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Abstract 

Drilling is the primary source of geological information in the form of rock samples for 

geological logging and chemical assays. There are data from multiple drilling types in an 

open-pit mining operation, with unique technical features, costs, volume support, and 

sampling error and bias. The most common drilling types are diamond drilling and blast-

holes. Drilling data is classified into primary and secondary according to the confidence 

and quality of the information. Primary data corresponds to the highest quality and 

confidence, and usually, diamond drilling is considered primary data. Secondary data 

presents lower confidence and quality, and usually, the blast-holes are considered in this 

classification. Access to real data is always quite limited. Besides, many times researching 

requires data with specific features. Data simulation can provide a solution to these 

restrictions.  

This research has developed a procedure for simulating drilling data, with similar statistics 

and features to the real one and adjustable to the requirements of the user. The procedure 

simulates the distribution inside each drill hole, replicates drilling supports and sampling 

protocols to get data from multiple drilling types, specifically diamond drilling and blast 

holes. 

Simulated drilling data is used to estimate different resources models used in the ore 

control process, focusing on the medium-term model. The effects of dataset bias in the 

profits and ore/waste classification are also assessed for different resources models. 

Besides the ordinary kriging estimation, a cokriging outline is implemented to take 

advantage of the multiple simulated data types. 

The simulation method provides highly realistic data of multiple drilling types. They have 

been tested several times to check the correct reproduction of input parameters and 

distribution features.  The simulated data have been used in resource estimation and 
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assessing the performance of the different models used in the ore control process. The 

medium-term model estimated using cokriging and simulated drilling data provides better 

results and profits than models estimated using a single dataset type. The bias impacts 

negatively in the profits as expected, but under some conditions, it can diminish the loss 

in profits by misclassification. 
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1. Introduction 

Drill holes are the main source of information in a mining operation; their 

rock samples are used for many purposes including geological logging, lab assays and 

metallurgical tests. The focus here is on the application of drill hole data to resource 

estimation. In an open-pit mining operation, there are drill hole data from different 

types, each one with different features and qualities. Diamond drilling and blast-

holes are common. The main difference between each drilling are the drilling support 

and quality of the information provided. The data may have different error and bias. 

Simply combining the data from different drilling types in a single database for 

estimation would provide poor results. The main drilling data types available in an 

open-pit mining operation are diamond drilling (DD) and blast-holes (BH). DD is 

used for exploration and long-term planning models, while BH is used exclusively in 

short-term models (Ore control).  

As access to a real DD and BH database is quite limited, data simulation is 

considered in this research. A reference true distribution is simulated, and reasonable 

error and bias can be added to simulate primary or secondary data. For the objectives 

of our research, it is necessary to develop a simulation method of drilling data that 

replicates realistic features of DD and BH drilling and sampling. 

This research focuses on assessing the performance of the different models 

used in the ore control process, applying different types of data and estimation 

techniques. The short-term model, also known as the ore control model, has great 

importance as it is used to define the production polygons in the ore control. The best 

estimation of the short-term model is essential for the best economic performance. 

For this purpose, it is necessary to understand how to manage the bias in the BH data. 

In addition, the medium-term model is used for planning future mining. This model 

represents a middle step between the short-term and long-term models. The 

medium-term model must provide a local estimation with higher resolution and 

accuracy and consider both DD and BH data. A good solution is to estimate this 

model using cokriging, with shorter block size. Cokriging provides improved results 

compared to estimation using a single database and filters the error and mitigating 

the effects of conditional bias (Minnitt & Deutsch, 2014). 
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1.1. Problem setting and scope of study 

BH data are used almost exclusively for ore control, while the limited but 

high-quality DD data are useful for long-term planning. Each data type has different 

advantages and handicaps: DD, sparsely drilled, produces models with low resolution 

and detail, which is a potential for dilution, besides smooth mineral grades, but 

provides the best estimation results, unbiased and globally accurate; BH, densely 

drilled, provides a local high-resolution model, quite useful for ore control, but as BH 

data have higher bias and errors than DD data, there is a potential for incorrect 

estimation and imprecise profit estimation. 

Practitioners must explore ways to take advantage of both databases, dealing 

with the bias and error in the secondary data. Medium-term models estimated using 

cokriging is an excellent way to use both databases, besides its application has a 

positive impact on planning. Dataset bias affects the model estimation, which affects, 

directly and indirectly, the profits. It is necessary to understand how exactly bias and 

error influence profits and which are the best solutions to deal with them.  The aims 

of this research are:     

1. The development of a new method to simulate drilling data of multiple types. 

This method considers the individual simulation of each drill hole, using its 

specific volume support, and a highly detailed distribution at point-scale. By 

replicating the drilling support and sampling protocols for specific drilling 

types, it is possible to get simulated data with differences based on real 

drilling features. 

2. The evaluation of different resources models, using different datasets, and 

implementing cokriging techniques. The focus will be on the medium-term 

model, estimated using cokriging, and on the performance of the different 

models to predict ore zones for planning and mining production.  

