
Design of FPGA-based Accelerators for Deflate
Compression and Decompression using High-Level

Synthesis

by

Morgan Ledwon

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Integrated Circuits and Systems

Department of Electrical and Computer Engineering

University of Alberta

c© Morgan Ledwon, 2019

Abstract

As the volumes of data that are transmitted over the internet continue to

increase, data compression is becoming increasingly necessary in order to ef-

ficiently utilize fixed data storage space and bandwidth. The Deflate com-

pression algorithm is one of the most widely used lossless data compression

algorithms, forming the basis of the .zip and .gzip file formats as well as the

Hypertext Transfer Protocol (HTTP). The provision of Field-Programmable

Gate Arrays (FPGAs) to implement hardware accelerators alongside conven-

tional Central Processing Unit (CPU) servers in the Internet cloud is becoming

increasingly popular. The ability for FPGAs to be rapidly reprogrammed and

the inherently parallel resources that they provide makes FPGAs especially

well suited for certain cloud-computing applications, like data compression

and decompression. High-Level Synthesis (HLS) is a relatively new technol-

ogy that enables FPGA designs to be specified in a high-level programming

language like C or C++, instead of a hardware description language, as done

conventionally, and enables designs to be implemented at a faster pace. This

thesis examines the design and implementation of FPGA-based accelerators

for both Deflate compression and decompression using high-level synthesis.

In Deflate compression, a balance between the resulting compression ratio

and the compression throughput needs to be found. Achieving higher com-

pression throughputs typically requires sacrificing some compression ratio. In

Deflate decompression, the inherently serial nature of the compressed format

makes task-level parallelization difficult without altering the standard format.

ii

In order to maximize the decompression throughput without altering the for-

mat, other sources of parallelism need to be found and exploited. Both our

compressor and decompressor designs were specified in C++ and synthesized

using Vivado HLS for a clock frequency of 250 MHz on a Xilinx Virtex Ul-

traScale+ XCVU3P-FFVC1517 FPGA. Both were tested using the Calgary

corpus benchmark files. In the design of the compressor, many different areas

of the design that affect the trade-off between compression ratio and compres-

sion throughput, such as the hash bank architecture and hash function, are

examined. Our implemented compressor design was able to achieve a fixed

compression throughput of 4.0 GB/s while achieving a geometric mean com-

pression ratio of 1.92 on the Calgary corpus. In the design of the decompressor,

various FPGA hardware resources are utilized in order to increase the amount

of exploitable parallelism such that the decompression process can be acceler-

ated. Our decompressor design was able to achieve average input throughputs

of 70.73 MB/s and 130.58 MB/s on dynamically and statically compressed

files, respectively, while occupying only 2.59% of the Lookup Tables (LUTs)

and 2.01% of the Block Random-Access Memories (BRAMs) on the FPGA.

iii

Preface

Chapter 4 of this thesis has been published as M. Ledwon, B.F. Cockburn, and

J. Han, ”Design and evaluation of an FPGA-based hardware accelerator for

Deflate data decompression,” in IEEE Canadian Conference of Electrical and

Computer Engineering (CCECE), 2019, pp. 195-200. The design work and

manuscript composition was done by myself with supervision and manuscript

edits contributed by B.F. Cockburn and J. Han.

iv

Acknowledgements

I would like to thank my supervisors, Bruce Cockburn and Jie Han, for giving

me the opportunity to work alongside them and for providing guidance dur-

ing my MSc program. Thank you Bruce for helping me overcome the many

challenges and road blocks I encountered during my work and thank you for

showing confidence in me even when I wasn’t confident in myself.

I would like to thank the members of our industrial collaborator, Eideticom,

specifically Roger Bertschmann, Stephen Bates, and Saeed Fouladi Fard, for

proposing the idea for this project, for supporting the funding for this project,

and for giving me the opportunity to work together with them. Thank you

Saeed for the technical advice and assistance throughout the duration of the

project.

I would like to thank the Natural Sciences and Engineering Research Coun-

cil of Canada (NSERC) for providing grant funding for this project and I would

like to thank the Government of Alberta for awarding me three Queen Eliza-

beth II graduate scholarships.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 4

2 Background 5
2.1 The Deflate Lossless Compression Algorithm 5

2.1.1 Algorithm Details . 5
2.1.2 Dynamic Table Construction 10
2.1.3 Compressed Format Details 11

2.2 The Calgary Corpus Benchmark 13
2.3 Literature Review . 15

2.3.1 Works Related to Compression 15
2.3.2 Works Related to Decompression 24

2.4 Summary . 32

3 Compressor Design 34
3.1 Initial Design . 35
3.2 Final Design . 36

3.2.1 LZ77 Encoder . 37
3.2.2 Hash Function . 43
3.2.3 Huffman Encoder . 47

3.3 Testing and Results . 48
3.4 Discussion . 51
3.5 Summary . 54

4 Decompressor Design 56
4.1 Initial Design . 56
4.2 Final Design . 60

4.2.1 Huffman Decoder . 61
4.2.2 Literal Stacker . 64
4.2.3 LZ77 Decoder . 66
4.2.4 Byte Packer . 70

4.3 Testing and Results . 71
4.4 Discussion . 75
4.5 Summary . 78

5 Conclusion 80
5.1 Summary . 80
5.2 Evaluation of Vivado HLS . 81
5.3 Future Work . 83

References 85

vi

Appendix A LZ77 Encoder Source File 89

Appendix B LZ77 Encoder Header File 100

Appendix C Huffman Encoder Source File 103

Appendix D Huffman Encoder Header File 109

Appendix E Code Tables File 111

Appendix F Huffman Decoder Source File 115

Appendix G Huffman Decoder Header File 131

Appendix H Symbol Tables File 133

Appendix I Static Decoding Tables File 134

Appendix J Literal Stacker Source File 137

Appendix K Literal Stacker Header File 141

Appendix L LZ77 Decoder Source File 142

Appendix M LZ77 Decoder Header File 157

Appendix N Byte Packer Source File 158

Appendix O Byte Packer Header File 165

vii

List of Tables

2.1 Deflate Literal/Length Symbol Table and Corresponding Static
Codes [2] . 9

2.2 Deflate Length Symbol Definitions Table [2] 9
2.3 Deflate Distance Symbol Definitions Table [2] 9
2.4 Deflate Code Length Symbol Definitions Table [2] 10
2.5 The Calgary Corpus Benchmark Files [26] 13
2.6 Past Hardware-Accelerated Deflate Compressors 23
2.7 Past Deflate Decompression Accelerators 32

3.1 Compressor FPGA Resource Utilization 49
3.2 Calgary Corpus Compression Results 50
3.3 FPGA-based Compressor Design Comparison 50

4.1 Decompressor FPGA Resource Utilization 71
4.2 Dynamically-Encoded Calgary Corpus Decompression Results 73
4.3 Statically-Encoded Calgary Corpus Decompression Results . . 73
4.4 FPGA-based Decompressor Design Comparison 74

viii

List of Figures

2.1 LZ77 Compression Example 6
2.2 Standard String Matching Using Hash Tables 7
2.3 Deflate Block Types . 12
2.4 Calgary Corpus File Compression Using zlib 15
2.5 LZ77 Sliding Window Architecture 17
2.6 Scalable Compressor Pipeline Block Diagram 20
2.7 Compression Ratio and Area Trade-offs with PWS 21
2.8 Two-Pass Speculative Parallelization 27
2.9 Area-Efficient Huffman Table 30

3.1 Compressor Block Diagram 36
3.2 LZ77 Encoder Pipeline Diagram 37
3.3 Hash Bank Architecture . 38
3.4 LZ77 Encoder Match Filtering Example 40
3.5 LZ77 Encoder Output Window Example 41
3.6 Hash Function Calculation Example 44
3.7 Hash Function Experimentation Results 46
3.8 Huffman Encoder Pipeline Diagram 47
3.9 Hash Bank Design Trade-offs 53

4.1 Initial Decompressor Architecture 57
4.2 Coarse Function Scheduling Diagram 59
4.3 Final Decompressor Architecture 60
4.4 Huffman Decoder State Diagram 61
4.5 Huffman Decoder Static Timing Diagrams 63
4.6 Area-Efficient Huffman Table Decoding Example 64
4.7 Huffman Decoder Dynamic Timing Diagrams 65
4.8 Literal Stacker Operation . 66
4.9 Circular Buffer BRAM Cyclic Partitioning 67
4.10 LZ77 Circular Buffer Access Example 1 69
4.11 LZ77 Circular Buffer Access Example 2 69
4.12 Byte Packer Operation . 71

ix

List of Abbreviations

ALM Adaptive Logic Module 18, 21, 23, 49, 50

ASCII American Standard Code for Information Interchange 8, 13, 27, 45

ASIC Application-Specific Integrated Circuit 2, 3, 15

BRAM Block Random-Access Memory iii, ix, 22, 23, 29–31, 36, 38, 49–52,
54, 56, 57, 63, 66, 67, 71, 74, 77, 78, 81

CAD Computer-Aided Design 3

CPU Central Processing Unit ii, 2, 3, 15, 16, 18, 21, 23, 24, 26, 31, 35

CTZ Count Trailing Zeroes 39

DMA Direct Memory Access 49, 72

DRAM Dynamic Random-Access Memory 22

EOB End-of-Block 8, 10, 12, 24, 25, 28, 56, 62

FF Flip-Flop 22, 23, 29, 49–51, 71, 74

FIFO First-In, First-Out 29, 56, 57, 60, 61, 64, 66, 71, 75

FPGA Field-Programmable Gate Array ii, iii, viii, 2–4, 15, 16, 18, 19, 21–25,
28–32, 34–36, 48–50, 54, 56, 67, 71, 74, 77, 78, 80–82

FSM Finite-State Machine 61

FVP First Valid Position 39, 40

GPU Graphics Processing Unit 2, 3, 16, 24, 28, 32

HLS High-Level Synthesis ii, 3

HTTP Hypertext Transfer Protocol ii, 5

II Initiation Interval 35, 39, 48, 49, 62, 66, 70, 71, 78, 82

IP Intellectual Property 3, 31, 74, 81

LUT Lookup Table iii, 22, 23, 28–32, 34, 49–51, 62, 71, 74, 77, 81

MUX Multiplexer 23, 38, 39, 76

PWS Parallel Window Size ix, 15, 17–22, 24, 34, 35, 37, 40, 41, 43, 44, 49,
51, 52, 54

x

ROM Read-Only Memory 16, 20, 23, 47, 62

RTL Register-Transfer Level 48, 83, 84

xi

Chapter 1

Introduction

1.1 Motivation

Data compression is used to save data storage space and to more effectively

utilize fixed installed communication bandwidth. In today’s information age,

the volumes of data that are collected, processed, and then transmitted over

the Internet continue to increase. Consequently, efficient software and hard-

ware implementations of data compression and decompression algorithms are

becoming increasingly valuable. Higher compression ratios1 allow more data

to be packed into the same storage space. In addition, faster compression and

decompression engines facilitate faster data transmission.

There are two main types of data compression: lossy and lossless. In loss-

less compression, the data must be completely restored from a compressed

form to its original content following decompression. Conversely, lossy com-

pression is performed on data where loss of information can be tolerated and

the compression process can be accelerated by sacrificing some hopefully less

important information from the data. For example, the quality of audio and

visual data can be degraded to an acceptable extent using lossy compression al-

gorithms (e.g., MPEG-4 for video compression [1]) in order to reduce the data

bandwidth for multimedia streaming when necessary. However, many types

of data (e.g., financial data, literature, textual documentation, software code,

1The compression ratio is the ratio between the size of the uncompressed data and the
size of the compressed data. A higher compression ratio is generally preferred. E.g., a
compression ratio of 2.00 means a compressed file is half the size of its uncompressed form.

1

genomic data) cannot tolerate any loss in fidelity, so they must be compressed

losslessly. Because no information loss can be tolerated, lossless compression

cannot be accelerated as aggressively as lossy compression.

Deflate [2] is one of the most widely used lossless compression algorithms

today, forming the basis for the widely used .zip, .gz, and .png compressed file

formats [3]. In Deflate compression, there is an inverse relationship between

the compression time and the compression ratio. Typically, more time can be

spent compressing data in order to achieve a greater compression ratio (up to

a certain point). Conversely, the compression process can be accelerated by

performing less aggressive compression, which is more likely to provide a lower

compression ratio. A balance needs to be struck when choosing how much

time to spend on compression while still making the process worthwhile (by

maximizing the compression ratio) and cost competitive (by minimizing the

energy and hardware area usage).

In Deflate decompression, the compression ratio of the received compressed

data has already been determined by the compressor and thus the compres-

sion ratio is no longer a design parameter that can be traded off in order to

increase the speed of decompression. The goal in decompression is to restore

the original data as quickly as possible with minimized implementation costs.

Unfortunately, the inherently serial format of the Deflate standard makes ac-

celeration difficult using parallel processing strategies. As described later, the

standard Deflate compressed format can be altered to easily facilitate accel-

eration through parallel decompression, but this approach requires deviating

from a standard that is already widely being used. Other methods of acceler-

ating the decompression process that respect the constraints of the standard

are understandably preferred.

Hardware accelerators are computing platforms that can be used to acceler-

ate certain classes of computations beyond the capabilities of software running

on conventional computer Central Processing Units (CPUs). Hardware accel-

erators are typically implemented using moderately parallel multi-core CPUs,

massively parallel Graphics Processing Units (GPUs) [4], Field-Programmable

Gate Arrays (FPGAs) [5]–[7], and Application-Specific Integrated Circuits

2

(ASICs). Coinciding with the cloud computing paradigm [8], hardware ac-

celerators are now commonly integrated within cloud servers to accelerate

certain algorithms. For example, Amazon Web Services provide access to

FPGA-embedded cloud instances (called F1 instances) on a pay-as-you-need

basis [9].

There are generally two main methods of accelerating a computation work-

load [10]: by increasing the clock frequency or by performing more operations

of the workload in parallel per clock cycle. Due to the breakdown of Den-

nard scaling [11], clock frequencies can no longer be substantially scaled up

anymore without exceeding practical power and thermal limitations, leaving

parallelization as the main solution for accelerating computations [10]. FPGAs

and GPUs have massively parallel architectures that often enable them to ex-

ploit parallelism more effectively and directly than is possible with CPUs.

ASIC designs can be fully customized to achieve the maximum performance

for a desired algorithm, but they come at the cost of longer design time, greater

engineering risk, high mask costs and, therefore, higher implementation costs.

FPGAs have many advantages. They can be quickly reprogrammed such

that accelerator designs can be altered or changed easily as needed. The flex-

ible programmable fabric of hardware resources in an FPGA allows various

low-level optimizations to be made to designs, for example, using minimized

precision bit-widths (i.e., integer bit widths of any size, not just of powers of

two) for storage and computation to save time, area, and power. FPGA-based

designs can be developed, verified, and encapsulated as Intellectual Property

(IP) blocks that can be later instantiated and easily interfaced together, giv-

ing the ability to create modular pipelined designs that can be optimized for

maximum throughput.

FPGA designs are typically expressed in a hardware description language

like VHDL [12] or Verilog [13]. A relatively new Computer-Aided Design

(CAD) technology called “high-level synthesis” (HLS) aims to make FPGA

design quicker and easier by allowing designers to specify the required system

behaviour in a higher-level language like C or C++, which is then synthesized

and optimized automatically into a hardware design (i.e., an FPGA configu-

3

ration). Although the idea of high-level synthesis was proposed over 30 years

ago, it wasn’t until recently that the quality of results provided by high-level

synthesis solutions became good enough for the technology to become viable

[14]. Vivado HLS [15] is the name of the high-level synthesis tool released by

Xilinx in 2013 for synthesizing designs for use on Xilinx FPGAs.

This thesis investigates the challenges associated with optimizing and accel-

erating both Deflate compression and decompression using custom accelerator

hardware configurations on FPGAs. Our goal for compression is to design an

accelerator that can provide competitive compression throughputs (on the or-

der of multiple GB/s) while maintaining sufficient compression ratios (above

2.00). Our goal for decompression is to design an accelerator that achieves

the highest throughputs possible without making any assumptions about the

compressed data or making any changes to the standard compressed Deflate

format. We aim to do this using an FPGA as the hardware accelerator plat-

form and high-level synthesis as the means of creating the designs, specifically

targeting Xilinx FPGAs and using the Vivado HLS tool.

1.2 Outline

The outline of the thesis is as follows: Section 2.1 in Chapter 2 provides back-

ground information on the Deflate compression algorithm and format. Sections

2.3.1 and 2.3.2 describe other works related to compression and decompression,

respectively. The design of our compressor is described in Chapter 3 and the

design of our decompressor is described in Chapter 4. Finally, the results of

our work are summarized and suggestions for future work are given in Chapter

5.

4

Chapter 2

Background

2.1 The Deflate Lossless Compression Algo-

rithm

Deflate is a lossless compression algorithm (and resulting data format) [2] that

forms the basis for many widely used file formats. It was originally created

by Philip Katz to be used in his software application PKZIP [16] and was

shared in the public domain. The Deflate format was later utilized by Jean-

loup Gailly and Mark Adler in their open-source software application, gzip

[17], and the software library, zlib [18], which was created in order to facilitate

the usage of the PNG lossless compressed image format. As a result, Deflate

is now commonly used by many different compression and decompression ap-

plications [19]. The most notable of these applications include the Hypertext

Transfer Protocol (HTTP) standard as well as the aforementioned .zip [20], .gz

[21], and .png [22] file formats. Each of these compressed file formats includes

a header and footer wrapper that encloses the binary Deflate compressed data

payload. Before the Deflate file format is given, we will first describe the

basic compression algorithm. Some aspects of the Deflate compression algo-

rithm may vary depending on the implementation, as long as the resulting

compressed data adheres to the format described in [2].

2.1.1 Algorithm Details

The Deflate compression algorithm is actually the concatenation of two other

well-known compression algorithms: it performs 1) byte-level compression us-

5

Before:
This_sentence_contains_an_example_of_an_LZ77_back_reference.

This_sentence_contains_an_example_of(L4,D14)LZ77_back_refer(L4,D46).

After:

Figure 2.1: An example of LZ77 compression. Note: the physical representa-
tion of the length-distance pairs is not defined in the Deflate specification as
they will eventually be replaced with Huffman codes. How the length-distance
pairs are represented in between the LZ77 encoding and the Huffman encoding
is left up to the compressor implementation.

ing a variation of LZ77 encoding [23] followed by 2) bit-level compression using

Huffman encoding [24]. Since the LZ77 encoding format is patented, Deflate

describes a similar but more general algorithm for replacing duplicated strings.

A data file to be compressed is scanned and repeating strings of characters are

replaced with length-distance pairs, as shown in Fig. 2.1. As each byte of the

file is read, it is recorded in a history buffer and any potential previous matches

are sought in that buffer. The length-distance pairs correspond to the length

of a match and the distance back within the history buffer that it occurred.

In the Deflate format, matching strings of lengths of up to 258 bytes long and

match distances of up to 32,768 bytes are allowed. It is desirable to match the

longest possible string in the input to a previously stored string in order to

compress the greatest number of bytes into a single length-distance pair.

The Deflate specification recommends using chained hash tables to find po-

tential matching strings, though any match-finding method can be used. Typ-

ically, a fixed-width sliding window is used, which slides across the sequence

of input bytes, as shown in Fig. 2.2a. A string of bytes, the number of which

is chosen by the compressor, are taken from the input sequence, hashed (i.e.,

compressed into a fixed-length hash signature), and looked up in a primary

hash table, which contains the positions of all of the most recently hashed and

stored strings. If more than one string maps to the same hash signature, the

table will contain a link chaining from that signature’s position in the primary

hash table to a secondary hash table. A chain of such links can be traversed

to find all the positions of matching strings that have the same hash value,

6

a b c d e f g h i
Previous Data

j k

String of bytes to
be hashed

Upcoming Data
Current Position

Sliding Direction

(a) Sliding Window

position_0hash(string)

Primary
Hash	Table

hash(position_0)
position_1

position_2

hash(position_1)

Secondary
Hash	Table

(b) Chained Hash Tables

Figure 2.2: A standard approach to performing string matching is using a
sliding window and chained hash tables.

as shown in Fig. 2.2b. These potential matches are then compared to the

current input sequence and the longest match is used to replace those input

bytes with a length-distance pair. In order to achieve greater compression,

more time can be spent searching for the longest possible match. Limiting

the search for a match will save time but may lower the obtained compression

ratio. A compressor that is focused on maximizing the compression ratio will

thus, in general, need to spend more time performing the LZ77 matching step.

After LZ77 encoding, the data is split into blocks for Huffman encoding.

The sequence of unmatched literals and length-distance pairs in each block,

which are both referred to as symbols, will be encoded by replacing each sym-

bol with a variable-length codeword. Huffman codes1 are a type of prefix code,

which means that the code for one symbol will never be the prefix of another

code. In Deflate, the Huffman codes used are also canonical, which means

that all of the codes of the same length have consecutive binary values. This

means that the Huffman code tables can be recreated using only the sequence

of code lengths [25]. There are two different Huffman encoding methods used

by Deflate: static (or fixed) and dynamic. In static encoding, the Huffman

codes used are all from pre-defined tables that are listed in the Deflate spec-

ifications [2]. These tables are not included with the compressed data. In

dynamic encoding, the Huffman codes are created based on the frequencies

of the symbols in each block (measured during the preceding LZ77 encod-

1Following the convention used in the Deflate literature, the codewords in a Huffman
code will themselves be referred to as Huffman codes.

7

ing stage). The most frequently occurring symbols are typically assigned the

shortest Huffman codes in order to achieve the greatest amount of compres-

sion. Each dynamically encoded block will have a unique set of dynamic codes

that are optimized for the symbols in that block. The dynamic code tables for

each dynamic block are encoded along with the compressed data and are used

by the decompressor to decode the data during decompression. Though con-

siderably more complicated, encoding Deflate blocks using dynamic Huffman

codes instead of static codes allows greater compression ratios to be achieved.

There are actually two Huffman code tables used for each block: one for

literals and lengths (shown in Table 2.1), and the other for distances (shown

in Table 2.3). This can be done because a distance code will only ever follow a

length code, which allows the same binary codes (with different meanings) to

be re-used between the two tables. There is also one special symbol, called the

End-of-Block (EOB) marker, that is included in the literal/length Huffman

table. Symbols 0 to 255 directly correspond to the American Standard Code

for Information Interchange (ASCII) literal values 0 to 255, symbol 256 is

the EOB marker, and symbols 257 to 287 are the length symbols, which are

described in Table 2.2. Note that length symbols 286 and 287 are not actually

used for encoding but are, rather, used in the construction of the Huffman

code. The distance table (Table 2.3) contains 30 different distance symbols

from 0 to 29. Each length and distance symbol corresponds to a base length

or distance value and may be followed by a number of extra bits. These extra

bits correspond to a binary offset that is added to the base length or distance

value after decoding.

In Deflate static Huffman encoding, the literal/length codes are from 7 to

9 bits long (shown in Table 2.1) and the distance codes are fixed-length 5-bit

codes that are just the binary values of their symbols (e.g., the static code for

distance symbol 5 is 0b00101). In dynamic encoding, both the literal/length

and distance codes can be from 1 to 15 bits long. In both forms of encoding,

static and dynamic, the length codes may be followed by 0 to 5 extra bits (as

shown in Table 2.2) and distance codes may be followed by 0 to 13 extra bits

(as shown in Table 2.3).

8

Table 2.1: Deflate Literal/Length Symbol Table and Corresponding Static
Codes [2]

Symbol Type Symbol Decimal Static Code Static Binary

Values Lengths Codes

Literal 0 - 143 8 bits 00110000 - 10111111

144 - 255 9 bits 110010000 - 111111111

End-of-block 256 7 bits 0000000

Length 257 - 279 7 bits 0000001 - 0010111

280 - 287 8 bits 11000000 - 11000111

Table 2.2: Deflate Length Symbol Definitions Table [2]

Length Length Extra Length Length Extra Length Length Extra
Symbol Values Bits Symbol Values Bits Symbol Values Bits

257 3 0 267 15, 16 1 277 67 - 82 4
258 4 0 268 17, 18 1 278 83 - 98 4
259 5 0 269 19 - 22 2 279 99 - 114 4
260 6 0 270 23 - 26 2 280 115 - 130 4
261 7 0 271 27 - 30 2 281 131 - 162 5
262 8 0 272 31 - 34 2 282 163 - 194 5
263 9 0 273 35 - 42 3 283 195 - 226 5
264 10 0 274 43 - 50 3 284 227 - 257 5
265 11, 12 1 275 51 - 58 3 285 258 0
266 13, 14 1 276 59 - 66 3

Table 2.3: Deflate Distance Symbol Definitions Table [2]

Distance Distance Extra Distance Distance Extra Distance Distance Extra
Symbol Values Bits Symbol Values Bits Symbol Values Bits

0 1 0 10 33 - 48 4 20 1025 - 1536 9
1 2 0 11 49 - 64 4 21 1537 - 2048 9
2 3 0 12 65 - 96 5 22 2049 - 3072 10
3 4 0 13 97 - 128 5 23 3073 - 4096 10
4 5, 6 1 14 129 - 192 6 24 4097 - 6144 11
5 7, 8 1 15 193 - 256 6 25 6145 - 8192 11
6 9, 10 2 16 257 - 384 7 26 8193 - 12288 12
7 13 - 16 2 17 385 - 512 7 27 12289 - 16384 12
8 17 - 24 3 18 513 - 768 8 28 16385 - 24576 13
9 25 - 32 3 19 769 - 1024 8 29 24577 - 32768 13

9

2.1.2 Dynamic Table Construction

As mentioned above, the dynamic Huffman codes used are unique to each dy-

namic block, so the dynamic code tables need to be included in the compressed

data along with each block. In order to include the tables while ensuring that

they take up as little space as possible, they are compressed using the fol-

lowing method. Since the Huffman code tables are canonical, they can be

recreated using only the sequence of code lengths in the table. An algorithm

for constructing a Huffman table using a sequence of code lengths as well as an

example are given in Section 3.2.2 of [2]. In Deflate, this sequence follows the

order of the literal/length symbol values from 0 to 287. For example, the first

code length in the sequence will be for symbol 0, followed by the code length

for symbol 1, etc. This sequence is immediately followed by the sequence of

code lengths for the distance symbols 0 to 29. Any unused symbols are given

code lengths of 0 and if they come at the end of the sequence, they are deleted

from the sequence in order to save space. At a minimum, there will be 257

literal/length code lengths in the sequence (for the 256 literals plus the EOB

symbol) and 1 distance code length (indicating that no length-distance pairs

exist in the data). Once the full sequence of code lengths is input and the

number of codes of each length is counted, the codes can be reconstructed

starting from the smallest code length.

The code length sequence used to reconstruct the Huffman tables is also

compressed using a combination of run-length encoding and Huffman encod-

ing. A 19-symbol Huffman code table, shown in Table 2.4, is used to encode

the code length sequence. In this table, symbols 0 to 15 correspond to code

lengths 0 to 15, while symbols 16, 17, and 18 are used to encode runs of re-

Table 2.4: Deflate Code Length Symbol Definitions Table [2]

Code Length Symbol Meaning
0 - 15 Code lengths 0 - 15

16 Copy previous code length 3 - 6 times (2 extra bits).
17 Repeat code length of 0, 3 - 10 times (3 extra bits).
18 Repeat code length of 0, 11 - 138 times (7 extra bits).

10

peating code lengths. Again, unique codes are created for these symbols and

so another sequence of code lengths must be included in order to reconstruct

this table. This sequence of “code length” code lengths is included in the com-

pressed block in the following fixed order: 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4,

12, 3, 13, 2, 14, 1, 15. The first four code lengths are always included in this

sequence while the rest appear in the order of the likelihood that they will be

used. Code lengths for the symbols 8, 7, and 9 come first as they are the most

likely code lengths to be used while code lengths of 1 and 15 are relatively rare

and so they appear at the end of the sequence. As done before with the liter-

al/length and distance code length sequence, any unused code lengths at the

end of the sequence are removed. The process of reconstructing the Huffman

tables for a dynamic data block is described step-by-step as follows:

1. The number of literal/length codes, distance codes, and code length

codes is read from the compressed block.

2. The sequence of “code length” code lengths is read and the number of

codes of each length is counted.

3. The “code length” code length count is used to construct the code length

Huffman table.

4. This code length Huffman table is used to read and decode the sequence

of code lengths for the literal/length and distance code tables.

5. The literal/length and distance code length counts are used to construct

the literal/length and distance Huffman tables.

2.1.3 Compressed Format Details

As described above, a file compressed using Deflate is split into blocks of

arbitrary size which are then each Huffman encoded individually. None of

the binary data within a static or dynamic Deflate block is guaranteed to be

byte-aligned. In a dynamic block, the last bit of the code length sequence is

immediately followed by the first bit of the first Huffman code in the data.

11

Compressed Data EOB
Static Block

of Codes Code Length Sequence Compressed Data EOB
Dynamic Block

Stored Block
LEN NLEN LEN Bytes of Uncompressed Data

Header

Header

Header

Figure 2.3: Deflate block types and their contents (not to scale).

Since the codes are variable-length, each code must be decoded one at a time,

bit-by-bit, starting with the first Huffman code. The length of a Deflate block

is unknown until the EOB code has been found and decoded. The beginning

of the next block begins immediately after the EOB code. Besides static and

dynamic blocks, a third type of block exists that is called a stored block,

which contains uncompressed data. Stored blocks are typically used in order

to avoid attempting to compress data which cannot be usefully compressed

further, for example, data which has already been compressed, in order to

prevent expanding the data2. Figure 2.3 shows the structures of the three

different block types. Each block begins with a 3-bit header that is composed

of two flags: BFINAL (1 bit), which indicates whether a block is the last block

in the compressed file, and BTYPE (2 bits), which describes the type of block.

The BTYPE value is 0b00 for stored blocks, 0b01 for static blocks, and 0b10

for dynamic blocks. The BTYPE value of 0b11 is unused and indicates an

erroneous block.

There are a few subtle but critical pieces of information about how the

compressed data is actually stored. In the Deflate format, all of the data

elements (i.e., Huffman codes, block headers, code lengths, etc.) are packed

into bytes starting with the least significant bit of the byte. All of these

elements, except for Huffman codes, are packed with their least significant bit

first while the Huffman codes are packed with their most significant bit first.

This means that the Huffman codes are effectively reversed in bit order while

2The amount of expansion that can occur will depend on the compressor implementation.
In the worst case scenario, zlib adds 5 bytes per 16 kB stored block (an overhead of about
0.03%). The zlib wrapper also adds 6 bytes of overhead to the file [18].

12

all other data elements appear in the correct bit order (i.e., most significant

bit to least significant bit). Each byte of compressed Deflate data is meant to

be processed from right to left with new bytes being appended to the left as

they are read.

2.2 The Calgary Corpus Benchmark

The Calgary corpus [26] is a dataset composed of 14 files of various data

types with different sizes that has been commonly used as a benchmark in

compression and decompression research. This benchmark has been used by

many other researchers whose work is described in Section 2.3. For purposes

of comparison, we also use the Calgary corpus to measure the performance

of both our compressor and decompressor designs. Table 2.5 describes the

14 different Calgary corpus files. The type of data contained within a file

plays a key factor in the compression ratios achieved as well as the speed of

compression and decompression.

As mentioned above, dynamic Huffman blocks can be used to get higher

compression ratios than static blocks. This makes sense because the dynamic

blocks use Huffman codes that are tailored to the statistics of each block while

static blocks use standard Huffman codes that are a compromise for all types

of data files. Figure 2.4 shows the difference in compression size of the Cal-

Table 2.5: The Calgary Corpus Benchmark Files [26]

File Name Size (bytes) Description
bib 111,261 Bibliography containing ASCII text in Unix “refer” format
book1 768,771 Fiction book containing unformatted ASCII text
book2 610,856 Non-fiction book containing ASCII text in Unix “troff” format
geo 102,400 Geophysical seismic data in 32-bit number format
news 377,109 USENET batch file containing ASCII text
obj1 21,504 Object code executable of file “progp”
obj2 246,814 Object code executable of Macintosh program
paper1 53,161 Technical paper containing ASCII text in Unix “troff” format
paper2 82,199 Technical paper containing ASCII text in Unix “troff” format
pic 513,216 1728x2376 bitmap image
progc 39,611 Source code file written in C
progl 71,646 Source code file written in LISP
progp 49,379 Source code file written in Pascal
trans 93,695 Transcript of terminal session

13

gary corpus files when compressed using static codes versus dynamic codes.

These numbers were obtained by compressing the files using zlib with the de-

fault settings3. The arithmetic mean (average) compression ratio across the

dynamically compressed corpus is 3.51 and the geometric mean is 3.19. For

the statically compressed files, the arithmetic mean is 3.03 and the geometric

mean is 2.76. Both means are described here because both figures of merit are

reported by the compression related works described in Section 2.3.1. Com-

pared to the arithmetic mean, the geometric mean places more weight on each

value averaged and will therefore always be lower. This makes it more use-

ful when averaging numbers with widely different values (like the very large

compression ratio of the “pic” file and the very small compression ratio of the

“geo” file). While the arithmetic mean is obtained by dividing the sum of a

set of n values like so:

1

n

n∑
i=1

ai =
a1 + a2 + · · ·+ an

n

the geometric mean is obtained by taking the nth root of the product of n

values as follows: (
n∏

i=1

ai

) 1
n

= n
√
a1a2 . . . an

By using dynamically created Huffman codes instead of static codes, the

compression ratios are improved by an average of 15.7%. However, using

dynamic Huffman encoding requires more time to perform both compression

and decompression. During compression, the symbol frequencies need to be

measured and the code tables need to be constructed before encoding. In

decompression, the compressed code length sequence needs to be read and used

to reconstruct the code tables. When using static codes, encoding/decoding

can begin immediately using the fixed standard code tables.

3The zlib compression settings include compression effort (the amount of the time to
spend searching for matches), history buffer size, sliding window size, and compression
strategy (Huffman encoding only without LZ77 encoding, static Huffman encoding only
without dynamic, etc.) among other things.

14

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

Fi
le

 S
iz

e
(b

yt
es

)

File Name

Uncompressed

Static Compression

Dynamic Compression

Figure 2.4: Compression of the Calgary corpus using zlib with the default
compression settings.

2.3 Literature Review

2.3.1 Works Related to Compression

In this section, a few of the most recent and most significant published de-

signs of FPGA-based Deflate compression accelerators are described. Many

compression accelerators have been developed over the years for a variety of

hardware platforms, including CPUs and ASICs, but only FPGA designs are

analyzed in detail here since FPGA-based accelerators are the main focus of

this thesis. These designs share a similar architecture composed of a constant-

throughput pipeline that compresses a fixed number of bytes in every clock

cycle using a parallel sliding window. The size of this window is often re-

ferred to as the Parallel Window Size (PWS). The main focus of these designs

appears to be on the LZ77 encoding portion, which is the more complicated

of the two stages of Deflate compression. Instead of spending time searching

for matches, only one clock cycle is spent obtaining potential matching strings

and comparing them to the strings in the sliding window. Afterwards, only the

best matches that are found within the window constraint are kept. Multiple

potential matches are looked up and compared simultaneously with multiple

substrings within the sliding window in every cycle in order to quickly com-

15

press the data at a constant rate. How the data history is stored and how

potential matches are found will greatly impact the performance and area of

the design. Most seemingly throughput-focused designs perform the Huffman

encoding using static codes only. This restriction greatly simplifies the inter-

face between the LZ77 encoder and the Huffman encoder as the data can be

encoded as soon as it is received using the fixed standard code tables stored

in Read-Only Memories (ROMs). Although these FPGA-based compressor

designs typically provide lower compression ratios than are possible with soft-

ware compressors, they are able to compress data at a much faster rate. The

FPGA-based compressor designs examined are described chronologically be-

low. The design of our compressor, described in Chapter 3, was influenced by

each of these designs.

The authors of [27] designed an FPGA-based accelerator for Deflate com-

pression using OpenCL and Intel/Altera’s OpenCL compiler. OpenCL is a

high-level C-like programming language that can be used to specify hard-

ware acceleration kernels for parallel computing platforms that include CPUs,

GPUs, and/or FPGAs. Their design appears to be heavily based on the Ver-

ilog architecture described in [28] by researchers at IBM. Reference [28] is

unfortunately no longer available for access. In traditional LZ77 encoder de-

signs, the history dictionary, which contains all of the previous input bytes

arranged in chronological order, and the hash table, which contains the po-

sitions of previously hashed strings, occupy two separate memories. Multiple

single-byte reads may be required to read an entire string from the history dic-

tionary unless the memory is partitioned to allow for more read ports that can

be accessed in parallel. Multiple copies of the history dictionary can be used

to allow conflict-free simultaneous lookup of multiple strings, however, hash

collisions (i.e., when two or more strings produce the same hash signature) can

still occur into the hash table and these collisions will reduce the number of

positions that can be read and written, resulting in potential matches being

missed and thus leading to a reduction of the compression ratio. In the design

in [27], the history dictionary and the hash table are combined into the same

memory. This memory stores entire strings (instead of individual bytes) as

16

s o m e d a t a

PWS bytes

s o m e

o m e d

m e d a

e d a t

PWS staggered
substrings

Sliding Window
Dictionary	0

Dictionary	1

Dictionary	2

Dictionary	3

hash(some)

PWS dictionaries

Figure 2.5: The LZ77 sliding window architecture from [27] with a PWS of 4.
Every dictionary is accessed simultaneously by every one of the substrings.

well as their positions. When the hash signature of an input string is given to

the memory, a similar string with the same hash signature is returned. These

returned strings are then compared byte-by-byte with the substrings within

the sliding window in order to find matches.

Fig. 2.5 shows the sliding window architecture from [27] with a PWS of

4 bytes, though in the actual design, a PWS of 16 was used. In every clock

cycle, 16 bytes are read from the input stream and are shifted into a 32-byte

wide sliding window (twice the length of the PWS). Each byte in the first half

of the 32-byte window is the start of a 16-byte substring, with a total of 16

staggered substrings occupying the entire window. For each 16-byte substring

in the 32-byte window, a hash value is calculated in parallel and then looked

up in 16 different dictionaries. Sixteen 16-byte potential matches are obtained

from each dictionary for each substring for a total of 256 potential matches.

The 16 different history dictionaries are replicated 16 times so that each one

has 16 read ports and all 16 substring reads can occur simultaneously without

the possibility of hash conflicts. Each substring in the parallel window is then

written to one of the 16 dictionaries. The dictionaries are indexed using a

10-bit hash signature and have 1024 indexes each, which each store a 16-byte

string and its position. The 256 potential matches are compared to the 16

window substrings and the longest match for each substring is kept. Since the

substrings and the potential matches are 16 bytes long, the longest possible

match length is 16 bytes. The 16 best matches are then filtered using a series

17

of filters. Matches that are overlapped by matches from the last iteration

and matches that overlap each other in the current iteration are filtered away

using last-fit heuristics. The matches in the window are replaced with markers

and are then Huffman encoded. In this architecture, the Huffman trees are

created by software executing on a CPU and are then passed to the FPGA for

encoding. Whether only static or dynamic Huffman encoding is used is not

disclosed. The symbols are encoded and a series of barrel shifters are used to

align the variable-length codes.

Throughout the paper the authors describe certain changes that they made

to the OpenCL code in order to optimize it for running on FPGAs. Though

the code may be functionally equivalent, certain OpenCL syntaxes may lead

to inefficient hardware synthesis. For example, long adder chains, which tend

to use more logic area and have greater delay, may be selected by the com-

piler instead of faster balanced adder trees. These optimization techniques are

also applicable when using Vivado HLS to synthesize C/C++ as done in our

research. Like in [28], which was the basis of their design, they also mapped

their design for an Intel/Altera Stratix V A7 model FPGA. For comparison,

the design in [28] had a clock frequency of 200 MHz and an input throughput

of 3.0 GB/s. In [27], although they report that their design processes 16 bytes

every clock cycle, they achieved an input throughput of 2.84 GB/s with a clock

frequency of 193 MHz, which seems to imply that their final design actually

used a PWS of 15 bytes, not 16, since a design that processes 16 bytes/cy-

cle at 193 MHz should have a throughput of 3.088 GB/s. Their design has

a depth of 87 stages compared to the 17-stage design in [28] and uses more

chip area. Reference [27]’s design uses 47% of the logic and 70% of the RAM

on the StratixV A7 chip, which one could reasonably interpret to be 110,318

of the 234,720 ALMs4 and 1,792 of the 2,560 M20K memory blocks, while

the design from [28] only uses 45% of the logic (105,624 ALMs) and 45% of

the RAM (1,152 M20Ks). The advantage of [27]’s design comes from the en-

hanced productivity that comes from using OpenCL instead of Verilog, though

it comes at the cost of less-efficient area usage. They evaluated their design

4Adaptive Logic Modules (ALMs) are the standard logic cell used in Intel/Altera FPGAs.

18

using the Calgary corpus and achieved a geometric mean compression ratio of

2.17 across the entire corpus, which is the highest value of the compressor de-

signs compared here. This may be because they use software-created dynamic

Huffman tables, while the other designs only utilize static Huffman encoding.

It may also be because of the fully connected hash dictionary architecture that

they used, which is not susceptible to hash collisions.

Reference [5] describes an FPGA-based compressor design that was cre-

ated by researchers from Microsoft in response to [27] and [28]. Their design

was programmed in SystemVerilog also for use with an Intel/Altera Stratix

V FPGA. They use a pipelined parallel window architecture that is scalable

to other sizes. In their design, they use the traditional method of separately

storing the string match positions in a hash table and the data history in a

dictionary. In order to reduce hash table lookup conflicts, the hash table is

split into multiple banks, where each bank contains a subset of the possible

hash indexes; using more banks reduces the likelihood of two hashed values

accessing the same bank. In their design, they use 32 hash banks to index

65,536 hash values (2,048 indexes per bank). These hash banks are also run at

double the clock frequency that is used by the rest of the system to allow two

reads and two writes to be made to each bank in every clock cycle. This allows

two hash values to access the same bank without conflict; any further accesses

must be dropped, however, which negatively impacts the compression ratio.

In order to store multiple positions for each match, each hash bank can also

be split into multiple depth levels with each containing a different previous

position. When a hash bank is accessed, all stored previous positions are read

simultaneously, the oldest position is shifted out, and the latest input position

is shifted in. This technique of hash bank depth levels is described but does

not appear to have been used in the final design by [5].

A block diagram of the scalable pipeline architecture from [5] is shown in

Fig. 2.6. Although their design is scalable in terms of window size, for illustra-

tion, a design with a PWS of 16 bytes will be described. In every cycle, up to

16 positions are obtained from the hash tables and are simultaneously looked

up in 16 copies of the history dictionary. Each dictionary copy is partitioned

19

Figure 2. Fully-pipelined architecture.

Then, it must read candidates for PWS hash values

from the multi-banked hash table, while resolving bank

conflicts among the inputs. Simultaneously, it updates

the hash table with new positions.

• String match: At each candidate position in the input

the string matcher performs PWS independent match-

ings between the current string and previous strings.

This parallel matching computation will require PWS

reads of PWS bytes to the 64KB data memory.

• Match selection: We receive PWS candidate matches

per cycle, which is too many to process combinatorially,

and must perform lazy evaluation to select between

them. Data hazards exist because each match may pre-

clude other matches within a certain range of positions.

• Huffman bit-packing: We must create a PWS-aligned

byte stream out of many Huffman encoded selection

results. A large amount of buffering and bit shifting is

required to align the data.

IV. MICRO-ARCHITECTURES

A. Multi-banking hash table

As we stated in Section II-C, we resolved the multiple

read/write problem in the hash table with a multi-banking

scheme that drops banking conflicts. Figure 3 shows the 5-

stage pipelined hash table read and update module with two

fully connected crossbar switches. The hash table module

receives PWS input hash values per cycle from the hash

calculation module. Based on their LSB values, it routes

each input position to the corresponding bank. This problem

is similar to the routing problem in a network switch, with

the input positions corresponding to input ports and the

bank numbers corresponding to output ports. Multiple input

positions can send requests to a single bank and an arbiter

chooses up to two requests per cycle. Thanks to a clock

Figure 3. Multi-banking hash table update.

rate double that of the rest of the pipeline, each bank in

the hash table can handle up to two hash updates involving

two read and two write operations per cycle. Since each

input hash value can update any channel of any bank in the

hash table, we need a fully connected crossbar switch whose

input and output port size is PWS and 2*HBN, respectively.

After getting a grant from the bank, each input position

accesses the granted bank to read the candidate position

value and update it to the current position. For the single-

depth hash table, we can perform read and write operations

at the same cycle by configuring the memory output mode

to read old data. In the case of multi-depth hash table, we

need to wait for the read data to arrive, while resolving

possible dependencies with forwarding without stalling. The

read candidate positions arrive in two cycles from the banks

and we re-align these to match the correct input positions.

Therefore, another full crossbar switch is required to connect

2*HBN bank ports to PWS output ports. As a result, the

55

Figure 2.6: The scalable compressor pipeline architecture from [5].

to have 16 read ports so that 16 consecutive bytes can be read simultaneously

(the history dictionaries store individual bytes, not entire strings). Sixteen 16-

byte strings are returned and compared to the substrings in the input window.

A series of match selection stages iteratively filter out conflicting matches in

a similar manner as was done in [27]. The selected matches for the window

are then Huffman-encoded across multiple pipeline stages. In order to main-

tain the same steady throughput on both the LZ77 encoding and Huffman

encoding portions of the pipeline, only static Huffman codes are used. As

LZ77 encoded windows are written out, their contents are passed through to

static codebook ROMs to be immediately encoded. If dynamic codes were

to be used, the Huffman encoding portion would not be able to begin until

the first block from the LZ77 encoding portion was finished and the dynamic

code tables were assembled. This would also require an intermediate storage

space between the two Deflate stages for holding the LZ77 encoded data (this

approach is investigated in [29]). In each stage of the Huffman encoder, one

of the window boxes is encoded and then shifted and ORed into an encoded

window using barrel shifters. A double buffer, which is located at the output

of the pipeline, collects the encoded windows. When the double buffer is over

half full, the lower half writes its data to the output.

The authors of [5] synthesized their design with various PWS values from

8 to 32 bytes and obtained performance results for each. With a PWS of 16

20

Figure 7. Compression ratio vs. parallelization window size

B. Area-performance Trade-off

We implemented our architecture with SystemVerilog on a

modern Stratix V FPGA at 175 MHz to evaluate the tradeoffs

between area, throughput, and compression ratio. The HTD

parameter is set to 1, as we found supporting higher values

to be outside the scope of this work. Figure 8 presents

the area requirements for each module across different PWS

sizes and Table I gives the total area for each engine with

and without head/tail selection. The results show that the

design does not scale linearly, as certain modules—such as

data memory and match selection—scale quadratically with

PWS. This presents an interesting design space to users, who

can achieve a target throughput by either applying one large

engine or an array of smaller engines.

Figure 9 depicts the design space for area versus com-

pression ratio at throughputs of 5.6, 2.8, and 1.4 GB/s. Each

line represents a different throughput level, and the points

along the line are the corresponding engine configurations

(PWS x # engines). The data shows that a significant 15%

improvement to compression ratio can be achieved if an

additional 64% area can be spared for a PWS=32 engine.

