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*i szgn1f1cant1y 1mproved

1mplement1ng computer vxslon technxques. An exten51veo/ SR Y

'l1terature rev1ew has 1dent1f1ed the'1nterest1ng areas

.the framework of stochast1cal estzmatlon theory u

7p. A In order to obta1n perceptually more sat1sfy1ng

restored 1mages,‘1mage flelds are QSSUmed to. be’ydﬁf"‘f@“kf

‘ namely, a sequent1al Kblman f;lter and an adaptrve 1terat1ve

. ./, MBSTRACT .

!
‘

s T A A e ;-

In one sense, the a1m ofycomputer vxsxon As to extract

M

and 1nterpret the organlzatxon of 1mages 1n ways wh:ch are

useful 1n spec;fxc problem doma1hs. However such 1mages
. ’ B

'taken ‘in realxstxc env1ronments 1neu<tably suffer from

K

varlous degradatlons 1nclud1ng n01se,‘blurr1ng, geometrlgal

¢

d1stort10n etc.; These degradatlons pose many problems for

[
“

i

‘ requxrxng further study Of these areas, nonstatxonary 1mage T‘

'restoratlon, and 1mage 51gnal detect1on 1n no1sy ‘lf‘;nh o

"
. L L ' ! ‘,
' . . R

env1ronments are purs d extens1vely 1n thls thesxs. Four q~‘f’

’ .
0 ' Al M 1

‘processlng algorlthms and techn1ques have been developed 1n};ﬁ

&
-

' s

nonstatlonary Two restoratlon algor1thms are der1ved

Y

fllter. The sequent1al fllter 'is developed based on a cadsal

&

tate space 1mage model The adapt1ve leter uses a mod1f1ed

recelved 1mage model Both algor1thms,1nclude 5ome local

IR

spat1aI act1v1ty measufements 1n'the f1l{er ga1ns such that

the restored 1mages reta1n edge ;nfoymatzon. Szmulat1ons

7

¥ ',. .

show that the vxsual qualzty of the restored 1mages is




R _ , o Ce N e 3 L
o Matched fllters have 1on§ been used for s1gnal ‘V&‘r ';.“E
, : ‘ . o
detectlon. They are opblmal only when the nolse 1s ‘ff.‘ ghff
statxonary and whlte. In order to\effectlveiy apply the‘pf;]; ﬁ55
matched fxlters go‘xmages embedded 1n nonstat1onary, B B
nonwhrte norse backgrounds ,a new adaptxve postfxiterlng. ’
‘ technxque 13 derrned Superxorlty of thxs technxque Ag, %hown ,‘
by expeerents.pff&:"3;ﬁr\fgj“ff;;*ﬂ'f‘h.«i;fj( ET:;tU”"| e
T ’w@ : ;? :1,'«*7 %”VZy n{;‘ff fpg, [fl;a,*,\' o ‘
”v‘f In the fourth algorlthm a hxerarchzcal approach for ;ff
multz—object detectlon 1s preéented In th1s approach h R
_ _ e b :
detect1on of oogect 1s d1V1ded 1nto three steps.,': . ;,t ‘\“f

‘ o ' . N

prefiltetzng,.pat&érn recogn1t1on, and detect1on. The 1magesrp-d

I
N

are prefxltered to suppress no;ge whxch would ot:hermse'r

affect the ent1re detect1ng operatzon.‘In pattern ‘, ff- Co el
recognltxon, a 11near least square mapplng technlque xs :;“v,f-‘u
,applxed for c1a591f1catxon. In the detectlon part a known

' V.

object\of a ClaSS\IS used to match the recelved 1mage of the

same[class.alt 1s shown by sxmulatxons that wath»thls

e " Wy oo \‘

v

app 'ach, the computatlon tlme as reduced by more than 50%..,=ng73

F a
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" ‘ CHAPTER I

GENERAL INTRODUCTION

! \
\
\
\

.1 Perspective and Motivation \\a .
medium of human

- Besides speech, images are a primary
communication. A single image embodies an en :mooquuantiﬁy
of information that cannot be carried, witﬁ the same
concision, precision, and flexibility; by any other sensory
medium. With the advent of thehdigital computer and new |
image proceséing'techﬁiques we are able to obtain dxgxtxzed
‘1mages which are defined by finite arrays of 1ntensxty
levels normally_corresponding to natural visible
information, and thoh use the digital images in a variety
of ways fof different purposes. Tho spétial information,
when processed by computers also pfovideS»ué;with ao
essential means for man~mach1ne communication in automatlon'
and,artificial intelligernce. The present generation of high
speed computers facilitates maohine'vision and imaoe
'prooessing in an ihcreasingiy complex manner. |

Techniques for digitizing images vary as much as the .

purposes. of using such images, However, the common !

act1v1t1es 1nvolved are bas1cally the encodlqg, the sEByQZZT_\\\\

~and the 1nterpretat1on of 1nformat10n in the form of an .
image, Thg}qualxty of an fmiﬁé»is critical ‘in @ahy
appIications. For example{ using video'iﬁagés as guiding

. media for,iodustti51 robots éo deteét and,bickkup pgféicuior



. causing problems in dxagnosxs.

" make

‘ObjeCtS on conveyor belts may sometxmes lead to erronous

operatxon if the 1mages are degraded (e g "snow flakes?,-

'blurrlng, and dxstortxon)

\

X-rays play a very important role in clinic medicine;

» and medical research. The quality of X-ray images is’ -

critical-for detecting diseased area. However, due to’ the

\

‘nonlxnearltxes of 1magxng systems and low radlatxon energy,

these types . of 1mages are often blurred and . low 1n contrast

[

.

Detectxng astronomzcal events' is often accomplxshed

TR

through 1mages observed by telescopes located .on explorxng

satell1tes. However, because of transmxssxon noxse, air

turbulance, d1sturbances caused by space radlatxon and the.*

f1n1te aperture of the telescope, the observed. 1mages

freq y suffer from varxous kznds of degradat1on whxch

her analysis more‘dxfflcult..

Over the past three decades,\such problems have‘

mot1vated the development of . many technxques for the‘

‘restoratlon and noise reductlon of 1mages. One early

fru1tful app11cat1on of 1mage process1ng was at the Jet

'fPropu151on Laboratory of the Callfornla Instztute of

fS1nce then, the development of better, more ef£1c1ent and

hfcheaper 1mage encoders, analyzers, and d1splay devzces has‘

’-

5 made spat1a1 1nformat1on more readxly ava1lab1e 1n many

:fdxfferent d191ta1 forms for ‘a varxety of areas.

3

'

lTechnology in early 1960 s’ as part gf the Apollo program.»"‘
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Although thexr applxcatiohs are d1verse, xmage

I3

restoratxon detectxon, and pattern recognxtxon follow the

same basxc mathematlcal prxncxples. The theme of thxs

Al

dxssertatzon is focused on the mathemat1cal pr1nc1ples

abstracted from a varxety of problem areas. In the-chapters 3

i

.to follow three aspects of the problem shall be presented v‘
“(15 Development of mathematzcal 1uage models,' '
KZ).Deve}opment of algorxthms capable~of‘restoring‘images'or~p,

“detectxng objects in n01sy envxronments ngen exp11c1t 7.;‘

\
' '

crxterla-, : S - ._‘ I

\

‘(3)“Computer 51mulatlons to verlfy the proposed algorxthms.

-~ Some 1mportant techn*ques prev1ously developed for
image- restoration and detectlon WIll be . dxscussed br:efly in
the se&bel (A representatlve samplzng of the llterature is

given in the reference section. )

\

1 2. Image Restorat1on | T VS

Images acqu1red through recordxng med1a are often
' e}
;corrupted by varlous forms of degradatlon among whlch no1se‘

5N
‘\Q

andublur are typzcal and the most prom1nent The qual1ty of
.a rece1ved 1mqge 1s lim1ted by the rece1ver and the
*enV1ronment w1th1n wh1ch the 1mage 1s taken. The 1mage
psensor no1se 1s also a majo factor. (As the 1mage sensor
'ﬁusually ope;ates at 1ts sen31t1v1ty 11m1t the noise .
assoc1ated w1ll 1nev1tably man1fest 1tse1f in the recezved .

A

1mage, such as f1lm gra1n nozse and shot noxse (Huang, 1966'

o N v ‘-'T" . :
: .. . s AR L ]

" N LY
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Barb 1975- Andrews ahd'Hunt, 1977) Blurr1ng 15 often

caused by the relatxve mOtlon of objects and 1magxng~r

'
l

" N ' { ! f ,

-'systems atmospherlc turbulance, out of focus operat1on,r

. '
\ "

phy51cal 11m1ts of 1mage Sampllng systems,

| A

Corrupted 1mages often pose problems for analysxs and

'ldetect1on.‘Techn1ques for. 1mprov1ng vxsuafsqualxtz_of noxsy

'
“
1

‘.1mages and recoverlng 1mages from the1r degraded

counterparts are: referred to as 1mage restoratlon and

o

'“enhancement (Huang, 1981) Earl1er research 1n thlS area was

fhto develop fllters in the frequency domaln (Andregs,v1974"&

)

_Andrews and Hunt 1977 Pratt,~1978) Due to the 11mf?atlons

o

of these approaches the 1mages were assumed to be l;near and |

. S A
'stat1onary processes,-n01se degradatxons wexe consudered as

A

‘ broad band (whgte) or band l1m1ted and the n01se reductlon

|

technxques were carrled out through the use of the dlscrete

1 v

,
Vo ! e
. ."‘Mr‘, ) o R A 4 RITI

ﬂ/fast Fourlér transform (FFT) »”;\‘j7f*f.“ft‘fvm¥
e : .“‘.' l i .
“‘_ Extens1ons of one dlmens1onal Bayeszan estmmat1on

\‘ . 'p,.

technlque to 1mage restoratlon (Hab1b1, 1972) led to the

”a development of stochastlcal"restorat1on algorlthms 1n the

spat1a1 domaxn As w1ll be seen}‘thesefteohn1ques are,,gorﬂ -

the most part, var1at1ons ofttwo d1mens'fna1 Kalman type\,

fllters. In these algor1thms the 1mages are,aSsumed to be

'

random processes (gsually statlonary) The Kalman fllte s

l

h

a recur51ve est1matlon techn1que. In order to 1mp1ement the
Kalman fxlter in the spat1a1 doma1n, we have to establ:sh an

4 art1f1c1al cauSal 1mage model wh1ch often contalns ;mage
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'

: vectors of very large d1mensxon and due to the fact that'

A A

u"any rmage 18 of f1n1te extent we are unable to establlsh a\

global state space model asawe do for the t1me doma1n Kalman"

\
\" ol

frlter.
w:th a v1ew to overcdm1ng the hlgh dxmensxonal1ty and )

jcomputatxonal problems, Woods. and his tolleagues (1977

1981 1981a) proposed a specxal\structure for image” state

i vectors whzch nakes only the closest p1xels before and above
the plxel being estxmated Based on these 1mage vectors the}v
Iwere able to establlsh a local state space representatlon Co

'requ1red by the Kalman f1lter. To further reduce f‘n‘.' .
computatxonal load they developed a so- called RUKF (reduced

| update-Kalman leter) :;oods et al.,'1976 1979; 1981a)
"whlch is shown to be optlmal in the sense that it m1n1mlzes_

‘the post update mean squares error, and only those plxels in,

‘fthe 1mmed1ate v1c1n1ty are used for modellng. S1m11ar1y,

‘»Murphy and Sllverman (1978) cons1dered two other suboptzmal‘

‘.restoratlon schemes, namely, str1p restoratlon and |
:constralned optlmal restorat1on. In the 1atter scheme the f‘

-}ga1n matr1x of the Kalman fllter 1s constralned to be

ey Tﬁe advantages of two d1mens1ona1 recurs1ve fllters are
lfthat they requ1re less'computatlon t1me than the |

;;nonrecurS1ve ones, they can handle space-varzant blur more .

.oeasxly, and as 1s well known (Anderson and Moore,h1972)

Z;be1ng Kalman type fllters they are capable of cop1ng w1th




?

mathematlcal tractabxllty, an gmage is normally assumed to -

-

v

nonstationary problems.

7

o

el

be a wxde sense stat1onary fleld Therefore the statxstical
propertxes of the 1mage are governed globally rathir than
locally by 1ts stat1onary covarzance matr1x whxch is of

Toepl1tz form (Andrews and Hunt, ‘1977° Gray, 1971) Under
neo o &

- th1s assumptlon the necessary computatlon can be carr1ed out

M

i

g@

,-1mages. Th1s observat1on suggests that the abgppt changes xn‘w

i fradftionally,‘for the'ease of cbmputation‘and‘\”“ . b{
<
¥

i

. by FFT. algor1thms and consequently, the computat1on t1me 1s "’

reduced drastlcally The savxngs 1n computatlon time:- are,

"

however, at the expense of restoratlon~qua11ty, Algor1thms
basedxon this assumbtion tend to globallyismooth out‘the

no1se and-any abrupt changes of 1mage 1nten51t1es as well
As a result the restored 1mages are smooth but blurred
1

1

Recent studaes in human v1s1on "(see for example, Cae111

g

and Moraglla, 1986) have shown how edges are cr1t1ca1 for

@:ttern recogn1t10n and the perceptual réglstratlon o£

1mage fhtens1t1es should be retaxned as much as p0551b1e

= after the restoratlon 1n order to ach1eve good v1sua1

L

L4 A?;.
- §

qual}ty. It 1s 1ntuxt1ve1y obv1ous that thevv1sua1 qual1ty
Jf the restored 1mage can be 1mproved 1f edges can be- ,f'
;reserned LAs dlscussed before, preserv1ng edges whzlegi_vw
restor1ng the degraded 1mage us1ng stochast1c f11ter1ng L

techn1ques 1s qﬁ1te a contradlctory task Wall1s (1976)

suggested an algor1thm based on local mean and var1ance. In i

IR



,(1984) suggested an 1nterest1ng and rather 51mple four stage N

1one dxmen51onal f1lter is orlented 1n the same dlrectlon as -

the edge, the n01se is f11tered along the edge, and 1n doxng

(0° 45°, 90° 135°)» The basxc 1dea 1s that 1f the .?"

,ﬂ;h1s approach each p1xel 1s requxred to have the local

‘paverage mean and varlance, and sudden fluctuation 1s

’

‘,measured The algorlthm.xs able to preserve the edges 1nb,[‘”
. reStorat1on. The ma1n drawback of thls technxque is that:it o

‘Mtends to over enhance subtle detalls of the 1mage ‘at the

A . '

expense of 1ts pr1nc1pal features. Based onrthe mod1f1cat1on.‘

i

*of Wall1s model Lee (1980 1981) developed adaptlve.f

“'algor1thms wzth str1k1ng results.‘These technlques, though

they lack the: mathematlcal elegance and sophrsd&catlon of a

few other
‘ K

' I

one dlmenszonal adapt1ve algor1thm In the1r approach they‘

, process an 1mage in cascade along ﬁour d1rectzons

b
3 \

Ly«.,

o, the edges are preserved The s1mulat1on results seem o

uch better than those obtalned from 1ts two!dlmens1onal

>

' counterpart Other works on preserv1ng edges can be found 1n

1975' Rajala, et al., 1981-‘Abramat1c, et al.,.1982 to ‘

ment1on a few.ﬁ ‘f‘ﬁ--j‘j ‘7 SRR ﬂ\\f} j‘;-

- 8]

Research on deve10p1ng f1lters for nonstat1onary, and

)

&

szgnal-dependent noxse processes has recently been publlshed

by some authors. After 1nvest1gat1ng sgme stat1st1ca1

eqpn1ques, are sxmple and effectlve. Chan and L1m

the literature KX g Ingle et al., 1976 1978 Nah1 et al.,d! o

characterxst;cs of 1mage fzelds, Hunt et al (1976' Trussell d"

and Hunt, 1978) showed that 1mages can be decompoSed 1nto flﬁf%




Y

.y ) N . —‘ .

‘nonstatxonary mean Gau551an model and statzonary -

0 o o
) .

fluctuatlons about the'mean. The' nonstatlonary mean is
obtalned by blurrzng any one of the ensemble 1mage members‘
and 1t has the gross structure that represents the context
of the ensemble. Lebedev and erkxn (1975) proposed a’ :
composxte 1mage model that assumes that an 1mage is compqsed

g
i of many dxfferent statlonary components, and each has a

v
\

dzst1nct statlonary correlat1on structure. Uszng thxs 1mage‘
model Ingle ‘and Woods (1976) applled the rgduced update
Kalmen fllter (RUKF) to 1mage restorat1on. They establxsh a

bank of RUKF s runn1ng ‘in parallel and use an + L

n K

o 1dent1f1catlon estlmatron scheme, in. whrch each p01nt is S
a551gned a statlonary 1mage model and f11tered by the

spec1f1c Kalman fxlter. Most recently, Kuan et al (1984)

eon51dered an 1mage model w1th nonstat1onary mean and

.,, .

nonstatlonary var1ance (NMNV) and developed a recur51ve
algor1thm for 1mage restorat1on.‘They leave the [
nonstat1onar1ty to the 1nput process, so that the f11ter has'

a s1mp1e, space 1nvar1aﬂf structure In the1r scheme, 1t

i, "

‘ becomes unnecessary to construct a space variant dynam1c~wth

%" ~,

model for each 1mage,'and only the local mean and local

var1ance of the orlg1nal 1mage need to be estlmatéd

It 1s known (Netravalz, 1975'=Anderson et 815, 1976fﬂ&v1:

L Rajala, et 31~r‘1931' Gfeen, 1983) that the human vxsualf“3'“

"

’71 system 1s 1nsens1t1ve to nozse 1n h1gh contrast regzons of

i

an 1mage, and relat1vely more sen51t1ve“f6 noxse 1n flat

regléns.tSuch perceptual cr1ter1a for the development ofﬁpf?“




\
e

31mage models and restoratxon algorlthms can often be
|

effectxve..For example Anderson and Netraval1 (1976) f‘,

o :
def1ned a subject:ve error crxter1on based on the human-;
' .vzsual system model and establ1shed an’ adaptxve strategy

that str1kes a comprom1se between the loss 'of resoIhfzon and
"y

| no;se reject1on such that the same amouht of subject;ve

A

no1se 1s suppressed throughout the 1mage. Abramatlc and
/

S1lverman (1982) generallzed th1s procedure 1n the framework

: of the classxcal W1ener fllter. Mot1vated by the earller i

[

]
work of others (Budrlhls, 1972 Netrava11 et al., 1975-

Anderson et al., 1576 Lxmb et al.,1978) Rajala and
DeFlguelredo (1931) suggest a recur51ve least squares method
for the restorat1on of ‘an 1mage dlstorted by blurs and
corrupted by add1t1ve, whlte Gausslan n01se. They comb1ne a,
: v151b111ty functlon (Netraval1, et al., 1975 Anderson, et -
“a . 1976) wzth the Kalman f1lter prev1ously developed by
Abputallb et al (1972); They fxrst segment the 1mage 1nto
dis;o1nt reglons accord1ng to local spat1al act1v1ty of the ;
reg1on, and then determlne the covarzance structures of I
these segments. In thxs framework the f11ter adapts 1tself
to each segment through the v1s1bilxty functzon for ‘ '
nonstatlonary restoratxon.t.;;a:';jfgh‘,{y\f "l;dl“'mfgf

o
' : .
" ' .

,sl

SR o' {easons of mathematncal and computat;onal

convenzence, the assumptlons upon wh1ch the theoret1cal

~framework 1s establlshed are often s;mpllfzed and 1deal1zed
Th1s somet1mes leads to results that are far from be1ng |

-
?

1 real1st1c.»In the development of numerous 1mage restorat1on
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. algorithms the noise is‘usuallyvassumed to be additive, .= -
signal*independenty white and Gau551an. For 1nstance, the

\

famous W1ener fllter 1s facxlztated by thxs stat1onarity R

AN

assumptlon whxle the most frequentlY’used Kalman f1lter’
requ1res that the system be 11near f1n1te dxmen51onal and‘~k
drzven by whlte n01se (Sage and Melsa 1971) In contrast ‘to.

these,‘many physxcal n01se processes do not possess such

B

'n1ce propert1es. For example, a televxsxon v1d1con sensor 1s‘

”a power law dev1ce.‘That 1s, the output current 1s the

1llum1nat10n ra1sed to a- power. If thxs power 1s not un1ty

then a nonllnea: rekatxon exlsts between the-orglnal 51gnal
. and the measurement. Another cause of d1ff1culty 1s the L

;nonstatlonarlty of many sxgnals. For 1nstance, the 1mage

recorded by a vid1con sensor is usually a hlghly structured
entlty and -does . not possess stat1onary statlstlcs (Green o
1983) Further to thls, the no1se from a v1d1con sensor 1s‘ h

coupled 1nto the signal by the shot n01se process of

‘ece1v1ng 1nd1v1dual photons. Such noise is s1gnal dependent !

.v‘

. and nonstatlonary. Many other phys1cal n01se processes such
fr as P01sson n01se and mult1pl1¢at1ve no1Se are 1nherent1y |
51gnal-dependent. Blurr1ng effect 15 “in general ":j‘{L@h,

B space var1ant Consequently, the s1mp11f1ed assumptlons
whlch are often requ1red by the ex1st1ng fxlterlng |

teohnlques may~cause d1ff1culty 1n practlce.

Naderi and Sawchuk (1978) der1ved a nonstatxonary

dlscrete W1ener leter £or a 51gnal dependent f11m graln

I n01se prOCess.rIn add1t1on to the genera11ty of the no1se *ﬁ(}

Sy . : N . . Ly NI ,\ ? ‘
4 i . L ar . Lo ‘ [ . . N . M [ ,'\ *
. . . S R A .
A Coen ' : D I - . Lt E Lt Fee o,
Lo c ' o . [N N A Yol




'model the leter 15 able to adapt 1tse1f to the local pﬁf'~ .

sxgnal statxstxcs ngen the cond1tzonal noxse statxstzcs.‘v

a Vit o ‘
»

Recently, Kasturi et al (1985) developed an adaptlve po1ntv‘dj

estlmator for the same noxse model._Thls fxlter 1s based on

,""- f:‘ " N

lmxnxmum‘mean squares error criterlon:xand the algor1thm

. . '
Y .“‘.,

takes local mean to achleve the adaptlve MMSE Lo and -ﬁ ‘”;U

;
b

Sawchuk (1979) der1ved a nonlrnear MAE (maxxmum a

\
N

poster1or1) frlter for 1mages degraded hy Po1550n nolse.‘,;‘

u'Ward and Saleh (1985) consxdered arpartlcular and

o \.: N

1nterest1ng sztuat1on whereﬂthe S1gnal is corrupted by

[FOEE
'

\addltlve n01se and the random 1mpulse response is a funct1on

W of an 1ndependent nozse process, ,,”“'L‘Vf_ R ‘*N R
RN e ‘
1. 3 Image Pattern Recogn1t1on and Detectxon 1“-nw“: ~‘>ﬂ

i . N o K ‘- "

o Conventlonally, robots are de51gned to 1mplement

!

pre planned tasks w1th1n a f1xed env1ronment To deszgn‘ g‘ff}

o
) b ' n

robots with the ab111ty to Wsee" and "decxde requires the

‘,use of pattern reoogn1tzon techn1ques and dec151on theory. o

i \

Many other areas such as med1ca1 1mage analysxs, scene ;a

\"‘ ‘a.‘,‘ ;

"mat”ﬁing, target detect;on, etc. are also dependent upon the

theor1es and techn1ques of pattern recogn1t1on and "'J”QTD

")5‘

detect1on. x _;7”,‘f~,j.l"'~ Lﬁ;ff,fﬂu fhl‘Sffi

As a result of more than three decades of research,

pattern recogn1tzon has become a dzst1nct fzeld (Nzemann,

'?1tlon 1nvolves~;3
the class1f1catxon of a g1vén &mage pattern 1nto-one=of”a

“'Thls is: normally done 1n two step5°ﬁalﬁu~ﬂfu

'




ngen 1mage 1s first transformed 1nto ‘a feature space and

llfthen 1hﬂ&he second step, cla551 1ed The obgectxves of

[ )

; establ;shxng the feature space are twofold namely,

St

| (a) reduczng dxmensxonallty and (b) establlshlng feature

A ' ‘ ‘

ﬂ‘vectors. Sznce 1mage vectors are, even for 1mages of

: moderate sxzes very large 1t is necessary to extract a

e ‘..\

smaller amount of data (whlch ks, ca;led feature vector) to fl

M

' "represent the origlnal 1mage¢ These extracted data carry the

[

Afwﬁessentxal dxscrlmlnatory 1nformat1on needed to solve the,

v e . . -

,,overall pattern recognxtxon problem.;In pattern
.) ‘ f -
yc1a551f1catlon, a’ recognltlon loglc cla551f1es the 1magev

".‘ '

Al

"patterns u51ng the 1nformatxon embedded in the feature
mf:vectors (Sammon 1970 Duda,‘et al., 1973) i

[N " ’*
i ' o L ' e . . .
. v, ' . . - - W N . 4

Numerbus papers ex1st 1n the llterature on the feature

“extractlon and most of them concentrate on,fxndxng

k.orthogonal transformatlons (Ahmed and Rao,‘1975) among whxch

‘f»the Karhunen Loeve or the elgenvector orthonormal expans:on

vff(Watanabe, 1965 Chlen et al..‘1967) 1s the most popular.,‘tp

b

\fbfls well known that Karhunen-LOeveAexpanszon 1s optlmal w1th

L]

. . v o .