3. The assessment of the impact of the bias and error in the profits and ore 

prediction of resource models. By common sense, the bias in the database is 

prejudicial, because leads to incorrect estimation. But a limited and positive 

bias could impact in an unexpected way the profits. It is necessary to analyze 

carefully how the profit is affected by variable bias and which is the most 

correct approach to deal with biased data. 
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1.2. Drilling data types 

Drilling methods differ in many parameters, but the most important are the 

support, rock sample type, and the sampling protocol. These factors produce 

differences in grades, statistics, error, and bias between the drilling data types. In an 

open-pit mining operation, the most common drilling types are diamond drilling and 

blast holes. Diamond drilling is used in exploration and infill drilling stages, while 

the blast holes are used only in drill and blast operations and for short-term models. 

DIAMOND DRILLING (DD) provides a continuous rock cylinder (Rock core) 

that brings detailed information of the underlying geology, besides contamination 

during drilling is practically null. The sample support is defined by the drilling 

diameter, which is selected according to the drilling objective: NQ and HQ are 

common diameters in exploration and infill stages and PQ is used for metallurgical 

tests and hydrology. The rock core provides accurate geologic information and 

mineral grades, besides each sample can be linked to a specific point in the space. 

These features make this drilling type has a very low potential for errors and bias, 

besides ensuring accurate data. The main con with this drilling type is its expensive 

costs, which limit the number of drill holes and samples. DD is usually drilled using 

a large data spacing that can vary from tens to hundreds of meters. 

BLAST-HOLES (BH) are used in mining production for blasting the rock mass, 

gathering geological data, and obtaining samples for chemical assays. The drilling is 

done by a rotary tri-cone, producing rock cuttings, which are accumulated around the 

drill hole collar, from which is taken the sample. The contamination is permanent 

and from different sources: falling walls, exposition to weather elements, loss of fine 

material by water or wind, etc. The drilling support is not the same for all BH, as there 

is an over-drilling to improve the blasting, which can vary according to the rock 

hardness. The BH diameter can vary according to the provider but generally is in a 

range of 100-250 mm. Another problem is that the cuttings cone is not necessarily 

representative of the subjacent rock, as this one can be deposited in an asymmetric 

way, or there could be a low rock sample recovery. The sampling protocol is another 

source of error, the sampling can be done using a mechanical sampler or even a 

shovel, which adds extra heterogeneity to the sample. The sample support is variable, 

and it is based on the sample weight, with a minimum of 6 kg per BH. These factors 

make that the BH data have a high potential for error and bias, and influence the 

quality and reliability of this data type. The error and bias are variable and can be 
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controlled with a strict QAQC protocol, but never eliminated. Unlike DD, the BH 

drilling is cheaper and uses a short data spacing, usually a few meters. The BH 

databases are large and can include thousands of samples in the same area where the 

DD has only a few dozens of samples.  

Table 1.1: Drilling support and sampling protocols 

Drilling type Diameter (mm) Support (m3) Sampling  

DD - NQ 48 0.90 ½ core 

DD - HQ 64 1.21 ½ core 

DD - PQ 84 1.58 ¼ core 

BH 200 3.77 6 kg per hole 

 

Drilling data is classified into primary and secondary based on the quality and 

confidence of the information they provide. Primary data correspond to the data type 

with the highest quality and reliability. DD data provides a solid rock sample and has 

a detailed sampling protocol, ensuring high-quality information, so usually is 

considered as primary data. BH data have less quality and reliability due to the 

drilling method and to the lax quality controls in the sampling process, which make 

them be considered secondary data. Table 1.1 summarizes the drilling supports and 

sampling protocols for each drilling type. 

1.3. Bias and error 

The error is the difference between an estimated value and the true one. As 

the error can be positive or negative, the mean square error (MSE) is the most 

common metric for this parameter. Bias is the systematic difference between two or 

more datasets, in a simple way can be calculated as the difference between each 

dataset means.  

Bias and errors change for each drilling data type. DD has the lowest potential 

for errors by sampling, so is considered as unbiased and the closest values to the 

unknown true distribution. On the other hand, BH is considered biased, although its 

degree is variable and depends on the material, mineral grades and the improvement 

of the sampling protocol. Working with real data makes it impossible to measure 

error and bias since there is no true data to compare. As DD data are unbiased, and 

with very low error, they are used as a reference to measure the bias and error of other 

drilling data types. In the case of using simulated data, the true distribution is known 

and is possible to measure the error and bias of each drilling data type. In mining 
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operations, BH data bias must be measured and controlled. This is not always easy, 

because depends on many factors, like following a strict QAQC protocol, improving 

sampling methods, selecting an optimal sample weight, etc. In the end, BH data 

always have a residual bias, and the user must deal with it. The BH bias can have 

different impacts on the short-term model estimation, a positive bias can originate 

an over-estimation, and a negative one the contrary effect. Both cases affect the 

estimated profits of the short-term model. 

1.4. Resources models in open pit mining operations 

The different stages in a mining operation require specific resources models. 

For long-term planning, usually from 1 to 3 years, it is required a model that provides 

an accurate global estimation, while in daily mining operations is necessary a local 

model with high resolution. Each model requires different databases, estimation 

parameters, and even estimation methods.  

