of IDW (Table 3.1). Smoothed TPS related algorithms had upper mid-tiered performance 

(7
th

 -9
th

 of 18) when performed with smoothed precipitation and were 17.5% to 20.2 % lower in 

MAE than that of IDW (Table 3.1). Non-smoothed TPS was always higher in MAE than that of 

smoothed TPS, but non-smoothed TPS had lower MAE than that of CaPA System (Figure 3.1). 

Ordinary Kriging (OK) was the worst overall algorithm and was the only algorithm that 

performed worse than IDW (2.2% greater MAE comparing to IDW). 

The Bias ranking showed that IDW, regression kriging, and smoothed TPS had the 

smallest bias when performed with non-smoothed precipitation (Figure 3.1b, 3.1d). Ordinary 

kriging with smoothed precipitation had the largest negative bias (underestimation), while 

ordinary kriging with non-smoothed precipitation had the largest positive bias (overestimation). 

Additionally, CaPA System produced a relatively large negative bias amongst all the algorithms 

(Figure 3.1b and Figure 3.1b). Although IDW produced a very low bias, it does not necessarily 

indicate that IDW is a good algorithm. Because IDW also produced the largest MAE (Figure 3.1); 

the low bias of IDW may result from the cancelling-out of overestimates and underestimates. 

Smoothing precipitation observations using square root, cubic root, and natural log 

greatly reduced the prediction errors (i.e., MAE values, Figure 3.1a and 3.1c). However, 

interpolation algorithms performed with smoothed precipitation also tended to underestimate 

precipitation values, which is problematic for FWI System that are sensitive to seasonal 

precipitation (e.g., DMC and DC, as explained in Section 3.3). Among the three smoothing 

techniques, I selected the square root smoothing technique for the rest of the analysis and 

reduced the candidate algorithms from 18 to 10 as listed in Table 3.2. I chose square root 
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because all three smoothing techniques performed similarly in reducing the prediction errors, but 

square root smoothing technique resulted in a slightly smaller bias compared with the other two 

smoothing techniques.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.1 95% Confidence interval of candidate algorithms in validation area using 

resampled MAE and Bias 
Algorithms are ranked from the best (top) to the worst (bottom) according to the mean of 1000 replicates (dark dots).  

 

b)

 
 a 

a) 

 

d)

 
 a 

c) 
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Table 3.1 MAE and Bias of candidate algorithms in validation area 
MAE and Bias were calculated by averaging all the stations. 

Candidate Algorithms 
Transformation 

of PCP 

MAE(mm)  Bias(mm) 

2014 2015 
Percent change 

vs IDW (%)
1
 

 2014 2015 

IDW n/a 1.42 1.30 n/a  0.04 0.05 

CaPA n/a 1.33 1.20 (7.0)  (0.38) (0.34) 

Smoothed TPS  

n/a 1.34 1.24 (5.5)  0.03 0.08 

square root 1.14 1.08 (18.3)  (0.36) (0.27) 

cubic root 1.12 1.05 (20.2)  (0.49) (0.37) 

natural log 1.15 1.08 (17.5)  (0.4) (0.28) 

Non-smoothed TPS  

n/a 1.37 1.27 (2.9)  0.08 0.11 

square root 1.26 1.17 (10.6)  (0.13) (0.10) 

cubic root 1.25 1.16 (11.4)  (0.18) (0.16) 

natural log 1.28 1.17 (10.0)  (0.13) (0.11) 

Ordinary kriging 

n/a 1.47 1.31 2.2  0.16 0.15 

square root 1.11 1.02 (21.7)  (0.4) (0.36) 

cubic root 1.08 1.0 (23.5)  (0.55) (0.5) 

natural log 1.14 1.05 (19.5)  (0.44) (0.38) 

Regression kriging with 

CaPA 

n/a 1.33 1.23 (5.9)  0.03 0.08 

square root 1.12 1.03 (19.6)  (0.38) (0.31) 

cubic root 1.12 1.02 (21.3)  (0.52) (0.45) 

natural log 1.16 1.04 (19.2)  (0.42) (0.32) 
1 Percentage change (%) equals to the difference between the MAE values of candidate algorithms and IDW divided by 

the MAE value of IDW; the values were averaged for 2014 and 2015. 

Bold: the best performing algorithm. Underline: the worst performing algorithm. 

 

Table 3.2 Resampling paired t-test of candidate algorithms in validation areas using MAE  

 MAE (mm) averaged over all stations in 2014 and 2015 (test statistics) 

 

Algorithm
1
 

ok idw 
tps 

_ns 

tps 

_s 

rk 

(capa) 
CaPA 

tps 

_ns_s 

tps 

_s_s 

rk 

(capa)_s 

ok 

_s 
2014 1.47 1.42 1.37 1.34 1.33 1.33 1.25 1.14 1.16 1.12 

2015 1.31 1.30 1.27 1.24 1.23 1.20 1.16 1.08 1.03 1.02 

ok –       ▲ ▲ ▲ 

idw  –    ▲  ●▲ ▲ ▲ 

tps_ns 
  

–    ▲ ▲ ▲ ▲ 

tps _s 
   

–   ▲ ▲ ●▲ ▲ 

rk(capa) 
    

–   ▲ ▲ ▲ 

CaPA 
     

–  ▲ ▲ ▲ 

tps_ns_s 
      

– ▲ ▲ ▲ 

tps_s_s 
       

–   

rk(capa)_s 
        

–  

ok_s 
         

– 
The better / worse performance than the algorithms on its left / right side.  

Bold: the best performing algorithm. Underline: the worst performing algorithm. 

 ●: comparisons achieved a significance level of α=0.05 in year 2014 

▲: comparisons achieved a significance level of α=0.05 in year 2015 

The output of the resampling post-hoc tests are presented in Appendix 3, Table A3-1. 



 

 34 
 

Statistical tests (Table 3.2) showed that in 2015, the top three algorithms - ok_sqrt, 

rk(capa)_sqrt, and tps_s_sqrt produced significantly better estimates of precipitation than other 

algorithms regarding MAE, but these three algorithms were not significantly different from each 

other. CaPA had significantly lower MAE than IDW in 2015. Algorithms with square root 

smoothing of precipitation had significantly lower MAE compared to non-smoothed algorithms. 

In 2014, there were fewer comparisons that showed statistical significance (Table 3.2); this may 

be caused by the smaller dataset in 2014 (49 days versus 123 days).  

Considering both MAE and Bias, regression kriging with CaPA estimates as covariate 

emerged as the best overall algorithm in estimating precipitation. Examples of 24 hour 

precipitation estimated using the 10 candidate methods are provided in Appendix 4, all of which 

showed the advantages regression kriging. I also evaluated these algorithms using the unit-less 

categorical scores by grouping precipitation observations based on the minimal precipitation 

values that are required to reduce the fuel moisture codes values.  

3.1.2 Categorical scores  

 In 2014 and 2015, every algorithm was better at predicting precipitation <0.5 mm and 

precipitation >2.8mm than precipitation between 0.5-2.8 mm (ETS, Figure 3.2a). The poor skill 

in predicting precipitation between 0.5-2.8 mm was a result of large positive bias (overestimation) 

as indicated by FBI (Figure 3.2b). Additionally, every algorithm underestimated precipitation 

<0.5 mm; CaPA and interpolation algorithms with smoothing underestimated precipitation >2.8 

mm, while algorithms without smoothing overestimated precipitation > 2.8 mm (Figure 3.2b). In 

particular, CaPA had the second worst ETS and FBI scores in predicting precipitation >2.8 mm 

(Figure 3.2), which is due to Capac’s tendency of underestimating precipitation in that range 

(Table 3.3b).This underestimation of precipitation will result in large errors for DMC and DC as 

explained in Section 3.4.  

In 2015, rk(capa)_sqrt had the best ETS scores for each precipitation category and was 

significantly better than OK, IDW, CaPA, and rk(capa) (Table 3.3a). There was no significant 

difference between the top few algorithms regarding ETS. Rk(capa) was significantly less biased 

than other algorithms in predicting precipitation >2.8 mm, while tps_ns_sqrt was significantly 

less biased in predicting precipitation between 0.5 – 2.8 mm (Table 3.3b).  
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Figure 3.2 Bar plots of (a) ETS and (b) FBI of precipitation estimates in 2014 and 2015 
PCP ≤0.5 mm has no effect to fuel moisture codes; 0.5 mm <PCP ≤1.5 mm only affect FFMC; 1.5 mm <PCP ≤ 2.8 

mm only affect FFMC and DMC; PCP >2.8 mm affect FFMC, DMC, and DC. ETS and FBI values were calculated 

by pooling all the station estimates together. The perfect ETS score is 1 and value < 0 indicates no skill; the perfect 

FBI score is 0 and a positive/negative value indicates a tendency of overestimation/underestimation. 

a) 

b) 
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Table 3.3 Resampling paired t-test of candidate algorithms in validation areas using 

(a)ETS and(b)FBI 

a) ETS averaged over all stations in 2015 (test statistics) 

PCP (mm) ok idw 

tps 

_ns tps_s 

rk 

(capa) CaPA 

tps 

_ns_s 

tps 

_s_s 

rk(capa) 

_s ok_s 

0.5 – 1.5 0.06 0.06 0.08 0.09 0.06 0.09 0.09 0.11 0.12 0.12 

1.5 – 2.8 0.06 0.08 0.07 0.07 0.08 0.07 0.09 0.10 0.11 0.10 

> 2.8 0.42 0.44 0.43 0.44 0.46 0.42 0.46 0.47 0.49 0.48 

Algorithm ok idw 

tps 

_ns tps _s 

rk 

(capa) CaPA 

tps 

_ns_s 

tps 

_s_s 

rk(capa) 

_s ok_s 

ok –        ●▲■ ● 

idw  –      ● ● ● 

tps_ns   –      ■ ●■ 

tps_s    –       

rk (capa)     –   ● ● ● 

CaPA      –   ■  

tps_ns_s       –    

tps_s_s        –   

rk(capa)_s         –  

ok_s          – 

Bold: the best performing algorithm. Underline: the worst performing algorithm. A higher ETS score indicates greater 

skill.  

 ●   comparisons achieved a significance level of α=0.05 for PCP range from 0-0.5 mm  

▲ comparisons achieved a significance level of α=0.05 for PCP range from 1.5 to 2.8 mm 

 ■   comparisons achieved a significance level of α=0.05 for PCP > 2.8 mm  

The output of the resampling post-hoc tests is presented in Appendix 3, Table A3-2. 

 

b) FBI averaged over all stations in 2015 (test statistics) 

PCP (mm) ok idw 

tps 

_ns 

tps 

_s rk (capa) CaPA 

tps 

_ns_s 

tps 

_s_s 

rk(capa) 

_s ok_s 

0.5 – 1.5 1.17 1.35 0.25 0.63 1.28 0.48 0.17 0.35 0.37 0.47 

1.5 – 2.8 1.34 1.15 0.21 0.59 0.67 0.17 0.05 0.10 0.11 0.07 

> 2.8 0.05 0.06 0.08 0.08 0.03 (0.20) (0.06) (0.16) (0.19) (0.20) 

Algorithm ok idw 

tps 

_ns tps_s rk (capa) CaPA 

tps 

_ns_s 

tps 

_s_s 

rk(capa) 

_s ok_s 

ok –  ▲   ●▲ ▲ ▲ ▲■ ▲■ 

idw  – ●▲ ▲ ▲ ●▲ ●▲ ●▲ ●▲■ ●▲■ 

tps_ns   – ● ▲ ■ ▲■ ■ ■ ■ 

tps_s    –  ■ ●▲ ▲ ▲■ ▲■ 

rk (capa)     – ▲■ ●▲ ●▲■ ●▲■ ▲■ 

CaPA      – ● ● ●  

tps_ns_s       – ● ●■ ■ 

tps_s_s        –   

rk(capa)_s         –  

ok_s          – 

Similar to Table 3.3a, but showing the results for FBI. A FBI score of zero indicates no bias, while a positive/negative 

score indicates over/underestimate.  

The output of the resampling post-hoc tests are presented in Appendix 3, Table A3-3. 
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Figure 3.3 MAE of precipitation estimates by stations in 2015 
MAE was averaged over the 2015 study period (123days). Stations with lighter colour performed better than stations with darker colour.  
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3.2 Spatial variations  

 By calculating MAE values on a station-by-station basis, we found that algorithms 

performed differently in radar and non-radar areas, as well as in Boreal and Foothills areas 

(Figure 3.3).  

3.2.1 Radar versus non-radar  

In radar areas, CaPA related methods were the top performing algorithms (Figure 3.4a) 

and rk(capa)_sqrt performed the best; these algorithms were the only algorithms that had reduced 

MAE values in radar areas (Table 3.4). Statistical tests in radar areas were tempered by the fewer 

stations (n=8), but rk(capa)_sqrt still showed significantly lower MAE than 5 out of 9 other 

algorithms (Table 3.4). CaPA System, however, was only significantly better than IDW and 

rk(capa) was significantly better than tps_ns (Table 3.4). In non-radar areas (Figure 3.4b and 

Table 3.4), all the algorithms had very similar MAE values compared to that of overall validation 

area; this may due to 90% of AAF weather stations are located in non-radar covered areas. 

ETS (FBI) scores in radar and non-radar areas (Figure 3.5) followed a similar pattern of 

ETS (FBI) scores in validation area (Figure3.2). In radar areas, rk(capa)_sqrt had the best ETS 

scores in each precipitation category and had significantly greater ETS scores than that of OK 

and IDW when predicting precipitation between 0.5-1.5 mm (Table 3.5). In radar areas, CaPA 

had improved ETS scores in every precipitation category compared to non-radar areas (Figure 

3.5a), but the improvement was not significant (Table 3.5). In radar areas, CaPA had the least 

improvement of ETS scores in predicting precipitation >2.8mm; because CaPA had a larger 

tendency to underestimate precipitation >2.8mm compared to non-radar areas (e.g., FBI changed 

from -0.17 to -0.33, Figure 3.5b). Both CaPA and rk(capa)_sqrt were significantly more biased 

than other algorithms in predicting precipitation >2.8mm. In radar areas, rk(capa) was the least 

biased algorithm in predicting precipitation>2.8mm and showed significant improvement over 

CaPA, rk(capa)_sqrt, and ok_sqrt (Table 3.6).  
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Figure 3.4 95% Confidence interval of candidate algorithms in (a) radar and (b) non-radar 

using resampled MAE. 
Algorithms are ranked from the best (top) to the worst (bottom) according to the mean of 1000 replicates (dark dots) 

in radar covered areas. 