S T EEEI, Lo
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A

(1962) who showe\bthat the moment 1nvarlants calculated in’

terms of ~ordinary moments have the property that they are'

yh

1nvar1ant when the image 1s‘shxfted scaled or rotated
Since then. consxderable attentxon has been ngen to the

study of moment 1nvar1ants and thexr applxcatxons (Gonzalez
b,

et al., 1977, Dudan1 et al., 1977 Maltra, 1979;-Teague,

\

1980) Using circular harmonxc expansxon (Cormack "1963),

1 a

Hsu et al (198‘,19823 1984) developed rotatxon 1nvar1ant Lo
pattern recognxtxon methods; Recentlywlhbuﬁqutafa and | |
Psaltis (1985) generalized the moment5in§arfant theory‘witn
_a set of,complex"m?ments,fwitn whlch;they‘showed the |
relation,betegénhmoment'invariants and the circnlar‘naRMOnic

expansion. o - | S .gh

[}

Aléﬁough detectxon of sxgnals has long been a topxc in
communlcatxon ana 1nformatxon area, d1gxta1 1mage detectxon

is relat1ve1y new, and requ1res more attent1on as the y1sua1
L .

media emerge, Image detectlon 1nvolves 1dent1fy1ng the

presence or the absence of known objects in a rece1ved
image. As mentxoned ear11er,,natural 1mage s1gnals
ﬂ.1nev1tably suffer from various degradat1ons, the most -
commonly encouqteved degradat1on be1ng n01se‘, o |

e 4-‘,' }
li"tﬁ I.""‘ '

ot
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| Detectors such as template matching (Pratt, 1978; Hall,
.1979; Rosenfeld et al., 1982), and matcHed filters (Arcese,
-et al., 1970,'lurin2 1976; Deesimoze“et al., 1984) are
,classical ahd‘fundamental_developments in image detectlon.
" Over the yearS} these techniques‘have been.used %}tensively

‘ .
for character recognition, target detection, map-matching,

navigation etc..

Template matching‘compares a template to all possible
'search regions in image using some similarity measurements
(Wwong, et al., 1978; Munteanu; 1981) to.locate the most

rlihely‘positionlot the object. ohviouely this klnd of blind
. search is time consuming. ’ - |

-Several algorithms have been developed to.alleviate the
computatlonal burden Wong et al. (1978) and Muhfeanu (1981)
proposed some sequentlal methods to reduce the number of
N template plxels that must be matched to 1mage plxels by
accumulatlng the error betweeh‘the template and search area

- pixelbe pixel ~Since the error accumulates rap1dly, poor

matches are detected qu1ckly and rejected.

» _ , ‘

‘F.Uéiﬁg a hlerarchlcal'approachv(Rosenfeld,let al., 1977;
'Tahimoto, 1982) fthe"template matching is performed over the -
1mages of reduced resolut1on to locate poss1ble positions of
“the ob)ects. Although this approach simplifies the

computatlon, th1s procedure becomes less sen51t}ve and .

-
»

1ntroduce more errors. Vanderbrug and;Rosenfeld (1977)
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intr ced tWoistage template‘matching in which t;eyW “,
rand§§¥y select a subtemplate and perform matching the‘:_ .
subtemplate in the flrst stage. In the second stage a. tull
template is applxed, but onlyuat locations where a |
sufficient mateh,between4fﬁe subtemplate and the pictUre‘has

been reached. With this coarse-fine approach, the matching

procedure can be implemented more efficiently.:

The object of both hxerarchlcal and two stage template'
matchlng is to minimize the number of locatlons at which the
- full template muSt be applxed without missxng the ob)ect or

causxng false alarms.

Although closely related to’ template matchlng, matched
dfllters (or cross—-correlators) are developed from a
dlfferent’v1ew polnt. The or1gxnal,derxvat1on can be found
iq-many articles, in particular'/the introduotory paper by
.Turin (1976) It is assumed that a recelved noisy 1mage
‘g(x, y) may contaln a known: object f(x y) The goal is to
determine the presence of f(x,y) by u51ng‘oertain detector
h(x;y). Designing the "best" detector is based on a well,
~known SNR criterion. It has beeo~sﬁowna(Pratt, 1973" N
.Rosenfeld et al.,.1982) that for statzonary, whlte noise
processes the opt1ma1 detector h{x, y) is, in fact the knownr‘{
1mage 1tse1f A f11ter of this formtls referred to as the,
’matched f1lter. In general however, the. form of h is. more

jcomplzcated and the computéflon is rather t1me consum1ng. o



16

'
A\l

' , Because of their simplicity, matched filters are:
o ' ,
frequently -used ln practxce even when the random processes

“are not statlonary and whlte. They w:ll often yxeld

nonoptlmal detection for a glven SNR ijaya Kumar and
Carroll (1984) recently studled the loss of optxmalxty in
using the matched filter when the noxse is ponuhlte. They
~derived the lower bound to measure the loss.vau -and Cae111

(1986) developed an adapt1ve postf1lter1ng technxQue which

consxderably ﬁmproves the detectabllxty of .the matched

filter 1n nonwhlte noise env1ronments. In this technxque

“ there is no need to‘compute the 1nverse oi the,large

‘

" covariance matrix. However, the algorithm is suboptimal for

~a given SNR criterion, - IR . L

+

‘1.4 Overvxew of the Research
Thls thes1s is largely restrlcted to the d1scuss1on and

development of computatlonal techn:ques Wthh may be applxed
,to 1mage restoratlon detectxon and pattern recognxtlon
Computer .vision and 1mage ptocessxng have grown rapidly
“dur1ng last two decades,.and to such an extent that even
~fw1th this restrxctlon, the number of poss1b1e d1rect1ons 1n
~whlch the work could be taken are many. However,.51nce
E addatzve noise (with statlonavy or nonstat1onary l
’j statlstlcs) as dlSCUSSed in the last two sectlons, is one
of the most'common formS‘of degradatlons encountered 1n
acqu1red 1mages, .our main attent1on, in. thxs thes1s,'1s

",

focused upon process1ng 1mages corrupted . by ad tr\e no1se.

P
oy .



; ‘ “In'Chapter'II a state space 1mage model is

establxshed Based on thls model, .a sequent1al recur51ve

[ .t H

j1mage restoration algorxthm 1s developed' This algorithm is

a Kalman type fllter wh1ch has been applled exten51vely to

3 system estlmatxon sxnce the early 19605. To" preserve edge
1n£ormat10n 1n the Lmage, a measure of p1xel act1v1ty"ls
used Dependlng on the thresholds chosen this algorxthm can

‘ be adjusted to obtaxn restored 1mages w1th better vxsual

.'qualxty. S1mu1atlon results are 1ncluded

I \

Chapter‘lII‘presents“the deeelopment of an iterathve“
"restorat1on algorlthm. A new observed 1mage model is
proposed in whxch the. local stat1st1cal 1nformat10n‘1s B
1ncluded With thxs model - and the’ local statxst1cs -
.measurement -an adapt1ve image restoratzon algor1thm is
der1ved Slmulatxon results u51ng the or1g1nal observed
1mage model and the mod1f1ed one proposed here show. that the
"algor1thm u51n9 the latter model as expected, preserves
edge 1nformatlon and produces better visualfqualit§..3ecause

o

the loglc beh1nd edge preservatlon 1s that the’n01se in the
. e . R
‘ v1c1n1t1es of edges are less suppressed "the SNR s are :

J‘slxghtly lower than those of non-adapt1ve counterparts.’

In Chapter IV a szgnal reference adapt1ve matched

B

‘jf11ter 1s derlved for the detectzon of known 1mages embedded
“t1n nonwhxte nblse background It is a common practlce that'

;the s:mple matched fxlters are used for- detect1on of S/an""'

*‘objectst even 1f the background 1s nonwh1te. Th1s pract1cs;

..rv



leads to~nonoptimal detection given the SNh criterioh.‘hs-,u

-

po1nted out earller in the: 1ntroductxon, using the exact
| opt1ma1 detector in nonwhxte noxse env;ronmentS'would ‘be
computatlonally 1mpract1cal because of the hlgh
d1mens1onal1ty of the covar1ance matrxx,’whxch has to be
1nverted Eor some spec1al cases when the random processes
? are statlonary, the covar1ance matrlces are of Toeplltz“
:formt ‘The 1nversg of such matrxces may be relat}vely easily
computed by FFT. However, in general‘ the‘inversion o%‘large'
'dlmen51onal covar1ance matrxces is necessary. The proposed
algor1thm preserves the 51mpl1c1ty of the matched fllter

while’ con51derably 1mprov1ng ‘the detectab1l1ty.////¢<§ -
In this algorlthm the . form of a postf1lter wzth f

unknown parameters is: chosen. An 1dent1f1cat1on algor1thm is

developed based .on the least squares error between the

‘szgnal auto- correlat1on and the postflltered 51gna1 to 1mage
cross- correlatlon. Slmulatlon results show that the proposed
‘adaptlve matched fllter, though subopt1ma1 does Sl
51gn1f1cantly 1mprove ‘the detectab111ty compared to the |
51mp1e matched Illter. The detectab111ty 1s very close to
that of the opt1ma1 £1lter, and 1nvers1on of covarlance'”
matrzx 1s avo1ded Th1s detector can be applled to_
nonstat1onary,‘honwh1te n01se env1ronments. ]'

Detect1ng mult1p1e objects 1n a no1sy enV1ronment is. of
part1cular 1mportance to robot v1szon. 051ng template‘fh”'h

match1ng and matched f11ter technzques often 1nvolves L



ﬁvunnecessary search1ng procedures. It is more desxrable 1f
these fxlters could be. applled only to a subscene in which

| an object con51dered is most 11ke1y present. In Chapter v,

» this problem 1s 1nvestlgated ‘A h1erarch1cal approach wh1ch

uses both pattern recognxtlon and matched fllter 1s

[
'
~

establlshede

W
'~
H

X wi”A An image scene‘containlng multi-objects is fed into?the‘i”
the pattern recogn1zer where the object. (ob]ects) is [
cla551f1ed to a proper’category.‘Then the cla551f1ed object'
(objects) of one category is cross correlated w1th a known
ob]ect of the same category to detect the ex1stence of the
partxcular object in the scene. A l1near least squares
mapp1ng t:chnxque (LLSMT) is applled The class1f1er 1s a.
logxc that d15cr1m1nates features by u51ng some d15c1m1nant
(or: bas1s) funct1ons. These functxons are»de51gned (or .
tra1néd) by usxng a set of tra1n1ng samples whzch are 1deal
objectv1mages and are determ1nist1c. In a: no1sy env1ronment:
these pre determ1ned funct1ons w111 often result 1n f )
mzscla551f1cat1on. In order to c1rcumVent th1s problem a.

_s1mp1e restoratxon algor1thm 1s der1ved and used as the‘;
f1rst stage to pref;lter the no1se. 51mulatlon results are

EE AL
'

'1ncluded..h

F;nally, a summary of the d1ssertatxon and suggestzons

for further 1nvest1gat1on in these f1e1ds are 1nclud'.fin

Chapter VI. -
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SEQUENTIAL KALMAN FILTER FOR {MAGE RESTORATION
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A
1

Recently, recu;s1ve est1mat1on technlques have been
' applled to 1mage restoratxon 1n the hope of " allev1at1ng the

" high computatlonal burden and obta1n1ng optxmal restoratxon.‘

;'

[

Due;to itS“high computational feasibillty and’
oo T Vana N
efficiency,geﬂnmn fllter theory has long been applxed to -
‘one d1mensxonal systems w1th great . success. Therefore the ,
exten51on of thls appl1cat10n to two d1menszonal systems is
'QUlte appeallng. The research,1n th1s d1rectxon seems to
" have been first: attempted by Nah1 (1972) and Hab1b1 (1972)
‘uFurtherfwork on. development of two- d1men51onal Kalman,’ '
‘7f11ters’has been carr1ed out by many others, such as Powell
j'and S1lverman (1974) Woods and Radewan (1977) ,Murphy‘and
dSllverman (1978) Kondo et ~al. (1981), to. mentxon a few.t,"
. Some of the two d1mens1onal Kalman f11ters concern y;f .
themselves w1th degradat;pns due to nolse (no blurrlng)
'y‘only, whlle others attempt to handle both blurrzng and

dnoise. W1llsky (1978) has done a thorough survey o£ the;ﬁ

*virelated research Woods and h1s colleagues (WOods and

"'Radewan, 1977 Woods,¢1979 wOods and Ingle, 1981° Kaufman,,ﬁ)

”}\fw°ods, et al., 1983) have done the most extens1ve study yet;’

3"of two—dlmen51onal Kalman type f11ter theory and technques.‘f



~wide sense statlonary (see APPENDIX I for detaxled

Ry

e

\Conventionally, it is assumed that‘an‘image f&eld is

'-defxnltxons) The stat15t1ca1 propert1es of the 1mage f;eld

f are globally characterlzed by 1ts stat1onary covarlance

b’l

functlon. The structure of a statlonary covarlance matrlx is

. of Toeplxtzaform which enables the use of FFT- based . '?‘“

- algor1thms in restorat1on, sxgn1f1pantly reduc1ng ‘the

”computat1on t1me.‘Unfortunately, in most cases, the’ 1mage f

field does not possess statlonary statzstlcs, and - QM‘

.

‘restorat1on algorxthms based on the statxonarlty assumptlon

. are 1nsenslt1ve to abrupt changes in the 1mage 1nten51ty.

‘Consequently, these restorat1on algorlthms tend to smooth

‘out’ the edges and the restored 1mages lack® detalls and are

.goften blurred It 1s plau51ble that 1mages restpred by us1ng
-algor1thms based on. nonstat1onary statzstlcs assumpt1ons may

m'have better v1sual qua11ty. More recently, researchers have

I3 ‘-

‘proposed dszerent 1mage models and procedures to handle the
'nonstat1onar1ty of ‘the stat1st1caﬁ characterlst1cs of the .

_txmages. Instead of assumlng global stat10nar1ty for the S

o
- )

fj1mage f1e1d most ‘of theSe algor1thms assume that the 1mage

gf1eld 1s locally statlonary.‘In the1r d}st;nctzve work on':'

'solvxng th1s problem, Hunt and hxs colleagues (1976-‘

fTrussell and Hunt, 1978) proposed a’ Gau551an probab1l1ty

:dens1ty functlon thh nonstatronary mean for the~1mage

1'f1eld They also show that an 1mage can be modeled as

'fstatronary fluctuatlons about a nonstat1onary ensemble mean"@{i

fwhich has the gross structure representrpg the context of
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-the ensemble.»Further to thxs, Kuan et al (1984) proposed
the nonstatlonary mean and nonstatxonary var1ance (NMNV)

1mage model

A

In thxs chapter we ' shall con51der ‘a new adaptxve
Kalmanrtype fllter for' 1mage restoratxon. Th1s 1s developed
based on p01nt w1se scannxng The image 1s modeled by an

gautoxegre551ve model The sequent1al Kalman fllter 1s

[
)

L developed in terms of the 1nnovat1on process. In order‘to
retaln the edge 1nformatlon, a welghtlng funct1on varying -
w1th the spatxal act1v1ty 1s derzved in the Kalman fllter.‘
Also used is a ref1ned local spat1a1 actzvxty measurement

whzch enables the suppressggn of n01se even in v1c1n1t1es of

edges.1

2. 2 Image Modelxng
It is well known that for most Lmages, 51gn1f1cant
dcorrelatlon exlsts only between plxels close to each other
(Rosenfeld and Kak 1982) Therefore we shall model an 1mage’
‘7over a f1n1te nonsymmetr1c half plane (NSHP) (Ekstrom and |
_Woods, 1976) 1llustrated 1n F1gure 2 1 Fer any spat1al
‘hffp051t1on of a scanner, all the prev1ous processed pzxels are
‘sf‘con51dered as- “past"'states, whlle “he pxxel wh1ch is .“-
‘fpresently be1ng processed is called the "present" st‘fe, and
‘:all the p1xels to be processed are referred to as the o

'y"future" states.IObv1ously, thlS defznxtlon 1s rather

art1f1c1al as the scannlng operatlon can take any order,qk*f

' i
O ,\‘ o .t.\v“. ‘:: 4,‘ - '.‘.,' L ,, .
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Let (m n) be the present p051t10n of the scanner we define “. \

P(m, n) as past reglon w;th respect to (m n) B
\ o
‘ | s oy Coe T .
. S o . el P T
'P(mhn).='{(i,j)z{1sism,-1sjsn~1}u{15fsm—},ién}]p‘ S(2.1)
. T T S = o - ‘
‘ SRR ‘ ‘ A .
wherer‘is’union The 1mage 51gnal at. (m n) can be modeled
v ' ‘ -M r\ ' vnl‘ \:
by ‘an autoregress1ve model ‘namely,‘ Lo
; e ‘;' ‘f. ,"v{, o ;f% *'t‘“h]{%‘h B
| f(mn)'—z a(1 j)f(m i,n= J)+w (m, n) o Cw (2.2)
e (i))Ph1n) el o » T
- ‘. K D . ‘ ; ’." r“\ | ‘\P"“" jl' . e o N R y ‘m “ . o “ ‘ “"I ‘
where‘w is: modellng errqr and 1s assumed to be Gauss1an and Jﬁ
white, and a(n J) are the mode11ng coefficxents. . ‘_’ T
L ' ‘ ‘. ‘ - 4 " : o “‘. o ‘,‘ e
o | Lo e e
PR Let g(m n) represent the observed 1mage whxch is v o
corrupted by an addltlve no1se v(m n)t,We have ‘”3‘ B .
oo gtmen) = Blmn)av(mm), o T (203)
y w1th Zero mean and variance aﬁm n) andfls 1ndepend§nt of

: ot the,autoregress;
model, otherwzse w (m n) w111. ot be-wh;te (Nahr, 1972)
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~fRadewah, 1977) that only those plxels closest to. the present

.p1xe1 are s1gnxf1cant to the mode11ng of f(m n), we reducer"qlf .

f(m n) 2 a(l J)f(m-x n~3)+w ( ‘ ”...'-}'(2%4)““‘f
HJ(R U o ‘“ SN Lo

_where Ré{(k 1)} 15 the“sub reglon of the NSHP shown Jn . o

szgure 2. 2 and w, 1s the modellng error wzth zero méan’ and o ‘md

' A

varianCe 02 wlthout 1oss of generallty,hwe assume

N ! [} .
. ».,,y 3 .
3 i L o

E[f(mm]=o Ry

X :
‘ - .

o We have used a splral scannxng operatlon whlch runs

4

.cont1nuously along a square shaped sp1ral 11ne (see ’." L“ SRR

gggdke 2 3) ‘and ends at the geometrzcal centre of the 1mage.vf

o Referr1ng to F1gure 2 4 for 51mpl1c1ty of ’ nbtatlon we ﬂ ill;
denote P as the past"" and F as the "future"“ For the E?{'{‘jﬂ,,

L t A EAAN
f

Ly
. 0

partzcular sp;ral scannlng conf1gnrat1on, the entlre 1mage

\ i
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~ estxmate 18 obtained by usxn? the orthogonal prOJectlon
M

' ,prlncxple (Kalman 1960; Papoulxs, 1984), which states that
the lxgear mxnxmum,varance estimate y= Ax+B of y is such
that ‘the estimate error (y y) la orthogonal to the data X,
pr y 18 orthogonal projection of y onto X, in the sense that“
; E{[y y]}’ﬂ\ where X={x}. }n the present’ context, we requxre |
an estimate f of f given the observation g, such that ? is
‘the orthogonal projection of f onto P. That is, ?eé{flP}.

Here we have used £ rather than £ to indicate that the

. A L o o . L
lxnear.mxnxmum variance estimate is in general not the true|-,
cond1t1ona1 mean in the sense that the linear mln;mum

varxance est1mate is a we1ghted llnear comblnatlon of the

/
{

observations. -
S A ' ‘ o
The image models deflned by Eqs (2.5) and-(é 3) over o

“the causally partltloned 1mage fxeld provide the bas1s for

#al11. our succeed1ng development. In what follows, a problem .’éﬁ ﬁéf

a o . . ‘ ‘ ' AR "

. of considerable importance shall be stated first. |, o f&
I& : ' : 'V ) | o ‘ ‘ ' ' | :

Pnoblem Statement e | o

GlVen the models (2. 3) and (2.5), determzne an estlmate‘

?(m n) (of f(m, n)) wh1ch 1s a lznear comb1nation of the

observatlon g(jag) and est1mates 4, 3)69} Tag est1mate;;s ,

opt1mal subject to the crlterlon that the expected value qf
the sum -of the varxance between f and ? 1s a mlnlmum. That

?(m n) 1s to be chosen so that

gas ’a»tf‘ T? lf"'t'/te.
,é{[f(m‘p) -£(m, n)] } = minimum. T (2ie) -

e e L. -

el

R,



ngnal Prediction and Update s
.We may write the estimate f(m n) as
f(m,n) = ?'(m,n)+K(m,n)e(m,n), ' (2.7)

where K(m,n) is an unknown wexghtlng functxon (or the gain

in the Kalman'fllter theory), the term ? (m, n) deflnes the

v

e gredicted‘éstimate-aﬁ (m,n), and is given by

r

i

¢ ‘ -
%'(m,n) = 2 a(x,j)?(m~1 n- )) ' : (2.3)
" (1,j7¢a C ) '
and ! ’ ‘
! o e(m,n) = g(m,n)—%’(m,n) S o (2.9)

"

‘iwhich'is,called the Kalman innovation prOceés whicﬁ plays an
ﬂapmportant role in the approaches to QQaptxve fxlterxng

”technxques (Ljung and Soderstrom 1983)

It is easy to show that, ifnthe ninimum variance

estlmator 1s unblased (meanlng that E{f(m n)} £(m, n)), the

o

1nnovat1on process*1s also whlte, w1th zZero mean provxded

that the no1se v is wh1te w1th zero mean.

t

.We may write Eq;(2.9) aé"£qi1ows

' e(ﬁfn)f:“z‘(m;nf4v(n,n), ,v .  "."‘;(2.10);

—
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‘'where

'

~

£ (m,n) = f(m,n)—?"(m;n).
By the orthogonality princibie and from Egs.(2.7) .and (2.10)'
we have | | - - .