C. Comparison

Table I compares our implementation, with PWS set

between 8 and 32, to the fastest ZLIB mode, the IBM

Figure 8. FPGA area in ALMs required for each module at varying PWS
(head/tail selection included).

results from [11], and the Altera results from [12]. For a

fair comparison, we used only Calgary Corpus that their

results are also based on. We found that the high-throughput

hardware accelerators outperformed the throughput of one

CPU core running ZLIB by up to 2 orders of magnitude.

However, all of the hardware implementations in Table I

sacrifice some amount of compression ratio to improve DE-

FLATE’s hardware amenability. The discrepancy between

our designs and the other hardware accelerators can be

partially accounted for by the hash table design; the IBM

and Altera designs keep more candidate positions than

ours, which we will match with a depth of 2 in future

work. Finally, we found our design to be significantly more

resource-efficient than IBM’s or Altera’s, achieving 1.4-2.7x

and 1.6-3.0x, respectively, better throughput/area across the

various PWS settings. With further clock rate optimizations

this lead would increase, because a PWS of 16 running at

IBM’s 250 MHz would result in the same 4 GB/s throughput.

VI. RELATED WORKS

Decades of research has investigated different compres-

sion algorithms [1]–[7]. High-bandwidth pipelined FPGA

implementations have become interesting recently thanks to

area and I/O bandwidth improvements. IBM’s DEFLATE

implementation for FPGAs [11] achieved 4 GB/s throughput

at 16 bytes/cycle; However, certain architectural choices,

Figure 9. Area vs. compression ratio at three throughput levels. Data
points are labeled with the engine size x number of engines.

58

(a)

Figure 7. Compression ratio vs. parallelization window size

B. Area-performance Trade-off

We implemented our architecture with SystemVerilog on a

modern Stratix V FPGA at 175 MHz to evaluate the tradeoffs

between area, throughput, and compression ratio. The HTD

parameter is set to 1, as we found supporting higher values

to be outside the scope of this work. Figure 8 presents

the area requirements for each module across different PWS

sizes and Table I gives the total area for each engine with

and without head/tail selection. The results show that the

design does not scale linearly, as certain modules—such as

data memory and match selection—scale quadratically with

PWS. This presents an interesting design space to users, who

can achieve a target throughput by either applying one large

engine or an array of smaller engines.

Figure 9 depicts the design space for area versus com-

pression ratio at throughputs of 5.6, 2.8, and 1.4 GB/s. Each

line represents a different throughput level, and the points

along the line are the corresponding engine configurations

(PWS x # engines). The data shows that a significant 15%

improvement to compression ratio can be achieved if an

additional 64% area can be spared for a PWS=32 engine.

C. Comparison

Table I compares our implementation, with PWS set

between 8 and 32, to the fastest ZLIB mode, the IBM

Figure 8. FPGA area in ALMs required for each module at varying PWS
(head/tail selection included).

results from [11], and the Altera results from [12]. For a

fair comparison, we used only Calgary Corpus that their

results are also based on. We found that the high-throughput

hardware accelerators outperformed the throughput of one

CPU core running ZLIB by up to 2 orders of magnitude.

However, all of the hardware implementations in Table I

sacrifice some amount of compression ratio to improve DE-

FLATE’s hardware amenability. The discrepancy between

our designs and the other hardware accelerators can be

partially accounted for by the hash table design; the IBM

and Altera designs keep more candidate positions than

ours, which we will match with a depth of 2 in future

work. Finally, we found our design to be significantly more

resource-efficient than IBM’s or Altera’s, achieving 1.4-2.7x

and 1.6-3.0x, respectively, better throughput/area across the

various PWS settings. With further clock rate optimizations

this lead would increase, because a PWS of 16 running at

IBM’s 250 MHz would result in the same 4 GB/s throughput.

VI. RELATED WORKS

Decades of research has investigated different compres-

sion algorithms [1]–[7]. High-bandwidth pipelined FPGA

implementations have become interesting recently thanks to

area and I/O bandwidth improvements. IBM’s DEFLATE

implementation for FPGAs [11] achieved 4 GB/s throughput

at 16 bytes/cycle; However, certain architectural choices,

Figure 9. Area vs. compression ratio at three throughput levels. Data
points are labeled with the engine size x number of engines.

58

(b)

Figure 2.7: The effect of varying the PWS on a) the compression ratio on the
Calgary corpus and b) the hardware area cost (Figures from [5]).

bytes, their design can compress at an input throughput of 2.8 GB/s with a

clock frequency of 175 MHz. The pipeline has 58 stages and it achieves a mean

compression ratio of 2.05 on the Calgary corpus. It is unspecified whether

this is an arithmetic mean or geometric mean. While the throughput of their

design is slightly less than that of [27] and [28] for a 16-byte PWS, their design

is much more area-efficient. It uses 39,078 ALMs, which is about one third

of the area of the other two designs. Unfortunately, the number of memory

blocks used is not disclosed. Their architecture is also designed to be easily

scalable to various window widths. As they found from their results, shown

in Fig. 2.7, the compression ratio increases logarithmically with the window

width while the area for most modules increases quadratically, meaning that

diminishing returns are obtained when scaling the window width increasingly

high. A 32-byte PWS design has an input throughput of 5.6 GB/s and average

compression ratio of 2.09 but uses 2.8 times more chip area than the 16-byte

PWS design.

In [6], which focuses on task co-scheduling between CPUs and FPGAs,

a compression accelerator is developed using Vivado HLS. Since the focus of

paper is not on accelerating compression, minimal details on their compressor

design are shared and their results are not very competitive. They based their

design on [27] and [5] and used a similar 16-byte PWS pipeline. They used

a Xilinx Kintex UltraScale KU115 FPGA with a clock frequency of 200 MHz

21

and achieved a peak bandwidth of 2.8 GB/s. This is less than the expected

bandwidth of 3.2 GB/s because of pipeline bubbles (i.e., unused clock cycles)

caused by accessing the FPGA external Dynamic Random-Access Memory

(DRAM). When compressing the Calgary corpus, they achieved a geometric

mean compression ratio of 1.73. Their design uses 12.6% of the Lookup Tables

(LUTs) and 4.9% of the Flip-Flops (FFs) on the KU115 chip, which is 83,583

of the 663,360 LUTs and 65,009 of the 1,326,720 FFs. The number of Block

Random-Access Memories (BRAMs) used is not disclosed.

As reported in [5], single-engine compressor designs start to become un-

scalable for very wide PWS values. Consequently, the authors of [7] focused on

using multiple compressor engines in parallel in order to improve the compres-

sion throughput while maintaining area efficiency. By increasing the number

of compressors instead of increasing the PWS, the throughput can be increased

while the area usage scales linearly instead of quadratically. This comes at the

cost of reduced compression ratios as multiple compressors cannot compress

as efficiently as a single compressor due to match opportunities being lost. As

also discovered in [5], the compression ratio increases minimally with a wider

PWS. This disappointing improvement is because matches of length 24 and

32 are, in practise, rarely encountered in most data files. For these reasons,

the authors of [7] chose to use a PWS of 16 bytes for their compressors.

Along with designing a multi-engine compression system, the authors of

[7] also made a few improvements over the single compressor design from

[5]. Instead of running the hash banks at double the system clock frequency,

which limits the overall system clock frequency, they chose to run them using

the same clock frequency in order to achieve a higher overall clock frequency.

They also use the hash bank architecture with multiple depth levels to store

and compare with more previous matches. They use a combination of the

banked hash table design from [5] and the combined hash table dictionary

from [27]. Their compressor design uses one hash dictionary containing both

strings and positions that is split into 32 banks, with each bank having 3

depth levels. At every clock cycle, the 16 substrings in the input window

are hashed and will attempt to access one of the 32 banks. Each accessed

22

bank returns a string and position from each of the 3 depth levels. Instead of

mapping the strings read from each bank back to the substring that accessed

it for comparison, which would require 16-byte wide Multiplexers (MUXs),

they perform the comparisons at the output of each bank before mapping the

best match length to each substring, which only requires 5-bit wide MUXs (as

the lengths of the matches can only be from 0 to 16). The comparisons can

be performed at each bank with the input substrings as they are written to

the bank since the read takes place one clock cycle before the write operation.

This MUX optimization helps to reduce the area consumption and improve the

clock timing. As with previous designs, they perform the Huffman encoding

portion using static codes only and using a series of pipeline stages composed

of ROM encoders and shift-OR operations.

Each compressor has a clock frequency of 200 MHz and can compress 3.2

GB/s. One compressor engine on its own occupies 38,297 ALMs and is able

to achieve an average compression ratio of 2.10 on the Calgary corpus. For

comparison with previous works, [27] and [5], they implement a multi-engine

compressor on a Stratix V FPGA, which has enough area to fit three compres-

sion engines on it. This provides a collective input compression throughput

of 9.6 GB/s and an average compression ratio of 2.05. They also implement

a four-engine compressor design on a larger Intel Arria 10 FPGA capable of

compressing 12.8 GB/s with a compression ratio of 2.03. They found, however,

that the CPU-FPGA interface ends up limiting these throughputs to practi-

cal values of 3.9 GB/s for the three-engine compressor and 10.0 GB/s for the

four-engine compressor.

A summary of all the previous works described is shown in Table 2.6. For

Table 2.6: Past Hardware-Accelerated Deflate Compressors

Reference FPGA Language Clock Input Area Utilization Compression

Platform Frequency Throughput Ratio

[28] (2013) Stratix V A7 Verilog 200 MHz 3.00 GB/s 105,624 ALMs, 1,152 M20Ks ?

[27] (2014) Stratix V A7 OpenCL 193 MHz 2.84 GB/s 110,318 ALMs, 1,792 M20Ks (Geo.) 2.17

[5] (2015) Stratix V SystemVerilog 175 MHz 2.80 GB/s 39,078 ALMs, ? M20Ks 2.05

[6] (2018) KU115 C/C++ 200 MHz 2.80 GB/s 83,583 LUTs, 65,009 FFs, (Geo.) 1.73

(Vivado HLS) ? BRAM18Ks

[7] (2018) Stratix V ? 200 MHz 3.20 GB/s 38,297 ALMs, ? M20Ks 2.10

23

a fair comparison, the results shown for [5] are for a PWS of 16 bytes and

the results shown for [7] are for one compressor engine. The geometric mean

compression ratios are identified in the table while the remaining means are

uncertain to be geometric or arithmetic. As seen from Table 2.6, although they

provide lower compression ratios than software compressors (from Section 2.2:

zlib achieves geometric mean compression ratios of 3.19 and 2.76 using dynamic

and static compression, respectively), FPGA-based compression accelerators

can achieve throughputs on the order of multiple GB/s. This is orders of

magnitude faster than software implementations, which can typically compress

around 50 MB/s5, with some implementations reaching over 300 MB/s [30][31].

GPU-based compression accelerators seem to be rarer but also perform on

the scale of hundreds of MB/s [32]. Of the above described FPGA-based

compressor designs, the one from [27] stands out for achieving the highest

possible compression ratios using a fully connected hash dictionary design,

while the design from [7] appears to be the fastest and most scalable single-

core compressor design. These two designs, in particular, influenced our design

the most.

2.3.2 Works Related to Decompression

To perform Deflate decompression (sometimes referred to as Inflate), the two

main encoding stages, Huffman encoding and LZ77 encoding, need to be re-

versed. The ability to perform these processes in parallel, however, is signif-

icantly hampered by the Deflate compressed format. First, the Huffman en-

coded blocks need to be parsed and decoded but, as mentioned in Section 2.1,

the locations of the boundaries between the blocks are completely unknown.

This means each block must be processed serially until the EOB marker has

been decoded, which impacts the ability to perform Huffman decoding on more

than one block in parallel.

There is one technique for overcoming the problem of finding exploitable

5The multi-core server workstation that was used to perform the design and synthesis
work in this thesis, containing an i7-3930K CPU and 32 GB of RAM, was able to achieve
an average input compression throughput of 7.74 MB/s when dynamically compressing the
Calgary corpus.

24

parallelism called speculative parallelization. Once the EOB code is known

(either by identifying a block as static or by assembling its dynamic code

tables), the compressed data can be scanned ahead for the block’s EOB code. If

a block’s EOB code is found (and therefore the next block boundary is located),

the next block can begin being Huffman decoded in parallel with the current

block. Unfortunately, the possibility of finding false-positive boundaries exists

due to 1) the absence of byte-alignment in the compressed format and 2) the

extra bits that follow the length and distance codes, which can mimic the EOB

code. Deflate blocks can also be any size and a compressed file could even be

composed of only a single Deflate block, meaning that block boundaries can

be difficult to find or even be non-existent. It is for these reasons that the

process is speculative and any potential speedup obtained is statistical.

Speculative parallelization helps to accelerate the Huffman decoding pro-

cess but it leaves unaddressed the LZ77 decoding process, which is also difficult

to parallelize. Since the length-distance pairs can have distances up to 32,768

bytes away and because Deflate blocks can be any size, it is possible for a

length-distance pair to point to data held in another block. This inter-block

dependency prevents LZ77 decoding from being performed on multiple blocks

in parallel. Some proposed solutions to these problems by related works will

be examined. Since the number of published works on decompression acceler-

ator designs is much smaller than on compression accelerators, a broader look

will be taken at various papers across different platforms beyond just FPGA-

based designs. Decompression throughput can be measured at the input (i.e.,

bytes of compressed data processed per second) or the output (i.e., bytes of

uncompressed data processed per second) and will be specified as such when

known.

In paper [33], the authors propose a configurable software algorithm for

speculative parallelization. In this algorithm, they add two tests to validate

the accuracy of a prospective block boundary. The first test checks the 3-bit

block header that follows a block boundary; if BTYPE is 0b11, corresponding

to an erroneous block, the boundary is known to be false. The second test is

an attempt to perform Huffman table reconstruction for a dynamic Huffman

25

block; a false boundary may cause errors to occur during the table construction

process. It is still possible for false-positive boundaries to pass both of these

tests and, if so, it isn’t until the first Huffman decoder has processed up to the

point that the second decoder started from that it is known for certain, whether

or not the speculative work done is valid. The scanner in their algorithm is

configurable with different parameter settings like “minimum block length”

and “speculated range” in order to aid with boundary prediction. In order

to parallelize the LZ77 portion of decompression, they rely on the presence of

stored blocks within the compressed file. Since zlib has the tendency to create

stored blocks with sizes above 16 kB, the 32 kB history buffer of an LZ77

decoder can be filled using two consecutive stored blocks. This creates a point

in the data stream where the LZ77 decoding can be done in parallel. As the

authors of [33] found, however, the presence of these stored blocks is unreliable.

Many compressed files do not contain any stored blocks at all, and those files

that do may not have the blocks uniformly distributed to take advantage of.

Because of this, [33] reports speedups of only 1.24 to 1.80 times faster than

sequential software decompression (actual decompression throughputs are not

given).

The authors of [34] expand on the work done in [33] and implement a spec-

ulatively parallel decompression algorithm using Apache Spark [35], a software

framework for parallel computing. Using this, multiple speculative threads are

spawned across a cluster of CPUs and are each given parts of the compressed

file to decompress in parallel. Each thread performs tests to check for false-

positive boundaries as done in [33] and any invalid threads are cancelled. Once

all threads are finished, the results are merged and output. In the worst-case

scenario, the data is decompressed sequentially using a single thread. No in-

formation is given on if and how the LZ77 decoding process is performed in

parallel. Using a cluster of six CPUs (containing a total of 24 threads), they

achieve average input decompression throughputs between 18 and 24 MB/s,

which is a speedup of about 2.6 times compared to sequential decompression

(about 7 MB/s).

The authors of [36] investigated the feasibility of randomly accessing parts

26

Thread 0

Thread 1

Thread 2

Thread 1

Thread 2

First pass:
decompression

with undetermined
symbols

Second pass:
resolving

undetermined
symbols

0 Decompressed stream postion

Back-references to
undetermined symbols

Fig. 3. Two passes decompression (pugz). The first pass decompresses each part of the gzip file in parallel with initially undetermined windows ŵ
containing unique symbols, for tracking back-references. The second pass resolves theses back-references with the initial context obtained from the previous
part in the decompressed stream.

Dataset Random access to sequences
Compress.

level
Number
of files

Total size
(GB)

Delay to sequence-
resolved block (MB)

Unambiguous
sequences (%)

Lowest 26 53.8 52.4 ± 55.8 100.0 ± 0.0
Normal 68 111.8 387.5 ± 731.6 72.5 ± 37.6
Highest 6 27.2 1,292.6 ± 1,531.9 36.8 ± 45.2
Total 100 192.8 317.8 ± 703.7 77.5 ± 36.5

TABLE I
COMPRESSION LEVEL, NUMBER AND SIZE OF FILES IN OUR DATASET. We
performed random access decompression of sequences as per Section VI-B
at 4 different locations in each file: 1

4
th, 1

3
rd, 1

2
th, and 2

3
rd of the total file

size, each time until the end of the file. ”Delay to sequence-resolved block”
reports the average number of bytes decompressed until a sequence-resolved

block is found. ”Unambiguous sequences” gives the percentage of
sequences without any undetermined character returned by the heuristic

parser after the first sequence-resolved block.

(ERA966074 and ERA990245), a dozen of sequences out
of respectively 11 and 27 million contain undetermined nu-
cleotides. Therefore, one can perform virtually exact random
accesses to low-compression files, requiring only around 52
MB of decompression to ’prime’ the context.

However at the normal and highest compression levels, only
respectively 72% and 37% of sequences on average are fully
determined after a sequence-resolved block. This is likely due
to back-references that occur between DNA sequences and
quality sequences or headers, which can also harbor DNA
characters. At the normal compression level, in 48% of the files
(data not shown), nearly all returned sequences (99.9–100%)
are unambiguous. For the rest of the files, either no sequence-
resolved block is found or a variable fraction of sequences
contain undetermined characters.

B. Propagation of initial contexts

To further understand why some FASTQ files lend them-
selves to random access decompression and some do not, we
instrumented our implementation to track how far characters
from the initial undetermined context travel along matches.
We also compared the undetermined context with the cor-
responding actual context and annotated each character by
type: DNA, quality value, sequence header, or quality header
(usually just the ’+’ character). Figure 4 shows two instances
of FASTQ files being decompressed from a random location.
We observe that in the top plot (normal compression), none

Method gunzip libdeflate pugz, 32 threads
Speed (MB/s) 37 118 611

TABLE II
DECOMPRESSION SPEEDS (MEGABYTE OF COMPRESSED DATA PER

SECOND) FOR SEQUENTIAL AND PARALLEL GZIP-COMPATIBLE
SOFTWARE. The 3 first FASTQ files of experiments ERA970963,
ERA973411 and ERA981545 were preloaded into memory and

decompressed three times each. The average wall-clock time over
compressed file size was recorded.

of the initial context characters that encode DNA sequences
remain in matches after around position 221 in the decoded
stream; but a small amount of quality values do. Some headers
characters remain until the end of the file. In other files with
normal compression levels, none of the quality values from
the initial context remain until the end of the file (data not
shown). However, in the bottom plot (highest compression),
parts of the DNA sequences remain in matches until the end
of the file. This is likely due to gzip trying harder at finding
long/far matches instead of outputting literals.

C. Parallel decompression speed

We performed parallel decompression of three FASTQ files
(of sizes 3–7.5 GB) at normal compression level. The files
were preloaded into system memory to avoid IO bottlenecks:
the purpose of this benchmark is to compare pure decompres-
sion speeds of gunzip, libdeflate, and pugz. We ran
pugz using 32 threads; gunzip and libdeflate cannot
be multi-threaded.

We further observed that synchronizing outputs between
threads, or piping to wc, degrades performance (10–20%).
Therefore we redirected all outputs to /dev/null. For
pugz, we allowed each thread to write to the output without
synchronization, to mimic the behavior of a FASTQ parser (as
in some applications, the order of the reads is irrelevant).

Table II shows that pugz is 16.5x faster than gunzip and
5.2x faster than libdeflate. Figure 5 shows parallel scaling
performance.

VIII. DISCUSSION

We developed the first parallel decompression algorithm
for gzip-compressed ASCII files. Note that the current im-
plementation requires the whole decompressed file to reside

Figure 2.8: A diagram showing the two-pass speculative parallelization method
(Figure from [36]).

of compressed DNA files, specifically of the FASTQ format [37], and devel-

oped a parallel decompression algorithm to accelerate this. These FASTQ

files contain DNA sequences and are typically very large, requiring them to

be compressed losslessly using an algorithm like Deflate. Because of the De-

flate format, in order to access even a small portion of the large FASTQ file,

the entire compressed file must be decompressed. For this reason, the au-

thors investigated the ability to begin decompressing a file from a random

point within it. Like previous works, they use speculative parallelization to

find block boundaries where decompression can be started. FASTQ files are

a text-based format that contains byte-aligned ASCII characters with values

from 0 to 127. The authors exploit this as another way of testing for false-

positive block boundaries. If a literal character outside of the range is decoded,

the speculated block is invalid. In order to parallelize the LZ77 decoding pro-

cess, they perform two passes on the data. On the first pass they perform LZ77

decoding on each block and skip any back-references that point to undeter-

mined data. Then the data is passed through a second time and the skipped

back-references are resolved. A diagram showing this process is shown in Fig.

2.8. While decompressing compressed FASTQ files using 32 threads in paral-

lel, they are able to achieve average input decompression throughputs of 611

MB/s.

As can be seen from the previous paragraphs, the standard Deflate format

makes parallelization of the processes difficult. The authors of [4] attempt to

overcome these problems by altering the format. By making relatively simple

27

changes to the Deflate format, they could achieve tremendous decompression

speedups. In their so-called “Gompresso” format, each Deflate block is a fixed

size and is split up further into sub-blocks. The size of each of these sub-blocks

is included in a file header at the beginning of the compressed file, allowing

each sub-block to be easily parsed and Huffman decoded in parallel. Since the

blocks in the format are compressed in parallel as well, LZ77 back-references

between blocks don’t exist. This means LZ77 decoding of each block can also

be performed in parallel. The authors take things a step further and include

the option of preventing nested back-references within a block, eliminating

intra-block dependencies as well. This allows a single block to be processed

by multiple threads in parallel. The authors implemented their Gompresso

compression/decompression framework using GPUs and were able to achieve

average output decompression throughputs of over 13 GB/s. This throughput

was limited by the PCIe interface and was actually closer to 16 GB/s ignoring

data transfer rates. In order to take advantage of these impressive decompres-

sion speeds though, the files needed to be compressed using the Gompresso

format.

The following related works are decompressor designs implemented using

FPGAs. Instead of attempting to parallelize the Huffman and LZ77 decoding

processes, these designs aim to exploit the parallel resources on FPGAs in

order to accelerate them. The authors of [38] describe a two-core pipelined

system composed of a Huffman decoder and an LZ77 decoder. For simplicity,

the Huffman decoder is only capable of decoding static Huffman blocks. The

Huffman decoder has a 32-bit wide input interface. Since static literal/length

codes are anywhere from 7 to 9 bits long, they can be decoded by taking 9 bits

from the input and looking them up in a 512-index LUT6. The table identifies

the data as a literal, a length, or the EOB symbol. If the symbol is a length,

the extra bits are obtained and the following 5-bit distance code is looked up in

another LUT. The Huffman decoder takes 3 clock cycles to decode a literal and

6 cycles to decode a length-distance pair. The authors claim that the Huffman

6All 9-bit codes will appear once in the table, all 8-bit codes will appear twice, and all
7-bit codes will appear four times.

28

decoder is also capable of processing dynamic codes if the Huffman code tables

are recreated off-chip and then given to the FPGA-based accelerator core.

Since the dynamic codes can be up to 15 bits long, however, this would require

two 32,768 index LUTs to decode both literals/lengths and distances in the

same manner. Following decoding, the literal or length-distance pair is then

written to the output. In between the Huffman decoder and LZ77 decoder

is a First-In, First-Out (FIFO) memory that alleviates stalling between the

two cores and allows them to be run at different clock frequencies. The LZ77

decoder is responsible for resolving all of the length-distance pairs and contains

a circular buffer with enough space to hold the last 32,768 bytes. This circular

buffer is assembled using dual-port BRAMs so that read and write operations

can be performed simultaneously. The LZ77 decoder will record literals in the

buffer as it receives them and passes them to the output. When it receives

a length-distance pair, it reads 1 byte of the back-referenced string from the

circular buffer every clock cycle while writing it back to the head of the buffer

and the output. The Huffman decoder has a clock frequency of 160 MHz

while the LZ77 decoder has a clock frequency of 212 MHz. Their design was

synthesized for a Xilinx XC4VFX12 FPGA and both cores together occupied

128 FFs (2%), 387 LUTs (3%), and 18 RAMB16s (50%). They tested their

design using static-Huffman-only compressed versions of the Calgary corpus

and achieved a maximum output throughput of 205.71 MB/s, a minimum

output throughput of 79.26 MB/s, and an average output throughput of 158.64

MB/s.

The authors of [39] implemented a single-core zlib decoder as part of an

expandable zlib decoding system for FPGAs. The system was designed to

incorporate multiple zlib decoders to allow for the decompression of multiple

files in parallel. Much of their work describes how they directly translated

the software code of the zlib library into VHDL hardware code. This in-

cluded strategies like adapting function inputs and outputs into buffers for

streaming as well as changing the dynamically allocated arrays into statically

defined FIFOs and BRAMs. Their design is capable of processing both static

and dynamic Huffman codes but the amount of time required to decode each

29

2­bit Code Base Address

1­bit Codes

2­bit Codes
Length/Literal
Symbol

1­bit Code Base Address

15­bit Code Base Address
15­bit Codes

286 Index BRAM

Offset

Figure 2.9: The area-efficient Huffman table memory design from [40].

was unfortunately not disclosed. Their design was synthesized for a Xilinx

XC5VLX110T FPGA and has an area utilization of 20,596 LUTs (29%) and

11 BRAM tiles (7%). With a clock frequency of 120 MHz, their zlib decoder

was able to achieve a maximum input throughput of 125 MB/s. The test files

they decompressed and the average throughput speeds were not described.

In [40], the authors implement an FPGA-based decompressor core that

uses an efficient Huffman table memory design. As mentioned above when

describing reference [38], in order to decode the dynamic 15-bit Huffman codes

directly using LUTs, 32,768 index tables are required. Since there are only

286 literal/length symbols and 30 distance symbols, the majority of the table

entries would be duplicates for all of the codes that are less than 15 bits. The

authors of [40] came up with a design that slightly complicates the decoding

process but is able to fully utilize a 286-index table for literal/lengths and a

32-index table for distances. As mentioned in Section 2.1, the Huffman codes

used by Deflate are canonical, meaning that all of the codes of each length

have consecutive values. This means if the base address and base value for

each code length are recorded, each code can be looked up relative to its base

address. This process involves comparing the unknown-length code bits to the

15 different base code values to determine the actual bit-length of the currently

held code. Then the address for the code is calculated using its base address

and it can be decoded using the table, as shown in Fig. 2.9. This design

30

was used by us in our Huffman decoder and is described in more detail in

Section 4.2.1. Few other details regarding the design in [40] were given. It was

designed as a decompressor core to be used as part of a multi-core system for

an Intel/Altera Cyclone III 80 FPGA. The FPGA resource utilization is not

described. The authors report a maximum decompression throughput of 300

MB/s but they do not list the test files decompressed or give average values. It

is unknown whether this throughput was measured at the input or the output.

They also do not specify whether this result is from using one core or multiple

cores in parallel.

A proprietary decompression IP core created by Cast Inc. is available for

purchase on Xilinx’s website [41]. Though many details of the design are

not disclosed, it can be used as a point of comparison. Their core is stated to

output 3 bytes per clock cycle on average and operates with a clock frequency of

125 MHz, which equates to an average output throughput of 375 MB/s. When

processing static-only compressed files, the core can run at a frequency of 165

MHz for an output throughput of 495 MB/s. One sample implementation

is given for a Xilinx XCKU060 FPGA: when configured for dynamic mode

the core uses 8,250 LUTs and 29 BRAM tiles (58 BRAM18Ks) and when

configured for static-only mode the core uses 5,392 LUTs and 10.5 BRAM

tiles (21 BRAM18Ks).

Table 2.7 shows a summary of all the decompression related works de-

scribed in this section. The throughputs are specified as average or maximum

and input or output values as disclosed in their respective works. As seen from

the results, FPGA-based decompression accelerators are able to provide input

throughputs on the order of hundreds of MB/s, much higher than most soft-

ware decompressors are able to, which typically have values around 20 MB/s7.

The results from [4] show that simple alterations to the standard Deflate for-

mat can allow for tremendous improvements in decompression throughput.

While the strategy of speculative parallelization is a good idea for potentially

7The multi-core server workstation that was used to perform the design and synthesis
work in this thesis, containing an i7-3930K CPU and 32 GB of RAM, was able to achieve
an average input decompression throughput of 17.14 MB/s on the dynamically compressed
Calgary corpus.

31

Table 2.7: Past Deflate Decompression Accelerators

Reference Platform Throughput Details

[33] (2013) Software 1.24-1.80x speedup Over sequential decompression

[34] (2017) Software 18-24 MB/s (average, input) Using 24 threads on ApacheSpark

[36] (2019) Software 611 MB/s (average, input) On FASTQ format files with 32 threads

[4] (2016) GPU 13 GB/s (average, output) On Gompresso format files

[38] (2007) FPGA 158.64 MB/s (average, output) On static-only Calgary corpus files

[39] (2009) FPGA 125 MB/s (max, input) Unknown test files

[40] (2010) FPGA 300 MB/s (max) Unknown test files

[41] (2016) FPGA 375 MB/s (average, output) On unknown dynamic test files

495 MB/s (average, output) On unknown static test files

speeding up decompression, other more reliable strategies for improvement

still remain, like harnessing the inherent parallelism available in FPGAs. The

work done in [39] made us aware of the challenges associated with performing

dynamic Huffman decoding using LUTs while the design in [40] provided a

useful solution to this problem. All of the designs showcase the importance of

testing decompression using a standard benchmark of test files, as the types of

files being decompressed play a critical role in the decompression throughputs

that are achievable.

2.4 Summary

In this chapter, we described the background information on Deflate and ex-

plored works related to Deflate compression and decompression. In Section

2.1, we detailed the Deflate compression algorithm and format, and in Sec-

tion 2.2 we briefly described the Calgary corpus benchmark, which we will use

to test our designs. In Section 2.3.1, we described the design progression of

related works on FPGA-based compression accelerators. Current state-of-the-

art compressor designs utilize a constant-throughput pipeline with a parallel

sliding window in order to rapidly perform LZ77 matching, thereby sacrificing

compression ratio in order to maximize compression throughput. In Section

2.3.2, we explained some of the fundamental limitations of the Deflate format

that prevent the parallelization of decompression and examined a variety of

works that attempt to work around these limitations. Though the number of

published FPGA-based decompressor designs is relatively small, we were able

32

to find a few that provided useful ideas upon which to base our design.

33

Chapter 3

Compressor Design

Our plan for an FPGA-based compressor design was to follow the current

state-of-the-art architecture as used by most other related works (described

in Section 2.3.1) and to improve the resulting compression throughput and

compression ratio further while implementing our design using Vivado HLS.

This architecture utilizes a parallel sliding window (of PWS bytes) to perform

LZ77 matching on multiple substrings at a time. The compressor design is

pipelined to compress data at a fixed rate using static Huffman encoding only.

Performing the Huffman encoding operation is relatively simple as it involves

encoding characters using tables stored in FPGA LUTs and then shifting and

OR-ing together the various bit-width codes in the output window. Most of

the focus of previous designs appears to be on the LZ77 encoder and on maxi-

mizing the compression throughput. As pointed out in [7], in order to increase

the compression throughput of a compressor system, it is more sustainable

to utilize multiple compressor cores than it is to increase the PWS of a single

compressor. Match lengths (which are limited by the PWS value) greater than

16 bytes are also rare, and so the consensus seems to be that increasing the

PWS for the purposes of achieving higher compression ratios is not worth it.

Utilizing multiple parallel compressors results in less-efficient matching being

performed (due to each compressor relying only on its own data history) and

causes the compression ratio to decrease slightly. Most previous designs have

focused on maximizing the compression throughput even at the cost of a lower

compression ratio. Currently, however, the maximum achievable throughputs

34

obtained by multi-compressor architectures are being bottle-necked by the

CPU-FPGA interface as reported by [7]. For the above reasons, we chose to

focus on implementing a single compressor core design with the goal of achiev-

ing high compression ratios while still maintaining competitive throughput

values. The proposed compressor has PWS value of 16 bytes and will utilize

a constant-throughput pipeline by performing static Huffman encoding only.

Both the LZ77 encoder and Huffman encoder will be pipelined with an Initia-

tion Interval (II) of 1, meaning that they can read in new input data (i.e., 16

bytes) every clock cycle. Our desired clock frequency is 250 MHz (4 ns period),

which, when compressing 16 bytes per clock cycle, would provide a compres-

sion throughput of 4.0 GB/s. Unlike most other earlier works on compressor

cores, our designs were implemented using Vivado HLS in order to evaluate

the capabilities and limitations of high-level synthesis.

3.1 Initial Design

Since our focus lay more on increasing the compression ratio than increasing

the throughput, our initial design adopted the dictionary architecture from

[27], which had the highest geometric mean compression ratio of all the pre-

vious works when compressing the Calgary corpus. This design differs from

the others in how it uses a fully connected dictionary design instead of a hash

banking design. Enough dictionaries and dictionary copies are used so that

each of the 16 substrings in the window (with a PWS of 16) is able to look up 16

potential matches for a total of 256 total match comparisons being performed

in every clock cycle. Because of the fully connected design, no hash collisions

can occur and, as a result, no matches are ever dropped, which leads to higher

compression ratios than in other designs, where potential matches are dropped

as a result of hash collisions. This type of fully connected dictionary architec-

ture comes at a cost, however. Each stored string requires 16 bytes while their

positions will require another 4 bytes (if we assume 32-bit positions are being

used). With a 10-bit hash value, each dictionary will have 1024 indexes (as

in [27]) and will be replicated 16 times to allow uncontested access. In total:

35

20 bytes × 1024 indexes × 16 dictionaries × 16 copies = 5,242,880 bytes of

storage required. On a Xilinx FPGA, this requires 2048 BRAMs (BRAM18Ks

specifically) for the strings and 512 BRAMs for the positions totalling 2560

BRAMs altogether, which is more BRAMs than most contemporary FPGAs

provide. Assuming that the number of available BRAMs is not an issue, the

other problem that we encountered with this design was with meeting clock

timing due to all of the extra routing delays incurred by the relatively large

layout area. Vivado HLS was easily capable of synthesizing a design that could

logically meet timing; however, following implementation in Vivado, the de-

sign ended up requiring a clock period around 7 ns due to all of the routing

delays, which is almost double that of our target clock period of 4 ns. Because

of this massive difference, we decided to change our design to one that would

require fewer BRAMs and, consequently, would be easier to meet post-route

timing.

3.2 Final Design

A block diagram of our final compressor design is shown in Fig. 3.1. It is

composed of only two cores, an LZ77 encoder and a Huffman encoder, both

of which were specified in C++ and synthesized using Vivado HLS. Both

of the cores have AXI-Stream interfaces [42], a standard interface used by

Xilinx FPGA systems to facilitate high-speed unidirectional data transfers in

streaming architectures. The AXI-Stream interface functions using handshake

[255:0]TDATA

[31:0]TKEEP

[0]TLAST[0]TLAST

[31:0]TUSER

[127:0]TDATA

[15:0]TKEEP

[0]TLAST

[383:0]TDATA

LZ77
Encoder

Huffman
Encoder

16	input	bytes

Output	
AXI-Stream

Input	
AXI-Stream

16	x	3-byte	boxes 32	output	bytes

Figure 3.1: Final compressor block diagram with AXI-Stream interfaces de-
scribed.

36

signals (not shown in the block diagram), which consist of a forward travelling

TVALID signal and a backwards travelling TREADY signal. TDATA is the

name of the main AXI-Stream data-carrying channel, while the remaining

signals, TKEEP, TUSER, and TLAST, are optional sideband signals. The

TKEEP signal is used by multi-byte data streams to indicate which bytes in

the current transfer are valid, the TLAST signal is used to indicate the last

transfer in a data stream, and the TUSER signal can be employed by the AXI-

Stream user for passing any other desired data alongside TDATA. In our case,

we use the TUSER signal in between the two encoders in order to indicate

which bytes are matched literals, unmatched literals, or length-distance pairs.

This is explained in further detail below.

3.2.1 LZ77 Encoder

As mentioned before, we followed the same structure as other previous works

and used the parallel pipelined LZ77 encoder design with a PWS of 16 bytes.

A block diagram describing the stages of the LZ77 encoder pipeline is shown

in Fig. 3.2. At every clock cycle, 16 bytes of data are read from the input

stream and shifted into a 32-byte window. Across this 32-byte window are 16

staggered substrings, each 16 bytes long (see Fig. 2.5). It is these 16 substrings

that will attempt to be matched with previous strings in order to replace them

with length-distance pairs. To do this, the first 5 bytes from each substring

Shift data into
window, hash
window bytes

Determine
substring
bank access

Read strings,
perform match
comparisons

Write
substrings,
select best
match length

Stage
1 2-11 12 13 14-39 40-43

Prepare output
window boxes

16 3-byte
boxes

.

.

.

16 bytes

.

.

.

Filter and
trim matches

Stages Stage Stage Stages Stages

Figure 3.2: LZ77 encoder pipeline diagram.

37

are taken and hashed to generate 16 hash signatures. The hashing process

is explained in more detail later in Section 3.2.2. We used the hash bank

architecture from [7], which utilizes 32 hash banks with each bank having 3

depth levels. Each of our hash banks has 512 indexes in order to fully utilize the

BRAM storage space, as shown in Fig. 3.3a. These hash banks are accessed

by the 16 substrings based on their hash signatures with priority given to

the last substring first, since last-fit match selection is performed later. If a

substring is granted access (i.e., another substring has not already accessed

its desired bank), that substring will be written to the bank and location that

its hash signature addresses. Otherwise, the substring is dropped and is not

recorded or compared with previous strings. As the substrings are recorded

in the dictionary banks, new strings are recorded in the top depth bank while

each previously stored string is written from one depth to the next, effectively

shifting each of the strings down a level with the oldest string being discarded.

At the same time, the previous strings from each depth level are read and

compared to the input substrings to find potential matching strings. With a

depth of 3 levels, 3 potential matches are read and compared to each input

substring that was granted access, as shown in Fig. 3.3b. We used the MUX

optimization from [7], in which the match comparisons are performed at the

output of the banks so that only the resulting best match length needs to be

MUXed back to the substring window. Since the match length can only be

Hash Bank Depth

.

.

.

.

.

.

.

.

.

1 2 3

N
um

be
r o

f H
as

h
Ba

nk
s Hash Bank Size1

2

32

512 indexes

(a)

1 2 3

string0 string1 string2

Input
Substring

Depth

Match
Compare

Best Length
(5 bits)

Bank to Substring MUX
(16 32-to-1 5-bit MUXes)

(b)

Figure 3.3: a) The hash bank architecture that was used in the final design.
b) The match comparisons are performed at the outputs of the banks before
being MUXed back to the substring window.

38

from 0 to 16, 5-bit wide MUXes can be used instead of 16-byte wide MUXes.

As was done in [27], we perform the match comparisons by comparing each

byte simultaneously and storing the Boolean result of each byte compared as a

bit in a bit-string. This is done instead of comparing each byte sequentially and

incrementing the length for each matching byte, as this approach would result

in an inefficient and relatively long select-adder chain. In order to convert

the resulting bit-string back into an integer value, we invert it and use the

built-in Count Trailing Zeroes (CTZ) operator1. The longest match length

out of all of the potential matches is kept and MUXed back to the substring

window. Following this, each substring in the window will have a match length.

Substrings that were not granted bank access are given match lengths of 0.

Since the matches found for each substring will conflict, the matches need to

be filtered in some manner. We followed the last-fit match selection heuristic

used in [27], in which the last match in the window is always kept as it is more

likely that later matches will be longer than earlier ones. One consequence of

allowing matches to span from the front half of the sliding window to the second

half is that matches found in the current iteration may conflict with matches

in the following iteration. The last match selected is used to calculate the First

Valid Position (FVP) in the window for the next iteration, where the window

bytes have not already been replaced with a length-distance pair. As explained

in [27], there is a feedback path from the computation of the FVP, which is

used in the next iteration. In order to prevent pipeline bubbles from occurring

and the II from being greater than 1, the FVP needs to be calculated as soon

as possible. As a result, once the FVP for the next iteration is calculated, it

cannot be changed by any of the match filters that follow.

To perform match selection, we again utilize a bit-string of 16 bits, with

each bit indicating the validity of a match within the window. As matches

are filtered, these bits are set to 0. As can be seen from Fig. 3.2, 26 of the

43 pipeline stages are used for match-filtering. The filtering process is split

across four main filters, which we have called Filters A to D. In Filter A, which

1See the “C Builtin Functions” section of the Vivado HLS User Guide [43] for more
information.

39

directly follows the best match selection stage, matches that have lengths less

than 3 or distances greater than 32,768 are filtered out (as defined by the

Deflate specifications). Next, in Filter B, the matches are compared to the

FVP in the window and any matches with characters that have been covered

by the previous iteration are filtered. Following this, the FVP for the next

iteration is calculated and the filters that follow can no longer alter this value.

Here we have also used the match “reach” heuristic from [27]. The reach of

each match is defined as its position in the window plus the length of its match,

representing how far a match length reaches within the window. Using this,

in Filter C, the reach of each match is compared to the others in order to find

matches that have the same reach as each other. In these cases, the match with

the longer length can be kept instead, even though it may not necessarily be

the last match, as this will not alter the FVP. In the final filter, Filter D, the

last-fit match selection is performed in which earlier matches that conflict with

later matches in the window are filtered. As an improvement over previous

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FVP

match 0

1

2

3

4

5

6

7

FVP (next iteration)

Covered by FVP.

Length 7, Reach 13

Length 6, Reach 13

Match 6 has same reach
as match 7 (last match),
but longer length. Can be
kept without changing FVP.

Conflicts with match 6.

Length 1.

Conflicts with match 6,
but can be trimmed to
length 3 in order to fit.

Length 5

Conflicts with match 3.

Conflicts with match 3.

Current Window (PWS 8)

Figure 3.4: LZ77 encoder match filtering example. In this example, the PWS
is 8 bytes. After filtering, only matches 3 and 6 are kept.

40

works, we have also implemented match trimming functionality to Filter D.

When an earlier match is about to be filtered for conflicting with a later one,

the filter will attempt to trim the earlier match (down to a maximum of 3

bytes) so that both matches can be kept. An example showing all four of the

match filters being used is shown in Fig. 3.4.

We will refer to the outputs from the 16 substring locations in the sliding

window as “boxes”. Following filtering, each box will be classified as containing

a matched literal, an unmatched literal, or a match (i.e., where the beginning

of a match occurs) and will be prepared for the output to the Huffman encoder.

The AXI-Stream TUSER signals are used to classify each box using a 2-bit

flag: 0b00 for matched literals, 0b01 for unmatched literals, and 0b11 for

matches. All of the boxes following a match, up to the match length, are the

matched literals and are cleared and flagged so that they can be removed from

the compressed data stream. The boxes containing matches are filled with the

length and distance of the match while unmatched literal boxes are filled with

the literal bytes from the sliding window, as shown in Fig. 3.5. In a length-

distance pair, the length requires at least 4 bits (for values 3 to 16) and the

distance requires at least 15 bits (for values 1 to 32,768), together occupying

19 bits. This means that each output box needs to be 3 bytes (24 bits) wide in

order to fit a length-distance pair, requiring a total of 48 bytes (384 bits) for

all 16 boxes. We do this so that each output box can be classified and filled

simultaneously. The alternative is to fill these boxes one at a time and spread

the length-distance pairs across multiple boxes (requiring fewer output bytes),

but this requires sequentially filling each box. Packing the length-distance

pairs into a single box as opposed to multiple boxes also allows the Huffman

encoder to encode each box separately and concurrently instead of having to

00 01 01 10 00 00 10 00TUSER

TDATA 0 Lit Lit LD 0 0 LD 0

Box 10 2 3 4 5 6 7

Figure 3.5: LZ77 encoder output window example that follows the previous
example from Fig. 3.4 (with a PWS of 8).

41

obtain the length and distance bits from multiple boxes. Consequently, the

interface between the LZ77 encoder and Huffman encoder (as shown in Fig.

3.1) is as follows: TDATA is composed of 16 3-byte boxes for a total width

of 384 bits, TUSER is composed of 16 2-bit flags classifying each box, and

TLAST signals the last transfer of the stream.

The most difficult challenge encountered when designing the LZ77 encoder

was meeting clock timing after implementation and routing in Vivado. Even

after deviating from our original design, as described in Section 3.1, this still

proved to be a major problem. Vivado HLS is only aware of the logic synthesis

stage of design and has no control over implementation and routing, which is

performed by Vivado as a separate and subsequent step. As a result, Vivado

HLS would synthesize designs that would easily meet timing from a logic

delay standpoint, but would be impossible to meet timing after routing. The

implemented designs would be prone to high routing congestion and large

setup time violations. Even when performing high-effort implementation runs

in Vivado that would attempt to reduce congestion and over-estimate net

delays, timing still could not be met. The two main areas that seemed to be

the largest contributors to the problem were the bank-access allocation stages

and the best-match-length selection stages.

We ended up solving this timing problem using two main solutions. The

first was the manual addition of extra pipeline stages to the design in Vivado

HLS in order to reduce the routing delay between pipeline stages. As Vivado

HLS is not aware of routing, it will only automatically add more pipeline stages

when necessary to meet logic timing, not routing timing. The second solution

was increasing the “clock uncertainty” parameter setting in Vivado HLS. This

setting forces Vivado HLS to restrict the logic delay to a maximum portion of

the clock period, allowing more room for routing delay later on. We ended up

using a clock uncertainty of 0.8 ns, which restricted all synthesized logic delays

to 3.2 ns. Using these two solutions, we were able to get the LZ77 encoder

design to meet the target 4 ns (250 MHz) timing.

42

3.2.2 Hash Function

Since the LZ77 encoder design that we use performs match finding at a con-

stant rate (and therefore more time cannot be spent searching for better

matches), the only other design parameter that is left affecting the output

compression ratio besides the dictionary architecture (i.e., the size and num-

ber of banks), the PWS value, and the type of Huffman encoding used is the

hash function. Since we had to switch away from a hash dictionary design

that was immune to hash conflicts, as explained in Section 3.1, we also have

to be aware of how susceptible our chosen hash function is to hash conflicts

as dropped matches seem to impact the compression ratio significantly. No

hash function is able to prevent the occurrence of hash conflicts completely;

however, we can aim to make the probability of conflicts as low as possible.