The Long-Term Model (LTM) is built with the perspective to bring acceptable 

tonnage and grades estimation for the whole life of mine (LOM). It is estimated using 

DD data and continuously updated with new information from the infill drilling 

campaigns as the open pit deepens. The primary data used ensures an accurate and 

unbiased estimation. The cons of the LTM are related to the block size, usually 

selected according to the selective mining unit (SMU), which can be in the range of 

tens meters. This results in a low-resolution model, which reflects inaccurately the 

real mineral distribution, implicating an increase in the dilution and ore loss. Despite 

this, the LTM is a very useful tool, which brings accurate global predictions for large 

work scales. 

The Medium-Term Model (MTM) has as main objective to provide an 

accurate local estimation with better resolution than the LTM. As the name suggests, 

it is used in planning for intermediates periods between the long and short-term 

planning, usually less than a year. The MTM helps to predict the ore zones in the next 

stages of mine production, with better accuracy than the LTM. MTM uses drilling 

data available in mining operations, like DD and BH. Some estimation outlines 

consider the BH data from upper benches and the DD data integrated into the same 

dataset. This is not the most recommendable, because both data types have different 

levels of bias and error, besides the sampling support, so they cannot be integrated 

into a single dataset without considering a previous treatment to the data. The MTM 

uses an intermediate block size between the SMU and the ore control model, 



1.   Introduction 

6 

 

[OFFICIAL] 

regularly less than a couple of tens of meters. Cokriging is the most appropriate 

method for estimating using both datasets. 

The Short-Term Model (MTM), also known as the ore control model, is used 

in daily mining operations. This model is estimated using only BH data, and its main 

objective is to provide a high-resolution model for an optimal ore block classification 

and polygons design. The STM uses a very short estimation grid, just a few meters, 

being the most recommended a quarter distance of the data spacing. Although BH 

data are a potential for error and bias, a large number of samples, the dense drilling 

grid, and the short estimation grid produce a model quite detailed and accurate, very 

helpful for the objectives of the ore control process. The STM is used on 

reconciliation, comparing their results versus exploration model, plant reports, 

dispatch reports, etc.  

As each model is built with different objectives, besides different databases 

and estimation parameters, we cannot expect the same estimation performance for 

all models. the best way to compare all models is the comparison versus the reference 

distribution, checking specific metrics (Bias, MSE, ore/waste classification and 

profits). 

1.5. Multi-type drilling data simulation procedure 

The mineral deposit can be defined as a set of millions of microscopic particles 

of mineral and gangue, grouped by a set of common features that control its 

distribution and magnitude. It is evident that the mineralization just represents a 

minimum fraction of the whole rock mass, e.g., in a copper porphyry, Cu minerals 

represent only 2 to 5%. Then, a drill hole sample is essentially a mix of gangue and 

mineral grains. Depending on the drilling support and rock sample type, this mix can 

change its composition and with this, its mineral content.  

The drilling data simulation procedure developed for this research tries to 

replicate the features mentioned above, first simulating a highly detailed distribution, 

where each node corresponding to a single and pure mineral or gangue grain. Then, 

replicating the drilling supports, we can obtain samples with different volume 

support, and mainly with different compositions for each drilling type. The final stage 

is the replication of the sampling protocol and compositing. The simulation 

procedure has the following stages: 

1. True distribution simulation, this is an unconditional Gaussian simulation, 

which covers the entire work area. The most important parameter is the input 
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variogram, which must include several short-range structures that ensure an 

acceptable grade of short-range variability. Each node of this distribution is 

assigned to a pure mineral species or gangue. As each node has the mineral 

content of its species, it is necessary to fix up the content of each mineral 

species to have under control the average grade of the distribution. 

2. Drill hole simulation, at this stage, we proceed to simulate each drill hole 

individually, in the volume occupied by the respective drilling type. This is a 

Gaussian simulation conditioned to the true distribution, using just the nodes 

around each drill hole location in a radio of 5 meters. This simulation uses a 

very short grid, in millimetric scale, ensuring the necessary detail to 

represents the mineral distribution. The nodes must be assigned to the same 

mineral distribution of the previous stage. 

3. Composition and Sampling protocol, here the simulated drill holes are fitted 

to the support of the respective drilling type, rejecting the nodes outside of 

the drilling diameter. Besides, the drill holes are sampled according to the 

drilling type: DD core is split by half, taking only a half for the respective 

sampling; BH are sampled taking 4 to 4.5 kg of each drill hole. The final step 

is the composition to a single length and the addition of a bias and error 

according to the research requirements. 

The resulting datasets of different drilling types are validated, to ensure the 

correct reproduction of the input parameters, checking the reproduction of the input 

variogram. Then the simulated drilling data can be used for the different tests of this 

research. 