' E{g(mla)é(iTr)} =,Eiy(m,n)v(k;i)} =|0, vm#k, n#l,

‘ (2.11)
baﬁd Obviouslf? sincé'Efw’(g,n)}'=-0,
) E{é(m,ﬁ)} = Off   2 .: (2.12)
Equatxon (2 11) 1mp11es that e(. ;‘;;_a vhite process,

zwhlch may be wr1tten .in general, as

'E{e(m n)e(k 1)} = [V(m n;m, n)+a%m n)]& W5
Te R, (m ns5 ., O (2.13)

mk ﬂl' ()
‘whe:re ;Re(nni\;h)' 9 [i\f.(”m',nAv;m‘,n‘)'+ov2(m,n)] and -

\V~(m n;k, 1) E{f (m, n)f (k, 1)} T (2.18)

‘wh1ch 1s the a pr:or1 error varlance, and 5., is the

'Kronecker delta functlon, s
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\\\\
\ 1, r=s, °
¢ ' '8(5-': - ;
. 0, r#s.
. \\
Galn Equation ‘ \
‘From Eq.(2.7) we havé ‘ ‘ o
’ e ) \
\ . .
- ' \ - g | R
‘ E{[f(m,n)—?(m',n)]e(k,l)}=E{[f"‘(m,n)-l\(m.n)e(m,n)]e(k,l)}=0.
thus ' N ' \ S o . R
. : - - ,

E{T (mn)e(k,1)}=E{K(m,n)e(m,n)e(k,1)}=K(m,n)R (m,n)5, 5 .

\ . o (2.16)
For thé'cése when m = k, n T‘l we‘héve .

. ' ~ . ) .‘\ ! a
. K(m,n) = E{f (m,n)e(m,n)}R(m,n), (2.17)
whgre ’ : ;“ S \\

R T _
) E{t(m,n)v(m,n)} = 0, T (2.18)
\

and
e(m,n) = £ (m,n)+v(m,
o e ‘ - ST
‘The Kalman gain can now be written as \ .

1.

-
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- ‘lv\ﬁ(-. | _ Lo ) ‘ ‘ ‘
. K(m,n) = ¥(m,n;m,n)R (m,n), -~ - (2.19)

«A Priori Varlance Algorlthm e
In equat1on (2, 14) we have def1ned the a pr10r1
. var1ance, 1n the followzng we shall express the a’ pr10r1‘

variance in terms of estxmate‘error £.

Recall that E"(m;n)=f(m}n)-?‘(m,n)} and“from the, image
- model (2.5) we havé - - |

’

£(m,n) =Z a(i,j)E(m=i,n-3)%w (m,n). (2.20)
(i,31¢a . ) ‘ Y(

—

- [

Remember that w_ is-a white random process with the variance

02 thus
Cvs .

vcm nim,n) 2 :% a(i, J)E[f(m i,n-1)%(m"k,n- 1 lalk, 1)+02
' (xxen(x. ‘ \ .

2 :g a(i, J)V (r s, ty u)a(k l)+a S (2.21)

(kl(n(i . . o ‘ .

where r = m-i, s = n-J, t = m-k, u é,n 1-‘and V (.,.) is v

,called the a poster10r1 varxance Wthh is readlly avallable.

- We def1ne

CEmen)ef(mn)-fmn). o L o (2.22)
e T T T T
‘Substituting EqQ.(2.10) into Eq.(2.25) yields . = = - . =



Y P I

- E(m;n)=f(m,n)ré'(m,n)ix(m;n)e(m;n),e , (2.2$a)"‘

. RE
or '
y ~ ~ | ‘ - - > o
- f(m,n)=f"(m,n)-K(m,n)e(m,n).. ) | (2.23b)

Thu;*

CE(E (m,p) }=E{[E (m,n)-K(m,n)e(m,n)]%}. - <(2.24)
: Lo : : .

!
It 1s known that v is wh1te noxse, and from Egs. (2 14),

| (2. 18) and (2. 21), we obtaln

f

‘V;(m,n;m,nS=E{22(m;n)}=I1—K(ﬁ,h)]%¥m;e:m;n).,L o (2.25)

. ‘
i ]

The equatlons (2 7) (2l19)' (2 21), and " (2 25) are the7

Iﬁsequent1al Kalman filter for the 1mage model (2 5) and the ;,f

tobservatlon (2 3)

‘Initialization of the Algorithm a.f- |

| In ordet to 1mplement the Kalman‘f11ter’ we need to.
def1ne the 1n1t1a1 cond1t10ns. In 1mage restoratxon, the ,';;
1mage f1e;d 1s a f1n1te two—d1men51onal arrqy, therefore‘the
l‘,f1n1t1a1 cond;tlons for the estzmatlon algotlthms are the ajﬁfﬁ»
aeisxgnal estzmates over the 1mage boundary._ewifj77;ﬂﬁ°“fl{~j7_\7

‘?j'Unlike tHe conventlonal Kalman vector form fllter,‘the jﬁg‘
'f,sequentlal Kalman fxlter 1s performed p1xelwzse.~,..'~. E
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It i5<known that‘theCCurrent estimate of the‘Kalman‘
‘fllter is opt1mal S0 long as the prev1ous estlmates ,are so.\
Further to th1s, the est1mates of the Kalman fllter are

¢

'1ndependent of thezr 1n1t1al values, the normal estxmates

>, . \

| w1ll asymptotlcally approach to opt1mal values even. 1f the .ﬁ
“1n1t1al cond1txons are not known exactly (Anderson and . S;
'Moore, 1979) However, due to the partxcular'modelxng method
"involved' the sequent1a1 Kalman fllter 1s suboptxmal It is

| necessary to'1n1t1al1ze the computaxon w1th proper 1n1t1al
values (1 e. the 1n1t1al estlmates for the support 9)

Several techn1ques can be used forrthls purpose. One of

“these technxqueslxs to carry out the 1n1t1a1 festorat1on
rover'the béundé£§;by the‘following;algorithm,

1

 Bmyn)=f sk [g(mn)-£), T (2.26)
‘where - L oo
: 4 . \ .‘ . .' R of ,
K= —— - - '
N P g2
) \ A St |
{‘andﬂfv'fwr ff,;ifelfihdfl““da}fﬂ'ﬁf“‘ :,:';

B

.UJ‘»'%"2",’lf9<ﬁi"-éi,i2.' =E{g}. ”=g -E{v}, o’bo%o,
: *,;Ayggtj;_}@,ﬁpn‘: | T ' PR S

7fwhere A 1s dlmen51on of the 1mage fleld and B (1,3)
jcan be seen that Eq (2 26) 1s essentxally a 11near least

jlsquares est1mate w1th the gazn K be1qg the var1ance ratzo.;,:jg




‘Indeed Eq (2 26) is. 1tself a s1mple pxxelw1se restoratxon -

“

algor1thm in the early development of restoratlon ‘&r' .
. technxques., Co .,

2 4 The Local Spatxal Statxstlcs Measurements !
i

The experlmgnts condﬁcted by Netrava11 and Brasada
(1975) show that at sharp tran51t10ns in 1mage 1ntensxt1es,"'

i

the relat1ve sen51t1v1ty of the human vxsual system
decreases. That 1s, human eyes are less sensltlve to noise
in the sharp trans1t1on reglons (e g. edges) It is also;
known (Caell1 and Moragl;a, 1986) that edges carry the
essent1a1 1nformataon reveallng the deta1ls of the 1mager"n
the follow1ng an effect1ve but. 51mple scheme proposed by

| Wall1s (1976) 1s applled to measure the spat1a1 actlvxty,
_and the Kalman fllter (i.e. Egs. (2. 10) (2.22),(2.34), and

(2 28)) 1s modlfled to adapt to the 1oca1 stat1st1cs.‘d3"
' : “ o ) .:,5 ' '
The n01se statlstlcs utlllzed 1n the Kalman £11ter

t

algor1thm essentlally determ1ne the ga1n factor for the

fllter. If in Eq (2 3) the var1ance 02 J
constant, the noxse qontent 1n the 1mage 1s suppressed
- IR

L un1forma11y,‘Th1s often results 1n smooth but blurred

1s g1ven as a.

ilmages. We can we1ght a by the local stat1st1cs such that

’f the restoratlon fllter w111 be able to preserve edges to
K'\

some extent. The local varlances are deflned as follows,_;”,-”

- P

sio ooy el



o okmm=Ellgmn)-Fmm T, (2.29)

-~ .

oXm,n) =—l,ﬁ-[g\(i‘,j)'45(‘m-,n)"]2~,..; S (2.'3-0)1‘
g-/l o :%i.j ' . ‘ )

where D denotes the square window over wh1ch the local

: statzrstzcs are calculated and q) 1s the w1ndow dlmenszon. ”
' 4

The we1ght factor LR should be chosen: such that
e

1, VOZ(m,n) 0

c, Vaz(m n)>0 05c<1 '

o
VLA

wh1ch means that in] flat reglons, (where a’“O) 050 2 wh1le

S d

1n areas of hlgh spatlar pct1v1ty w a<a . If a 1s replaced
by w a Y the modlfled Kalman fllter w111 act normally in. flat

reglons suppressmg the observatlon n01se. However,, 1n a .

regxon of h1gher spatxal act1v1ty, the Kalman fllter w111 o

noxse, say, v , wzth reduced varlance w 02(<az)

In domg so, we allow more nmse passmg through the f11ter g

:m h1gh spat;al actunty reglons. S

. l

e ;sg@pasg_-ehé '-.:_gij.jl,ob,i'ng‘:g;;ai‘ghi;" ing function . .

w (m‘n‘) - o o (2.31)

\



wt(m,nlsexp{rxlfqﬁm,n)l}; | ;31.‘“ ' ;d (2;325

1

'+ where K >0 1s a constant to be dec:ded by experxments. It is
‘1nterest1ng to note that Eqg. (2 32) has the form sxmllar to

5-that of the -Tok called relatxve n01se v1sxb111ty funct;on

i

“(Anderson and Netraval1,_1976) However, Eq (2 32) 1s
fobtalned from the’ mere cons1deratxon of edge preservatxon

and is not based on any subject1ve*tests. For most no1sy

r

' ;1mages the use of w alone will. be suff1c1ent s1nce, as

stated earl1er human v1sual‘§ystem 1s less senszt1ve to-
‘ AN
‘noise in areas of hlgh spat1a1 act1v1ty than in flat

,regxons. It 1s, however -more de51rable in some cases to
' N
smooth out the noise. around the edge.
As we: dlscussed before, local stat1st1cs (namely, local

|

o mean values and local varlance) are calculated over a wlndow'

! P

iwof &fplxels w1th £ at the w1nﬂow s geometrlc centre; For'4
“‘,the case when an edge is encountered rn the w1ndow reo1on
“7;(see F1gure 2 6) the: local statlstlcs 1nformat1on may be ;fh
\'_more prec1sely est1mated prov1ded we could dlst1ngu1sh on |
‘:'whlch 51de of the edge the p1xel £ 1s located and determlne.;
Vf;_the or1entat1on of the edge The Kalman fxlter w111 then be -
rhh:effectxve even along the edge.QIn the case of F1gure 2 6 ‘L‘
"hfp1xel £ 1s located 1n the unshaded area whlch 1s a subset of
‘lifthe w1ndow D Our task 1s thus éo determzne the subset and

“ﬂﬁcalculate the local statxst1cs over the subset Thzs “‘”“

p

procedure 1s called reflned localvstat1stics measurement;v

(Lee. 1981);"j‘f""_f‘j.v» i 1
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A P'iguré 2.6 An edge aci“'okss" the window region o
S .. | R | Rz -.‘R)¢< ST
Flgure 2 7 Thg wmdow d1v1ded 1nto subreglons R J9

Fxgure 2 8.(a) Locd1 means :or the subreglons 1n the wlndow ?_‘w 3

g

y(b) edge or1enta1on map-i;




'fffF1gure 2 Sb ‘The mask whach YIQIdS the maxxmum absolute i

In order to determlne-the subset 1t 1s necessary to

‘.1dent1fy the edge or1entatxon‘ Th1s can be done by

I

‘fcalculat1ng mean value for each of the subregzons R
“shown }n Fxgure 2, 7 where the wzndow D 1s dzvxded 1nto 9

_'subreglons, Rn

[

‘15 the reg1on 1n whlch f 1s located and m1

) denotes the mean value of R (see E1gure 2 8a)

S ~

'«“F1gure 2 8b we have also depxcted four poss1ble vph R

N
A . -

orxentat1ons.‘51nce each d1rect1on has 1ts complement these‘

w0, "

ot

. 1n effect represent four pa1rs of dlrect1ons.
o rg‘~ '; ot ,‘ S Y C SN \' : . :
After {m } have been computed, a set. of s1mple compaSs

o

" gradient masks is convolved w1th the mean” values to ) Lo

»

“determlne the edge or1entatlons. The gradlent masks are R

A G N
" ' A .

”shown below ' } ) ﬁ_ B ﬂ‘?‘nxh - r“k
(DS T TN SRR BT IR T B I TR C{E=re o1 ]
e ISR L TRV 2 IR (RTINS S B =1°:0., 1
0 -1 =17 o[- —1 T =1 = O e syt 0 )
‘ '. " M , "““"w: '. . .. -\\“ " . ‘_;V"' _, "jv,""‘ ‘ .
B .
It 1s to be-noted that these are cons1stent Wlth wgy j";q;,_

-

: ® PN i<"

”lgradzent wzll be chosen as’ the p0531ble edge directzon. For

4 ‘A\

‘i

‘,‘1nstance, 1f |m ”l+|m —m |+]m mu| 1s the maxzmum,‘then

“1‘”the flrst d1rect10n 1s‘chosen 'and we are left w1th

*{computlng |m -m | and {m l‘” | to determzne the subset to

wh1ch the plxel f helongs. For example, |m -mu|<]m ‘J[fffl
1nd1cates that f 1s‘more 11ke1y 1n the unshaéed subset, and

f the local meaf value f and ‘va

Er1ance a are defxned over that f




- subset. ' Co L :
2 5 ldentiflcatzon of the Modelxng Coeff1cxents {fhgh ﬂk.?”ﬁj‘lﬁn
In the 1mage model (2 5) the mode11ng coeff1c1ehts are ﬁhhl
é-fhnormally‘not known, and must be" estzmated ' We may wr1te ‘_;t“hﬂ;jh
: Eq (2. 5) 1n vector form 'as‘ ‘jVj“;jf7‘~;Ju,. | SN
| 'f(m,'n:).=xT(m1;'ri)r(m,n)‘fw;(ﬁ{,ﬁ), o
j P | S S B S ¢

where”Av’ 1s the vector composed of the modellng ' e ji'

' .
. .

- coeffxcxents, and F the s1gnal vector. The structures of A‘:ﬂ-\

and F depend on spec1f1c scannlng operatxon and "A”“‘“ L
«nexghbourhood conflguratlon. Eq (2 5) 1s causal .and the

C o
or1glna1 1mage 1s also assumed to be an ergodlc random T

f1eld We may use the 1dent1f1cat10n algorlthm (Ljung et f*::fi
al., 1983) to estlmate {a(l,j)} In order to make the,f:[zw“ﬂ

notatlons 51mple, we def1ne ké(m n) and use k+3 to represent

movxng 3 steps further from (m n) or k W1th thlsf e a" fﬁ

def1n1t1on, Eq (2 33) can be wrltten as‘ftfi¢f5bﬂwh'&fff~;gfs{gaf'
(R EAGE (R) s (KDL (03e)
N S

From (2 34) a general parameter 1dent1f1catlon algorlthm 1s

N o e
e

readz&y avaxlable as follows assum1ng that the model1ng

coeff1czents {a(x J)} are constants,
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. R(k+]|k)= R(k|k)+° “ )1 ' .

‘and o2
T e

[

about or1glna1 Lmages, e g. the statlstlcal character18t1cs
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°(k*” R‘k*1lk)FT‘k>[”(k>R<k+1Ik)r*(k)+o i,

1' . '
o . o ,w. o

o . Ty
0 N ty . . | e
v v PERR v . .
. ~ ; [ DR et

,ﬁiyngkiiyg+d)ﬁé'[: Q(k+1)?(k)JR(k+1|k) SR
}'1;there "" : L | : "‘- ‘ ‘v..:‘\ I}‘ .,h‘ l ,‘.I' -" : | 'i.': . . “" E t It
L ‘ h “ | I ' ‘ = l “l ) . f : ./
LT RGKkEK) 2 ELIAG) R K ITAGO) Ak, T o (2.36)

y? isiconstant £0rfstationaryfWhitenproeess;g, S T,

S ' ; ) L N ’ ‘.."‘ : : | ' ’.",' . ! L y o
From Eq (2 35) we can. see that thls;algorxthm actually
'fuses the or1g1nal 1mage to est1mate A(k) Unfo&tunatelyd ;n

restorat1on pnoblems,_the orxgznal 1mage 15 not available at‘
all the dlrect use of Eq (2 35) 1s/seem1ngLy meanmngless.‘;;;fh

However,fln many pract1ca1 applxcaélons the gross structure :;ir

of the or1glna1 1mage may be observed and we may apply

1 . A" ' - ’-‘,I."‘
Eq (2 35) over 1mages w1th 51m11ar structure to obtaln ”
o ) . o et . u"_,» & ,.‘,<*vl‘,-' ‘v_' et R
A ) T ot v*‘."‘-. s e N T B
. : a - .“‘ \. C o ,\ n,y ‘,,, ," '_‘\‘:,,' v'\‘~r"‘-‘r". ’ " ’ R " . . '1‘ . v’iif ool YIY.,""', “‘- [

In most cases we may have or assume some knowledge "ff;¢gm7

‘
W

‘
y

of the 1mages —Experlments have shown that many 1mages Can

be regarded as w1de sense stat1onary random f1elds w1th the f?mf

\_r\

folloW1ng autocorrelat1on funct:on (Franks 1966)

i f — ’
n . -
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B . AN
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)

"horlzontal and vertical dlsplacements,‘respectxvely, a and B

~‘1ntroduce another parameter estxmatxon method whach is more

swe seek A such that

w N ot 4 1
- , . "\.\W ‘
R(i,j) = okexpl-ali|-pli|d, ~ .. =~ (2.37)

.

where ozis'the global image'variance i, and i are the

A} N ] »\‘ . , \] N ot
are constants. cote S
- ;o . ‘"Z L ‘ e
W1thﬁEq.(2.37)‘g1ven we are now in a position to v S

realistic than Eq.(2. 35). From Eq.(2.33) we have~‘ | ‘ ~ o

w(m,d) = £(mn)-A(m,n)F(m,n), L (2.38)

A

oy

3w m,n)) = EQGE(m,n)}, O (2.39)
is minimized.’ This gives ..
IS . ‘”" ’ - -V ’ ‘ =
: . o o -1 ; ‘ » -~
A(m,n) = [}F(m,n)s”(m,n)]’ [}f(m,n)r(m,"n)]. - (2. 40)

° . 0‘ e e v A -
The r1ght s1de of Eq (2.40) 15, in fact composed of the ,
‘autocorrelatlon {R(i J) (1 J)EQ(m n)} Slncg Eq £2. 37) is :
kfiown Eq.(2.40)lc§n-be solved.;'_ ,i‘w“

§ * o =~ “
:s‘ C L '.r """ i -



. 2.6. Simulations | o
" In this section, several images are used to test- the
proposed sequential Kalman filter.

\.‘ X . .,

We use ‘the: following image model which takes the four
closeét pixels'asyneigthUrS'(see Figure. 2.5). The image
"model (2.5) can be written explicifly as :
f(m,n) = a‘f(m,d~1)+a2f(m—1,n~1)+a;f(m—1,n)

“*a f(m+1,n-1)+w_(m,n). T C(2.41)

The'experiment 1's carriéd out through four steps as follows,

(1) Estxmatlng the modeling coeff1c1ents {a ]}
AN 3

From Eq,(2h41) the A and F vectors can be written
' K‘?“ ~ .
" explicitly, - & : o :

'

A= la a,.a, a‘],

FT = 'f(m,h¥1) f(mf1bﬁ?1) f(hf1,n) f(m+1,n-1)].

T

quhe random fleld that represents the spatlal act1v1ty of ‘the

~orxg1nal 1mage 1s alsosassumed to be w;de sense stat1onary
[ \" N
1n both dlrect1ons w1th the exponentlal autocorrelation

funct1on Eq (2 37) From Eq (2 40) and Eq (2 37) we have the

L

matrlx equatlon
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N '\
[ a7 ] [ R R R R 1T R -
S . 00 o . Tn 10 )
arz, - Ry Ry Ry Ry : Ry, .
= 3 [ | (2.42)
a, 7 _ Rn Ro';' Roo RZI Rro
a, . Ro Ry R, 1 Rog Ry, “
J "L e N L 4

~where Ruéd(i,j). |
(2) Choosing the constarit K, for_the’weiohting functionalln
the experiments to follow, several‘different values of K,

were used (ranging from 150 to 600‘for‘;he Girl image, for

9

~ instance) in'eachvcase The final values of K are

‘ determ1ned based on the subject1ve Judgment (K —370 1s used”
as the value for the Girl 1mage, for example)
- (3) Estlmat;ng the observed 1mage"u51ng Egs. (2. 7) (21]9),

(2. 21), and (2.25) - .

"(4)~Preserv1ng‘edges-using the refined 1ocal statistics.

‘
. A

F1gure 2.9%a shows a Gltl 1mage hav1ng a 256x256 format.
F1gure 2. 9b 1s the Girl 1mage corrupted by Gauss1an wh1te‘l
‘"n01se w1th standard deV1atlon 0%400 (relat1ve to 8-bit =
resolution), and zero mean. Flgure 2 9c shows the restored
1mage using Eqs (2. 7) (2 19) (2. 21), and (2 25) only. The *
'over all image is smooth but blurred F1gure 2 9d - 1s theq
'flmage restored by using Eqs (2 7), .(2. 19) (2 21) (2.25)
*-and the we1ght1ng funct1on w Lm; n) w;th K =370 The refzned

'edge preservxng procedure is performed only when 5 .



v

«m n)>a%50 Compared w1th Figure 2. 9c, 1mprovement on

| contrast and edge detalls can be eas1ly observed.

In. Figures 2.10 shows W.C. Fields letter F, and square

LB

. pattern 1mages and thexr hlstograms.‘ All the images are of

128x128 8- blt format

\

In order to test the effectxveness of the proposei

pKalman f11ter1ng procedure, these 1mages are corrupted by

"

AGaussxan noise with zero mean values but dlfferent
variances. Figures 2. lJ(a) 2.12(a), and 2. 13(a) show the .
images contamlnated by addxtlve Gaussian no;se w1th 0L325 |
F1gures 2. 11(b) 2. 12(b), and 2. . 13(b) are the 1mages plus o
Gaussian n01se thh oL900, and the 1mages in |
Fxgures 2.11(¢), 2. 12(c), and 2 13(c) are the noisy 1mages
with oLIGOO The restoration results using Eqs (2.7), |
(2. 19)- (2. 21) (2.25) and the refined edge preserv1ng

method are shown in Flgures 2.11- 2 13(d) (_), (f) (the .
second row) Flgures 2>11§2 13(g) (h) (1) (the thlrd row)
- are the restored images’ using Egs. (2 7) (2 19), (2. 21)

2. 25) and the we19ht1ng function w:th K =350 820; and &
1550 nespect1vely. All the restored 1mages show sharp edges B

- . . L ‘."