The hash function should be provided enough information from the bytes in

the sliding window to be able to find potential matching strings but not so

much information that match finding becomes too strict and potential matches

become too difficult to find. Out of all of the previous works examined in Sec-

tion 2.3.1, only one, [27], describes the hash function that was used. This hash

function is the following:

Algorithm 1: Hash Function from [27]

Input: curr window[2× PWS], array of 8-bit ints
Output: hash[PWS], array of 10-bit ints

1 for i← 0 to PWS-1 do
2 hash[i] = (curr window[i]� 2)⊕ (curr window[i+ 1]� 1) ⊕

(curr window[i+ 2])⊕ (curr window[i+ 3]);

An example of how this hash function is used to generate hash signatures

using the substrings within the sliding window is shown in Fig. 3.6. We used

this function as the starting point for our hash function experimentation. Since

our design uses 32 banks with 512 indexes each (for a total of 16,384 indexes),

we used a 14-bit hash value. The top 5 bits of the hash value determine the

bank while the bottom 9 bits determine the bank index. In order to reduce the

number of bank conflicts, we want the top 5 bits to be as random as possible

43

E x
0 1

a m p
2 3 4

curr_window l e
5 6

Input to hash[0]
Input to hash[1]

hash[0] = ("E" << 2) ⊕ ("x" << 1) ⊕ ("a") ⊕ ("m")
 = (69 << 2) ⊕ (120 << 1) ⊕ 97 ⊕ 109
 = 276 ⊕ 240 ⊕ 97 ⊕ 109

hash[1] = ("x" << 2) ⊕ ("a" << 1) ⊕ ("m") ⊕ ("p")
 = (120 << 2) ⊕ (97 << 1) ⊕ 109 ⊕ 112

= 488 = 0b 01 1110 1000

 = 480 ⊕ 194 ⊕ 109 ⊕ 112
= 319 = 0b 01 0001 1111

Figure 3.6: An example showing how the bytes from the substrings in the
sliding window are used to calculate 10-bit hash signatures using the hash
function from [27]. In this example, only the first two calculations are shown.
With a PWS of 16, there would be 16 of these calculations.

so that hash values are distributed evenly across all of the banks.

Our first attempts at improving the hash function involved varying the

amount of shifting done on each byte before XORing them together. Since we

wanted the upper 5 bits to receive the most amount of randomness, we shifted

the 4 input bytes left far enough so that each one affected the upper 5 bits

in some way. We then tried adding more input bytes to the hash function.

We found that hashing 5 input bytes instead of 4 showed an improvement

but hashing 6 bytes was worse. We believe this is because 6 bytes provides

too much information resulting in the match finding becoming too strict. The

reason for this is because when 6 bytes of a string are used to generate the hash

value, match lengths of 3, 4, or 5 become harder to find, as each additional

byte of information scrambles the hash value further. We also experimented

with using two separate hash functions: a 5-bit function for the bank and a

9-bit hash function for the index, both utilizing the input bytes in different

ways. We found, however, that these generally gave worse results than one

14-bit hash function. We believe this may be because of how bits were dropped

44

from the 8-bit inputs when they were incorporated into the 5-bit hash value,

resulting in poorer bank distribution.

Following this, we experimented with multiplication instead of shifting. In

Vivado HLS, certain bit-wise operations are optimized automatically if more

efficient operations can be performed instead. For example, multiplying a

number by 31 is automatically optimized into “left-shift by 5 bits” and “sub-

tract 1” operations. Taking the modulo of a “power of two” number simply

selects the lower order bits of a number while division by powers of two per-

forms right-shifts. This is generally an advantage of HLS but it can lead to

confusion when attempting to understand the synthesized output, which is

necessary when identifying areas where your design can be improved. We

found that replacing the left-shift operations with multiplication operations

that shifted by the same amount but also subtracted gave better results.

The next major change that we tried was combining the input bytes se-

quentially instead of concurrently. Up until now, the hash function involved

manipulating the input bytes in various ways before XORing all of them to-

gether to get the final result. Instead, we tried performing something similar

to a rolling hash function, where each input byte is incorporated into the hash

one-at-a-time. From here, we experimented with shifting and multiplying by

various values as well as XORing or adding the results to the hash. We then

began performing various rotations on the hash function in-between incorpo-

rating the input bytes. We found that some hash functions worked better to

improve the compression results of the non-ASCII data files, like geo and pic,

while others work better on ASCII text data files. As a result, it was difficult

to find a hash function that worked well across all of the different files in the

Calgary corpus. In total, we tried about 100 different variations of hash func-

tions. The compression ratio results from all of the different hash functions

that we tried are shown in Fig. 3.7. As can be seen from this figure, most

of the functions tested provided compression ratios within the range of 1.80

to 2.00, with a few outliers falling below this range. The best hash function

tested provided arithmetic and geometric mean compression ratios of 2.00 and

1.92, respectively, on the Calgary corpus. This hash function is the following:

45

Algorithm 2: Our Chosen Hash Function

Input: curr window[2× PWS], array of 8-bit ints
Output: hash[PWS], array of 14-bit ints

1 for i← 0 to PWS-1 do
2 hash[i] = (curr window[i]× 31)⊕ (curr window[i+ 1]);
3 hash[i].rrotate(4);
4 hash[i] = (hash[i]× 3)⊕ curr window[i+ 2];
5 hash[i].rrotate(4);
6 hash[i] = (hash[i]× 3)⊕ curr window[i+ 3];
7 hash[i].rrotate(4);
8 hash[i] = (hash[i]× 3)⊕ curr window[i+ 4];

Hash Functions

Co
m

pr
es

si
on

 R
at

io

1.40

1.60

1.80

2.00

Arithmetic Mean Geometric Mean

(a) Column Chart

Compression Ratio

Co
un

t

0

20

40

60

80

1.49 1.53 1.57 1.61 1.65 1.69 1.73 1.77 1.81 1.85 1.89 1.93 1.97 2.01

Arithmetic Mean (count) Geometric Mean (count)

(b) Histogram

Figure 3.7: Compression ratio results from experimenting with various hash
functions.

46

3.2.3 Huffman Encoder

Fig. 3.8 shows a diagram of the final pipelined Huffman encoder. Compared

to the LZ77 encoder portion of the compressor design, the Huffman encoder

is much simpler. Since only static Huffman codes are to be used in the design,

the literals and length-distance pairs received from the LZ77 encoder can be

quickly encoded using static codebook ROMs. Following this, the variable

length codes just need to be packed together using a series of shift and OR

operations. As mentioned above in Section 3.2.1, we designed the interface

between the two encoders so that each box passed between the two can be en-

coded independently of the others. Each box from the LZ77 encoder is passed

through a symbol encoder, which checks the type of symbol in the box (ei-

ther a matched literal, unmatched literal, or length-distance pair) and encodes

it accordingly. Unmatched literals and length-distance pairs are encoded us-

ing ROMs and their codes and accompanying extra bits are assembled and

output. If a matched literal is received, it is removed from the stream by

replacing it with a code and code length of 0. Once encoded, the codes as

well as their bit-lengths are given to a window packer, which is responsible

for shifting the codes and packing them into an encoded window of bits. The

encoded window contains enough space for codes from each of the 16 boxes.

The longest possible encoded size of a 16-box input window is 15 9-bit literal

codes followed by a 26-bit length-distance code (7-bit length, 1 extra length

Lookup codes
for symbols

Assemble base
values and extra
bits into finished
codes

Add code lengths
together to
determine final
encoded window
size

Pack codes
using series
of Shift-OR
operations

Stage
1 2 3 4 5 6

Shift -OR
encoded window
into output
double buffer

16 3-byte
boxes

.

.

.

256-bit
output

Figure 3.8: Huffman encoder pipeline diagram.

47

bit, 5-bit distance, 13 extra distance bits) for a total of 161 bits. While it is

impossible for there to be two consecutive 161-bit encoded windows (as the

following window would have 15 matched literal boxes), it is possible for there

to be two consecutive windows with more than 128 bits each. Therefore, the

size of our output stream needed to be at least 256 bits wide to allow data to

be written out in every clock cycle. At the end of the pipeline is an output

window packer which contains a double buffer that is 512 bits wide. When

the buffer contains more than half that amount, it writes the lower 256 bits

to the output stream.

Our plan for the Huffman encoder design was to create a 16-stage pipeline

in which each stage would take one box from the input window, encode it, and

pack it into the encoded window. In every clock cycle, the input window and

encoded window would be passed from one stage to the next. At the end of the

pipeline is the output window packer which receives a fully encoded window in

every cycle and writes it to the double buffer. With function inlining disabled

in Vivado HLS, this is what ends up being synthesized. With function inlining

enabled, however, Vivado HLS is able to optimize the operations performed

and combine the pipeline stages together. What ends up being synthesized is

a 6-stage pipeline where each input box is encoded and packed together simul-

taneously, as shown in Fig. 3.8. The ability for Vivado HLS to automatically

optimize designs into more efficient forms is a powerful ability that gives it an

advantage over traditional Register-Transfer Level (RTL) design. As with the

LZ77 encoder, the Huffman encoder is pipelined with an II of 1.

3.3 Testing and Results

The two compressor cores were synthesized using Vivado HLS for a clock

frequency of 250 MHz. Table 3.1 shows the FPGA resource utilization of

the two cores when synthesized for a Xilinx Virtex UltraScale+ XCVU3P-

FFVC1517 FPGA. The desired clock frequency and FPGA used were chosen

by our industrial collaborator, Eideticom. We tested the compressor using the

Calgary corpus benchmark files. A test bench was created in Vivado in which

48

Table 3.1: Compressor FPGA Resource Utilization

LUTs FFs BRAM Tiles

LZ77 Encoder 62,227 (15.79%) 46,225 (5.86%) 240 (33.33%)

Huffman Encoder 6,887 (1.75%) 3,554 (0.45%) 20.5 (2.85%)

Total 69,114 (17.54%) 49,779 (6.31%) 260.5 (36.18%)

an AXI Direct Memory Access (DMA) core was used to stream the input

data from memory to the compressor core, receive the compressed output

data stream, and write it back to memory for verification. The compressed

output files were decompressed and compared to their original forms in order to

verify that the compressor was operating correctly. The resulting compression

ratios were obtained by dividing the uncompressed size by the compressed

size for each file and are shown in Table 3.2. Across the entire corpus, our

compressor achieved an arithmetic mean (average) compression ratio of 2.00

and a geometric mean compression ratio of 1.92. Both compressor cores were

synthesized with a pipeline II of 1, which, with an LZ77 encoder PWS of

16 bytes and a clock frequency of 250 MHz, provide an input compression

throughput of 4.0 GB/s.

The results of our FPGA-based compressor design are compared to those

from other previous works in Table 3.3. As mentioned in Section 2.3.1, the

results from [5] are for a compressor with a PWS of 16 bytes and the results

from [7] are for a single-core compressor only. By achieving a working clock

frequency of 250 MHz, 50 MHz higher than the 200 MHz clock from [7], an

extra 0.8 GB/s of throughput is obtained. This makes our design the fastest

single core compressor out of those compared here. In terms of area, it is

slightly difficult to make a direct comparison between our Xilinx-based FPGA

design, with area utilization described in LUTs and FFs, and those designs

using Intel/Altera-based FPGAs, which describe their area usage in ALMs.

Compared to the designs that reported their memory usage, [28] and [27], our

design uses about half as many BRAMs2. Compared to the other compressor

design that was synthesized using Vivado HLS, [6], our design uses 20% fewer

2BRAM18Ks can store 18k bits while M20Ks can store 20k bits. Note that the actual
number of bits stored in each will depend on the word width and depth used.

49

Table 3.2: Calgary Corpus Compression Results

File Uncompressed Compressed Compression

Size (bytes) Size (bytes) Ratio

bib 111,261 56,450 1.97

book1 768,771 482,048 1.59

book2 610,856 325,400 1.88

geo 102,400 96,448 1.06

news 377,109 218,688 1.72

obj1 21,504 14,093 1.53

obj2 246,814 129,327 1.91

paper1 53,161 28,636 1.86

paper2 82,199 45,891 1.79

pic 513,216 137,428 3.73

progc 39,611 20,556 1.93

progl 71,646 30,510 2.35

progp 49,379 21,534 2.29

trans 93,695 39,795 2.35

Arithmetic Mean 2.00

Geometric Mean 1.92

LUTs and FFs. Our compressor design has a total of 49 pipeline stages (43

for the LZ77 encoder and 6 for the Huffman encoder), which is fewer than the

58-stage compressor from [5] and the 87-stage compressor from [27] but more

than the reported 17-stage compressor from [28]. In terms of compression

ratio, our mean compression ratios (both arithmetic and geometric) are lower

than all other designs besides [6].

Table 3.3: FPGA-based Compressor Design Comparison

Reference Clock Pipeline Input Area Utilization Compression

Frequency Depth Throughput Ratio

[28] (2013) 200 MHz 17 3.00 GB/s 105,624 ALMs, 1,152 M20Ks ?

[27] (2014) 193 MHz 87 2.84 GB/s 110,318 ALMs, 1,792 M20Ks (Geo.) 2.17

[5] (2015) 175 MHz 58 2.80 GB/s 39,078 ALMs, ? M20Ks 2.05

[6] (2018) 200 MHz ? 2.80 GB/s 83,583 LUTs, 65,009 FFs, (Geo.) 1.73

? BRAM18Ks

[7] (2018) 200 MHz ? 3.20 GB/s 38,297 ALMs, ? M20Ks 2.10

This work 250 MHz 49 4.00 GB/s 69,114 LUTs, 49,779 FFs, (Geo.) 1.92

521 BRAM18Ks

50

3.4 Discussion

Despite the considerable effort that was made to improve the compression ratio

of our design, we still weren’t able to achieve higher ratios than previous works.

Even with the addition of match-trimming to the match-selection stages of the

LZ77 encoder, which to our knowledge is not done in other designs, our com-

pression ratios were still lower. We found that the match-trimming improved

the compression ratios by about 6% while adding 3 pipeline stages and increas-

ing LUT usage by 3% and FF usage by 1%. Considering that we used the same

32-bank, 3-depth hash bank architecture as the design from [7], which achieved

an average compression ratio of 2.10, we believe that our hash function may

be one contributor, despite our extensive exploration into potential hash func-

tions, and that there may still be room for improvement. The other thing that

may account for the difference in the compression ratio is the number of hash

indexes used. As mentioned above, our design used 512-index banks (see Fig.

3.3a) while the size of the banks in [7] is not disclosed. For comparison, the

design from [5] used 65,536 hash indexes across 32 banks (2,048 indexes per

bank), requiring a 16-bit hash function.

In order to verify the effect that the hash bank architecture has on the com-

pression ratio and memory cost, we performed a series of design explorations,

shown in Fig. 3.9. Throughout these tests, we kept the PWS value constant

at 16 bytes and used the same hash function as was described in Section 3.2.2

(Algorithm 2). In Fig. 3.9a, the hash bank depth is increased while the num-

ber of banks and the total number of hash indexes are held constant, showing

that the bank depth can be scaled up with linearly increasing memory costs.

In Fig. 3.9b, the total number of hash indexes is increased while the number

of banks and bank depth is held constant. Below 16,384 indexes, the number

of BRAMs used does not decrease. This is due to how the BRAM18K con-

figuration works: in order to accommodate a word width of 128-bits (16-byte

strings), 4 BRAMs at minimum are required, no matter the number of memory

indexes used. The 4 BRAMs have enough space to store 512 128-bit words,

above which the number of required BRAMs doubles. Each hash bank also

51

stores 512 32-bit positions, which completely fills another BRAM for a total

of 5 BRAMs minimum per hash bank. Above 16,384 total hash indexes, the

compression ratio barely increases while the memory costs increase exponen-

tially. In Fig. 3.9c, the number of hash banks is increased while the number

of total hash indexes is held constant. In this figure, the BRAMs are fully

utilized up to 32 banks, after which the number of indexes per bank drops

below 512. In Fig. 3.9d, the number of hash banks is increased while the num-

ber of indexes per bank is held constant at 512 (therefore the total number of

indexes increases as well). This figure essentially shows the combined effects

of Figs. 3.9b and 3.9c, with the number of memories required increasing expo-

nentially. Despite the minimal increase in compression ratio that is obtained

by increasing the total number of hash indexes, it makes more sense to do so

while increasing the number of banks in order to fully utilize the BRAM stor-

age space. If the increased memory cost can be accommodated, increasing the

number of hash banks makes the most improvement on the compression ratio.

Increasing the bank depth also provides some improvement to the compression

ratio at a lower cost, but the returns are diminishing for depths greater than

3, as was also reported in [7].

The hash bank architecture of our compressor could be scaled up in order

to increase the compression ratios achieved, but this would be difficult to get

working as our design already struggles with meeting timing due to the large

routing delay. The clock frequency (and therefore throughput) could be sacri-

ficed though in order to allow more room for a larger scale design. As discussed

in Section 2.3.1, increasing the PWS value is another way to increase both the

compression ratio and the throughput, but the area requirements for PWS

values greater than 16 bytes quickly become unsustainable and not worth the

improvement as explored in [5] and shown in Fig. 2.7. Another idea for im-

proving the compression ratio would be to implement multiple hash functions

in the compressor. Two different hash functions could be used in a pipeline in

order to give each substring two chances at accessing a bank instead of just

one. Different hash functions that are tailored to different data types could be

used as well. If the type of data being compressed could be communicated to

52

H
as

h
Ba

nk
 D

ep
th

Compression Ratio

Number of BRAMs

1.
70

1.
80

1.
90

2.
00

2.
10

025
0

50
0

75
0

1,
00

0

1
2

3
4

5
6

Ar
ith

m
et

ic
 M

ea
n

G
eo

m
et

ric
 M

ea
n

of

 B
RA

M
s

(a
)

To
ta

l H
as

h
In

de
xe

s

Compression Ratio

Number of BRAMs

1.
70

1.
80

1.
90

2.
00

2.
10

01,
00

0

2,
00

0

3,
00

0

4,
00

0

4,
09

6
8,

19
2

16
,3

84
32

,7
68

65
,5

36
13

1,
07

2

Ar
ith

m
et

ic
 M

ea
n

G
eo

m
et

ric
 M

ea
n

of

 B
RA

M
s

(b
)

N
um

be
r o

f H
as

h
Ba

nk
s

Compression Ratio

Number of BRAMs

1.
70

1.
80

1.
90

2.
00

2.
10

050
0

1,
00

0

1,
50

0

2,
00

0

8
16

32
64

12
8

Ar
ith

m
et

ic
 M

ea
n

G
eo

m
et

ric
 M

ea
n

of

 B
RA

M
s

(c
)

N
um

be
r o

f H
as

h
Ba

nk
s

Compression Ratio

Number of BRAMs

1.
70

1.
80

1.
90

2.
00

2.
10

050
0

1,
00

0

1,
50

0

2,
00

0

8
16

32
64

12
8

Ar
ith

m
et

ic
 M

ea
n

G
eo

m
et

ric
 M

ea
n

of

 B
RA

M
s

(d
)

Figure 3.9: Effect of hash bank architecture on compression ratio and memory
cost.
a) Varying hash bank depth with 32 hash banks and 16,384 total indexes.
b) Varying total hash indexes with 32 hash banks and 3 depth levels.
c) Varying number of hash banks with 16,384 total indexes and 3 depth levels.
d) Varying number of hash banks with 512 indexes per bank and 3 depth
levels.

53

the compressor, then it could choose to use a hash function that is likely to be

better suited for matching that type of data, which would on average increase

the likelihood of better compression results. Another option for improving the

compression ratios would be to utilize dynamic Huffman encoding as well as

static. As mentioned in Section 2.3.1, however, this complicates the pipeline

design and removes the fixed throughput rate, as an intermediate storage space

would be required to hold the LZ77 encoded data before the Huffman tables

could be constructed and used. This type of work was investigated in [29]. The

other option to improve the compression ratios is to return to a traditional

compressor design, like the ones used in software, which take more time to

perform match finding, as these designs still are able to provide the highest

compression ratios.

To increase the compression throughput further (besides increasing the

PWS value), higher clock frequencies may be used or, as recommended by [7],

multiple independent compressors could be utilized in parallel. Since we were

able to achieve a clock frequency of 250 MHz while being restricted to high-

level synthesis, it may be possible for hand-optimized VHDL or Verilog designs

to meet even higher frequencies. As we discussed earlier, this may require

sacrificing some compression ratio in order to scale the hash bank architecture

down enough so that routing delays are more manageable. In terms of logic

delay, the bank-access allocation stages and the best-match-length selection

stage were the two largest critical path areas of the LZ77 encoder design.

For our current FPGA-based compressor design, with a total BRAM usage

of about 36%, it may be possible to fit two independent compressor cores

on a single FPGA to operate in parallel. Together they would be able to

provide a collective compression throughput of 8.0 GB/s, assuming they aren’t

bottlenecked by the FPGA interface.

3.5 Summary

In this chapter, we described our FPGA-based Deflate compressor design. This

design followed the current state-of-the-art architecture, which utilizes a fixed-

54

throughput pipeline and static Huffman encoding in order to rapidly perform

Deflate compression. The use of Vivado HLS provided some challenges in cre-

ating a working design that was able to meet timing, but was also able to help

improve the efficiency of our design through certain automatic optimizations.

Despite the addition of match trimming functionality to the LZ77 encoder as

well as extensive exploration on the hash function and hash bank architec-

ture used, we weren’t able to achieve higher compression ratios than previous

works. Our compressor was able to achieve arithmetic and geometric mean

compression ratios of 2.00 and 1.92, respectively, across the Calgary corpus

benchmark. We were, however, able to meet clock timing with a clock fre-

quency of 250 MHz, giving our compressor a throughput of 4.0 GB/s, which is

higher than all other currently published single-compressor throughputs. We

were also able to achieve this while being limited to using high-level synthesis.

As discussed in Section 3.4, we believe that we have still not hit the maxi-

mum limits of compression ratios achievable for these type of designs. Further

exploration of possible hash functions may yield functions that are better able

to prevent hash bank access conflicts from occurring. In terms of hash bank

architecture, there are still many ways that compression ratios can be im-

proved at the cost of additional area, though they may potentially require

a shorter clock frequency (and therefore lower throughput) in order to meet

post-route timing. Currently, instantiating multiple compressor cores in par-

allel is still the most efficient way to scale up compression throughput, though

more efficient and higher frequency single-core compressor designs should also

be achievable.

55

Chapter 4

Decompressor Design

Our goal in this chapter is to design a competitive FPGA-based decompres-

sor core using Vivado HLS. The decompressor is to be fully compliant with

the Deflate standard, to have the ability to process both static and dynamic

Huffman-encoded blocks, and to not exploit any changes to the compressed

format or make any limiting assumptions about the compressed data. In our

design we focused on maximizing the decompression throughput by exploiting

the parallel resources available in FPGAs. As we describe our initial and final

decompressor designs, we will also mention the main limitations of Vivado

HLS that we encountered and also explain how we were able to work around

them in order to succeed in achieving our design goals.

4.1 Initial Design

Our initial decompressor architecture, shown in Fig. 4.1, utilizes speculative

parallelization to perform the Huffman decoding operation in parallel in order

to benefit from some potential speed-up. The architecture includes multiple

Huffman decoder cores capable of processing static Huffman blocks only. In our

design we chose to use four Huffman decoders, though any number of parallel

decoders could be utilized. A “boundary detector” core at the beginning of the

system pipeline scans the incoming data for the static EOB code in order to

find potential block boundaries. The “data mover” core receives the data from

the boundary detector (following temporary storage in a FIFO) and writes it

to one of four local BRAM memories, one for each Huffman decoder. The data

56

Boundary
Detector FIFO Data

Mover

Huffman	
Decoder

Data
Merger

LZ77
Decoder

Input
Stream

Output
Stream

FIFO

FIFO

FIFO

FIFO

Leading
Decoder

Huffman	
Decoder

Huffman	
Decoder

Huffman	
Decoder

BRAMBRAMBRAM BRAM

Figure 4.1: Initial speculative decompressor architecture.

mover has the ability to copy data from each of the BRAMs and stream it to

one of the decoders simultaneously, in order to keep each decoder busy. The

purpose of the BRAMs is to store the potentially parallelizeable data and,

in the result of a false boundary being discovered (and data being decoded

incorrectly), allows the data to be resent to another decoder in order to be

processed correctly.

The first Huffman decoder to be given data will be referred to as the “lead-

ing decoder” and is guaranteed to correctly decode the first block. Whenever

a potential block boundary in the incoming data is found, a copy of the data

stream from that point is also sent to another Huffman decoder to run in par-

allel with the leading one. The outputs of each Huffman decoder feed into

FIFOs for elastic storage so that the validity of the data can be verified later

on (depending on if the prospective block boundary turns out to be valid or

not). If the block boundary is valid, the Huffman decoded data is sent to

the “data merger” core. The data merger merges the multiple parallel data

streams and continuously streams the next set of valid data from one of the

FIFOs to the LZ77 decoder core. If the prospective block boundary that a

Huffman decoder was starting from is found to be invalid, the corresponding

FIFO is cleared and its data is discarded.

The decoded data from the leading Huffman decoder is always valid as this

is the decoder that is known to be performing correct sequential decoding from

the start of the file or from a confirmed block boundary. When a prospective

57

block boundary is found and confirmed to be valid, the following block is pro-

cessed in parallel correctly and the Huffman decoder that processed it becomes

the new leading decoder as it now knows the correct bit position from which

to continue decoding the data stream. The output block from the previous

leading decoder is kept and it will now be given potentially parallel data at

the next opportunity. No matter how many false or positive potential block

boundaries are found, one decoder is always kept running and the file will be

decompressed sequentially in the worst case. More Huffman decoders could

be employed in parallel if desired. The amount of parallel Huffman decoders

that will be useful, though, will depend on the speed at which they can decode

and the size of the Deflate blocks in the compressed data. If the blocks in the

data are small and/or the decoders are fast enough, employing more parallel

decoders will be pointless as they will likely never be used. Determining the

optimal number of Huffman decoders to use will require design exploration

and testing on various data types.

The two data passing cores, the data mover and data merger, were origi-

nally to be created using Vivado HLS. We found, however, that the parallel

nature of their operation, made implementation in Vivado HLS difficult if not

impossible. This is because of one crucial limitation of Vivado HLS which

we have called “coarse function scheduling”. Different functions within an

HLS core can be run in parallel, but they need to be scheduled to start at

the same time, as illustrated in Fig. 4.2. This prevents the data mover and

data merger cores from performing multiple asynchronous tasks in parallel

as required. There is one way to overcome this limitation: the Vivado HLS

“dataflow” pragma (a compiler directive) allows data to flow freely between

function blocks; however, the use of this pragma imposes many strict con-

straints on the code to be synthesized. We were unable to meet these restric-

tions, which forbid the use of conditionally performed tasks as well as feedback

between blocks. It may also be possible to split up the data passing cores into

multiple HLS cores such that each operation can be carried out in parallel,

but each of the sub-cores would need to be interfaced properly and be able to

respond to interrupt signals. We chose to avoid designs that required complex

58

Long Function "A"

Short
Function "B2"

Short
Function "B1"

Input A

Input B

Output A

Output B

(a) Function data flow diagram

A
B1 B2

time

Function
Execution

Without dataflow pragma

A
B1 B2

time

Function
Execution

With dataflow pragma

(b) Function execution timing

Figure 4.2: Diagram showing the coarse function scheduling limitation of Vi-
vado HLS. a) Function chains A and B1/B2 have separate inputs and separate
outputs and are completely independent from each other. b) Without the
dataflow pragma, function B2 will not be scheduled to start until function A
finishes. With the dataflow pragma, B2 executes as soon as B1 is finished.

interrupt handling. For these reasons, the data mover and data merger cores

were written in structural level Verilog instead of using Vivado HLS, to allow

us to have direct control over the structure of this part of the design.

As mentioned above, when operating on random data, the amount of Huff-

man decoders that would be utilized simultaneously would be dependent on

the size of the Deflate blocks in the data. To compensate for this, our next

plan was to modify the accompanying compressor to compress data into blocks

of constantly known size which we could then take advantage of using the de-

compressor. This way, the data could be safely and consistently split into

multiple blocks and all four (or possibly more) Huffman decoders could be

fully utilized. Once the initial design was made to work, however, it was found

that the downstream LZ77 decoder was unable to keep up even with only

one Huffman decoder working. At this point, the decision was made to scrap

the speculative parallelization architecture for the Huffman decoders and in-

stead focus on optimizing the two main cores of the decompressor: one serial

Huffman decoder and the following LZ77 decoder. The Huffman decoder was

upgraded to include the ability to process dynamic Huffman blocks as well,

which are significantly more complicated to process than static blocks. Our

focus thus shifted from designing a fast, static-only Deflate decompressor that

59

relied on fixed block sizes to designing a fast, fully Deflate-compliant decom-

pressor capable of processing both static and dynamic blocks, and that made

no assumptions about the block sizes in the compressed data it was given.

4.2 Final Design

A block diagram of the resulting final decompressor design is shown in Fig. 4.3.

It is composed of two main cores: the Huffman decoder and the LZ77 decoder,

as well as two byte-reordering cores, called the “literal stacker” and the “byte

packer”. The purposes of these two byte-reordering cores are described below

in Sections 4.2.2 and 4.2.4. All four of the cores share the same 250 MHz clock.

A balanced and efficient design was sought where the output throughput of

the Huffman decoder would match the input throughput of the LZ77 decoder.

A data FIFO was instantiated in the middle of the chain in order to alleviate

stalling between the two decoders by providing elastic storage, as explained

further below. As with our compressor design (in Chapter 3), all four cores are

specified in C++ and synthesized using Vivado HLS and are interconnected

with standard AXI-Stream interfaces [42]. The data width (TDATA) of all of

these interfaces is 32 bits to accommodate the passing of four bytes at a time,

in little-endian order. The input data width of the Huffman decoder could be

increased further but was chosen to be 4 bytes in order to match the rest of

the system, which was determined by the 4-byte processing capabilities of the

LZ77 decoder, as explained below. The data signals are accompanied by AXI-

Stream sideband signals TKEEP, TUSER, and TLAST. The 4-bit TKEEP

signal is used to identify which of the four data bytes are valid in the current

transfer and the TLAST signal is used to identify the last transfer of the

data stream. The TUSER signal is used to differentiate between AXI-Stream

[31:0]TDATA

[3:0]TKEEP

[0]TLAST

[0]TUSER

Huffman
Decoder

Literal
Stacker

[31:0]TDATA

[3:0]TKEEP

[0]TLAST
Data
FIFO

[31:0]TDATA

[3:0]TKEEP

[0]TLAST

[0]TUSER

LZ77
Decoder

[31:0]TDATA

[3:0]TKEEP

[0]TLAST

[0]TUSER

[31:0]TDATA

[3:0]TKEEP

[0]TLAST
Byte
Packer

[31:0]TDATA

[3:0]TKEEP

[0]TLAST

Input
AXI­Stream

Output
AXI­Stream

Figure 4.3: Final non-speculative decompressor architecture.

60

transfers containing literals and those containing length-distance pairs. The

FIFO has a depth of 4096, which allows it to hold 4096 AXI-Stream transfers.

4.2.1 Huffman Decoder

The first core in the decompressor is the Huffman decoder, which is responsible

for decoding the Huffman codes and outputting them as literals and length-

distance pairs. This core differs from the others in that it uses a Finite-State

Machine (FSM) architecture instead of a pipelined one. The state diagram

is shown in Fig. 4.4. From the starting state, it begins by reading data from

the input stream, identifying the Deflate block type from the block header,

and then entering the appropriate block processing state: static, dynamic,

or stored. Every time data is read from the input stream (i.e., 32 bits), it

is placed into a 64-bit buffer called the accumulator. The Huffman decoder

only reads new data from the input stream when it runs out of enough bits to

decode the next code. Increasing the input stream data width to values larger

than 32 bits would mean the Huffman decoder could go longer before reading

more input data. The newly read 32 bits are appended to the left side of the

accumulator (above any currently held bits) using a shift-OR operation while

processed bits get shifted out the right side of the accumulator, as required.

For example, after decoding a 9-bit Huffman code and determining that the

code was 9 bits long, those 9 bits are then shifted out, all at once, from the

accumulator. In the stored block state, the decoder will read the block length,

Starting
State

Assemble
Dynamic
Tables

Process
Dynamic

Block

Process
Static
Block

Process
Stored
Block

(1)

(2)(3)

(4)

(5) (6)

(7)

(1) Static block received
(2) Static block decoding completed
(3) Dynamic block received
(4) Dynamic Huffman tables assembled
(5) Dynamic block decoding completed
(6) Stored block received
(7) Stored block streaming completed

Reset

Figure 4.4: Huffman decoder state diagram.

61

LEN, and block length complement, NLEN, and verify that the two numbers

are complementary (See Fig. 2.3 for the stored block structure). It will then

stream LEN bytes from the input to the output. In the static block state, the

decoder will continually decode static codes using the static ROM tables until

it encounters the EOB code, at which point it returns to the starting state to

be ready to process the next Deflate block.

The process for decoding static codes is similar to the process described in

Section 2.3.1 when describing reference [38]. From the accumulator, 9 bits are

read and looked up in a 512-index literal/length LUT. The table returns the

type of the decoded symbol (literal, length, or EOB), the number of bits in the

code (7, 8, or 9), the number of extra bits following the code, and the value of

the symbol (literal value or base length value). If the symbol is a literal, it is

copied unchanged to the output. If the symbol is a length, then the associated

extra bits are read from the accumulator as well as the 5-bit distance code that

follows that. The distance code is looked up in a 32-index LUT, which returns

the distance base value and the number of extra distance bits. The final 9-

bit length and 16-bit distance values are calculated by adding the base values

to the values of the extra bits and are written together to the 32-bit output

stream. In order to tell literals apart from length-distance pairs, the 1-bit AXI-

Stream TUSER signal is used. It takes the decoder 3 clock cycles to decode

a static literal and 4 clock cycles to decode a static length-distance pair, as

shown in Fig. 4.5. Note that these operations are not performed pipelined due

to dependencies on the accumulator. In order to meet timing while pipelined,

Vivado HLS synthesizes the pipeline with an II of 4 (input/output data being

read/written every 4 clock cycles), which results in slower operation than a

non-pipelined architecture.

When the decoder encounters a dynamic block, it processes it using two

states. In the first state, it will read the sequence of code lengths and assemble

the dynamic Huffman tables. Then, in the second state, it will use those code

tables to decode the dynamic block. In order to build the dynamic tables,

the decoder follows the five-step process described in Section 2.1. The table

building process takes a variable amount of time that depends on the number

62

Clock Cycle: C1 C2 C3

Read Input
Stream

Decode Literal Symbol

Write Output
Stream

Update
Accumulator

(a) Static literal processing

Clock Cycle: C1 C2 C3

Read Input
Stream

Decode Length Symbol

Write Output
Stream

Update
Accumulator

C4

Decode Distance Symbol

Update
Accumulator

(b) Static length-distance pair processing

Figure 4.5: Huffman decoder static timing diagrams.

of code lengths in the code length sequence, the number of code lengths in

the literal/length sequence, and how the literal/length code length sequence

has been run-length encoded. Once the dynamic tables have been constructed

and stored in BRAMs, the decoder enters the next state where it decodes the

dynamic block.

As mentioned in Section 2.3.2, we used the Huffman table design from

[40], which allows us to use a 286-index table for literal/length codes and a 32-

index table for distance codes instead of two much larger 32,768-index tables.

The process for decoding a dynamic Huffman code using this architecture is as

follows: During Huffman table construction, the base values and base addresses

for each of the 15 different code lengths are recorded. In order to decode a

code, 15 bits are taken from the accumulator and reversed (since the Huffman

codes are stored in reverse order). The code bits are then compared to each of

the 15 base code values, which are left-aligned to see if they are greater-than

or equal to them. An example of this process is shown in Fig. 4.6. These

comparisons are all performed in parallel and the highest passing comparison

indicates the length of the code. It is unlikely that all 15 different code lengths

will be used in the same Dynamic Huffman table so only comparisons for the

code lengths that are used are performed. Once the bit-length of the code is

known, the base address for its length can be retrieved. The actual code index

63

Code Bits: 1100 0001 1001 100

1 to 6-bit Base Values: Unused
7-bit Base Value: 0000 0000 0000 000
8-bit Base Value: 0011 0000 0000 000
9-bit Base Value: 1100 1000 0000 000

10 to 15-bit Base Values: Unused

Are code bits ≥ base value?
Yes.
Yes. Highest passing comparison.
No.

Code is 8 bits long.

Figure 4.6: An example of how the length of a code is deciphered during
decoding using the area-efficient Huffman table memory design from [40]. In
this example, the Deflate static codes (from Table 2.1) are used for simplicity.
The resulting decoded symbol in this example is length symbol 281.

is calculated by adding an offset to the base address, as shown in Fig. 2.9. This

offset is obtained by subtracting the code length base value from the code bits.

Once the code has been decoded, the decoder follows the same procedure as

it does during static decoding: If the symbol is a literal, the literal is copied

unchanged to the output stream. If the symbol is a length, the extra bits are

retrieved and then the distance code is decoded using the same above process.

The Huffman decoder takes 4 clock cycles to decode a dynamic literal, and 7

clock cycles to decode a dynamic length-distance pair, as shown in Fig. 4.7.

As with the static decoding operations, these operations are not pipelined due

to dependencies on the accumulator.

4.2.2 Literal Stacker

As will be explained further in Section 4.2.3, the LZ77 decoder has the ability

to read four bytes and write four bytes in one clock cycle. While the LZ77

decoder is processing a length-distance command, it will stop reading input

bytes, which causes data to start piling up inside the preceding FIFO. In

order to: a) more effectively utilize the FIFO’s capacity, and b) help the

LZ77 decoder catch up on any data backlog, the literal stacker is included

in the system pipeline. This module takes the single-byte literals output by

the Huffman decoder and consolidates them into stacks of up to four bytes,

as shown in Fig. 4.8. Any length-distance pairs in the stream, which occupy

64

Clock Cycle: C1 C2 C3

Read Input
Stream

Decode Literal Symbol

Write Output
Stream

Update
Accumulator

C4

Decipher Code Length

(a) Dynamic literal processing

Clock Cycle: C1 C2 C3

Read Input
Stream

Write Output
Stream

Update
Accumulator

C4 C5 C6 C7

Read Input
Stream

Decipher Code Length

Decode Length Symbol

Lookup Length Symbol
Value and Extra Bits

Decode Distance Symbol

Decipher Code Length

Lookup Distance Symbol
Value and Extra Bits

Update
Accumulator

Update
Accumulator

Update
Accumulator

(b) Dynamic length-distance pair processing

Figure 4.7: Huffman decoder dynamic timing diagrams.

65

abcd a
b
c
d

Input Output

AXI-Stream
TDATA

(4 bytes)

1234 1

Figure 4.8: Literal stacker operation. In this example, four consecutive literal
bytes occupying four consecutive AXI-Stream data transfers are combined to
occupy one transfer.

all four bytes of the data width, will force the literal stacker to release its

currently held stack of literals. The literal stacker uses the 4-bit AXI-Stream

TKEEP signal, as it is intended to be used in the AXI-Stream standard [42],

to indicate the number of literals in a stack, from one to four. The literal

stacker is pipelined with an II of 1, meaning it can read new inputs in every

clock cycle, and it has 2 stages.

4.2.3 LZ77 Decoder

The LZ77 decoder’s main purpose is to resolve the length-distance pairs re-

ceived from the Huffman decoder. It does this using a circular buffer BRAM

that has 32,768 one-byte indexes, enough for storing the last 32,768 literal

bytes, which is a necessary capacity since Deflate distances can back-reference

up to that amount. When the LZ77 decoder receives literals, it records them

in the circular buffer for future reference and also writes them out to the out-

put (uncompressed) data stream. When it receives a length-distance pair, it

looks back a “distance” number of bytes into the circular buffer and copies a

“length” number of them to the head of the circular buffer as well as to the

output. While copying the bytes of a length-distance pair, no more inputs are

read, which usually causes incoming data to pile up safely in the FIFO before

it.

As mentioned above, the LZ77 decoder has the ability to process four bytes

in every clock cycle, meaning it can write one to four literals to the circular

buffer at a time or copy one to four bytes of a length-distance pair at a time.

66

Originally, it was only able to process one byte per cycle, as done by the LZ77

decoder in [38]. We found that the LZ77 decoder was functioning too slowly to

keep up with the Huffman decoder because length-distance pairs were taking

longer than expected to resolve (e.g., a match length of 16 bytes would stall

the LZ77 decoder for 16 cycles). In order to allow the LZ77 decoder to read

and write multiple bytes to the circular buffer in every clock cycle, we used

cyclic partitioning. By cyclically partitioning the circular buffer BRAM by a

factor of four, we split it into four separate BRAMs where each BRAM holds

every fourth byte, as shown in Fig. 4.9. This way, four consecutive indexes in

the circular buffer can be read from and written to in every clock cycle (eight

simultaneous BRAM accesses altogether). The BRAMs in our assumed Xilinx

FPGA fabric are dual-port, meaning they can be read from and written to

simultaneously in the same clock cycle.

In Vivado HLS, the partition pragma can be used on an array to automat-

ically partition it into multiple BRAMs. When using this pragma, however,

we found that Vivado HLS was unable to schedule the four reads and four

writes simultaneously as it could not recognize that we were accessing four

consecutive memory locations, one from each partition. Many different coding

schemes were tried but the tool would only ever schedule the eight BRAM

accesses across four clock cycles, with one read and one write per cycle. In

the end, we ended up manually partitioning the array by simply using four

1

32767

4

32764

Index										1

5

32765

6

32766

7

32767

circular_buffer circular_buffer0 circular_buffer1

circular_buffer2 circular_buffer3

2

32766

Index										0

Index										3Index										2

Index										0

Figure 4.9: Cyclic partitioning of the LZ77 decoder circular buffer BRAM into
four disjoint sub-buffers.

67

different arrays. This way, Vivado HLS was able to schedule the four reads

and four writes to the circular buffer partitions in every clock cycle, as desired.

We will refer to the four consecutive addresses read or written (one address

per memory partition) as the read and write “windows”. These are essentially

just read and write pointers that span the width of four memory locations.

During operation, these two windows will slide across the circular buffer as

multiple bytes are read from the read-window location and written to the

write-window location in every clock cycle. In the function pipeline, read and

write operations are performed on the circular buffer simultaneously in every

clock cycle. In terms of latency, however, the read operation takes place one

stage before the write operation does in the pipeline, which can lead to memory

access conflicts (i.e., when the same memory address is read from and written

to simultaneously) in certain situations.

When the distance value of a length-distance pair is 5, 6, or 7, the read-

window will collide with the write-window on the second iteration if it is al-

lowed to access all four partitions. To prevent this, we programmed the read-

window to keep track of how many bytes it is allowed to read before it must

wrap-around to its starting location. The LZ77 decoder keeps track of both

the number of length-bytes remaining (the total number of bytes to be copied)

and the number of distance-bytes remaining (the number of bytes allowed to

be read before the window is reset). Both of these numbers are used to deter-

mine how many reads and writes to perform in every cycle so that conflicts do

not occur. An example of this is shown in Fig. 4.10.

When the distance value is from 1 to 4, the decoder enters a special state

where only one read operation is performed. The decoder reads 1 to 4 bytes

and then stores them in four registers, which are then used to write the bytes

back to the circular buffer as many times as needed. If the distance is 1, for

example, a single byte is read and copied to all four registers, allowing that

byte to be written back to the circular buffer four times in every clock cycle

instead of just once per cycle. An example of this is shown in Fig. 4.11. When

the distance is 32,768, the read and write windows will point to the same

location since the circular buffer only has 32,768 indexes. In order to prevent

68

0
a b c d e

1 2 3 4 5 6 7 8Index:

Write pointerRead pointer

a, b, c, d read.

0
a b c d e a b c d

1 2 3 4 5 6 7 8Index:

e read. a, b, c, d written.

Clock
Cycle 1

Clock
Cycle 2

Length = 5, Distance = 5

0
a b c d e a b c d

1 2 3 4 5 6 7 8Index:

e written.

Clock
Cycle 3 e

9

9

9

Figure 4.10: Example showing LZ77 circular buffer access behaviour with a
length of 5 and a distance of 5.

0
a

1 2 3 4 5 6 7 8Index:

Write pointer
Read pointer

a read.

0
a a a a a

1 2 3 4 5 6 7 8Index:

a written four times.

Clock
Cycle 1

Clock
Cycle 2

Length = 8, Distance = 1

0
a a a a a a a a a

1 2 3 4 5 6 7 8Index:Clock
Cycle 3

9

9

9

a written four times.

Figure 4.11: Example showing LZ77 circular buffer access behaviour with a
length of 8 and a distance of 1.

69

the decoder from redundantly reading a set of bytes and writing them back

to the same location, writes are prevented whenever this scenario is detected.

The LZ77 decoder will simply read the bytes and write them to the output

stream, while shifting the write-window forward.

The most difficult problem that we encountered when designing the LZ77

decoder was getting the pipeline to synthesize with an II of 1 with the four-

byte version in Vivado HLS. With the original one-byte version, the entire

decoder was able to be pipelined by Vivado HLS with an II of 1 without prob-

lems. The four-byte version, however, would not pipeline with an II of less

than 2. Initially, we were able to pipeline certain portions of the function, like

the length-distance pair copying loop, but never the entire function. The per-

formance suffered in this case due to delays incurred from frequent switching

between literal operation and length-distance pair operation. Many different

code iterations were tried involving various different changes in order to ex-

periment and determine how to get the code to synthesize as desired. These

changes included: separating out parts of the code into their own functions

(this seems to help Vivado HLS by breaking down the problem into smaller

pieces since sub-functions are synthesized on their own first before being incor-

porated in the top-level function), experimenting with the number of different

states in the code, rewriting the code in different but functionally-equivalent

ways, and changing the function interfaces to different types. In the end, a

combination of the above changes led to a version of the LZ77 decoder that

was able to pass synthesis with a pipeline II of 1 and a depth of 5 stages.

4.2.4 Byte Packer

Since the LZ77 decoder can output any number of bytes from one to four,

the output stream will be filled with null bytes. A null byte is defined to be a

byte that is either empty or that contains non-useful information that occupies

one byte location in an AXI-Stream transfer [42]. These null bytes must be

removed from the stream in order to create a continuously aligned (i.e., fully

occupied) output stream. The byte packer performs this operation by using

the TKEEP signal to identify which bytes are null bytes to be filtered out from

70

a
b
c

d
e
f
g

h
i

j
k
l

a
b
c
d

Input Output

e
f
g
h

i
j
k
l

AXI-Stream
TDATA

(4 bytes)

1234 123

Figure 4.12: Byte packer operation. In this example, AXI-Stream transfers
of various occupancies (3, 4, 2, and 3 bytes) are combined into a continuous
aligned stream with full occupancies (4 bytes).

the stream. When a transfer of less than four bytes is received, it will align

the bytes and hold on to them until more data is received, outputting only

full four-byte transfers until the end of the stream is encountered, as shown in

Fig. 4.12. The byte packer is pipelined with an II of 1 and a depth of 3 stages.