 

Table 3.4 Resampling paired t-test of candidate algorithms in radar and non-radar areas 

using MAE  
 MAE (mm) averaged over stations in  radar / non-radar for 2015 (test statistics) 

Algorithm ok idw 

tps 

_ns tps_s 

rk 

(capa) CaPA 

tps 

_ns_s 

tps 

_s_s 

rk(capa) 

_s ok_s 

Non-radar 1.30 1.29 1.25 1.22 1.23 1.21 1.14 1.06 1.03 1.01 

Radar 1.37 1.39 1.47 1.39 1.17 1.12 1.36 1.24 1.01 1.18 

Percent change (%) (5.1) (7.2) (15.0) (12.2) 5.1 8.0 (16.2) (14.5) 2.0 (14.4) 

Algorithm ok idw 

tps 

_ns tps_s 

rk 

(capa) CaPA 

tps 

_ns_s 

tps 

_s_s 

rk(capa) 

_s ok_s 

ok –      ▲ ▲ ●▲ ●▲ 

idw 
 

–    ● 
 

▲ ●▲ ●▲ 

tps_ns 
  

–  ●  ●▲ ▲ ●▲ ●▲ 

tps_s 
   

–   ▲ ●▲ ●▲ ●▲ 

rk (capa) 
    

–   ▲ ●▲ ▲ 

CaPA 
     

– 
 

▲ ▲ ▲ 

tps_ns_s 
      

– ▲ ▲ ▲ 

tps_s_s 
       

– 
 

▲ 

rk(capa)_s 
        

–  

ok_s 
         

 

Bold: the best performing algorithm in radar/non-radar regions. Underline: the worst performing algorithm in radar/non-radar 

regions.  

▲: comparisons achieved a significance level of α=0.05 in non-radar region  

●: comparisons achieved a significance level of α=0.05 in radar region. 

The output of the resampling post-hoc tests are presented in Appendix 3-Table A3-4 

a) b) 
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Figure 3.5 Plots of (a) ETS and (b) FBI in radar and non-radar areas 
ETS and FBI values were calculated by polling all station estimates within the radar / non-radar areas in 2015.  

 

a) 

b) 
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Table 3.5 Resampling paired t-test of candidate algorithms in radar and non-radar areas 

using ETS  

  ETS averaged over stations in non-radar / radar in 2015 (test statistics) 

Regions 

PCP 

(mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

Non-

radar 

0.5 – 1.5 0.06 0.06 0.08 0.09 0.60 0.09 0.09 0.10 0.11 0.12 

1.5 – 2.8 0.06 0.08 0.07 0.07 0.08 0.06 0.09 0.09 0.10 0.10 

> 2.8 0.43 0.43 0.43 0.43 0.46 0.42 0.46 0.48 0.49 0.49 

Radar 

0.5 – 1.5 0.05 0.05 0.06 0.06 0.07 0.14 0.06 0.09 0.17 0.13 

1.5 – 2.8 0.05 0.10 0.05 0.11 0.10 0.11 0.08 0.13 0.20 0.12 

> 2.8 0.42 0.45 0.39 0.39 0.51 0.45 0.42 0.45 0.52 0.43 

 
Algorithm ok idw 

tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

 

           

idw  –      ● ●■ ● 

tps_ns   –       ●■ 

tps_s    –       

rk (capa)     –   ●  ● 

CaPA      –   ■  

tps_ns_s       –    

tps_s_s        –   

rk(capa)_s         –  

ok_s          – 

Radar 

ok –        ●  

idw 
 

–       ●  

tps_ns 
 

 –        

tps_s 
 

  –    ■   

rk (capa) 
 

   –      

CaPA 
 

    –     

tps_ns_s 
 

     –    

tps_s_s 
 

      –   

rk(capa)_s 
 

       –  

ok_s 
         

– 

Bold: the best performing algorithm. Underline the worst performing algorithm. A higher ETS score indicates greater 

skill.  

The outputs of the resampling posthoc tests are presented in Appendix 3, Table A3-5 and Table A3-6. 
 ●   Comparisons achieved a significance level of α=0.05 for PCP range from 0-0.5 mm  

▲ comparisons achieved a significance level of α=0.05 for PCP range from 1.5 to 2.8 mm 

 ■   comparisons achieved a significance level of α=0.05 for PCP > 2.8 mm  
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Table 3.6 Resampling paired t-test of candidate algorithms in radar and non-radar areas 

using FBI 

  FBI averaged over stations in non-radar / radar in 2015 (test statistics) 

Regions 

PCP 

(mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

Non-

radar 

0.5 – 1.5 1.20 1.3 0.26 0.65 1.32 0.50 0.17 0.35 0.38 0.49 

1.5 – 2.8 1.35 1.17 0.21 0.57 0.69 0.17 0.04 0.08 0.12 0.07 

> 2.8 0.06 0.06 0.08 0.08 0.04 (0.17) (0.06) (0.16) (0.19) (0.21) 

Radar 
0.5 – 1.5 0.92 1.37 0.18 0.49 0.93 0.33 0.14 0.31 0.27 0.36 

1.5 – 2.8 1.30 1.02 0.20 0.73 0.55 0.09 0.14 0.32 0.03 0.09 

> 2.8 (0.08) 0.06 0.12 0.07 (0.06) (0.33) (0.03) (0.16) (0.26) (0.27) 

 
Algorithm ok idw 

tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

Non-

radar 

ok –  ▲   ▲ ▲ ▲ ●▲ ▲ 

idw  – ▲ ▲ ▲ ●▲ ●▲ ●▲■ ●▲ ●▲■ 

tps_ns   –  ▲ ●▲■ ▲■ ■ ■ ■ 

tps_s    –  ■ ●■ ▲■ ▲■ ▲■ 

rk (capa)     – ▲ ●▲ ●▲■ ●▲ ●▲■ 

CaPA       ●    

tps_ns_s        ●  ■ 

tps_s_s           

rk(capa)_s           
ok_s           

Radar 

ok –          

idw 
 

–     ● ● ●▲■ ▲■ 

tps_ns 
 

 –   ■ ■  ■ ■ 

tps_s 
 

  –  ■   ■  

rk (capa) 
 

   – ■   ■ ■ 

CaPA 
 

    – ■    

tps_ns_s 
 

     –   ■ 

tps_s_s 
 

      –   

rk(capa)_s 
 

       –  

ok_s 
         

– 

Bold: the best performing algorithm.  Underline: the worst performing algorithm. A FBI score of zero indicates no bias, while 

a positive / negative score indicates over / underestimate.  

The outputs of the resampling post-hoc tests are presented in Appendix 3, Table A3-7 and Table A3-8. 

 ●   comparisons achieved a significance level of α=0.05 for PCP range from 0-0.5 mm  

▲  comparisons achieved a significance level of α=0.05 for PCP range from 1.5 to 2.8 mm 

 ■   comparisons achieved a significance level of α=0.05 for PCP > 2.8 mm. 

 

3.2.2 Foothills versus Boreal  

The top performing algorithms in Foothills and Boreal were identical (Figure 3.6), but all 

the algorithms produced larger MAE in Foothills compared to Boreal (Figure 3.6). This suggests 

that  all the algorithms performed worse in Foothills, which mat due to the climatology between 

the two areas is very different (e.g., Foothills is much wetter than the Boreal, see Table 2.2). 
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Analysis based on the 2015 dataset showed that every algorithm was more accurate (i.e., 

higher ETS score) and was less biased (i.e., smaller absolute FBI score) in Foothills than in 

Boreal, especially in predicting precipitation <2.8 mm (Figure 3.7). This result is contrary to the 

result indicated by MAE and can be explained by 1) Foothills was wetter than Boreal (a 31% 

larger daily precipitation, see Table 2.2); and 2) the nature of MAE and ETS (FBI) is different. 

MAE is a continuous measure of average error and is dependent on the climatology of the event 

(e.g., magnitude of precipitation event). Therefore, MAE may be greater in wet areas than dry 

areas. However, ETS (FBI) is dependent on a unit-less contingency table and is insensitive to the 

climatology of the event. It is, therefore, more appropriate to use ETS (FBI) to compare the 

precipitation methods in Foothills and Boreal. Additionally, the greater skill of algorithms in 

Foothills may be due to a higher weather station density in this region, that is, Foothills had a 

146% higher station density compared to Boreal regions (Table 2.1). The outputs of statistical 

tests were presented in Appendix 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 95% Confidence interval of candidate algorithms in (a) Foothills and (b) Boreal 

using resampled MAE 
Algorithms are ranked from the best (top) to the worst (bottom) according to the mean of 1000 replicates (dark dots) 

in Foothills areas. 

a) b) 
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Figure 3.7 Plots of (a) ETS and (b) FBI in Foothills and Boreal 
ETS and FBI values were calculated by pooling all station estimates in 2015.  

a) 

b) 
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3.3 FWI System  

 The rk(capa)_sqrt had the overall lowest MAE values for FFMC, ISI, and FWI estimates 

that were calculated using estimated precipitation and observed Temp, RH, and WS (Table 3.7). 

Compared to IDW, rk(capa)_sqrt had 16%, 29%, 22% lower MAE for FFMC, ISI, and FWI 

estimates, respectively. CaPA System showed mid-tired MAE values for FFMC, ISI, and FWI 

estimates, while Ordinary kriging showed the largest MAE values for the same three FWI 

System (Table 3.7). Statistical tests showed that FFMC estimated with rk(capa)_sqrt had 

significantly lower MAE than the other algorithms and FWI estimated with rk(capa)_sqrt had 

significantly lower MAE than OK, IDW, CaPA, and smoothed TPS (Table 3.8). 

 Rk(capa) had the overall lowest MAE values for DMC, DC, and BUI estimates, while 

CaPA had the largest MAE values for the same three FWI System (Table 3.7). The poor 

performance of CaPA in estimating DMC, DC, and BUI may be due to its large tendency to 

underestimate  precipitation>2.8mm as showed in Figure 3.2b.. Statistical tests of DMC showed 

that only a single comparison archived significance, i.e., rk(capa) had significantly lower MAE 

than CaPA (Table 3.8). No statistical tests were performed on DC as explained in Section 2.5.2 

(Figure 2.9).  

In non-radar areas, the performance of algorithms were similar to that for the overall 

study areas, i.e., rk(capa)_sqrt / ordinary kriging was the best / worst performing method for 

FFMC, ISI, and ISI, while rk(capa) / CaPA was the best / worst performing method for DMC, 

DC, and BUI (Table 3.7). In radar areas, the performance of methods was not as consistent 

across the FWI System Indexes. For example, the best / worst performing method for FWI 

changed to rk(capa) / ok_sqrt, while the best performing method for DC changed to tps_s (Table 

3.7). Although CaPA related methods had smaller MAE values for FFMC, ISI, and FWI under 

radar, CaPA had increased MAE values for DMC, DC, and BUI estimates. This may be due to 

CaPA had increased tendency to underestimate precipitation>2.8mm in radar areas compared to 

non-radar areas (Figure 3.5). In Foothills and Boreal, the performance of all the algorithms were 

consistent with the overall study areas, but all the algorithms produced lower MAE values of 

FWI System estimates in Foothills (Table 3.7), which is in agreement with the ETS values of 

precipitation estimates presented in Figure 3.7a.  
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Table 3.7 MAE of FWI System calculated using estimated PCP and observed RH, Temp, 

WS  
Calculation of fuel moisture codes using estimated previous day values. MAE values are calculated by pooling all 

the stations in validation areas, radar areas, non-radar areas, Boreal regions, and Foothills regions.  
 

Region Method PCP(mm)  FFMC ISI FWI  DMC DC BUI 

Validation 

area 

(n = 81) 

capa 1.20  4.23 0.69 2.74  9.68 66.52 13.49 

idw 1.30  4.58 0.82 2.80  7.98 49.78 10.74 

tps_ns 1.27  4.20 0.71 2.52  7.79 49.95 10.76 

tps_ns_s 1.16  3.92 0.64 2.41  7.82 49.27 10.80 

tps_s 1.24  4.29 0.76 2.64  7.98 46.99 10.86 

tps_s_s 1.08  3.79 0.63 2.47  8.68 53.75 11.89 

rk(capa) 1.23  4.06 0.75 2.61  7.75 45.54 10.65 
rk(capa)_s 1.03  3.57 0.58 2.36  8.48 55.22 11.76 

ok 1.31  4.65 0.90 3.05  8.46 48.31 11.38 

ok_s 1.02  3.62 0.59 2.46  9.22 60.24 12.76 

Non-radar 

(n = 73) 

capa 1.21  4.23 0.71 2.76  9.53 64.27 13.26 

idw 1.29  4.55 0.84 2.87  8.20 49.43 10.99 

tps_ns 1.25  4.13 0.71 2.55  7.96 48.81 10.92 

tps_ns_s 1.14  3.84 0.65 2.43  7.96 47.64 10.88 

tps_s 1.22  4.23 0.77 2.69  8.18 47.06 11.10 

tps_s_s 1.06  3.72 0.63 2.49  8.78 53.41 11.97 

rk(capa) 1.23  4.08 0.77 2.67  7.91 44.11 10.82 
rk(capa)_s 1.03  3.54 0.59 2.38  8.53 53.39 11.73 

ok 1.30  4.61 0.92 3.13  8.71 47.34 11.67 

ok_s 1.01  3.55 0.60 2.44  9.22 58.91 12.69 

Radar 

(n = 8) 

 

capa 1.12  4.18 0.51 2.58  11.07 87.10 15.59 

idw 1.39  4.89 0.67 2.17  5.99 53.03 8.46 

tps_ns 1.47  4.88 0.67 2.25  6.28 60.34 9.31 

tps_ns_s 1.36  4.58 0.61 2.28  7.02 64.09 10.55 

tps_s 1.39  4.82 0.65 2.16  6.10 46.40 8.64 

tps_s_s 1.24  4.37 0.57 2.26  7.70 56.87 11.19 

rk(capa) 1.17  3.91 0.57 2.01  5.75 58.52 8.45 

rk(capa)_s 1.05  3.71 0.49 2.19  8.07 71.93 11.97 

ok 1.37  4.99 0.73 2.35  6.12 57.19 8.71 

ok_s 1.18  4.34 0.61 2.62  9.21 72.43 13.43 

Boreal 

(n = 53) 

capa 1.13  4.27 0.73 3.00  10.65 68.21 14.90 

idw 1.26  4.74 0.90 3.15  9.20 50.82 12.42 

tps_ns 1.21  4.32 0.77 2.84  9.07 51.92 12.45 

tps_ns_s 1.10  4.02 0.70 2.71  9.04 49.50 12.38 

tps_s 1.18  4.32 0.80 2.89  9.08 49.76 12.41 

tps_s_s 1.01  3.84 0.67 2.71  9.92 51.98 13.45 

rk(capa) 1.18  4.14 0.81 2.91  8.96 48.20 12.34 
rk(capa)_s 0.97  3.61 0.63 2.62  9.82 57.51 13.54 

ok 1.29  4.84 1.00 3.49  9.97 49.08 13.44 

ok_s 0.96  3.64 0.65 2.69  10.68 59.32 14.61 

Foothills 

(n = 28) 

capa 1.35  4.15 0.60 2.21  7.85 63.32 10.81 

idw 1.36  4.28 0.68 2.14  5.69 47.82 7.56 

tps_ns 1.39  3.99 0.59 1.92  5.45 46.20 7.56 

tps_ns_s 1.29  3.73 0.53 1.88  5.45 48.83 7.79 

tps_s 1.35  4.24 0.68 2.16  5.97 41.75 7.92 

tps_s_s 1.20  3.69 0.54 2.00  6.32 57.11 8.95 

rk(capa) 1.31  3.91 0.63 2.02  5.36 40.49 7.43 
rk(capa)_s 1.14  3.49 0.51 1.85  5.96 50.90 8.38 

ok 1.35  4.29 0.73 2.26  5.59 46.87 7.47 

ok_s 1.14  3.58 0.52 2.02  6.46 61.99 9.28 

Bold:  algorithm had the lowest MAE for the indexes of FWI system. 