1.6. Cokriging and its application on resources estimation 

Cokriging is an estimation method that minimizes the variance of estimation 

by exploiting the cross-correlation between several datasets (Isaaks & Srivastavam, 

1989). The cokriging lets the estimation using more than one dataset with different 

qualities, collocated or not (Minnit & Deutsch, 2014). Cokriging presents some 

advantages over Ordinary or simple kriging, like producing better estimations and 

unbiased results. Their cons are that requires a complex estimation setup that limits 

its application, and a certain grade of correlation between the datasets to obtain 

optimal results. Minnitt & Deutsch (2014) suggest the best performance of cokriging 

when both data types are unequally sampled and have different grades of quality and 

reliability. An open-pit mining operation is an adequate scenario to run a cokriging 
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estimation, as there are abundant drilling data from different types, most of them 

non-collocated. For this research, we have implemented cokriging in the estimation 

of the medium-term models, with the objective to use it for predicting mineralization 

and ore zones in the in-pit operations. As the data in use, DD and BH, are non-

collocated, we must use cokriging with full LMC. The linear model of 

coregionalization or LMC describes the spatial continuity for a set of variables. LMC 

fitting requires the direct and cross variograms, but the last cannot be calculated 

using non-collocated data. The solution is calculating it from the cross-covariance 

and flipping the results, obtaining the cross-variograms. 
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2. Theoretical background 

This research is focused on resource estimation using multiple types of data 

and implementing cokriging for estimating ore control models in an open-pit mining 

operation. It is necessary to review estimation for ore control and recall concepts of 

geology, statistics, and mining needed for this research.          

2.1. Resource estimation in mining operations 

The resource estimation process involves many stages, from the data 

acquisition until the validation of the results. Depending on the model in evaluation, 

the process can include the use of different databases or estimation methods. But, in 

general, a normal resource estimation process includes data acquisition, exploratory 

data analysis, spatial variability analysis (variography), estimation, and validation of 

results.  

Ore control process requires the short-term model and long-term models for 

production scheduling. Long and medium-term models differ in the databases used 

and estimation setup.  Even so, most of them use the same geological and statistical 

principles. 

2.1.1. Random variable and random function 

A natural phenomenon, like rock density or mineral grades, can take different 

values depending on which location is measured. This is called a Regionalized 

Variable (ReV) as the values of the variable change according to the spatial location 

and is a merely descriptive definition (Journel & Huijbregts, 1978). Mathematically, 

the ReV would be described as a function that takes values according to their location 

u: 

𝑅𝑒𝑉 = 𝑧(𝒖), ∀𝒖 ∈  𝐷 (2.1) 

Where u represents different locations in the domain D, as the ReV is 

dependent on the location. The ReV takes values with some degree of randomness. 

There could be zones with higher and lower values, e.g., the Cu-sulfides enrichment 

zone in a porphyry deposit. 

The Random Variable (RV) takes a value according to a probability 

distribution (Journel and Huijbregts, 1978). In this way, the ReV measured at 

location u would be the outcome of an RV at that point, which is represented by: 
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𝑅𝑉 = 𝑍(𝒖), ∀𝒖 ∈  𝐷 (2.2) 

There are many locations u in the domain D, and the RV measured at each 

point u provides a different outcome. This set of RVs over a domain D is defined as 

the Random Function (RF): 

{𝑍(𝒖), ∀𝒖 ∈ 𝐷} (2.3) 

There are two aspects, apparently contradictory, in the ReV, the local 

randomness and the regional spatial correlation. The concept of RF addresses both 

aspects. Considering the RV at a location u, this is Z(u), their probability distribution 

function would be defined as: 

𝐹𝑢(𝑧) = 𝑃𝑟𝑜𝑏(𝑍(𝒖) ≤ 𝑧) (2.4) 

This formula can be extended to N different RVs: 

𝐹𝒖1,𝒖2…,𝒖𝑁
(𝑧1, 𝑧2, … , 𝑧𝑁) = 𝑃𝑟𝑜𝑏{𝑍(𝒖1) ≤ 𝑧1, … , 𝑍(𝒖𝑁) ≤ 𝑧𝑁}, ∀𝑢𝑛 ∈ 𝐷 (2.5) 

Where Z(un) represents outcomes of n different RVs at n different locations 

of the domain D. This extended probability distribution represents the spatial law of 

the random function Z(u) (Journel and Huijbregts, 1978).  

2.1.2. Assumption of stationarity 

The distribution function of the RF cannot be inferred using a limited set of 

samples, but in linear geostatistics, the first two moments of the distribution function 

are enough to solve most of the problems encountered (Journel and Huijbregts, 

1978). The first-order moment is the expected value of the random function 𝒁(𝒖), 

also known as the mean and denoted as m: 

𝛦{𝑍(𝒖)} = 𝑚(𝒖), ∀𝒖 ∈ 𝐷  (2.6) 

The second-order moments include the variance, covariance and variogram. 

The variance, denoted as σ2, is a measure of the dispersion between the samples with 

respect to the mean. Also, it is equivalent to the square of the standard deviation, SD: 

𝜎𝑍
2 = 𝛦{[𝑍(𝒖) − 𝑚(𝒖)]2}, ∀𝒖 ∈ 𝐷 (2.7) 

The Covariance, denoted as C, is the variability between 02 different RVs, over 

the same domain D: 

𝐶(𝑍, 𝑌) = 𝛦{[𝑍(𝒖) − 𝑚𝑍(𝒖)][𝑌(𝒖) − 𝑚𝑦(𝒖)]}, ∀𝒖 ∈ 𝐷 (2.8) 

The Variogram, denoted by γ, is a measure of the variability between two 

points separated by a vector distance h, over the same domain D:  
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2𝛾(𝒉) = 𝐸{[𝑍(𝒖) − 𝑍(𝒖 + 𝒉)]2}, ∀𝒖 ∈ 𝐷 (2.9) 

Strict stationarity implies that the distribution function of the RF stays the 

same when a set of n samples are translated inside the domain D, according to any 

vector h:    

𝐹𝒖1,𝒖2,…,𝒖𝑛
(𝑧1, 𝑧2, … , 𝑧𝑛) = 𝐹𝒖1+𝒉,𝒖2+𝒉,…,𝒖𝑛+𝒉(𝑧1, 𝑧2, … , 𝑧𝑛), ∀𝒖 ∈ 𝐷  (2.10) 

Where n is a positive integer number, and h a vector of translation inside the 

domain D. This is called translation invariance, which means the function produces 

the same response regardless of the input changes.  