4.3 Testing and Results

The four decompressor cores were synthesized using Vivado HLS for a clock

frequency of 250 MHz. As with our compressor design in Chapter 3, we synthe-

sized our design for a Xilinx Virtex UltraScale+ XCVU3P-FFVC1517 FPGA,

the same device used by our industrial collaborator, Eideticom. Table 4.1

shows the FPGA resource utilization of the four cores. We compressed the

Calgary corpus benchmark files using the zlib software in order to create a

test set to allow us to test the decompressor. As described in Section 2.2, two

sets of files were created: one set compressed using static Huffman codes only,

referred to as static files, and one set compressed using the default zlib settings

Table 4.1: Decompressor FPGA Resource Utilization

LUTs FFs BRAM Tiles

Huffman Decoder 6,572 (1.67%) 4,975 (0.63%) 1.5 (0.21%)

Literal Stacker 261 (0.07%) 107 (0.01%) 0

FIFO 99 (0.03%) 139 (0.02%) 5 (0.69%)

LZ77 Decoder 2,243 (0.57%) 820 (0.10%) 8 (1.11%)

Byte Packer 1,013 (0.26%) 389 (0.05%) 0

Total 10,188 (2.59%) 6,430 (0.82%) 14.5 (2.01%)

71

(which used only dynamic Huffman codes), which we refer to as dynamic files.

Before testing, the zlib headers and footers were removed from the files. As

with our compressor design, we used a Vivado testbench containing an AXI

DMA core, which was used to stream the compressed input data from mem-

ory to the decompressor core, receive the uncompressed output data stream,

and then write it back to memory for verification. We measured the run time

of the decompressor from the moment it receives the first input AXI-Stream

transfer to the moment when it outputs the last uncompressed transfer. To

obtain the input throughput, the compressed file size is divided by the decom-

pression time. This is not an instantaneous throughput, but an average across

the decompression time of the file. This value can be converted to an output

throughput by multiplying it by the compression ratio of the file.

The results for the dynamic and static file decompression are shown in

Tables 4.2 and 4.3, respectively. The maximum and minimum input through-

put values in each table are shown in bold font. On the dynamic files, a

maximum throughput value of 76.12 MB/s and a minimum throughput value

of 62.74 MB/s were achieved, giving an overall average input throughput of

70.73 MB/s. On the static files, a maximum throughput of 151.64 MB/s

and a minimum throughput of 101.16 MB/s were achieved, giving an aver-

age input throughput of 130.58 MB/s. In both sets of files, “book1” and

“book2” gave the highest throughput values while “obj1” and “pic” gave the

lowest throughput values. The fact that book1 decompressed at a faster rate

than book2 when statically compressed but at a slower rate when dynamically

compressed implies that the dynamic Huffman tables of book1 took longer

to assemble than those from book2 did during dynamic decompression. The

same pattern is seen between files obj1 and pic, with pic decompressing faster

when dynamically compressed and obj1 decompressing faster when statically

compressed. The input throughput values for the static files are about double

those of the dynamic files. This is caused by both the delay incurred when

assembling the dynamic Huffman tables as well as the fact that the Huffman

decoder takes almost twice as long to decode a dynamic length-distance pair

(static: 4 cycles, dynamic: 7 cycles). This large performance increase between

72

Table 4.2: Dynamically-Encoded Calgary Corpus Decompression Results

Compressed Compressed Compression Decompression Input Throughput

File Size (bytes) Ratio Time (µs) (MB/s)

bib 35,222 3.16 471.948 74.63

book1 313,576 2.45 4197.576 74.70

book2 206,658 2.96 2714.984 (max) 76.12

geo 68,427 1.50 1040.708 65.75

news 144,794 2.60 2017.096 71.78

obj1 10,311 2.09 164.356 (min) 62.74

obj2 81,499 3.03 1155.584 70.53

paper1 18,552 2.87 255.952 72.48

paper2 29,754 2.76 402.156 73.99

pic 56,459 9.09 896.580 62.97

progc 13,337 2.97 191.152 69.77

progl 16,249 4.41 224.060 72.52

progp 11,222 4.40 160.564 69.89

trans 19,039 4.92 262.912 72.42

Table 4.3: Statically-Encoded Calgary Corpus Decompression Results

Compressed Compressed Compression Decompression Input Throughput

File Size (bytes) Ratio Time (µs) (MB/s)

bib 40,931 2.72 292.220 140.07

book1 384,953 2.00 2538.596 (max) 151.64

book2 243,843 2.51 1643.424 148.37

geo 80,949 1.26 668.172 121.15

news 168,375 2.24 1266.768 132.92

obj1 11,138 1.93 109.392 101.82

obj2 88,949 2.77 733.724 121.23

paper1 21,670 2.45 157.276 137.78

paper2 35,499 2.32 241.500 146.99

pic 67,529 7.60 667.552 (min) 101.16

progc 15,365 2.58 117.756 130.48

progl 18,603 3.85 138.320 134.49

progp 12,771 3.87 97.792 130.59

trans 21,424 4.37 165.472 129.47

73

Table 4.4: FPGA-based Decompressor Design Comparison

Reference Throughput Area Utilization Test Files

[38] (2007) 158.64 MB/s (avg., output) 387 LUTs, 128 FFs, 18 RAMB16s Static Calgary corpus

[39] (2009) 125 MB/s (max, input) 20,596 LUTs, 22 BRAM18Ks Unknown test files

[40] (2010) 300 MB/s (max) Not disclosed Unknown test files

[41] (2016) 375 MB/s (avg., output), 8,250 LUTs, 58 BRAM18Ks Unknown dynamic test files

495 MB/s (avg., output) 5,392 LUTs, 21 BRAM18Ks Unknown static test files

This work 70.73 MB/s (avg., input), 10,188 LUTs, 6,430 FFs, Dynamic Calgary corpus

246.35 MB/s (avg., output), 29 BRAM18Ks

130.58 MB/s (avg., input), Static Calgary corpus

386.56 MB/s (avg., output)

static and dynamic files suggests that static compression should be used when

rapid decompression is required, assuming that the corresponding decrease in

compression ratio is acceptable. This aligns with the current trend of FPGA-

based compressors only performing static compression in order to maximize

the compression throughput, as seen in other works (described in Section 2.3.1)

and in our own compressor (described in Chapter 3).

The results of our work and of previous FPGA-based decompressor designs

are summarized in Table 4.4. Due to the unspecified test files that were used

to evaluate other published decompressor designs, it is difficult to make a fair

comparison with most previous works. As shown by our results, the type

of data and amount of compression it has undergone make a big impact on

the decompression throughputs that are achievable. If we convert our average

input throughput values of 70.73 MB/s (dynamic) and 130.58 MB/s (static) to

output throughput values, we get 246.35 MB/s (dynamic) and 386.56 MB/s

(static). These values are comparable to the 375 MB/s (dynamic) and 495

MB/s (static) average output throughputs of the proprietary Xilinx IP core

[41]. Compared to the static average output throughput of 158.64 MB/s from

[38], our design is about 2.44 times faster, which is a tribute to the capabilities

of high-level synthesis. In terms of resource utilization, our design uses half

as many LUTs but one third more BRAMs compared to [39]. Compared to

the Xilinx IP core [41], our design uses about 23% more LUTs but half as

many BRAMs. We can only speculate since no design details are shared in

[41], however, the extra BRAMs may be used in some sort of speculatively

parallelized architecture.

74

As mentioned above, the FIFO in our decompressor has a depth of 4096,

meaning it can store up to 4096 transfers containing either literals or length-

distance pairs. The FIFO count can be used as a measure of the amount

of stalling done by the LZ77 decoder. For most static and dynamic files, the

maximum FIFO count rarely went above 30, demonstrating the LZ77 decoder’s

ability to keep up with the Huffman decoder. The one exception to this is the

benchmark file pic, which had a dynamic max FIFO count of 1441 while the

static file maxed out the FIFO at 4096. The reason for this is due to the pic

file’s very high compression ratio which is a result of it being compressed using

many length-258 length-distance pairs. Each of these length-distance pairs

takes the LZ77 decoder 65 clock cycles to resolve with it copying four bytes per

cycle. The LZ77 decoder could be improved by expanding the window width

even further to be able to copy eight or sixteen bytes per cycle. However, the

decompression throughput would not increase significantly, except for with

highly compressed files like pic or unless the Huffman decoder was improved

significantly as well. The purpose of the literal stacker module was to help the

LZ77 decoder to catch up on any backlogged data in the FIFO. We found that

the presence of the literal stacker was able to provide throughput improvements

ranging from 0 to 4%, with the biggest benefit occurring while decompressing

the pic file. This speedup was also mainly seen when processing static files,

as the dynamic table construction phase gives the LZ77 decoder opportunities

to catch up when processing dynamic files. Due to the small added latency (2

pipeline stages) and area overhead of the literal stacker, we believe this to be

a worthwhile trade-off. This speedup benefit would increase even further with

a higher-throughput Huffman decoder, which would put more pressure on the

LZ77 decoder.

4.4 Discussion

From the timing diagrams in Figs. 4.5 and 4.7, we can identify areas where

the performance of the Huffman decoder could be improved. The most obvi-

ous improvements are in the processing of static and dynamic literals in Fig.

75

4.5. The “Update Accumulator” operation should be able to be performed

one cycle earlier in both cases. This highlights another limitation of Vivado

HLS, when the way a piece of software code is written results in inefficient

synthesis for non-obvious reasons. In this case, it appears that the presence

of the length-distance pair processing code causes unnecessary caution for

Vivado HLS in the synthesis process. We verified this by removing the length-

distance pair code from the Huffman decoder and, as expected, it was then

able to write static literals every 2 cycles and dynamic literals every 3 cycles.

Unfortunately, some experimentation with the syntax of the C code may be

required to overcome such synthesis problems like these in order to achieve the

expected performance.

Another improvement would be to perform the lookup of the distance code

at the same time as the length code, for static length-distance pairs, as the

second lookup forces an additional cycle of latency. This would require multiple

prospective lookups since the bit-length of the length code is unknown until

after it has been decoded. Once known, however, a MUX could be used to

select the correctly decoded distance. The performance of the Huffman decoder

is not necessarily limited by the critical path delay, but rather by the lookup

delay since a table lookup must be performed across two clock cycles (i.e., in

the first clock cycle the address is given to the table, in the second cycle the

data is received from the table). Therefore, a literal will never take fewer than

2 clock cycles to output due to how it is decoded using a table.

For the dynamic decoding processes, the code-length deciphering portion

is currently the logical critical path. If the deciphering (which takes place once

during cycles 1 and 2 in Figs. 4.7a and 4.7b, and a second time in cycles 4 and

5 in Fig. 4.7b) was able to be performed within the same clock cycle, the length

and distance decoding lookups could be performed one cycle sooner, resulting

in dynamic length-distance pairs being output two cycles faster. It may also

be possible to pipeline the operation of the Huffman decoder if the architecture

can be changed to remove the dependency on the accumulator. Optimizations

of this nature may require a hand-optimized Verilog or VHDL structural-level

implementation in order to achieve them; however, higher clock frequencies

76

may also be possible this way. The prospective lookup of both length and

distance codes simultaneously would be a lot more difficult to perform with

dynamic codes since both codes can be from 1 to 15 bits long, meaning there

are more than 15×15 (225) possibilities of code length combinations. This

doesn’t include the 0 to 5 extra bits that may fall in between the length and

distance codes as well.

As mentioned above, the LZ77 decoder window width could be further ex-

panded to copy more bytes of a length-distance pair at a time. Hypothetically,

this could be done to the point where a length-258 length-distance pair (the

longest match length possible) could be copied in a single iteration. In this

case, it would require partitioning the circular buffer into 512 partitions of

64 indexes each (as 256 partitions wouldn’t be enough). As explained before,

though, only very highly compressed files would benefit from this type of ar-

chitecture. Expanding the LZ77 decoder to be able to copy 16 bytes per cycle

is probably the most effective width to expand to since the compressor-related

works described in Section 2.3.1 reported that match lengths greater than 16

bytes are rare for most file types.

As shown in Table 4.1, the decompressor core occupies a relatively small

area, using only 2.59% of the LUTs and 2.01% of the BRAMs on the FPGA.

It is worth noting that this model of FPGA is the smallest of the Xilinx

Virtex UltraScale+ product line. The compact core size allows for multiple

decompressors to be utilized in parallel as part of a multi-file decompressor

system. Hypothetically, a cluster of 32 decompressors would use about 83% of

the LUTs and 64% of the BRAMs on the FPGA while being able to collectively

provide average input decompression throughputs of 4.18 GB/s for statically

encoded files and 2.26 GB/s for dynamically encoded files. This is assuming

that enough LUTs remain to be able to interface with the 32 decompressors

and that such a system could be routed properly.

A single decompressor core could also be improved by implementing multi-

ple Huffman decoders in parallel as part of a speculatively parallel design, as in

our original design (See Fig. 4.1). The benefits of this would be data-dependent

and statistical, however, unless exploiting a fixed block size that happened to

77

be present in the compressed data. A design incorporating multiple LZ77 de-

coders in parallel might be feasible but would also be complicated. The LZ77

decoders would need to be interconnected and have the ability to communicate

with each other. When an LZ77 decoder encounters a back-reference to data

held by another decoder, it would need to stop processing and request that

data from the other decoder. A design that employs two-pass parallelization

could also be created. Multiple parallel LZ77 decoders could perform a rapid

first-pass on data while skipping over any back-references to unheld data. A

final LZ77 decoder could collect the data from them and perform the second

pass that resolves all of the remaining back-references. The final decoder would

need to be fast enough to keep up with the first-pass decoders; otherwise, such

a decoder would end up becoming the bottleneck. Any design incorporating

multiple LZ77 decoders would also need to use multiple Huffman decoders in

order to split the sequential data stream into multiple blocks.

4.5 Summary

In this chapter, we described two FPGA-based Deflate decompressor designs.

As described in Chapter 2, the Deflate format makes acceleration using block-

level parallelism difficult to achieve without altering the compressed format.

Instead of exploiting block-level parallelism through speculation or using a

fixed block size, our final decompressor design exploits micro-scale parallelism

at the hardware level in order to accelerate the process. These exploits include

pipelining at the system level (i.e., concurrently operating the Huffman and

LZ77 decoders) and on the task level (i.e., the three pipelined cores operating

with an II of 1). We also utilized BRAMs to perform quick decoding in the

Huffman decoder and BRAM partitioning to copy multiple bytes at a time

in the LZ77 decoder. By doing this, our decompressor design was able to

achieve competitive throughputs with efficient hardware utilizations even while

using high-level synthesis. Since most other designs don’t specify the test files

they used to get their results, it is difficult to make many fair comparisons.

Compared to the design from [38], where the authors tested their design on

78

a statically compressed Calgary corpus, our design is about 2.44 times faster.

Our design is also comparable to the proprietary design sold by Xilinx [41],

which has average output static and dynamic throughputs of 495 MB/s and 375

MB/s, respectively, while our design has average output static and dynamic

throughputs of 386.56 MB/s and 246.35 MB/s, respectively.

As discussed in Section 4.4, we haven’t yet fully reached the limits of ex-

ploitable parallelism in our design. Many different optimizations could be

made to the Huffman decoder in order to reduce the latencies while the LZ77

decoder window width still has room to be scaled up. Multiple Huffman de-

coders could be implemented in a speculative parallelization architecture, but

we believe this to generally be a poor trade-off. Architectures like this require

extra area and provide statistical speed-ups that can’t be relied on. This extra

area is better spent implementing multiple independent decompressor cores in

order to decompress multiple files at a time. Due to the small area of our

decompressor design, a system like this would be easily achievable and would

be able to achieve massive multi-file decompression throughputs, as explained

in Section 4.4.

79

Chapter 5

Conclusion

5.1 Summary

This thesis research considered the design and implementation of FPGA-based

hardware implementations of the Deflate lossless compression and decompres-

sion algorithms, using high-level synthesis. For the design of our FPGA-based

compressor, we followed the current state-of-the-art architecture that many

other designs have been using, which utilizes a fixed-throughput pipeline that

performs static Huffman encoding only in order to rapidly compress data. Al-

though these FPGA-based compressor designs provide lower compression ra-

tios than software compressors, they are able to achieve compression through-

puts that are a couple orders of magnitude greater. As shown in Table 3.3

and discussed in Section 2.3.1, FPGA-based compressors can achieve input

throughputs ranging from 3 to 4 GB/s with mean compression ratios around

2.00, while software compressors typically compress around 50 MB/s with

mean compression ratios around 3.00. Our FPGA-based compressor design

was able to achieve arithmetic and geometric mean compression ratios of 2.00

and 1.92, respectively, across the Calgary corpus benchmark. Though these

values are slightly lower than those achieved by other previous works, which

were able to achieve values up to 2.17 [27], we were able to achieve a clock fre-

quency of 250 MHz for our design, giving us a compression throughput of 4.0

GB/s, which is higher than the previous fastest design capable of compressing

3.20 GB/s [7]. These results were also obtained using high-level synthesis,

which shows that Vivado HLS is capable of producing competitively perform-

80

ing designs.

In terms of Deflate decompression, the amount of published FPGA-based

designs is much fewer. Despite this, we were able to find some designs with

ideas that proved useful to include in our design. We also analyzed the

technique of speculative parallelization, which has been performed by some

software-based decompressors, and investigated how this may be performed

on a hardware platform such as an FPGA. For the design of our FPGA-based

decompressor, we set out to exploit the parallel hardware resources in FPGAs

in order to achieve the fastest decompression throughputs possible. Doing this,

we were able to achieve average input decompression throughputs of 130.58

MB/s and 70.73 MB/s for static and dynamic files from the Calgary corpus,

respectively. These values correspond to output throughputs of 386.56 MB/s

and 246.35 MB/s for static and dynamic files, respectively. Our design is about

2.44 times faster than the design from [38] and has comparable throughputs

to the expertly-optimized proprietary IP decompressor sold by Xilinx [41],

which has average output static and dynamic throughputs of 495 MB/s and

375 MB/s, respectively, though these results were achieved using unknown

test files. Even though we used Vivado HLS to synthesize our decompressor

core, we were still able to achieve a compact design that only utilizes 2.59% of

the LUTs and 2.01% of the BRAMs on a low tier Xilinx Virtex UltraScale+

XCVU3P-FFVC1517 FPGA. On this FPGA, we could hypothetically deploy

a cluster of 32 decompressor cores (while only using 83% of the LUTs and 64%

of the BRAMs) and expect to achieve multi-file input decompression through-

puts of 4.18 GB/s for statically compressed files and 2.26 GB/s for dynamically

compressed files.

5.2 Evaluation of Vivado HLS

As part of this thesis, we evaluated the use of high-level synthesis, specifically

Vivado HLS, as a tool for speeding up digital hardware design. From the re-

sults of our compressor and decompressor designs, which are summarized in

the previous section, we have shown that Vivado HLS is able to create com-

81

petitive designs in terms of both performance and area compared to designs

specified in structural-level VHDL or Verilog. Achieving these competitive re-

sults, however, did not come easily due to some of the limitations that Vivado

HLS has. In Section 3.2.1, we described the difficulties that we encountered

when trying to meet post-route timing with our LZ77 encoder design. As

Vivado HLS is only aware of (and therefore only has control over) the logic

synthesis part of the FPGA design flow, sometimes extra effort is required in

order to help a large and complex design (with significant routing delays) to

meet timing following implementation. In Section 3.2.2, we explained a useful

advantage of Vivado HLS with its ability to automatically optimize certain

operations into simpler ones, like multiplication and division by powers of two

automatically being converted into left-shift and right-shift operations. This

can lead to faster and more area-efficient designs being synthesized without the

user even being aware of these optimizations occurring. This was also shown in

Section 3.2.3, where Vivado HLS was shown to be making design optimizations

at the system pipeline level, resulting in our 16-stage Huffman encoder design

being compacted down automatically into a more efficient 6-stage pipeline.

In Section 4.1, we described what we call the “coarse function scheduling”

limitation of Vivado HLS. Due to how the tool operates, sub-functions within a

synthesized core must be scheduled to start and finish on strict timing bound-

aries, preventing the asynchronous execution of multiple functions at a time.

This limitation can be overcome to an extent using the Vivado HLS dataflow

pragma, which allows each sub-function to operate itself independently of the

others; however, this pragma itself imposes many constraints on the code to be

synthesized. In Section 4.2.3, we described the difficulties that we encountered

when using the partition pragma in order to automatically partition our LZ77

decoder circular buffer due to the fact that the tool could not recognize that

we were accessing the memories safely without conflict. In the same section

we also described the difficulties in achieving a pipeline II of 1 in our design.

This difficulty was caused by the way our code was written, requiring us to

rewrite our code in many functionally equivalent ways in order to find a syn-

tax that the tool preferred. In Section 4.4, we gave another example of the

82

same problem where the code describing our Huffman decoder has resulted in

inefficient synthesis and the delay of certain operations being performed, even

when it is clear that the delay is unnecessary.

Vivado HLS is a tool that comes with many useful advantages but also has

many limitations. Although it enables RTL designs to be described in a high-

level software programming language, it still requires a hardware engineering

design mindset. The ability for Vivado HLS to automatically optimize certain

parts of a design, without explanation, is both a blessing and a curse. It

requires a very low-level understanding of what is expected to be synthesized

and how hardware synthesis is performed in order to be able to understand

some of the decisions that Vivado HLS makes in its operation. In general, the

simpler a design, the easier it will be to synthesize efficiently using the tool.

When attempting to synthesize large and complicated designs that realistically

should be synthesizeable, it can be frustrating working around the quirks of

Vivado HLS in order to get it to create what you want. In summary, Vivado

HLS is a very powerful tool to aid in the design of digital hardware that

comes with the cost of having a steep leaning curve in order to be able to use

effectively.

5.3 Future Work

As discussed in Section 3.4, our compressor design still has room for improve-

ment in terms of achieving greater compression ratios. First, the hash function

still may have room to be improved in order to reduce the likelihood of bank

access conflicts. Second, the hash bank architecture could be scaled up in

multiple ways at the cost of area and throughput in order to increase the

compression ratio. Other potential ideas for improving the compression ratio

include using multiple hash functions for different data types or making the

major design changes necessary to be able to perform dynamic Huffman en-

coding as well as static encoding. There is still room for improvement in the

throughput of a single-core compressor as well, before resorting to scaling up

the number of compressors working in parallel. Since we were able to achieve

83

a clock frequency of 250 MHz using high-level synthesis, it is reasonable to

expect that hand-coded RTL designs should be able to surpass this number.

As discussed in 4.4, our decompressor design still has not quite exploited all

available parallelism. The Huffman decoder still has plenty of inefficiencies in

its implementation that could be improved and the LZ77 decoder could be eas-

ily scaled up further in order to resolve large length-distance pairs faster. Once

these limits of parallelism are reached, speculative parallelization is one way

of potentially achieving even greater speed-ups at the cost of additional hard-

ware area. Due to the inherently-serial Deflate compressed format, however,

improving the decompression speeds much further than currently achievable

numbers will be difficult and will likely never reach the values of more eas-

ily parallelizable compressed formats. This situation is an example of where

a well-entrenched and widely-used standard is effectively limiting achievable

improved performance.

84

References

[1] R. Koenen. (2002). Overview of the MPEG-4 standard, [Online]. Avail-
able: https://web.archive.org/web/20100428021525/http://mpeg.
chiariglione.org/standards/mpeg-4/mpeg-4.htm.

[2] L. P. Deutsch. (1996). ‘‘RFC 1951: DEFLATE compressed data format
specification version 1.3”, [Online]. Available: https://www.w3.org/
Graphics/PNG/RFC-1951.

[3] D. Salomon, Data Compression: The Complete Reference, 4th ed.
Springer Science & Business Media, 2006.

[4] E. Sitaridi, R. Mueller, T. Kaldewey, G. Lohman, and K. A. Ross,
“Massively-parallel lossless data decompression,” in the 45th Int. Conf.
Parallel Processing (ICPP), 2016, pp. 242–247.

[5] J. Fowers, J. Y. Kim, D. Burger, and S. Hauck, “A scalable high-
bandwidth architecture for lossless compression on FPGAs,” in IEEE
23rd Annu. Int. Symp. Field-Programmable Custom Computing Ma-
chines (FCCM), 2015, pp. 52–59.

[6] J. Cong, Z. Fang, M. Huang, L. Wang, and D. Wu, “CPU-FPGA
Coscheduling for big data applications,” English, IEEE Design & Test,
vol. 35, no. 1, pp. 16–22, 2018.

[7] W. Qiao, J. Du, Z. Fang, M. Lo, M.-C. F. Chang, and J. Cong, “High-
throughput lossless compression on tightly coupled CPU-FPGA plat-
forms,” in IEEE 26th Annu. Int. Symp. Field-Programmable Custom
Computing Machines (FCCM), 2018, pp. 37–44.

[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for de-
livering computing as the 5th utility,” Future Generation Computer Sys-
tems, vol. 25, no. 6, pp. 599–616, 2009.

[9] Amazon Web Services, Inc. (2019). Amazon EC2 F1 Instances, [Online].
Available: https://aws.amazon.com/ec2/instance-types/f1/.

[10] J. L. Hennessy and D. A. Patterson, Computer Architecture : A Quanti-
tative Approach, 5th ed. Burlington: Elsevier Science & Technology, May
2014, isbn: 9780123704900.

85

https://web.archive.org/web/20100428021525/http://mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm
https://web.archive.org/web/20100428021525/http://mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm
https://www.w3.org/Graphics/PNG/RFC-1951
https://www.w3.org/Graphics/PNG/RFC-1951
https://aws.amazon.com/ec2/instance-types/f1/

[11] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted MOSFET’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–
268, 1974.

[12] “IEEE standard VHDL language reference manual,” IEEE Std 1076-
2008 (Revision of IEEE Std 1076-2002), 2009.

[13] “IEEE standard for Verilog hardware description language,” IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001), 2006.

[14] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there
yet? A study on the state of high-level synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 898–911, 2019.

[15] Xilinx Inc. (2019). Vivado High-Level Synthesis, [Online]. Available:
https : / / www . xilinx . com / products / design - tools / vivado /

integration/esl-design.html.

[16] PKWARE Inc. (2019). PKZIP, [Online]. Available: https : / / www .

pkware.com/pkzip.

[17] J.-l. Gailly and M. Adler. (2018). gzip, [Online]. Available: https://
www.gzip.org/.

[18] ——, (2017). zlib, [Online]. Available: https://zlib.net/zlib.html.

[19] M. Adler, Answer to: How are zlib, gzip and zip related? what do they
have in common and how are they different? Dec. 2013. [Online]. Avail-
able: https://stackoverflow.com/questions/20762094/how-are-
zlib-gzip-and-zip-related-what-do-they-have-in-common-and-

how-are-they/20765054%5C#20765054.

[20] PKWARE Inc. (2019). ‘‘.ZIP file format specification”, [Online]. Avail-
able: https : / / pkware . cachefly . net / webdocs / casestudies /

APPNOTE.TXT.

[21] L. P. Deutsch. (1996). ‘‘RFC 1952: GZIP file format specification version
4.3”, [Online]. Available: https://tools.ietf.org/html/rfc1952.

[22] T. Boutell. (1997). ‘‘RFC 2083: PNG (portable network graphics) spec-
ification version 1.0”, [Online]. Available: https://tools.ietf.org/
html/rfc2083.

[23] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE Trans. Info. Theory, vol. 23, no. 3, pp. 337–343, 1977.

[24] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[25] E. S. Schwartz and B. Kallick, “Generating a canonical prefix encoding,”
Communications of the ACM, vol. 7, no. 3, pp. 166–169, 1964.

86

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.pkware.com/pkzip
https://www.pkware.com/pkzip
https://www.gzip.org/
https://www.gzip.org/
https://zlib.net/zlib.html
https://stackoverflow.com/questions/20762094/how-are-zlib-gzip-and-zip-related-what-do-they-have-in-common-and-how-are-they/20765054%5C#20765054
https://stackoverflow.com/questions/20762094/how-are-zlib-gzip-and-zip-related-what-do-they-have-in-common-and-how-are-they/20765054%5C#20765054
https://stackoverflow.com/questions/20762094/how-are-zlib-gzip-and-zip-related-what-do-they-have-in-common-and-how-are-they/20765054%5C#20765054
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc2083
https://tools.ietf.org/html/rfc2083

[26] T. Bell, I. H. Witten, and J. G. Cleary, “Modeling for text compression,”
ACM Computing Surveys (CSUR), vol. 21, no. 4, pp. 557–591, 1989.

[27] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip: High
performance lossless data compression on FPGAs using OpenCL,” in
Proc. Int. Workshop on OpenCL 2013 & 2014, ser. IWOCL ’14, Bristol,
United Kingdom: ACM, 2014, pp. 4–9.

[28] A. Martin, D. Jamsek, and K. Agarawal, “FPGA-based application ac-
celeration: Case study with gzip compression/decompression streaming
engine,” ICCAD Special Session C, vol. 7, 2013.

[29] Y. Kim, S. Choi, J. Jeong, and Y. H. Song, “Data dependency reduc-
tion for high-performance FPGA implementation of DEFLATE com-
pression algorithm,” Journal of Systems Architecture, vol. 98, pp. 41–52,
2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1383762118306453.

[30] V. Gopal, J. Guilford, W. Feghali, E. Ozturk, and G. Wolrich, High
performance DEFLATE compression on Intel R© architecture processors,
2011. [Online]. Available: https://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/ia-deflate-compression-

paper.pdf.

[31] D. Harnik, E. Khaitzin, D. Sotnikov, and S. Taharlev, “A fast implemen-
tation of Deflate,” in 2014 Data Compression Conference, 2014, pp. 223–
232.

[32] M. Ch lopkowski and R. Walkowiak, “A general purpose lossless data
compression method for GPU,” Journal of Parallel and Distributed Com-
puting, vol. 75, pp. 40–52, 2015.

[33] H. Jang, C. Kim, and J. W. Lee, “Practical speculative parallelization
of variable-length decompression algorithms,” SIGPLAN Not., vol. 48,
no. 5, pp. 55–64, Jun. 2013.

[34] Z. Wang, Y. Zhao, Y. Liu, Z. Chen, C. Lv, and Y. Li, “A speculative
parallel decompression algorithm on Apache Spark,” Journal of Super-
computing, vol. 73, no. 9, pp. 4082–4111, 2017.

[35] The Apache Software Foundation. (2018). Apache Spark, [Online]. Avail-
able: https://spark.apache.org/.

[36] M. Kerbiriou and R. Chikhi, “Parallel decompression of gzip-compressed
files and random access to DNA sequences,” May 2019. [Online]. Avail-
able: https://arxiv.org/abs/1905.07224.

[37] H. Li. (2008). ‘‘FASTQ format specification”, [Online]. Available: http:
//maq.sourceforge.net/fastq.shtml.

87

http://www.sciencedirect.com/science/article/pii/S1383762118306453
http://www.sciencedirect.com/science/article/pii/S1383762118306453
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-deflate-compression-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-deflate-compression-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-deflate-compression-paper.pdf
https://spark.apache.org/
https://arxiv.org/abs/1905.07224
http://maq.sourceforge.net/fastq.shtml
http://maq.sourceforge.net/fastq.shtml

[38] J. Lazaro, J. Arias, A. Astarloa, U. Bidarte, and A. Zuloaga, “De-
compression dual core for SoPC applications in high speed FPGA,” in
IECON 2007 - 33rd Annu. Conf. IEEE Industrial Electronics Society,
2007, pp. 738–743.

[39] D. C. Zaretsky, G. Mittal, and P. Banerjee, “Streaming implementa-
tion of the ZLIB decoder algorithm on an FPGA,” in IEEE Int. Symp.
Circuits and Systems, 2009, pp. 2329–2332.

[40] J. Ouyang, H. Luo, Z. Wang, J. Tian, C. Liu, and K. Sheng, “FPGA im-
plementation of GZIP compression and decompression for IDC services,”
in IEEE Int. Conf. Field-Programmable Technology (FPT), IEEE, 2010,
pp. 265–268.

[41] Xilinx and CAST Inc. (2016). GUNZIP/ZLIB/Inflate Data Decompres-
sion Core, [Online]. Available: https://www.xilinx.com/products/
intellectual-property/1-79drsh.html#overview.

[42] ARM, AMBA 4 AXI4-Stream Protocol, 2010.

[43] Xilinx Inc., UG902 - Vivado design suite user guide: High-level synthesis
(v2019.1), Jul. 2019. [Online]. Available: https://www.xilinx.com/
support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-

high-level-synthesis.pdf.

88

https://www.xilinx.com/products/intellectual-property/1-79drsh.html#overview
https://www.xilinx.com/products/intellectual-property/1-79drsh.html#overview
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf

Appendix A

LZ77 Encoder Source File

LZ77 Encoder.cpp

1 #inc lude ”LZ77 Encoder . h”
2 #inc lude <u t i l s / x h l s u t i l s . h>
3

4 t h a s h s i z e hash func (
5 ap uint<8> in byte0 ,
6 ap uint<8> in byte1 ,
7 ap uint<8> in byte2 ,
8 ap uint<8> in byte3 ,
9 ap uint<8> i n byte4

10) {
11 t h a s h s i z e hash ;
12

13 hash = ((t h a s h s i z e) in byte0 ∗ 31) ˆ in byte1 ;
14 hash . r r o t a t e (4) ;
15 hash = (hash ∗ 3) ˆ in byte2 ;
16 hash . r r o t a t e (4) ;
17 hash = (hash ∗ 3) ˆ in byte3 ;
18 hash . r r o t a t e (4) ;
19 hash = (hash ∗ 3) ˆ in byte4 ;
20

21 re turn hash ;
22 }
23

24 void bank acce s s func (
25 t h a s h s i z e hash [WIN SIZE] , // Input
26 ap uint<WIN SIZE∗8> s u b s t r i n g i n t s [WIN SIZE] , // Input
27 ap uint <32> data pos , // Input
28 ap uint<NUM BANKS> &bank acce s s ed b i t s , //Output
29 ap uint<WIN SIZE> &s u b s t r i n g a c c e s s b i t s , //Output
30 t bank va lue s a s soc i a t ed bank [WIN SIZE] , //Output
31 match t s t r i n g t o w r i t e [NUM BANKS] , //Output
32 t b a n k s i z e s t r i n g a d d r e s s [NUM BANKS] //Output
33) {
34 #pragma HLS INLINE o f f
35 t num banks des i r ed bank [WIN SIZE] ;
36 #pragma HLS ARRAY PARTITION v a r i a b l e=des i r ed bank complete dim=1
37 t b a n k s i z e bank address [WIN SIZE] ;

89

38 #pragma HLS ARRAY PARTITION v a r i a b l e=bank address complete dim=1
39 t w i n s i z e a s s o c i a t e d s u b s t r i n g [NUM BANKS] = {0} ; // Contains the

s ub s t r i n g number g iven to each bank
40 #pragma HLS ARRAY PARTITION v a r i a b l e=a s s o c i a t e d s u b s t r i n g complete

dim=1
41

42 Bank Access : f o r (i n t i = WIN SIZE−1; i >= 0 ; i−−){ //For each
s ub s t r i n g (s t a r t i n g from the bottom)

43 des i r ed bank [i] = hash [i] (HASH BITS−1,HASH BITS−NUM BANKS BITS
) ; //The top 5 b i t s o f the hash value i n d i c a t e the d e s i r e d
bank to be acce s s ed

44 bank address [i] = hash [i] (BANK SIZE BITS−1 ,0) ; //The bottom 9
b i t s are the bank address to a c c e s s

45 i f (b a n k a c c e s s e d b i t s [de s i r ed bank [i]] == 0) { // I f d e s i r e d
bank has not a l r eady been acce s s ed

46 b a n k a c c e s s e d b i t s [de s i r ed bank [i]] = 1 ; // Set bank as
acce s s ed

47 s u b s t r i n g a c c e s s b i t s [i] = 1 ; // Record s ub s t r i n g as granted
a c c e s s

48 as soc i a t ed bank [i] = des i r ed bank [i] ; // Record bank acce s s ed
by s u bs t r i ng

49 a s s o c i a t e d s u b s t r i n g [des i r ed bank [i]] = i ; // Record
s ub s t r i n g g iven to bank

50 }
51 e l s e {
52 as soc i a t ed bank [i] = NUM BANKS; // Assoc ia t e with n u l l bank
53 }
54 }
55

56 // Pass 1 o f 16 s u b s t r i n g s to each o f 32 banks (Not a l l banks
w i l l a c t u a l l y be acce s s ed)

57 String to Bank MUX : f o r (i n t i = 0 ; i < NUM BANKS; i++){//For
each bank

58 s t r i n g t o w r i t e [i] . s t r i n g = reg (s u b s t r i n g i n t s [
a s s o c i a t e d s u b s t r i n g [i]]) ;

59 s t r i n g t o w r i t e [i] . p o s i t i o n = data pos + a s s o c i a t e d s u b s t r i n g [
i] ;

60 s t r i n g a d d r e s s [i] = bank address [a s s o c i a t e d s u b s t r i n g [i]] ;
61 }
62 }
63

64 void LZ77 Encoder (
65 stream<in strm> &strm in ,
66 stream<out strm> &strm out ,
67 i n t i n p u t s i z e
68) {
69 #pragma HLS INTERFACE a x i s r e g i s t e r both port=st rm in // Input

AXI Stream
70 #pragma HLS INTERFACE a x i s r e g i s t e r both port=strm out //Output

AXI Stream
71

72 i n s t rm i n p u t b u f f ;
73 ap uint<8> curr window [2∗WIN SIZE] ; // Current window o f data to

be compressed .

90

74 #pragma HLS ARRAY PARTITION v a r i a b l e=curr window complete dim=1
75 t h a s h s i z e hash [WIN SIZE] ; //Hash va lue s o f each s u bs t r i ng in

curr window .
76 #pragma HLS ARRAY PARTITION v a r i a b l e=hash complete dim=1
77 s t a t i c match t d i c t i o n a r y [NUM BANKS] [BANK DEPTH] [BANK SIZE] ; //

Dic t ionary p a r t i t i o n e d in to banks with each bank having
mul t ip l e depth l e v e l s

78 #pragma HLS RESOURCE v a r i a b l e=d i c t i o n a r y core=RAM S2P BRAM
79 #pragma HLS ARRAY PARTITION v a r i a b l e=d i c t i o n a r y complete dim=1
80 #pragma HLS ARRAY PARTITION v a r i a b l e=d i c t i o n a r y complete dim=2
81 ap uint <32> data pos = 0 ; //Marker to keep track o f input data

p o s i t i o n
82 ap uint<WIN SIZE> match l eng th b i t s [NUM BANKS] [BANK DEPTH] ; //

Bit−s t r i n g o f matching bytes between su b s t r i n g and p o t e n t i a l
matches

83 #pragma HLS ARRAY PARTITION v a r i a b l e=match l eng th b i t s complete
dim=0

84 t m a t c h s i z e match length [NUM BANKS] [BANK DEPTH] ; // I n t e g e r
va lue o f match l ength between s ub s t r i n g and p o t e n t i a l matches

85 #pragma HLS ARRAY PARTITION v a r i a b l e=match length complete dim=0
86 t m a t c h s i z e bank bes t l ength [NUM BANKS] ; //The value o f the

best match length from each bank
87 #pragma HLS ARRAY PARTITION v a r i a b l e=bank bes t l eng th complete dim

=1
88 ap int <32> b a n k b e s t p o s i t i o n [NUM BANKS] ; //The p o s i t i o n o f the

best match from each bank
89 #pragma HLS ARRAY PARTITION v a r i a b l e=b a n k b e s t p o s i t i o n complete

dim=1
90 t bank depth bank best match [NUM BANKS] ; //The depth number

conta in ing the bes t match from each bank
91 #pragma HLS ARRAY PARTITION v a r i a b l e=bank best match complete dim

=1
92 t m a t c h s i z e window best length [WIN SIZE] ; //The value o f the

best match length f o r each s ub s t r i n g
93 #pragma HLS ARRAY PARTITION v a r i a b l e=window best length complete

dim=1
94 ap int <32> window bes t pos i t i on [WIN SIZE] ; //The p o s i t i o n o f the

best match f o r each s ub s t r i n g
95 #pragma HLS ARRAY PARTITION v a r i a b l e=window bes t pos i t i on complete

dim=1
96 t w i n s i z e la s t match ; // Pos i t i on o f l a s t match in cur rent

window . Used to c a l c u l a t e FVP
97 t w i n s i z e f i r s t v a l i d p o s = 0 ; //Marker to keep track o f f i r s t

v a l i d match p o s i t i o n in cur rent window
98 t m a t c h s i z e reach [WIN SIZE] ; //How f a r a match extends with in

the cur rent window
99 #pragma HLS ARRAY PARTITION v a r i a b l e=reach complete dim=1

100 ap uint <32> o f f s e t s [WIN SIZE] ; // O f f s e t o f each best match found
101 #pragma HLS ARRAY PARTITION v a r i a b l e=o f f s e t s complete dim=1
102 ap uint<WIN SIZE> v a l i d m a t c h e s b i t s ; // Bit−s t r i n g f o r

i d e n t i f y i n g v a l i d bes t matches a f t e r f i l t e r i n g
103 ap uint<WIN SIZE> m a t c h e d l i t e r a l s b i t s ; // Bit−s t r i n g f o r

l o c a t i n g matched l i t e r a l s in cur rent window
104 out ar ray output array [WIN SIZE] ;

91

105 #pragma HLS ARRAY PARTITION v a r i a b l e=output array complete dim=1
106 out strm output bu f f = {0} ;
107 i n t num i te ra t i ons ;
108 t m a t c h s i z e b y t e s c o n f l i c t i n g ; //Number o f bytes c o n f l i c t i n g

between two p o t e n t i a l matches
109 ap uint<NUM BANKS> b a n k a c c e s s e d b i t s ; // Bit−s t r i n g f o r

r e co rd ing which d i c t i o n a r y banks have been acce s s ed f o r
wr i t i ng

110 ap uint<WIN SIZE> s u b s t r i n g a c c e s s b i t s ; // Bit−s t r i n g f o r
r e co rd ing which s u b s t r i n g s have been granted a c c e s s to a bank

111 t bank va lue s a s soc i a t ed bank [WIN SIZE] ; // Contains the bank
number acce s s ed by each window su b s t r i n g

112 #pragma HLS ARRAY PARTITION v a r i a b l e=as soc i a t ed bank complete dim
=1

113 match t s t r i n g t o w r i t e [NUM BANKS] ; // St r ing + p o s i t i o n to be
wr i t t en to each bank

114 #pragma HLS ARRAY PARTITION v a r i a b l e=s t r i n g t o w r i t e complete dim
=1

115 t b a n k s i z e s t r i n g a d d r e s s [NUM BANKS] ; // Address to wr i t e s t r i n g
and p o s i t i o n to

116 #pragma HLS ARRAY PARTITION v a r i a b l e=s t r i n g a d d r e s s complete dim=1
117 match t potent ia l match [NUM BANKS] [BANK DEPTH] ; // P ot e n t i a l

matches read from each bank and depth l e v e l
118 #pragma HLS ARRAY PARTITION v a r i a b l e=potent ia l match complete dim

=0
119 ap uint<WIN SIZE∗8> s u b s t r i n g i n t s [WIN SIZE] ; // I n t e g e r s o f each

s ub s t r i n g in cur rent window
120 #pragma HLS ARRAY PARTITION v a r i a b l e=s u b s t r i n g i n t s complete dim=1
121

122 // Dict ionary I n i t i a l i z a t i o n
123 Dict In i t Loop A : f o r (i n t i = 0 ; i < BANK SIZE ; i++){ //For each

bank entry
124 Dict In i t Loop B : f o r (i n t j = 0 ; j < NUM BANKS; j++){ //For

each bank
125 #pragma HLS UNROLL
126 Dict In i t Loop C : f o r (i n t k = 0 ; k < BANK DEPTH; k++){ //For

each depth l e v e l
127 #pragma HLS UNROLL
128 d i c t i o n a r y [j] [k] [i] . s t r i n g = 0 ;
129 d i c t i o n a r y [j] [k] [i] . p o s i t i o n = −32769;
130 }
131 }
132 }
133

134 num i te ra t i ons = (i n p u t s i z e −1)/WIN SIZE + 1 ; // Ca l cu la t e number
o f i t e r a t i o n s (Rounded up)

135 // In the f i r s t i t e r a t i o n , cur r ent window needs to be loaded
be f o r e s h i f t i n g order to f i l l i t complete ly

136 s t rm in >> i n p u t b u f f ;
137 Firs t Load : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //Load window

with data from input b u f f e r
138 #pragma HLS UNROLL
139 curr window [i + WIN SIZE] = i n p u t b u f f . data ((i ∗8) +7, i ∗8) ; //

Convert from i n t to array (L i t t l e Endian)

92

140 }
141

142 i f (! i n p u t b u f f . l a s t) { // I f f i r s t read wasn ’ t l a s t
143 //Main Function Loop
144 Main Loop : f o r (i n t n = 0 ; n < (num iterat ions −1) ; n++){ //

Perform a l l i t e r a t i o n s except l a s t in loop
145 #pragma HLS PIPELINE
146 #pragma HLS DEPENDENCE v a r i a b l e=d i c t i o n a r y i n t e r f a l s e
147

148 Window Shift : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ // S h i f t
second h a l f o f window in to f r o n t h a l f o f window

149 curr window [i] = curr window [i + WIN SIZE] ;
150 }
151

152 s t rm in >> i n p u t b u f f ;
153 Load Window : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //Load

window with data from input b u f f e r
154 curr window [i + WIN SIZE] = i n p u t b u f f . data ((i ∗8) +7, i ∗8) ;

// Convert from i n t to array (L i t t l e Endian)
155 }
156

157 Hash : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //Hash each
s ub s t r i n g o f window

158 hash [i] = hash func (curr window [i] , curr window [i +1] ,
curr window [i +2] , curr window [i +3] ,

159 curr window [i +4]) ; //Hash f i r s t f our bytes o f each
s ub s t r i n g

160 }
161

162 Pul l Subs t r ing s A : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //For
each s ub s t r i n g

163 Pul l Subs t r ing s B : f o r (i n t j = 0 ; j < WIN SIZE ; j++){ //
For each charac t e r in s u b s t r i ng

164 s u b s t r i n g i n t s [i] ((j ∗8) +7, j ∗8) = curr window [i+j] ; //
Pul l s u b s t r i n g s from current window

165 }
166 }
167

168 b a n k a c c e s s e d b i t s = 0 ; // Reset bank a c c e s s f l a g b i t s
169 s u b s t r i n g a c c e s s b i t s = 0 ; // Reset s u b s t r i ng a c c e s s f l a g

b i t s
170 // Al l o ca t e bank a c c e s s to s u b s t r i n g s
171 bank acce s s func (hash , s u b s t r i n g i n t s , data pos ,

bank acce s s ed b i t s , s u b s t r i n g a c c e s s b i t s , a s soc ia ted bank ,
s t r i n g t o w r i t e , s t r i n g a d d r e s s) ;

172

173 Read Matches A : f o r (i n t i = 0 ; i < NUM BANKS; i++){//For
each bank

174 Read Matches B : f o r (i n t j = 0 ; j < BANK DEPTH; j++){//For
each depth l e v e l

175 i f (b a n k a c c e s s e d b i t s [i] == 1) { // I f acce s s ed by
s ub s t r i n g

176 potent ia l match [i] [j] . s t r i n g = d i c t i o n a r y [i] [j] [
s t r i n g a d d r e s s [i]] . s t r i n g ; //Read p o t e n t i a l match s t r i n g

93

177 potent ia l match [i] [j] . p o s i t i o n = d i c t i o n a r y [i] [j] [
s t r i n g a d d r e s s [i]] . p o s i t i o n ; //Read p o t e n t i a l match p o s i t i o n

178 }
179 }
180 }
181

182 Write Substr ings A : f o r (i n t i = 0 ; i < NUM BANKS; i++){//For
each bank

183 i f (b a n k a c c e s s e d b i t s [i] == 1) { // I f acce s s ed by s ub s t r i n g
184 d i c t i o n a r y [i] [0] [s t r i n g a d d r e s s [i]] . s t r i n g =

s t r i n g t o w r i t e [i] . s t r i n g ; // Write s u b s t r i ng to depth 0
185 d i c t i o n a r y [i] [0] [s t r i n g a d d r e s s [i]] . p o s i t i o n =

s t r i n g t o w r i t e [i] . p o s i t i o n ; // Write p o s i t i o n to depth 0
186 Write Substr ings B : f o r (i n t j = 1 ; j < BANK DEPTH; j++){

//For each depth l e v e l below depth 0
187 d i c t i o n a r y [i] [j] [s t r i n g a d d r e s s [i]] . s t r i n g =

potent ia l match [i] [j −1] . s t r i n g ; // Write s ub s t r i n g from depth
above

188 d i c t i o n a r y [i] [j] [s t r i n g a d d r e s s [i]] . p o s i t i o n =
potent ia l match [i] [j −1] . p o s i t i o n ; // Write p o s i t i o n from depth
above

189 }
190 }
191 }
192

193 Match Compare A : f o r (i n t i = 0 ; i < NUM BANKS; i++){//For
each bank

194 Match Compare B : f o r (i n t j = 0 ; j < BANK DEPTH; j++){//For
each depth l e v e l

195 Match Compare C : f o r (i n t k = 0 ; k < WIN SIZE ; k++){//For
each charac t e r

196 match l eng th b i t s [i] [j] [k] = (s t r i n g t o w r i t e [i] .
s t r i n g ((k∗8) +7,k∗8) == potent ia l match [i] [j] . s t r i n g ((k ∗8) +7,k
∗8)) ? 1 : 0 ; //Compare s t r i n g s

197 }
198 }
199

200 }
201

202 Match Length A : f o r (i n t i = 0 ; i < NUM BANKS; i++){ //For
each bank

203 Match Length B : f o r (i n t j = 0 ; j < BANK DEPTH; j++){ //For
each depth l e v e l

204 match length [i] [j] = b u i l t i n c t z ((0 b1 , ˜
match l eng th b i t s [i] [j])) ; // Ca l cu la te i n t e g e r l ength

205 }
206 }
207

208 Reset Best : f o r (i n t i = 0 ; i < NUM BANKS; i++){ //For each
bank

209 bank bes t l eng th [i] = 0 ; // Reset bes t match l eng th s from
l a s t i t e r a t i o n

210 }
211

94

212 Best Match A : f o r (i n t i = 0 ; i < NUM BANKS; i++){ //For each
bank

213 Best Match B : f o r (i n t j = 0 ; j < BANK DEPTH; j++){ //For
each depth l e v e l

214 i f (match length [i] [j] > bank bes t l eng th [i]) { //Compare
matches to f i n d best l ength

215 bank bes t l ength [i] = match length [i] [j] ;
216 bank best match [i] = j ;
217 }
218 }
219 }
220

221 Best Match MUX : f o r (i n t i = 0 ; i < NUM BANKS; i++){ //For
each bank

222 b a n k b e s t p o s i t i o n [i] = reg (potent ia l match [i] [
bank best match [i]] . p o s i t i o n) ; // Pass p o s i t i o n o f bes t match

223 }
224

225 Bank to String MUX : f o r (i n t i = 0 ; i < WIN SIZE ; i++){//For
each window su b s t r i n g

226 i f (s u b s t r i n g a c c e s s b i t s [i] == 1) { // I f s u b s t r i ng was
granted bank a c c e s s

227 window best length [i] = bank bes t l eng th [a s soc i a t ed bank
[i]] ; // Obtain bes t match l ength and p o s i t i o n from a s s o c i a t e d
bank

228 window bes t pos i t i on [i] = b a n k b e s t p o s i t i o n [
a s soc i a t ed bank [i]] ;

229 }
230 e l s e { // Otherwise , s e t match length to 0
231 window best length [i] = 0 ;
232 window bes t pos i t i on [i] = 0 ;
233 }
234 }
235

236 Calc Val id : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //For each
best match

237 v a l i d m a t c h e s b i t s [i] = (window best length [i] == 0) ? 0 :
1 ; // I f the match l ength i s not 0 , the match i s v a l i d

238 }
239

240 C a l c O f f s e t : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //For each
s ub s t r i n g

241 o f f s e t s [i] = data pos + i − window bes t pos i t i on [i] ;
242 i f (o f f s e t s [i] > MAX DISTANCE) { // F i l t e r matches that are

too f a r back
243 v a l i d m a t c h e s b i t s [i] = 0 ;
244 }
245 }
246

247 F i l t e r A : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //For each best
match

248 i f (window best length [i] < MIN LENGTH) // F i l t e r matches
with l ength l e s s than 3

249 v a l i d m a t c h e s b i t s [i] = 0 ;

95

250 }
251

252 // F i l t e r B
253 v a l i d m a t c h e s b i t s &= ((ap uint<WIN SIZE>)0xFFFF <<

f i r s t v a l i d p o s) ; // F i l t e r matches covered by prev ious
i t e r a t i o n by c l e a r i n g b i t s up to FVP

254

255 l a s t match = (v a l i d m a t c h e s b i t s != 0) ? (31 − b u i l t i n c l z
(v a l i d m a t c h e s b i t s)) : 0 ; // Ca l cu la te l a s t match . I f no v a l i d

matches , s e t to 0
256

257 // Set m a t c h e d l i t e r a l s based on f i r s t v a l i d p o s i t i o n be f o r e
updating i t

258 m a t c h e d l i t e r a l s b i t s = decoder [f i r s t v a l i d p o s] (0 , WIN SIZE
−1) ;

259

260 Calc Reach : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //For each
best match

261 reach [i] = i + window best length [i] ; // Ca l cu la t e reach o f
a l l matches

262 }
263

264 // Ca lcu la te f i r s t v a l i d p o s i t i o n o f next i t e r a t i o n us ing the
reach o f the l a s t match

265 // I f reach o f l a s t match i s g r e a t e r than 16 , c a l c u l a t e FVP.
Otherwise FVP i s 0 .