Underline: algorithm had the highest MAE for the indexes of FWI indexes. 

n: number of stations. 
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Figure 3.8 95% Confidence interval of resampled MAE of precipitation estimates for (a) 

FWI, (b) FFMC, and (c) DMC in 2015 
Algorithms are ranked from the best (top) to the worst (bottom) according to the mean of 1000 replicates (dark dots) 

of FWI index.  

 

 Table 3.8 Resampling paired t-test of FWI, FFMC, and DMC estimates in validation areas 

using MAE 
 MAE in overall study region for 2015 (test statistics) 

Algorithm
1
 ok idw CaPA tps_s 

rk 

(capa) 

tps 

_ns 

tps 

_s_s ok_s 

tps 

_ns_s 

rk(capa) 

_s 

FWI 3.05 2.80 2.74 2.64 2.61 2.52 2.47 2.46 2.41 2.36 

FFMC 4.65 4.58 4.23 4.29 4.06 4.20 3.79 3.62 3.92 3.57 
DMC 8.46 7.98 9.68 7.98 7.75 7.79 8.68 9.22 7.82 8.48 

Method ok idw CaPA tps_s 

rk 

(capa) 

tps 

_ns 

tps 

_s_s ok_s 

tps 

_ns_s 

rk(capa) 

_s 

ok –    ▲  ▲ ▲ ▲ ●▲ 

idw 
 

–     ●▲ ▲ ●▲ ●▲ 

CaPA 
  

–  ■   ●▲ ● ●▲ 

tps_s 
   

–   ▲ ▲ ▲ ●▲ 

rk (capa) 
   

 –   ▲  ▲ 

tps_s_s 
     

– ▲ ▲ ▲ ▲ 

tps_ns 
     

 – ▲ ▲ ▲ 

ok_s  
      

– ▲  

tps_ns_s 
        

– ▲ 

rk(capa)_s 
         

– 

●:significance level of α=0.05 for FWI; ▲:sig. level of α=0.05 for FFMC;  ■: sig. level of α=0.05 for DMC 

Bold: best performing algorithm. Underline: worst performing algorithm.    

The output of the resampling post-hoc tests are presented in Appendix 3-Table A3-14. 

a) 

 
b) 

 
c) 
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The estimates of FWI System showed two groups of responses to precipitation estimates 

(Table 3.7). The performance of algorithms in estimating FFMC, ISI, and FWI was consistent 

with their performance in estimating precipitation, while the performance of these algorithms in 

estimating DMC, DC, and BUI was not as consistent. This is because long drying time lags in 

DMC and DC (12 and 52 days) resulted in an error propagation in precipitation estimates, 

making DMC and DC estimates be largely influenced by underestimation of true precipitation 

values.  

The error propagation of DMC and DC can be seen in Figure 3.9a, which shows that 

underestimation of large rainfall events can make a dramatic change to all FWI System Indexes, 

but DMC and DC need more time to recovery compared to FFMC and FWI.  For example, CaPA 

System greatly underestimated a large precipitation event (~40mm) at the White Court Auto 

station at the end of May (Figure 3.9a). This underestimation of actual precipitation values made 

FFMC, FWI, DMC, and DC estimated with CaPA System being all higher than observed values. 

As FFMC and FWI estimated with CaPA System recovered quickly after a few dry days, DMC 

and DC estimated with CaPA System required more time to recover and remained higher than 

observations during the rest of the study period (Figure 3.9a). This error propagation of DMC 

and DC can be corrected by using observed previous day’s fuel moisture values for the FWI 

System calculation (Figure 3.9b).  
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Figure 3.9 Time series plots of observations versus predictions of precipitation and FWI 

System calculated using (a) estimated previous day values and (b) observed previous day 

values at Whitecourt Auto station in 2015 (123 days) 
Whitecourt Auto is located in the validation Foothills region and is covered by the 120km Doppler radar range; and 

received the largest PCP accumulations in 2015.  FWI System codes were calculated using estimated PCP and 

observed RH, Temp, WS. 

b) 

a) 
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3.4 Weather station density  

Thus far, all the results presented above using all weather stations in the study area (an 

average of 2.69 weather stations / 10 000km
2 
in 2015). In this section, we examined the 

performance of interpolation algorithms under various station density scenarios. This was 

achieved by a random selection of 10%, 25%, 50%, 75%, and 90% of all the stations in our study 

areas. MAE values of precipitation and FWI System estimates at every station density scenario 

were summarized in Table 3.9.  

For precipitation, every interpolation algorithm had reduced MAE values as the station 

density increased (Table 3.9, 3.10). The MAE values of CaPA System remained the same 

because the station network integrated into the CaPA system was constant (~1.58 weather 

stations / 10 000km
2
) during the analysis. The best performing method shifted frequently as the 

station densities increased: CaPA was the best performing method when there were less than 0.6 

weather stations /10 000km
2
; rk(capa)_sqrt was the best performing method when there were 0.6 

-2.25 weather stations / 10 000km
2
; and ok_sqrt was the best performing method when there 

were more than 2.25 weather stations / 10 000km
2
.
 
The worst performing method also shifted 

between tps_ns, IDW, and OK as the station densities increased.  

 

  

 

 

 

 

 

 

 

 

Figure 3.10 MAE of candidate algorithms with changing weather station densities in 2015 
MAE values are averaged over the 100 resampling replicates 
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The sensitivity of FWI System to station densities was divided into two groups according 

to the dying time lags of the indexes (Figure 3.11 and Table 3.9).  

The quick drying indexes FFMC, ISI, and FWI had a similar trend to the precipitation 

estimates at every station density scenario (Figure 3.11). For example, CaPA was the best 

performing method for FFMC, ISI, and FWI indexes when station density was lower than 0.6 

weather stations / 10 000km
2
; rk(capa)_sqrt was the best performing method for FFMC, ISI, and 

FWI indexes when station density was higher than 0.6 weather stations / 10 000km
2
. The 

difference between the top few interpolation algorithms became smaller as the station density 

increased. For example, the MAE values of FWI System estimated with tps_ns_sqrt was similar 

to the MAE value of FWI System estimated with rk(capa)_sqrt when station density was greater 

than 2.5 weather stations / 10 000km
2 

(Figure 3.11). 

For slow drying indexes DMC, DC, and BUI, rk(capa) was the best algorithm regardless 

of station densities (Figure 3.11). The worst performing algorithm for DMC shifted from ok_sqrt 

to CaPA when station density exceeded 2.0 weather stations / 10 000km
2
. The worst performing 

algorithm for DC shifted from ok_sqrt to CaPA when station density exceeded 1.7 weather 

stations / 10 000km
2
.  
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Figure 3.11 MAE of FWI System with changing weather station densities in 2015  
MAE values are averaged over the 100 resampling replicates. FWI System indices were calculated using estimated PCP and observed RH, Temp, WS; 

calculation of fuel moisture codes used values estimated from the previous day.
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Table 3.9 Effect of station density on MAE of precipitation and FWI System in 2015 
FWI System codes were calculated using estimated PCP and observed RH, Temp, WS; calculation of fuel moisture 

codes using estimated previous day values. MAE values are averaged over the 100 resampling replicates. 

In 

dex 

Dens

ity
1 

% 
2 

capa idw 

tps_n

s 

tps_ns

_s tps_s 

tps_s

_s 

rk 

(capa) 

rk 

(capa)_s ok ok_s 

P 

C 

P 

 

0.28 10% 1.19 1.60 1.80 1.68 1.72 1.54 1.45 1.27 1.83 1.52 

0.67 25% 1.19 1.44 1.56 1.43 1.51 1.31 1.35 1.17 1.52 1.25 

1.34 50% 1.20 1.37 1.40 1.28 1.35 1.18 1.28 1.10 1.39 1.13 

2.02 75% 1.20 1.32 1.33 1.22 1.29 1.12 1.24 1.06 1.35 1.07 

2.43 90% 1.20 1.31 1.30 1.19 1.26 1.09 1.23 1.05 1.32 1.04 

2.69 100% 1.20 1.30 1.27 1.16 1.24 1.08 1.23 1.03 1.31 1.02 

F 

F 

M 

C 

0.28 10% 4.01 5.45 5.78 5.36 5.77 5.25 4.63 4.14 6.51 5.74 

0.67 25% 4.19 5.08 5.19 4.83 5.22 4.65 4.53 4.06 5.38 4.54 

1.34 50% 4.23 4.83 4.67 4.34 4.71 4.18 4.31 3.85 4.95 4.06 

2.02 75% 4.23 4.68 4.42 4.12 4.46 3.97 4.17 3.71 4.81 3.81 

2.43 90% 4.23 4.63 4.30 4.00 4.35 3.86 4.10 3.62 4.68 3.70 

2.69 100% 4.23 4.58 4.20 3.92 4.29 3.79 4.06 3.57 4.65 3.62 

I 

S 

I 

0.28 10% 0.66 0.96 1.00 0.90 1.01 0.88 0.84 0.69 1.19 0.91 

0.67 25% 0.68 0.88 0.86 0.78 0.90 0.76 0.80 0.66 0.98 0.74 

1.34 50% 0.69 0.85 0.77 0.70 0.82 0.69 0.78 0.63 0.92 0.66 

2.02 75% 0.69 0.84 0.74 0.67 0.78 0.66 0.76 0.61 0.92 0.63 

2.43 90% 0.69 0.83 0.72 0.65 0.76 0.64 0.75 0.59 0.90 0.61 

2.69 100% 0.69 0.82 0.71 0.64 0.76 0.63 0.75 0.58 0.90 0.59 

F 

W 

I 

0.28 10% 2.69 3.41 3.62 3.40 3.59 3.43 3.04 2.80 4.03 4.13 

0.67 25% 2.70 3.02 3.07 2.94 3.12 2.97 2.82 2.65 3.31 3.04 

1.34 50% 2.75 2.93 2.80 2.68 2.90 2.72 2.75 2.55 3.15 2.75 

2.02 75% 2.76 2.87 2.68 2.55 2.76 2.59 2.69 2.46 3.14 2.61 

2.43 90% 2.75 2.83 2.59 2.48 2.69 2.52 2.64 2.41 3.06 2.52 

2.69 100% 2.74 2.80 2.52 2.41 2.64 2.47 2.61 2.36 3.05 2.46 

D 

M 

C 

0.28 10% 9.63 10.13 11.07 11.16 10.73 11.74 9.52 9.93 11.72 17.00 

0.67 25% 9.46 8.64 9.29 9.53 9.08 10.13 8.44 9.40 9.36 11.18 

1.34 50% 9.77 8.55 8.81 8.96 8.83 9.57 8.37 9.32 9.10 10.37 

2.02 75% 9.74 8.25 8.39 8.45 8.42 9.13 8.10 8.94 8.85 9.87 

2.43 90% 9.72 8.10 8.05 8.11 8.15 8.87 7.92 8.73 8.53 9.44 

2.69 100% 9.68 7.98 7.79 7.82 7.98 8.68 7.75 8.48 8.46 9.22 

D 

C 

0.28 10% 63.56 59.97 68.06 72.37 66.69 80.27 56.16 61.19 75.63 127.0 

0.67 25% 65.48 54.09 58.06 60.85 55.69 66.98 50.02 59.46 55.94 78.18 

1.34 50% 67.02 52.58 55.60 56.74 52.16 62.04 49.48 59.97 52.93 69.60 

2.02 75% 66.13 51.73 53.13 52.70 49.96 56.93 47.82 57.35 51.05 63.73 

2.43 90% 66.25 51.15 51.79 51.16 48.69 55.50 47.28 56.56 49.74 61.74 

2.69 100% 66.52 49.78 49.95 49.27 46.99 53.75 45.54 55.22 48.31 60.24 

B 

U 

I 

0.28 10% 13.21 13.77 15.19 15.29 14.70 16.25 12.98 13.57 15.86 23.84 

0.67 25% 13.19 11.74 12.75 13.04 12.39 13.95 11.53 12.98 12.65 15.59 

1.34 50% 13.60 11.56 12.12 12.29 12.00 13.17 11.43 12.88 12.26 14.43 

2.02 75% 13.56 11.16 11.58 11.62 11.50 12.54 11.12 12.37 11.95 13.67 

2.43 90% 13.54 10.95 11.15 11.20 11.14 12.19 10.90 12.11 11.55 13.09 

2.69 100% 13.49 10.74 10.76 10.80 10.86 11.89 10.65 11.76 11.38 12.76 
1 
Density is the amount of stations per 10 000km

2
.  

2 
Number of selected weather stations was rounded up. 

Bold: best performing method (smallest MAE).  Underline: worst performing method (biggest MAE)   
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Chapter 4 Discussion  

  In this chapter, a discussion of the following a few issues was provided, including (1) the 

mid--tiered performance of CaPA System; (2) impacts of weather station density on model 

performance in Alberta; (3) advantages and disadvantages of using regression kriging with CaPA 

as covariate for fire weather interpolation; (4) impacts of error propagation in FWI System, and 

(5) possible sources of errors and future research directions.    

4.1 Evaluation of the CaPA System    

 Our results showed that the CaPA System was a mid-tiered method in estimating 

precipitation (13
th

 of 18) in the forested area of Alberta, except in Doppler radar covered area, 

where CaPA System produced the second best precipitation estimates. There are three reasons 

for the mid-tiered performance of the CaPA System.  

Firstly, the density of ECCC weather stations incorporated into CaPA System was much 

lower than the density of AAF weather stations used by the other interpolation methods (1.58 

versus 2.56 weather stations / 10 000 km
2
). Weather station observations are one of the three 

inputs for CaPA System. As suggested by Mahfouf et al., (2007), CaPA System is more accurate 

in areas close to weather station observations; otherwise, CaPA System relies on the less 

accurate GEM forecasts. In general, a density of 1.17 stations / 10 000 km
2 
was required by 

CaPA System to outperform GEM forecasts (Lespinas et al., 2015). In our case, ECCC station 

density exceeded this threshold, but AAF station density was even higher and enabled some 

interpolation methods to outperform CaPA System. Studies have suggested that the accuracy of 

interpolation methods decrease with station density (Flannigan et al., 1998; Hofstra et al., 2010). 