: atr
and the no1se 1s suppressed as well .

‘In the image process1ng 11terature, hxstogram is defzned
over an image. Given an image I, let F (c) be the relatzve o
-, frequency with which grey. 1eve1 ¢ occurs in I, for all.-c in =
. the grey level range. ? 1S, ) of 1. The graph of F (c) as-a .

T funct1on of c is called the: hxstogram of Lo



Figurezf? Thedgigi image: '

(a) The'original 2561256 digital image. (b) The:original ,
image degrédéd‘with add;tivé noise v with variance Q%406i.
(c);ﬁestdred image of the Qegfaded imagé qf‘(b)‘wi;hout
yﬁsing‘fheﬁheightiné function w in the filter. (d)‘Restoréé
image of the degr&déd»image 6f (b) using the weighting

Wt

function w_in the sequéntial_xalman'filter.
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‘The fltSt row. (from top)
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Fxgure 2 10 The test 1mages and thelr h1stograms.
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’Flgure 2 11 The no1sy and restored W. C Flelds 1mages.

The first row 1s the W. C F1e1ds 1mage degraded w1th

‘

dadd1t1ve nozse w1th var1ances aL325 2900 and 0L1600
l 10)

v

‘respectlvely (from left to r1ght) The second row is. the‘

o

oy frestored fmages of the f1rst row us1ng the welghtlng '«Jgg-

'

ffunct1on and the ref1ned spatlal act1v1ty measurement The

N
. '

’th1rd row 1s the restored 1mages of the,flrst row usxng the'{

"‘we1ght1ng functlon LA All 1mages are of 128x128 and 8 b1t

N 1n resolutlon.;"'
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Fxgure 2. 12 The noxsy and restored letter F 1mages.
The flrst TOW. 1s the letter F 1mage degraded with add1t1ve
;no;se w1th varlances q§325 ‘a 900 and 0@1600 respect1vely

(from leﬁt to, r1ght) The second rov is ‘the restored 1mages B I

[ '
' . N

of the f1rst row,u51ng the welght1ng funct1on and the

A e .

-;_ref1ned spatlal act1v1ty measurement._The th;rd row 1s the

.
v

restored 1mages of the flrst row u51ng the welghtzng ’ h,f

functlon w . All 1mages are of 128x128 and 8- b1t 1n - g

[

resol’tlon. ,
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| The flrst row shows the square pattern 1mage degraded w1th S
add1t1ve nozse w1th varlances 0&325 0L900 and oL1600 N ;?‘; )
f' respect1vely (frhm leftito rlght) The second ,row 1s thevr{.;‘h‘lfti
'"‘restored 1mages of the @ﬁrst row us1ng the welght1ng | :l Q_-h‘},‘u”
functlon and the refzned spatlal activity measurement. The‘rf"ﬂf‘mw
gih.k.thlrd‘row 1s the restoqed 1mages of the f1rst rsw.us1ng the x :

9we1ght1ng functxon w.. All 1mages are of 128x128 and 8 b1t_w. Lo
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CHAPTER IIT .. . .
o R
ADAPTIVE ITERATIVE IMAGE RESTORATION ALGORITHM 3.

3.1 Introduction

x

In the prevxous chapter a sequentlal adaptxve Kalman o

fxlter was developed. The derived Kalman fxlter were based
on ‘a causal image model. -However, for Lmage restoratxon we

are ngen a complete 1mage field, causal1ty of the 1mage !

e

field is art1f1c1ally contrxved to ffy the mathem tlcal

[

rQqurepents of the Kalman filter. Sénce we have alﬂkthe

information of an image . field we may develop some“:«9' ,
oo K

algor1thms whxch resemble the structure of the Kalman fllter

.
‘.' -

but based on a noncausal 1mage model In this chapter we

4 ~

Shall develop\an adaptxve algorxthm whlch is 1mplemented

: » -
o ‘«e_ - . ~

Y

LY

,1terat1ve1y for image restoratxon ‘
S , )

8

The main ob)ect1ve of 1mage restoration is té restorea

- -

an or1g1nal 1mage g1ven n01sy observat1ons of it and a L

o .
Iy

'prxorx knowledge .about the 1mage and. noxse statlstlcs.r

LV

Problems of thxs kind in the s1gna1 est1mat1on 11teratuce

- -

" are termed 1nverse problems, 51nce the task is to infer the

. m

LY

al, e b d PO

N - - -
i g , - A

\. .' b . .-
Early research on 1mage restoratxon technlques was

ynly conducted 19 the frequency doméxn where computatxons
of nonrecurs1ve algorlthms Pe. g the W1enervf11ter) were

carr;ed out using fast Fourier. transform (FFT) technxques.,

.

‘f.' SN . » ' . ‘ o
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' : ‘ ' . "o .
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. But tlﬁnherent lxmztatmn of these algorxthms 1s"ﬁ:hat the

+

1mage is requxred to be a wxde sense statxonary field. The
restOratlon algorithms based on thxs assumptxon, though

using the computatlonal advantages of the FFT, are"

o

1nsenszt1ve to abrupt changes in the 1mage 1ntensxty, and
(E)

. as a result ‘tend to’ smooth out’ edges'where statxonarlty is

£,

not Justxfxed Another cause of thxs smoothlng effect 1s the
mxnxmum mean squared error (MMSE) type criteria whxch are
often used 1n the signal estlmatlon pracéﬁfﬁpand are the. . *

7

foundatzon of many estxmatlon theorxes. ‘The resultlng
algorlthms tehd to suppress noise in the low frequency range
of the image rather than hlgher frequency components |
although it is the latter which, on a global basis, contaln e
more oa“the image variance or entropy, This has the effect~

of producing eSSentially low~pass}restoration results,-and
proh1b1t1ng the restoratxon of the 1nput 1mage s sharpness,

particularly, 1n the edge areas.

Consequently, w1th a statxonary image f1eld
(shift- 1nvar1ant) these technlques have error components
wh1ch are ampl1f1ed as a functxon of local contrasts, and
partlcularly in edge reglons. However,»1t is .known thatwthe
human v1sual system (conf1gured wzth detectors whose point
spread functlons or rgceptxve f1e1ds closely approxxmate
band-pass f1lters (Caell1 and Moragl1a, 1986)) is h1gh1y
sens1t1ve to edge 1nformatton and to reg1ons of h1gh
contrast change. ThlS means. that the human eye is less d.;,i

sens1t1ve to noise in the hxgh-pass regxons of the 1mage
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O

frequency components and more sensitive to nozse in these
- low-= pass reglons. It is for these reasons. that the
stationary and MMSE methods do not produce restoratidn

fsolutions‘which are visually satisfying.

This observation has led to a number of restoration
algorithms that include the human viewer‘as a factor. One of
more - obvxous developments is due to Anderson and Netrava11
(1976). Instead of using a nonstatfonary image model they
used a subjective error criterion based on human visual
'models'and'derived a nonrecursive tilter that. adapts itself

to make a compromise‘between ioss of sharpness of resolution
and smoothness of. no1se such that the same amount of h
subjectxve noise is suppressed throughout the image. Later,

| Abramatic and s1lverman (1982) generalized this procedure’ ‘

and'ineorporated it in the classic Wiener filter.

,Perhaps Hunt and Cahnon (1976) were the f1rst to
ser1ously tatkle nonstat1onary models for 1mage fzelds. They
demonstrated that 1mages aré, in- general, nonstat1onary ‘In .
order to make use. of the Gauss1an probablllty densxty

-.funct1on-(PDF) they assume that the means of <image p1xels

;are nonstat1onary, wh11e the var1ances are stationary. With
th1s Gaussxan,model they developed~a max1mum a posterlor1 '
(MAP)'restoration'algorithm (Hunt 1977). Further to th1s,

Kuan et al. (1984) proposed a nonstat1onary mean, ' )

:nonstatlonary varlance (NMNV) statzst1cs model for 1mage

'f,fzelds. As in- the Hunt and Cannon s model they use a

N

CCew— K
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_ nonstatxonary mean to descrxbe the gross structure of an
1mage. The dlfference i's that the varxance whxch
'characterlzes edge and elementary texture 1nformat10n of the
1mage is nonstatxonary. More &ecently, Kastur1 et al. (1985)‘
have reported an algorrthm to restore 1mages corrupted by.
51gnal dependent noise 'using the MMSE crlterxon. They assume*“
.that the 1mage 1s statxstlcally governed by the Gaussian
PDF. Many other 1terat1ve and recursxve algorxthms with
‘var1ous,methods to handle the nonstationharity of the image
have also‘been developed recently'along'this line (e.g;h
Trussell and Hunt, (1978, 1979); Dudéeon,h(1986); Schafer et |

vy

al., (1981); Yamakoshi et a1.,‘(1982)). o 'e)

P

‘As aiready mentioned{ most algorithmsuusing the MMSE or
LMMSE (Linear‘MMSE) criteria result in glpbally smoothed |
1mages. However, as is ev1dent from the above d1scussxon,
these crlteria should be used looa}ly to 1mprove the v1sual

quality of the restored image.

-

It is the author s 1mpresszon that in many . 1f not most
rof the recent nonstat1onary restorat1on algor1thms, the PDF
of the 1mage field is assumed to be7Gaussxan for the

' convenxence of mathemat1ca1 der1vat10ns, and much of the o
effort is devoted to modeling the 1mage £1e1d thtle _.f
attent1on, 1f any, is. grven to the observatlon model
this’ chapter we propose a. new observed 1mage model wh1ch
takes the local stat1st1cs 1nto account, and a noncausal 1n;
model of the or1g1nal 1mage contazn1ng unknown parameters.,.*

' o ' . ' ~

\ i
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. In particular, we"do"not assume that the‘image and the‘noise

statistlcs are Gau551an..The algotxthm is constrazned by a

. 11near mean varxance crxter1on operatlng w1th1n local

reg1ons of the 1mage That is, the 1mage is decomposed 1nto ,
dszerent Sect1ons according to spatlal stat1st1cs of the C
image. The algor1thms are derxved for each of these reg1ons.
Further, the nonstat1onar1ty of the 1mage is. handled after

A

the restorat1on solut1on is generated The proposed observed

71mage model enables the local factor to be automatically

1ncluded in the algorlthm ga1n equatlon. ThlS factor, wh1ch -

varies w1th the local stat1st1cs, in turn adapts ‘the ga1n to

‘ ¢

the image local contrast and lumlnance.

/..

l3 2 Image Modelxng

I the prev1ous chapter we establ1shed a causal
conf1gurat10n wh1ch assumes that any 1mage of 1nterest can .
be decomposed depend1ng~on the 1ocatlon of the p1xel berng
processed 1nto three parts, namely,‘ past" : present" and
"future . This enables one to establ1sh an autoregresszve'

image model whlch llnearly relates a g1ven p1xel to a‘

'fspeczfxed set of 1ts ne1ghbor1ng pxxels in the' past"’v

"Obvxously, the use of such llnear representatlons for the o

l

fi1mage 1nvolves uncerta1nty. In order to take th1s 1nto
‘f'account ‘a whxte process w called modellng error 1s ;”nﬁ

';1ntroduced We p01nted out 1n the Introduct1on that 1n 1mage

‘U~
9

4

1frestoratxon a complete 1mage f:eld is ava1lable..§f$7"i RREES

S L

i'uConsequently, we can establlsh a noncausal conizguratlon. A L“'

0

. }1'4‘_‘ .’ “ e ‘ T

u"
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.reg1on surroundlng the p1xel f(m n) by A as shown 1n‘t

.

'

. pixel is relatedvto its neighboring'pixels”in'both "past"7

and "future“ regzons. More formally, we denote a rectangular

J

Flgure 3.1 be1ng deflned by

ALL(m,n): {-r smst,,~s $nss,, vim,n)#(0,00}]. ' .(3.1)

The image model is given as follows ‘  S S
’ ' ' ‘ .
f(m, n) 20(1 j)f(m i,n- J)+w(m ny, N (3.2)
‘ (1. )MA SRR ;
8;

where 6(.,.) are the modelxng coefficxents, and w(.,.)fiS‘

the modelxng error whzch may be assumed to. be a. random

’process. Recall that 1n Eq. (2 2) we assumed that L to be a

white process. For a noncausaﬂ 1mage model however, 1t 1s L

shown that w is. nonwhlte (Blemond et al v 1983) For a

d1screte 1mage ‘field, Eq (3 2) can ‘be wr1tten in a compact

vector form aé\follows

f(mlnf‘gméTFfm}nxew(m,n)f;. L ‘o,‘”(3;3),':

Lot

: %~;‘ The 11near observed 1mage model 1s,‘1n general has Eh%

follow1ng form,‘~

. - ‘»
| N .
e A

Cgm;n) = H{mn)*Elmn)vlmn), oL (3)

e . a0l e
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‘Gauss1an the estlmate 1s

R estlmate 1mages from n01sy envernments, the n01se

;7tmod1f1cat10n to the observ

f?fobserved 1mage model 1s

'
[

- where * denotes convolutlon, and 2:5 1s the poxnt spread

funct1on (PSF)" of 1mag1ng systems.l

[

In the development of various restoratxon algorxthms

‘concern1ng the suppress1on of noxse, the statxstlcal

characterlstlcs of v have great 1mpact on thesresultxng

1

algorxthms. For 1nstance, in. the Kalman f;lter technlque,vv:. '

" the ga1n K is governed by the n01se varlance.wIn the MAP

'\ .
estxmator (Hunt 1977) wh1ch assumes the n01se PDF to be

' "" ‘
= PRV
A ne

oA _ P S e I y g1y A " ,
o f - (Rt+Rv) Rvg+(Rf +R‘L) ?Rllfm' | . (3.5)

-

k‘-where bold letters denote vector forms of the correspondlng
- funct1ons, —E{f} and R and R are the covar1ance matrlces V.V
- of v and F respectlvely. We see that é f(R R, ) These are

'lnatural and exﬁected results. Slnce the puﬂpfse 1s to

« . . e PR

‘;character1st1cs are esSent1al to the development of these
')éfalgor1thms.,Here we attempt to use the local spatlal |
g”ﬁactlvzty of the image as a part of the restoratzon 'ﬁ o

5algor1thm, so that the 1ma§e model 1s Stlll assumed to belfflfs

\

‘{statlonary and the PDF of the noxse 1s not necessar1ly ?fdffffF

”‘“ffknown To do th1s, we flrst 1ntroduee a rather 51mple

'1mage model (3 4) The new

it ;f_‘(,m._,".h-");v;(ﬁﬂ};v'h_.f).f




" L ),_"))1 g (m—n)**“ffm n)+[1 n(m n)]v(m n), o ”}(3;6);‘

‘note that we have assumed H to be an 1dent1ty (delta PSF)

where n(m n) 1s a varlable wh1ch takes local statxstlcal

1nformat10n 1nto account The var1ab1e is def1ned by

. i )

P
»qf:(.m,‘n)

R n)m”Q)?f‘Qﬂm,n)fQﬂmwn);lf T ‘f‘;és‘j)

B A ST e L
' yhereuqﬂm,n)'1s the a priori variance of f(m,n), defined as
' T R e S

e d;(m,n):bf(m}n) , 'v.a;(,m,‘n)ébf(‘m-.‘n)»,' e o
com,n) =47 0 oo R o (3408)
: < 0,0 " . otherwise, . o0 E

J ) where o%m n) 15 the a pt10r1 varlance of g(m n) and a%m n)
oo ,..~<

S 1s the nolse varlance.lIn a w1ndow D of size (2K+T)x(2L+1) S
“”"” o%mﬁn) 1s glven by the apProx1mat1on~'7“77Q'

. e . - ~
e L )
+ il . s .




. Substituting Eq.(3.8) into Eg.(3.7) yields
| R ,;1 o

L o ,oﬂm,n)ﬁ Cohe

e R 1?A_-————4——;, Vq:hn,n)zof(m,n), R

I ~a(m,n) = a(m n) o R R (3.91)
o R, 1] ‘m, J" otherw1se.¢, o B R

B Clearly.r (m n) yarles WIth the’ plxels 1nvolved and Osns1 .
It wzll be shown that w1th th1s modxfled ver51on of the
"observed 1mage model the algor1thm adapts 1tself td local

hf AR 'actxvxty. Therefore, 1n terms of adaptatlon, we have a

o nonstatlonary restoratlon algor1thm.

e 7v‘v 3 3 The Resioratxon Algorxthm j:"‘ﬁ F‘,ff T T

We propose a subopt1mal fxlter of the form

Eimen) = Bm,n)+R Lg,(mn)-Em,m)], .. (@i

where ?(m n) 1s the predlcted estlmate of f(m n) at. the

[ K

(i th 1terat10n. Thls fllter 1nc1udes two parts- a pred:ctlonfi”ff

parb, and an updat1ng'bart Wthh 1mproves the estlmate based;;qgj
on the new observat1on g (m n) The pred1cted est1mate afterﬁffv”

the i- th 1terat10n 1s gzven by'

‘ ot‘,. P

?(m n) = e’ (m n)




£ (m,n) . (1 K, )e" (m n)+Kg (m n) IR € T 7O A

It isfofteh the case‘that 1n pract1cal 51tuat1ons, one has
7l1ttle or no knowledge of theQ9r1gxnal 1mage model
‘Therefore, 1t 1s necessary to ;nvoke an. 1dent1f1cat1on

_procedure for estlmatlng the parameter vector e. At the i- th

:1terat10n, we def1ne
\‘v;” :1 J(éi) E[? (m n) 6’ (m n)] B R ‘fe(3;153; F
DR _,"J’(.,.(i',F“E{:If-,<‘m'“"f“.“.""»’ﬁ]2}f.' o Co ,",(3‘.'1‘6)'

'where 9 may be the ent1re 1mage fleld or a w1ndow in- 1t
"jClearly, Eq (3 15) 1s a least squares error cr1ter1on wh1ch

JJﬁﬁ'gfi:ls m1n1mxzed for certa1n e wh1le Eq (3 16) is a mean f?w';A”,

[jfgffsquares error Crlterzon. These two cr1ter1a are the most RN

.,v

common forms used 1n system 1dent1f1cat1on and est1mat1onf.f
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*wherehye haVe‘dfopped (m,n)"for‘hotétioneiﬁéimplieétyt
S \f,"‘ To compute ‘the fllter gaxn K from Eq (3 16) Nwe assume o

‘ﬁ‘ergod1c1ty and that 9% .and’ v(m n) are uncorrelated \:W

[4

“»Substltut1ng Eq (3 14) into Eq (3 16) we;get
o L o (1~K )
S ,'J(K) (2P+1)(2Q+1)

2[9,('m,n9-éf ﬁ‘i"i].«s[‘zxi—y]of(m,n);. (3.19)
’ﬁwhere (29+1)x(2Q+1) is the w1ndow 9 d1menszon whxch may be
the ent1re image.‘ '“f.' Q;n‘a ?‘t : ::‘ o

LEETE

[ .“'C"f‘Miﬁimizétibn\ofeEq;(3219):withfreépect td“R;'gieldéh‘;
o [1 n(m,n)]N o, { Ll
e ey [97, F-q, (m n)] o

RN

v e . s o .
oy .,,-, . | Sl e

'fftfwhere N —(2P+1)(2Q+1) In an actual appllcatlon g ;s

.'”Ef'replaced by g, 51nce only the latter 1s avallable. Equatrons

Wi.(3 18) (3 20) and (3 14) const1tute the restorat1on

'%ﬁalgpr1thm. To 1n1t1allze the computation we s1mply set

BT S -gm n.e ". . ';? 2 4-
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clear that the gaxn K var1es from~0 tp some value less than

In a flat reg1on.whene the 51gnal lumxnance dzstrlbut1on ,‘“”

1s domxnated by add1t1Ve nozsé n =0. and Eq (3 6) is

‘f“,.h' 1dent1cafrto Eq (3 4) On the othér hand 1n ‘a reg1on where R
| edge As encountered the 1mage s1gnal varxance o%m n) 1s 5‘nh";,;}
S g much hlgher than that of the notse, thus =1 maklng K ~1-“»:
L . P t
| vy, T

From Eq (3 14) we obtaxn the estxmated f =9 wh1ch 1s the

;\,
o

»noxsy observed 1mage 1tse1f “ - ."'dfl‘ [-[‘;M

3.4 Simulatidns“ - f“*j;»? e

In order to evaluate the effectiveness of the. proposed
———-__-: . ’ k,-.

‘observed 1mage model and algorlthm, we have examxned several ‘;‘_

dmfferent 1mages. In th1s 51mulat10n the 1mage model has the

followxng expl;cxt form (see Flgure 3r2) o 144‘ Sl J_"'j“
; «}*u-rd_:x f.~f o fp'ﬁ‘ .fr 1' o > SRR

‘“fkﬁ;ﬁo 6 [f(m-1 N1 )+f(m+1 n+1)] g 1d“fh ?ﬂh”
. % , ,‘**J?uﬂfﬁ.+9 [f(m*1 n)+f(m+1 n)] . lh:rlﬁi‘ﬂrifff hiJIUHL‘n*;
;Plftljf‘ﬁl"ff‘}.df,dj'a H&B [f(m n-1)+f(m n+1)] | ' T R

L e ,f~}+e [f(m 1,n+1)+£ (m+1,n- 1)]+w(m e (3i2y
I R T AL AR o s A S A
[ . ."." o }'\o L ! ( ,'v." "‘\ b\,"‘"‘ ' . .‘V‘K:.‘”". "‘ .‘\-”“, | ."’ 'y ' .‘ ~I ‘," ‘ * N '.‘

' . , . )

Thls can be conven1ent1y wrztten in a compact vector form asi

.
‘ o ‘ : REPES

A vl

l‘ 7.'v .‘ A
. - e = A

follows \”?'f"ﬁir”"f“'§;¥' R X
T ftmin), = O'F(m,n)+ulm,n), o :
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Fxgure 3 3a. shows a, fac1a1 1mage of s1§e 256x256 S

. ! . ' |

Flgure 3 3b 1s the 1mage degraded by a whlte, Gau551an nozse
R sequence wzth zero mean. and var;ance ol = 830 Tﬁree

I 1terat10ns and the mov1ng wlndow method (w1th a- wzndow s1ze
Soe R

of 15115) were used Two dgfferent w1ndow s1zes were: chosen

’f in, thls exper1ment for estlggtlng the local statlstlcs.‘ “
“ Flgure 3. 3c shows the processed 1mage us1ng Eq (3 22) hdﬁfﬁ;
I Eq (3 6) and the algorlthm by settlng n to 0 When compared o
i ~ﬁ‘1, wlth Flghre 3 3b we can see that the no1se 1s removed and ,;%
;?N?f ;f_. the 1mage is fa1rly smooth Flgure 3 3d (for the case where
if' . ‘ w—7x7) and Flgure 3. 3e (for the case where‘ﬁ;§x9) show theyiefh
*;. y’H{ ‘ re$ults obtazned by uszng the algorlthm. rt is apparent that‘lt
‘_ ‘ffhthe edges are: preserved and the processed 1mages~reta1n séhé*‘f
S ;‘5¢fdetaxls and are less blurred though not as smooth as ;75'%idfﬁ
TR B P WL RT SR RTR el et T

”'_§F1gure 3 3c. ,w,£j"fu{;7_7“h.5?JfQ';fiTuﬂﬂ““j';ifﬁ“




:.‘-Ltheu- noisy mages (see the flrst ‘row ot &gres 2. 1.1 2 1

the algorzthm wzth n set to 0 Flgure 3. 4

S
{tc‘

Fgggguraqﬁere‘a window sf2e of Wé7x7 is usgd. Comparing
9 0 i

i Flguce f 4c and Flgure 3 4d we can clear Y see the blurred '

edges "and oberall smoothness of the’ jmage 1n Fxgure 3 4c..