Stationarity of second order, is when the mean exists and is constant over 

domain D, not depending on the location u.  

𝛦{𝑍(𝒖)} = 𝑚, ∀ 𝒖 ∈ 𝐷  (2.11) 

Also, the covariance for any pair of random variables Z(u) and Z(u+h) exists 

and only depends on the vector of separation h: 

𝐶(𝒉) = 𝛦{[𝑍(𝒖) − 𝑚][𝑍(𝒖 + 𝒉) − 𝑚)]}, ∀ 𝒖 ∈ 𝐷 (2.12) 

The existence and stationarity of the covariance imply the same for the 

variance and variogram. The next equations are developed from this premise: 

𝜎𝑍
2 = 𝛦{[𝑍(𝒖) − 𝑚(𝒖)]2} = 𝐶(0), ∀ 𝒖 ∈ 𝐷 (2.13) 

𝛾(𝒉) =
1

2
𝐸{[𝑍(𝒖) − 𝑍(𝒖 + 𝒉)]2} = 𝐶(0) − 𝐶(𝒉), ∀ 𝒖 ∈ 𝐷 (2.14) 

In most cases, the stationarity of second order is enough for resource 

estimation, as it permits the variogram calculation and kriging. The stationarity of a 

domain is one of the first decisions in the resource estimation process. As it is made 

over a physical domain, it can be influenced by the number of samples and geological 

considerations. Analysis and calculations like EDA, variograms, kriging, etc. are 

made under the assumption that the domains are stationary. If during these 

processes or others, it is detected some deviation or non-homogeneity, it is possible 

to redefine the domains. 

2.1.3. Data acquisition and error 

Drilling data is the main source of information for the subsurface mineral 

deposit. They provide geological information like rock type, alteration, 

mineralization, and mineral grades. Although there are multiple types of drilling 
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data, this research considers diamond drilling (DD) and blast holes (BH) data. Both 

data types have different drilling conditions and features that condition their levels 

of error and quality. For this research DD is considered primary data and BH 

secondary, a classification to indicate which data presents a higher level of quality 

and confidence.  

DD and BH are drilled for different purposes. They have different spacings 

and drilling depths, determining the number of samples. DD is used in exploration 

and infill stages, on a wide-spaced grid the entire depth of the deposit. This type of 

data is useful for the estimation of the whole deposit. BH is used in rock blasting and 

provides information for the ore control process. BH is drilled for specific zones using 

a dense drilling grid of just a few meters. The shallow BH data are for the bench in 

production. BH data is valid only for local estimation of ore control models.   

Error refers to the difference between the true and the sample. A constant and 

accumulative sample error can lead to the bias of the whole dataset. In the case of BH 

and DD, the error can have multiple sources, mainly during the drilling process and 

the preparation of the samples. There could be contamination, material losses, 

oxidation/reduction, leaching, mislabeling, etc. The BHs have more potential for 

error due to drilling and sampling conditions, besides the large number of samples 

processed, from tens to hundreds, just in a day. DD has a stricter drilling and 

sampling protocol, besides chemical analysis is usually done by external labs, which 

minimizes error. Due to these conditions, DD is considered unbiased, while BH data 

is biased concerning the DD data. The BH bias degree is quite variable, e.g. in Cu 

porphyry deposits, it has observed bias from +5% until +25%. These values are not 

necessarily steady, can vary according to the material type, mineral grades and 

sampling protocol. Thus, DD is considered as primary data and BH as secondary data. 

Table 2.1 summarizes the differences between both drilling data types.  

Table 2.1: Drilling type features 

 DD BH 

Grid spacing Tens of meters >10 m 

Depth >100 m 1 bench 

Assays External labs Local lab 

Data error <5% 5-50% 

Bias ~1.0% ~1.05%-1.25% 

Volume support (vol/m) 0.003-0.006 m3 0.126 m3 
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As access to a real multi-type database is quite limited, data simulation is of 

common use. For this research, a simulation methodology is developed that includes 

the replication of drilling features and sampling protocols, resulting in a closer 

approximation to real drilling data. 

2.1.4. Data analysis and treatment 

Data are submitted to an exploratory data analysis (EDA) as a key step of any 

resource estimation process. In this stage, the data is grouped into estimation 

domains based on geological and statistical features. The most usual domains are 

based on rock type, alteration, ore type, or even a combination of these features. Each 

domain must be statistically analyzed and described.  

The data samples should have the same sample support. This is accomplished 

through compositing to an equal length. Concerns arise when there are drilling data 

with different diameters. Data treatment includes declustering, managing outliers, 

and joining or separating domains. Statistical analysis may reveal soft and hard 

contacts, domains with more than one population, or a non-stationarity behaviour. 