This study found that when AAF station density dropped below 0.6 weather stations / 10 000km
2
, 

CaPA System would be superior to all interpolation methods considered in this study. This 

finding is important because it proves the validity of using CaPA System in data scarce areas 

(e.g., northern Alberta). The threshold of 0.6 weather stations / 10 000km
2 
can be used by fire 

management agencies to determine whether the use of CaPA System will be a valuable asset for 

fire danger rating in areas between weather stations. Additionally, ECCC and AAF operate two 
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separate weather station networks; we feel that it would be beneficial to both agencies by 

integrating the two data sources.  

Secondly, only 10% of our study area was covered by 120km Doppler radar range. This 

is unfortunate because our study showed that the accuracy of CaPA System was greatly 

improved in areas under the radar (~8% improvement regarding MAE). Our finding agrees with 

the work by Fortin et al., (2015), who indicated that the inclusion of radar composite 

significantly improves the CaPA System. We also found that the largest improvement of CaPA 

System under radar lies in predicting precipitation less than 1.5 mm, leading to greater 

improvement of FFMC, which is more sensitive to small precipitation events. Flannigan et al., 

(1998) also suggested that radar would be used best to identify areas with and without 

precipitation compared to interpolation methods. The usefulness of CaPA System will increase if 

there was an additional radar station in the center of Boreal forest in Alberta. 

Thirdly, CaPA System resulted in a larger negative Bias comparing to interpolation 

methods, especially when predicting precipitation greater than 2.8mm. This tendency of 

underestimation was true for CaPA System regardless of radar coverage and can be attributed to 

the cubic root smoothing applied to CaPA System inputs (Lespinas et al., 2015). Our study 

showed that when performing square root, cubic root, and natural log on precipitation 

observations, all the interpolation methods yielded a significant reduction in prediction errors. 

However, smoothing the observed precipitation inevitably resulted in an underestimation of 

precipitation; with cubic root smoothing technique having the biggest negative bias compared to 

the other two smoothing techniques. Underestimating larger amounts of precipitation is 

problematic when estimating FWI System that is sensitive to seasonally accumulating 

precipitation (e.g., Drought Code, as discussed in Section 4.3). 

  Overall, we recommended that the CaPA System could be used to estimate fire danger 

in areas with low fire weather station density and areas under Doppler radar coverage. However, 

CaPA System should be used with care when large precipitation events are critical concerns.  
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4.2 Selection of the best method 

Regression kriging produced the best estimates of precipitation regardless of the radar 

coverage. This is expected, as many interpolation studies have suggested that multivariate 

geostatistical algorithms are superior to univariate geostatistical algorithms (e.g., ordinary 

kriging) and simple distance-only-based algorithms (Seo et al., 1990a; Seo et a., 1990b; 

Haberlandt 2007; Li and Heap 2014). By treating CaPA System as a covariate, regression kriging 

produced better precipitation estimates than using CaPA System alone, especially when 

estimating large precipitation events (>2.8mm). The findings of our study suggest that regression 

kriging that uses gridded precipitation analysis as covariate may also address problems found by 

Flannigan et al., (1998) and Horel et al., (2014). In particular, regression kriging has resolved the 

systemic underestimation from radar estimates (Flannigan et al., 1998) and gridded precipitation 

from Real-Time Mesoscale Analysis (RTMA) (Horel et al., 2014). Additionally, computational 

processing time is critical to fire operation agencies. In this study, we found that regression 

kriging algorithm did not necessarily require more processing time than that of IDW (e.g., 3mins 

versus 1min to interpolate precipitation over 10,000 points). We, therefore, recommend the use 

of regression kriging with CaPA as a covariate to estimate precipitation and fire danger in areas 

between weather stations. 

Smoothed TPS was an upper mid-tiered algorithm. This finding proves the validity of 

using smoothed TPS to estimate fire danger across landscapes as suggested by Flannigan and 

Wotton (1989). We also found that smoothed TPS was superior to non-smoothed TPS, but 

smoothed TPS may overly smoothed the precipitation field and resulted in negative bias. Both 

smoothed and non-smoothed TPS could include elevation adjustment, making them a good fit to 

interpolation in mountainous areas (Hutchinson et al., 2009).  

On the other hand, IDW, which is currently used by SFMS (Englefield et al., 2000), was 

found to be the second worst algorithm. This finding is in agreement with Flannigan and Wotton 

(1989), who suggested that IDW is a crude method and could not address the spatial variability 

of summer precipitation, leading to poor estimates of FWI System Indexes. We recommend that 

IDW should be replaced by a more sophisticated method. 
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4.3 Impacts of error propagation in FWI System 

In this study, we observed that the model performance was affected by error propagation 

in the DMC and DC. The error propagation is attributed to their long drying time lags (the time it 

requires for fuel to lose ~2/3 of its free moisture toward equilibrium moisture content) of 12 and 

52 days (Van Wagner 1987). Our study showed that algorithms that frequently underestimated 

large precipitation (>2.8mm) experienced the most error propagation in DMC and DC. This is 

because DMC and DC track moisture content in compacted organic soil layers, where are 

affected by large precipitation events and are sensitive to seasonal precipitation (Lawson and 

Armitage 2008).  

When an extreme precipitation event (e.g., 40mm) is missed or underestimated at the 

beginning of fire season, all the FWI System will be overestimated. As FFMC will recover 

quickly to the code value before the precipitation (1-2days), DC and DMC may propagate this 

error until the end of fire season and may result in a twice larger estimate compared to the true 

value (see Figure 3.9a).Since DMC and DC are used for long-term fire management planning, 

overestimating of these indexes will result in false alarms and cause unnecessary pre-suppression 

resource allocation. In addition, overestimating DMC values would also cause problems in 

predicting the occurrence of lightning-caused fires (Wotton and Martell 2005). In our case, both 

CaPA System and smoothing effect resulted in substantial underestimation of precipitation and 

produced the worst estimates for DMC, DC. Therefore, CaPA System and smoothing effect 

should be used with care when DMC and DC are of critical importance.  

Our study showed that using previous day’s observed fuel moisture codes to calculate 

today’s fuel moisture codes would eliminate the error propagation (see Figure 3.9b). When error 

propagation was removed, the performance of all the algorithms in estimating FWI System was 

stable. This approach may provide a solution to adjust the error propagation of DMC and DC 

when previous day’s observations are available. Our study suggests that regression kriging 

without smoothing resulted in the best estimates for DMC and DC, but more options on this 

topic should be investigated in the future.  
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4.4 Limitations and future research  

Data quality is one of the major constraints in this study. We assumed that AAF station 

observations were representative of true values and we used AAF station data to validate the 

CaPA System estimates. Although we performed quality control procedure on the AAF station 

data, our quality control procedures may be different from those implemented by ECCC. AAF 

and ECCC station observations may all be impacted by the following factors: 1) differences in 

the types of rain gauge may results in various levels of accuracy; 2) rain gauge measurements 

may be biased on windy days; 3) animals and woody debris may also alter the observations; 4) 

some small precipitation events may evaporate before been measured. In this study, we evaluated 

the candidate algorithms for one and a half fire seasons that were drier than normal. Although we 

are concerned with the dry years for fires and results of this study may apply to wet years, it 

would be better to validate all the candidate algorithms for fire seasons with different 

climatology (e.g., a wet year). 

As discussed previously, one of the many feasible future research directions is to test the 

performance of regression kriging with other gridded analysis products.  Gridded dataset such as 

the Global Precipitation Measurement (GPM) (Smith et al., 2007) and PERSIANN (Sorooshian 

et al., 2005) could be tested because both of them calibrate satellite data.  Using remote sensing 

for fire danger rating should also be evaluated for future research, especially for the slow drying 

indexes DC and DMC (Oldford et al., 2007). Additionally, alternative interpolation algorithms 

should also be evaluated. These interpolation algorithms include random forest which combines 

IDW and ordinary kriging with concepts from machine learning (Sanabria et al.,2013).   
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Chapter 5 Conclusions   

In this study, we addressed the challenges of estimating fire danger rating between 

weather stations through improved precipitation estimates. We also quantified the performance 

of interpolation methods with different station densities. To achieve these objectives, we 

compared precipitation estimates from eighteen algorithms of six methods and assessed the 

impacts of these precipitation estimates on the Fire Weather Indexes (FWI) System. The 6 

methods include one gridded precipitation analysis (CaPA System) and 5 interpolation methods 

(IDW, smoothed TPS, non-smoothed TPS, ordinary kriging; and regression kriging). Estimates 

of these algorithms were generated using station observations through leave-one-out cross-

validation and were evaluated using a range of skill scores (Bias, MAE, ETS, and FBI) with the 

resampling hypothesis test.  

Regression kriging was the best overall algorithm in estimating precipitation between 

weather stations in the study area, closely followed by ordinary kriging and smoothed TPS, all of 

which were performed on square root smoothed precipitation. Regression kriging with 

smoothing had 19.6% less MAE than that of IDW. CaPA System had mid-tiered performance 

(13
th

 of 18), but it produced significantly better precipitation estimates than that of IDW. In areas 

within 120km Doppler radar, CaPA System had improved performance and ranked second. 

However, CaPA System tended to largely underestimate precipitation values greater than 2.8 mm 

regardless of the radar coverage. This could be problematic for indexes of the FWI System that 

are sensitive to seasonal precipitation (e.g., DC, as discussed in Section 4.3).The tendency of 

underestimating large precipitation values was also found when applying square root smoothing 

to observed precipitation.  

Weather station density significantly affected the performance of interpolation algorithms 

(Figure 3.11). When weather station density dropped below 0.6 stations / 10 000km
2
, CaPA 

System became the best algorithm; whereas when station density was above this threshold, 

regression kriging with smoothing was the best algorithm. Although all the interpolation 

algorithms performed better when station density increased, we found that these algorithms did 

not respond equally to the increasing station densities. For example, when weather station 

density was above 2.25 weather stations / 10 000km
2
, the top three performing algorithms had 
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very similar performance; while when weather station density was below this threshold, 

regression kriging with smoothing was superior to ordinary kriging and smoothed TPS(Figure 

3.11).  

FWI System were significantly better estimated using improved precipitation estimates, 

e.g., FWI values estimated from regression kriging with smoothing had 22% less MAE than that 

of IDW. Our study showed that the FWI System had two groups of responses to precipitation 

estimates, depending on 1) the drying time lags of the indexes (Figure 3.9) and 2) weather station 

density (Figure 3.11). For quick drying indexes (i.e., FFMC, ISI, and FWI), regression kriging 

with smoothing was the best performing algorithm when weather station density was above 0.6 

weather stations / 10 000km
2
. Otherwise, CaPA System was the best performing algorithm. For 

slow drying indexes (i.e., DMC, DC, and BUI), regression kriging without smoothing was the 

best performing algorithm regardless of the weather station density. This is because slow drying 

indexes are more sensitive to seasonal precipitation, therefore these indexes preferred methods 

with lower Bias (e.g., regression kriging without smoothing). Overall, we recommend the use of 

regression kriging with CaPA as a covariate to estimate fire danger across landscapes.  
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Appendix 1: Fire weather stations used in the study 

Table A1-1. Summary of names, years of operation, locations, types, elevation, and located 

regions for weather station used in this study.  
Natural region 

/ Station name 

Weather station  Regions 

Years Location Station 

type
1
 

Elevation

(m) 

 Validateiton 

area
2 

(75km buffer) 

Radar 

coverage
3 

(120km) 
Lat (oN) Lon (oW) 

Boreal         

Adair 14-15 59.16 118.33 LO 394 yes no 

Algar 14-15 56.16 111.72 LO 751 yes no 

Battle River 14-15 57.17 117.66 LO 674 yes no 

Bison Lake 14-15 57.11 116.51 LO 716 yes no 

Chinchaga 14-15 57.12 118.33 LO 881 yes no 

Clear Hills 14-15 56.60 119.41 LO 1074 no yes 

Conklin 14-15 55.62 111.17 LO 677 no yes 

Calling Lake 14-15 55.21 113.20 RS 610 yes no 

Chisholm 14-15 54.94 114.04 LO 686 yes no 

Cowpar Lake 14-15 55.95 110.50 LO 553 no no 

Cadotte 14-15 56.30 116.43 LO 733 yes no 

Deadwood 14-15 56.64 117.39 LO 648 yes no 

Economy Creek 14-15 54.79 118.23 LO 858 yes yes 

Enilda 14-15 55.32 116.20 LO 717 yes no 

Ells River 14-15 57.21 112.31 LO 573 yes no 

Picadelly Auto 14-15 57.65 114.53 PAW 367 yes no 

Lambert Auto 14-15 58.03 114.14 PAW 368 yes no 

Whitesands Auto 14-15 59.43 114.90 PAW 962 no no 

Foggy Mountain 14-15 58.69 114.99 LO 899 yes no 

Grovedale 14-15 54.98 118.94 RS 671 no yes 

Grande 14-15 56.30 112.23 LO 559 yes no 

Gordon Lake 14-15 56.62 110.49 LO 515 no no 

Gift Lake 14-15 55.90 115.76 LO 691 yes no 

Hines Creek 14-15 56.25 118.61 RS 671 yes yes 

Hawk Hills 14-15 57.66 117.42 LO 730 yes no 

Heart Lake 14-15 54.91 111.34 LO 866 yes yes 

Kimiwan 14-15 55.99 116.61 LO 770 yes no 

Bovine Creek Auto 14-15 56.11 112.55 PAW 518 yes no 

Ground Zero Auto 14-15 55.01 110.61 PAW 737 no yes 

Dunkirk Auto 14-15 56.77 112.49 PAW 479 yes no 

Keane Auto 14-15 58.31 110.28 PAW 337 no no 

Lacorey 14-15 54.45 110.76 RS 579 no yes 

Legend 14-15 57.45 112.88 LO 855 yes no 

Mclennan 14-15 55.71 116.89 RS 625 yes no 

Muskeg Mountain 14-15 57.14 110.89 LO 615 no no 

May 14-15 55.56 112.40 LO 866 yes no 

Otter Lakes 14-15 56.70 115.92 LO 784 yes no 

Basnet Auto 14-15 57.35 119.76 PAW 714 no no 

Puskwaskau 14-15 55.22 117.49 LO 916 yes no 

Red Earth 14-15 56.66 115.11 LO 627 yes no 

Rock Island Lake 14-15 55.33 113.46 LO 722 yes no 

Salteaux Auto 14-15 54.92 114.78 PAW 736 yes no 

Kinuso 14-15 55.30 115.49 PAW 611 yes no 

Loon River 14-15 57.14 115.08 PAW 455 yes no 

Wabasca Auto 14-15 55.96 113.83 PAW 555 yes no 

Chip Alpac 14-15 56.53 113.47 PAW 573 yes no 

Sneddon Creek 14-15 56.20 119.40 RZ 648 no yes 

Salt Prairie 14-15 55.66 115.83 LO 763 yes no 

Sandy Lake 14-15 55.82 113.67 LO 632 yes no 
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(Continued) 
Natural region 