8owever, in Figure‘3.4d‘ q%e edges arv

in flat regions, the noxse*ls Suppressed. In Flgure 3. Sa to.

Figure 3 5d the profxles of the correspondxng 1mages Vere

P

Aprofxle data’ were taken along ..

N Ly Y !
. [

"the 11ﬁ¥ (J 65) ‘in the 1ma‘e fxelds.\,.

'plotted for comparxson th‘

. .« 1
hd . :.3
A

The quantrtat1ve evaldétlons og\the restored 1mages are

-ngen in, Table 3.1, wh re’ MSE 1s the Mean Squares Error MAE

SRR

n set to O : Af ;"3¢ Zf,ﬁﬁlu_';
' % . ’ . 0 " .
The three 1mage% used in Chapter II (F1gure 2 10) amd

-~

X

"idfégshored W.C. F1elds images u51ng the proposed adapt1ve

L N,

ﬁdﬂlhmr The restoratldn'tesults by settlng nto 0 are,

L giv higi. Figures 3.64-3. 6t (the second row). The test

7

results ;or letter F and the square pattern are:ngen in"

rxgures 3 7 and 34 8 in the same arfangement as that of

. . R 4 . Af

co T « . © . . ] BRI . EEE

e well preserved and,

\7“

. were also tested.\Fxgures 3. 6a-3 6c’ (the fxrst row);show the

L.
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[

Figure 3.6. All the results are obtained after three

- —

iteratiOns and a window of size W=7x7. Inspection of these

[N

.results shows that by settlng n =0 the restored 1mages are

“smooth and blurred whlle the images restored by using the w'ﬂ

LR

adaptive restoration algor1thm are conshperably sharper wlth
the preserved edges. Thls is to be expected 1n v\ew of the
features of the proposed algor1thm Thxs algorxthm adapts
its galn K to 1ocal statlstxcal measurement and leSs noise "
1s suppressed around edges.‘It can be . seen from the |

91mulat1on results that by 1ncorporat1ng local statxstxcal

]

~1nformatxon 1nto restorat1on algorxthms one can obta1n'

Testored 1mages in whlch the edges are preserved and whlch

1

consequently, are more appeallng to the human observer.

. . . o N
i .*
Table 3.1 Quantitatiye‘measurements of ‘image quality
FIG.NO. |  MSE . MAE " sNR - n
g Y T—T - - - ; - 'v' ' R
3b . 36t f 1504 41 S
e | e o s | e
e[ e | ez | a8 | s
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c8a.> [ 006 | azis Yl a0 17
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F1gure 3. 3 The technzcxan ‘image. !
(a) The orxglnal 256x256 1mage. (b) The or1g1nal 1mage

degraded WIth add1t;ve.n01se v with variance 0%830 (c) The
=restored image of (b) by setting 7 to 0 (d) Thp restored

1mage of (b) with ‘the local, spatial. act1v1ty measurement n .
.and wxndow sxze w$2x7. (e) The restored image of (b) With ‘

;the local spatlal act1v1ty measurement 7 and w;ndow s1ze
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Pictures (Figure 3.3) are low in resolution due
to .the quality of the plotter, and are excluded
from ‘mlzcro-,fi Iming. 4
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.Figure,3.4'The artificial pattern  image, '
) C (a) The or1glna1 256x256. pattern image. -(b) The orlglnal
image degraded thh add1t1ve no;se v with. var1ance az=1225 5
“(c) The restored image of (b) by settmg ] to 0. (d) 'I'he
.,restoted 1mage of (b) w1th the 1ocal spatlal actlvn:y
meaSurement n and window size w= 7%7. -
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Fxgure 3 6 Restored W. C Flelds 1mages.‘ “r

The noisy 1mages are those 1n the f1rst row of F1gure 2.11.

.

In the flrst row of th1s flgure are the restored 1msges w1th

\

local spatlal act1v1ty measurement n and w=7x7 The second

row shows the restored 1mages by sett1ng n to 0.
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‘;& Flgure 3, 7 Restored letter F 1mages.
, dThe n01sy 1mages are those 1n the f1rst row of F1gure 2 12
PRI l‘

“v.tI“ the f1rst row of thxs flgure are the restored 1mages w1th

Llocal spataal act1v1ty measurement n and w= 7x7 The second . ‘7
k row shows the restored 1mages by settlng n to. 0. dr L
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F1gure 3 8: Restorea square pattern 1mages S e v o
The n01sy 1mages are . those in. :the” f1rst row of: Flgure 2 13‘ T

{ ..

| In the flrst row of . thqs flgure are the restored 1mages w1th f | L
. ‘

K

- local spatlal measurement n and w=7x7 The second row shows :
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. AN ADAPTIVE%CHED FILTER FQR DETECTING IM&GES IN NONWHI'I‘E
. 'M . . W) ’ \':,,‘.| «,‘(" "\ -
. n‘, v'w‘ « i ' :‘ ;\"\’ ' I3 ' ‘
: - RN ‘
4 N .0’~v 1 ' W' "\ ) [1:‘ n
7}11 Introauctiontw ‘ . '.[ﬂ*,"'m f"wm y""ﬁlﬁ ;":" o
Ve In ‘the prev1ous two chapters we have con 1dered xmages '
o . '\ 1 .
??i"corrupted by n01se and obtaxned some solutxon,~to the1r‘ f;/(’

restoratlon. In many other areas whe e mach1nes é}e used for‘;

! Ky

recognltlon or|d€tect10n of objects in an. observed 1mage o

‘ (for ;nstance,' radar target detectlon robot v1s1on,

v ' .

d1agnoszng tumour 1n an X- ray photography) noxse and other

forms of degradatxons wxll ‘be present Search1ng for

e |

effucxent and accurate fllters for detectlng 1mages under

these condltlons has resultea 1n many d1fferent approaches.;V

o ;x‘m el Ll oA :, L .‘W,‘ 'ux,
7 ', Detecting the presence of objects 1n an observed 1mag ““{f
FNCTRNE S AR ' e |
‘fﬁj 1s a problem s1malar to that otf;e. ;[atxon in the sense v
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\ éna information science, the caonceépt of digital image

\\, \ v . a . I . .o

-, detection is relatively recent. The main stumbling block has
\ . " ' : o

' been the need for large-scal} computing facilities.

[¥] ¥y

A.‘\

"+ . The two-dimensional detection theory basically‘follows

(‘ \

“‘th same main stream of its one~dimengional counterparts n
‘ ‘ ) \, ! .
. with ‘some vag}aiionsJ(van Trees, 19663 Duda and. Hart, 1973).

Among many reported two~dimensional detectors, the classical

optimal filter based on the signal-to-noise ratio (SNR)

’

drawsnfﬂf mo;t'attention due to its simplicity and

4

efficiéncy.ﬁlt is know that this classical optimal detector

is the object imagé itself when the no?Se backgqgnd‘is a
‘ - S . |
stationary, white process. This leads to a simple .

cross-correlation operation which is calied matched

filtering.

Unfortunately, most realistic problems related to the

"

detection of a digital signal.émbedded in'an image involve

\

matching procedures- which cannot assume that the embedding

background image is‘stationary white noise. This has
recent}y led to tﬂe investigation of signal'matchfﬁg
techniques not based on the "matched filter theorem“
(Rosenfeld and Kak, 19825, in other, words, the ideal or best

way to prefilter the image does not necessarily. involve the

»

signal itself. Under the non-white circumstances, edge-only

matching and matching by the combination of specific
' . AN

features are some-examples of some of the techniques used.

i

However, the question still remains as to the "best" type.of
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prefiltering to use in such conditions and to the relative
‘ . N .
A . . . . ,
efficiency of various techniques. . \ . N

,
» \\\
'

Notwithstanding, the foregoing matched filxéAS are
still frequently used for detec;ion,veven in nonwhite noise
cases, due to their simplicit& gnd the‘éasé of
implementation. Hokévi§,‘this results in nonoptimal
filtering or nonoptimal signal detection performance in
strict theoretical sense. Recently, Vijaya‘Kumar and Carroll
(1584) guantitatively analyzed the loss of optimality in -~
cross-correlators (or equivalently, in matched filters)
compared to prefiltering by the optimal filter in a general
setting. Their results serve as guide lines for” the use of
cross~correlators in practice, since tﬂey wefe able to
define its "inefﬁ?qiency"‘or loss of thimalityras‘a
function of the embedding image. More‘recentiy, Liu and
CéelLi (1986) have proposed a postfiltering teéhnique which

uses an adaptive filter to imprové‘the detectability of the

matched filter in presence of nonwhite noise.

In designing the\optimal filter, we need to know the

-

second order statistids of the noise (which are normally not
available), and to invert its (usually very large)

cqvariance matrix. The‘%atter operation is generally very

" time consuming though i£\i§ well known that for.the special
cases of stationary noise the covariance matrix is Toeplitz
and the inversion is relativelygsimple,(Rino,'1970; Arcese

et al., 1970; Gray, 1971). .
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JRER
In this chapter we are concerned;with developing a
. signal reference adaptive technique f%r determin;ng a1
suboptimal postfiltgf which significqatly improves
detectability of the signal as compaged to matched filters
(cross-correlators), ‘ b .
- N
;4.2ADériyati9n of the Oétima; Defe;tion Filtef
In génerél terms_tﬁe signal’ detection é;oblem‘stud}ed

.bere is that of detecting a signal f(x,y) embedded in an
. | ,

/ Co
,.

image g(x,y) defined by

g(x,y) = f(x,y)*v(x.ﬁf' (3.1)

where v(x,y) is the non-white "background" image. The aim is
to find a filter r(x,y) convolved|with g(x,y) to'result in

Zm(i,y) which optimizes detection. That is -

2, (x,y) = x(x,y)xq(x,y), . c (e.2)
should maximize the SNR defined as (Thomas, 1969; Arcese,

1970),

. Elz, (x, )]

(1.3)
var(z (x,y)] a3

. SNR(x,y)="

Without loss of generality, we may assume that the signal .is

—-



centred at (0,0), i.e.

(s
~

n .
SNR(x,y) = SNR(0,0).

‘ Th@loptimal form of r(x,y) (in Eq.(4.2)).to res
the best SNR(0,0). has been developed for many years

be found in many places (Van Trees, 1968;IPppoulis,

N
\\

In the following we shall briefly describe the

A P L
filter for completeness. and convenience of readers.
. s , ;

be preferabfe to derive the filter in discrete form
is to be implemented.,on a digitgl computer. Thus ye

I

~ the discrete obzerved imgge model

g(m,n) = f£(m,n)+v(m,n).
\

For/signal centred at (0,0),'Eq.(4.2‘ becomes

2, (0,0) =£(0,0)3g(0,0) =r(0,0)*[f(0,0)+v(0,0)]

,
'

j=li=1

~'"=§§r.'<—i;-j>'[_f<ti,j>fv<i.5>]. -

.
N

without loss of‘generélity we assume E{v}=0,-thus

© el

- 86

2

(4.4)

ult in
and can

1984) .

optimal
It would
since it

may use
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-

E{VZ,g(O,O)'}=E{§ §r( i —J)[f(1 J)+V(1,3)]}
: ’ Juljmt
o =>:2r SLDEGLDL L
=121 o ’ ‘
- ‘éc
‘ o “\.:
and ; ‘ .
0 A \ ' o
var{z, (0, 0)}=E{(§ det-i,~5)9(3, 9)- E[i §r(—1‘-3)g(1 )
=101 yERAREY! , _,\
' - i L oy
-(§ §r<—k,-1>g(k,'1>45[§ §rg~k,~‘i’5,p(5,1>]>}\ R
T T | oy ‘ ‘-‘I."\“ 3}
=E{[§, pr(-i.-3)v(i, 3)][§§r( K, -1)v(k; 1)]
==
o | \ . , (4.6)‘

»

We define the Second~o;der statistics of the noise‘by

4 L]
' \ ' -
. ‘ , i .

Q(i,jik,1) = E{v(i, vk, 1)}

' Eq.(4.8) becomes

Var{Z (0,00} =) Drl-i,-j)r(-k,-1)Q(i ik, ). (4.9)
i,j k.1 ' : T

" Substituting Eqs.(4.7) and (4.9) info Eq.(4.3) yields

y



[ Eré 1,-J)f(1,3)] ” V
SNR(0,0) = (4.10)
' } S (-1,-3)e(-k,~1)Q(i;37k,1)
| | 3K -
4

It is cbnvenieqt to repyesent the image by a vector f.
. Correspondihgly,‘r(.,;) can be written as r, and Q(i,j;k,1)

as Q. Then the optimal filter problém reduces to the problem

of fxnd;ng r such that the SNR 'in EqQ. (4.11) is maxzmxzed

1

given £ and Q,‘

s . e 8
D . '/“ th 2 ' . ' .
" SNR{.0;0) '= i;r—L—.;. - e (4.11)
* ©rfor SRR
“N ' . .
o ‘ . . X ~‘§
Let | P '

© . 2SNR(0,0 -0, o

.or
\N \
: @
N - K ¢
Wef%btaxn S fl
P . ’ . ' 4\ |
£Trfr’or = fTrrTfQr. - C $4.12)
' S 8
% ‘\‘ ot . ‘ " ' . Kl
Observing ‘that ‘£’ is'a scalar and £'r#0, we have |
. . v i —_ . . "x% N ' w
. " ) ' 4 o . “ .
£r'Qr = r"fQr. . ‘ K (4.13)
\{ A. ' N : L3 . " . . N ,
‘ E = o
After some simple rearrangements, Eq.(4.13) becomes
- ‘or. =£Jai£ e (aaey
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Define
. . N ' = - B rTQr;é " '\ “ . . ‘
‘rTr . ) ) ‘ ‘.
N P \ T ' *
Solving for r in Eq#?4.14{f}ield§‘ Sy
K E : I,I. . ) A ‘ ~ ‘
o r o= aQ . . (4.15)
.‘Substituting'Eq.(4.15),int6 Eq.(4.11), we get o _ \
~ max SNR(0,0) = £7Q7'f. L (4.16)

. . ' ' -‘ e ' . B ' 1
Equation (4.16) produjrs the best—caée detection ipsofar as
it makimizes‘thé SNR dt the position where the signal would.  *
be centred in the ‘image. - B ‘

It-is interesting to note %hat if v is stationary whiqé';
noise then Q=qﬁ, (yhere I is aanMkNM‘quntity matrix for
images Of NxM in diméhsion,'and.qf is the variance of v). -
Then the optimal filteﬁ reduces to

r éa(a/qﬁf. ‘ : v ‘ (4.17)J'ﬁ*;
. “ " . v‘ ‘ ‘ » 2‘ ’. ,."’-','l‘v , K ’ 5 . V", " . , a‘
- If ve define r=(d4/0))r , we get . [/; B
R T T N P (4.18) .
= * . ‘ . f‘ :
R ' '
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This 'is also an optlmal fllter in the sense that it.

max1mizes the SNR. Note. that frov Eq. (4.Ji)i‘the value of
‘SNR is not affected by scalxng r.‘Thls 1mp11es that we may .

slmply let‘r1=r for statlonary'whxte noxse,;that is
T ! K ‘ N f‘ I . ‘ o
.”\ ‘ ' [ Y ' s ' ) ) ‘ \"r.f

or , SR B

oy Cop(i,~g) = £6,5). . (4.20)
N ‘ ,"‘ ‘\,\. . : '
! ) ’ . A . ' - . [y .
‘This resultwis‘the'well known "matched filter theorem”

.(Rosenfeld and‘Rak 1982) &hidh states that the "best"

fxlter ngen SNR is the image 1tself if the noise is a-

.stat1onary wh1te process. Due to its szmp11c1ty and the ease
<,

of 1mplem$ntat10n matched f11ters are w1dely used even if
the noise is nonwhlte. The . use of matched filters in
nonwhlte no1se cases will obv1ously yleld nonoptlmal

f1lter1ng resplts for the SNR

Vljaya Kumar and Carroll (1984) derived. the d
worst case"“detectlon based on the matched fxlter, amd . they
rfdefxned the. followzng factor for quantltatlve study of the

loss ofFopt1ma11ty when non opt1mal fllters are. used

-

Ca.2n
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and also show, via the Kantorovich .inequality, thF

| A S :
L2V N2 )2 = S'S LI ’ (4.22)
! min® max ‘nfa‘x min . Y .

where A ~~and A are the maximum and minimum eigenvalues.

e : - e ~ : :
for the noise govarxance (nolse/autocorreletlon) matrlxg

The problems thh the opt1mé}\£1155f are that it

‘requxres‘ (a) the perfect knowledge of the nozse which 1s
R 4

normally unavaxlable, and (b) the»lnversxon of the‘nolse

ovarlance matrzx. The latter operatlon 1s h1ghly t ime
\

consumlng ‘and unstable for 1arge 1mages‘ except for some
spec;al qases (e.g~ when the nolse 1s\stat10nary (R1no
1970; Gray, 1971)) \gonsequently our é1m 1n the followlng

sectlons is to 1mplement an alternat1ve scheme whlch

bypasses these!problems, yet still produces better results

* . . .
i "o, ' . :
A » . 1

¢ A}

4 3 The ngnal Reference Adaptxve Postf:lterxng Techn1que
We assume an observed 1mage model deflned by Eq (4. 1)

»where v(x y) 1§ not necessarzly wh1te noxse. Further to

!

‘thls, ve do. not care whether v(x y) is stat1onary or not. We

9

first. con51der the cross cerrelafion of f(x y) wlth both

‘”fs1des of Eq (4 1) ‘to g1ve ”5}_' f,:‘t,‘ ‘ﬁff -
CCEy) = C )+ o txy) 0 (4.23)

T
P

i

. . . . o N
.o , P ot :
L PR W ' . »
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C,,(x.ly) N Jla(u,y)b(x+p,y+v)dgdv, N . (4.24)
. T o , ,
where A is the domain of integration.. J, , .
' ' . ‘ ' Fo - .
For nonwhite noise, it must be true that o
1EL ¢ (x,y) TP C|ED 2z (x,y) 1|2 | :
‘ s— —— 14.25)

varl ¢, (x,y)°1 T varl z_(x,y) ]
« )

where‘the Subscript r denotes the optimal filter The L
_equallty is achleved only when vix,y) 1s white noise or £
-

happens ‘to be one of ‘the exgenvectors of the noxse

covariance matrix (see Eq (4 21))

It is clear from Eqs (4. 23) and (4 25) that ideaily,ﬁf‘
1f v=0, the SNR would be infinite, and C ‘represents a

)

‘ perﬁect match Our objectlve is therefore to de51gn a
postfllter h(e) wh1ch filters C to result in an 1m§oe as
sclose as poss1ble to the s1gnal autocorrelatlon 1mage Cie
_We shall attempt to suppress the error 1ntroduced by v(x,j)
in the hope of 1ncreaslng the SNR to a hxgher value thani

"ach1eved w1th a. s;mple cross-correlator. We' do th1s by

A .

' m1n1m1zing,the functlon J(O) w1th respect to the parameter

~fvector e



3(@) = Etl C (x,y) ~ & (x,p) TV . (a.26)

. where

N
-
¢ |
. /. ' ‘
Euoy) S nO)x e (xy) . (42D
) i / L
./
1

Before proceeding further} some discussion of the
signal reference adaptiv;/identification procedure ‘is in

order. As shown in Figure 4.1, this procedure consists of
. N o / ’ !

‘two parts, namelyﬂ'the/training mode and the the operation.

mode. In the training mode, we embed a reference (or

/ .
standard) image 1n'éhe nolsy background The parameters of

- (9) are then_"tuned" by an 1dent1f1catxon algor1thm based‘g
on J(©). After ;he parameters have been dec1d€d the system‘ a
swrtches to the operat1on mode. By the nature of J(G) ‘e'
postf1lter hKG) s6 de51gned (1 e. h m1n1mlzes”J(9) when,thev‘

reference ‘mage is present)‘will reduce the error due to

- v(x(y). érefcre, in a b1nary detectxon problem 1f only

noiseli§ present, we have only C, (x y) , and the estxmate

.éwisl_in‘fact,'h$ct whlch will”’ not m1n1mxze J(e)

Slnce 1n the case of the detectlon of an 1solated

f

7. | .
,signal in an 1solated 1mage, ve' have no random ser}es (1 e.

%

the absence of the respect1ve probab111ty den51ty vg‘)

il

/ funct1ons) e, can wOrk only w1th spat1al averages. That 15;3"

forvd1g1tlzed 1mages, the statlst1cs are determ1ned from the‘

o
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neighbourhood of each pix€l. This reduces Eq.(4.26) to

“
-

- ¥
TR 1

L

J(é);ﬁ[zz(” C, m,n) ~‘ékg(}:ﬁ,6> P PR O )
o *‘“l . ) - '

‘ ‘ '. ‘ . ey 5 ‘
where M,N.are' the image dimensions.

In the dxgltal slgnal context, the convolutlon of
Eg. (4. 27) can 'be arranged as’ vector multxpl1cat10n,
A, " L ‘ ) i ‘ oy
Cpylm,n) =K’ (,Q)Cfg(mfn). SO .. (a.29)
Diffeféntiating Eq.(4.28) with respect to fhe7patameter

. . . r
vector © yields

o

‘“‘ag’ =ﬁz}§—4—la“aee Ciym )| .Cp(mim) = B (@)C, (m,n) ], - (4.30)

Rherelﬁ(e) is the v%ftorﬁorﬁ Qf H(e).fﬂowever,}since J(Q)

‘ié‘a non-linear funétidn of © Qe‘use-nonfffnear programming .
téchniques’for'optimizatién‘of EqSQ(Q;ZB) and (4.30). For

. Si.mpll.icity we set H(é)_=6l séAtha; th'e llestimate of the . N i{g

AUtocorreliggon¢functdoh“beéomes : o .

Cy(m,n) = O (m,n) . .7 . (4.31)

Ed.(4;28f«ﬁQY'be rgwtdttén'és‘-f f;i""‘ e

'_; o z;[ Culmn) - e *w » ] e s



"Let the derivative Eq;(4.30)

which gives

ZZC {(m,n) C, (m n)a;SQR: (m,n) Cw(m,n):

mn

A

Note that eﬁaé = Sge which is a scalar. Rearranging

4

Eq.(4.34) yields

,gécu(mﬁﬁ Cm(mﬁﬂ=[;gcm(mﬁﬂqahmn)]9.

The vector © minimizing J(®) is thus

[E (m,n) € (m,n ]"‘[Ezc“(m,n) C‘Ig(r;\,n) ,

where A indicates the value of © that minimizes J(©).

96

-~
(4.33)

24,34)

"(4.35)

(4.36)

LY

Clearly the é'obtained by Eq.(4.36) is valid over the entire

image field.

Before we proceed to perférm the simulation

in the

next sectlon we .shall br1efly dxscuss some aspects of

backgroﬂnd prefxlter1n§ and the RoC’ analysis which w111 be

'USed in the 51mu1at10n to evaluate the detector performancef

Y
’ﬁ‘.dﬂ" .
T

o : o P
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4.4 Detection Criteria:lROC Analygis . o

"The importance of image or background prefiltering on
signal detection is i{llustrated in Figure 4.2a. In the top
row of Figure 4.2a(left) a faée signal is‘embedded in

pbandlimited noise having different amplitudes. The following

rows correspond to low-, middle~ and high-pass Gaussian

filter versions of the image noiSe~plus~signal} to result in
different levels of signal detectability as a function of

% .
the band-pass range. Define

. . '

g,(d) = expl-«*(d-d )], ' S (4.37)
where d%(u,v), doé(gg,vo),‘and (u,&) are gpé two~d?meﬁsional
spatial?fréqﬁency spectqym.'This Gaussian filter enhances
detection in terms of the degree to which it filters out
fréquency components of the noise not common to .the signal.
In the case of the face imagé, which is prominently’
loy—to~middle pass in its predominant energy components,
best detection égﬁurs in the backgroundwby,a lbw—pass 

filter—as shown in Figure 4.2a: left bottom row. That is,

normalized cross-correlations were calculated over each Tow

of the images shown,in-Figure-4.2a‘fndependehfly.‘The

detection efficiency is therefore determined not by the

- absolute grey Jlevel intensity across the rows, but the

relative intensities within each'row, or a set of four
' . A Y ‘
images having different mixing coefficients.