266 f i r s t v a l i d p o s = (reach [la s t match] [MATCH SIZE BITS−1] ==
1) ? reach [la s t match] (MATCH SIZE BITS−2 ,0) : 0 ;

267

268 // F i l t e r matches with same reach but lower l ength than
othe r s

269 Fi l t e r C 1 : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //For each
match

270 i f (v a l i d m a t c h e s b i t s [i] != 0) { // I f match i s s t i l l v a l i d
271 Fi l t e r C2 : f o r (i n t j = i +1; j < WIN SIZE ; j++){ //

Compare to a l l v a l i d matches ’ below ’ t h i s match
272 i f (reach [i] == reach [j]) { // I f matches have same reach

, match below has lower l ength
273 i f (j == last match) { // I f l a s t match i s be ing

f i l t e r e d f o r a l onge r match
274 v a l i d m a t c h e s b i t s (WIN SIZE−1, i +1) = 0 ; // F i l t e r

a l l matches below match i
275 }
276 e l s e {
277 v a l i d m a t c h e s b i t s [j] = 0 ; // F i l t e r match below
278 }
279 }
280 }
281 }
282 }
283

284 // F i l t e r or trim matches that c o n f l i c t with l a t e r matches (
l a s t match must be kept)

96

285 Fi l t e r D1 : f o r (i n t i = WIN SIZE−1; i >= 0 ; i−−){ //For each
match (s t a r t i n g from the bottom)

286 i f (v a l i d m a t c h e s b i t s [i] != 0) { // I f match i s s t i l l v a l i d
287 Fi l t e r D2 : f o r (i n t j = 0 ; j < i ; j++){ //Compare to a l l

v a l i d matches ’ above ’ t h i s match
288 i f (reach [j] > i) { // I f above matches c o n f l i c t with

t h i s match
289 b y t e s c o n f l i c t i n g = reach [j] − i ; // Ca l cu la t e number

o f c o n f l i c t i n g bytes
290 i f (window best length [j] − b y t e s c o n f l i c t i n g >=

MIN LENGTH) { // I f match j can s a f e l y be trimmed (without
dec r ea s ing l ength below 3)

291 window best length [j] −= b y t e s c o n f l i c t i n g ; //Trim
match j

292 }
293 e l s e {
294 v a l i d m a t c h e s b i t s [j] = 0 ; // F i l t e r match j
295 }
296 }
297 }
298 }
299 }
300

301 // Prepar ing output sequence
302 Prepare OutputA : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //For

each box in window
303 output array [i] . u ser = (v a l i d m a t c h e s b i t s [i] != 0) ? 0b10

: 0b01 ;
304 // I f box conta in s a v a l i d match , s e t user f l a g to match .

Otherwise s e t to unmatched l i t e r a l
305 }
306

307 Prepare OutputB : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //For
each box in window

308 i f (v a l i d m a t c h e s b i t s [i] != 0) { // I f match i s v a l i d
309 m a t c h e d l i t e r a l s b i t s |= (((ap uint<WIN SIZE>)decoder [

window best length [i]] >> 1) << (WIN SIZE − window best length
[i] − i)) ;

310 } //Turn match length in to bit−s t r i n g and OR a l l t oge the r
to f i n d matched l i t e r a l s

311 }
312

313 Prepare OutputC : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //For
each box in window (each b i t in window matches)

314 i f (m a t c h e d l i t e r a l s b i t s [WIN SIZE−1− i] == 1) { // I f the box
conta in s a matched l i t e r a l

315 output array [i] . u ser = 0b00 ;
316 } // Set user f l a g to 0 f o r a l l matched l i t e r a l s
317 }
318

319 Prepare OutputD : f o r (i n t i = 0 ; i < WIN SIZE ; i++){
320 switch (output array [i] . u ser) { //Based on s t a t u s o f output

box , f i l l data acco rd ing ly
321 case 0b00 : //Matched L i t e r a l

97

322 output array [i] . data = 0 ; // Clear box (Only u s e f u l f o r
debugging)

323 break ;
324

325 case 0b01 : //Unmatched L i t e r a l
326 output array [i] . data = curr window [i] ; // Write l i t e r a l
327 break ;
328

329 case 0b10 : //Match
330 a s s e r t (window best length [i] >= MIN LENGTH) ; //

As s e r t i on s f o r C debugging
331 a s s e r t (window best length [i] <= WIN SIZE) ;
332 a s s e r t (o f f s e t s [i] >= 1) ;
333 a s s e r t (o f f s e t s [i] <= MAX DISTANCE) ;
334

335 output array [i] . data (23 , 15) = window best length [i] ; //
Write Length in upper 9 b i t s

336 output array [i] . data (14 , 0) = o f f s e t s [i] − 1 ; // Write
Distance in lower 15 b i t s

337 break ;
338 }
339 }
340

341 Prepare OutputE : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //
Convert from array to i n t (L i t t l e Endian)

342 output bu f f . data ((i ∗24) +23, i ∗24) = output array [i] . data ;
343 output bu f f . user ((i ∗2)+ 1 , i ∗2) = output array [i] . u ser ;
344 }
345

346 // Write to output stream
347 strm out << output bu f f ;
348

349 data pos += WIN SIZE ; // Increment data marker
350 } //For−num iterat ions−loop
351 }
352

353 L a s t S h i f t : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ // S h i f t second
h a l f o f window in to f r o n t h a l f o f window

354 #pragma HLS UNROLL
355 curr window [i] = curr window [i + WIN SIZE] ;
356 }
357

358 // Ca lcu la t e m a t c h e d l i t e r a l s one l a s t time
359 m a t c h e d l i t e r a l s b i t s = decoder [f i r s t v a l i d p o s] (0 , WIN SIZE−1) ;
360 m a t c h e d l i t e r a l s b i t s |= ˜ (((ap uint<WIN SIZE>) i n p u t b u f f . keep

(0 ,WIN SIZE−1))) ; //OR with TKEEP to i d e n t i f y n u l l bytes at
end o f input stream

361

362 Last OutputA : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ //For each box
in window (each b i t in window matches)

363 #pragma HLS UNROLL
364 output array [i] . u ser = (m a t c h e d l i t e r a l s b i t s [WIN SIZE−1− i] ==

1) ? 0b00 : 0b01 ;

98

365 } // I f the box conta in s a matched l i t e r a l or n u l l byte , s e t to 0
b00

366

367 Last OutputB : f o r (i n t i = 0 ; i < WIN SIZE ; i++){
368 #pragma HLS UNROLL
369 switch (output array [i] . u se r) { //Based on s t a t u s o f output box ,

f i l l data ac co rd ing ly
370 case 0b00 : //Matched L i t e r a l / Nul l Character
371 output array [i] . data = 0 ; // Clear box (Only u s e f u l f o r

debugging)
372 break ;
373

374 case 0b01 : //Unmatched L i t e r a l
375 output array [i] . data = curr window [i] ; // Write l i t e r a l
376 break ;
377 }
378 }
379

380 Last OutputC : f o r (i n t i = 0 ; i < WIN SIZE ; i++){ // Convert from
array to i n t (L i t t l e Endian)

381 #pragma HLS UNROLL
382 output bu f f . data ((i ∗24) +23, i ∗24) = output array [i] . data ;
383 output bu f f . user ((i ∗2)+ 1 , i ∗2) = output array [i] . u ser ;
384 }
385 output bu f f . l a s t = 1 ;
386 strm out << output bu f f ;
387 }

99

Appendix B

LZ77 Encoder Header File

LZ77 Encoder.h

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3 #inc lude <ap in t . h>
4 #inc lude <h l s s t r eam . h>
5 #inc lude <a s s e r t . h>
6

7 us ing namespace h l s ;
8

9 #d e f i n e WIN SIZE 16 //Compare window s i z e .
S l i d i n g window i s twice t h i s

10 #d e f i n e NUM BANKS 32 //Number o f d i c t i o n a r y banks
11 #d e f i n e BANK DEPTH 3 //Depth o f each d i c t i o n a r y

bank
12 #d e f i n e BANK INDEXES (512∗NUM BANKS) // 16384 // Total number o f

hash bank indexes
13 #d e f i n e BANK SIZE (BANK INDEXES/NUM BANKS) //Number o f indexes in

each bank
14 #d e f i n e MIN LENGTH 3 //Minimum Def l a t e match

length
15 #d e f i n e MAX DISTANCE 32768 //Maximum Def l a t e match

d i s t anc e
16

17 //Dynamic b i t width d e f i n i t i o n s (Only work in C sim)
18 #i f n d e f SYNTHESIS
19 #d e f i n e WIN SIZE BITS (i n t) (log2 (WIN SIZE−1)+1) //Number o f

b i t s r equ i r ed to s t o r e WIN SIZE va lue s
20 #d e f i n e BANK DEPTH BITS (i n t) (log2 (BANK DEPTH−1)+1) //Number o f

b i t s r equ i r ed to s t o r e BANK DEPTH va lue s
21 #d e f i n e MATCH SIZE BITS (i n t) (log2 (WIN SIZE) +1) //Number o f

b i t s r equ i r ed to s t o r e maximum match length (WIN SIZE)
22 #d e f i n e HASH BITS (i n t) (log2 (BANK INDEXES−1)+1) //Number o f

hash b i t s r equ i r ed to index BANK INDEXES (Complete hash
func t i on)

23 #d e f i n e NUM BANKS BITS (i n t) (log2 (NUM BANKS−1)+1) //Number o f
b i t s r equ i r ed to index NUM BANKS va lues (Top b i t s o f hash
func t i on)

100

24 #d e f i n e BANK SIZE BITS (i n t) (log2 (BANK SIZE−1)+1) //Number o f
b i t s r equ i r ed to index BANK SIZE va lue s (Bottom b i t s o f hash
func t i on)

25 #e l s e
26 #d e f i n e WIN SIZE BITS 4
27 #d e f i n e BANK DEPTH BITS 2
28 #d e f i n e MATCH SIZE BITS 5
29 #d e f i n e HASH BITS 14
30 #d e f i n e NUM BANKS BITS 5
31 #d e f i n e BANK SIZE BITS 9
32 #e n d i f
33

34 typede f ap uint<WIN SIZE BITS> t w i n s i z e ;
35 typede f ap uint<BANK DEPTH BITS> t bank depth ;
36 typede f ap uint<MATCH SIZE BITS> t m a t c h s i z e ;
37 typede f ap uint<HASH BITS> t h a s h s i z e ;
38 typede f ap uint<NUM BANKS BITS> t num banks ;
39 typede f ap uint<NUM BANKS BITS+1> t bank va lue s ; //1 extra b i t to

in c lude the value NUM BANKS
40 typede f ap uint<BANK SIZE BITS> t b a n k s i z e ;
41

42 typede f s t r u c t { // Input AXI−Stream s t r u c t u r e
43 ap uint<WIN SIZE∗8> data ; // Array o f window c h a r a c t e r s (128 b i t s

with 16 bytes)
44 ap uint<WIN SIZE> keep ; //TKEEP S i g n a l s f o r each byte
45 bool l a s t ;
46 } i n s t rm ;
47

48 typede f s t r u c t { //Output Array s t r u c t u r e
49 ap uint <24> data ; //3−byte box f o r one o f the window c h a r a c t e r s

from LZ77 encoder
50 ap uint<2> user ; //2−b i t f l a g f o r i d e n t i f y i n g a box as a

l i t e r a l , length , d i s tance , or matched l i t e r a l
51 } out ar ray ;
52

53 typede f s t r u c t { //Output AXI−Stream s t r u c t u r e
54 ap uint <3∗WIN SIZE∗8> data ; //3−byte ’ boxes ’ f o r each o f the

window c h a r a c t e r s from LZ77 encoder
55 ap uint <2∗WIN SIZE> user ; //2−b i t f l a g s f o r i d e n t i f y i n g each box

as a l i t e r a l , length , d i s tance , or matched l i t e r a l
56 bool l a s t ; //AXI−Stream TLAST s i g n a l
57 } out strm ;
58

59 typede f s t r u c t { //Match St ruc ture
60 ap uint<WIN SIZE∗8> s t r i n g ; //16−byte s t r i ng , i n t form
61 ap int <32> p o s i t i o n ; // Pos i t i on o f s t r i n g in h i s t o r y
62 } match t ;
63

64 //16−b i t decoder . Given an i n t e g e r index n , r e tu rn s a b i t s t r i n g
conta in ing n ones .

65 const ap uint <16> decoder [1 7] = {
66 /∗ 0∗/ 0b0000000000000000 ,
67 /∗ 1∗/ 0b0000000000000001 ,
68 /∗ 2∗/ 0b0000000000000011 ,

101

69 /∗ 3∗/ 0b0000000000000111 ,
70 /∗ 4∗/ 0b0000000000001111 ,
71 /∗ 5∗/ 0b0000000000011111 ,
72 /∗ 6∗/ 0b0000000000111111 ,
73 /∗ 7∗/ 0b0000000001111111 ,
74 /∗ 8∗/ 0b0000000011111111 ,
75 /∗ 9∗/ 0b0000000111111111 ,
76 /∗10∗/ 0b0000001111111111 ,
77 /∗11∗/ 0b0000011111111111 ,
78 /∗12∗/ 0b0000111111111111 ,
79 /∗13∗/ 0b0001111111111111 ,
80 /∗14∗/ 0b0011111111111111 ,
81 /∗15∗/ 0b0111111111111111 ,
82 /∗16∗/ 0 b1111111111111111
83 } ;

102

Appendix C

Huffman Encoder Source File

Huffman Encoder.cpp

1 #inc lude ”Huffman Encoder . h”
2 #inc lude ” c o d e t a b l e s . cpp”
3

4 void symbol encoder (
5 ap uint <24> data , // Input (3 bytes)
6 ap uint<2> type , // Input
7 ap uint <26> &code , //Output (Can be from 0 to 26 b i t s

long)
8 ap uint<5> &code l ength //Output
9) {

10 #pragma HLS INLINE
11 ap uint<9> l ength ;
12 ap uint <15> d i s t anc e ;
13 ap uint<8> l eng th code ;
14 d i s t anc e cod e d i s tance symbo l ;
15 ap uint <13> e x t r a d i s t a n c e v a l u e ;
16

17 switch (type) {
18 case 0b00 : //Matched l i t e r a l
19 code = 0 ;
20 code l ength = 0 ;
21 break ;
22

23 case 0b01 : //Unmatched L i t e r a l
24 a s s e r t (data >= 0) ;
25 a s s e r t (data <= 255) ;
26 i f (data <= 143) {
27 code l ength = 8 ;
28 data = data + 48 ; // Convert l i t e r a l va lue to code
29 code = data (0 , 7) ; // Mirror code and output i t
30 }
31 e l s e {
32 code l ength = 9 ;
33 data = data + 256 ; // Convert l i t e r a l va lue to code
34 code = data (0 , 8) ; // Mirror code and output i t
35 }
36 break ;

103

37

38 case 0b10 : //Match
39 l ength = data (23 ,15) ;
40 d i s t anc e = data (14 ,0) ;
41 a s s e r t (l ength >= 3) ; // As s e r t i on s f o r C debugging
42 a s s e r t (l ength <= 16) ;
43 a s s e r t (d i s t ance >= 0) ; // Distance i s subtracted by 1 to f i t

with in 15 b i t s (Done by LZ77 Encoder)
44 a s s e r t (d i s t ance <= 32767) ;
45

46 // Length Encoding
47 i f (l ength <= 10) { // I f l ength i s 10 or l e s s , no extra b i t s in

code l ength
48 code l ength = 7 ;
49 }
50 e l s e {
51 code l ength = 8 ; //7−b i t l ength code + 1 extra b i t
52 }
53 l ength −= 3 ; // Adjust l ength be f o r e l ook ing up in t a b l e
54 l eng th code = l e n g t h c o d e t a b l e [l ength] ; // Length codes are

pre−mirrored with ext ra b i t s inc luded
55

56 // Distance Encoding
57 i f (d i s t ance < 256) { // Distance i s from 1 to 256
58 di s tance symbol = d i s t a n c e c o d e t a b l e [d i s t ance] ;
59 }
60 e l s e { // Distance i s from 257 to 32768
61 di s tance symbol = d i s t a n c e c o d e t a b l e [d i s t ance (14 ,7) + 2 5 6] ;

//Top 8 b i t s o f d i s t anc e + 256
62 }
63 e x t r a d i s t a n c e v a l u e = d i s t anc e − di s tance symbol . base ;
64

65 // Concatenate codes as f o l l o w s : ext ra d i s t anc e b i t s , d i s t ance
code (mirrored) , l ength code (a l r eady mirrored)

66 code = (e x t r a d i s t a n c e v a l u e , d i s tance symbol . code (0 , 4) ,
l eng th code (code length −1 ,0)) ;

67 code l ength += 5 + dis tance symbol . b i t s ; //Add d i s t anc e b i t s
to code l ength

68 break ;
69 }
70 }
71

72 template < i n t ins tance>
73 void window packer (
74 i n s t ream ∗ input window in , // Input : Window o f 3−byte boxes

to be encoded
75 i n s t ream ∗ input window out , //Output
76 t enc win ∗ encoded window in , // Input : Window f o r packing

Huffman codes
77 ap uint<8> ∗ encoded b i t s i n , // Input : Number o f b i t s in

encoded window
78 t enc win ∗ encoded window out , //Output
79 ap uint<8> ∗ encoded b i t s ou t //Output
80) {

104

81 #pragma HLS INLINE
82

83 ap uint <26> code ; //Huffman code to be packed
84 ap uint<5> code l ength ; // Length o f Huffman code
85 t enc win s h i f t e d c o d e ;
86

87 // Input window i s L i t t l e Endian , p roce s s lower end f i r s t
88 ap uint <24> input box = input window in−>data ((i n s t anc e ∗24) +23,

i n s t anc e ∗24) ;
89 ap uint<2> i nput type = input window in−>user ((i n s t anc e ∗2) +1,

i n s t anc e ∗2) ;
90

91 symbol encoder (input box , input type , code , code l ength) ; //
Encode box from input window

92

93 ∗ encoded window out = ∗ encoded window in | (t enc win (code) << ∗
e n c o d e d b i t s i n) ; //Pack code in window

94 ∗ encoded b i t s ou t = ∗ e n c o d e d b i t s i n + code l ength ; //Update
b i t count o f window

95 a s s e r t (∗ encoded b i t s ou t <= ENC WIN BITS) ; //C Debug : Check f o r
encoded window o v e r f i l l

96

97 ∗ input window out = ∗ input window in ; // Pass input window to
output

98 }
99

100 void output packer (
101 t enc win encoded window in , // Input : Window f o r

packing Huffman codes
102 ap uint<8> encoded b i t s i n , // Input : Number o f b i t s

in encoded window
103 ap uint<OUT WIN BITS> &output window , // In /Out
104 ap uint <10> &output b i t s , // In /Out
105 stream<out stream> &output strm //Output
106) {
107 #pragma HLS INLINE
108 out stream o u t b u f f = {0} ;
109

110 output window |= ap uint<OUT WIN BITS>(encoded window in) <<
o u t p u t b i t s ; //Pack encoded window in output packer

111 o u t p u t b i t s += e n c o d e d b i t s i n ; //Update b i t count o f packer
112 a s s e r t (o u t p u t b i t s <= OUT WIN BITS) ; //C Debug : Check f o r output

window o v e r f i l l
113

114 i f (o u t p u t b i t s >= OUT STRM BITS) { // I f packer i s more than h a l f
f u l l

115 o u t b u f f . data = output window (OUT STRM BITS−1 ,0) ; // Write out
bottom h a l f o f output packer

116 o u t b u f f . keep = 0xFFFFFFFF; // Set a l l TKEEP b i t s high
117 o u t b u f f . l a s t = 0 ;
118 output strm << o u t b u f f ;
119 output window >>= OUT STRM BITS; // S h i f t out bottom h a l f o f

output packer
120 o u t p u t b i t s −= OUT STRM BITS; //Update b i t count o f packer

105

121 }
122 }
123

124 // P ipe l i n ed Huffman encoder f o r encoding a l l symbols o f a window
in p a r a l l e l

125 void huffman encoder (
126 stream<in stream> &strm in ,
127 stream<out stream> &strm out
128) {
129 #pragma HLS INTERFACE a x i s o f f port=strm out
130 #pragma HLS INTERFACE a x i s o f f port=st rm in
131 i n s t ream input window0 ;
132 i n s t ream input window1 ;
133 i n s t ream input window2 ;
134 i n s t ream input window3 ;
135 i n s t ream input window4 ;
136 i n s t ream input window5 ;
137 i n s t ream input window6 ;
138 i n s t ream input window7 ;
139 i n s t ream input window8 ;
140 i n s t ream input window9 ;
141 i n s t ream input window10 ;
142 i n s t ream input window11 ;
143 i n s t ream input window12 ;
144 i n s t ream input window13 ;
145 i n s t ream input window14 ;
146 i n s t ream input window15 ;
147 i n s t ream input window16 ;
148 t enc win encoded window0 ;
149 t enc win encoded window1 ;
150 t enc win encoded window2 ;
151 t enc win encoded window3 ;
152 t enc win encoded window4 ;
153 t enc win encoded window5 ;
154 t enc win encoded window6 ;
155 t enc win encoded window7 ;
156 t enc win encoded window8 ;
157 t enc win encoded window9 ;
158 t enc win encoded window10 ;
159 t enc win encoded window11 ;
160 t enc win encoded window12 ;
161 t enc win encoded window13 ;
162 t enc win encoded window14 ;
163 t enc win encoded window15 ;
164 t enc win encoded window16 ;
165 ap uint<8> encoded b i t s0 ;
166 ap uint<8> encoded b i t s1 ;
167 ap uint<8> encoded b i t s2 ;
168 ap uint<8> encoded b i t s3 ;
169 ap uint<8> encoded b i t s4 ;
170 ap uint<8> encoded b i t s5 ;
171 ap uint<8> encoded b i t s6 ;
172 ap uint<8> encoded b i t s7 ;
173 ap uint<8> encoded b i t s8 ;

106

174 ap uint<8> encoded b i t s9 ;
175 ap uint<8> encoded b i t s10 ;
176 ap uint<8> encoded b i t s11 ;
177 ap uint<8> encoded b i t s12 ;
178 ap uint<8> encoded b i t s13 ;
179 ap uint<8> encoded b i t s14 ;
180 ap uint<8> encoded b i t s15 ;
181 ap uint<8> encoded b i t s16 ;
182

183 // I n i t i a l i z e output window
184 ap uint<OUT WIN BITS> output window = 0b011 ; //Output b u f f e r f o r

packing encoded windows
185 ap uint <10> o u t p u t b i t s = 3 ; //Number o f b i t s c u r r e n t l y in

output packer
186 out stream o u t b u f f = {0} ;
187

188 do{
189 #pragma HLS PIPELINE
190 encoded window0 = 0 ; // Clear encoded window be fo r e packing
191 encoded b i t s0 = 0 ;
192

193 s t rm in >> input window0 ; //Read an input window from the
input stream

194

195 window packer<0>(&input window0 , &input window1 , &
encoded window0 , &encoded bi t s0 , &encoded window1 , &
encoded b i t s1) ;

196 window packer<1>(&input window1 , &input window2 , &
encoded window1 , &encoded bi t s1 , &encoded window2 , &
encoded b i t s2) ;

197 window packer<2>(&input window2 , &input window3 , &
encoded window2 , &encoded bi t s2 , &encoded window3 , &
encoded b i t s3) ;

198 window packer<3>(&input window3 , &input window4 , &
encoded window3 , &encoded bi t s3 , &encoded window4 , &
encoded b i t s4) ;

199 window packer<4>(&input window4 , &input window5 , &
encoded window4 , &encoded bi t s4 , &encoded window5 , &
encoded b i t s5) ;

200 window packer<5>(&input window5 , &input window6 , &
encoded window5 , &encoded bi t s5 , &encoded window6 , &
encoded b i t s6) ;

201 window packer<6>(&input window6 , &input window7 , &
encoded window6 , &encoded bi t s6 , &encoded window7 , &
encoded b i t s7) ;

202 window packer<7>(&input window7 , &input window8 , &
encoded window7 , &encoded bi t s7 , &encoded window8 , &
encoded b i t s8) ;

203 window packer<8>(&input window8 , &input window9 , &
encoded window8 , &encoded bi t s8 , &encoded window9 , &
encoded b i t s9) ;

204 window packer<9>(&input window9 , &input window10 , &
encoded window9 , &encoded bi t s9 , &encoded window10 , &
encoded b i t s10) ;

107

205 window packer<10>(&input window10 , &input window11 , &
encoded window10 , &encoded bi t s10 , &encoded window11 , &
encoded b i t s11) ;

206 window packer<11>(&input window11 , &input window12 , &
encoded window11 , &encoded bi t s11 , &encoded window12 , &
encoded b i t s12) ;

207 window packer<12>(&input window12 , &input window13 , &
encoded window12 , &encoded bi t s12 , &encoded window13 , &
encoded b i t s13) ;

208 window packer<13>(&input window13 , &input window14 , &
encoded window13 , &encoded bi t s13 , &encoded window14 , &
encoded b i t s14) ;

209 window packer<14>(&input window14 , &input window15 , &
encoded window14 , &encoded bi t s14 , &encoded window15 , &
encoded b i t s15) ;

210 window packer<15>(&input window15 , &input window16 , &
encoded window15 , &encoded bi t s15 , &encoded window16 , &
encoded b i t s16) ;

211

212 output packer (encoded window16 , encoded bi t s16 , output window ,
output b i t s , strm out) ;

213

214 }whi le (! input window0 . l a s t) ;
215 o u t p u t b i t s += 7 ; //Add EOB code to end o f stream (7 z e r o e s)
216

217 i f (o u t p u t b i t s >= OUT STRM BITS) { // I f packer i s more than h a l f
f u l l , perform two f i n a l w r i t e s to stream

218 o u t b u f f . data = output window (OUT STRM BITS−1 ,0) ; // Write out
bottom h a l f o f output packer

219 o u t b u f f . keep = 0xFFFFFFFF; // Set a l l TKEEP b i t s high
220 strm out << o u t b u f f ;
221 output window >>= OUT STRM BITS; // S h i f t out bottom h a l f o f

output packer
222 o u t p u t b i t s −= OUT STRM BITS; //Update b i t count o f packer
223 o u t b u f f . data = output window (OUT STRM BITS−1 ,0) ; // Write out

remaining data in output packer
224 o u t b u f f . keep = decoder32 [(o u t p u t b i t s +7) / 8] ; // Set TKEEP

us ing decoder . Number o f bytes rounded up
225 o u t b u f f . l a s t = true ;
226 strm out << o u t b u f f ;
227 }
228 e l s e { // Otherwise , j u s t one f i n a l wr i t e to stream
229 o u t b u f f . data = output window (OUT STRM BITS−1 ,0) ; // Write out

remaining data in output packer
230 o u t b u f f . keep = decoder32 [(o u t p u t b i t s +7) / 8] ; // Set TKEEP

us ing decoder . Number o f bytes rounded up
231 o u t b u f f . l a s t = true ;
232 strm out << o u t b u f f ;
233 }
234 }

108

Appendix D

Huffman Encoder Header File

Huffman Encoder.h

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3 #inc lude <ap in t . h>
4 #inc lude <h l s s t r eam . h>
5 #inc lude <a s s e r t . h>
6

7 us ing namespace h l s ;
8

9 #d e f i n e WINDOW SIZE 16 //Number o f boxes in input window
10 #d e f i n e WINDOW BITS WINDOW SIZE∗8
11 #d e f i n e ENC WIN BITS (WINDOW SIZE−1)∗9 + 26 // Bit width o f

encoded window . Longest p o s s i b l e enc win i s 15 9−b i t l i t e r a l s
and 1 26−b i t LD pa i r = 161 b i t s .

12 #d e f i n e OUT STRM BITS 2∗WINDOW BITS //Output stream b i t width ,
must be power o f 2 and l a r g e r than encoded window width

13 #d e f i n e OUT WIN BITS 2∗OUT STRM BITS // Bit width o f output window
packer , must be double that o f output stream width

14

15 typede f ap uint<ENC WIN BITS> t enc win ;
16

17 typede f s t r u c t { // Input AXI−Stream s t r u c t u r e
18 ap uint <3∗WINDOW BITS> data ; //3−byte DATA ’ boxes ’ f o r each o f

the window c h a r a c t e r s from LZ77 encoder
19 ap uint <2∗WINDOW SIZE> user ; //2−b i t TUSER f l a g s f o r

i d e n t i f y i n g each box as a l i t e r a l , length , d i s tance , or
matched l i t e r a l

20 bool l a s t ; //TLAST s i g n a l
21 } i n s t ream ;
22

23 typede f s t r u c t { //Output AXI−Stream s t r u c t u r e
24 ap uint<OUT STRM BITS> data ; //Compressed data output
25 ap uint<OUT STRM BITS/8> keep ; //TKEEP s i g n a l f o r each byte o f

data
26 bool l a s t ; //TLAST s i g n a l
27 } out stream ;
28

29 typede f s t r u c t { // Distance code ta b l e s t r u c t u r e

109

30 ap uint<5> code ;
31 ap uint <15> base ;
32 ap uint<4> b i t s ;
33 } d i s t anc e cod e ;
34

35 //32−b i t decoder . Given an i n t e g e r index n , r e tu rn s a b i t s t r i n g
conta in ing n ones .

36 const ap uint <32> decoder32 [3 3] = {
37 /∗ 0∗/ 0 b00000000000000000000000000000000 ,
38 /∗ 1∗/ 0 b00000000000000000000000000000001 ,
39 /∗ 2∗/ 0 b00000000000000000000000000000011 ,
40 /∗ 3∗/ 0 b00000000000000000000000000000111 ,
41 /∗ 4∗/ 0 b00000000000000000000000000001111 ,
42 /∗ 5∗/ 0 b00000000000000000000000000011111 ,
43 /∗ 6∗/ 0 b00000000000000000000000000111111 ,
44 /∗ 7∗/ 0 b00000000000000000000000001111111 ,
45 /∗ 8∗/ 0 b00000000000000000000000011111111 ,
46 /∗ 9∗/ 0 b00000000000000000000000111111111 ,
47 /∗10∗/ 0 b00000000000000000000001111111111 ,
48 /∗11∗/ 0 b00000000000000000000011111111111 ,
49 /∗12∗/ 0 b00000000000000000000111111111111 ,
50 /∗13∗/ 0 b00000000000000000001111111111111 ,
51 /∗14∗/ 0 b00000000000000000011111111111111 ,
52 /∗15∗/ 0 b00000000000000000111111111111111 ,
53 /∗16∗/ 0 b00000000000000001111111111111111 ,
54 /∗17∗/ 0 b00000000000000011111111111111111 ,
55 /∗18∗/ 0 b00000000000000111111111111111111 ,
56 /∗19∗/ 0 b00000000000001111111111111111111 ,
57 /∗20∗/ 0 b00000000000011111111111111111111 ,
58 /∗21∗/ 0 b00000000000111111111111111111111 ,
59 /∗22∗/ 0 b00000000001111111111111111111111 ,
60 /∗23∗/ 0 b00000000011111111111111111111111 ,
61 /∗24∗/ 0 b00000000111111111111111111111111 ,
62 /∗25∗/ 0 b00000001111111111111111111111111 ,
63 /∗26∗/ 0 b00000011111111111111111111111111 ,
64 /∗27∗/ 0 b00000111111111111111111111111111 ,
65 /∗28∗/ 0 b00001111111111111111111111111111 ,
66 /∗29∗/ 0 b00011111111111111111111111111111 ,
67 /∗30∗/ 0 b00111111111111111111111111111111 ,
68 /∗31∗/ 0 b01111111111111111111111111111111 ,
69 /∗32∗/ 0 b11111111111111111111111111111111
70 } ;

110

Appendix E

Code Tables File

code tables.cpp

1 // Length Codes (and Code Lengths) f o r a l l p o s s i b l e Length Values .
2 //Pre−mirrored with ext ra b i t s added
3 const ap uint<8> l e n g t h c o d e t a b l e [1 4] = {
4 /∗Length 3∗/ 0b1000000 , /∗7∗/ //7−b i t l ength codes with no

extra b i t s
5 /∗Length 4∗/ 0b0100000 , /∗7∗/
6 /∗Length 5∗/ 0b1100000 , /∗7∗/
7 /∗Length 6∗/ 0b0010000 , /∗7∗/
8 /∗Length 7∗/ 0b1010000 , /∗7∗/
9 /∗Length 8∗/ 0b0110000 , /∗7∗/

10 /∗Length 9∗/ 0b1110000 , /∗7∗/
11 /∗Length 10∗/ 0b0001000 , /∗7∗/
12 /∗Length 11∗/ 0b01001000 , /∗8∗/ //7−b i t l ength codes with 1

extra b i t
13 /∗Length 12∗/ 0b11001000 , /∗8∗/
14 /∗Length 13∗/ 0b00101000 , /∗8∗/
15 /∗Length 14∗/ 0b10101000 , /∗8∗/
16 /∗Length 15∗/ 0b01101000 , /∗8∗/
17 /∗Length 16∗/ 0b11101000 /∗8∗/
18 } ;
19

20 // Table f o r l ook ing up the {Distance Symbol/Code , Base Value , and
Extra Bi t s } o f a Distance Value

21 // Since input d i s t ance i s 1 l e s s than the ac tua l d i s tance , the
base va lue s are pre−decremented by 1 as we l l

22 // This way the d i f f e r e n c e between the two i s c o r r e c t when
c a l c u l a t i n g : e x t r a v a l u e = d i s t anc e − base va lue

23 const d i s t an c e cod e d i s t a n c e c o d e t a b l e [5 1 2] = {
24 {0 , 0 , 0} , {1 , 1 , 0} , {2 , 2 , 0} , {3 , 3 , 0} , {4 , 4 , 1} ,

{4 , 4 , 1} , {5 , 6 , 1} , {5 , 6 , 1} ,
25 {6 , 8 , 2} , {6 , 8 , 2} , {6 , 8 , 2} , {6 , 8 , 2} , {7 , 12 , 2} ,

{7 , 12 , 2} , {7 , 12 , 2} , {7 , 12 , 2} ,
26 {8 , 16 , 3} , {8 , 16 , 3} , {8 , 16 , 3} , {8 , 16 , 3} , {8 , 16 , 3} ,

{8 , 16 , 3} , {8 , 16 , 3} , {8 , 16 , 3} ,
27 {9 , 24 , 3} , {9 , 24 , 3} , {9 , 24 , 3} , {9 , 24 , 3} , {9 , 24 , 3} ,

{9 , 24 , 3} , {9 , 24 , 3} , {9 , 24 , 3} ,

111

28 {10 , 32 , 4} , {10 , 32 , 4} , {10 , 32 , 4} , {10 , 32 , 4} , {10 , 32 ,
4} , {10 , 32 , 4} , {10 , 32 , 4} , {10 , 32 , 4} ,

29 {10 , 32 , 4} , {10 , 32 , 4} , {10 , 32 , 4} , {10 , 32 , 4} , {10 , 32 ,
4} , {10 , 32 , 4} , {10 , 32 , 4} , {10 , 32 , 4} ,

30 {11 , 48 , 4} , {11 , 48 , 4} , {11 , 48 , 4} , {11 , 48 , 4} , {11 , 48 ,
4} , {11 , 48 , 4} , {11 , 48 , 4} , {11 , 48 , 4} ,

31 {11 , 48 , 4} , {11 , 48 , 4} , {11 , 48 , 4} , {11 , 48 , 4} , {11 , 48 ,
4} , {11 , 48 , 4} , {11 , 48 , 4} , {11 , 48 , 4} ,

32 {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 ,
5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} ,

33 {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 ,
5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} ,

34 {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 ,
5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} ,

35 {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 ,
5} , {12 , 64 , 5} , {12 , 64 , 5} , {12 , 64 , 5} ,

36 {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 ,
5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} ,

37 {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 ,
5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} ,

38 {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 ,
5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} ,

39 {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 ,
5} , {13 , 96 , 5} , {13 , 96 , 5} , {13 , 96 , 5} ,

40 {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 ,
128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} ,

41 {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 ,
128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} ,

42 {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 ,
128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} ,

43 {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 ,
128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} ,

44 {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 ,
128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} ,

45 {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 ,
128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} ,

46 {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 ,
128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} ,

47 {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 ,
128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} , {14 , 128 , 6} ,

48 {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 ,
192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} ,

49 {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 ,
192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} ,

50 {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 ,
192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} ,

51 {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 ,
192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} ,

52 {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 ,
192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} ,

53 {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 ,
192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} ,

54 {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 ,
192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} ,

112

55 {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 ,
192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} , {15 , 192 , 6} ,

56 { 0 , 0 , 0} , { 0 , 0 , 0} , {16 , 256 , 7} , {17 , 384 , 7} , {18 ,
512 , 8} , {18 , 512 , 8} , {19 , 768 , 8} , {19 , 768 , 8} ,

57 {20 , 1024 , 9} , {20 , 1024 , 9} , {20 , 1024 , 9} , {20 , 1024 ,
9} , {21 , 1536 , 9} , {21 , 1536 , 9} , {21 , 1536 , 9} , {21 , 1536 ,

9} ,
58 {22 , 2048 , 10} , {22 , 2048 , 10} , {22 , 2048 , 10} , {22 , 2048 ,

10} , {22 , 2048 , 10} , {22 , 2048 , 10} , {22 , 2048 , 10} , {22 ,
2048 , 10} ,

59 {23 , 3072 , 10} , {23 , 3072 , 10} , {23 , 3072 , 10} , {23 , 3072 ,
10} , {23 , 3072 , 10} , {23 , 3072 , 10} , {23 , 3072 , 10} , {23 ,
3072 , 10} ,

60 {24 , 4096 , 11} , {24 , 4096 , 11} , {24 , 4096 , 11} , {24 , 4096 ,
11} , {24 , 4096 , 11} , {24 , 4096 , 11} , {24 , 4096 , 11} , {24 ,
4096 , 11} ,

61 {24 , 4096 , 11} , {24 , 4096 , 11} , {24 , 4096 , 11} , {24 , 4096 ,
11} , {24 , 4096 , 11} , {24 , 4096 , 11} , {24 , 4096 , 11} , {24 ,
4096 , 11} ,

62 {25 , 6144 , 11} , {25 , 6144 , 11} , {25 , 6144 , 11} , {25 , 6144 ,
11} , {25 , 6144 , 11} , {25 , 6144 , 11} , {25 , 6144 , 11} , {25 ,
6144 , 11} ,

63 {25 , 6144 , 11} , {25 , 6144 , 11} , {25 , 6144 , 11} , {25 , 6144 ,
11} , {25 , 6144 , 11} , {25 , 6144 , 11} , {25 , 6144 , 11} , {25 ,
6144 , 11} ,

64 {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 ,
12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 ,
8192 , 12} ,

65 {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 ,
12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 ,
8192 , 12} ,

66 {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 ,
12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 ,
8192 , 12} ,

67 {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 ,
12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 , 8192 , 12} , {26 ,
8192 , 12} ,

68 {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 ,
12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 ,

12288 , 12} ,
69 {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 ,

12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 ,
12288 , 12} ,

70 {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 ,
12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 ,

12288 , 12} ,
71 {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 ,

12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 , 12288 , 12} , {27 ,
12288 , 12} ,

72 {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 ,
13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 ,

16384 , 13} ,
73 {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 ,

13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 ,

113

16384 , 13} ,
74 {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 ,

13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 ,
16384 , 13} ,

75 {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 ,
13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 ,

16384 , 13} ,
76 {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 ,

13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 ,
16384 , 13} ,

77 {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 ,
13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 ,

16384 , 13} ,
78 {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 ,

13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 ,
16384 , 13} ,

79 {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 ,
13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 , 16384 , 13} , {28 ,

16384 , 13} ,
80 {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 ,

13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 ,
24576 , 13} ,

81 {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 ,
13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 ,

24576 , 13} ,
82 {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 ,

13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 ,
24576 , 13} ,

83 {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 ,
13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 ,

24576 , 13} ,
84 {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 ,

13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 ,
24576 , 13} ,

85 {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 ,
13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 ,

24576 , 13} ,
86 {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 ,

13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 ,
24576 , 13} ,

87 {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 ,
13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 , 24576 , 13} , {29 ,

24576 , 13}
88 } ;

114

Appendix F

Huffman Decoder Source File

Huffman Decoder.cpp

1 #inc lude ”Huffman Decoder . h”
2 #inc lude ” symbo l tab l e s . cpp”
3 #inc lude ” s t a t i c d e c o d i n g t a b l e s . cpp”
4

5 // Function f o r f i l l i n g accumulator with b i t s from input stream .
Input v a r i a b l e ”num” i s the number o f b i t s to obta in .