2.1.5. Spatial variability analysis 

Variograms describe the spatial variability of a regionalized variable and are 

required for estimation methods based on kriging techniques. The experimental 

variogram is calculated over the estimation domain using drilling data. The semi-

variogram is defined as: 

𝛾(𝒉) =
1

2𝑁
∑[𝑍(𝒖𝑖) − 𝑍(𝒖𝑖 + ℎ)]2

𝑁

𝑖=1

, ∀𝒖 ∈ 𝐷 (2.15) 

Where N is the number of pairs, ui are the different locations inside the 

domain D, and h is the lag vector and distance between the pairs.  

As samples are not separated by a fixed distance, and the drilling grid is far 

from being regular, it is necessary to apply tolerances for the lag distance and the 

searching angles. The unit lag distance, h, is selected according to the average 

distance between samples and can change depending on the direction of the 

variogram, e.g., in the vertical variogram, the distance between samples is just a few 

meters. In contrast, the horizontal distance between drill holes can reach tens or 

hundreds of meters. The lag tolerance is usually half of the lag distance. Multiple lags 

of increasing distance in the principal directions are considered. 



2.   Theoretical background 

14 

 

[OFFICIAL] 

The variogram must be oriented to the direction of major continuity. This 

direction can be linked to a geological structure, like a fault or a vein. This direction 

is defined by two angles, the azimuth and dip. During the variogram calculation, the 

azimuth and dip are usually fixed with a span of 45o, and tolerances of 22.5o (Deutsch, 

J., 2015).  It is advised to calculate variograms in several directions and choose the 

principal direction. The use of omnidirectional variograms brings a solution when 

the anisotropy directions are not clear. This consists of fixing the angles tolerances to 

include all the sample pairs in all directions for the variogram calculation. This results 

in an “averaged” experimental variogram for all directions, able for estimation 

process, although it would not reflect the exact spatial variability of the domain. 

The experimental variogram is used to model the spatial variability related to 

the domain. The variogram model must be defined in 3D, although there are domains 

that can be defined in 2D, like tabular deposits. The principal major, semi, and minor 

directions must be orthogonal. If the model has different ranges for each direction, 

the model is anisotropic. The model is isotropic when all directions have the same 

range. Variogram models include the combination of several structures, perhaps of 

different types. A usual variogram model combines at least two structures or models.  

Figure 2.1 shows an experimental variogram for a DD dataset and the corresponding 

model. The model includes the nugget effect model and two spherical models. The 

primary use of the variogram model is to be used for estimation using kriging 

techniques. 

 

 Figure 2.1: a) Experimental variogram and, b) Variogram model 

2.1.6. Block models 

Estimation results are stored in a 3-dimensional model, which represents the 

volume of the deposit in evaluation, and is generically called a block model. This is a 
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geometric arrangement composed of orthogonal blocks representing a specific 

volume and location in space. The block model must cover the whole deposit and 

include all the estimation domains. The dimensions of the individual blocks are 

defined according to the purposes of the model, and they can take from a few to tens 

of meters in each dimension. Additionally, there could be sub-blocking; this is a 

minor block length that usually takes place on the borders between domains to 

improve contact definition. The block model can be rotated to contain the mineral 

deposit more efficiently. 

RESOURCES MODEL FOR PLANNING AND PRODUCTION 

In mining operations, the resource models are designed to fulfill the needs of 

planning and production, in different time periods. Usually, they are divided into 

long-term, intermediate, and short-term models.  

The long-term model (LTM) is used for long periods of scheduling and 

planning, usually from 12 to 36/48 months. These models are often built using only 

DD data and a large block size covering the entire mineral deposit.  DD data is widely 

spaced, particularly in the first stages of the mining operation, although this spacing 

is reduced with successive infill drilling stages. The selective mining unit (SMU) block 

size is the minimum volume for mineral classification and usually takes several tens 

of meters.  The LTM is updated at least once a year with new DD data collected during 

the year. This configuration of data and parameters results in a model with grades 

and tonnages that are globally accurate and suitable for long-term planning but not 

good enough for local assessment.  

The short-term model (STM), also known as the ore control model, is used for 

daily planning and mining operations. It is often estimated using exclusively BH data 

drilled in the area scheduled for production and on one bench. The block size is small 

to obtain a high-resolution model, so it is normal to use lengths of a few meters. The 

smaller block size produces higher resolution and grades, thereby a better profit. 

Also, a high-resolution model permits a better definition of dig limits. The estimation 

is done locally, in the volume defined for production. The results are collected in the 

STM, which, although occupying the entire mineral deposit, has only estimation 

results in the zones previously drilled. 

Long and short-term models are designed to accomplish different tasks and 

are not locally comparable. The main issue is the LTM, which is not locally accurate 

for intermediate and short-term planning. Therefore, it is necessary to use medium 
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term models (MTM) that provide accurate grades and tonnages for both local and 

global assessment, besides an acceptable model resolution and updated information. 

MTM is built using both data types available in the mining operation, DD and BH, 

and an intermediate size of blocks. There are estimation schemes that use both data 

without any treatment, which is not recommended considering the differences 

between DD and BH data types. A cokriging outline, with DD as primary and BH as 

secondary data, is recommended option. 