\ / 7"“\.

Figure 4.2 Signal, its noise corrupted versions, the
cross~corrélations, and the RbC curves.

(A) A 64x64 8-bit grey level face image (top: signal)
embedded in four different §ackérounds (left). Left: First
row corresponds to the checkerboard noise, while fow 2 to 4
are low-, middle-, and high-pass isotropic Gaussian filtered
versions of the .noisy images. Right: Results of the
ngrmalized cross—cotrela;ion between the face image (pop of
this figure) énd the aésééiated face-plus-noise images
(left). The pixel intensitj is directly proportional to the
response of the matghed filter,which, in turn,‘indicates the
likelihood of the signal's presence.

(B) Four different background noise types (rows.of (A),
bottom) are cross-c&rrelated with the signal and the signal
region is defined by a circle of‘B—pixel radius (depending
on applications) about the its centre in the
cross-correlgiionniiages (left). This set of ihages are
called likelihood mgps: The resultant detectability SESres:

are shown to the right by the receiver operating

characteristic (ROC) curves for the -likelihood maps (left).

[
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To defxne the dxfferent levels of 51gnal detectabllzty,

or the "detectlon eff1c1ency of(the fllter, we have

Iy

employed the followlng crlterla.‘In these cases the image .
-

'g(x,y) was composed. by:

g(x,y) = alf(x,y)-E{f(x,y)}]+vix,y), - (4.38)

where f(x,y) and v(x,y) are the signal and noise (we use the
' random‘checkerboard‘signal which is nonwhite and
nonstationaryP as’the noise in our simulations)

"

‘respectxvely, E{f} corresponds to the (ensemble) average,

: or, DC of the sxgnal Here, going across columns in

Figure 4.2a « = 0, .33, .67 and 1.0 respect1vely. We have
COmputed the normalized cross-correlatxon 1mages according

‘to (A< 1)- (A2. '3)and the results are shown in Fxgure 4.2a (on
Y 4 v _ ;

the right).
o . &

-

-

. For evaluation we define the signal area in terms of &
circular aréa of'radius d'about the specifiedrsignal centre
4. ‘The degree to whzch the f1lter ‘detects the 51gnal w1th1n‘

O,

'thxs'region ("hxt ) is def1ned, with respect to a threshold
e
C

‘ 'At the level of p1xel resolut;on, such noise conta1ns
correlated information: within a given checker micro- pattern
.area all pixels assume the same intensity. Th1s_1ntroduces

"~ non-zero ‘elements in the corresponding checkerboard :

' covariance matrix 1nd1cat1ng the non- statlonar1ty nature' of
“the noise, It should also be noted ‘that 'such noise does not
-have a flat power Spectrum. S L
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ple/(grv)1 SABRIIA bz (x,y)50) o (a.39)
. s . (x,y)f#\ﬂ(x.y) (x;y)(Aa(:.y) ! '

J

. : - —‘ ) s . 'qv—‘
where A (x,y) defines the signal area. Similarly, the "false

[ .
P . .
‘ > r ) e

alarm" rate is defined by .

LI

(X Y) (x;y)iAa(x,y) E (x'y)‘,\°<"¥% ’ ,\‘ﬂ ‘ . ‘ )
'.‘-\a‘ .‘.‘l“.”

\ ‘ Y
where A (x,y) is the complement A (x y) and 'z (x,y)
corresponds to the output of a gzven convolutxon ‘or

filtering process, as in Eq.(4.2), etc..

- )
of the 8-bit intensit®values

’

‘By Varyina A.-over a rang
we have produced ROC (receiver~operating~cnaracteristics)
as shown 1p Flgure 4. 2b (on the rlght) w1th the assocxated
threshold values in Flgure 4.2b (on the left) The area

under these ROC curves, namely,
) ‘

P, = [Ptesieriaoe/vy, L aany
o . : , : .

]

determines‘a measure of the detectabilitj of the

‘s1gna1 1ndependent of the criterlon value chosen. Th1s rea
varies between 0-1. 0, usually 0.5 to 1.0, where 1.0 1m l1es
perfect detect1on eff1c1ency. Further, th1s measure pe~m1ts
direct comparrson between the_d1fferent pref1lters, an to .
the‘unfllteredior dlreet”cross-correlation case. '

Though_we.illustrate} here,ithe benéfit"of«prefilteringf”
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1n 1mprov1ng detectxon eff1c1ency with cross correlat1on, we

have not generated an objectlve technxque for generatxng the

1deal postfilter™. - ]

4.5 Simulations .
In thzs sectzon we shall investigate the effectiveness
A
.of the: proposed adaptxve matched fxlter1ng technzque us1ng

computer sxmulatxon. wlthout loss of generalxty we choose to

Lol

have seven elements over 5x5 symmetr1cally structured kernal
(see Figure 4, 3) 'The' cross correlatxon vector C, (see

Eq.(4.29)) in th1s confxguratlon is.

c, (m-2,n- 2)+c ,(m*2,n-2)+C (m+2,n+2)+C,_(m-2,n+2) |
s, €, (m~1 n- 2)+C (m¥1,nf2)+cm(m+1,n—2)+Cm(meﬁ,n+2)
Cm(m,n—2)+cm(m+2,n)+Cm(m,n+2)+Cw(m-2,n)‘ -
’Cm(m,n)= C, (m-2,n—1)+c (m+2,n—1)+c (m+2,n+1)+C (m—2,n+1)
C, (m~1 n- 1)+0 (m+1 n- 1)+C (m+1 n+1)+Cj/m 1,n+1)

mgm n-1)+C, (m+1 n)+C, (m n+])+C (m—1 n)

C:g(m,n)

e ’.

As shown 1n F1gure 4. 3 ﬁe have employed-a-specific mssk of

‘ 6 def1ned by

e=106 06, 6 6 6 6 61 - eie2)

t ¢

[N
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e =‘[0.077,0,0217,~0.164,0.175,Or0167,~0.295,Jﬁ352]T,‘(4;43). k

‘w1th respect to the fxlter proflle shown 1n Fxgure 4. 3a

‘wh1ch depxcts the @ values over the’ 5x5 kernel structure

used.

Consxstent w1th the xdea that h(e) should be estlmated '

: adaptxvely, as shown in Fxgure 4. 1,‘we employedra nonlxnear-
, programmxng algor:thm to fxnd the local minimum of Eq. (4. 28)
-and so. to}fnprove our estlmates of 9 ThlS waéﬁbased on -the
fxnlte d1 fgrence Levenberg Marquardt routlne for solv1ng -

non l1near least squares prJg}Ems A sequence of | |

-

approxxmatxons to the minimum point is generated by

.

where KA is*the numerical Jacobian matrix evaluated at 0;; Di

is a diagonal matrix} a, is a positive scaling constant.
!h' ' 7 - N . . + s X

' This results in the estimate of ©: . 3 ‘

BRLIY. ‘ Cl stilal o SRR

B

6 = [0.087,0.023,-0.164,0.174,0,0171,-0,293,1.343]%,  (4.45)

- S R o
"n’whfch differsgdnly.SIightlyufrqm‘Eq.(4.43)a
e . DR . ’ o ! . .

Fzgure 4 1 1s 1ntended for more - general adapt1ve.

3>

est1mat10n of H(8) than the part1cu1ar example descr1bed
- ‘

.labove. In fact the procedure 1s_e§§i§gged to be d1v1ded 1nto -

- W - S T -1 'P A ’ ) I ‘
e = ex [axDx+Kl Kz.a KxJ(OA)." o o .(.4f44),

\
¢

~
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_“two partS° (a) the\;rainfngumode and, (b)n)the normal

)

detect1on operator In tra1nxng mode a s§andard" 1mage f

s

and 1ts autocorrelatxon C ¢’ and the observed 1mage g and

| ]

‘its cross- correlatlon C (thh £) ére g1ven. The adaptxve Ilf
‘algorxthm uses E(e)‘(l'e J(G) here) as the input.to. ad)ust
the parameters of the postfxlter untxl E(e) is within the
errorvllmlt‘g1ven as a constant €. Upon the parameter vector

6 is determ1ned the, system 1s automatically orlented to

\

'normal operatxon mode for lmage matchlng.

Figure 4.4Nshons the ROb‘curves”(and-detectability
. } ' : ' [ e s’ : .

levels) associated'with each of the”matching téchniques for
the detectlon of the’ face 1mage embedded 1n n01se (random

' checkerboard s1gnal) correspond1ng .to row 4 column 1 of
I

‘Fxgure 4 2b(left). As can: be seen from these results,-the
"postfllter derlved here i's 91% as eff1c1ent as the

autocorrelat1on result. However‘ they compare favourably to \

the normallzed Cross- correlat1on and 1n_part1cular, the

dlrect cross correlat1on values, Cot = 0,98L‘§m;‘= 0.89,

Cro = 0.88, C,_ = 0.80,-and C = 10.72. Here, C, indicates
92 ] o fg . £ L

51gnal autocorrelat10n° Cm‘”ahd C 52 are the est1mated

-~

“cross-correlatlon values us1ng the parameter g1ven by

\

‘Eqs (4 43) and (4 45) respect1vely,‘cg is the d1rect

=

‘cross correlat1on of 51gnals f and g, and C 1nd1cates the
.normal1zed value (see APPENDIX II for the def1n1t1on) of

‘Ctg', )

Since in'matched filtering theQShape:of*the;;
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cross correlatlon 1mage proves to be of utmost 1mportance,
we. have further compared these results by correlatxng the

autocorrelatxon,xmagelthh the others via the standardlzed .

. Pearson's correlation dpefficient‘definea by

o ' ‘ -‘COV(I‘,I )'. . ‘ K .
-1 s ¢(1,,1,) = ————— < +1. . (4.46) .
' g o . ~ . ' . '
A S PP &S '

' .
\
I

This resulted 1n\values of C(C“, rg,) = 0‘31;

< am

C(CyrCrg) = 0.81, c(C”. gn)*v= 0.69 and ¢(C,,,C,y) = 0.08.

: ‘h,
(- '

.It is MOrth hétfng that this-techhique‘eStimates‘a
lxnear fllter h(e) whlch attempts to m1n1mlze the dlfference
between a.given- 51gnal s auto correlatlon funct;on and the,
\;assoc1ated 51gnal—to—1mage'cross-correlat1on functlon in a
general settlng This approach con51derably 1mproves the

‘ d1reet matched f11ter1ng method and does not requlre the“
ﬂknowledge of . no1se statlstxcs whxch in many cases makes the

1

opt1mal ‘detection impractical.



\

. v R . . ) v
. . . .

Figure 4.4 Six;mlatio’nvrvésul'ts.

On the left f;ve comparlson cross- correlatlon functxons

'

1nvolv1ng the sxgnal (tep of Figure ' 2a) and the fourth .

"1mage‘1n row 1, of Flgure 4.2a. Rnght,hand sxde shows the

[ '

associated ROC: curves and: detectablllty values :

N ‘

e
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' CHAPTER. V
A HIERARCHICAL APPROACH TO MULTI- OBJECT PATTERN ' RECOGNITION

hﬂ&“ AND DETECTION IN NOISY BACKGROUNDS ‘

5.1 Introductzon
In prev;ous chapters we dlscussed 1mage restoratlon and

detectlon in noisy backgrounds. Algorlthms were developed to

‘ yleld images w1€h better v35ual quality and to detect

Jobjects w1th h1gher‘accuracyf‘1t waSvpoxnted out that .the .

‘ theory and methods of matched fllters have been widely .used

in s1gnal detectlon over the past few decades spec1f1cally
because matched fxlterlng is optlmal for the detectlon of
signals corrupted by - statlonary whxte noise. Essentxally,

the matched fllterxng involves cross-correlat1on of the

known: gignal w1th the observed 1mage. The locatlon of the

P

51gnal nf any,,:n-the Image is 1nd1cated‘by the peak value

. of the cross~correlat1on. Recently, approaches\to reduczng

and Kak 1982) have been developed 1nclud1ng sequent1a1

S approaches (Rosenfeld et al., 1977 Tanlmoto, 1981)

e ' o 0

‘a_‘

The ba51c pr1nc1ple of the sequent1al methods 1s to

"f’accumulate the degree of m1smatch between the template and

“‘each p031t1on on the 1mage. S1nce mlsmatches usuall grow o

faster than match the poorly matched area can be detected

\

B the computatlon t1me for such match1ng technlques (Rosenfeld

‘ methods (Wong et al., 1978 Mdnteanu, 1981) and hleraichlcal ‘

i

. -_‘qu1ckly and re]ected at an early stage of the operat1on.v1nwjf

J0d ot T e
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~anpd temé%gme 1s reduced by averagxng or pyramxds The

matchxng is performed flrst over the reduced resolution
images. If a‘ﬁromisxng area is detected far a glven

thpeahold then full matchrng is performed for the exact
1ocation} otherwise theVoperation aborts that area and

searches for another Aﬁea;'This approach speeds up the

matchlng procedure to some extent An expected problem with

thxs procedurea1s that the sensxtxvxty of the procedure is

i)

B

)
w

‘low, which means more false alarms.

r“n
Most recently, in searching for a tast‘detection scheme .
for robot vision Caelli and Nagendran (T§86) have further
developfd,the \ﬁdge only matchxng technxque ‘In thxs

approach,athe ob)ect be1ng detected is- first reduced i an

A

edge only sxgnal. This significantly reduces the ndant

1nforgatlon of "the 51gna1 so that the matched fllterﬁng can
be performed by a s1mple array processor at a very high
speed The basxc ﬁrxnczple, which led to this appfoach is’
the perceptual 1mpbrtance of edges in human matchxnghtasks
éCaelli and'Moraglia, J986), or, in general, the perceptual
salience of’image Bandpaas information for pattern
recognition. Howevet, such pre- filtering methods still

_employ . the cross~correlatxon of the signal w1th the 1nput

- image and Bgcbme qu1te ‘inefficient when multi- object

,,r
.



‘.

 detection is required.

‘ Péttern récogﬁition, whether deéling with single or
multiple signals, is eééentially'concétned with the
debelopmeqt of .classification procedures.based upop'éxplicit
features of the signal(s) ‘and images. Figure 5.1 illystrates
thid fundameﬁtal'operatﬁng principle. Usually: the
‘chéracteristic features of the image are extracted by using
some transformation techniques such as orthogonal
transfofmation;, gtatistical transféfmatiqnsy or syntactic
transformaﬁions. The resulting features hay hurn‘ou; to be,
depending on the kind of tréﬁsformation ﬁechniqués used, the
set of largest eigenvalueg (Ahmea and Rao, 1975), or'the‘
grey-scale histogram, or the ffequenéy spectrum, or the
auto-~correlation (DGVijer‘and Kitﬁier,_1982), or syntactic
desc;iptions‘(Fu, 1982). in actual applications, a set of
_sample images is used to generate’the sample (or.reference)

4

features, which make up the feature space.

-

Since, in most realistic situations, images are
[

corrupted by environmental-noise, and 'the statistical

inférmation of the noise is either unknown, or only

- partially known a prfbr;, ip is not fgasible,tplusen
different‘sets of. ﬁoisy sémples to train the classifier.
TheréfOfe,'the training samples are, normally, a set of
ideal images free of noise dggradation but‘sometimgs

\ .

'indolving‘subjectjvely chosen geometrical distortions.

L

Trained'by'such sambles, the classifier will.p;oduce

5
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' miselaSSification in a noisy environment. Eurther to this,
'iﬂ‘final derection, the performance of the matcned filter
" will also deteriorate if the noise is nonWhite.‘in.such |

‘circumstances the‘perfornanCe‘of the hierarcnical approach‘f
will.become‘unaoceptably poor.'One solurion‘is to resort to

image restoration techniques‘for the preprocessing of the

noise imaées, if‘sufficient'information is ava%lable. . "
In the following sections we introduce a 1inear‘ieast
squares mapping L:chnique (LLSMT) for classification and
Idemonstrate how noxse may confuse the classifier, and lead
 to mxsclassxfxcatxon or no decision at all. In.partern.'
classxflcatxon the visual quallty of the restored;dmage is
not essential as long as the basfc‘features are rerained. To
improve this,situation we introduce‘a very simple and fast
v : c v,
'prefi;tering scheme as the first stage in the proposed new
hierarohical approach. |
.5 2 The anear Least Squares Happxng Technlque ' " ‘
In developlng dxscrlmxnant functlons based on m1n1mum
dlstance cr1ter1a, lt 1s often assumed ‘that the'pattern
‘values cluster, around the1r respect1ve mean in feature
fspace.\Th1s assumptxon may no; be reasonable 1n~many

]

app11catxons (Ahmed, et al.,'1975) In such'cases it is

'necessary to transform ‘the, observed patterns or features

belonglng to a g1ven class, say, (o) 1nto a decxs1on space,

"

1

such that these features are forced to cluster arounéva3

[
\
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Ipoint V: in the decxsxon space. The tranformat1on A wh1ch
maps the feature space to the dec151on space is determined
for ‘all ‘the classes 1nvolved and is based on a linear least
squares error. criterion for a given set of unﬁt vectors V..
'vThese'vectors {V ti=1, 2,..;,k} span the dec1sxon space. The
classxfxcatxon 1s determlned by the proxlmlty of the mapped
‘poznts to the class poxnts in the decxslon space. For
1nstance, if among all the mapped points in the dec1szon

space three p01nts are wlthln a tolerance range around the

point v, then we-sav that ‘the three points belong to class

Cj.

. The, advantages of us1ng the LLSMT are that

(a) vaen a feature vector or an 1mage statxstxcally

belonglng 6 class Cx, its dlstance from v, wxll be

minimized.
(b) Altnoughlthe mapped valueshwill-change from sample
T to sample, ‘they will be closer to one another
;'compared to those not in the .same class.

(c) S1nce the decxs1on ‘space is spanned by the vectors

<

'V the Jth row of A maps ‘the feature vectors of the
3
‘Jth class to the vector correspondlng v

™~

\"f ‘ ‘ L

1S

‘ \
We shall now cons1der some sets of sample feature

. vectors {fijﬁ k=1 2,...,K 1=1 2,...,L} where superscript

(s) denotes the samples, K 1s the number of classes and L d
the number of samples 1n each class._We seek a L

‘transformat1on A which maps—{f“ﬁ into the unit vectors v



115

FEATURE

SPACE

DECISION

SPACP‘

Figure 5.2 Transformation of patterns into decisidn.space‘
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Figure 5.3 Patterns of class 1 centred around the‘point v,

in the decision space
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. Figure 5.4‘Ma§ping.efro; caused by_nbisg
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" We define

L€, = AfY-v o= v,

BRI R _['aA" AR S A S iL-‘aA K

116 7

(5.1)

. N ¥ X KL KT
,'/. . ‘ ' ! . . N
The mean-square error, of ‘one class, given the samples, is
1 2 - "_ o ’ Cy
¢ ~iSnen (5.2)
N 1= . .
B ‘\" “\’
" Substitution of'Eq,(5.1) into Eq.(5.2) yields o e
i 12 T
B E ‘[Lu-vk] [Ln_vx]
E[f"”ﬂl\f‘" 2£""" Tka“v‘n?‘]. (5.3)
H 1-‘ N
A must be chosen such that' € is minimized. This can be °
obtained by solving the following equation
2€,
A éO, i . ‘(“5.'4)._
vhich is
1 a[f(aﬁAThf(a)] ) 2 a[f(aWATv ] a“v ”2 ‘ " L
‘ 2 - E - —0. (5.5)
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It is'obvious‘fhaﬁ - C | C
3 “’“‘ A'A "’] : o '
5A . LU PO RV T
and . Li/
| ’f’_:ﬂ - ‘ | ‘ .
{s)r ‘ ‘
oA vEY | (5.7)
and ‘'since Vv, is independent of A, ‘
& ' L .
| 11V, I o o
! aA = 0; ) . ' to. . (5‘8)

" Upon substituting theSe“th;ee iaentitiés into Eq.(5.5); we,.

héve' '
.

(s)gisi] _ 2 ()T o

A[L Sf_ e 3 ] = L'lzv"f:‘ , B o (5.9) .
,'4‘

oD !

(srgisrr] _. (ei e T ny

A[ Ef'fﬂl ‘12 xfu . SN (5.1.0) |

Since we are seeking A such that the total error €'is a-

A, "
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:m1n1mum for all the classes, we sum ‘both 51des of Eq (5 10)

over all k' to,get o . ‘ ‘ .
A[§§f"’t‘°” §§ f"“‘.j | o (5.11)

SOlving for A gives “ T

-

“ [ﬁiﬁiﬁ”}[ﬁﬁf“‘.‘i’f“” o | | (5.12)

¢ 45.3-Estimatihn écheme’forvthe Prefilter
Though the above*LLSMT technidue is‘enVisaged as‘the
'-first.part of our ‘hierarchical detection ‘scheme, it is of
partxcular relevance to note that the transformatlon matrlx'
A 1s generated by u51ng a set of pattern samples taken from
different classes which are 1deal"‘1mages,s;nce no

stochastic degradation is preSent..However, it has already ~
o  been pointed oyt,that images or patterns recorded by media
inevitahlyrSUffer‘from various degradations, such as
———-/’*"—‘ 0
‘blurrlng, no1se, and geometrxc d1stort10n. In th1s study,

‘however, we restrlct our attentlon to add1t1ve n01se. We |

‘rewr1te the d1screte observed 1mage model as

¢ . “ . .' ‘).“

&

g = £+v, O (8.13)
e . T
- SRR : o f\\\
‘whefé”g; £, and~v’are;the‘vector“fornszof g(m,n), £(m,n);



'and v(m,n)‘with~variance df, respectively. We.assume that
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[ 4

','the featﬁre vector is tﬁe.image‘g‘itsélf,‘which may be

considefed as the ‘feature vector containing the full

information. Premultiplying on both éidgs-df Eg.(5.13) by

the matrix A, we get

R o ‘ "~ Ag =<A§+Av. A - “(5.14)

li
\

idEally, if g were not éorrupted‘by additive noise, we would

‘\‘

. . ' + .
. . !
. . . ) .
. . N '
. ) "
N . . . . . »
. B .
f

Ag = Af =V +€, S © (5.15)

.
have

4
)

where Vk is an unit vector in the decision spacé. Since A is

~
trained by ohly a limited set of objéct image sampieé, fof
éﬂ'arbigrary.fmage veéﬁo: f,‘aﬁ errorIGt,‘which is different
from the minimum G‘Qili be‘incurred. Cénéequently, the
classified objecté[‘rebreséntéd by vectors iq the decisibn

space, will~cluster3close1y about Vk‘givenfft (see A

Figure 5.3 for"iilustration)ias long as the statisfics of-

 the object image f are similar to that of the training set.

Given an adequate feature list (véctors)‘for‘inpu;‘,

 patterns,..it'is well éétablished‘that, when 'the object
' imégesfargfhoffeorrupfed}“thé LLSMT.isvusefu173nd‘9££ecti§e.f

However, 'in contrast to such ideal cases, we obtain, from

-~

A



t.‘gzven by

.a:here ‘Vﬁk’ S
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,lEq.(5:13’ and Eq.(5.14) | \. o .