6 // I f accumulator a l r eady conta in s the number o f needed b i t s , no
more are read .

7 void f e t c h b i t s (
8 i n t num, // Input
9 stream<i o s t ream> &in strm , // Input

10 i o s t r eam &i n b u f f , // In /Out
11 ap uint<8> &bit count , // In /Out
12 ap uint <64> &acc // In /Out
13) {
14 #pragma HLS INLINE
15 // I n l i n i n g func t i on automat i ca l l y opt imize s func t i on usage to

read one byte or two depending on input num
16 i f ((b i t c ount < num) & ! i n b u f f . l a s t) { // I f b i t c ount i s s t i l l

l e s s than num and TLAST hasn ’ t been as se r t ed , read another
byte

17 i n s t rm >> i n b u f f ; //Read 1 byte from input stream in to
b u f f e r

18 acc |= (ap uint <64>) i n b u f f . data << b i t count ; //Append data
to the l e f t o f cur r ent b i t s in acc . Assuming l i t t l e endian
data

19 b i t count += 32 ; //Update number o f b i t s in acc
20 }
21 }
22

23 // Reset code l ength code l ength counts . Takes 1 c y c l e
24 void re s e t CL code l ength count (ap uint<8> CL codelength count [

MAX CL LENGTH+1]){
25 #pragma HLS INLINE o f f
26 f o r (i n t i = 0 ; i < (MAX CL LENGTH+1) ; i++){
27 #pragma HLS UNROLL
28 CL codelength count [i] = 0 ;

115

29 }
30 }
31

32 // Reset code l ength code l eng th s . Takes 1 c y c l e
33 void r e s e t CL code l eng th s (ap uint<3> CL codelengths [MAX CL CODES])

{
34 #pragma HLS INLINE o f f
35 f o r (i n t i = 0 ; i < MAX CL CODES; i++){
36 #pragma HLS UNROLL
37 CL codelengths [i] = 0 ;
38 }
39 }
40

41 // Reset l ength and d i s t anc e code l ength counts . Takes 1 c y c l e
42 void re se t LD code l ength count (ap uint<9> l eng th code l eng th count [

MAX LEN LENGTH+1] , ap uint<9> d i s t a n c e c o de l e ng t h c o un t [
MAX DIS LENGTH+1]){

43 #pragma HLS INLINE o f f
44 f o r (i n t i = 0 ; i < (MAX LEN LENGTH+1) ; i++){
45 #pragma HLS UNROLL
46 l eng th code l eng th count [i] = 0 ;
47 d i s t a n c e c o de l e ng t h c o un t [i] = 0 ;
48 }
49 }
50

51 // Reset l ength code l eng th s . Takes 29 c y c l e s
52 void r e s e t l e n g t h c o d e l e n g t h s (ap uint<4> l e n g t h c o d e l e n g t h s [

MAX LEN CODES]) {
53 #pragma HLS INLINE o f f
54 f o r (i n t i = MIN LEN CODES; i < MAX LEN CODES; i++){ //Only l a s t

30 indexes need to be c l ea red , a l l o the r s w i l l always be
f i l l e d

55 //#pragma HLS UNROLL
56 l e n g t h c o d e l e n g t h s [i] = 0 ;
57 }
58 }
59

60 // Reset d i s t ance code l eng th s . Takes 32 c y c l e s
61 void r e s e t d i s t a n c e c o d e l e n g t h s (ap uint<4> d i s t a n c e c o d e l e n g t h s [

MAX DIS CODES]) {
62 #pragma HLS INLINE o f f
63 f o r (i n t i = 0 ; i < MAX DIS CODES; i++){
64 //#pragma HLS UNROLL
65 d i s t a n c e c o d e l e n g t h s [i] = 0 ;
66 }
67 }
68

69 // Build l ength code ta b l e . Takes 286 c y c l e s
70 void b u i l d l e n g t h t a b l e (
71 ap uint<4> l e n g t h c o d e l e n g t h s [MAX LEN CODES] , // Input
72 ap uint<9> l e n g t h c o d e t a b l e [MAX LEN CODES] , //Output
73 ap uint<9> n e x t l e n g t h a d d r e s s [MAX LEN LENGTH+1] // Input
74) {
75 #pragma HLS INLINE o f f

116

76 ap uint<4> l eng th code l eng th ; //Code l ength o f encoded Length/
L i t e r a l

77 L Table LoopC : f o r (i n t i = 0 ; i < MAX LEN CODES; i++){ // Build
Length/ L i t e r a l Table

78 #pragma HLS PIPELINE
79 l eng th code l eng th = l e n g t h c o d e l e n g t h s [i] ; //Read Length/

L i t e r a l code l ength
80 i f (l eng th code l eng th != 0) { // I f the l ength o f a code i s not 0
81 l e n g t h c o d e t a b l e [n e x t l e n g t h a d d r e s s [l eng th code l eng th]] =

i ; //At coded index , wr i t e symbol
82 n e x t l e n g t h a d d r e s s [l eng th code l eng th]++;
83 }
84 }
85 }
86

87 // Build d i s t anc e code t a b l e . Takes 32 c y c l e s
88 void b u i l d d i s t a n c e t a b l e (
89 ap uint<4> d i s t a n c e c o d e l e n g t h s [MAX DIS CODES] ,
90 ap uint<8> d i s t a n c e c o d e t a b l e [MAX DIS CODES] ,
91 ap uint<8> n e x t d i s t a n c e a d d r e s s [MAX DIS LENGTH+1]
92) {
93 #pragma HLS INLINE o f f
94 ap uint<4> d i s t a n c e c o d e l e n g t h ; //Code l ength o f encoded

Distance
95 D Table LoopC : f o r (i n t i = 0 ; i < MAX DIS CODES; i++){ // Build

Distance Table
96 #pragma HLS PIPELINE
97 d i s t a n c e c o d e l e n g t h = d i s t a n c e c o d e l e n g t h s [i] ; //Read Distance

code l ength
98 i f (d i s t a n c e c o d e l e n g t h != 0) { // I f the l ength o f a code i s not

0
99 d i s t a n c e c o d e t a b l e [n e x t d i s t a n c e a d d r e s s [

d i s t a n c e c o d e l e n g t h]] = i ; //At coded index , wr i t e symbol
100 n e x t d i s t a n c e a d d r e s s [d i s t a n c e c o d e l e n g t h]++;
101 }
102 }
103 }
104

105 void d e c o d e s t a t i c b l o c k (
106 stream<i o s t ream> &in strm , // Input
107 i o s t r eam &i n b u f f , // In /Out
108 ap uint<8> &bit count , // In /Out
109 ap uint <64> &acc , // In /Out
110 bool &end o f b lock , // In /Out
111 stream<l l d s t r eam> &out strm //Output
112) {
113 ap uint<9> s t a t i c c o d e b i t s ; //9 b i t s conta in ing a s t a t i c l ength

/ d i s t ance code , a c tua l code l ength may be 7 to 9 b i t s long
114 s t a t i c s y m b o l length symbol ; //Decoded Length/ L i t e r a l Huffman

symbol
115 s t a t i c s y m b o l d i s tance symbo l ; //Decoded Distance Huffman symbol
116 ap uint<9> match length ; //Match l ength v a r i a b l e
117 ap uint <16> match distance ; //Match d i s t anc e v a r i a b l e
118 ap uint<5> e x t r a l e n g t h ; // I n t e g e r va lue o f ext ra l ength

117

119 ap uint <13> e x t r a d i s t a n c e ; // I n t e g e r va lue o f ext ra d i s t anc e
120 l l d s t r e a m o u t b u f f ; // Buf f e r f o r wr i t i ng to output stream
121

122 Stat i c B lock Loop : whi l e (! e n d o f b l o c k) { // Continue p r o c e s s i n g a
block u n t i l end−of−block code found

123 f e t c h b i t s (32 , in strm , i n b u f f , b i t count , acc) ;
124 s t a t i c c o d e b i t s = acc (8 , 0) ; //Take in 9 b i t s from ACC
125 l ength symbol = s t a t i c l e n g t h t a b l e [s t a t i c c o d e b i t s] ; //

Decode in s t a t i c l i t e r a l / l ength t a b l e
126 acc >>= length symbol . b i t s ; // S h i f t out b i t s from acc
127 b i t count −= length symbol . b i t s ; //Update b i t count
128 switch (length symbol . type (7 , 4)) { //Check upper four b i t s o f

type
129 case 0 : // L i t e r a l
130 o u t b u f f . data = length symbol . base ; // Write L i t e r a l to

output
131 o u t b u f f . keep = 0b0001 ; //Update TKEEP b i t s to i n d i c a t e

L i t e r a l
132 o u t b u f f . user = 0 ;
133 o u t b u f f . l a s t = 0 ; // Assign TLAST
134 out strm << o u t b u f f ; // Write to output stream
135 break ;
136 case 1 : // Length/ Distance
137 e x t r a l e n g t h = acc & ((1 << l ength symbol . type (3 , 0)) − 1) ;

// Fetch extra l ength b i t s from acc
138 acc >>= length symbol . type (3 , 0) ; // Discard extra l ength b i t s

from acc
139 b i t count −= length symbol . type (3 , 0) ; //Update b i t count

ac co rd ing ly
140 match length = length symbol . base + e x t r a l e n g t h ; //Add base

and extra to get l ength . Can be 3−258 (9 b i t s)
141

142 di s tance symbol = s t a t i c d i s t a n c e t a b l e [acc (4 , 0)] ; //Decode
in s t a t i c d i s t ance t a b l e

143 acc >>= STATIC DIS LENGTH ; // S h i f t out b i t s from acc
144 b i t count −= STATIC DIS LENGTH ; //Update b i t count
145 e x t r a d i s t a n c e = acc & ((1 << di s tance symbol . type (3 , 0)) − 1

) ; // Fetch extra d i s t anc e b i t s from acc
146 acc >>= dis tance symbol . type (3 , 0) ; // Discard extra d i s t ance

b i t s from acc
147 b i t count −= dis tance symbol . type (3 , 0) ; //Update b i t count

ac co rd ing ly
148 match distance = di s tance symbol . base + e x t r a d i s t a n c e ; //

Add base and extra to get d i s t anc e . Can be 1−32768 (16 b i t s)
149

150 o u t b u f f . data (31 ,23) = match length ; // Write 9−b i t match
length to output

151 o u t b u f f . data (15 , 0) = match distance ; // Write 16−b i t match
d i s t anc e to output

152 o u t b u f f . keep = 0b1111 ; //Update TKEEP b i t s to i n d i c a t e
length−d i s t anc e pa i r

153 o u t b u f f . user = 1 ;
154 o u t b u f f . l a s t = 0 ; // Assign TLAST
155 out strm << o u t b u f f ; // Write to output stream

118

156 break ;
157 case 6 : //End−of−Block
158 e n d o f b l o c k = true ; //Update EOB f l ag , e x i t Block loop and

return to Main Loop
159 break ;
160 }
161 }
162 }
163

164 void decode dynamic block (
165 stream<i o s t ream> &in strm , // Input
166 i o s t r eam &i n b u f f , // In /Out
167 ap uint<8> &bit count , // In /Out
168 ap uint <64> &acc , // In /Out
169 bool &end o f b lock , // In /Out
170 stream<l l d s t r eam> &out strm , //Output
171 ap uint<9> l eng th code l eng th count [MAX LEN LENGTH+1] , //

Input
172 ap uint<9> d i s t a n c e c o de l e ng t h c o un t [MAX DIS LENGTH+1] , //

Input
173 ap uint <15> b a s e l e n g t h v a l u e s [MAX LEN LENGTH+1] , // Input
174 ap uint <15> b a s e d i s t a n c e v a l u e s [MAX DIS LENGTH+1] , // Input
175 ap uint<9> b a s e l e n g t h a d d r e s s [MAX LEN LENGTH+1] , // Input
176 ap uint<8> b a s e d i s t a n c e a d d r e s s [MAX DIS LENGTH+1] , // Input
177 ap uint<9> l e n g t h c o d e t a b l e [MAX LEN CODES] , // Input
178 ap uint<8> d i s t a n c e c o d e t a b l e [MAX DIS CODES] // Input
179) {
180 ap uint <15> c o d e b i t s ; //15 b i t s conta in ing a l ength / d i s t anc e

code , a c tua l code l ength may be 0 to 15 b i t s long
181 ap uint <16> code comparison ; // Bit array f o r comparing c o d e b i t s

to b a s e l e n g t h v a l u e s
182 ap uint<4> code l ength ; // Deciphered l ength o f c u r r e n t l y he ld

l ength code
183 ap uint<9> code addres s ; // Reg i s t e r f o r c a l c u l a t i n g l ength code

address
184 ap uint<9> l ength symbol ; //Decoded Length/ L i t e r a l Huffman

symbol
185 ap uint<5> di s tance symbol ; //Decoded Distance Huffman symbol
186 l eng th symbo l va lue s l eng th symbo l ex t ra s ;
187 d i s t ance symbo l va lue s d i s t anc e sy mb o l ex t r a s ;
188 ap uint<9> match length ; //Match l ength v a r i a b l e
189 ap uint <16> match distance ; //Match d i s t anc e v a r i a b l e
190 ap uint<5> e x t r a l e n g t h ; // I n t e g e r va lue o f ext ra l ength
191 ap uint <13> e x t r a d i s t a n c e ; // I n t e g e r va lue o f ext ra d i s t anc e
192 l l d s t r e a m o u t b u f f ; // Buf f e r f o r wr i t i ng to output stream
193

194 Dynamic Block Loop : whi l e (! e n d o f b l o c k) { // Continue p r o c e s s i n g
a block u n t i l end−of−block code found

195 f e t c h b i t s (MAX LEN LENGTH, in strm , i n b u f f , b i t count , acc) ;
// Fetch 15 b i t s f o r Length/ L i t e r a l code

196 c o d e b i t s = acc (0 , 14) ; //Take in 15 b i t s from ACC and r e v e r s e
them

197 Length Code Compare Loop : f o r (i n t i = 1 ; i <= MAX LEN LENGTH;
i++){ //Compare b i t s to every l ength base va lue to f i n d code

119

l ength o f b i t s
198 #pragma HLS UNROLL
199 code comparison [i] = (l eng th code l eng th count [i] != 0) ? (

c o d e b i t s >= (b a s e l e n g t h v a l u e s [i] << (MAX LEN LENGTH − i)))
: 0 ;

200 } // Comparisons with l eng th s that aren ’ t used are d i s ab l ed (
They would always be 1 s i n c e base va lue would be 0)

201 code l ength = MAX LEN LENGTH − (b u i l t i n c l z (code comparison)
− 16) ; //Code l ength i s b i t p o s i t i o n o f h i ghe s t pas s ing

comparison . CLZ adds 16 b i t s
202 c o d e b i t s >>= (MAX LEN LENGTH − code l ength) ; // S h i f t b i t s out

so only code length remain
203 code addre s s = b a s e l e n g t h a d d r e s s [code l ength] + (c o d e b i t s −

b a s e l e n g t h v a l u e s [code l ength]) ; // Address = base + o f f s e t
204 l ength symbol = l e n g t h c o d e t a b l e [code addre s s] ; //Decode

l ength code in lookup t a b l e
205 acc >>= code l ength ; // S h i f t out b i t s from acc
206 b i t count −= code l ength ; //Update b i t count
207 i f (l ength symbol < 256) { // I f decoded Length/ L i t e r a l symbol i s

from 0 to 255 , i t i s a L i t e r a l
208 o u t b u f f . data = length symbol ; // Write L i t e r a l to output
209 o u t b u f f . keep = 0b0001 ; //Update TKEEP b i t s to i n d i c a t e

L i t e r a l
210 o u t b u f f . user = 0 ;
211 o u t b u f f . l a s t = 0 ; // Assign TLAST
212 out strm << o u t b u f f ; // Write to output stream
213 }
214 e l s e i f (l ength symbol == 256) { //End−of−block symbol
215 e n d o f b l o c k = true ; //Update EOB f l ag , e x i t Block loop and

return to Main Loop
216 }
217 e l s e { // I f l ength symbol > 256 , I t i s a Length
218 l eng th symbo l ex t ra s = l eng th symbo l tab l e [length symbol−

MIN LEN CODES] ; //Lookup base l ength and extra b i t s in t a b l e
219 f e t c h b i t s (MAX LEN EXTRA BITS+MAX DIS LENGTH, in strm ,

i n b u f f , b i t count , acc) ; // Fetch 20 b i t s f o r Length code
ext ra b i t s and d i s t anc e

220 e x t r a l e n g t h = acc & ((1 << l eng th symbo l ex t ra s . b i t s) − 1)
; // Fetch extra b i t s from acc

221 acc >>= length symbo l ex t ra s . b i t s ; // Discard extra b i t s from
acc

222 b i t count −= length symbo l ex t ra s . b i t s ; //Update b i t count
ac co rd ing ly

223 match length = leng th symbo l ex t ra s . base + e x t r a l e n g t h + 3 ;
//Add base and extra to get l ength . Base Lengths 3−258 are

encoded in 0−255 (8 b i t s) so we add 3
224

225 c o d e b i t s = acc (0 , 14) ; //Take in 15 b i t s from ACC and
r e v e r s e them

226 Distance Code Compare Loop : f o r (i n t i = 1 ; i <=
MAX DIS LENGTH; i++){ //Compare b i t s to every d i s t anc e
base va lue to f i n d code l ength o f b i t s

227 #pragma HLS UNROLL

120

228 code comparison [i] = (d i s t a n c e c o de l e ng t h c o un t [i] != 0) ?
(c o d e b i t s >= (b a s e d i s t a n c e v a l u e s [i] << (MAX DIS LENGTH − i

))) : 0 ;
229 } // Comparisons with l eng th s that aren ’ t used are d i s ab l ed (

They would always be 1 s i n c e base va lue would be 0)
230 code l ength = MAX DIS LENGTH − (b u i l t i n c l z (

code comparison) − 16) ; //Code l ength i s b i t p o s i t i o n o f
h i ghe s t pas s ing comparison . CLZ adds 16 b i t s

231 c o d e b i t s >>= (MAX DIS LENGTH − code l ength) ; // S h i f t b i t s
out so only code l ength remain

232 code addres s = b a s e d i s t a n c e a d d r e s s [code l ength] + (
c o d e b i t s − b a s e d i s t a n c e v a l u e s [code l ength]) ; // Address =
base + o f f s e t

233 di s tance symbol = d i s t a n c e c o d e t a b l e [code addres s] ; //
Decode d i s t anc e code in lookup t a b l e

234 acc >>= code l ength ; // S h i f t out b i t s from acc
235 b i t count −= code l ength ; //Update b i t count
236 d i s t a nc e sy mb o l ex t r a s = d i s t a n c e s y m b o l t a b l e [

d i s tance symbol] ; //Lookup base d i s t anc e and extra b i t s in
t a b l e

237 f e t c h b i t s (MAX DIS EXTRA BITS, in strm , i n b u f f , b i t count ,
acc) ; // Fetch 13 b i t s f o r Distance code extra b i t s

238 e x t r a d i s t a n c e = acc & ((1 << d i s t anc e sy mb o l ex t r a s . b i t s) −
1) ; // Fetch extra b i t s from acc

239 acc >>= di s t an c e sy mb o l ex t r a s . b i t s ; // Discard extra b i t s
from acc

240 b i t count −= di s t an c e sy mb o l ex t r a s . b i t s ; //Update b i t count
ac co rd ing ly

241 match distance = d i s t a nc e sy mb o l ex t r a s . base +
e x t r a d i s t a n c e ; //Add base and extra to get d i s t anc e . Can be
1−32768 (16 b i t s)

242

243 o u t b u f f . data (31 ,23) = match length ; // Write 9−b i t match
length to output

244 o u t b u f f . data (15 , 0) = match distance ; // Write 16−b i t match
d i s t anc e to output

245 o u t b u f f . keep = 0b1111 ; //Update TKEEP b i t s to i n d i c a t e
length−d i s t anc e pa i r

246 o u t b u f f . user = 1 ;
247 o u t b u f f . l a s t = 0 ; // Assign TLAST
248 out strm << o u t b u f f ; // Write to output stream
249 }
250 }
251 }
252

253 void bu i ld dynamic tab l e s (
254 stream<i o s t ream> &in strm , // Input
255 i o s t r eam &i n b u f f , // In /Out
256 ap uint<8> &bit count , // In /Out
257 ap uint <64> &acc , // In /Out
258 ap uint<4> l e n g t h c o d e l e n g t h s [MAX LEN CODES] , // Input
259 ap uint<4> d i s t a n c e c o d e l e n g t h s [MAX DIS CODES] , // Input
260 ap uint<9> l eng th code l eng th count [MAX LEN LENGTH+1] , //

Output

121

261 ap uint<9> d i s t a n c e c o de l e ng t h c o un t [MAX DIS LENGTH+1] , //
Output

262 ap uint <15> b a s e l e n g t h v a l u e s [MAX LEN LENGTH+1] , //Output
263 ap uint <15> b a s e d i s t a n c e v a l u e s [MAX DIS LENGTH+1] , //Output
264 ap uint<9> b a s e l e n g t h a d d r e s s [MAX LEN LENGTH+1] , //Output
265 ap uint<8> b a s e d i s t a n c e a d d r e s s [MAX DIS LENGTH+1] , //Output
266 ap uint<9> l e n g t h c o d e t a b l e [MAX LEN CODES] , //Output
267 ap uint<8> d i s t a n c e c o d e t a b l e [MAX DIS CODES] //Output
268) {
269 ap uint<9> num length code lengths ; //Number o f Length/ L i t e r a l

code l eng th s in sequence , from 257 to 286
270 ap uint<8> num dis tance code l engths ; //Number o f Distance code

l eng th s in sequence , from 1 to 32
271 ap uint<8> num code length code lengths ; //Number o f Code Length

code l eng th s in sequence , from 4 to 19
272 ap uint<3> CL codelength ; //Code l ength o f encoded Code Length .

CLCLs can be from 0 to 7 b i t s long
273 ap uint<3> CL codelengths [MAX CL CODES] ; // Array f o r s t o r i n g CL

code l eng th s
274 #pragma HLS ARRAY PARTITION v a r i a b l e=CL codelengths complete dim=1
275 ap uint<8> CL codelength count [MAX CL LENGTH+1] ; // Array f o r

count ing number o f t imes each CLCL occurs
276 #pragma HLS ARRAY PARTITION v a r i a b l e=CL codelength count complete

dim=1
277 ap uint<7> base CL values [MAX CL LENGTH+1] ; // Calcu lated base

va lue f o r each CLCL
278 #pragma HLS ARRAY PARTITION v a r i a b l e=base CL values complete dim=1
279 ap uint<5> base CL address [MAX CL LENGTH+1] ; //Base address f o r

each CLCL base va lue
280 #pragma HLS ARRAY PARTITION v a r i a b l e=base CL address complete dim

=1
281 ap uint<5> next CL address [MAX CL LENGTH+1] ; // Contains the next

address f o r each CLC symbol
282 #pragma HLS ARRAY PARTITION v a r i a b l e=next CL address complete dim

=1
283 ap uint<5> code l eng th addre s s ; // Reg i s t e r f o r c a l c u l a t i n g

code l ength code address
284 ap uint<5> CL code table [MAX CL CODES] ; // Table conta in ing

symbols f o r 19 CL Codes . Codes are indexed us ing
base CL addresses

285 ap uint<9> c o d e l e n g t h s r e c e i v e d ; //For count ing number o f code
l eng th s read from sequence

286 ap uint<7> c o d e l e n g t h b i t s ; //7 b i t s conta in ing a l ength /
d i s t anc e code l ength code , a c tua l code l ength may be 0 to 7
b i t s long

287 ap uint<8> CL comparison ; // Bit array f o r comparing
c o d e l e n g t h b i t s to base CL values

288 ap uint<3> code l eng th l eng th ; // Deciphered l ength o f c u r r e n t l y
he ld code l ength code

289 ap uint<5> CL symbol ; //Decoded Code Length symbol (Can be 0 to
18)

290 ap uint<9> l ength symbo l counter ; // Index counter f o r cur rent
Length/ L i t e r a l symbol in sequence

122

291 ap uint<5> d i s tance symbo l counte r ; // Index counter f o r cur rent
Distance symbol in sequence

292 ap uint<9> n e x t l e n g t h a d d r e s s [MAX LEN LENGTH+1] ; // Contains the
next address f o r each Length/ L i t e r a l symbol

293 #pragma HLS ARRAY PARTITION v a r i a b l e=n e x t l e n g t h a d d r e s s complete
dim=1

294 ap uint<8> n e x t d i s t a n c e a d d r e s s [MAX DIS LENGTH+1] ; // Contains
the next address f o r each Distance symbol

295 #pragma HLS ARRAY PARTITION v a r i a b l e=n e x t d i s t a n c e a d d r e s s
complete dim=1

296 ap uint<5> previous CL ; // Reg i s t e r f o r s t o r i n g found CL f o r next
i t e r a t i o n

297 ap uint<8> r e p e a t v a l u e ; //Used by code l ength symbols 16 , 17 ,
and 18 f o r s t o r i n g number o f r e p e t i t i o n s to perform

298

299 r e s e t CL code l ength count (CL codelength count) ;
300 r e s e t CL code l eng th s (CL codelengths) ;
301 r e s e t LD code l ength count (l ength code l ength count ,

d i s t a n c e c o de l e ng t h c o un t) ;
302

303 //Read code l ength codes and bu i ld code l ength t ab l e
304 f e t c h b i t s (14 , in strm , i n b u f f , b i t count , acc) ;
305 num length code lengths = acc (4 , 0) + 257 ; // There w i l l always be

at l e a s t 257 Length/ L i t e r a l codes f o r the 256 L i t e r a l s and the
EOB code

306 num dis tance code l engths = acc (9 , 5) + 1 ; // There w i l l always be
at l e a s t 1 d i s t ance code

307 num code length code lengths = acc (13 ,10) + 4 ; // There w i l l always
be at l e a s t 4 code l ength code l eng th s (f o r symbols 16 , 17 ,

18 , and 0)
308 a s s e r t (num length code lengths < 287) ; //Max 286 Length/ L i t e r a l

code l eng th s
309 a s s e r t (num dis tance code l engths < 33) ; //Max 32 Distance code

l eng th s
310 a s s e r t (num code length code lengths < 20) ; //Max 19 Code Length

code l eng th s
311 acc >>= 14 ; // S h i f t out b i t s from acc
312 b i t count −= 14 ; //Update b i t count
313

314 // Build code l ength ta b l e
315 // 1 : Count number o f codes f o r each length
316 CL Table LoopA : f o r (i n t i = 0 ; i < num code length code lengths ; i

++){
317 #pragma HLS PIPELINE
318 f e t c h b i t s (3 , in strm , i n b u f f , b i t count , acc) ;
319 CL codelength = acc (2 , 0) ; //Read 3−b i t code l ength
320 CL codelengths [permuted order [i]] = CL codelength ; // Store

code l ength in array in permuted order
321 CL codelength count [CL codelength]++; //Take count o f number

o f code l eng th s
322 acc >>= 3 ; // S h i f t out b i t s from acc
323 b i t count −= 3 ; //Update b i t count
324 }
325 // 2 : Ca l cu la t e base value f o r each code l ength

123

326 CL codelength count [0] = 0 ; // Set back to 0 be f o r e c a l c u l a t i n g
base va lue s (Codes with l ength o f 0 are unused)

327 base CL values [0] = 0 ;
328 base CL address [0] = 0 ;
329 CL Table LoopB : f o r (i n t i = 1 ; i <= MAX CL LENGTH; i++){ //For

each p o s s i b l e code l ength
330 #pragma HLS PIPELINE
331 base CL values [i] = (base CL values [i −1] + CL codelength count

[i −1]) << 1 ; //Base va lue f o r a code l ength i s based on number
o f prev ious code l eng th s

332 base CL address [i] = base CL address [i −1] +
CL codelength count [i −1] ; //Base address i s ”number o f code
l eng th s ” away from prev ious base address

333 next CL address [i] = base CL address [i] ; // I n i t i a l i z e ” next
address ” to base address f o r t h i s l ength

334 }
335 // 3 : Assign conse cu t i v e va lue s (addre s s e s) to each code f o r a l l

code l eng th s
336 CL Table LoopC : f o r (i n t i = 0 ; i < MAX CL CODES; i++){ //For a l l

19 code l ength symbols
337 #pragma HLS PIPELINE
338 CL codelength = CL codelengths [i] ; //Read CL code l ength
339 i f (CL codelength != 0) { // I f the l ength o f a code i s not 0
340 CL code table [next CL address [CL codelength]] = i ;
341 next CL address [CL codelength]++;
342 }
343 }
344

345 //Read encoded code l ength sequence and decode i t us ing that
t a b l e

346 c o d e l e n g t h s r e c e i v e d = 0 ; // Reset code l eng th s r e c e i v e d
347 l ength symbo l counter = 0 ; // Reset Length/ L i t e r a l array index

po in t e r
348 d i s tance symbo l counte r = 0 ; // Reset Distance array index

po in t e r
349 LD Table LoopA : whi l e (c o d e l e n g t h s r e c e i v e d < (

num length code lengths+num dis tance code l engths)) { // Retr i eve
a l l code l eng th s in sequence

350 // Sequence can be from 258 to 318 code l eng th s long
351 f e t c h b i t s (7 , in strm , i n b u f f , b i t count , acc) ;
352 c o d e l e n g t h b i t s = acc (0 , 6) ; //Take in 7 b i t s from ACC and

r e v e r s e them
353 CL Comparison Loop : f o r (i n t i = 1 ; i <= MAX CL LENGTH; i++){

//Compare b i t s to every l ength base va lue to f i n d code l ength
o f b i t s

354 #pragma HLS UNROLL
355 CL comparison [i] = (CL codelength count [i] != 0) ? (

c o d e l e n g t h b i t s >= (base CL values [i] << (MAX CL LENGTH − i)))
: 0 ;

356 } // Comparisons with l eng th s that aren ’ t used are d i s ab l ed (
They would always be 1 s i n c e base va lue would be 0)

357 code l eng th l eng th = MAX CL LENGTH − (b u i l t i n c l z (
CL comparison) − 24) ; //Code l ength i s b i t p o s i t i o n o f h i ghe s t

pas s ing comparison . CLZ adds 24 b i t s

124

358 c o d e l e n g t h b i t s >>= (MAX CL LENGTH − code l eng th l eng th) ; //
S h i f t b i t s out so only code length remain

359 code l eng th addre s s = base CL address [c ode l eng th l eng th] + (
c o d e l e n g t h b i t s − base CL values [c ode l eng th l eng th]) ;

360 CL symbol = CL code table [code l eng th addre s s] ; //Decode code
l ength in lookup t a b l e

361 acc >>= code l eng th l eng th ; // S h i f t out b i t s from acc
362 b i t count −= code l eng th l eng th ; //Update b i t count
363 i f (CL symbol <= 15) { // I f decoded code l ength symbol i s from 0

to 15
364 i f (c o d e l e n g t h s r e c e i v e d < num length code lengths) { // I f

Length code l ength
365 l e n g t h c o d e l e n g t h s [l ength symbo l counter] = CL symbol ; //

Current symbol in sequence has code l ength o f found CL
366 l eng th code l eng th count [CL symbol]++; //Count code l ength
367 l ength symbo l counte r++; // Increment symbol po in t e r
368 }
369 e l s e { // I f Distance code l ength
370 d i s t a n c e c o d e l e n g t h s [d i s tance symbo l counte r] = CL symbol ;

// Current symbol in sequence has code l ength o f found CL
371 d i s t a n c e c o de l e ng t h c o un t [CL symbol]++; //Count code

l ength
372 d i s tance symbo l counte r++;
373 }
374 c o d e l e n g t h s r e c e i v e d++; // Increment code l ength counter
375 previous CL = CL symbol ; // Save code l ength f o r next

i t e r a t i o n
376 }
377 e l s e {
378 switch (CL symbol) {
379 case 16 : //Symbol 16 : Copy prev ious code l ength 3 to 6

t imes
380 f e t c h b i t s (2 , in strm , i n b u f f , b i t count , acc) ; // Fetch 2

extra b i t s conta in ing repeat va lue
381 r e p e a t v a l u e = acc (1 , 0) + 3 ;
382 acc >>= 2 ; // S h i f t out b i t s from acc
383 b i t count −= 2 ; //Update b i t count
384 Copy Previous CL Loop : f o r (i n t i = 0 ; i < r e p e a t v a l u e ; i

++){ //For 3 to 6 t imes
385 //#pragma HLS PIPELINE
386 i f (c o d e l e n g t h s r e c e i v e d < num length code lengths) { // I f

Length code l ength
387 l e n g t h c o d e l e n g t h s [l ength symbo l counte r] =

previous CL ; // Current symbol in sequence has code l ength o f
previous CL

388 l eng th code l eng th count [previous CL]++; //Count code
l ength

389 l ength symbo l counter++; // Increment symbol po in t e r
390 }
391 e l s e { // I f Distance code l ength
392 d i s t a n c e c o d e l e n g t h s [d i s tance symbo l counte r] =

previous CL ; // Current symbol in sequence has code l ength o f
previous CL

125

393 d i s t a n c e c o de l e ng t h c o un t [previous CL]++; //Count code
l ength

394 d i s tance symbo l counte r++;
395 }
396 c o d e l e n g t h s r e c e i v e d++; // Increment code l ength counter
397 }
398 break ;
399 case 17 : //Symbol 17 : Repeat code l ength o f ze ro 3 to 10

t imes
400 f e t c h b i t s (3 , in strm , i n b u f f , b i t count , acc) ; // Fetch 3

extra b i t s conta in ing repeat va lue
401 r e p e a t v a l u e = acc (2 , 0) + 3 ;
402 acc >>= 3 ; // S h i f t out b i t s from acc
403 b i t count −= 3 ; //Update b i t count
404 Repeat Zero CL LoopA : f o r (i n t i = 0 ; i < r e p e a t v a l u e ; i

++){ //For 3 to 10 t imes
405 //#pragma HLS PIPELINE
406 i f (c o d e l e n g t h s r e c e i v e d < num length code lengths) { // I f

Length code l ength
407 l e n g t h c o d e l e n g t h s [l ength symbo l counte r] = 0 ; //

Current symbol in sequence has code l ength o f 0
408 l ength symbo l counter++; // Increment symbol po in t e r
409 }
410 e l s e { // I f Distance code l ength
411 d i s t a n c e c o d e l e n g t h s [d i s tance symbo l counte r] = 0 ; //

Current symbol in sequence has code l ength o f 0
412 d i s tance symbo l counte r++; // Increment symbol po in t e r
413 }
414 c o d e l e n g t h s r e c e i v e d++; // Increment code l ength counter
415 }
416 break ;
417 case 18 : //Symbol 18 : Repeat code l ength o f ze ro 11 to 138

t imes
418 f e t c h b i t s (7 , in strm , i n b u f f , b i t count , acc) ; // Fetch 7

extra b i t s conta in ing repeat va lue
419 r e p e a t v a l u e = acc (6 , 0) + 11 ;
420 acc >>= 7 ; // S h i f t out b i t s from acc
421 b i t count −= 7 ; //Update b i t count
422 Repeat Zero CL LoopB : f o r (i n t i = 0 ; i < r e p e a t v a l u e ; i

++){ //For 11 to 138 t imes
423 //#pragma HLS PIPELINE
424 i f (c o d e l e n g t h s r e c e i v e d < num length code lengths) { // I f

Length code l ength
425 l e n g t h c o d e l e n g t h s [l ength symbo l counte r] = 0 ; //

Current symbol in sequence has code l ength o f 0
426 l ength symbo l counter++; // Increment symbol po in t e r
427 }
428 e l s e { // I f Distance code l ength
429 d i s t a n c e c o d e l e n g t h s [d i s tance symbo l counte r] = 0 ; //

Current symbol in sequence has code l ength o f 0
430 d i s tance symbo l counte r++; // Increment symbol po in t e r
431 }
432 c o d e l e n g t h s r e c e i v e d++; // Increment code l ength counter
433 }

126

434 break ;
435 d e f a u l t :
436 // Shouldn ’ t occur , misread codes should be mostly 0s ,

could be other va lue s from prev ious i t e r a t i o n s i f t a b l e s arent
c l e a r e d .

437 break ;
438 }
439 }
440 }
441

442 //When a l l l ength and d i s t ance code l eng th s are r e c e i v e d
443 l eng th code l eng th count [0] = 0 ; // Set back to 0 be f o r e

c a l c u l a t i n g base va lue s (Codes with l ength o f 0 are unused)
444 d i s t a n c e c o de l e ng t h c o un t [0] = 0 ;
445 b a s e l e n g t h v a l u e s [0] = 0 ;
446 b a s e l e n g t h a d d r e s s [0] = 0 ;
447 b a s e d i s t a n c e v a l u e s [0] = 0 ;
448 b a s e d i s t a n c e a d d r e s s [0] = 0 ;
449 // Ca lcu la t e Base Values and Base Addresses
450 LD Table LoopB : f o r (i n t i = 1 ; i <= MAX LEN LENGTH; i++){ //For

each p o s s i b l e code l ength
451 #pragma HLS PIPELINE
452 b a s e l e n g t h v a l u e s [i] = (b a s e l e n g t h v a l u e s [i −1] +

l eng th code l eng th count [i −1]) << 1 ;
453 b a s e l e n g t h a d d r e s s [i] = b a s e l e n g t h a d d r e s s [i −1] +

l eng th code l eng th count [i −1] ;
454 n e x t l e n g t h a d d r e s s [i] = b a s e l e n g t h a d d r e s s [i] ;
455 b a s e d i s t a n c e v a l u e s [i] = (b a s e d i s t a n c e v a l u e s [i −1] +

d i s t a n c e c o de l e ng t h c o un t [i −1]) << 1 ;
456 b a s e d i s t a n c e a d d r e s s [i] = b a s e d i s t a n c e a d d r e s s [i −1] +

d i s t a n c e c o de l e ng t h c o un t [i −1] ;
457 n e x t d i s t a n c e a d d r e s s [i] = b a s e d i s t a n c e a d d r e s s [i] ;
458 }
459

460 // Build code t a b l e s from code l eng th s
461 // Separated as f u n c t i o n s to a l low both to execute s imu l taneous ly
462 b u i l d l e n g t h t a b l e (l eng th code l eng ths , l e n g t h c o d e t a b l e ,

n e x t l e n g t h a d d r e s s) ;
463 b u i l d d i s t a n c e t a b l e (d i s t ance code l eng th s , d i s t a n c e c o d e t a b l e ,

n e x t d i s t a n c e a d d r e s s) ;
464 }
465

466 ap uint<2> f u l l h u f fm a n d e c o de r (
467 stream<i o s t ream> &in strm ,
468 stream<l l d s t r eam> &out strm
469) {
470 #pragma HLS INTERFACE a p c t r l h s r e g i s t e r port=return
471 #pragma HLS INTERFACE a x i s o f f port=out strm
472 #pragma HLS INTERFACE a x i s o f f port=in s t rm
473 ap uint <64> acc = 0 ; // Accumulator f o r s t o r i n g up to 32 b i t s at

a time
474 ap uint<8> b i t count = 0 ; //Number o f b i t s c u r r e n t l y in the acc
475 bool b l o c k f i n a l = f a l s e ; // Flag f o r BFINAL block header
476 ap uint<2> b lock type ; // Flag f o r BTYPE block header

127

477 i o s t r eam i n b u f f = {0} ; // Buf f e r f o r read ing input stream . I t
i s passed to f u n c t i o n s so they can check TLAST be fo r e read ing
from stream .

478 bool e n d o f b l o c k ; //End−of−block f l a g
479 ap uint <16> b l o c k l e n g t h ;
480 ap uint <16> block Nlength ;
481 s t a t i c ap uint<4> l e n g t h c o d e l e n g t h s [MAX LEN CODES] = {0} ; //

Array o f code l eng th s f o r each Length/ L i t e r a l symbol
482 s t a t i c ap uint<4> d i s t a n c e c o d e l e n g t h s [MAX DIS CODES] = {0} ; //

Array o f code l eng th s f o r each Distance symbol
483 ap uint<9> l eng th code l eng th count [MAX LEN LENGTH+1] ; // Array

f o r count ing number o f t imes each code l ength occurs
484 #pragma HLS ARRAY PARTITION v a r i a b l e=l eng th code l eng th count

complete dim=1
485 ap uint<9> d i s t a n c e c o de l e ng t h c o un t [MAX DIS LENGTH+1] ; // Array

f o r count ing number o f t imes each code l ength occurs
486 #pragma HLS ARRAY PARTITION v a r i a b l e=d i s t a n c e c o de l e ng t h c o un t

complete dim=1
487 ap uint <15> b a s e l e n g t h v a l u e s [MAX LEN LENGTH+1] ; // Calcu lated

base va lue f o r each Length/ L i t e r a l code l ength
488 #pragma HLS ARRAY PARTITION v a r i a b l e=b a s e l e n g t h v a l u e s complete

dim=1
489 ap uint <15> b a s e d i s t a n c e v a l u e s [MAX DIS LENGTH+1] ; // Calcu lated

base va lue f o r each Distance code l ength
490 #pragma HLS ARRAY PARTITION v a r i a b l e=b a s e d i s t a n c e v a l u e s complete

dim=1
491 ap uint<9> b a s e l e n g t h a d d r e s s [MAX LEN LENGTH+1] ; //Base address

f o r each Length/ L i t e r a l code l ength base va lue
492 #pragma HLS ARRAY PARTITION v a r i a b l e=b a s e l e n g t h a d d r e s s complete

dim=1
493 ap uint<8> b a s e d i s t a n c e a d d r e s s [MAX DIS LENGTH+1] ; //Base

address f o r each Distance code l ength base va lue
494 #pragma HLS ARRAY PARTITION v a r i a b l e=b a s e d i s t a n c e a d d r e s s

complete dim=1
495 ap uint<9> l e n g t h c o d e t a b l e [MAX LEN CODES] ; //For l ook ing up

Length/ L i t e r a l symbol o f a code .
496 ap uint<8> d i s t a n c e c o d e t a b l e [MAX DIS CODES] ; //For l ook ing up

Distance symbol o f a code .
497 l l d s t r e a m o u t b u f f = {0} ; // Buf f e r f o r wr i t i ng to output stream
498

499 Main Loop : whi l e (! b l o c k f i n a l) { // Continue p r o c e s s i n g De f l a t e
b locks u n t i l f i n a l b lock i s f i n i s h e d

500 e n d o f b l o c k = f a l s e ; // Reset end−of−block f l a g
501 f e t c h b i t s (3 , in strm , i n b u f f , b i t count , acc) ;
502 b l o c k f i n a l = acc [0] ; // Ret r i eve BFINAL b i t
503 b lock type = acc (2 , 1) ; // Ret r i eve BTYPE b i t s
504 acc >>= 3 ; // S h i f t out b i t s from acc
505 b i t count −= 3 ; //Update b i t count
506

507 switch (b lock type) {
508 case 0b00 : // Stored Block
509 acc >>= (b i t count % 8) ; // Discard 0 to 7 remaining

b i t s to next byte boundary in acc
510 b i t count −= (b i t count % 8) ; //Update b i t count

128

511

512 f e t c h b i t s (32 , in strm , i n b u f f , b i t count , acc) ;
513 b l o c k l e n g t h (15 ,8) = acc (7 , 0) ; //Read upper byte o f LEN
514 b l o c k l e n g t h (7 , 0) = acc (15 ,8) ; //Read lower byte o f LEN
515 block Nlength (15 ,8) = acc (23 ,16) ; //Read upper byte o f NLEN
516 block Nlength (7 , 0) = acc (31 ,24) ; //Read lower byte o f NLEN
517 i f (b l o c k l e n g t h != ˜ block Nlength) { //Check i f LEN i s 1 s

compliment o f NLEN
518 re turn 1 ;
519 }
520 e l s e {
521 acc >>= 32 ; // S h i f t out b i t s from acc
522 b i t count −= 32 ; //Update b i t count
523 Stream Stored Block Loop : f o r (i n t i = 0 ; i < b lock l ength

−4; i +=4){ // Pass LEN number o f bytes through
524 #pragma HLS PIPELINE
525 i n s t rm >> i n b u f f ;
526 o u t b u f f . data = i n b u f f . data ;
527 o u t b u f f . keep = 0b1111 ;
528 o u t b u f f . user = 0 ;
529 o u t b u f f . l a s t = 0 ;
530 out strm << o u t b u f f ;
531 }
532 f e t c h b i t s (32 , in strm , i n b u f f , b i t count , acc) ;
533

534 switch (b l o c k l e n g t h % 4) { // Write remaining amount o f
bytes on l a s t i t e r a t i o n (1−4)

535 case 0 : //4 remaining bytes
536 o u t b u f f . data = acc (31 ,0) ;
537 o u t b u f f . keep = 0b1111 ;
538 acc >>= 32 ; // S h i f t out b i t s from acc
539 b i t count −= 32 ; //Update b i t count
540 break ;
541 case 1 : //1 remaining byte
542 o u t b u f f . data = acc (7 , 0) ;
543 o u t b u f f . keep = 0b0001 ;
544 acc >>= 8 ; // S h i f t out b i t s from acc
545 b i t count −= 8 ; //Update b i t count
546 break ;
547 case 2 : //2 remaining bytes
548 o u t b u f f . data = acc (15 ,0) ;
549 o u t b u f f . keep = 0b0011 ;
550 acc >>= 16 ; // S h i f t out b i t s from acc
551 b i t count −= 16 ; //Update b i t count
552 break ;
553 case 3 : //3 remaining bytes
554 o u t b u f f . data = acc (23 ,0) ;
555 o u t b u f f . keep = 0b0111 ;
556 acc >>= 24 ; // S h i f t out b i t s from acc
557 b i t count −= 24 ; //Update b i t count
558 break ;
559 }
560 o u t b u f f . user = 0 ;
561 o u t b u f f . l a s t = 0 ; // Assign TLAST

129

562 out strm << o u t b u f f ;
563 }
564 break ;
565

566 case 0b01 : // S t a t i c Compressed Block
567 d e c o d e s t a t i c b l o c k (in strm , i n b u f f , b i t count , acc ,

end o f b lock , out strm) ;
568 break ;
569

570 case 0b10 : //Dynamic Compressed Block
571 bu i ld dynamic tab l e s (in strm , i n b u f f , b i t count , acc ,
572 l eng th code l eng ths , d i s t ance code l eng th s ,
573 l ength code l ength count , d i s t ance code l eng th count ,
574 bas e l eng th va lu e s , b a s e d i s t a n c e v a l u e s ,
575 base l eng th addre s s , b a s e d i s t an c e a dd r e s s ,
576 l e n g t h c o d e t a b l e , d i s t a n c e c o d e t a b l e) ;
577 decode dynamic block (in strm , i n b u f f , b i t count , acc ,

end o f b lock , out strm ,
578 l ength code l ength count , d i s t ance code l eng th count ,
579 bas e l eng th va lu e s , b a s e d i s t a n c e v a l u e s ,
580 base l eng th addre s s , b a s e d i s t an c e a dd r e s s ,
581 l e n g t h c o d e t a b l e , d i s t a n c e c o d e t a b l e
582) ;
583 r e s e t l e n g t h c o d e l e n g t h s (l e n g t h c o d e l e n g t h s) ; // Reset code

l ength ar rays whi l e dynamic decoding takes p lace
584 r e s e t d i s t a n c e c o d e l e n g t h s (d i s t a n c e c o d e l e n g t h s) ;
585 break ;
586