/ Station name 

Weather station  Regions 

Years Location Station 

type
1
 

Elevation

(m) 

 Validation 

area
2 

(75km buffer) 

Radar 

coverage
3 

(120km) 
Lat (oN) Lon (oW) 

Sand River 14-15 54.65 110.98 LO 756 no yes 

Stony Mountain 14-15 56.39 111.28 LO 762 yes no 

Smith 14-15 55.16 114.03 RS 610 yes no 

Vega  Auto 14-15 54.43 114.43 PAW 713 no yes 

Valleyview2 14-15 55.35 117.13 RS 700 yes no 

Meekwap Auto 14-15 54.62 116.66 PAW 836 yes no 

Fox Creek Auto 14-15 54.40 116.80 PAW 850 yes no 

Timeu Creek Auto 14-15 54.66 114.60 PAW 730 yes no 

Whitemud 14-15 56.42 118.00 LO 835 yes yes 

Wandering River 14-15 55.20 112.50 RS 579 yes no 

Watt Mountain 14-15 58.65 117.51 LO 793 yes no 

Zama 14-15 58.60 119.17 LO 653 no no 

Buffalo 14 57.95 116.20 LO 801 yes no 

Birch Mountain 14 57.69 111.83 LO 798 yes no 

Doig 14 56.96 119.53 LO 1059 no no 

Emend 05 14 56.81 118.36 TAW 663 yes no 

Ponderosa Auto 14 59.21 117.06 PAW 388 yes no 

Rainbow Lake 14 58.50 119.41 TAW 540 no no 

Fontas 14 57.78 119.50 LO 1055 no no 

Hotchkiss 14 57.33 118.96 LO 990 no no 

Jean Lake 14 57.50 113.88 LO 745 yes no 

Kirby Lake 14 55.36 110.65 LO 691 no yes 

Keg 14 57.64 118.35 LO 950 yes no 

Notikewin 14 56.87 118.60 LO 937 yes no 

Jackpine Auto 14 56.88 116.56 PAW 663 yes no 

Round Hill 14 55.30 112.00 LO 694 yes no 

Trout Mountain 14 56.80 114.42 LO 796 yes no 

Teepee Lake 14 56.46 114.12 LO 782 yes no 

Chipewyan Lakes 15 56.99 113.42 LO 615 yes no 

Bistcho Lake Auto 15 59.91 118.96 PAW 576 no no 

Livock 15 56.46 113.19 LO 650 yes no 

Panny 15 57.18 114.61 LO 625 yes no 

Rocky Lane Agrd 15 58.45 116.48 PAW 301 yes no 

Smoky Lake Agdm 15 54.26 112.50 PAW 675 no no 

Tompkins Landing Agcm 15 58.02 116.85 PAW 343 yes no 

Whitefish 15 56.18 115.47 LO 705 yes no 

        

Foothills        

Ansell 14-15 53.55 116.50 LO 968 yes no 

Athabasca 14-15 53.41 117.79 LO 1582 no no 

Aurora 14-15 52.65 115.72 LO 1331 yes no 

Yaha Tinda Auto 14-15 51.65 115.36 PAW 1486 no no 

North Ghost 14-15 51.57 114.86 PAW 1477 no yes 

Blackstone 14-15 52.77 116.33 LO 1576 yes no 

Brazeau 14-15 53.04 115.44 LO 1101 yes yes 

Carrot Creek 14-15 53.45 115.87 LO 1056 yes yes 

Deer Mountain 14-15 54.91 115.16 LO 1161 yes no 
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(Continued) 

Natural region 

/ Station name 

Weather station  Regions 

Years Location Station 

type
1
 

Elevation

(m) 

 Validated 

area
2 

(75km buffer) 

Radar 

coverage
3 

(120km) 
Lat (oN) Lon (oW) 

Wildhay Auto 14-15 53.86 117.56 PAW 1041 yes no 

Schwartz Creek  Auto 14-15 53.42 116.52 PAW 986 yes no 

Grande Cache 14-15 53.92 118.87 PAW 1250 no no 

Flat Top 14-15 55.15 114.82 LO 1039 yes no 

Kakwa 14-15 54.42 118.98 LO 1230 no no 

Marten Mountain 14-15 55.47 114.79 LO 1005 yes no 

Pinto 14-15 54.78 119.40 LO 1044 no yes 

Clearwater Auto 14-15 51.99 115.24 PAW 1280 no no 

Ram Falls Auto 14-15 52.09 115.84 PAW 1641 no no 

Elk River Auto 14-15 52.97 115.86 PAW 1067 yes no 

Rocky 14-15 52.52 114.88 LO 1106 no no 

Marten Hills Auto 14-15 55.53 114.56 PAW 1000 yes no 

Saddle Hills 14-15 55.62 119.72 LO 967 no yes 

Smoky 14-15 54.40 118.30 LO 1201 yes no 

Snuff Mountain 14-15 54.68 117.54 LO 943 yes no 

Sweathouse 14-15 54.90 116.75 LO 892 yes no 

Tom Hill 14-15 53.93 116.33 LO 1289 yes no 

Freeman Auto 14-15 54.57 115.38 PAW 821 yes no 

Eta Lake Auto 14-15 53.18 115.69 PAW 927 yes yes 

Windfall Auto 14-15 54.19 116.24 PAW 830 yes no 

Berland Hills Auto 14-15 54.15 117.89 PAW 1170 yes no 

White Mountain 14-15 55.69 119.24 LO 1021 no yes 

Berland 14 54.09 117.40 LO 1231 yes no 

Eagle 14 54.46 116.44 LO 1048 yes no 

Goose Mountain 14 54.75 116.03 LO 1385 yes no 

House Mountain 14 55.05 115.60 LO 1176 yes no 

Horse Creek Pb 14 54.02 117.84 TAW 1136 yes no 

Imperial 14 54.47 115.57 LO 1202 yes no 

Lovett 14 53.03 116.66 LO 1477 yes no 

Mayberne 14 53.86 116.67 LO 1453 yes no 

Meridian 14 55.55 114.18 LO 940 yes no 

Pass Creek 14 54.23 116.84 LO 1081 yes no 

Swan Dive 14 54.73 115.36 LO 1241 yes no 

Simonette 14 54.23 118.41 LO 1379 yes no 

Tony 14 54.41 117.49 LO 1007 yes no 

Whitecourt 14 54.03 115.72 LO 1172 yes yes 

Yellowhead 14 53.24 117.14 LO 1477 yes no 

Yellowhead 14 54.09 117.40 LO 1231 yes no 

Bald Mountain 15 54.81 118.92 LO 955 no yes 

Berland Auto 15 54.09 117.40 PAW 1230 yes no 

Eagle Auto 15 54.46 116.44 PAW 1048 yes no 

Imperial Auto 15 54.47 115.57 PAW 1202 yes no 

Pass Creek  Auto 15 54.23 116.84 PAW 1081 yes no 

Swan Dive Auto 15 54.73 115.36 PAW 1241 yes no 

Tony Auto 15 54.41 117.49 PAW 1007 yes no 

Whitecourt  Auto 15 54.03 115.72 PAW 1172 yes yes 

        

Rocky Mountain        

Highwood Auto 14-15 50.41 114.73 PAW 1576 no no 

Willow Creek Auto 14-15 50.24 114.35 PAW 1446 no no 

Kananaski Boundary Auto 14-15 50.93 115.12 PAW 1464 no no 

Peter Lougheed Park 14-15 50.71 115.12 PAW 1622 no no 
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(Continued) 
Natural region 

/ Station name 

Weather station  Regions 

Years Location Station 

type
1
 

Elevation

(m) 

 Validation 

area
2 

(75km buffer) 

Radar 

coverage
3 

(120km) 
Lat (oN) Lon (oW) 

Elbow Auto 14-15 50.91 114.69 PAW 1413 no yes 

Blue Hill 14-15 51.71 115.22 LO 1987 no no 

Baseline 14-15 52.13 115.43 LO 1908 no no 

Livingston Gap Auto 14-15 49.88 114.38 PAW 1403 no no 

Castle Auto 14-15 49.39 114.34 PAW 1352 no no 

Poll Haven Auto 14-15 49.03 113.60 PAW 1611 no no 

Blairmore Ranger Station 14-15 49.61 114.45 PAW 1311 no no 

Entrance Auto 14-15 53.38 117.70 PAW 1045 yes no 

Kakwa Auto 14-15 54.18 119.06 PAW 1344 no no 

Ironstone 14-15 49.57 114.50 LO 2079 no no 

Mockingbird Hill 14-15 51.42 115.07 LO 1907 no yes 

Moose  Mountain 14-15 50.94 114.84 LO 2431 no yes 

Porcupine 14-15 49.89 114.01 LO 1820 no no 

Kootenay Plains Auto 14-15 52.06 116.41 PAW 1294 no no 

Adams Creek 14 53.73 118.57 LO 2178 no no 

Blackstone Burn 14 52.60 116.63 TAW 1669 no no 

Baldy 14 52.53 116.13 LO 2082 yes no 

Carbondale 14 49.43 114.36 LO 1807 no no 

Cline 14 52.18 116.41 LO 2050 no no 

Copton 14 54.18 119.42 LO 1860 no no 

Grave  Flats 14 52.89 116.99 LO 2076 no no 

Hailstone Butte 14 50.21 114.46 LO 2370 no no 

Junction Mountain 14 50.57 114.65 LO 2241 no yes 

Kananaskis 14 50.61 115.07 LO 2129 no no 

Nose Mountain 14 54.56 119.63 LO 1487 no no 

Obed 14 53.57 117.50 LO 1605 yes no 

Raspberry Ridge 14 50.30 114.64 LO 2360 no no 

Sugarloaf 14 49.95 114.54 LO 2516 no no 

Torrens 14 54.31 119.68 LO 1815 no no 

Upper Sask Pb 14 52.01 116.53 TAW 1631 no no 

Barrier Lake 15 51.05 115.08 LO 2021 no yes 
1
 LO: lookout towers, RS: ranger weather stations, PAW: permanent remote automatic weather Stations, TAW: 

temporary remote automatic weather Stations. 
2
 yes: weather station is within the validated area and used as a validation point. 

3 
yes: weather station is within the 120km radar effective range. 

Note: all the weather stations are operated by Alberta Environment and Sustainable Resource Development 
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Appendix 2: Interpolation algorithms R codes 

# Title: Leave-one-out cross-validation of interpolation methods  
# Date: Mach 21, 2017 
# Author: Xinli Cai 

# Load required libraries  
library(fields) 
library(gstat) 
library(sp) 
library(rgdal)  
library(rgeos) 
library(automap) 
library(foreign) 
 
# Clean workspace and set working directory 
rm(list=ls()) 
path <- c("E:/1 Data/AB ws/2014&2015_weather_data") 
setwd(path) 

# Import weather data (Here I used 2015 data as an example) 
all_wstn<- read.csv("all_weather_data_2015.csv")  
val_wstn<- read.csv("validated_weather_data_2015.csv") 
head(val_wstn) 

##   id      lat       lon  jd     date temp    rh ws  wd prec capa 
## 1 AD 59.16063 -118.3295 124 5/4/2015  5.0 47.25  0   0    0 0.01 
## 2 AD 59.16063 -118.3295 125 5/5/2015  8.0 52.96  6 315    0 0.00 
## 3 AD 59.16063 -118.3295 126 5/6/2015 11.0 29.32  5 270    0 0.00 
## 4 AD 59.16063 -118.3295 127 5/7/2015 11.5 35.06  8 360    0 0.00 
## 5 AD 59.16063 -118.3295 128 5/8/2015 14.0 35.80  9 360    0 0.53 
## 6 AD 59.16063 -118.3295 129 5/9/2015 15.0 45.72 10 180    0 0.08 

id and jd columns uniquely specify each row. Here, prec is the observed daily precipitation at each AAF 
station while capa is the precipitation estimated by CaPA system. Data have been cleaned using 
procedures described in Section 2.2.1. 

Thin-plate spline  

Calculations of TPS-related methods were using fields package following Douglas et al., 2016. Here, I 
displayed the leave-one out cross-validation (LOOCV) procedure for smoothed / non-smoothed TPS, and 
square root transformed TPS algorithms. The following function performs the TPS related methods for 
multiple weather stations over a period. 

tps_loocv <- function(df_valid, df_fit, method){ 
    #df_valid <- val_wstn (weather stations in the validation area, see Figure 2.4) 
    #df_fit <- all_wstn (all the weather stations in the study area, see Figure 2.4) 
 
    days<- unique(df_valid$jd) # n=129 
    id <- unique(df_valid$id) # n=81 
         
    # Create a new dataframe to store the interpolated values  
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    foo <- as.data.frame(matrix(ncol=length(days)+1,nrow=length(id))) 
    names(foo)<-c("id",paste("jd",days,sep="_")) 
    foo$id<-id 
     
    # Loop through all the days and weather stations  
      for(i in 1:length(days)){ 
       for(j in 1:length(id)){ 
            
        # LOOCV:remove one weather station at a time  
        test<- df_fit[df_fit$jd == days[i] & ! df_fit$id == id[j], ]  
         
        # TPS interpolation algorithms  
       
        # (1) Smoothed TPS: Smoothing parameter lambda is determined by GCV   
         
        if(method=="tps_s"){  
        spl <- Tps(as.matrix(test[,c("lon","lat")]), test[,"prec"]) 
        intpltd <-  predict(spl, df_valid[df_valid$jd==days[i]&df_valid$id==id[j], c
("lon","lat")]) 
          if(intpltd<0|is.na(intpltd)){intpltd <- 0} 
            foo[j,i+1] <- intpltd 
             } 
           
        # (2) Non-smoothed TPS: lambda =0 (no smoothness constraints)  
         
        if(method=="tps_ns"){ 
        spl <- Tps(as.matrix(test[,c("lon","lat")]), test[,"prec"], lambda=0)  
        intpltd <- predict(spl, df_valid[df_valid$jd==days[i]&df_valid$id==id[j], c("
lon","lat")]) 
           if(intpltd<0|is.na(intpltd)){intpltd <- 0} 
              foo[j,i+1] <- intpltd  
             }  
          }  
 
        # (3)Smoothed TPS with square root transforming of precipitation observations 
        # Transformation is applied before the interpolation and a back-transformatio
n is applied to the estimates 
           
        if(method=="tps_s_sqrt"){ 
        spl <- Tps(as.matrix(test[,c("lon","lat")]), sqrt(test[,"prec"]))  
        intpltd <-  predict(spl, df_valid[df_valid$jd==days[i]&df_valid$id==id[j], c
("lon","lat")]) 
           if(intpltd<0|is.na(intpltd)){intpltd <- 0} 
             foo[j,i+1] <- intpltd^2 
              } 
                 
    # Reshape the outputs 
           
    output <- reshape(foo, idvar="id", varying = list(2:ncol(foo)), v.names=method, d
irection="long") 
    output$time <- rep(days, each=length(id)) 
     } # i  
    return(output)  
} 
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Kriging 

Calculations of Kriging related methods were using gstat package following Pebesma 2004. I display the 
algorithms of ordinary kriging and regression kriging.The function below performs LOOCV procedure 
using kriging related algorithms for multiple weather stations over a period of time. 