Ag = V4E+€, | (5.16)

where 6 =Av which will affect the classxf1catxon asla
‘functxon of the . sever1ty of the noxse corruptlon (see
Figure 5;4). Indeed under these condxtxons, the uge of A as
determined‘by~Eq (S 12), ~may lead to m15classxf1catxon. We
”therefore resort to est1matxon techniques 1n order to |
1mprove the performance of the’ cla551f1er. Thls can be done

*

by. u51ng prefxlter1ng to 1n1t1ally restore the 1mage._

-

v
1

Unllke the usual 51tuat10n in 1ma9e restoratxon in the'

”present context, the main concern is to develop prefxlterzng

'technxques to suppress noxse and in order to sxngdlarly

1mprove class1f1cat10n performance w1thout necessar;ly

L

‘1mprov1ng 1mage .quallty per se.

For these reasons ve have mbdlfled the Wallxs (1976)

‘restoratlon algorlthm ThlS 15 a 51mp1e algor1thm based on:,

4~

‘rknowledge of local mean and. var1ance, and a de51red local

[

. variance f(m n) The. estimated’ 1mage‘p1xel at (m,n) is

P
\ .

‘rglm;n)‘=‘g;(m,n)ex(m;n)[Q(mﬂn);gm(m,ﬁ)];:.‘ftn“ ﬁl'.k$i17) N

o L . g o e

'u
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Voj(m,n) -
2 ; A

V%(m,n)‘”

"K(m,n)=

-Og?(m"n) (2“1)(23”)2 12 [g(k l) 9 (m, n)]2 ,(5.19)
' xx-~j } o

p

and

=n-i 1=n~j

(5.18)

. 0 o i+m +n . ‘
1 NI N | ‘
g tm n) (21+1)(2j+12§ )Zg(‘k,l), - (5.20)

W “ -
Thé%e'locai.statistios aré célculatédlat every pixel‘overvd
w1ndow area wh1ch no:mally covers :3x3 or 5x5 plxel

nelghbourhood In our appl;cat1on however, we propose the

followxng modlfled prefxlterxng algorthQ

~

\

s :‘“wl\;,g

£(m,m) = g_(m,n)*Klg(m,n)-g’(m,n)], . S (5.21)

where

+ which is a constant, and

Sy cefmkal L e(sa23)

kS s
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Lo - L\ !
Further, -

Ia

o (m n) = MN§ 5 (k,1) £ o ' (5.25)

_— ' ROELES R : R
‘ ( :
‘(.‘-"‘)I‘
In this case wefhave assumed the'additive'noise to. be
‘whxte thh a constant varmance of o.,Thls scheme has’ a

'd1st1nct computatxonal ddvantage over that of Wallls . The
'computatxons of local f -and o are not requﬂred Only the»

‘ local mean g, (m n) is to be computed. In,xbe 51mu1at10ns we

shall see that thlS algorrthm restores 1mages w1th

t

. reasonable’ qualxty

o '
. |

——

5 4 Implementatxon of the errarchxcal Detectxon Technxque
As shown in the Flgure 5 5 the ent1re operatxon is
.basically d1v1ded 1nto three sect1ons.,

:\“,' ., Image prefxlter;ng,

'2 Feature encodrng,

-3, Matched f1lter1ng for detection,

‘We flrst partitloh a, glven.lmage 1nto sub-lmages each
7‘uof wh1ch may or may not conta1n an objeqt and 1s‘~ﬂ'

‘_contamxnated by Gausszan wh1te n01se. The sub—1mages are

Acfprefltered by us1ng Eq (5 21) Then the LLSMT 1s performed

'r'.over each of the sub-lmages,_and the est1mators 1ntroduced

.»\"
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in the last section are used to reduce the‘ciassification

N

error. Having been properly classified, each sub-image ‘is

124

labelled according to the class to which it belongs. In the

£

ted

detectzon part, we uéevthe matched filter to detect a known

abject in a class with those sub~images havxng the same

!

class label.

5.5 Simulations

In order to verify the effectiveneSs of the proposed

’
-

hxerarqpxcal procedure‘for detecting multiple ObjeCtS in an

m'fo the order of processes defined in Figure 5.5. The

detaxled process is depzcted by the flow dxagram in

Ragure 5.6.

. The problem under oohsjggﬁgtion is that of three-cla

(v

"Face-class", and "Leaf-class". In order to calculate the

A ’
transformation matrix A, we use eight. samples for each of

the three classes.of patterns (Figure 5.7a).

e .
' or»

image scene, a computer simulation is carried out according .

55

'multi-object detection. The three classes are "Bird-class",

f‘?

As already p01nted out ‘the direct use of the:ehtire”

image as the feature spac' will result in hlgh

dimensional y and ther fore, i pract1ce, images are %m

I

usually transformed oy/dxfferent methods to establish “the

f

\feature'space; For/{mstance, an NxN 1mage field f 1:,

lexicographically\rgpresented by an.;mage vector will bec:

ome |

a vector f 'or N’ elements. In contrast, the common feature

i3 "k
)

N
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Figure 5.6 The flow diégram of the Hiepardﬁical approach



of essential characteristics to represent the original

' | ) ‘ ‘126'

o'

extpactibh techniques (see Figure~5.1) oﬁly use a small set
image. The ﬁéaturg‘vector contains J elements which are
considerably less than N? of the'image vectop'fu, thus
reducing the computation&l burdén. For the purbosé of
demonstratxon in this sectxon, however, we shall sxmply use
the 1mage vector f as a feature vector con51der1ng a

variety of feature representlons wh;ch_are more or lgss

|

controversial and necessary only when large image sizes and

large numbers of sampies‘énd classes.aré involved. Indeéd.

the original inpdt image‘vector‘f “contains the maximum

Iavaxlable 1mage 1nformatxon. The operatxon we choose is the

Qggﬁggﬂllne from 1mage space dxrectly to the decxsxon space

shown 1n F1gure 5. 2.\The sxmplest orthonormal vectors V, for

' the three dimensional decxsnon space are:

A L
.

1 0: 0
V1= 0 ’ VZ= 1 ’ V3= 0 - v
\ 0 . 0 N R T I
L J ' R 8 ‘J’ 9 r

¢

Each sample 1mage in this S1mu1at1on 1s of 64x64 in .

dimens1on; Thus transformat1on matrxx A is of 51ze 3x4096t

a

Lookiﬁg at Eq (5 12), the‘express1on for the matrix A, ve,
\

‘f1nd that 1n order’ to comgute A we first have to compute the

mverse matrix [E Ef"’f“" . It seems that the inverse:
k= 11 1 -‘ - o o N



\ S VX

matrix would be difficult to handle because of its enormous
\ Y ‘

. size (4096x40?6).'However, in this sémulation, we have only

three classes (K=3) and eight samples (L=8) per class.
\
Consequently, the matrix inversion can be relatively easily

solved by using the singular value decompcsition (SVD)

method (see the ﬁbpsnnxx 111, for details),
.

\

We define \

[Z mef(sn]“ | | : (5.26)

k=) 1a

by the method introddcedrin AP?ENDIX 111, we can decompose
this as , ‘ | ‘
. :\
T& = Q¢2“¢*QT, (5.27)

1
\
1

where Q is a 4096x24 matrix and is given by
. "y
' \ '
(s) gls)  glsl gls) gla) (s} (8) g(s) g te)
Qq[fkt,flz,...,f]L,fz‘,fzz,.. \£2L,..., £“,£K2,...,£KL], (5.28)

N
N

Q is .the matrix composed of ﬂe.eigenvectorS‘of.Qﬁg, and L -
"is a d1agna1 matrlx w1th the e\igenvalues of Q"0 as its

’dlagonal elements. From Eq (5.27) we see thet,in order to

compute T ,’1t is necessary to compute only some matrlx
products and the inverse square- f Z. The size. of z 1s 24x24
1n this case. A computer program 's generated accord1ng to ]}
follow1ng steps to obta1n sthe matrix A, e

(a) Calculate VF where VF‘é
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M

(o] .
[E Evlf:l'y] ’

! kalls) |
, (b) Construct QER“”?zﬁ-

T

(c) Compute I using the SVD subrautine;
© (d) Solve for T' by using Eq.(5.27);

v(e)'Soive for matrix A by hsing EqJ(S.]Z);

,

hin Table 5.1 we have listed the mapping results for the

traxnlng samples whxch show that the matr1x A 1s able to map '

leachlaample; say, fa?, remarkably close to the location |
corresponding to 9 . To show that noase affects the ,
classxfxcatxon we f1rst add wh1te noise thh zero mean and
: z-1275 to the same set of images (see Fxgure 5.7b), then
the matrlx A is applied to these noxsy samples. The results
Iare‘listed in Table 5.2 which, as expected, clearly show |
‘that with the addatlve white noise the performance of the-.

cla551f1er deterlorates for the given mapp1ng A.

A multi-object image field is shown in Figure 5.8a,
this image consists of fifteen objects belonging to three
‘claSSes. In Figurecs.db the object image field is corrupted
by white noise with'zero mean and variance f=1275;‘ ' o

Tables 5.3, and 5.4 ¢ontain. the mapp1ng results for the

| n01se free obJect 1mage (Figure 5. Ba) and the noisy object N

' 1mage (Flgure 5 8b) respect1vely. Aga1n we see. that the

mapp1ng matr1x A is very effective when the object image is
free of noise so long asplts statlstlcs-are s1m11ar»to that
' ' },@ . . ' ' '

of the«training samples, while for the noise contaminated

- objects the‘c1assifier“peg£ormance deteriorates.

Y
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j‘FigureLS;;a shows the ohject image restored by-usihg
the proposed prefilterlng algorlthm. Table‘S.S-ljsts the
mapping results;tor the restored.ohject,image (Figure 5.9a).
These results show con51derable lmprovement on the accuracy
of the classflcatlon and they are con51stent w1th the

preflltered object image. - .

After the objects have been classified, we perform
matched‘filtering'technique (normalized cross—correlation)

' to‘detectkthe exact objects present in the image field. For
\

i

_ah overview we list all the 120 ctoss- correlatlon peak
values 1n Table 5 6. A close 1nspect10n of the table we find
that all the dlagnal elements have the highest peak
correlation values compared to their respective horizcntally

of f-diagnal elements;

To'reveal the effectiveness of’this approach, we
compare fhe relative detectability.bybusingIthe ROC ‘
introduced lh Chapter lV.fSince the characteristics of these
curves are more or less 51m11ar to each other,‘for'
demonstratlon, we show only three typ1cal RgC s together
with thelr l1kel1hood maps (see F:gure 5 9b to F1gure 5. 10b
each corresponds tc a class) In each of these f1gures gpreei‘
pa1rs of likelihood maps (1n th1s 51mulat10n,‘the 1mages of
jnormallzed cross- correlatxon) are used. Ordered from top
down, the £1rst pa1r are two auto—correlatlon maps. In the

ROC this corresponds to the dlagonal strazght 11ne show1ng

the same detectab111ty The second pa1r cons1sts of the
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.Croes-correlation between the object and the prefiltered
object (on the left), ‘and the cross- correlat1on of the
‘obJect 1mage w1th the noisy . object (on the rlght) In the -
‘ROC this nges a curve which covers more than 90% of the
area ;ndlcatlng that the use of the prefllterxng technxque
results-ln 51gn1f1cant 1mprovement in thewdetectablllty The
~ third pair are the auto correlatlon of the object (on the R
left) and the cross- correlatlon between ‘the object and the ¥l<;
pref11tered object (on the rlght) The resultlng ROC is a
curve thh small deviations from the .straight dlagnal 11ne
. reveal1ng the closeness of the two, wh1ch 1n turn xmplles
that the detectab111ty is 1mproved by u51ng the preflltered
\

image. A | S

The'experdmentgvhave shown that using the hierarchical
procedure to detect objects in a mult1p1e object image we
can save more than 50% comput1ng t1me compared w1th the
brute force appllcatlon of the, matched f1lter1ng techn;que
and v1rtually no sacrzfxce has been made on the overall

““

performance of the detectlon proc dure. For no1sy 1mages the "

'prefxlterxng techn1que szgnlflcan ly 1mproves the the

‘accuracy of the c1a551f1er and reduces false alarms of the

hdetecto(
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Table 5.1 The mapping results for- the training sample imagés

(a) The Bird-Class Samplés

Sample R }
No. \ A LV, vV,
1 1.0062 6.6X107 5.2%10"
2 '1.0647 4.7%10°° - 3.7x10"°
3 10030 ';3.3x16*= | 2.5K10"°
4 1.0052 - 5:3X107 2" 4.2X107° -
5 1.0056 | 5.7X10° 2 4.6X10"
6 i;0051 | 5.2%10"2 4.1%10°°
~| 7 |. 1.0053  5.8x1o-= 4.3%10°
8 “1.0049 4.9%10-° 4.0X10°°
(b) The Face~Class‘Samplés
| | ne rac .
Sample :
No. v, Vv, v,
1. 5.68107° 1.0058 £ 4.6%10°°
2 5.5%10-7 - 1.0057 4.5%10"°
3 5.5%10°° . |  1.0056 4.6X10°°
4 '5.4X10°° 1.0054 . 4.4X10°°
5 5.5%10-> | 1.0056 | 4.5K107%-
6 5.1X10"2 1.0052 . | 4.1%10°°
7 5.4X10" 2 1.0055 4.4%10 1
" 8 ' 5.3%107° - 11.0054. "24,3x10-=i"




;\’

(Table 5.1 continued)

" (c) The Leaf-Class Samples

‘I Sample ‘ , !
No.- v, v, v,
1| 7.7xI000 8.0X10~° 1.0064
| 27 | 6.8x10-° 6.9%10"° 1.0056
b 3 7.1%10" 7.3%10°° 1.0059
‘¢ | 3.0%107 3.3K10- ° 1.0024
5 3.4X10-° 3.6XK107° 1.0027
6 | 3.i9x10-° ' 4.1%10"° 1.0035
7 3.8X10°° 3.8X10-° 1.0030
8 | -4.2x10-> :,4.5x10T} | 1.0035

Table 5.2 Thefmapping results for the noisy sample'imageS‘f

(a).-The Bird-Class Noisy,Sambles.'

. Sample ,
' No. Vv, Va2 v,
p 0.9783 2.1%107 % 8.3%10-
2 0.5524 5.8K10 4. 1X10° "
3| 1.0002 9.9%10°* | 5.2810-
“4 [-1.0169° ' 1.5%10°% | 23.48107%

©0.9856

7.8%107°

©0.1086

0.5788 - | ‘-1.4%10-* .| ~ 0.3388
10,9672 ?‘s.i?1o*=_ | 0.1368

1.1068

9.4X10-2

. 0.2144

. ot . f .

. . \ . ,
o ,

/-\/ o




" (Table 5.2 cénginued)‘

“(b) The Face-Class Noisy Samples

Sample

No. v, v, SV,

0 0.4265 0.5520 © 0.2533
2 0.2558 10,6309 0.4484
3 10.2828 10.6653 0.3025
4. 0.5257 '0.5815 -8.5X10"°
5 0.3847 0.5514 0.3506

. 6 0.3417 0.6314 0.3265
7 .0.4645 0.5495 0.3596
8 0.4016 A%Qk 0.5318 0.3@06
The.Lééf—C}as; Néiévaamples
.
‘Sample '
1 No. v, \D Vs

1 0.3243 1.2%10-? 0.9913

2 0.4831 4.8%10°* 058743

3 0.5529 3.6X10°* 0.6474
4 0.4104 . | 1.1%70°* 0.5207

.5 'q.36$o, 2:5%10°* 0.6310 -
6 0.3673 | 3.5%10%? 0.6004

7. | o0.3108 | 5.6X107¢ 0.7336
8 |  0.3075 -2.0%10-2: | 0.7864 o

g
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_ Table 5.3, Th

1

[

f

© images’.

e mapping results, for ;hé‘noiSé—fré

Uy

(B=Bird~Class;:F;Face~élaés, L=Leaf~Class)

No. v, Vz ;&3 :
| B~ 1.0062 6.6X10°*, slﬁﬁﬁo*{y
Br2 - 1.0047 a.7%10°> " 3,7%10°2
B-3 /0030 3.3K10% 2 2.5%107% « |
B-4 \1.g343 3.5X10° % . 6.4X10"
B-5 11.0782 7.7%10-2 '4.7xioﬁ= N
F-1 | 5.5K10-° |  1.0825 5.7%107
F~2 | 5.6X10° 1.0684 T4.2%107
F-3 s{2x10?’u. 1.0248 4.8%10"°
P-4 6.5%10°° | 1.0432 5.1%10" 2
F-5 4,8X10°° | 1.1032 N(ms.‘jzuo-x_a
L-1 7.7%10- 8.0%10-° |  1.0064
‘L-2 6.8X10"° '6.9X10" 1.0056
L-3 | ~7.1%10-7 - [ 7.3%107° 1.0059
L-4 | 3.bxiq-=w 3.3%10-° 1.0024
L°5 | 3.4X10°° . | 3.6X10°° 1.0027
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‘Table 5.4 The mapping kesults_for the ndisy object images -

N(Béaird~CIass,‘F:Faée%Cléss,

i

Léﬁgafjcléss) .

No.

Vi

! V2‘”

s

51

0.9783,

2.1%10" %

- 8.3X10~*-

B-2

»fd;5524

5.8X10"

. 0.4134

1..0002

9.9%10-°

5.2xi07 7

0.6237

1.2X10°

0.3753

0.4176 .

9.3X10"*

'0.5718

0.4533

0.5358

. 0.2479 -

0.3743

0.6330

0.3341

0.5756

-

10.5885

., 0.3743

0.5169

. 0.5821 .

©0.0372

' 0.3890

- 0.5521

0.3267 .~

0.3243

© . 1.2K1072 -,

0.9913

0.483]

' 4.8x10f’

0.8743

0.5529

\3,éx1o9=;

1 0.6474

- 0.4104

1.1X10"*

0.5207

S 10,3680

o

| 2.5%10: 7

0.6310 -
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Table 5.5 The mapping fesﬁlts*fof the restored object images =
, ' 'lA"‘ . ' . . . o

(B=Bird-Class,

' F=Face-Class, LhLeéf~CiaS§)"'

toA

'No. "

i

Vi

V2o

Vs

B9

10.9965

1.8X1072

 6.8X10~>

va;z ) ‘l

. 1.0224

~3.4X10-°

7.3K10"°

0.9218

2.0%10-°

6.5K10"%

0.9971

| 8.4x10°°

1.2X10" 2

- 1.0874.

—1¢3x10??

~6.8%10°* | "

S -6.2X10°°

EETEERY I

~8.6X10-?

1.9%10~*. " |

1.0274

-8L1K10- 7

-4 ,9%10"?

11.0518

~5.1X10%° "

| s.9x10-%

. 0.9390°

%1.22%10°% |

- .5.5%10"?

'0.9828

© 5.L1X10°

1

 —1.9%10-1 |

~3.6X10"*

) 1.099i3‘g

2.2%X10"*

~1.5%10" %"

. 1.1429

© 5.2%10-%

. -1.4%10°*

11,0148

‘L:4

~3.1X10-%4

2,4%10"2

1 0.9194

C2.3%107° |

2,9xi0f"

0:8570
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Figure 5.7 (a) The training sample images. Three classes:

BIRD claés (row 1),\FACE class (rSw 2), LEAF class (row 3).
' ' ' ‘ L

(b) The training images degraded with additive, white noise

vith zero mean and variance q%1275. All the images are of

64x64 and 8-bit in 'resolution. SR -
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Figure 5.8 (a) 64x64 8-bit object images from the three
classes. (b) The object images degradea\with additive, white -

noise with zero mean and variance'q%1275.
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Fxgure S ‘9 (a) The restored object 1mages of (Flgure 5.8b).

(b) The relatxve ROC curves for BIRD (object).




P




Figuré 5.10'(a) The reiati?e ROC. curves for FACE 2 (objec;);

- (b) The relative ROC CUrveS'fdr‘BEAF 3’ (object).
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CHAPTER VI
_CONCLUSIONS . . g ”

6.1 Summary

'Oné of the purposeSvof this dissertation has been to
deveiop some methods and computatzonal technlques for image
.-proce551ng and computer vision (e.g. restorat1on detectxon,
and pattern recogn1t1on) in no1sy environments. It has been
:shown that corrupt1on by add1t1ve noise is one of the most
common forms of degradatxons, and effectzve image process1ng\
;techn1ques deallng w1th thls type of noise w1l% have
,51gn1f1cant 1mpact on many, appl1cat10ns. The(ma1n attent1on
is thus restrxcted to 1mages corrupted by add1t1ve noise. N

Several estlmatxon techn1ques have been developed for

: restorlng or detect1ng 1mages corrupted by add1t1ve n01se.
In Chapter II, a two- d1mens1onal sequentlal Kalman a

| C | :
~ filter was derived. It is well known that the Kalman fxlter n
is'basicaIIY'a recursxve est1mat1on techn1que based‘on a set.
}of state and observatlon equat1ons, and some a pr1or1

‘statlstlcs on model1ng error and. observatzoh no1se. A

'TTispatlal causal 1mage f1eld 1s def1ned wh1ch d1v1des the

v”ﬂfent1re 1mage 1nto three reg1ons, namely, the "Past"‘ the‘

"”"Present“ and the "Future . A l1near state equatxon model

'ﬁﬁof the or1g1nal 1mage 1s proposed..It ‘has been shown 1n the U”‘Jx

V'Ilterature (Andrews and Hunt, 1977 Woods, 1981) that the E
'-éguse of m1n1mum var1ance as an. opt1mal1ty cr1terlon on a '
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global sett1ng will result. in algor1thms unable to respond
to abrth changes (e g. edges) in the’ 1mage In»order to )
handle thxs problem we proposed a- wexghtlng functxon whxch
vvarles with local statxstzcs..lt is applxed as a welghtlng
functlon to the Kalman ﬁxlter. thle .the underlyxng 1dea of
this approach is sxm1lar to some prevxously developed
algor1thms, the salient feature is that the Kalman fllter 1s
derxved based on a stationary 1mage model Thxs makes thed
derxvatlon stralghtforward and simple. The actual’
nonstatxonap?ty of the image field is handled by }ocal
statlstlcs measurement..Consequently, the algor1thm is able

- to adjust 1tself to local spatlal characterlstxcs and. to

1mprove the~v1sual quallty of the restored 1mages.