587 case 0b11 : // Reserved (Error)
588 re turn 2 ;
589 break ;
590 }
591 } // After l a s t b lock has been proces sed
592 o u t b u f f . keep = 0 ; //Lower TKEEP s i g n a l
593 o u t b u f f . l a s t = 1 ; // Raise TLAST s i g n a l
594 out strm << o u t b u f f ;
595 re turn 0 ;
596 }

130

Appendix G

Huffman Decoder Header File

Huffman Decoder.h

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3 #inc lude <ap in t . h>
4 #inc lude <h l s s t r eam . h>
5 #inc lude <a s s e r t . h>
6

7 us ing namespace h l s ;
8

9 #d e f i n e MAX LEN CODES 286 //Max 286 Length/ L i t e r a l code l eng th s
10 #d e f i n e MIN LEN CODES 257 //Min 257 Length/ L i t e r a l code l eng th s

(256 L i t e r a l s and 1 End of b lock code)
11 #d e f i n e MAX DIS CODES 32 //Max 32 Distance code l eng th s
12 #d e f i n e MAX CL CODES 19 //Max 19 Code Length code l eng th s
13 #d e f i n e MAX LEN LENGTH 15 //Max length o f Length/ L i t e r a l code i s

15 b i t s
14 #d e f i n e MAX DIS LENGTH 15 //Max length o f Distance code i s 15 b i t s
15 #d e f i n e MAX CL LENGTH 7 //Max length o f Code Length code i s 7

b i t s
16 #d e f i n e STATIC MAX LEN LENGTH 9 //Max length o f S t a t i c Length/

L i t e r a l code i s 9 b i t s
17 #d e f i n e STATIC MIN LEN LENGTH 7 //Min length o f S t a t i c Length/

L i t e r a l code i s 7 b i t s
18 #d e f i n e STATIC DIS LENGTH 5 // S t a t i c Distance codes are f i x e d

l ength 5−b i t codes
19 #d e f i n e MAX LEN EXTRA BITS 5 //Max number o f ext ra b i t s f o l l o w i n g

a Length code
20 #d e f i n e MAX DIS EXTRA BITS 13 //Max number o f ext ra b i t s f o l l o w i n g

a Distance code
21

22 typede f s t r u c t { // Input AXI−Stream s t r u c t u r e
23 ap uint <32> data ; //Four bytes o f data
24 ap uint<4> keep ; //TKEEP S i g n a l s f o r each byte
25 bool l a s t ; //TLAST AXI−Stream s i g n a l
26 } i o s t r eam ;
27

28 typede f s t r u c t { //Output (L i t e r a l , Length/ Distance Pair) AXI−
Stream s t r u c t u r e

131

29 ap uint <32> data ; //Four bytes o f data
30 ap uint<4> keep ; //TKEEP S i g n a l s f o r each byte
31 bool user ; //TUSER Signa l to i d e n t i f y L i t e r a l (0) or Length−

Distance pa i r (1)
32 bool l a s t ; //TLAST AXI−Stream s i g n a l
33 } l l d s t r e a m ;
34

35 typede f s t r u c t { // St ructure f o r Length symbol t a b l e
36 ap uint<3> b i t s ; //Number o f ext ra b i t s f o l l o w i n g code . Can be

from 0 to 5 f o r l eng th s .
37 ap uint<8> base ; //Base l ength value − 3 . Lengths 3−258 are

encoded in 0−255
38 } l eng th symbo l va lue s ;
39

40 typede f s t r u c t { // St ructure f o r Distance symbol t a b l e
41 ap uint<4> b i t s ; //Number o f ext ra b i t s f o l l o w i n g code . Can be

from 0 to 13 f o r d i s t a n c e s .
42 ap uint <15> base ; //Base d i s t anc e va lue from 0 to 24577
43 } d i s t ance symbo l va lue s ;
44

45 typede f s t r u c t { // St ructure f o r l ook ing up s t a t i c codes in t a b l e s
46 ap uint<8> type ; //End−of−block (0110 0000) , L i t e r a l (0000 0000)

, or Length/ Distance (0001 XXXX) (Where XXXX i s number o f
ext ra b i t s)

47 ap uint<8> b i t s ; //Number o f b i t s in code
48 ap uint <16> base ; //Base l ength / d i s tance , or l i t e r a l va lue
49 } s t a t i c s y m b o l ;
50 //The above s t r u c t u r e was adapted from the ’ code ’ s t r u c t u r e used

by z l i b (de f ined in ” i n f t r e e s . h”)

132

Appendix H

Symbol Tables File

symbol tables.cpp

1 //The permuted order found when read ing Code Length code l ength
sequence

2 const ap uint<8> permuted order [MAX CL CODES] =
{16 , 17 , 18 , 0 , 8 , 7 , 9 , 6 , 10 , 5 , 11 , 4 , 12 , 3 , 13 , 2 , 14 , 1 , 15} ;

3

4 //Each index (symbol) conta in s that symbols base va lue and extra
b i t s

5 // St ructure : {Extra b i t s , Base Value−3}
6 const l eng th symbo l va lue s l eng th symbo l tab l e [2 9] = { // Length

Symbols 257 to 285 are indexed here from 0 to 28
7 /∗ 0∗/ {0 , 0} , {0 , 1} , {0 , 2} , {0 , 3} ,
8 /∗ 4∗/ {0 , 4} , {0 , 5} , {0 , 6} , {0 , 7} ,
9 /∗ 8∗/ {1 , 8} , {1 , 10} , {1 , 12} , {1 , 14} ,

10 /∗12∗/ {2 , 16} , {2 , 20} , {2 , 24} , {2 , 28} ,
11 /∗16∗/ {3 , 32} , {3 , 40} , {3 , 48} , {3 , 56} ,
12 /∗20∗/ {4 , 64} , {4 , 80} , {4 , 96} , {4 , 112} ,
13 /∗24∗/ {5 , 128} , {5 , 160} , {5 , 192} , {5 , 224} ,
14 /∗28∗/ {0 , 255}
15 } ;
16

17 // St ructure : {Extra b i t s , Base va lue }
18 const d i s t ance symbo l va lue s d i s t a n c e s y m b o l t a b l e [3 0] = {
19 /∗ 0∗/ {0 , 1} , {0 , 2} , {0 , 3} , {0 , 4} ,
20 /∗ 4∗/ {1 , 5} , {1 , 7} , {2 , 9} , {2 , 13} ,
21 /∗ 8∗/ {3 , 17} , {3 , 25} , {4 , 33} , {4 , 49} ,
22 /∗12∗/ {5 , 65} , {5 , 97} , {6 , 129} , {6 , 193} ,
23 /∗16∗/ {7 , 257} , {7 , 385} , {8 , 513} , {8 , 769} ,
24 /∗20∗/ {9 , 1025} , {9 , 1537} , {10 , 2049} , {10 , 3073} ,
25 /∗24∗/ {11 , 4097} , {11 , 6145} , {12 , 8193} , {12 , 12289} ,
26 /∗28∗/ {13 , 16385} , {13 , 24577}
27 } ;

133

Appendix I

Static Decoding Tables File

static decoding tables.cpp

1 //The f o l l o w i n g t a b l e s are from ” i n f f i x e d . h” in the z l i b l i b r a r y
2

3 s t a t i c const s t a t i c s y m b o l s t a t i c l e n g t h t a b l e [5 1 2] = {
4 /∗ 0∗/ {96 ,7 ,0} , {0 ,8 ,80} ,

{0 ,8 ,16} ,{20 ,8 ,115} ,{18 ,7 ,31} ,{0 ,8 ,112} ,{0 ,8 ,48} ,{0 ,9 ,192} ,
5 /∗ 8∗/ {16 ,7 ,10} ,{0 ,8 ,96} , {0 ,8 ,32} ,{0 ,9 ,160} , {0 ,8 ,0} ,

{0 ,8 ,128} ,{0 ,8 ,64} ,{0 ,9 ,224} ,
6 /∗ 16∗/ {16 ,7 ,6} , {0 ,8 ,88} , {0 ,8 ,24} ,{0 ,9 ,144} ,

{19 ,7 ,59} ,{0 ,8 ,120} ,{0 ,8 ,56} ,{0 ,9 ,208} ,
7 /∗ 24∗/ {17 ,7 ,17} ,{0 ,8 ,104} ,{0 ,8 ,40} ,{0 ,9 ,176} , {0 ,8 ,8} ,

{0 ,8 ,136} ,{0 ,8 ,72} ,{0 ,9 ,240} ,
8 /∗ 32∗/ {16 ,7 ,4} , {0 ,8 ,84} ,

{0 ,8 ,20} ,{21 ,8 ,227} ,{19 ,7 ,43} ,{0 ,8 ,116} ,{0 ,8 ,52} ,{0 ,9 ,200} ,
9 /∗ 40∗/ {17 ,7 ,13} ,{0 ,8 ,100} ,{0 ,8 ,36} ,{0 ,9 ,168} , {0 ,8 ,4} ,

{0 ,8 ,132} ,{0 ,8 ,68} ,{0 ,9 ,232} ,
10 /∗ 48∗/ {16 ,7 ,8} , {0 ,8 ,92} , {0 ,8 ,28} ,{0 ,9 ,152} ,

{20 ,7 ,83} ,{0 ,8 ,124} ,{0 ,8 ,60} ,{0 ,9 ,216} ,
11 /∗ 56∗/ {18 ,7 ,23} ,{0 ,8 ,108} ,{0 ,8 ,44} ,{0 ,9 ,184} , {0 ,8 ,12} ,

{0 ,8 ,140} ,{0 ,8 ,76} ,{0 ,9 ,248} ,
12 /∗ 64∗/ {16 ,7 ,3} , {0 ,8 ,82} ,

{0 ,8 ,18} ,{21 ,8 ,163} ,{19 ,7 ,35} ,{0 ,8 ,114} ,{0 ,8 ,50} ,{0 ,9 ,196} ,
13 /∗ 72∗/ {17 ,7 ,11} ,{0 ,8 ,98} , {0 ,8 ,34} ,{0 ,9 ,164} , {0 ,8 ,2} ,

{0 ,8 ,130} ,{0 ,8 ,66} ,{0 ,9 ,228} ,
14 /∗ 80∗/ {16 ,7 ,7} , {0 ,8 ,90} , {0 ,8 ,26} ,{0 ,9 ,148} ,

{20 ,7 ,67} ,{0 ,8 ,122} ,{0 ,8 ,58} ,{0 ,9 ,212} ,
15 /∗ 88∗/ {18 ,7 ,19} ,{0 ,8 ,106} ,{0 ,8 ,42} ,{0 ,9 ,180} , {0 ,8 ,10} ,

{0 ,8 ,138} ,{0 ,8 ,74} ,{0 ,9 ,244} ,
16 /∗ 96∗/ {16 ,7 ,5} , {0 ,8 ,86} , {0 ,8 ,22} ,{64 ,8 ,0} ,

{19 ,7 ,51} ,{0 ,8 ,118} ,{0 ,8 ,54} ,{0 ,9 ,204} ,
17 /∗104∗/ {17 ,7 ,15} ,{0 ,8 ,102} ,{0 ,8 ,38} ,{0 ,9 ,172} , {0 ,8 ,6} ,

{0 ,8 ,134} ,{0 ,8 ,70} ,{0 ,9 ,236} ,
18 /∗112∗/ {16 ,7 ,9} , {0 ,8 ,94} , {0 ,8 ,30} ,{0 ,9 ,156} ,

{20 ,7 ,99} ,{0 ,8 ,126} ,{0 ,8 ,62} ,{0 ,9 ,220} ,
19 /∗120∗/ {18 ,7 ,27} ,{0 ,8 ,110} ,{0 ,8 ,46} ,{0 ,9 ,188} , {0 ,8 ,14} ,

{0 ,8 ,142} ,{0 ,8 ,78} ,{0 ,9 ,252} ,

134

20 /∗128∗/ {96 ,7 ,0} , {0 ,8 ,81} ,
{0 ,8 ,17} ,{21 ,8 ,131} ,{18 ,7 ,31} ,{0 ,8 ,113} ,{0 ,8 ,49} ,{0 ,9 ,194} ,

21 /∗136∗/ {16 ,7 ,10} ,{0 ,8 ,97} , {0 ,8 ,33} ,{0 ,9 ,162} , {0 ,8 ,1} ,
{0 ,8 ,129} ,{0 ,8 ,65} ,{0 ,9 ,226} ,

22 /∗144∗/ {16 ,7 ,6} , {0 ,8 ,89} , {0 ,8 ,25} ,{0 ,9 ,146} ,
{19 ,7 ,59} ,{0 ,8 ,121} ,{0 ,8 ,57} ,{0 ,9 ,210} ,

23 /∗152∗/ {17 ,7 ,17} ,{0 ,8 ,105} ,{0 ,8 ,41} ,{0 ,9 ,178} , {0 ,8 ,9} ,
{0 ,8 ,137} ,{0 ,8 ,73} ,{0 ,9 ,242} ,

24 /∗160∗/ {16 ,7 ,4} , {0 ,8 ,85} ,
{0 ,8 ,21} ,{16 ,8 ,258} ,{19 ,7 ,43} ,{0 ,8 ,117} ,{0 ,8 ,53} ,{0 ,9 ,202} ,

25 /∗168∗/ {17 ,7 ,13} ,{0 ,8 ,101} ,{0 ,8 ,37} ,{0 ,9 ,170} , {0 ,8 ,5} ,
{0 ,8 ,133} ,{0 ,8 ,69} ,{0 ,9 ,234} ,

26 /∗176∗/ {16 ,7 ,8} , {0 ,8 ,93} , {0 ,8 ,29} ,{0 ,9 ,154} ,
{20 ,7 ,83} ,{0 ,8 ,125} ,{0 ,8 ,61} ,{0 ,9 ,218} ,

27 /∗184∗/ {18 ,7 ,23} ,{0 ,8 ,109} ,{0 ,8 ,45} ,{0 ,9 ,186} , {0 ,8 ,13} ,
{0 ,8 ,141} ,{0 ,8 ,77} ,{0 ,9 ,250} ,

28 /∗192∗/ {16 ,7 ,3} , {0 ,8 ,83} ,
{0 ,8 ,19} ,{21 ,8 ,195} ,{19 ,7 ,35} ,{0 ,8 ,115} ,{0 ,8 ,51} ,{0 ,9 ,198} ,

29 /∗200∗/ {17 ,7 ,11} ,{0 ,8 ,99} , {0 ,8 ,35} ,{0 ,9 ,166} , {0 ,8 ,3} ,
{0 ,8 ,131} ,{0 ,8 ,67} ,{0 ,9 ,230} ,

30 /∗208∗/ {16 ,7 ,7} , {0 ,8 ,91} , {0 ,8 ,27} ,{0 ,9 ,150} ,
{20 ,7 ,67} ,{0 ,8 ,123} ,{0 ,8 ,59} ,{0 ,9 ,214} ,

31 /∗216∗/ {18 ,7 ,19} ,{0 ,8 ,107} ,{0 ,8 ,43} ,{0 ,9 ,182} , {0 ,8 ,11} ,
{0 ,8 ,139} ,{0 ,8 ,75} ,{0 ,9 ,246} ,

32 /∗224∗/ {16 ,7 ,5} , {0 ,8 ,87} , {0 ,8 ,23} ,{64 ,8 ,0} ,
{19 ,7 ,51} ,{0 ,8 ,119} ,{0 ,8 ,55} ,{0 ,9 ,206} ,

33 /∗232∗/ {17 ,7 ,15} ,{0 ,8 ,103} ,{0 ,8 ,39} ,{0 ,9 ,174} , {0 ,8 ,7} ,
{0 ,8 ,135} ,{0 ,8 ,71} ,{0 ,9 ,238} ,

34 /∗240∗/ {16 ,7 ,9} , {0 ,8 ,95} , {0 ,8 ,31} ,{0 ,9 ,158} ,
{20 ,7 ,99} ,{0 ,8 ,127} ,{0 ,8 ,63} ,{0 ,9 ,222} ,

35 /∗248∗/ {18 ,7 ,27} ,{0 ,8 ,111} ,{0 ,8 ,47} ,{0 ,9 ,190} , {0 ,8 ,15} ,
{0 ,8 ,143} ,{0 ,8 ,79} ,{0 ,9 ,254} ,

36 /∗256∗/ {96 ,7 ,0} , {0 ,8 ,80} ,
{0 ,8 ,16} ,{20 ,8 ,115} ,{18 ,7 ,31} ,{0 ,8 ,112} ,{0 ,8 ,48} ,{0 ,9 ,193} ,

37 /∗264∗/ {16 ,7 ,10} ,{0 ,8 ,96} , {0 ,8 ,32} ,{0 ,9 ,161} , {0 ,8 ,0} ,
{0 ,8 ,128} ,{0 ,8 ,64} ,{0 ,9 ,225} ,

38 /∗272∗/ {16 ,7 ,6} , {0 ,8 ,88} , {0 ,8 ,24} ,{0 ,9 ,145} ,
{19 ,7 ,59} ,{0 ,8 ,120} ,{0 ,8 ,56} ,{0 ,9 ,209} ,

39 /∗280∗/ {17 ,7 ,17} ,{0 ,8 ,104} ,{0 ,8 ,40} ,{0 ,9 ,177} , {0 ,8 ,8} ,
{0 ,8 ,136} ,{0 ,8 ,72} ,{0 ,9 ,241} ,

40 /∗288∗/ {16 ,7 ,4} , {0 ,8 ,84} ,
{0 ,8 ,20} ,{21 ,8 ,227} ,{19 ,7 ,43} ,{0 ,8 ,116} ,{0 ,8 ,52} ,{0 ,9 ,201} ,

41 /∗296∗/ {17 ,7 ,13} ,{0 ,8 ,100} ,{0 ,8 ,36} ,{0 ,9 ,169} , {0 ,8 ,4} ,
{0 ,8 ,132} ,{0 ,8 ,68} ,{0 ,9 ,233} ,

42 /∗304∗/ {16 ,7 ,8} , {0 ,8 ,92} , {0 ,8 ,28} ,{0 ,9 ,153} ,
{20 ,7 ,83} ,{0 ,8 ,124} ,{0 ,8 ,60} ,{0 ,9 ,217} ,

43 /∗312∗/ {18 ,7 ,23} ,{0 ,8 ,108} ,{0 ,8 ,44} ,{0 ,9 ,185} , {0 ,8 ,12} ,
{0 ,8 ,140} ,{0 ,8 ,76} ,{0 ,9 ,249} ,

44 /∗320∗/ {16 ,7 ,3} , {0 ,8 ,82} ,
{0 ,8 ,18} ,{21 ,8 ,163} ,{19 ,7 ,35} ,{0 ,8 ,114} ,{0 ,8 ,50} ,{0 ,9 ,197} ,

45 /∗328∗/ {17 ,7 ,11} ,{0 ,8 ,98} , {0 ,8 ,34} ,{0 ,9 ,165} , {0 ,8 ,2} ,
{0 ,8 ,130} ,{0 ,8 ,66} ,{0 ,9 ,229} ,

46 /∗336∗/ {16 ,7 ,7} , {0 ,8 ,90} , {0 ,8 ,26} ,{0 ,9 ,149} ,
{20 ,7 ,67} ,{0 ,8 ,122} ,{0 ,8 ,58} ,{0 ,9 ,213} ,

135

47 /∗344∗/ {18 ,7 ,19} ,{0 ,8 ,106} ,{0 ,8 ,42} ,{0 ,9 ,181} , {0 ,8 ,10} ,
{0 ,8 ,138} ,{0 ,8 ,74} ,{0 ,9 ,245} ,

48 /∗352∗/ {16 ,7 ,5} , {0 ,8 ,86} , {0 ,8 ,22} ,{64 ,8 ,0} ,
{19 ,7 ,51} ,{0 ,8 ,118} ,{0 ,8 ,54} ,{0 ,9 ,205} ,

49 /∗360∗/ {17 ,7 ,15} ,{0 ,8 ,102} ,{0 ,8 ,38} ,{0 ,9 ,173} , {0 ,8 ,6} ,
{0 ,8 ,134} ,{0 ,8 ,70} ,{0 ,9 ,237} ,

50 /∗368∗/ {16 ,7 ,9} , {0 ,8 ,94} , {0 ,8 ,30} ,{0 ,9 ,157} ,
{20 ,7 ,99} ,{0 ,8 ,126} ,{0 ,8 ,62} ,{0 ,9 ,221} ,

51 /∗376∗/ {18 ,7 ,27} ,{0 ,8 ,110} ,{0 ,8 ,46} ,{0 ,9 ,189} , {0 ,8 ,14} ,
{0 ,8 ,142} ,{0 ,8 ,78} ,{0 ,9 ,253} ,

52 /∗384∗/ {96 ,7 ,0} , {0 ,8 ,81} ,
{0 ,8 ,17} ,{21 ,8 ,131} ,{18 ,7 ,31} ,{0 ,8 ,113} ,{0 ,8 ,49} ,{0 ,9 ,195} ,

53 /∗392∗/ {16 ,7 ,10} ,{0 ,8 ,97} , {0 ,8 ,33} ,{0 ,9 ,163} , {0 ,8 ,1} ,
{0 ,8 ,129} ,{0 ,8 ,65} ,{0 ,9 ,227} ,

54 /∗400∗/ {16 ,7 ,6} , {0 ,8 ,89} , {0 ,8 ,25} ,{0 ,9 ,147} ,
{19 ,7 ,59} ,{0 ,8 ,121} ,{0 ,8 ,57} ,{0 ,9 ,211} ,

55 /∗408∗/ {17 ,7 ,17} ,{0 ,8 ,105} ,{0 ,8 ,41} ,{0 ,9 ,179} , {0 ,8 ,9} ,
{0 ,8 ,137} ,{0 ,8 ,73} ,{0 ,9 ,243} ,

56 /∗416∗/ {16 ,7 ,4} , {0 ,8 ,85} ,
{0 ,8 ,21} ,{16 ,8 ,258} ,{19 ,7 ,43} ,{0 ,8 ,117} ,{0 ,8 ,53} ,{0 ,9 ,203} ,

57 /∗424∗/ {17 ,7 ,13} ,{0 ,8 ,101} ,{0 ,8 ,37} ,{0 ,9 ,171} , {0 ,8 ,5} ,
{0 ,8 ,133} ,{0 ,8 ,69} ,{0 ,9 ,235} ,

58 /∗432∗/ {16 ,7 ,8} , {0 ,8 ,93} , {0 ,8 ,29} ,{0 ,9 ,155} ,
{20 ,7 ,83} ,{0 ,8 ,125} ,{0 ,8 ,61} ,{0 ,9 ,219} ,

59 /∗440∗/ {18 ,7 ,23} ,{0 ,8 ,109} ,{0 ,8 ,45} ,{0 ,9 ,187} , {0 ,8 ,13} ,
{0 ,8 ,141} ,{0 ,8 ,77} ,{0 ,9 ,251} ,

60 /∗448∗/ {16 ,7 ,3} , {0 ,8 ,83} ,
{0 ,8 ,19} ,{21 ,8 ,195} ,{19 ,7 ,35} ,{0 ,8 ,115} ,{0 ,8 ,51} ,{0 ,9 ,199} ,

61 /∗456∗/ {17 ,7 ,11} ,{0 ,8 ,99} , {0 ,8 ,35} ,{0 ,9 ,167} , {0 ,8 ,3} ,
{0 ,8 ,131} ,{0 ,8 ,67} ,{0 ,9 ,231} ,

62 /∗464∗/ {16 ,7 ,7} , {0 ,8 ,91} , {0 ,8 ,27} ,{0 ,9 ,151} ,
{20 ,7 ,67} ,{0 ,8 ,123} ,{0 ,8 ,59} ,{0 ,9 ,215} ,

63 /∗472∗/ {18 ,7 ,19} ,{0 ,8 ,107} ,{0 ,8 ,43} ,{0 ,9 ,183} , {0 ,8 ,11} ,
{0 ,8 ,139} ,{0 ,8 ,75} ,{0 ,9 ,247} ,

64 /∗480∗/ {16 ,7 ,5} , {0 ,8 ,87} , {0 ,8 ,23} ,{64 ,8 ,0} ,
{19 ,7 ,51} ,{0 ,8 ,119} ,{0 ,8 ,55} ,{0 ,9 ,207} ,

65 /∗488∗/ {17 ,7 ,15} ,{0 ,8 ,103} ,{0 ,8 ,39} ,{0 ,9 ,175} , {0 ,8 ,7} ,
{0 ,8 ,135} ,{0 ,8 ,71} ,{0 ,9 ,239} ,

66 /∗496∗/ {16 ,7 ,9} , {0 ,8 ,95} , {0 ,8 ,31} ,{0 ,9 ,159} ,
{20 ,7 ,99} ,{0 ,8 ,127} ,{0 ,8 ,63} ,{0 ,9 ,223} ,

67 /∗504∗/ {18 ,7 ,27} ,{0 ,8 ,111} ,{0 ,8 ,47} ,{0 ,9 ,191} , {0 ,8 ,15} ,
{0 ,8 ,143} ,{0 ,8 ,79} ,{0 ,9 ,255}

68 } ;
69 s t a t i c const s t a t i c s y m b o l s t a t i c d i s t a n c e t a b l e [3 2] = {
70 /∗ 0∗/ {16 ,5 ,1} ,{23 ,5 ,257} ,{19 ,5 ,17} ,{27 ,5 ,4097} , {17 ,5 ,5} ,

{25 ,5 ,1025} ,{21 ,5 ,65} , {29 ,5 ,16385} ,
71 /∗ 8∗/ {16 ,5 ,3} ,{24 ,5 ,513} ,{20 ,5 ,33} ,{28 ,5 ,8193} , {18 ,5 ,9} ,

{26 ,5 ,2049} ,{22 ,5 ,129} ,{64 ,5 ,0} ,
72 /∗16∗/ {16 ,5 ,2} ,{23 ,5 ,385} ,{19 ,5 ,25} ,{27 ,5 ,6145} , {17 ,5 ,7} ,

{25 ,5 ,1537} ,{21 ,5 ,97} , {29 ,5 ,24577} ,
73 /∗24∗/ {16 ,5 ,4} ,{24 ,5 ,769} ,{20 ,5 ,49} ,{28 ,5 ,12289} ,{18 ,5 ,13} ,

{26 ,5 ,3073} ,{22 ,5 ,193} ,{64 ,5 ,0}
74 } ;

136

Appendix J

Literal Stacker Source File

literal stacker.cpp

1 #inc lude ” l i t e r a l s t a c k e r . h”
2

3 void l i t e r a l s t a c k e r (
4 stream<l l d s t r eam> &in strm ,
5 stream<l l d s t r eam> &out strm
6) {
7 #pragma HLS INTERFACE a p c t r l n o n e port=return
8 #pragma HLS PIPELINE e n a b l e f l u s h
9 #pragma HLS INTERFACE a x i s o f f port=out strm //For i n d i v i d u a l core

s y n t h e s i s
10 #pragma HLS INTERFACE a x i s o f f port=in s t rm
11 s t a t i c l l d s t r e a m i n b u f f ;
12 s t a t i c l l d s t r e a m data regA ; //Data r e g i s t e r to be f i l l e d with

l i t e r a l s
13 s t a t i c ap uint<2> s t a t e = 0 ;
14

15 i f (s t a t e == 0) { //Length−Distance State : Continue streaming LD
p a i r s through u n t i l L i t e r a l s are encountered

16 i n s t rm >> i n b u f f ;
17 i f (i n b u f f . l a s t == 1) { // I f l a s t pack (No data)
18 out strm << i n b u f f ; //Stream out data pack with TLAST high
19 }
20 e l s e {
21 i f (i n b u f f . user == 1) { // I f data i s Length−Distance pa i r
22 out strm << i n b u f f ; //Stream out LD pa i r
23 }
24 e l s e { // I f data i s composed o f l i t e r a l s
25 i f (i n b u f f . keep == 0b1111) { // I f no l i t e r a l s needed
26 out strm << i n b u f f ; //Stream out f u l l data pack
27 }
28 e l s e { // L i t e r a l s needed to f i l l t h i s data pack
29 data regA = i n b u f f ; // Store in RegA
30 s t a t e = 1 ; //Change to l i t e r a l s t a t e
31 }
32 }
33 }
34 }

137

35 e l s e i f (s t a t e == 1) { // L i t e r a l State : Stack l i t e r a l s with more
l i t e r a l s from the stream . Remain here u n t i l LD pa i r read

36 i n s t rm >> i n b u f f ; //Stream in another data pack
37 i f (i n b u f f . l a s t == 1) { // I f l a s t pack (No data)
38 out strm << data regA ; // Flush out datapack in RegA
39 s t a t e = 2 ; //Go to f l u s h s t a t e
40 }
41 e l s e {
42 i f (i n b u f f . user == 1) { // I f data i s Length−Distance pa i r
43 out strm << data regA ; // Flush out datapack in RegA
44 s t a t e = 2 ; //Go to f l u s h s t a t e
45 }
46 e l s e { // I f data i s composed o f l i t e r a l s
47 i f (data regA . keep == 0b1111) { // I f no l i t e r a l s needed (

Should never happen)
48 out strm << data regA ; //Stream out f u l l data pack
49 data regA = i n b u f f ; //Move new data to regA
50 }
51 e l s e i f (data regA . keep == 0b0111) { //1 l i t e r a l needed by

RegA
52 i f (i n b u f f . keep == 0b0001) { // I f number o f l i t e r a l s in

i n b u f f i s exac t l y 1
53 data regA . data (31 ,24) = i n b u f f . data (7 , 0) ; //Take 1

l i t e r a l from i t
54 data regA . keep = 0b1111 ; //Update RegA TKEEP

s i g n a l
55 out strm << data regA ; //Stream out f u l l

data pack
56 s t a t e = 0 ; // Return to LD s t a t e
57 }
58 e l s e i f (i n b u f f . keep == 0b0000) { // I f data pack i s empty

(Should never happen)
59 //Do nothing
60 }
61 e l s e { // I f number o f l i t e r a l s i s from 2 to 4 (more than

needed)
62 data regA . data (31 ,24) = i n b u f f . data (7 , 0) ; //Take 1

l i t e r a l from i t
63 data regA . keep = 0b1111 ; //Update RegA TKEEP

s i g n a l
64 out strm << data regA ; //Stream out f u l l

data pack
65 data regA . data = i n b u f f . data >> 8 ; // S h i f t i n b u f f

data and s t o r e in RegA
66 data regA . keep = i n b u f f . keep >> 1 ; // S h i f t i n b u f f

TKEEP s i g n a l and s t o r e in RegA
67 }
68 }
69 e l s e i f (data regA . keep == 0b0011) { //2 l i t e r a l s needed by

RegA
70 i f (i n b u f f . keep == 0b0011) { // I f number o f l i t e r a l s in

i n b u f f i s exac t l y 2
71 data regA . data (31 ,16) = i n b u f f . data (15 ,0) ; //Take 2

l i t e r a l s

138

72 data regA . keep = 0b1111 ; //Update RegA TKEEP s i g n a l
73 out strm << data regA ; //Stream out f u l l data pack
74 s t a t e = 0 ; // Return to LD s t a t e
75 }
76 e l s e i f (i n b u f f . keep == 0b0001) { // I f only 1 l i t e r a l in

i n b u f f (l e s s than needed)
77 data regA . data (23 ,16) = i n b u f f . data (7 , 0) ; //Take 1

l i t e r a l
78 data regA . keep = 0b0111 ; //Update TKEEP
79 }
80 e l s e i f (i n b u f f . keep == 0b0000) { // I f data pack i s empty

(Should never happen)
81 //Do nothing
82 }
83 e l s e { // I f number o f l i t e r a l s i s 3 or 4 (more than

needed)
84 data regA . data (31 ,16) = i n b u f f . data (15 ,0) ; //Take 2

l i t e r a l s
85 data regA . keep = 0b1111 ; //Update RegA TKEEP s i g n a l
86 out strm << data regA ; //Stream out f u l l data pack
87 data regA . data = i n b u f f . data >> 16 ; // S h i f t i n b u f f

data and s t o r e in RegA
88 data regA . keep = i n b u f f . keep >> 2 ; // S h i f t i n b u f f

TKEEP s i g n a l and s t o r e in RegA
89 }
90 }
91 e l s e i f (data regA . keep == 0b0001) { //3 l i t e r a l s needed by

RegA
92 i f (i n b u f f . keep == 0b0111) { // I f number o f l i t e r a l s in

i n b u f f i s exac t l y 3
93 data regA . data (31 ,8) = i n b u f f . data (23 ,0) ; //Take 3

l i t e r a l s
94 data regA . keep = 0b1111 ;
95 out strm << data regA ;
96 s t a t e = 0 ; // Return to LD s t a t e
97 }
98 e l s e i f (i n b u f f . keep == 0b0011) { // I f only 2 l i t e r a l s in

i n b u f f (l e s s than needed)
99 data regA . data (23 ,8) = i n b u f f . data (15 ,0) ; //Take 2

l i t e r a l s
100 data regA . keep = 0b0111 ; //Update TKEEP
101 }
102 e l s e i f (i n b u f f . keep == 0b0001) { // I f only 1 l i t e r a l in

i n b u f f (l e s s than needed)
103 data regA . data (15 ,8) = i n b u f f . data (7 , 0) ; //Take 1

l i t e r a l
104 data regA . keep = 0b0011 ; //Update TKEEP
105 }
106 e l s e i f (i n b u f f . keep == 0b0000) { // I f data pack i s empty

(Should never happen)
107 //Do nothing
108 }
109 e l s e { // I f number o f l i t e r a l s i s 4 (more than needed)

139

110 data regA . data (31 ,8) = i n b u f f . data (23 ,0) ; //Take 3
l i t e r a l s

111 data regA . keep = 0b1111 ; //Update RegA TKEEP s i g n a l
112 out strm << data regA ; //Stream out f u l l data pack
113 data regA . data = i n b u f f . data >> 24 ; // S h i f t i n b u f f

data and s t o r e in RegA
114 data regA . keep = i n b u f f . keep >> 3 ; // S h i f t i n b u f f

TKEEP s i g n a l and s t o r e in RegA
115 }
116 }
117 e l s e i f (data regA . keep == 0b0000) { //RegA i s empty (Should

never happen)
118 data regA = i n b u f f ; //Move new data to regA
119 }
120 }
121 }
122 }
123 e l s e i f (s t a t e == 2) { // Flush s t a t e (Needed to space out w r i t e s

to output stream)
124 out strm << i n b u f f ; //Stream out LD pa i r
125 s t a t e = 0 ; // Return to LD s t a t e
126 }
127 }

140

Appendix K

Literal Stacker Header File

literal stacker.h

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3 #inc lude <ap in t . h>
4 #inc lude <h l s s t r eam . h>
5 #inc lude <a s s e r t . h>
6

7 us ing namespace h l s ;
8

9 //Stream Format :
10 //TDATA: | 31 − Byte3 − 24 | 23 − Byte2 − 16 | 15 − Byte1 − 8 | 7

− Byte0 − 0 |
11 //TKEEP: | TKEEP3 | TKEEP2 | TKEEP1 |

TKEEP0 |
12 typede f s t r u c t { // L i t e r a l , Length/ Distance stream s t r u c t u r e
13 ap uint <32> data ; //Four bytes o f data
14 ap uint<4> keep ; //TKEEP S i g n a l s f o r each byte
15 bool user ; //TUSER Signa l to i d e n t i f y L i t e r a l (0) or Length−

Distance pa i r (1)
16 bool l a s t ; //TLAST AXI−Stream s i g n a l
17 } l l d s t r e a m ;

141

Appendix L

LZ77 Decoder Source File

LZ77 Decoder.cpp

1 #inc lude ”LZ77 Decoder . h”
2

3 #d e f i n e BUFF SIZE 32768
4

5 void read cb (
6 ap uint<3> n , //Number o f bytes to read (1−4)
7 ap uint<2> r ead con f i g , //Read c o n f i g u r a t i o n
8 ap uint <15> address0 ,
9 ap uint <15> address1 ,

10 ap uint <15> address2 ,
11 ap uint <15> address3 ,
12 ap uint<8> &l i t e r a l 0 , //Output L i t e r a l s
13 ap uint<8> &l i t e r a l 1 ,
14 ap uint<8> &l i t e r a l 2 ,
15 ap uint<8> &l i t e r a l 3 ,
16 ap uint<8> (& c i r c b u f f 0) [BUFF SIZE / 4] ,
17 ap uint<8> (& c i r c b u f f 1) [BUFF SIZE / 4] ,
18 ap uint<8> (& c i r c b u f f 2) [BUFF SIZE / 4] ,
19 ap uint<8> (& c i r c b u f f 3) [BUFF SIZE/4]
20) {
21 #pragma HLS INLINE
22 switch (n) {
23 case 4 :{
24 switch (r e a d c o n f i g) {
25 case 0 :
26 l i t e r a l 0 = c i r c b u f f 0 [address0] ; //Read 4 l i t e r a l s from

b u f f e r
27 l i t e r a l 1 = c i r c b u f f 1 [address1] ;
28 l i t e r a l 2 = c i r c b u f f 2 [address2] ;
29 l i t e r a l 3 = c i r c b u f f 3 [address3] ;
30 break ;
31 case 1 :
32 l i t e r a l 0 = c i r c b u f f 1 [address0] ;
33 l i t e r a l 1 = c i r c b u f f 2 [address1] ;
34 l i t e r a l 2 = c i r c b u f f 3 [address2] ;
35 l i t e r a l 3 = c i r c b u f f 0 [address3] ;
36 break ;

142

37 case 2 :
38 l i t e r a l 0 = c i r c b u f f 2 [address0] ;
39 l i t e r a l 1 = c i r c b u f f 3 [address1] ;
40 l i t e r a l 2 = c i r c b u f f 0 [address2] ;
41 l i t e r a l 3 = c i r c b u f f 1 [address3] ;
42 break ;
43 case 3 :
44 l i t e r a l 0 = c i r c b u f f 3 [address0] ;
45 l i t e r a l 1 = c i r c b u f f 0 [address1] ;
46 l i t e r a l 2 = c i r c b u f f 1 [address2] ;
47 l i t e r a l 3 = c i r c b u f f 2 [address3] ;
48 break ;
49 }
50 break ;}
51 case 3 :{
52 switch (r e a d c o n f i g) {
53 case 0 :
54 l i t e r a l 0 = c i r c b u f f 0 [address0] ; //Read 3 l i t e r a l s from

b u f f e r
55 l i t e r a l 1 = c i r c b u f f 1 [address1] ;
56 l i t e r a l 2 = c i r c b u f f 2 [address2] ;
57 break ;
58 case 1 :
59 l i t e r a l 0 = c i r c b u f f 1 [address0] ;
60 l i t e r a l 1 = c i r c b u f f 2 [address1] ;
61 l i t e r a l 2 = c i r c b u f f 3 [address2] ;
62 break ;
63 case 2 :
64 l i t e r a l 0 = c i r c b u f f 2 [address0] ;
65 l i t e r a l 1 = c i r c b u f f 3 [address1] ;
66 l i t e r a l 2 = c i r c b u f f 0 [address2] ;
67 break ;
68 case 3 :
69 l i t e r a l 0 = c i r c b u f f 3 [address0] ;
70 l i t e r a l 1 = c i r c b u f f 0 [address1] ;
71 l i t e r a l 2 = c i r c b u f f 1 [address2] ;
72 break ;
73 }
74 break ;}
75 case 2 :{
76 switch (r e a d c o n f i g) {
77 case 0 :
78 l i t e r a l 0 = c i r c b u f f 0 [address0] ;
79 l i t e r a l 1 = c i r c b u f f 1 [address1] ;
80 break ;
81 case 1 :
82 l i t e r a l 0 = c i r c b u f f 1 [address0] ;
83 l i t e r a l 1 = c i r c b u f f 2 [address1] ;
84 break ;
85 case 2 :
86 l i t e r a l 0 = c i r c b u f f 2 [address0] ;
87 l i t e r a l 1 = c i r c b u f f 3 [address1] ;
88 break ;
89 case 3 :

143

90 l i t e r a l 0 = c i r c b u f f 3 [address0] ;
91 l i t e r a l 1 = c i r c b u f f 0 [address1] ;
92 break ;
93 }
94 break ;}
95 case 1 :{
96 switch (r e a d c o n f i g) {
97 case 0 : l i t e r a l 0 = c i r c b u f f 0 [address0] ; break ;
98 case 1 : l i t e r a l 0 = c i r c b u f f 1 [address0] ; break ;
99 case 2 : l i t e r a l 0 = c i r c b u f f 2 [address0] ; break ;

100 case 3 : l i t e r a l 0 = c i r c b u f f 3 [address0] ; break ;
101 }
102 break ;}
103 }
104 }
105

106 void wr i t e cb (
107 ap uint<3> n , //Number o f bytes to wr i t e (1−4)
108 ap uint<2> w r i t e c o n f i g , // Write c o n f i g u r a t i o n
109 ap uint <15> address0 ,
110 ap uint <15> address1 ,
111 ap uint <15> address2 ,
112 ap uint <15> address3 ,
113 ap uint<8> l i t e r a l 0 , // Input L i t e r a l s
114 ap uint<8> l i t e r a l 1 ,
115 ap uint<8> l i t e r a l 2 ,
116 ap uint<8> l i t e r a l 3 ,
117 ap uint<8> (& c i r c b u f f 0) [BUFF SIZE / 4] ,
118 ap uint<8> (& c i r c b u f f 1) [BUFF SIZE / 4] ,
119 ap uint<8> (& c i r c b u f f 2) [BUFF SIZE / 4] ,
120 ap uint<8> (& c i r c b u f f 3) [BUFF SIZE/4]
121) {
122 #pragma HLS INLINE
123 switch (n) {
124 case 4 :{
125 switch (w r i t e c o n f i g) {
126 case 0 :
127 c i r c b u f f 0 [address0] = l i t e r a l 0 ; // Pr int 4 l i t e r a l s to

b u f f e r head
128 c i r c b u f f 1 [address1] = l i t e r a l 1 ;
129 c i r c b u f f 2 [address2] = l i t e r a l 2 ;
130 c i r c b u f f 3 [address3] = l i t e r a l 3 ;
131 break ;
132 case 1 :
133 c i r c b u f f 1 [address0] = l i t e r a l 0 ;
134 c i r c b u f f 2 [address1] = l i t e r a l 1 ;
135 c i r c b u f f 3 [address2] = l i t e r a l 2 ;
136 c i r c b u f f 0 [address3] = l i t e r a l 3 ;
137 break ;
138 case 2 :
139 c i r c b u f f 2 [address0] = l i t e r a l 0 ;
140 c i r c b u f f 3 [address1] = l i t e r a l 1 ;
141 c i r c b u f f 0 [address2] = l i t e r a l 2 ;
142 c i r c b u f f 1 [address3] = l i t e r a l 3 ;

144

143 break ;
144 case 3 :
145 c i r c b u f f 3 [address0] = l i t e r a l 0 ;
146 c i r c b u f f 0 [address1] = l i t e r a l 1 ;
147 c i r c b u f f 1 [address2] = l i t e r a l 2 ;
148 c i r c b u f f 2 [address3] = l i t e r a l 3 ;
149 break ;
150 }
151 break ;}
152 case 3 :{
153 switch (w r i t e c o n f i g) {
154 case 0 :
155 c i r c b u f f 0 [address0] = l i t e r a l 0 ;
156 c i r c b u f f 1 [address1] = l i t e r a l 1 ;
157 c i r c b u f f 2 [address2] = l i t e r a l 2 ;
158 break ;
159 case 1 :
160 c i r c b u f f 1 [address0] = l i t e r a l 0 ;
161 c i r c b u f f 2 [address1] = l i t e r a l 1 ;
162 c i r c b u f f 3 [address2] = l i t e r a l 2 ;
163 break ;
164 case 2 :
165 c i r c b u f f 2 [address0] = l i t e r a l 0 ;
166 c i r c b u f f 3 [address1] = l i t e r a l 1 ;
167 c i r c b u f f 0 [address2] = l i t e r a l 2 ;
168 break ;
169 case 3 :
170 c i r c b u f f 3 [address0] = l i t e r a l 0 ;
171 c i r c b u f f 0 [address1] = l i t e r a l 1 ;
172 c i r c b u f f 1 [address2] = l i t e r a l 2 ;
173 break ;
174 }
175 break ;}
176 case 2 :{
177 switch (w r i t e c o n f i g) {
178 case 0 :
179 c i r c b u f f 0 [address0] = l i t e r a l 0 ;
180 c i r c b u f f 1 [address1] = l i t e r a l 1 ;
181 break ;
182 case 1 :
183 c i r c b u f f 1 [address0] = l i t e r a l 0 ;
184 c i r c b u f f 2 [address1] = l i t e r a l 1 ;
185 break ;
186 case 2 :
187 c i r c b u f f 2 [address0] = l i t e r a l 0 ;
188 c i r c b u f f 3 [address1] = l i t e r a l 1 ;
189 break ;
190 case 3 :
191 c i r c b u f f 3 [address0] = l i t e r a l 0 ;
192 c i r c b u f f 0 [address1] = l i t e r a l 1 ;
193 break ;
194 }
195 break ;}
196 case 1 :{

145

197 switch (w r i t e c o n f i g) {
198 case 0 : c i r c b u f f 0 [address0] = l i t e r a l 0 ; break ;
199 case 1 : c i r c b u f f 1 [address0] = l i t e r a l 0 ; break ;
200 case 2 : c i r c b u f f 2 [address0] = l i t e r a l 0 ; break ;
201 case 3 : c i r c b u f f 3 [address0] = l i t e r a l 0 ; break ;
202 }
203 break ;}
204 }
205 }
206

207 //LZ77 Decoder : Takes in LZ77 commands and outputs decompressed
data (4−byte v e r s i on)