Kriging_loocv<- function(df_fit, df_valid, method){ 
    #df_valid <- val_wstn (weather stations in the validation area, see Figure 2.4) 
    #df_fit <- all_wstn (all the weather stations in the study area, see Figure 2.4) 
     
    days<- unique(df_valid$jd) 
    id <- unique(df_valid$id) 
    id <-  factor(id, levels=levels(df_fit$id))   
     
   # Create a new dataframe to store the interpolated values  
    foo <- as.data.frame(matrix(ncol=(length(days)+1),nrow=length(id))) 
    names(foo)<-c("id",paste("jd",days,sep="_")) 
    foo$id <- id 
     
    # Loop through all the days 
    for(i in 1:length(days)){  
      
    # For each day,converting the dataframe to spatialpointsdataframe 
    # Spatial reference system used is EPSG:3402,which is centred in Alberta.   
         
      test <- df_fit[df_fit$jd==days[i], ] 
      coordinates(test) = ~lon+lat    
      proj4string(test) <- "+proj=longlat +ellps=GRS80"  
      test<- spTransform(test, CRS("+init=epsg:3402")) 
      
    # Perform LOOCV for all the weather stations  
       
     for(j in 1:length(id)){  
     # Removed weather station at a time  
     valid <- test[test@data$id==id[j], ] 
     # Use the reminder stations to built the semi-variogram 
     fit <- test[!test@data$id==id[j], ]  
         
     # For dry days (no rain events were observed at all the stations), setting inter
polated values to zero. Because variogram can not be fitted when observed precipitati
on is unique for all the stations.  
         
     if(length(unique(fit$prec))==1){  
          foo[j,i+1] <- unique(fit$prec) 
                  } 
     # For locations where there is no CaPA estimated value, do not perform the inter
polation.Because regression kriging needs valid CaPA estimates for each removed stati
on.  
      else if(unique(is.na((fit@data$capa)))){  
                                foo[, i+1] <- NA 
                } 
      else{ 
             



 
 

 76 
 

       # Ordinary kriging: semi-variogram is fitted with a spherical model  
           
       if(method=="ok"){  
        m <- autofitVariogram(prec~1, fit, model="Sph") 
        plot(m) 
        ok <- krige(prec~1, fit, valid, model = m$var_model) 
         if(ok@data$var1.pred<0|is.na(ok@data$var1.pred)){ok@data$var1.pred <- 0} 
            foo[j,i+1] <- ok@data$var1.pred 
            } 
 
       # Regression kriging using CaPA estimates as covariate: semi-variogram is fitt
ed with a spherical model                                  
        if(method=="rk"){ 
         m <- autofitVariogram(prec~capa, fit, model="Sph") 
         plot(m) 
         rk <- krige(prec~capa, fit, valid, model = m$var_model) 
          if(rk@data$var1.pred<0|is.na(rk@data$var1.pred)){rk@data$var1.pred <- 0} 
            foo[j,i+1] <- rk@data$var1.pred 
                } 
             }  
         } # j: days  
    } # i:stations  
     
    # Reshape the output  
    output <- reshape(foo, idvar="id", varying = list(2:ncol(foo)), v.names=method, d
irection="long") 
    output$time <- rep(days, each=length(id)) 
    return(output)  
}  

Call the functions 

# Smoothed TPS  
tps_s <- tps_loocv(df_valid = val_wstn, df_fit = all_wstn, method="tps_s") 
# Non-smoothed TPS  
tps_ns <- tps_loocv(df_valid = val_wstn, df_fit = all_wstn, method="tps_ns") 
# Smoothed TPS with sqaure root transforming 
tps_s_sqrt <- tps_loocv(df_valid = val_wstn, df_fit = all_wstn, method="tps_s_sqrt") 
# Ordinary kriging 
ok <- Kriging_loocv(df_valid = val_wstn, df_fit = all_wstn, method="ok") 
# Regression kriging 
rk <- Kriging_loocv(df_valid = val_wstn, df_fit = all_wstn, method="rk") 
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Appendix 3: Resampling post-hoc tests outputs  

In this study, a resampling post-hoc test procedure that combines a resampling paired t-

test (Hamill 1999) and Holm-Bonferroni p-value adjustment (Holm 1979), was applied to 

identify statistical differences between estimates of precipitation and FWI System indexes. In 

Appendix 3, we presented the outputs of resampling post-hoc tests applied to precipitation and 

FWI System estimates were also presented.   

Table A3-1. The resampling post-hoc test outputs of PCP estimates in 2014 and 2015 over 

validation area. The PCP estimates are evaluated using MAE (mm). 
          MAE (mm)  averaged over all stations in 2014 and 2015 (test statistics) 

Method ok idw 

tps 

_ns 

tps  

_s 

rk 

(capa) CaPA 

tps 

_ns_s 

tps 

_s_s 

rk 

(capa)_s ok_s 

2014 1.47 1.42 1.40 1.35 1.34 1.33 1.28 1.16 1.16 1.11 

2015 1.30 1.29 1.27 1.23 1.22 1.20 1.16 1.07 1.03 1.02 

Year Method ok idw 

tps 

_ns 

tps  

_s 

rk 

(capa) CaPA 

tps 

_ns_s 

tps 

_s_s 

rk 

(capa)_s ok_s 

2014 

ok – 1.00 1.000 0.858 0.767 0.858 0.264 0.099 0.130 0.076 

idw 

 
– 1.000 0.414 0.414 0.767 0.130 0.000 0.076 0.076 

tps_ns 

  
– 0.416 0.560 1.000 0.076 0.099 0.112 0.043 

tps _s 

   
– 1.000 1.000 0.076 0.043 0.000 0.099 

rk(capa) 

    
– 1.000 0.285 0.043 0.043 0.043 

CaPA 

     
– 1.000 0.280 0.240 0.240 

tps_ns_s 

      
– 0.112 0.099 0.099 

tps_s_s 

       
– 1.000 0.264 

rk(capa)_s 

        
– 0.480 

ok_s 

         
– 

Year Method ok idw 

tps 

_ns 

tps  

_s 

rk 

(capa) CaPA 

tps 

_ns_s 

tps 

_s_s 

rk 

(capa)_s ok_s 

2015 

ok – 1.00 1.000 0.247 0.144 0.247 0.060 0.000 0.000 0.000 

idw  – 1.000 0.387 0.300 0.022 0.085 0.000 0.000 0.000 

tps_ns   – 0.144 0.154 0.247 0.000 0.000 0.000 0.000 

tps _s    – 1.000 0.680 0.022 0.000 0.000 0.000 

rk(capa)     – 1.000 0.060 0.000 0.000 0.000 

CaPA      – 0.680 0.000 0.000 0.000 

tps_ns_s       – 0.000 0.000 0.000 

tps_s_s        – 0.060 0.000 

rk(capa)_s         – 1.000 

ok_s          – 

Bold: comparison achieved a statistical significance at α level of 0.05. The method had better / worse 

performance than the methods on its left / right side.  
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Table A3-2. The resampling post-hoc test outputs of PCP estimates in 2015 over validation area. 

The PCP estimates are evaluated using ETS. 

 ETS  averaged over all stations in 2015 (test statistics) 

PCP (mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 – 1.5 0.06 0.06 0.08 0.09 0.06 0.09 0.09 0.11 0.12 0.12 

1.5 – 2.8 0.06 0.08 0.07 0.07 0.08 0.07 0.09 0.10 0.11 0.10 

> 2.8 0.42 0.44 0.43 0.44 0.46 0.42 0.46 0.47 0.49 0.48 

PCP Method 
ok idw 

tps 

_ns 
tps_s 

rk 

(capa) 
CaPA 

tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s 
ok_s 

0.5 

– 

1.5 

ok – 1.000 0.826 0.155 1.000 0.264 0.450 0.037 0.017 0.000 

idw  – 0.380 0.070 1.000 0.070 0.378 0.000 0.000 0.000 

tps_ns   – 1.000 0.858 1.000 1.000 0.099 0.099 0.000 

tps_s    – 0.174 1.000 1.000 0.735 0.322 0.155 

rk (capa)     – 0.189 0.418 0.000 0.000 0.000 

CaPA      – 1.000 1.000 0.374 0.174 

tps_ns_s       – 0.450 0.208 0.250 

tps_s_s        – 1.000 0.528 

rk(capa)_s         – 1.000 

ok_s          – 

1.5 

– 

2.8 

ok – 0.899 1.000 1.000 0.780 1.000 0.234 0.123 0.000 0.084 

idw 
 

– 1.000 1.000 1.000 1.000 1.000 1.000 0.544 1.000 

tps_ns 
 

 – 1.000 1.000 1.000 0.660 0.407 0.044 0.704 

tps_s 
 

  – 1.000 1.000 0.988 0.432 0.234 0.980 

rk (capa) 
 

   – 1.000 1.000 1.000 0.160 1.000 

CaPA 
 

    – 1.000 0.490 0.044 0.704 

tps_ns_s 
 

     – 1.000 0.988 1.000 

tps_s_s 
 

      – 1.000 1.000 

rk(capa)_s 
 

       – 0.980 

ok_s 
         

– 

> 

2.8 

ok – 1.000 1.000 1.000 0.696 1.000 1.000 0.513 0.000 0.105 

idw  – 1.000 1.000 1.000 1.000 1.000 0.076 0.041 0.041 

tps_ns   – 1.000 0.736 1.000 0.105 0.076 0.000 0.000 

tps_s    – 1.000 1.000 1.000 0.128 0.076 0.041 

rk (capa)     – 0.174 1.000 1.000 0.150 1.000 

CaPA      – 0.448 0.128 0.000 0.105 

tps_ns_s       – 1.000 0.513 0.650 

tps_s_s        – 1.000 1.000 

rk(capa)_s         – 1.000 

ok_s          – 

Equitable threat score (ETS): values range between -0.333 to 1, where 1 is perfect skill. 

Bold: comparison achieved a statistical significance at α level of 0.05. 
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Table A3-3. The resampling post-hoc test outputs of PCP estimates in 2015 over validation area. 

The PCP estimates are evaluated using FBI. 

 FBI  averaged over all stations in 2015 (test statistics) 

PCP (mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 
0.5 – 1.5 1.17 1.35 0.25 0.63 1.28 0.48 0.17 0.35 0.37 0.47 

1.5 – 2.8 1.34 1.15 0.21 0.59 0.67 0.17 0.05 0.10 0.11 0.07 

> 2.8 0.05 0.06 0.08 0.08 0.03 (0.20) (0.06) (0.16) (0.19) (0.20) 

PCP Method ok idw 

tps 

_ns tps_s 

rk 

(capa) CaPA 

tps 

_ns_s 

tps 

_s_s 

rk(capa) 

_s ok_s 

0.5 

– 

1.5 

ok – 0.888 0.048 0.114 1.000 0.000 0.030 0.030 0.030 0.153 

idw  – 0.000 0.030 1.000 0.000 0.000 0.000 0.000 0.000 

tps_ns   – 0.000 0.030 0.048 0.476 0.594 0.533 0.533 

tps_s    – 0.060 0.580 0.000 0.030 0.144 0.888 

rk (capa)     – 0.048 0.000 0.000 0.000 0.048 

CaPA      – 0.000 0.240 0.533 1.000 

tps_ns_s       – 0.000 0.000 0.160 

tps_s_s        – 1.000 0.752 

rk(capa)_s         – 0.819 

ok_s          – 

1.5 

– 

2.8 

ok – 1.000 0.000 0.060 0.170 0.000 0.024 0.024 0.000 0.000 

idw 

 
– 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

tps_ns 

 
 – 0.090 0.024 1.000 0.000 0.988 0.645 0.496 

tps_s 

 
  – 1.000 0.060 0.000 0.000 0.000 0.000 

rk (capa) 

 
   – 0.024 0.000 0.000 0.000 0.000 

CaPA 

 
    – 0.645 1.000 1.000 1.000 

tps_ns_s 

 
     – 1.000 1.000 1.000 

tps_s_s 

 
      – 1.000 1.000 

rk(capa)_s 

 
       – 1.000 

ok_s 

         
– 

> 

2.8 

ok – 1.000 1.000 1.000 1.000 0.066 0.480 0.066 0.000 0.000 

idw  – 1.000 1.000 1.000 0.046 0.368 0.028 0.000 0.000 

tps_ns   – 1.000 0.624 0.000 0.000 0.000 0.000 0.000 

tps_s    – 0.162 0.000 0.028 0.028 0.000 0.000 

rk (capa)     – 0.024 0.076 0.000 0.000 0.000 

CaPA      – 0.028 1.000 1.000 1.000 

tps_ns_s       – 0.066 0.000 0.000 

tps_s_s        – 0.480 0.170 

rk(capa)_s         – 0.780 

ok_s          – 

Frequency bias index (FBI): adjusted from -1 to infinity, where 0 is perfect skill. Positive/negative 

FBI means overestimate/underestimate Bold: comparison achieved a statistical significance at α level 

of 0.05. 
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Table A3-4. The resampling post-hoc test outputs of PCP estimates 2015 validation radar and 

validation non-radar area. The PCP estimates are evaluated using MAE (mm). 

 MAE  averaged over stations in validation radar / non-radar area (test statistics) 

Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

Non-radar 1.30 1.29 1.25 1.25 1.24 1.22 1.15 1.06 1.03 1.01 

Radar 1.37 1.39 1.47 1.39 1.17 1.12 1.36 1.25 1.05 1.18 

Region Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

Non- 

radar 

ok – 0.945 0.864 0.320 0.320 0.330 0.000 0.000 0.000 0.000 

idw 

 
– 0.864 0.320 0.513 0.198 0.040 0.000 0.000 0.000 

tps_ns 

  
– 0.320 0.945 0.864 0.000 0.000 0.000 0.000 

tps_s 

   
– 0.945 0.945 0.024 0.000 0.000 0.000 

rk (capa) 

    
– 0.945 0.040 0.024 0.000 0.000 

CaPA 

     
– 0.289 0.024 0.000 0.000 

tps_ns_s 

      
– 0.000 0.000 0.000 

tps_s_s 

       
– 0.320 0.024 

rk(capa)_s 

        
– 0.350 

ok_s 

         
– 

Region Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

Radar 

ok – 1.000 0.798 1.000 0.032 0.060 1.000 0.060 0.000 0.000 

idw  – 1.000 1.000 0.075 0.000 1.000 0.240 0.000 0.000 

tps_ns   – 0.798 0.000 0.110 0.000 0.060 0.000 0.000 

tps_s    – 0.032 0.075 1.000 0.000 0.000 0.000 

rk (capa)     – 1.000 0.306 0.968 0.000 1.000 

CaPA      – 0.270 0.798 0.640 1.000 

tps_ns_s       – 0.240 0.060 0.110 

tps_s_s        – 0.075 0.640 

rk(capa)_s         – 0.060 

ok_s          – 

Bold: comparison achieved a statistical significance at α level of 0.05. The method had better / worse 

performance than the methods on its left / right side for validation non-radar.  
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Table A3-5. The resampling post-hoc test outputs of PCP estimates in 2015 validation non-

radar area. The PCP estimates are evaluated using ETS. 