ESTIMATION GRID SIZE FOR RESOURCE MODELS 

The grid size of estimation refers to the distance between each point to 

estimate. It is commonly confused with the block size, but we must remark that the 

block size refers to a volume physically occupied by a material, and although both 

have the same magnitude they must not be considered as synonyms. For this 

research, we will use the term estimation grid size instead of block size. The grid size 

varies according to the model, LTM uses the SMU dimensions or similar ones but 

always above tens of meters, while STM uses grid sizes based on the spacing between 

BHs, usually a few meters. In the case of MTM, the most advisable is to use a mid-

grid size, but closer to the STM grid size, because the BH is the most abundant data 

type on this model. The grid size spacing (GSS) is the ratio between the estimation 

grid size and data spacing (Vasylchuk, 2016). GSS is important for STM, where it is 

necessary to have high resolution. Previous research suggests that a GSS of 0.25 

minimizes estimation errors within an acceptable processing time, and above this 

threshold, the errors are more unpredictable. Figure 2.2 shows a typical BH drilling 

grid, and the suggested grid size is a quarter of the distance between samples.   

 

Figure 2.2: Blasthole grid and block grid at ¼ of data spacing for STM. 
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2.1.7. Ore/waste classification and profits 

One of the main steps in ore control is the ore/waste classification. This is 

made according to the block mineral grades and cut-offs. The blocks are classified as 

ore or waste, and according to it, their destination can be the processing plant or the 

waste dump.  The classification is critical, as this will condition the block profit. There 

are several cut-off grades, but the marginal and the break-even cut-off are used for 

this research. The marginal cut-off is widely used in the ore control process and 

classifies the blocks between ore or waste. This cut-off is defined using only the 

metallurgical costs, without considering the mining costs, which are considered sunk 

costs. This is the typical case of open-pit mining operations, where all blocks are 

mined, no matter the destination. It is important to remark that this classification 

does not mean that the ore blocks are necessarily profitable. Other factors needed to 

define the cut-off are the metallurgical recovery and the mineral price. 

𝐶𝑢𝑡𝑜𝑓𝑓𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙  =
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 ∙ 𝑀𝑖𝑛𝑒𝑟𝑎𝑙 𝑃𝑟𝑖𝑐𝑒
 (2.16) 

The break-even cut-off, also known as economic cut-off, considers mining and 

processing costs. This ensures that all blocks classified as ore have a revenue equal to 

or above all costs, meaning that blocks are profitable. 

𝐶𝑢𝑡𝑜𝑓𝑓𝐵𝑟𝑒𝑎𝑘 𝑒𝑣𝑒𝑛  =
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 + 𝑀𝑖𝑛𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 ∙ 𝑀𝑖𝑛𝑒𝑟𝑎𝑙 𝑃𝑟𝑖𝑐𝑒
 (2.17) 

Roughly, the block profit is the difference between the revenues by selling its 

mineral content, and the costs of mining and processing it. The revenue is calculated 

by multiplying the mineral content by the mineral price.  The mineral content is 

defined by the block tonnage, grades, and metallurgical recovery. As the waste blocks 

are not processed, they do not have any revenue, just costs. The model profit is 

calculated by adding the positive incomes from the ore blocks and the negative 

income from the waste.  

𝑃𝑟𝑜𝑓𝑖𝑡𝑂𝑟𝑒        = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 − (𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 + 𝑀𝑖𝑛𝑖𝑛𝑔 𝐶𝑜𝑠𝑡)  (2.18) 

𝑃𝑟𝑜𝑓𝑖𝑡𝑊𝑎𝑠𝑡𝑒    = −𝑀𝑖𝑛𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 (2.19) 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑏𝑙𝑜𝑐𝑘 = 𝑀𝑖𝑛𝑒𝑟𝑎𝑙 𝑝𝑟𝑖𝑐𝑒 ∙ 𝑇𝑜𝑛𝑛𝑎𝑔𝑒 ∙ 𝑀𝑖𝑛𝑒𝑟𝑎𝑙 𝑔𝑟𝑎𝑑𝑒 ∙ 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (2.20) 

Data simulation opens the opportunity to a real classification of the blocks 

and permits an assessment of the accuracy of an estimation scheme. Ore/waste 
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classification with two classes has four possible scenarios according to the real 

ore/waste classification: 

1. Correct acceptance: when both classifications, estimated and real 

coincide, and correspond to the Ore class. 

2. Correct rejection:  both classifications, estimated and real coincide. In this 

case, both classes are Waste. 

3. False acceptance: when the classes do not coincide, and the estimated class 

is Ore. This is the Dilution scenario and represents a type I error. 

4. False rejection: when both classes do not coincide, and the estimated class 

corresponds to Waste. This is the Ore loss situation and represent a type II 

error. 

 

Figure 2.3: Ore/waste classifications 

The misclassifications, ore loss and dilution, have a different impact on the 

model profit. The ore loss generates a double negative impact, the cost of mining as 

waste and a lost opportunity by not recovering the true mineral content. Depending 

on the block mineral content, the total loss can be significant. On the other hand, a 

dilution block can generate some revenues, but less than the minimum necessary to 
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make it profitable. Block grades below the marginal cut-off generate higher losses. 