208 void LZ77 Decoder (
209 stream<l l d s t r eam> &in strm ,
210 stream<i o s t ream> &out strm
211) {
212 #pragma HLS INTERFACE a p c t r l h s port=return
213 #pragma HLS INTERFACE a x i s o f f port=in s t rm // R e g i s t e r s o f f
214 #pragma HLS INTERFACE a x i s o f f port=out strm
215 l l d s t r e a m i n b u f f ;
216 l l d s t r e a m l i t e r a l b u f f e r ;
217 i o s t r eam o u t b u f f = {0} ;
218 ap uint<3> s t a t e = 0 ;
219 ap uint<9> l ength ;
220 ap uint <16> d i s t anc e ;
221 ap uint<8> c i r c b u f f 0 [BUFF SIZE / 4] ; //32 kiB c i c u l a r b u f f e r

s p l i t i n to 4 c y c l i c a l p a r t i t i o n s
222 ap uint<8> c i r c b u f f 1 [BUFF SIZE / 4] ;
223 ap uint<8> c i r c b u f f 2 [BUFF SIZE / 4] ;
224 ap uint<8> c i r c b u f f 3 [BUFF SIZE / 4] ;
225 ap uint<2> r e a d c o n f i g ; // Points to the c i r c b u f f p a r t i t i o n that

l i t e r a l 0 w i l l be read from
226 ap uint<2> w r i t e c o n f i g = 0 ; // Points to the c i r c b u f f p a r t i t i o n

that l i t e r a l 0 w i l l be wr i t t en to
227 ap uint<8> copy array [3] [4] ;
228 #pragma HLS ARRAY PARTITION v a r i a b l e=copy array complete dim=0
229 ap uint<2> copy po in te r ;
230 ap uint <15> wr i te addr0 = 0 ;
231 ap uint <15> wr i te addr1 = 1 ;
232 ap uint <15> wr i te addr2 = 2 ;
233 ap uint <15> wr i te addr3 = 3 ;
234 ap uint <15> read addr0 ;
235 ap uint <15> read addr1 ;
236 ap uint <15> read addr2 ;
237 ap uint <15> read addr3 ;
238 ap uint <15> f i r s t r e a d a d d r ;
239 ap uint<9> l ength rema in ing ; // Length remaining i s the t o t a l

number o f bytes to be wr i t t en
240 ap uint<9> d i s tance r ema in ing ; // Dis tance remain ing i s the

number o f bytes we can wr i t e be f o r e the s l i d i n g window must be
r e s e t

241 ap uint<8> l i t e r a l 0 ;
242 ap uint<8> l i t e r a l 1 ;
243 ap uint<8> l i t e r a l 2 ;

146

244 ap uint<8> l i t e r a l 3 ;
245

246 Main Loop : whi l e (1) {
247 #pragma HLS PIPELINE
248 #pragma HLS DEPENDENCE v a r i a b l e=c i r c b u f f 0 i n t e r f a l s e
249 #pragma HLS DEPENDENCE v a r i a b l e=c i r c b u f f 1 i n t e r f a l s e
250 #pragma HLS DEPENDENCE v a r i a b l e=c i r c b u f f 2 i n t e r f a l s e
251 #pragma HLS DEPENDENCE v a r i a b l e=c i r c b u f f 3 i n t e r f a l s e
252 i f (s t a t e == 0) { //No L i t e r a l Held State
253 i n b u f f = in s t rm . read () ;
254 i f (i n b u f f . l a s t) {
255 break ;
256 }
257 e l s e {
258 i f (i n b u f f . user == 0) { // I f data i s a l i t e r a l
259 l i t e r a l b u f f e r = i n b u f f ;
260 s t a t e = 1 ;
261 }
262 e l s e { // Length/ Distance pa i r
263 l ength = i n b u f f . data (31 ,23) ;
264 d i s t anc e = i n b u f f . data (15 ,0) ;
265 a s s e r t (l ength >= 3) ; //DEFLATE min al lowed length i s 3
266 a s s e r t (l ength <= 258) ; //DEFLATE max al lowed length i s

258
267 a s s e r t (d i s t ance >= 1) ; //DEFLATE min al lowed d i s t ance i s

1
268 a s s e r t (d i s t ance <= 32768) ; //DEFLATE max al lowed

d i s t anc e i s 32768
269 read addr0 = wr i te addr0 − d i s t anc e ;
270 read addr1 = read addr0 + 1 ;
271 read addr2 = read addr0 + 2 ;
272 read addr3 = read addr0 + 3 ;
273 r e a d c o n f i g = read addr0 & 3 ; //Modulo the r ead addre s s

to f i n d which b u f f e r p a r t i t i o n i s read f i r s t
274 f i r s t r e a d a d d r = read addr0 ;
275 l ength rema in ing = length ;
276 i f (d i s t ance <= 4) { // I f Distance i s 1 , 2 , 3 , or 4
277 s t a t e = 3 ;
278 d i s tance r ema in ing = length ; // Distance remaining

equa l s length , no wrap−around
279 }
280 e l s e i f (d i s t ance <= 7) { // I f Distance i s 5 , 6 , or 7
281 s t a t e = 2 ;
282 d i s tance r ema in ing = d i s t anc e ; // Distance remaining

be f o r e wrap−around i s d i s t ance
283 }
284 e l s e { // I f Distance i s 8 or g r e a t e r
285 s t a t e = 2 ;
286 d i s tance r ema in ing = length ;
287 }
288 }
289 }
290 }
291 e l s e i f (s t a t e == 1) { // Have L i t e ra l State

147

292 switch (l i t e r a l b u f f e r . keep) {
293 case 0b0001 :
294 wr i t e cb (1 , w r i t e c o n f i g , wr i t e addr0 /4 , 0 , 0 , 0 ,

l i t e r a l b u f f e r . data (7 , 0) , 0 , 0 , 0 , c i r c b u f f 0 , c i r c b u f f 1 ,
c i r c b u f f 2 , c i r c b u f f 3) ;

295 w r i t e c o n f i g ++;
296 wr i te addr0++; wr i t e addr1++; wr i t e addr2++; wr i t e addr3

++;
297 break ;
298 case 0b0011 :
299 wr i t e cb (2 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1 /4 ,0 ,0 ,

l i t e r a l b u f f e r . data (7 , 0) , l i t e r a l b u f f e r . data (15 ,8) ,
300 0 ,0 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;
301 w r i t e c o n f i g += 2 ;
302 wr i te addr0 += 2 ; wr i t e addr1 += 2 ; wr i t e addr2 += 2 ;

wr i t e addr3 += 2 ;
303 break ;
304 case 0b0111 :
305 wr i t e cb (3 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1 /4 ,

wr i t e addr2 /4 ,0 , l i t e r a l b u f f e r . data (7 , 0) , l i t e r a l b u f f e r . data
(15 ,8) ,

306 l i t e r a l b u f f e r . data (23 ,16) ,0 , c i r c b u f f 0 , c i r c b u f f 1 ,
c i r c b u f f 2 , c i r c b u f f 3) ;

307 w r i t e c o n f i g += 3 ;
308 wr i te addr0 += 3 ; wr i t e addr1 += 3 ; wr i t e addr2 += 3 ;

wr i t e addr3 += 3 ;
309 break ;
310 case 0b1111 :
311 wr i t e cb (4 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1 /4 ,

wr i t e addr2 /4 , wr i t e addr3 /4 , l i t e r a l b u f f e r . data (7 , 0) ,
l i t e r a l b u f f e r . data (15 ,8) ,

312 l i t e r a l b u f f e r . data (23 ,16) , l i t e r a l b u f f e r . data (31 ,24) ,
c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;

313 wr i te addr0 += 4 ; wr i t e addr1 += 4 ; wr i t e addr2 += 4 ;
wr i t e addr3 += 4 ;

314 break ;
315 }
316 o u t b u f f . data = l i t e r a l b u f f e r . data ;
317 o u t b u f f . keep = l i t e r a l b u f f e r . keep ;
318 out strm << o u t b u f f ;
319 i n b u f f = in s t rm . read () ;
320 i f (i n b u f f . l a s t) {
321 break ;
322 }
323 e l s e {
324 i f (i n b u f f . user == 0) { // I f data i s a l i t e r a l
325 l i t e r a l b u f f e r = i n b u f f ;
326 }
327 e l s e { // Length/ Distance pa i r
328 l ength = i n b u f f . data (31 ,23) ;
329 d i s t anc e = i n b u f f . data (15 ,0) ;
330 a s s e r t (l ength >= 3) ; //DEFLATE min al lowed length i s 3
331 a s s e r t (l ength <= 258) ; //DEFLATE max al lowed length i s

258

148

332 a s s e r t (d i s t ance >= 1) ; //DEFLATE min al lowed d i s t ance i s
1

333 a s s e r t (d i s t ance <= 32768) ; //DEFLATE max al lowed
d i s t anc e i s 32768

334 read addr0 = wr i te addr0 − d i s t anc e ;
335 read addr1 = read addr0 + 1 ;
336 read addr2 = read addr0 + 2 ;
337 read addr3 = read addr0 + 3 ;
338 r e a d c o n f i g = read addr0 & 3 ; //Modulo the r ead addre s s

to f i n d which b u f f e r p a r t i t i o n i s read f i r s t
339 f i r s t r e a d a d d r = read addr0 ;
340 l ength rema in ing = length ;
341 i f (d i s t ance <= 4) { // I f Distance i s 1 , 2 , 3 , or 4
342 s t a t e = 3 ;
343 d i s tance r ema in ing = length ; // Distance remaining

equa l s length , no wrap−around
344 }
345 e l s e i f (d i s t ance <= 7) { // I f Distance i s 5 , 6 , or 7
346 s t a t e = 2 ;
347 d i s tance r ema in ing = d i s t anc e ; // Distance remaining

be f o r e wrap−around i s d i s t ance
348 }
349 e l s e { // I f Distance i s 8 or g r e a t e r
350 s t a t e = 2 ;
351 d i s tance r ema in ing = length ;
352 }
353 }
354 }
355 }
356 e l s e i f (s t a t e == 2) { // Regular Length−Distance State
357 i f (l ength rema in ing >= 4) {
358 i f (d i s t ance r ema in ing >= 4) {
359 read cb (4 , r ead con f i g , read addr0 /4 , read addr1 /4 ,

read addr2 /4 , read addr3 /4 , l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 ,
c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;

360 i f (d i s t ance != 32768) {
361 wr i t e cb (4 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1 /4 ,

wr i t e addr2 /4 , wr i t e addr3 /4 , l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 ,
l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;

362 }
363 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; // Write 4 l i t e r a l s to

output b u f f e r
364 o u t b u f f . data (15 ,8) = l i t e r a l 1 ;
365 o u t b u f f . data (23 ,16) = l i t e r a l 2 ;
366 o u t b u f f . data (31 ,24) = l i t e r a l 3 ;
367 wr i te addr0 += 4 ; wr i t e addr1 += 4 ; wr i t e addr2 += 4 ;

wr i t e addr3 += 4 ;
368 o u t b u f f . keep = 0b1111 ;
369 i f (l ength rema in ing == 4) { // I f only 4 bytes were l e f t
370 s t a t e = 0 ; // Return to L i t e r a l s t a t e
371 }
372 e l s e {
373 l ength rema in ing −= 4 ;
374 i f (d i s t ance r ema in ing == 4) {

149

375 d i s tance r ema in ing = d i s t anc e ; // Reset s l i d i n g
window

376 read addr0 = f i r s t r e a d a d d r ; // S h i f t addre s s e s back
to s t a r t

377 read addr1 = f i r s t r e a d a d d r + 1 ;
378 read addr2 = f i r s t r e a d a d d r + 2 ;
379 read addr3 = f i r s t r e a d a d d r + 3 ;
380 }
381 e l s e {
382 read addr0 += 4 ; read addr1 += 4 ; read addr2 += 4 ;

read addr3 += 4 ;
383 d i s tance r ema in ing −= 4 ;
384 }
385 }
386 }
387 e l s e i f (d i s t ance r ema in ing == 3) {
388 read cb (3 , r ead con f i g , read addr0 /4 , read addr1 /4 ,

read addr2 /4 ,0 , l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 ,
c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;

389 i f (d i s t ance != 32768) {
390 wr i t e cb (3 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1 /4 ,

wr i t e addr2 /4 ,0 , l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , 0 , c i r c b u f f 0 ,
c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;

391 }
392 w r i t e c o n f i g += 3 ;
393 wr i te addr0 += 3 ; wr i t e addr1 += 3 ; wr i t e addr2 += 3 ;

wr i t e addr3 += 3 ;
394 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; // Write 3 l i t e r a l s to

output b u f f e r
395 o u t b u f f . data (15 ,8) = l i t e r a l 1 ;
396 o u t b u f f . data (23 ,16) = l i t e r a l 2 ;
397 o u t b u f f . keep = 0b0111 ;
398 l ength rema in ing −= 3 ;
399 d i s tance r ema in ing = d i s t anc e ; // Reset s l i d i n g window
400 read addr0 = f i r s t r e a d a d d r ; // S h i f t addre s s e s back to

s t a r t
401 read addr1 = f i r s t r e a d a d d r + 1 ;
402 read addr2 = f i r s t r e a d a d d r + 2 ;
403 read addr3 = f i r s t r e a d a d d r + 3 ;
404 }
405 e l s e i f (d i s t ance r ema in ing == 2) {
406 read cb (2 , r ead con f i g , read addr0 /4 , read addr1 /4 ,0 ,0 ,

l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 ,
c i r c b u f f 2 , c i r c b u f f 3) ;

407 i f (d i s t ance != 32768) {
408 wr i t e cb (2 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1

/4 ,0 ,0 , l i t e r a l 0 , l i t e r a l 1 , 0 , 0 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 ,
c i r c b u f f 3) ;

409 }
410 w r i t e c o n f i g += 2 ;
411 wr i te addr0 += 2 ; wr i t e addr1 += 2 ; wr i t e addr2 += 2 ;

wr i t e addr3 += 2 ;
412 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; // Write 2 l i t e r a l s to

output b u f f e r

150

413 o u t b u f f . data (15 ,8) = l i t e r a l 1 ;
414 o u t b u f f . keep = 0b0011 ;
415 l ength rema in ing −= 2 ;
416 d i s tance r ema in ing = d i s t anc e ; // Reset s l i d i n g window
417 read addr0 = f i r s t r e a d a d d r ; // S h i f t addre s s e s back to

s t a r t
418 read addr1 = f i r s t r e a d a d d r + 1 ;
419 read addr2 = f i r s t r e a d a d d r + 2 ;
420 read addr3 = f i r s t r e a d a d d r + 3 ;
421 }
422 e l s e i f (d i s t ance r ema in ing == 1) {
423 read cb (1 , r ead con f i g , read addr0 /4 ,0 ,0 ,0 , l i t e r a l 0 ,

l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 ,
c i r c b u f f 3) ;

424 i f (d i s t ance != 32768) {
425 wr i t e cb (1 , w r i t e c o n f i g , wr i t e addr0 /4 ,0 ,0 ,0 , l i t e r a l 0

, 0 , 0 , 0 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;
426 }
427 w r i t e c o n f i g ++;
428 wr i te addr0++; wr i t e addr1++; wr i t e addr2++; wr i t e addr3

++;
429 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; //Read l i t e r a l from

b u f f e r
430 o u t b u f f . keep = 0b0001 ;
431 l ength rema in ing −= 1 ;
432 d i s tance r ema in ing = d i s t anc e ; // Reset s l i d i n g window
433 read addr0 = f i r s t r e a d a d d r ; // S h i f t addre s s e s back to

s t a r t
434 read addr1 = f i r s t r e a d a d d r + 1 ;
435 read addr2 = f i r s t r e a d a d d r + 2 ;
436 read addr3 = f i r s t r e a d a d d r + 3 ;
437 }
438 }
439 e l s e i f (l ength rema in ing == 3) {
440 i f (d i s t ance r ema in ing >= 3) {
441 read cb (3 , r ead con f i g , read addr0 /4 , read addr1 /4 ,

read addr2 /4 ,0 , l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 ,
c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;

442 i f (d i s t ance != 32768) {
443 wr i t e cb (3 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1 /4 ,

wr i t e addr2 /4 ,0 , l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , 0 , c i r c b u f f 0 ,
c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;

444 }
445 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; // Write 3 l i t e r a l s to

output b u f f e r
446 o u t b u f f . data (15 ,8) = l i t e r a l 1 ;
447 o u t b u f f . data (23 ,16) = l i t e r a l 2 ;
448 w r i t e c o n f i g += 3 ;
449 wr i te addr0 += 3 ; wr i t e addr1 += 3 ; wr i t e addr2 += 3 ;

wr i t e addr3 += 3 ;
450 o u t b u f f . keep = 0b0111 ;
451 s t a t e = 0 ; // Return to L i t e r a l s t a t e
452 }
453 e l s e i f (d i s t ance r ema in ing == 2) {

151

454 read cb (2 , r ead con f i g , read addr0 /4 , read addr1 /4 ,0 ,0 ,
l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 ,
c i r c b u f f 2 , c i r c b u f f 3) ;

455 i f (d i s t ance != 32768) {
456 wr i t e cb (2 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1

/4 ,0 ,0 , l i t e r a l 0 , l i t e r a l 1 , 0 , 0 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 ,
c i r c b u f f 3) ;

457 }
458 w r i t e c o n f i g += 2 ;
459 wr i te addr0 += 2 ; wr i t e addr1 += 2 ; wr i t e addr2 += 2 ;

wr i t e addr3 += 2 ;
460 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; // Write 2 l i t e r a l s to

output b u f f e r
461 o u t b u f f . data (15 ,8) = l i t e r a l 1 ;
462 o u t b u f f . keep = 0b0011 ;
463 l ength rema in ing −= 2 ;
464 d i s tance r ema in ing = d i s t anc e ; // Reset s l i d i n g window
465 read addr0 = f i r s t r e a d a d d r ; // S h i f t addre s s e s back to

s t a r t
466 read addr1 = f i r s t r e a d a d d r + 1 ;
467 read addr2 = f i r s t r e a d a d d r + 2 ;
468 read addr3 = f i r s t r e a d a d d r + 3 ;
469 }
470 e l s e i f (d i s t ance r ema in ing == 1) {
471 read cb (1 , r ead con f i g , read addr0 /4 ,0 ,0 ,0 , l i t e r a l 0 ,

l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 ,
c i r c b u f f 3) ;

472 i f (d i s t ance != 32768) {
473 wr i t e cb (1 , w r i t e c o n f i g , wr i t e addr0 /4 ,0 ,0 ,0 , l i t e r a l 0

, 0 , 0 , 0 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;
474 }
475 w r i t e c o n f i g ++;
476 wr i te addr0++; wr i t e addr1++; wr i t e addr2++; wr i t e addr3

++;
477 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; //Read l i t e r a l from

b u f f e r
478 o u t b u f f . keep = 0b0001 ;
479 l ength rema in ing −= 1 ;
480 d i s tance r ema in ing = d i s t anc e ; // Reset s l i d i n g window
481 read addr0 = f i r s t r e a d a d d r ; // S h i f t addre s s e s back to

s t a r t
482 read addr1 = f i r s t r e a d a d d r + 1 ;
483 read addr2 = f i r s t r e a d a d d r + 2 ;
484 read addr3 = f i r s t r e a d a d d r + 3 ;
485 }
486 }
487 e l s e i f (l ength rema in ing == 2) {
488 i f (d i s t ance r ema in ing >= 2) {
489 read cb (2 , r ead con f i g , read addr0 /4 , read addr1 /4 ,0 ,0 ,

l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 ,
c i r c b u f f 2 , c i r c b u f f 3) ;

490 i f (d i s t ance != 32768) {
491 wr i t e cb (2 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1

/4 ,0 ,0 , l i t e r a l 0 , l i t e r a l 1 , 0 , 0 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 ,

152

c i r c b u f f 3) ;
492 }
493 w r i t e c o n f i g += 2 ;
494 wr i te addr0 += 2 ; wr i t e addr1 += 2 ; wr i t e addr2 += 2 ;

wr i t e addr3 += 2 ;
495 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; // Write 2 l i t e r a l s to

output b u f f e r
496 o u t b u f f . data (15 ,8) = l i t e r a l 1 ;
497 o u t b u f f . keep = 0b0011 ;
498 s t a t e = 0 ; // Return to L i t e r a l s t a t e
499 }
500 e l s e i f (d i s t ance r ema in ing == 1) {
501 read cb (1 , r ead con f i g , read addr0 /4 ,0 ,0 ,0 , l i t e r a l 0 ,

l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 ,
c i r c b u f f 3) ;

502 i f (d i s t ance != 32768) {
503 wr i t e cb (1 , w r i t e c o n f i g , wr i t e addr0 /4 ,0 ,0 ,0 , l i t e r a l 0

, 0 , 0 , 0 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;
504 }
505 w r i t e c o n f i g ++;
506 wr i te addr0++; wr i t e addr1++; wr i t e addr2++; wr i t e addr3

++;
507 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; //Read l i t e r a l from

b u f f e r
508 o u t b u f f . keep = 0b0001 ;
509 l ength rema in ing −= 1 ;
510 d i s tance r ema in ing = d i s t anc e ; // Reset s l i d i n g window
511 read addr0 = f i r s t r e a d a d d r ; // S h i f t addre s s e s back to

s t a r t
512 read addr1 = f i r s t r e a d a d d r + 1 ;
513 read addr2 = f i r s t r e a d a d d r + 2 ;
514 read addr3 = f i r s t r e a d a d d r + 3 ;
515 }
516 }
517 e l s e i f (l ength rema in ing == 1) {
518 read cb (1 , r ead con f i g , read addr0 /4 ,0 ,0 ,0 , l i t e r a l 0 , l i t e r a l 1

, l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3
) ;

519 i f (d i s t ance != 32768) {
520 wr i t e cb (1 , w r i t e c o n f i g , wr i t e addr0 /4 ,0 ,0 ,0 , l i t e r a l 0

, 0 , 0 , 0 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;
521 }
522 w r i t e c o n f i g ++;
523 wr i te addr0++; wr i t e addr1++; wr i t e addr2++; wr i t e addr3

++;
524 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; //Read l i t e r a l from

b u f f e r
525 o u t b u f f . keep = 0b0001 ;
526 s t a t e = 0 ; // Return to L i t e r a l s t a t e
527 }
528 out strm << o u t b u f f ; // Write to stream
529 }
530 e l s e i f (s t a t e == 3) { // Distance <= 4 , S ing l e−Read State be f o r e

Write State

153

531 switch (d i s t ance) { // Set up copy array based on d i s t anc e
value

532 case 1 :
533 read cb (1 , r ead con f i g , read addr0 /4 ,0 ,0 ,0 , l i t e r a l 0 , l i t e r a l 1

, l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3
) ;

534 copy array [0] [0] = l i t e r a l 0 ; // Store in copy array
535 copy array [0] [1] = l i t e r a l 0 ;
536 copy array [0] [2] = l i t e r a l 0 ;
537 copy array [0] [3] = l i t e r a l 0 ;
538 break ;
539 case 2 :
540 read cb (2 , r ead con f i g , read addr0 /4 , read addr1 /4 ,0 ,0 ,

l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 ,
c i r c b u f f 2 , c i r c b u f f 3) ;

541 copy array [0] [0] = l i t e r a l 0 ; // Store in copy array
542 copy array [0] [1] = l i t e r a l 1 ;
543 copy array [0] [2] = l i t e r a l 0 ;
544 copy array [0] [3] = l i t e r a l 1 ;
545 break ;
546 case 3 :
547 read cb (3 , r ead con f i g , read addr0 /4 , read addr1 /4 , read addr2

/4 ,0 , l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1
, c i r c b u f f 2 , c i r c b u f f 3) ;

548 copy array [0] [0] = l i t e r a l 0 ; // Store 0120 in copy array 0
549 copy array [0] [1] = l i t e r a l 1 ;
550 copy array [0] [2] = l i t e r a l 2 ;
551 copy array [0] [3] = l i t e r a l 0 ;
552 copy array [1] [0] = l i t e r a l 1 ; // Store 1201 in copy array 1
553 copy array [1] [1] = l i t e r a l 2 ;
554 copy array [1] [2] = l i t e r a l 0 ;
555 copy array [1] [3] = l i t e r a l 1 ;
556 copy array [2] [0] = l i t e r a l 2 ; // Store 2012 in copy array 2
557 copy array [2] [1] = l i t e r a l 0 ;
558 copy array [2] [2] = l i t e r a l 1 ;
559 copy array [2] [3] = l i t e r a l 2 ;
560 break ;
561 case 4 :
562 read cb (4 , r ead con f i g , read addr0 /4 , read addr1 /4 , read addr2

/4 , read addr3 /4 , l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , l i t e r a l 3 , c i r c b u f f 0
, c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;

563 copy array [0] [0] = l i t e r a l 0 ; // Store in copy array
564 copy array [0] [1] = l i t e r a l 1 ;
565 copy array [0] [2] = l i t e r a l 2 ;
566 copy array [0] [3] = l i t e r a l 3 ;
567 break ;
568 }
569 copy po in te r = 0 ;
570 s t a t e = 4 ;
571 }
572 e l s e i f (s t a t e == 4) { // Distance <= 4 , Write State
573 i f (l ength rema in ing >= 4) {
574 l i t e r a l 0 = copy array [copy po in te r] [0] ;
575 l i t e r a l 1 = copy array [copy po in te r] [1] ;

154

576 l i t e r a l 2 = copy array [copy po in te r] [2] ;
577 l i t e r a l 3 = copy array [copy po in te r] [3] ;
578 i f (d i s t ance == 3) { // I f d i s t anc e i s 3 , s h i f t copy array

po in t e r
579 copy po in te r = (copy po in te r == 2) ? (ap uint <2>)0b00 :

(ap uint <2>)(copy po in te r + 1) ; // Increment copy po in t e r or
s e t i t back to 0

580 }
581 wr i t e cb (4 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1 /4 ,

wr i t e addr2 /4 , wr i t e addr3 /4 , l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 ,
l i t e r a l 3 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;

582 wr i te addr0 += 4 ; wr i t e addr1 += 4 ; wr i t e addr2 += 4 ;
wr i t e addr3 += 4 ;

583 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; // Write 4 l i t e r a l s to
output b u f f e r

584 o u t b u f f . data (15 ,8) = l i t e r a l 1 ;
585 o u t b u f f . data (23 ,16) = l i t e r a l 2 ;
586 o u t b u f f . data (31 ,24) = l i t e r a l 3 ;
587 o u t b u f f . keep = 0b1111 ;
588 i f (l ength rema in ing == 4) { // I f only 4 bytes were l e f t
589 s t a t e = 0 ; // Return to L i t e r a l s t a t e
590 }
591 e l s e {
592 l ength rema in ing −= 4 ;
593 }
594 }
595 e l s e i f (l ength rema in ing == 3) {
596 l i t e r a l 0 = copy array [copy po in te r] [0] ;
597 l i t e r a l 1 = copy array [copy po in te r] [1] ;
598 l i t e r a l 2 = copy array [copy po in te r] [2] ;
599 wr i t e cb (3 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1 /4 ,

wr i t e addr2 /4 ,0 , l i t e r a l 0 , l i t e r a l 1 , l i t e r a l 2 , 0 , c i r c b u f f 0 ,
c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;

600 w r i t e c o n f i g += 3 ;
601 wr i te addr0 += 3 ; wr i t e addr1 += 3 ; wr i t e addr2 += 3 ;

wr i t e addr3 += 3 ;
602 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; // Write 3 l i t e r a l s to

output b u f f e r
603 o u t b u f f . data (15 ,8) = l i t e r a l 1 ;
604 o u t b u f f . data (23 ,16) = l i t e r a l 2 ;
605 o u t b u f f . keep = 0b0111 ;
606 s t a t e = 0 ; // Return to L i t e r a l s t a t e
607 }
608 e l s e i f (l ength rema in ing == 2) {
609 l i t e r a l 0 = copy array [copy po in te r] [0] ;
610 l i t e r a l 1 = copy array [copy po in te r] [1] ;
611 wr i t e cb (2 , w r i t e c o n f i g , wr i t e addr0 /4 , wr i t e addr1 /4 ,0 ,0 ,

l i t e r a l 0 , l i t e r a l 1 , 0 , 0 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 ,
c i r c b u f f 3) ;

612 w r i t e c o n f i g += 2 ;
613 wr i te addr0 += 2 ; wr i t e addr1 += 2 ; wr i t e addr2 += 2 ;

wr i t e addr3 += 2 ;
614 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; // Write 2 l i t e r a l s to

output b u f f e r

155

615 o u t b u f f . data (15 ,8) = l i t e r a l 1 ;
616 o u t b u f f . keep = 0b0011 ;
617 s t a t e = 0 ; // Return to L i t e r a l s t a t e
618 }
619 e l s e i f (l ength rema in ing == 1) {
620 l i t e r a l 0 = copy array [copy po in te r] [0] ;
621 wr i t e cb (1 , w r i t e c o n f i g , wr i t e addr0 /4 ,0 ,0 ,0 , l i t e r a l 0

, 0 , 0 , 0 , c i r c b u f f 0 , c i r c b u f f 1 , c i r c b u f f 2 , c i r c b u f f 3) ;
622 w r i t e c o n f i g ++;
623 wr i te addr0++; wr i t e addr1++; wr i t e addr2++; wr i t e addr3

++;
624 o u t b u f f . data (7 , 0) = l i t e r a l 0 ; //Read l i t e r a l from

b u f f e r
625 o u t b u f f . keep = 0b0001 ;
626 s t a t e = 0 ; // Return to L i t e r a l s t a t e
627 }
628 out strm << o u t b u f f ; // Write to stream
629 }
630 }
631 o u t b u f f . keep = 0b0000 ; // Set TKEEP s i g n a l
632 o u t b u f f . l a s t = 0b1 ; // Set TLAST s i g n a l
633 out strm << o u t b u f f ;
634 }

156

Appendix M

LZ77 Decoder Header File

LZ77 Decoder.h

1

2 #inc lude <s t d i o . h>
3 #inc lude <s t r i n g . h>
4 #inc lude <ap in t . h>
5 #inc lude <h l s s t r eam . h>
6 #inc lude <a s s e r t . h>
7

8 us ing namespace h l s ;
9

10 typede f s t r u c t { // Input AXI−Stream s t r u c t u r e
11 ap uint <32> data ; //Four bytes o f data
12 ap uint<4> keep ; //TKEEP S i g n a l s f o r each byte
13 bool user ; //TUSER Signa l to i d e n t i f y L i t e r a l (0) or Length−

Distance pa i r (1)
14 bool l a s t ; //TLAST AXI−Stream s i g n a l
15 } l l d s t r e a m ;
16

17 typede f s t r u c t { //Output AXI−Stream s t r u c t u r e
18 ap uint <32> data ; //Four bytes o f data
19 ap uint<4> keep ; //TKEEP S i g n a l s f o r each byte
20 bool l a s t ; //TLAST AXI−Stream s i g n a l
21 } i o s t r eam ;

157

Appendix N

Byte Packer Source File

byte packer.cpp

1 #inc lude ” byte packer . h”
2

3 unsigned char a l i g n b y t e s (
4 i o s t rm &data r eg in ,
5 i o s t rm &data r eg out
6) {
7 #pragma HLS INLINE
8 unsigned char bytes needed ;
9

10 switch (d a t a r e g i n . keep) {
11 case 0b0000 : // Al l bytes Nul l
12 data r eg out . data = d a t a r e g i n . data ; // Pass data through

anyway
13 data r eg out . keep = 0b0000 ;
14 bytes needed = 4 ;
15 break ;
16 case 0b0001 :
17 data r eg out . data = d a t a r e g i n . data ;
18 data r eg out . keep = 0b0001 ;
19 bytes needed = 3 ;
20 break ;
21 case 0b0010 :
22 data r eg out . data = d a t a r e g i n . data >> 8 ; // S h i f t a l l bytes

r i g h t by 8 b i t s
23 data r eg out . keep = 0b0001 ;
24 bytes needed = 3 ;
25 break ;
26 case 0b0011 :
27 data r eg out . data = d a t a r e g i n . data ;
28 data r eg out . keep = 0b0011 ;
29 bytes needed = 2 ;
30 break ;
31 case 0b0100 :
32 data r eg out . data = d a t a r e g i n . data >> 16 ; // S h i f t a l l bytes

r i g h t by 16 b i t s
33 data r eg out . keep = 0b0001 ;

158

34 bytes needed = 3 ;
35 break ;
36 case 0b0101 :
37 data r eg out . data (15 ,8) = d a t a r e g i n . data (23 ,16) ; // S h i f t

second byte r i g h t by 8 b i t s
38 data r eg out . data (7 , 0) = d a t a r e g i n . data (7 , 0) ; //Copy

bottom byte
39 data r eg out . keep = 0b0011 ;
40 bytes needed = 2 ;
41 break ;
42 case 0b0110 :
43 data r eg out . data = d a t a r e g i n . data >> 8 ; // S h i f t a l l bytes

r i g h t by 8 b i t s
44 data r eg out . keep = 0b0011 ;
45 bytes needed = 2 ;
46 break ;
47 case 0b0111 :
48 data r eg out . data = d a t a r e g i n . data ;
49 data r eg out . keep = 0b0111 ;
50 bytes needed = 1 ;
51 break ;
52 case 0b1000 :
53 data r eg out . data = d a t a r e g i n . data >> 24 ;
54 data r eg out . keep = 0b0001 ;
55 bytes needed = 3 ;
56 break ;
57 case 0b1001 :
58 data r eg out . data (15 ,8) = d a t a r e g i n . data (31 ,24) ; // S h i f t

upper byte r i g h t by 16 b i t s
59 data r eg out . data (7 , 0) = d a t a r e g i n . data (7 , 0) ; //Copy

bottom byte
60 data r eg out . keep = 0b0011 ;
61 bytes needed = 2 ;
62 break ;
63 case 0b1010 :
64 data r eg out . data (7 , 0) = d a t a r e g i n . data (15 ,8) ; // S h i f t

th i r d byte r i g h t by 8 b i t s
65 data r eg out . data (15 ,8) = d a t a r e g i n . data (31 ,24) ; // S h i f t

upper byte r i g h t by 16 b i t s
66 data r eg out . keep = 0b0011 ;
67 bytes needed = 2 ;
68 break ;
69 case 0b1011 :
70 data r eg out . data (23 ,16) = d a t a r e g i n . data (31 ,24) ; // S h i f t

upper byte r i g h t by 8 b i t s
71 data r eg out . data (15 ,0) = d a t a r e g i n . data (15 ,0) ; //Copy

bottom two bytes
72 data r eg out . keep = 0b0111 ;
73 bytes needed = 1 ;
74 break ;
75 case 0b1100 :
76 data r eg out . data = d a t a r e g i n . data >> 16 ; // S h i f t a l l bytes

r i g h t by 16 b i t s
77 data r eg out . keep = 0b0011 ;

159

78 bytes needed = 2 ;
79 break ;
80 case 0b1101 :
81 data r eg out . data (23 ,8) = d a t a r e g i n . data (31 ,16) ; // S h i f t

upper two bytes r i g h t by 8 b i t s
82 data r eg out . data (7 , 0) = d a t a r e g i n . data (7 , 0) ; //Copy

bottom byte
83 data r eg out . keep = 0b0111 ;
84 bytes needed = 1 ;
85 break ;
86 case 0b1110 :
87 data r eg out . data = d a t a r e g i n . data >> 8 ; // S h i f t a l l bytes

r i g h t by 8 b i t s
88 data r eg out . keep = 0b0111 ;
89 bytes needed = 1 ;
90 break ;
91 case 0b1111 :
92 data r eg out . data = d a t a r e g i n . data ;
93 data r eg out . keep = 0b1111 ;
94 bytes needed = 0 ;
95 break ;
96 }
97 data r eg out . l a s t = d a t a r e g i n . l a s t ; // Pass TLAST s i g n a l
98

99 re turn bytes needed ;
100 } ;
101

102 // byte packer :
103 //Takes in 4 byte wide (l i t t l e −endian) AXI−Stream and checks

accompanying TKEEP s i g n a l s f o r presence o f n u l l bytes .
104 // Wil l remove n u l l bytes from stream and r e a l i g n bytes in to 4 byte

wide cont inuous output stream .
105 // I f TLAST i s as s e r t ed , w i l l output c u r r e n t l y he ld bytes

r e g a r d l e s s o f having 4 bytes or not .
106 void byte packer (
107 stream<i o s trm> &in strm ,
108 stream<i o s trm> &out strm
109) {
110 #pragma HLS PIPELINE e n a b l e f l u s h
111 #pragma HLS INTERFACE a p c t r l n o n e port=return
112 #pragma HLS INTERFACE a x i s r e g i s t e r both port=in s t rm
113 #pragma HLS INTERFACE a x i s r e g i s t e r both port=out strm
114 s t a t i c i o s t rm i n b u f f = {0} ; //Axi−Stream input b u f f e r
115 s t a t i c i o s t rm data regA = {0} ; // F i r s t data r e g i s t e r to be

f i l l e d
116 s t a t i c i o s t rm data regB = {0} ; // Second data r e g i s t e r to be

f i l l e d , used to f i l l RegA
117 s t a t i c unsigned char bytes neededA = 4 ; //Number o f bytes needed

to f i l l the data pack c u r r e n t l y he ld in data regA
118 s t a t i c unsigned char bytes neededB = 4 ;
119 s t a t i c bool s t a t e = 0 ; // Current machine s tate , can be 1 or 0
120

121 i f (s t a t e == 0) { //Pass−through State : Continue streaming f u l l
data packs through u n t i l n u l l bytes are encountered

160

122 i n s t rm >> i n b u f f ;
123 bytes neededA = a l i g n b y t e s (i n b u f f , data regA) ; // Align data

pack and f i n d bytes needed
124 i f (bytes neededA == 0) { // I f no bytes needed , data a l r eady

a l i gned
125 out strm << data regA ; //Stream out f u l l data pack
126 }
127 e l s e i f (bytes neededA == 4) { // I f data pack i s a l l n u l l

bytes
128 i f (data regA . l a s t) { //And TLAST i s high
129 out strm << data regA ; //Stream out empty data pack with

TLAST high
130 } // Otherwise , d i s ca rd empty datapack
131 } // I f bytes needed i s 1 , 2 , or 3
132 e l s e i f (data regA . l a s t) { //And TLAST i s high
133 out strm << data regA ; //Stream out data pack whether i t i s

f u l l or not
134 }
135 e l s e { // Bytes needed to f i l l t h i s data pack
136 s t a t e = 1 ; //Change to f i l l s t a t e
137 }
138 }
139 e l s e { // F i l l State : Replace n u l l bytes with t rue data bytes from

the stream . Remain here as long as stream i s d i s cont inuous
140 i n s t rm >> i n b u f f ; //Stream in another data pack
141 bytes neededB = a l i g n b y t e s (i n b u f f , data regB) ; // Align i t

and s t o r e in Reg i s t e r B
142 switch (bytes neededA) {//Check i f data i s needed in RegA
143 case 0 : //Reg A i s a l r eady f u l l o f good data (Should never

happen)
144 out strm << data regA ; //Stream out f u l l data pack
145 data regA . data = data regB . data >> 8 ; //Move RegB data to

RegA
146 data regA . keep = data regB . keep >> 1 ; //Move RegB TKEEP to

RegA
147 bytes neededA = bytes neededB ; //Update number o f bytes

needed by RegA
148 break ;
149 case 1 : //1 byte needed by RegA
150 i f (bytes neededB == 3) { // I f number o f bytes in RegB i s

exac t l y 1
151 data regA . data (31 ,24) = data regB . data (7 , 0) ; //Take 1 byte

from i t
152 data regA . keep = 0b1111 ; //Update RegA TKEEP

s i g n a l
153 data regA . l a s t = data regB . l a s t ; // Pass TLAST s i g n a l
154 out strm << data regA ; //Stream out f u l l data

pack
155 s t a t e = 0 ; // Return to pass−through

s t a t e
156 }
157 e l s e i f (bytes neededB <= 2) { // I f number o f bytes in RegB i s

2 or more (more than needed)

161

158 data regA . data (31 ,24) = data regB . data (7 , 0) ; //Take 1 byte
from i t

159 data regA . keep = 0b1111 ; //Update RegA TKEEP
s i g n a l

160 out strm << data regA ; //Stream out f u l l data
pack

161 data regA . data = data regB . data >> 8 ; // S h i f t RegB data
and s t o r e in RegA

162 data regA . keep = data regB . keep >> 1 ; // S h i f t RegB
TKEEP s i g n a l and s t o r e in RegA

163 bytes neededA = bytes neededB + 1 ; //Update number
o f bytes needed by RegA

164 }
165 e l s e { //RegB has no useab l e bytes .
166 i f (data regB . l a s t) { // I f RegB i s l a s t
167 data regA . l a s t = 1 ;
168 out strm << data regA ; // Flush out datapack in RegA
169 s t a t e = 0 ; // Return to pass−through s t a t e
170 } // Otherwise , read another data pack in to RegB next

i t e r a t i o n
171 }
172 break ;
173 case 2 : //2 bytes needed by RegA
174 i f (bytes neededB == 2) { // I f number o f bytes in RegB i s

exac t l y 2
175 data regA . data (31 ,16) = data regB . data (15 ,0) ; //Take 2

bytes
176 data regA . keep = 0b1111 ;
177 data regA . l a s t = data regB . l a s t ;
178 out strm << data regA ;
179 s t a t e = 0 ; // Return to pass−through s t a t e
180 }
181 e l s e i f (bytes neededB == 3) { // I f only 1 byte in RegB (l e s s

than needed)
182 data regA . data (23 ,16) = data regB . data (7 , 0) ; //Take 1 byte
183 data regA . keep = 0b0111 ; //Update TKEEP (in case TLAST i s

1)
184 i f (data regB . l a s t) { // I f TLAST i s high
185 data regA . l a s t = 1 ;
186 out strm << data regA ; // Write out regA
187 s t a t e = 0 ; // Return to pass−through s t a t e
188 }
189 e l s e { // Otherwise
190 bytes neededA = 1 ; //Update number o f bytes needed by

RegA
191 }
192 }
193 e l s e i f (bytes neededB <= 1) { // I f number o f bytes in RegB i s

3 or more (more than needed)
194 data regA . data (31 ,16) = data regB . data (15 ,0) ; //Take 2

bytes
195 data regA . keep = 0b1111 ; //Update RegA TKEEP

s i g n a l

162

196 out strm << data regA ; //Stream out f u l l data
pack

197 data regA . data = data regB . data >> 16 ; // S h i f t RegB
data and s t o r e in RegA

198 data regA . keep = data regB . keep >> 2 ; // S h i f t RegB
TKEEP s i g n a l and s t o r e in RegA

199 bytes neededA = bytes neededB + 2 ; //Update number
o f bytes needed by RegA

200 }
201 e l s e { //RegB has no useab l e bytes
202 i f (data regB . l a s t) { // I f RegB i s l a s t
203 data regA . l a s t = 1 ;
204 out strm << data regA ; // Flush out datapack in RegA
205 s t a t e = 0 ; // Return to pass−through s t a t e
206 } // Otherwise , read another data pack in to RegB next

i t e r a t i o n
207 }
208 break ;
209 case 3 : //3 bytes needed by RegA
210 i f (bytes neededB == 1) { // I f number o f bytes in RegB i s

exac t l y 3
211 data regA . data (31 ,8) = data regB . data (23 ,0) ; //Take 3

bytes
212 data regA . keep = 0b1111 ;
213 data regA . l a s t = data regB . l a s t ;
214 out strm << data regA ;
215 s t a t e = 0 ; // Return to pass−through s t a t e
216 }
217 e l s e i f (bytes neededB == 2) { // I f only 2 bytes in RegB (l e s s

than needed)
218 data regA . data (23 ,8) = data regB . data (15 ,0) ; //Take 2

bytes
219 data regA . keep = 0b0111 ; //Update TKEEP (in case TLAST i s

1)
220 i f (data regB . l a s t) {
221 data regA . l a s t = 1 ;
222 out strm << data regA ; // Write out regA
223 s t a t e = 0 ; // Return to pass−through s t a t e
224 }
225 e l s e {
226 bytes neededA = 1 ;
227 }
228 }
229 e l s e i f (bytes neededB == 3) { // I f only 1 byte in RegB (l e s s

than needed)
230 data regA . data (15 ,8) = data regB . data (7 , 0) ; //Take 1 byte
231 data regA . keep = 0b0011 ; //Update TKEEP (in case TLAST i s

1)
232 i f (data regB . l a s t) {
233 data regA . l a s t = 1 ;
234 out strm << data regA ; // Write out regA
235 s t a t e = 0 ; // Return to pass−through s t a t e
236 }
237 e l s e {

163

238 bytes neededA = 2 ;
239 }
240 }
241 e l s e i f (bytes neededB == 0) { // I f number o f bytes in RegB i s

4 (more than needed)
242 data regA . data (31 ,8) = data regB . data (23 ,0) ; //Take 3

bytes
243 data regA . keep = 0b1111 ; //Update RegA TKEEP

s i g n a l
244 out strm << data regA ; //Stream out f u l l data

pack
245 data regA . data = data regB . data >> 24 ; // S h i f t RegB

data and s t o r e in RegA
246 data regA . keep = data regB . keep >> 3 ; // S h i f t RegB

TKEEP s i g n a l and s t o r e in RegA
247 bytes neededA = bytes neededB + 3 ; //Update number

o f bytes needed by RegA
248 }
249 e l s e { //RegB has no useab l e bytes
250 i f (data regB . l a s t) { // I f RegB i s l a s t
251 data regA . l a s t = 1 ;
252 out strm << data regA ; // Flush out datapack in RegA
253 s t a t e = 0 ; // Return to pass−through s t a t e
254 } // Otherwise , read another data pack in to RegB next

i t e r a t i o n
255 }
256 break ;
257 case 4 : //RegA i s empty (Should never happen)
258 data regA . data = data regB . data >> 8 ; //Move RegB data to

RegA
259 data regA . keep = data regB . keep >> 1 ; //Move RegB TKEEP to

RegA
260 bytes neededA = bytes neededB ; //Update number o f bytes

needed by RegA
261 break ;
262 }
263 }
264 }

164

Appendix O

Byte Packer Header File

byte packer.h

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3 #inc lude <ap in t . h>
4 #inc lude <h l s s t r eam . h>
5

6 us ing namespace h l s ;
7

8 template<i n t D>
9 s t r u c t ax i s t rm {

10 ap uint<D> data ; //D b i t s o f data
11 ap uint<D/8> keep ; //TKEEP s i g n a l s f o r each byte
12 bool l a s t ; //TLAST AXI−Stream s i g n a l
13 } ;
14 //Stream Format :
15 // | 31 − Byte3 − 24 | 23 − Byte2 − 16 | 15 − Byte1 − 8 | 7 −

Byte0 − 0 |
16 // | TKEEP3 | TKEEP2 | TKEEP1 | TKEEP0 |
17

18 typede f axi strm <32> i o s t rm ;

165

	Introduction
	Motivation
	Outline

	Background
	The Deflate Lossless Compression Algorithm
	Algorithm Details
	Dynamic Table Construction
	Compressed Format Details

	The Calgary Corpus Benchmark
	Literature Review
	Works Related to Compression
	Works Related to Decompression

	Summary

	Compressor Design
	Initial Design
	Final Design
	LZ77 Encoder
	Hash Function
	Huffman Encoder

	Testing and Results
	Discussion
	Summary

	Decompressor Design
	Initial Design
	Final Design
	Huffman Decoder
	Literal Stacker
	LZ77 Decoder
	Byte Packer

	Testing and Results
	Discussion
	Summary

	Conclusion
	Summary
	Evaluation of Vivado HLS
	Future Work

	References
	Appendix LZ77 Encoder Source File
	Appendix LZ77 Encoder Header File
	Appendix Huffman Encoder Source File
	Appendix Huffman Encoder Header File
	Appendix Code Tables File
	Appendix Huffman Decoder Source File
	Appendix Huffman Decoder Header File
	Appendix Symbol Tables File
	Appendix Static Decoding Tables File
	Appendix Literal Stacker Source File
	Appendix Literal Stacker Header File
	Appendix LZ77 Decoder Source File
	Appendix LZ77 Decoder Header File
	Appendix Byte Packer Source File
	Appendix Byte Packer Header File