 ETS  averaged over stations in validation r non-radar area (test statistics) 

PCP (mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 – 1.5 0.06 0.06 0.08 0.09 0.60 0.09 0.09 0.10 0.11 0.12 

1.5 – 2.8 0.06 0.08 0.07 0.07 0.08 0.06 0.09 0.09 0.10 0.10 

> 2.8 0.43 0.43 0.43 0.43 0.46 0.42 0.46 0.48 0.49 0.49 

PCP Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 

– 

1.5 

ok – 1.000 0.784 0.232 1.000 0.462 0.608 0.038 0.102 0.000 

idw  – 0.462 0.038 1.000 0.232 0.416 0.000 0.000 0.000 

tps_ns   – 1.000 0.738 1.000 1.000 0.102 0.150 0.000 

tps_s    – 0.102 1.000 1.000 0.949 0.738 0.124 

rk (capa)     – 0.416 0.416 0.000 0.038 0.000 

CaPA      – 1.000 0.784 0.416 0.070 

tps_ns_s       – 0.784 0.500 0.351 

tps_s_s        – 1.000 0.949 
rk(capa)_

s         – 1.000 

ok_s          – 

1.5 

– 

2.8 

ok – 1.000 1.000 1.000 1.000 1.000 0.735 0.440 0.045 0.264 

idw 

 
– 1.000 1.000 1.000 1.000 1.000 1.000 0.585 1.000 

tps_ns 

 
 – 1.000 1.000 1.000 0.837 0.648 0.369 0.832 

tps_s 

 
  – 1.000 1.000 0.585 0.816 0.301 0.930 

rk (capa) 

 
   – 1.000 1.000 1.000 0.816 1.000 

CaPA 

 
    – 1.000 0.957 0.301 0.592 

tps_ns_s 

 
     – 1.000 1.000 1.000 

tps_s_s 

 
      – 1.000 1.000 

rk(capa)_

s 

 
       – 1.000 

ok_s 

         
– 

> 

2.8 

ok – 1.000 1.000 1.000 1.000 1.000 1.000 0.702 0.000 0.132 

idw  – 1.000 1.000 1.000 1.000 0.702 0.132 0.000 0.041 

tps_ns   – 1.000 1.000 1.000 0.076 0.041 0.041 0.000 

tps_s    – 1.000 1.000 1.000 0.132 0.076 0.076 

rk (capa)     – 0.180 1.000 1.000 0.203 1.000 

CaPA      – 0.280 0.105 0.000 0.105 

tps_ns_s       – 1.000 1.000 0.702 

tps_s_s        – 1.000 1.000 

rk(capa)_

s         – 1.000 

ok_s          – 

Equitable threat score (ETS): values range between -0.333 to 1, where 1 is perfect skill. 

Bold: comparison achieved a statistical significance at α level of 0.05. 
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Table A3-6. The resampling post-hoc test outputs of PCP estimates in 2015 validation radar 

area. The PCP estimates are evaluated using ETS. 

 ETS averaged over stations in validation radar area (test statistics) 

PCP (mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 – 1.5 0.05 0.05 0.06 0.06 0.07 0.14 0.06 0.09 0.17 0.13 

1.5 – 2.8 0.05 0.10 0.05 0.11 0.10 0.11 0.08 0.13 0.20 0.12 

> 2.8 0.42 0.45 0.39 0.39 0.50 0.45 0.42 0.45 0.52 0.43 

PCP Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 

– 

1.5 

ok – 1.000 1.000 1.000 1.000 0.288 1.000 1.000 0.000 0.363 

idw  – 1.000 1.000 1.000 0.084 1.000 0.891 0.000 0.350 

tps_ns   – 1.000 1.000 0.185 1.000 1.000 0.152 0.608 

tps_s    – 1.000 0.350 1.000 1.000 0.123 0.754 

rk (capa)     – 0.682 1.000 1.000 0.043 0.754 

CaPA      – 0.682 1.000 1.000 1.000 

tps_ns_s       – 1.000 0.123 0.891 

tps_s_s        – 0.123 1.000 

rk(capa)_s         – 1.000 

ok_s          – 

1.5 

– 

2.8 

ok – 1.000 1.000 0.646 1.000 1.000 1.000 0.344 0.090 1.000 

idw 

 
– 1.000 1.000 1.000 1.000 1.000 1.000 0.378 1.000 

tps_ns 

 
 – 1.000 1.000 1.000 1.000 0.624 0.264 1.000 

tps_s 

 
  – 1.000 1.000 1.000 1.000 0.520 1.000 

rk (capa) 

 
   – 1.000 1.000 1.000 0.851 1.000 

CaPA 

 
    – 1.000 1.000 1.000 1.000 

tps_ns_s 

 
     – 1.000 0.864 1.000 

tps_s_s 

 
      – 1.000 1.000 

rk(capa)_s 

 
       – 0.492 

ok_s 

         
– 

> 

2.8 

ok – 1.000 1.000 1.000 0.672 1.000 1.000 1.000 0.164 1.000 

idw  – 0.810 0.444 1.000 1.000 1.000 1.000 0.627 1.000 

tps_ns   – 1.000 0.273 1.000 1.000 0.544 0.088 1.000 

tps_s    – 0.342 1.000 1.000 0.000 0.088 0.928 

rk (capa)     – 0.972 0.468 1.000 1.000 1.000 

CaPA      – 1.000 1.000 0.490 1.000 

tps_ns_s       – 0.928 0.088 1.000 

tps_s_s        – 0.806 1.000 

rk(capa)_s         – 0.240 

ok_s          – 

Equitable threat score (ETS): values range between -0.333 to 1, where 1 is perfect skill. 

Bold: comparison achieved a statistical significance at α level of 0.05. 
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Table A3-7.  The resampling post-hoc test outputs of PCP estimates in 2015 validation non- 

radar area. The PCP estimates are evaluated using FBI. 

 FBI averaged over stations in validation non-radar area (test statistics) 

PCP (mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 – 1.5 1.20 1.3 0.26 0.65 1.32 0.50 0.17 0.35 0.38 0.49 

1.5 – 2.8 1.35 1.17 0.21 0.57 0.69 0.17 0.04 0.08 0.12 0.07 

> 2.8 0.06 0.06 0.08 0.08 0.04 (0.17) (0.06) (0.16) (0.19) (0.21) 

PCP Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 

– 

1.5 

ok – 0.995 0.028 0.028 0.995 0.063 0.028 0.028 0.000 0.095 

idw  – 0.000 0.000 0.995 0.000 0.000 0.000 0.000 0.000 

tps_ns   – 0.000 0.028 0.000 0.240 0.832 0.516 0.507 

tps_s    – 0.063 0.760 0.000 0.095 0.112 0.948 

rk (capa)     – 0.046 0.000 0.000 0.000 0.000 

CaPA      – 0.000 0.252 0.583 0.995 

tps_ns_s       – 0.000 0.046 0.102 

tps_s_s        – 0.995 0.760 

rk(capa)_s         – 0.847 

ok_s          – 

1.5 

– 

2.8 

ok – 1.000 0.000 0.076 0.136 0.024 0.000 0.000 0.000 0.000 

idw 

 
– 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

tps_ns 

 
 – 0.060 0.000 1.000 0.024 0.504 0.888 0.480 

tps_s 

 
  – 1.000 0.076 0.042 0.000 0.024 0.000 

rk (capa) 

 
   – 0.000 0.000 0.000 0.000 0.000 

CaPA 

 
    – 0.495 1.000 1.000 0.990 

tps_ns_s 

 
     – 1.000 0.871 1.000 

tps_s_s 

 
      – 1.000 1.000 

rk(capa)_s 

 
       – 1.000 

ok_s 

         
– 

> 

2.8 

ok – 1.000 1.000 1.000 1.000 0.140 0.324 0.092 0.054 0.054 

idw  – 1.000 1.000 1.000 0.140 0.432 0.000 0.030 0.000 

tps_ns   – 1.000 1.000 0.000 0.000 0.000 0.000 0.000 

tps_s    – 0.480 0.000 0.000 0.000 0.000 0.000 

rk (capa)     – 0.054 0.105 0.000 0.030 0.000 

CaPA      – 0.092 1.000 1.000 1.000 

tps_ns_s       – 0.072 0.030 0.000 

tps_s_s        – 1.000 0.324 

rk(capa)_s         – 0.854 

ok_s          – 

Frequency bias index (FBI): adjusted from -1 to infinity, where 0 is perfect skill. Positive/negative FBI 

means overestimate/underestimate  

Bold: comparison achieved a statistical significance at α level of 0.05. 
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Table A3-8. The resampling post-hoc test outputs of PCP estimates in 2015 validation radar 

area. The PCP estimates are evaluated using FBI.  

 FBI averaged over stations in validation radar area (test statistics) 

PCP (mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 – 1.5 0.92 1.37 0.18 0.49 0.93 0.33 0.14 0.31 0.27 0.36 

1.5 – 2.8 1.30 1.02 0.20 0.73 0.55 0.09 0.14 0.32 0.03 0.09 

> 2.8 (0.08) 0.06 0.12 0.07 (0.06) (0.33) (0.03) (0.16) (0.26) (0.27) 

PCP Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 

– 

1.5 

ok – 1.000 0.272 0.672 1.000 0.319 0.310 0.272 0.405 0.782 

idw  – 0.000 0.114 1.000 0.041 0.000 0.000 0.000 0.114 

tps_ns   – 0.310 0.041 1.000 1.000 1.000 1.000 1.000 

tps_s    – 0.625 1.000 0.336 1.000 1.000 1.000 

rk (capa)     – 0.210 0.041 0.144 0.272 0.405 

CaPA      – 1.000 1.000 1.000 1.000 

tps_ns_s       – 1.000 1.000 1.000 

tps_s_s        – 1.000 1.000 

rk(capa)_s         – 1.000 

ok_s          – 

1.5 

– 

2.8 

ok – 1.000 0.224 1.000 0.300 0.180 0.084 0.180 0.084 0.043 

idw 

 
– 0.120 1.000 0.425 0.120 0.120 0.204 0.000 0.000 

tps_ns 

 
 – 0.364 1.000 1.000 1.000 1.000 1.000 1.000 

tps_s 

 
  – 1.000 0.378 0.390 0.480 0.204 0.120 

rk (capa) 

 
   – 0.798 0.644 1.000 0.319 0.248 

CaPA 

 
    – 1.000 1.000 1.000 1.000 

tps_ns_s 

 
     – 1.000 1.000 1.000 

tps_s_s 

 
      – 1.000 0.770 

rk(capa)_s 

 
       – 1.000 

ok_s 

         
– 

> 

2.8 

ok – 0.408 0.189 0.280 1.000 0.096 1.000 0.825 0.081 0.081 

idw  – 1.000 1.000 0.847 0.081 0.900 0.115 0.000 0.000 

tps_ns   – 1.000 0.306 0.000 0.000 0.032 0.000 0.000 

tps_s    – 0.825 0.000 0.825 0.032 0.000 0.032 

rk (capa)     – 0.000 1.000 0.825 0.000 0.000 

CaPA      – 0.000 0.058 0.847 1.000 

tps_ns_s       – 0.285 0.058 0.000 

tps_s_s        – 0.432 0.132 

rk(capa)_s         – 1.000 

ok_s          – 

Frequency bias index (FBI): adjusted from -1 to infinity, where 0 is perfect skill. Positive/negative FBI 

means overestimate/underestimate  

Bold: comparison achieved a statistical significance at α level of 0.05. 
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Table A3-9 The resampling post-hoc test outputs of PCP estimates 2015 validation Boreal and 

validation Foothills area. The PCP estimates are evaluated using MAE (mm). 

 MAE  averaged over stations in validation Boreal / Foothills area (test statistics) 

Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

Boreal 1.29 1.26 1.21 1.18 1.18 1.13 1.10 1.01 0.97 0.96 

Foothills 1.34 1.35 1.38 1.34 1.30 1.34 1.28 1.19 1.13 1.13 

Percent change (%) (4.4) (7.4) (12.9) (8.5) (9.9) (16.3) (16.2) (14.7) (14.9) (15.8) 

Region Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

Boreal 

ok – 0.554 0.384 0.120 0.068 0.020 0.000 0.000 0.000 0.000 

idw 

 
– 0.534 0.190 0.156 0.000 0.000 0.000 0.000 0.000 

tps_ns 

  
– 0.165 0.534 0.126 0.000 0.000 0.000 0.000 

tps_s 

   
– 0.554 0.384 0.000 0.000 0.000 0.000 

rk (capa) 

    
– 0.378 0.054 0.000 0.000 0.000 

CaPA 

     
– 0.534 0.038 0.000 0.000 

tps_ns_s 

      
– 0.000 0.000 0.000 

tps_s_s 

       
– 0.143 0.080 

rk(capa)_s 

        
– 0.534 

ok_s 

         
– 

Region Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

Foot-

hills 

ok – 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 

idw  – 1.000 1.000 1.000 1.000 0.950 0.029 0.000 0.000 

tps_ns   – 1.000 0.528 1.000 0.000 0.000 0.000 0.000 

tps_s    – 1.000 1.000 0.756 0.000 0.000 0.000 

rk (capa)     – 1.000 1.000 0.052 0.000 0.000 

CaPA      – 1.000 0.144 0.029 0.000 

tps_ns_s       – 0.075 0.029 0.000 

tps_s_s        – 0.880 0.299 

rk(capa)_s         – 1.000 

ok_s          – 

Bold: comparison achieved a statistical significance at α level of 0.05. The method had better / worse 

performance than the methods on its left / right side for validation Boreal area. 
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Table A3-10.  The resampling post-hoc test outputs of PCP estimates in 2015 validation Boreal. 

The PCP estimates are evaluated using ETS. 