In 1mage restoratlon the restorxng procedure is

L usually done off-line. That is, the‘entlre 1mage to be
processed 15'ava11able. Th1s enabies the use of nonCausal
1mage modeling approach Chapter III presents an iterative
adaptlve restorat1on algorxthm based on a’ noncausal image
model The plxel under con51derat1on is dep1cted by 1ts-

‘ surroundlng nezghbour plxels. An observat1on model s1m1lar
to that used in” Chapter II 1s mod1f1ed to 1nclude the local“
stat1st1cal 1nformat1on. Two opt1mal1ty cr1ter1a, one for f

- the mode11ng parameters, the other for the fllter gaxn,‘are .

ot

7

" 'used. The advantage of uszng two separate cr1ter1a 1s that
‘ ”Ithe parameter 1dent1f1cat1on and the fllter galn can be" A
computed expl;c1tly whzch makes the des1gn of the f1lter
':l more: flex1ble.1A 51mp1e local stat1st1cs measurement scheme :

I o N y - 0 n ‘ ‘ b v C
sl N “‘ L ) T o , . .,m}"
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‘ » R L o o
‘is‘employed..Beeause of the inclusion of the local

.statjstical lnformatlon»ln the‘ohserved imaqe'mOdel,.thef.t
resulting fllter'gain varies with the local spatlal
.act1v1ty The s;mulatxons show that thlS algorlthm preserves
edge 1nformatxon whxle suppresses nozse 1n flat regions.
_ When the galn is set to a constant the restored lmages arev'
;‘very smooth and blurred due to the smeared edges From the‘
"h'compar1son,‘1t strongly suggests that 1mages restored by
pedge preserv1ng fllters have better vnsual quality than
those restored by fllters developed based on global
vstat1onarff} assumpt1ons. . :“ o f" ,
Qhen‘an image is embedded in a‘nonstationary,"nonwhlte
nolse background' the detectxon of the: 1mage us1ng matched
,fllterlng method w1ll be nonoptlmal The estxmatlon ‘
‘technlques 1ntroduced in Chapters I1 and III can be extended’
pto detectlon problems. In Chapter IV, a signal reference
‘adaptlve postfllterlng techn1que was: developed to 1mprove
P

the detectab111ty of the matched fxlter (cross correlator) ﬁ"
<Th1s was done by der1v1ng an optlmal fxlter based on the | .
vm1n1mum var1ance between the s1gnal auto- correlatlon and the

.festlmated auto- correlatlon.

>
e

It 1s well known that the matched f1lter 1s 51mple to

-

'.1mplement and 1s opt1mal 1f the background no1se 1s o

N N } !

: statlonary and wh1te. However,.1n genenal the optlmal
"fdetector requ1res the full a pr1or1 knowledge of the ‘~‘3

-

lq*statlst1cs and the 1nverse of the n01se covariance matr1x.,
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- The latter makes the computatxon 1mpract1cal since the

) . 1 .

vdxmen51on of the covarlance matrlx is very large even ﬁor.
1mages of moderate s;zes. It is worth not1ng that in
derivatlon of the postleter the stat1st1cal characterztxcs
of the noise are not assumed to be known except bexng

‘ add1t1ve wh1ch makes this fllter more flex1ble in

‘applzcatlons.‘Another advantage of the adaptmvel
postfllterlng technlque is that the resultxng algorlthm does
/

51mulat10ns show . that the detectablllty of the matched Lo

i

‘f1lter is very close to that of the perfect'match (1.e.‘the“

not . requxre the 1nversxon of the covarlance matrlx. The

auto-correlation).

- One of the common problems with computer vision is to

identify objects in multieobjectgimages which sometimes

suffer from noise degradatlon This.problem can be and has'
been solved by us1ng varlous detectors ‘such as matched

filters and template match1ng techn1ques (Rosenfeld and Kak,

1982). However, the matchlng procédures usually 1nvolve
redundant computatlons. A number of techn1ques has’ been

proposed for the detectors to get around th1s drawback
-\\" : ?1;9" e A

YThese,‘umeggheral follow three ba51c approaches-
a) The coarse flne approach whlch calculates match1ng

1n1t1ally on 1mages thh reduced resolut1on A full

: match1ng 1s performed only when a prom151ng area 1s'

detected In thls way computatlon is" reduced to some%

l“

extent. g[u - ﬁk‘]?f] ”,"j" f B 'S‘ﬁﬂﬁ

‘@b) Sequent1al approaches in wh1ch the mlsmatch between'



N In Chapter V a h;erarch1cal approach is proposed ma;nly to

'

,
Dot

'h algorathms have treated 1mages as stat:onary 1mage £1elds.,

; ma1n concern so 10ng as the false alarm rate 1s kept low a.

150
o the templatefand'the searched area iS‘stored"As'the

m1smatch usually grows faster than the match ‘the

'unmatched area can be rejected earlzer to save R

computatlon txme. L

(Y

Q). The edge only technxque which reduces the or1glnal

R .‘f ~1mage to ;ts edge versxon on whlch matchxng 1s‘ , L

performed by u51ng 51mp1e array processors. Thxs‘

approach sxgn1f1cantly reduces the computatxon txme.

Al

'
reduce the unnecessary matchxng caused by the brute force

‘ \ bl

appllcatlon of matched fllters in a multlcobject detectlon
problem.,The basic ph1losophy behlnd thlS approach 1s to
"dxvxde and conquer . That 1s, the detectxon 1s performed 1n‘“
three steps, namely, (1) prefllter;ng to suppress noxse, (2)
cla551f1catlon by uslng pattern recogn1t1on method to .

cla551fy the objects,.(3) flnal detectlon by applyxng the o .

matched f1lter1ng technxque only to those Ob]eCtS belonglng

A
v

to the same class as the 51gna1 SInce 1n the context of

‘szgnal detectlon the v1sua1 quallty of the 1mage is not a‘

very s1mple and fast averg1ng prefilter 1s der1ved The

Vo

Sxmulatlons demonstrate the effect1veness of th1s approach .

., ]
4" ?

0 ’ ‘ ‘ N '
‘ Durxng last two decades many 1mage process1ng

techn:ques have been developed The Kalman f1lter1ng fd',;"ff
techn1que 1s also employed 1n Image restorataon. For the ‘i- Sk

most part however, the two—dlmen51ona1 Kalman f1lter1ng

L v ' , “i ; , i . S . ‘. L vb“ . o
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",Only recently, a few Kalman £1lter1ng technxques have been-
‘;proposed to deal wlth the nonstatxonarlty of xmages The

v“basxc prxncxples 1nvolved in thzs approach are as ﬁollows,

—

a) Part1t1on the 1mage 1nto subregxons each of Wthh
»has statlonary statzstxcs (e g. constant var;ance)
A bank of Kalman fllters is des;gned for the
) subregxons. To lmprove visual qual;ty, a human
,vxsual model is~ 1ncorporated 1nto the halman fxlter.
“b) Assume nonstatlonary statxstzcs (nonstatlonary mean,
or_nonstatxonary var;ance, or hoth).for the image
{ftield,:and‘desién a gidbéi Kalman filter‘gasedton'
'this'assumptionl | |
"In this thes1s the two~d;mens1onal Kalmah fllter is fxrst
"der;ved based on the statlonarlty assumptlon. The local °
‘statzstlcs are then used to mod;fy the result;ng Kalman
.yfllter to handle the: nonstatxonarxty problem Thls &g a
,}distlnctly dlfferent approach and as shown ‘in the
,simulatlons, thls Kalman fllterfls very effectlve. The

1mplementat10n of such a Kalman fllter 1s also rather

51mple Another dxfference in the proposed 1terat1ve‘

'~algor1thm 1s that the local statxstlcs wh1ch represent the

“nonstatlonar1ty of the 1mage are . 1ncluded 1n the output

i

’j model rather than, as many other researchers have done, in
‘ithe assumpt1on or the 1mage model .

It should be po1nted out that although the 1dea of
yu:*szgnal reference adapt1ve postf11ter1ng technlque or1g1nated

'fgfrom the control system 1dent1f1dat1dn theory, the

B
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postfiltering approach proposed in Chapter'IV for improviné
two~dimensione15detection of object in nonwhite, ’
nonstationary'noisj environments is a new conéept. This
approach is simple to use and the simulations show that the
results are quite satlsfactory.
6.2 Recommendh}ions for Further Research
This\thesis has been ﬁevoted entirely_to the

development of algorithm$ to process images degraded by

A

additive noise. As mentioned iggChapter I, images'also

suffer from other forms of .3degrd ftions. For example,, *
But-of-foaus will result in blurred images, and some noise

is signal dependent. Thus image pr0cessing’tecﬁniques .
developed in this rhesisbuill be porentially‘useful tf these

algorifhms are imppoued,or modified to take into atcount the

diffioulties.metioned above.
r ' . : “w : '.\ N
. \ ~

An immediate modification which comes to mind is to

consider the point spfgad function as a linear polynomial

'thh unknown parametqrs. This problem has been cons1dered by

‘ others, however, fop the. most part the point spread
-ufunctlons are assumed to be of some very tr1v1al forms. The”

dlffxculty wlth thxs is that the restoratzon 1s essentlally

© -an 1nverse pnoblem which requ1res 1nferr1ng the 1nput from

A

t‘the output 1nformét1on. Thus 1t is more realxst1c ‘to der1ve
.some PSF! s (po1nt spread funct@bns) by using experlments in

‘dlfferent appl1cat10ns. With- expl1c1t forms of PSF s, the

‘ee§13t1ng restoratxon algorxthms can be 1mproved to handle

v . NI X . . N . /
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43: blurring effect as well as additive noise. Other
ifications would be to include the sxgnal dependent noise
- in the process.‘These modifications will 1nev1tably increase
the complexity of‘the‘algorithms,*and-are likely to be

application dependentm

Developing an adaptive postfi%terffor the matched
filter‘to detect images degraded by blurridg, and signal
dependent noise in additioh'to additive noise could be. quite
nsefhl As dlscussed in Chapter IV;,ah 1mage detectxon ,both

1 the object and the output are known so that certaxn
techniques in control system ldentlfxcatlon ﬁhebry could be
extended to estimate the parameters of the 1magxng systems
(e.g. PSF's) and a postfllter could then be des1gned»to

improve the matched filter in a changing environment, '

It has been demonstrated (Caelli and Nagendran, 1986)
that using edge-only matching technique to.detect an‘object‘
is eomputationally,realistie and efficient. This method,
however, has a major‘drawback——ambigﬁity. Since a very large
number of.different objects have the same edge profile, this
procedure will often lead to false alarms. This problem may
be alleviated to some extent by using some of the extracted
1mage-featpres rn addition towthe edge—only information. The
featufe'extrachoa“procedure should, however;'be,simple if

.the overall'efficiency ot the detectidn'process is to be
prﬁserved ‘One approach which immediately comes to mind 1s

e e LR

to regard the image f1eld as a matrix and use 1ts 51ngular
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. ‘ . .
values'as the feature which‘atathe most is a set of 512
singular values (for a 512x512_image). The edge-only
matcn;no,need"be performed only when two images have .
singular values similar to eacn other. Tnis procedure will,
hopefully, reduce the probability of false alarms. It is
also reasonable to expect that the hierarchical multi-object
detection appnoach can be applied to edgeconiy images.

One of the problems with Pattern recognition is that
many existing tecnnigues are rotation variant. In pattern

recognition literature, methods are developed under the

' assumptlon (sometxmes, 1mp11c1tly) ‘that the objects from a

given class possess the same orientation as the tralnxng
‘samples. Most of tnese methods perform poorly whenithe
orientatron of the objects are different from that of the
training samplas. Although, in some applications, such:an‘
orientation dependency property is desirable e.g.,
ﬂdlscr1m1nat1ng between sxmxlar textures which are oriented
dxfﬁerently, in general, it reduces the flexibility of the
method. It is a very interestidg topic to develop some
pattern recognition algorithms with rotation invariant
property. That is, tne results ot pattern recognition is not
. affected by the rotat1on of the objects. Although reseach in
this dlrectlon has been carrzed out recently, the technlques

‘are mostly for texture class1f1cat1on and the accuracy of

these methods is generally not h1gh

Three dimensional image processing and vision computing.
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i

have gained mpre‘atfentién feééntiy,‘sinpe.th:ee dimqngional
imaées are the mést realiéticuvigpal‘forms in mahy' '
‘appiications; particularly, in compﬁtef vision. The
ggstoration algorithms'dgveloped in fhis thesis are
applicable to three diméasional image%.{lt is an extremely
promising research area where new approaches are'nééded,
fsince direct extension of the existing ;echniqués in
two~dimensiona1 image processing to tﬁree dimensions 'is not
likely to work properly inlgenefalg-lt is the complicated
and varied geometr§ of three-dimensional images that makes
" ' L2

the. thrge dimensiona% image processing more chéllehging‘

'
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.APPENDIX 1
Random Fields ., ..
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f‘ We cons;der a famxly of ﬁunctmons f(p w ) over the set

: of‘éll outcomes 9={w 2,..;} of an experlment,.where p(P

and P is an, 1nterval Qn the real axls or a reg;on of a

N

mult1d1mens1onal Euclldean spacer When P Js one d1mansxona1

r +
! '

the famlly of functlons f(p,w ) 'is called a stochastlc

1d15cuss some propertles of random flelds w1th P belng

'tw07d1men51onal. B e S

,*f;expressed as f[(x,y) W, ] For a g1ven value of (x,y)

\ ' o

process. When the d1mensxona11ty of P xs greater than one

'

the fam11y ot’functlons f(p,w ) is deflned as a Pandom

‘
1

Fretg. o

.
' 0 ¢

"

In 1mage process1ng, amages are consxdered as

i
f

two—dlmens1onal random flelds. In the sequel we shall

. ,
" i o

i .
. A
' ‘ " . ’
' 1

Let'P defihe'the'kY—plane,“so that p'is a point in the
'N yi

[
.I

'

f[(x.y) w ] 1s a. random varlable, wh1le for a glven outcome

v

f[(x,y) w, ] 1s ‘a funct1on over the XY plane. ThlS 19 ‘%~L7»

\

'1llustrated 1n F1gure A1.1\ vuth 9-{w,,w&,w3,w } The

,e‘underlyzng experlment could for example, be samples of

s

"‘DXY plane, and p can be represented by 1ts coordlnates, 1 e.[:f

'tdp—(x'Y) W1th th1s notatlon, the random fleld f(p w, ) can be'

vt

"-1mages from a collectxon. The outcome W, corresponds to the :



. sample of the .i-th image.
P ) R ‘J . ,_." . ‘ “v‘ ‘r ‘I'>

Obvxously, f[(x y),w ]l is a funct1on ofx w, (See

‘Figu:e A1.1) therefope,'a random var1able for a fxxed

o

(x ,y) On the other hand for a fxxed w,, f[(x,y),w ] is a

5two-d1men51onfl functxon (or, 1mage) in ‘the XY~ plane.
. . : Y ' ,
“The random fmeld f[(x,y) w ] 1s a random varlable for a

e

‘specxfxc value of (x,y) In general,,th1s random varlable

'wzll not have the same stat1st1cal propertxes ﬁor all values
' b . ‘
‘of (x‘y) "In other words the dlstrlbutxon and den51ty :

functlons for the :andom varlable f[(x y),w ] w1ll depend on

.the value of (x, y) o  'iAAf»' v Jn Lo
o . o " ' o o : e
As w1th one d1mensxona1 randbm varxables, we deflne

i \ ‘

two~d1mens1onal d1str1butxon functxon at (x y) 1n the

{

_XY-plane as . ")i\f;f

' e,[t;(x,-,y)]i PUEL(x,y) 0 0st}e 0 (A1)

T'The:aeneityﬁﬁunotionfat,(x,y) is giﬁen by ‘\t
Lo lE ) @R e Gy /e, T A2)

. T e g e N
B ; 4 . e

; For notat1onal 51mp11c1ty, ve shall denote f[(x,y) w ] by .

P . PN RN \t‘-,v)

'“gf(x,y) %\;’ffﬁi:gu*

L

e
- ..'._.;-..,'A

[

G1ven poxnts (x,,y,) (xz,yz) .f,; (xN,y ) The Joznt

hfﬁdlstrxbut1on and dens;ty funct1ons of these random var1ables -
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are given, by

+ v . : ' ’ [
! [
" [d

‘\/Pf[t 2r"~/ Np(x,,y) (KZ,Y;,_ 1--'r(x 'YN)]

{f(x,,y )st, £(x 2,y2)5t2,...,f(xN,yN)StN}, Lo (A1)
and . R S
“p,“[tl t,yenst N,(x,,y ), (x ,yz),..., N,yN)] " o
A ap [tlltzr-"( N’(x IY) (x IY )r-r-r(ley)] A' .
- | Bt 0, .y, 0t ) s 1.4)
‘réspéctively.ﬂn ST .
2;'Mean,‘C0rrelation, andJCovefiénce_‘
o ) , _ , Loa

it is known‘that'?in genebal"the éensity'functién‘of a
random varlable depends on ‘the value of (x y) gﬁgsen As a

~ ~ \ /‘

, consequence, 1ts expectég value must also be a, functxon of ‘

,t(x,y). Let ut(x,y) denote th;s expectatlon; ;hgs - f‘w ~‘h“~

e L3
wx,y) = ELEGLDY = [ep e (%, 1t (a1s) T
- . ; ° , ‘ " -0, o ." . L .. S o

Vo " " e
. \

The correlatlon of two random fzelds f(x y) aﬁd g(x y)

VV‘f 1s deflned as the expected value of the product of the two ”‘

"y .
: { I \
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r'ér‘):dom\{variableks' f(x,,yﬁnd g(x,,y,):

o : ' ’ v
R Reg(%,0¥,i%,,¥,) = E.{f‘(x',-yl)g(xz,yz)‘} ‘
v = J Jt t p(t", 2,x ,y‘,xz,yz)dt dt,. (A1.6)
L S '
. fL “# : o : ' / »
Py ' . . R .
> The 'cowariance of two random fields is defi‘ned as '
’ ‘/",\' ; ) \
[ . ‘ - - N
., Cov, (xl,y' X,0Y,) =,f{[f(X'|,'y1)7nt(x;,)fl,)][gl'(xz,yz)."ug(x,,yz)]}
- - =.17,9(1(,.Y,;xz‘.n)"e,*('k,.y,)ng(xz,yz)-\ (A1.7)
Y4 l. : \ - ' ] l II' A“
s [ | 5
the

1f Cov (xl,y‘,x ,yz) 0 for all (xt,y ) and (xz,y)

'

two random fields E(x; ,y ) and\g(x .Y,) are said to be

{

.uncorrela;ed; This is, from Bgs.(A1.6) and_,‘(M.?),n
equivalent to : — IR B
ELE(x,,y,)9(x,,y,)} = E{f(x,,y)}Elg(x, 0}, - (ad,8)

s
o

. . ‘- . : . . N 'l-' . v . oo .3 .,.‘ ) X
3. w:ge Sense 'St‘atxonary Rando‘m_ E‘ze- ds - i
L The concept of two»dxmensmnal stat1onary random f1elds
P / .
1s an extensxon of one-dlmensztonal w1de .sense statlonaty s

h%&tocﬂastm process R SRR
A’Vpahéou{vfie'ld; is called'sstationary {f its expected
" R ih | \ Ll ‘ .., " ,‘“'-., . . . ’\ ' e .A ’A .. )
) L '\ws»-'v . AN . -
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value u(x,y) is independent of positién (x,y) in the

XY-plane, i.e.,

»
oy

pix,y) = &, | ~ (A19)
and if its autocorrelation function is shift invariant,
, | o A

]

R (X, ¥, i%,,¥,) = ELE(X +x,y *y ) E(x,+x,y,4y )}

n -

.

1

for-all (x,y) and (x,,y,) in the XY-plane. By setting x/

§%=~y2, and.a=x -x,, B=y -y,, eq(A1.10)‘can be-reérranged as’

L

—

Rt!(xl'yl;XZ;YZ) = Ru'(xfxz'yv—yz) = R“(a,ﬂ‘)‘.' (A‘L”')‘

<
®

Similarly, two random fields f(x,y) and g(x,y) are

jointly stationary, if.

-

N o ' A
,‘ R

R (x,,¥,i%,,y,) = R(g‘(a.lﬁ).\‘

~v
- .
'

P

'Rn(x'|+xo'y1+yo7.’(2+xo'Y2+Yo)' o | -(.’.\1']0) ‘

ﬂ'—‘xz' \

'3

(At.12)
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. APPENDIX I1

N “ ,
The normalized cross-correlation function in Chaptgr IV

is determined via

c,,(x,¥) | v
Cmn‘%'Y>!=,’;§ffjf;) : o
wher; |
| é;(*,y) = Ilr(u,v)é(f;u,y+v)dudv, A.‘ | (A?.é)..
and |

! N h

~  q*(x,y) = JLQ’(X+u,y+v)dudv,

L)

@

(A2.3)

where A denotes the integration region. These functions can

be’ computed, using Fourier methods, by

C,(x.y) = F'R'G}, ReAF(r), GoFlg),  ~ (A2.4)
o y o _ . , . L
Cqrx;y) = F'I%*Q*}, 1 = F(1),0* = F(g*),» (A2.5)°

vhere F and F ' correspond to the Fourier transform and its

o inversg-féspeé%ively.'i'porfééponqs.to the unit square of

=
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iden;ical.siié as the signal. * denotes the complex .

-

conjugate. o . o o, . ,
. \, - . ) ! o !
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Calculation of "the Inverse Matrix Using Singular Value , .

Decomposition (SVD).

.Fo:'cohciSeness we define

.
)

v o § Zf“’f“’” o QQT S many

‘ k=ll-l .
o . N v X o . ) . . ' i 'I:.'\

. 2 ©o2, ‘
where TER™" | f(,’j)fRN , and QER" XKL The' ‘matrix Q is defmed by @

, , .
e <, . - LS

oy s . un, ol ' R %L
_ (s) g(s) (a), (8) g(8) (8) (s) g(8) (s)
Q = f”,fz,.. fm, fZ,,fz,...,fu,...,fm,f“,...,f'm]..
| (A3.2)
1 ! B \ kA
Let '
oW =@, T T (A3.3)
N . ! . ] 4
T - 'I 1} IJ' . " . g
we know' that WER™™". and in g%neral KL%<N?. Using the

.s1ngular value decompos1t10n techn1que (Lanczos, 1961) we
» . L

.ican wr1te (A3 3) as. follows AR j - T k ':;?

.“‘. ! . .“v‘.“’;‘. . " . - 't‘ ’ C g | ‘.‘ : )

'where Q 1s an orthonormal matr1x i, e. ¢W¢-Q¢‘- and Z 1s a‘

o KLXKD d1agnal mattlx cons1st1ng of the e1genvalues of w

: e
o .
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‘.". l : ‘ ‘ : . . 1 72

WP = .9 o ~(A3.5)-

'
Y

t

"~ which, from (A3.3),‘i§ o . ‘v R
o o QTQfP = oz, 4 ‘ : (A3.'6)"|

'Prémultiplying béthlsideélof-(A3.6) by Q@ to yields

-~

Cehes = eez. . (a37)

i

‘& .

We know that QQ" ;5‘én'Nzxé?’reai,5ymmgtric.matfix‘for:ﬁhich
there eidsfs;én qrthogonal‘matrix, sh;h'tﬁét‘QQT is

diégonail From (A3.7) we ?Hnd tﬁat»QQ is éqtually.such éﬁ
drEhgéohal méifix’whichf&ontains KL éigenvectqfs 6f7Qan_Fof
ohr,pdrpose,'it is)neCessary ﬁo‘find the'orthdnérma}gma;fix.‘
Since }  . - gg '

‘, T4
1

L - " . | b“. . . R v- o ‘ . ‘

NN : e

1

vl
poe
" ‘v

' .". .

D

iy AR
AN
AT

/‘ f:pm}(A3;3)'and.i‘iégansprthéﬁbfmai[hatﬁﬂg;‘wefobtain .

. b BUIN
e TR (A39) L

-, This:can be easily normalized as follows -

L e T e

N e

N * N1 R
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Eq.(A3.10) can be reérrahged as
(Q2Z™'/?)7(QerV?) = 1.
: . ' .
Define

U = ‘Q@Z/ﬂ/z‘, :‘

which is thg desired drthoﬁbrmal~matrix;‘In vdew‘of

. Eq.(A3.11),'cleérly,Eé.(A3.7) is eqUiValent to

A

: (éQT)Q@z"‘” = (Qez )z, .
‘Olr

o f o ; - | QQT = UZUT'.

“'Ffom (A3.1) uewhavg, -
K v . ““ .’ L ) ‘.
Co ey R
. © T = uZu. |
'~ This'the inverse.matrix T' is given by

DTN . ety

173 -

(A3.11)

(A3 .M3)

(A3.14)
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