 ETS averaged over stations in validation Boreal (test statistics) 

PCP (mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 
0.5 – 1.5 0.06 0.05 0.07 0.09 0.05 0.10 0.08 0.10 0.10 0.11 
1.5 – 2.8 0.05 0.07 0.06 0.06 0.07 0.06 0.08 0.08 0.10 0.09 

> 2.8 0.40 0.41 0.40 0.42 0.44 0.39 0.43 0.45 0.46 0.46 

PCP Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 

– 

1.5 

ok – 1.000 1.000 0.330 1.000 0.160 1.000 0.160 0.140 0.044 

idw  – 1.000 0.044 1.000 0.140 0.520 0.080 0.111 0.000 

tps_ns   – 1.000 1.000 0.805 1.000 0.080 0.392 0.330 

tps_s    – 0.111 1.000 1.000 1.000 1.000 1.000 

rk (capa)     – 0.140 0.550 0.080 0.044 0.044 

CaPA      – 1.000 1.000 1.000 1.000 

tps_ns_s       – 0.552 1.000 0.459 

tps_s_s        – 1.000 1.000 

rk(capa)_s         – 1.000 

ok_s          – 

1.5 

– 

2.8 

ok – 1.000 1.000 1.000 1.000 1.000 0.851 0.546 0.180 0.640 

idw 
 

– 1.000 1.000 1.000 1.000 1.000 1.000 0.430 1.000 

tps_ns 
 

 – 1.000 1.000 1.000 1.000 1.000 0.615 1.000 

tps_s 
 

  – 1.000 1.000 1.000 1.000 0.722 0.900 

rk (capa) 
 

   – 1.000 1.000 1.000 0.640 1.000 

CaPA 
 

    – 1.000 1.000 0.396 1.000 

tps_ns_s 
 

     – 1.000 1.000 1.000 

tps_s_s 
 

      – 1.000 1.000 

rk(capa)_s 
 

       – 1.000 

ok_s 
         

– 

> 

2.8 

ok – 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.660 0.504 

idw  – 1.000 1.000 0.840 1.000 1.000 0.544 0.160 0.129 

tps_ns   – 0.962 0.682 1.000 0.296 0.190 0.000 0.129 

tps_s    – 1.000 1.000 1.000 0.720 0.918 0.525 

rk (capa)     – 0.129 1.000 1.000 1.000 1.000 

CaPA      – 0.975 0.672 0.044 0.160 

tps_ns_s       – 1.000 1.000 0.720 

tps_s_s        – 1.000 1.000 

rk(capa)_s         – 1.000 

ok_s          – 
           

Equitable threat score (ETS): values range between -0.333 to 1, where 1 is perfect skill. 

Bold: comparison achieved a statistical significance at α level of 0.05. 
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Table A3-11. The resampling post-hoc test outputs of PCP estimates in 2015 validation 

Foothills. The PCP estimates are evaluated using ETS 

 ETS averaged over stations in validation Foothills (test statistics) 

PCP (mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 
0.5 – 1.5 0.06 0.07 0.09 0.09 0.08 0.09 0.10 0.12 0.16 0.14 

1.5 – 2.8 0.07 0.10 0.07 0.08 0.10 0.08 0.09 0.12 0.14 0.11 

> 2.8 0.47 0.48 0.47 0.46 0.50 0.46 0.50 0.52 0.54 0.52 

PCP Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 

– 

1.5 

ok – 1.000 1.000 0.840 1.000 1.000 0.840 0.152 0.000 0.000 

idw  – 1.000 0.840 1.000 1.000 0.840 0.170 0.042 0.080 

tps_ns   – 1.000 1.000 1.000 1.000 1.000 0.152 0.152 

tps_s    – 1.000 1.000 1.000 1.000 0.152 0.264 

rk (capa)     – 1.000 1.000 0.540 0.000 0.042 

CaPA      – 1.000 1.000 0.117 0.638 

tps_ns_s       – 1.000 0.352 0.352 

tps_s_s        – 0.840 0.840 

rk(capa)_s         – 1.000 

ok_s          – 

1.5 

– 

2.8 

ok – 0.492 1.000 1.000 0.798 1.000 1.000 0.387 0.264 1.000 

idw 

 
– 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

tps_ns 

 
 – 1.000 1.000 1.000 1.000 0.520 0.387 1.000 

tps_s 

 
  – 1.000 1.000 1.000 1.000 0.780 1.000 

rk (capa) 

 
   – 1.000 1.000 1.000 1.000 1.000 

CaPA 

 
    – 1.000 1.000 0.180 1.000 

tps_ns_s 

 
     – 1.000 1.000 1.000 

tps_s_s 

 
      – 1.000 1.000 

rk(capa)_s 

 
       – 1.000 

ok_s 

         
– 

> 

2.8 

ok – 1.000 1.000 1.000 1.000 1.000 1.000 0.123 0.000 0.000 

idw  – 1.000 1.000 1.000 1.000 1.000 0.340 0.195 0.288 

tps_ns   – 1.000 1.000 1.000 0.340 0.288 0.259 0.372 

tps_s    – 1.000 1.000 1.000 0.123 0.000 0.042 

rk (capa)     – 1.000 1.000 1.000 0.340 1.000 

CaPA      – 1.000 0.630 0.228 0.667 

tps_ns_s       – 1.000 1.000 1.000 

tps_s_s        – 1.000 1.000 

rk(capa)_s         – 1.000 

ok_s          – 

Frequency bias index (FBI): adjusted from -1 to infinity, where 0 is perfect skill. Positive/negative 

FBI means overestimate/underestimate  

Bold: comparison achieved a statistical significance at α level of 0.05. 
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Table A3-12. The resampling post-hoc test outputs of PCP estimates in 2015 Validation Boreal. 

The PCP estimates are evaluated using FBI. 

 FBI averaged over stations in validation Boreal (test statistics) 

PCP (mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 
0.5 – 1.5 1.26 1.54 0.32 0.75 1.51 0.45 0.23 0.38 0.35 0.52 

1.5 – 2.8 1.49 1.27 0.29 0.49 0.66 0.13 0.07 0.08 0.14 0.06 

> 2.8 0.08 0.04 0.07 0.07 0.02 (0.22) (0.08) (0.17) (0.24) (0.24) 

PCP Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 

– 

1.5 

ok – 0.963 0.050 0.171 1.000 0.034 0.050 0.000 0.000 0.234 

idw  – 0.000 0.000 1.000 0.000 0.000 0.000 0.034 0.034 

tps_ns   – 0.000 0.034 0.578 0.858 1.000 1.000 0.936 

tps_s    – 0.088 0.105 0.000 0.034 0.034 0.936 

rk (capa)     – 0.034 0.000 0.000 0.034 0.050 

CaPA      – 0.034 1.000 0.936 1.000 

tps_ns_s       – 0.120 0.735 0.578 

tps_s_s        – 1.000 1.000 

rk(capa)_s         – 0.812 

ok_s          – 

1.5 

– 

2.8 

ok – 1.000 0.030 0.030 0.133 0.000 0.000 0.000 0.048 0.000 

idw 
 

– 0.030 0.000 0.030 0.000 0.000 0.000 0.000 0.000 

tps_ns 
 

 – 0.812 0.105 0.819 0.000 0.240 0.375 0.133 

tps_s 
 

  – 0.819 0.170 0.105 0.048 0.088 0.030 

rk (capa) 
 

   – 0.030 0.000 0.000 0.000 0.000 

CaPA 
 

    – 1.000 1.000 1.000 1.000 

tps_ns_s 
 

     – 1.000 1.000 1.000 

tps_s_s 
 

      – 1.000 1.000 

rk(capa)_s 
 

       – 1.000 

ok_s 
         

– 

> 

2.8 

ok – 1.000 1.000 1.000 1.000 0.050 0.289 0.050 0.030 0.030 

idw  – 1.000 1.000 1.000 0.050 0.960 0.100 0.050 0.030 

tps_ns   – 1.000 1.000 0.000 0.000 0.000 0.000 0.000 

tps_s    – 0.960 0.000 0.000 0.000 0.000 0.000 

rk (capa)     – 0.000 0.152 0.030 0.000 0.000 

CaPA      – 0.030 1.000 1.000 1.000 

tps_ns_s       – 0.063 0.000 0.000 

tps_s_s        – 0.352 0.252 

rk(capa)_s         – 1.000 

ok_s          – 
           

Frequency bias index (FBI): adjusted from -1 to infinity, where 0 is perfect skill. Positive/negative FBI 

means overestimate/underestimate  

Bold: comparison achieved a statistical significance at α level of 0.05. 
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Table A3-13. The resampling post-hoc test outputs of PCP estimates in 2015 Validation 

Foothills. The PCP estimates are evaluated using FBI. 

 FBI averaged over stations in validation Foothills (test statistics) 

PCP (mm) ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 
0.5 – 1.5 1.031 1.000 0.131 0.413 0.855 0.545 0.044 0.287 0.413 0.391 

1.5 – 2.8 1.076 0.931 0.067 0.784 0.716 0.248 0.033 0.147 0.062 0.094 

> 2.8 -0.011 0.109 0.103 0.099 0.032 -0.122 -0.022 -0.141 -0.140 -0.201 

PCP Method ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

0.5 

– 

1.5 

ok – 0.963 0.050 0.171 1.000 0.034 0.050 0.000 0.000 0.234 

idw  – 0.000 0.000 1.000 0.000 0.000 0.000 0.034 0.034 

tps_ns   – 0.000 0.034 0.578 0.858 1.000 1.000 0.936 

tps_s    – 0.088 0.105 0.000 0.034 0.034 0.936 

rk (capa)     – 0.034 0.000 0.000 0.034 0.050 

CaPA      – 0.034 1.000 0.936 1.000 

tps_ns_s       – 0.120 0.735 0.578 

tps_s_s        – 1.000 1.000 

rk(capa)_s         – 0.812 

ok_s          – 

1.5 

– 

2.8 

ok – 1.000 0.031 1.000 1.000 0.115 0.000 0.052 0.031 0.031 

idw 

 
– 0.000 1.000 1.000 0.031 0.000 0.000 0.031 0.000 

tps_ns 

 
 – 0.000 0.000 1.000 1.000 1.000 1.000 1.000 

tps_s 

 
  – 1.000 0.286 0.000 0.052 0.000 0.000 

rk (capa) 

 
   – 0.096 0.000 0.000 0.000 0.000 

CaPA 

 
    – 1.000 1.000 0.798 1.000 

tps_ns_s 

 
     – 1.000 1.000 1.000 

tps_s_s 

 
      – 1.000 1.000 

rk(capa)_s 

 
       – 1.000 

ok_s 

         
– 

> 

2.8 

ok – 0.336 0.432 0.230 1.000 0.825 1.000 0.230 0.336 0.064 

idw  – 1.000 1.000 0.825 0.175 0.432 0.000 0.000 0.034 

tps_ns   – 1.000 0.825 0.112 0.000 0.000 0.000 0.000 

tps_s    – 0.825 0.192 0.336 0.000 0.093 0.000 

rk (capa)     – 0.093 0.825 0.000 0.034 0.000 

CaPA      – 0.432 1.000 1.000 0.825 

tps_ns_s       – 0.093 0.112 0.000 

tps_s_s        – 1.000 0.825 

rk(capa)_s         – 0.156 

ok_s          – 

Frequency bias index (FBI): adjusted from -1 to infinity, where 0 is perfect skill. Positive/negative FBI 

means overestimate/underestimate  

Bold: comparison achieved a statistical significance at α level of 0.05. 
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Table A3-14. Resampling post-hoc tests of 1000-bootstrapped MAE for FWI System calculated by 

interpolating precipitation, and observed RH, WS, Temp in 2015 over validation area. 

Index ok idw 
tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 
FFMC 4.65 4.58 4.21 4.29 4.07 4.23 3.93 3.8 3.58 3.63 

DMC 8.40 7.93 7.74 7.93 7.69 9.62 7.77 8.61 8.42 9.15 

FWI 3.04 2.79 2.51 2.64 2.60 2.74 2.41 2.46 2.36 2.45 

Index Method 
ok idw 

tps 

_ns tps_s 
rk 

(capa) CaPA 
tps 

_ns_s 
tps 

_s_s 
rk(capa) 

_s ok_s 

FFMC 

ok – 0.855 0.112 0.144 0.000 0.112 0.000 0.000 0.000 0.025 

idw  – 0.112 0.112 0.112 0.112 0.025 0.000 0.000 0.000 

tps_ns   – 0.534 0.534 0.855 0.000 0.000 0.000 0.025 

tps_s    – 0.102 0.855 0.000 0.000 0.000 0.000 

rk (capa)     – 0.328 0.399 0.090 0.000 0.025 

CaPA      – 0.112 0.025 0.000 0.000 

tps_ns_s       – 0.000 0.000 0.025 

tps_s_s        – 0.025 0.025 

rk(capa)_s         – 0.534 

ok_s          – 

DMC 

ok – 0.805 0.540 0.960 0.510 0.504 0.504 1.000 1.000 1.000 

idw  – 1.000 1.000 1.000 0.126 1.000 1.000 1.000 0.861 

tps_ns   – 1.000 1.000 0.000 1.000 0.510 1.000 0.675 

tps_s    – 0.728 0.164 1.000 0.744 1.000 0.728 

rk (capa)     – 0.086 1.000 0.527 0.510 0.456 

CaPA      – 0.164 0.195 0.044 1.000 

tps_ns_s       – 0.456 1.000 0.638 

tps_s_s        – 1.000 0.858 

rk(capa)_s         – 0.638 

ok_s          – 

FWI 

ok – 0.416 0.104 0.189 0.189 0.440 0.064 0.064 0.000 0.104 

idw  – 0.039 0.288 0.138 0.680 0.000 0.000 0.019 0.039 

tps_ns   – 0.064 0.632 0.084 0.039 0.632 0.084 0.632 

tps_s    – 0.680 0.416 0.039 0.120 0.000 0.198 

rk (capa)     – 0.375 0.198 0.520 0.189 0.520 

CaPA      – 0.000 0.039 0.019 0.000 

tps_ns_s       – 0.392 0.680 0.680 

tps_s_s        – 0.138 0.680 

rk(capa)_s         – 0.064 

ok_s                   – 
           

Bold: comparison achieved a statistical significance at α level = 0.05. 

Note: The resampling post-hoc test is a combination of resampling paired t-test with Holm-Bonferroni 

p-values adjustment and is documented in Section 2.4.3 
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Appendix 4: Examples of 24-h precipitation estimated using the candidate methods   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4-1 24-h precipitation estimated using the candidate methods on May 26, 2015 (a light precipitation day).  

Each dot represents a weather station. This map shows the advantage of using regression kriging with CaPA System in estimating 

precipitation in our study area. For example, there was a small precipitation event on the north of the study area that was captured by 

CaPA System and regression kriging related methods, while the rest of the interpolation methods could not capture this precipitation 

event due to the lack of weather stations in that area.  



 
 

 92 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A4-2 24-h precipitation estimated using the candidate methods on June 22, 2015 (a rainy day).  

In a rainy day, precipitation estimated with the 10 methods varied greatly. Regression kriging with CaPA performed the best because 

(1) regression kriging could capture precipitation events identified by both the CaPA System and the AAF fire weather stations; (2) 

regression kriging also produced a gridded precipitation map with more details compared with the other interpolation methods. IDW 

produced a precipitation map with the signature “bullseye”, which were not realistic compared to the variability of precipitation. 

Additionally, these maps also showed that the square root of the observed precipitation could result in underestimation.   