These losses cannot surpass the sum of mining and processing costs, which is the 

maximum loss of a dilution block. It is common to assign a lower recovery to this 

class, considering the grades are low and hard to be recovered. Figure 2.4 shows the 

profit function built using the cut-off and mining parameters. It shows the profits and 

losses according to the real ore/waste classification. In the cases of correct 

classification, the profit and loss follow the expected curves (solid lines), but the 

misclassification (dotted lines) only produces losses. The ore loss (blue dots) is the 

most harmful because its magnitude increases with grades, so is theoretically 

unlimited. The dilution (green dots) has less loss, bounded between the mining and 

processing costs. 

Figure 2.4: Profit function 

2.1.8. Estimation techniques 

Estimation is the main step in the resource estimation process. There are 

several methods of estimation, some simple, like polygonal estimation, and others 

more elaborate, like kriging methods. The user must define which method to use 

according to their data and objectives. In ore control, due to the big database, an 

inverse distance or nearest neighbour estimation can provide acceptable results. 
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Kriging is one of the most used estimation methods, as it ensures the lowest 

estimation error. 

NEAREST NEIGHBOR OR POLYGONAL METHOD 

Nearest neighbor is one of the simplest methods, and it is based on polygonal 

estimation.  The grade of a block is the same as the closest sample to the block 

centroid. This results in a grades model without smoothing, reflecting the sampling 

grades. It is applicable to model reconciliation and checking. 

INVERSE DISTANCE 

This is a linear estimation technique that assigns weights to the samples 

involved in the estimation of the block. The weights are the distance from the sample 

to the block centroid, inverse and powered. This technique gives more weight to the 

close samples and less to the farther samples. 

𝑍(𝒖)∗ =

∑
𝑧(𝒖𝑖)

𝑑𝑖
𝑝

𝑛
𝑖=1

∑
1

𝑑𝑖
𝑝

𝑛
𝑖=1

  (2.21) 

Where n is the number of samples, d is the distance to the sample, and p is 

the power to use. The user defines the power, although the most common are 2,3 and 

5. As the power increases, the farther samples took lower weights. Unlike NN, this 

method provides smoothed grades, as it uses several samples to estimate a single 

block. The estimation setup considers minimum and maximum samples, block 

discretization, limit samples by quadrant, and search ellipsoids. This method 

honours the estimation domains but does not consider the spatial variability of the 

domain (variograms) beyond using the anisotropy orientations for the search 

ellipsoid and distance calculation. 

KRIGING 

Kriging is an estimation technique that works similarly to inverse distance, 

assigning estimation weights to the samples involved in the block estimation. The 

difference is that the weights are based on the covariance between the samples and 

the block, for this is necessary the variogram model. These are calculated using the 

variogram and the relation between variogram/covariance. Kriging estimation 

minimizes the error variance and provides smooth grade models. The most used 
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kriging methods are simple and ordinary kriging, although ordinary kriging is more 

stable to variations in stationarity. 

1. Simple kriging (SK) requires the stationary mean, calculated using the 

available samples in the domain D.  

𝑍𝑆𝐾
∗ (𝒖) = ∑ 𝜆𝑖

𝑛

𝑖=1

∙ [𝑍(𝒖𝑖) − 𝑚𝑧] + 𝑚𝑧 , ∀𝑖 = 1,2 … 𝑛 (2.22) 

n is the number of data used to estimate. By minimizing the estimation error, 

the kriging equations system is developed. The kriging weights are functions 

of the covariances between the estimated location and the data, and they are 

not constrained. 

∑ 𝜆𝑗 ∙ 𝐶(𝒖𝑖, 𝒖𝑗) = 𝐶(𝒖, 𝒖𝑖)

𝑛

𝑗=1

, ∀𝑗 = 1,2 … 𝑛 (2.23) 

The SK variance is derived from the system of equations: 

𝜎𝑆𝐾
2 = 𝐶(0) − ∑ 𝜆𝑖

𝑛

𝑖=1

∙ 𝐶(𝑢, 𝒖𝑖), ∀𝑖 = 1,2 … 𝑛 (2.24) 

2. Ordinary kriging (OK) is based on the same principles than SK, but do not 

require the mean. Besides, the OK weights are constrained to sum 1.  

𝑍𝑂𝐾
∗ (𝒖) = ∑ 𝜆𝑖

𝑛

𝑖=1

∙ 𝑍(𝒖𝑖) + [1 − ∑ 𝜆𝑖

𝑛

𝑖=1

] ∙ 𝑚𝑧 , ∀𝑖 = 1,2 … 𝑛 (2.25) 

The OK system equations and variance are defined as: 

∑ 𝜆𝑗 ∙ 𝐶(𝑣𝑖 , 𝑣𝑗) + 𝜇 = 𝐶̅(𝑽, 𝒗𝒊)

𝑛

𝑗=1

, ∀𝑗 = 1,2 … 𝑛 

∑ 𝜆𝑗

𝑛

𝑗=1

= 1 

𝜎𝑂𝐾
2 = 𝐶̅(𝑽, 𝑽) − 𝜇 − ∑ 𝜆𝑖

𝑛

𝑖=1

∙ 𝐶̅(𝑉, 𝑣𝑖), ∀𝑖 = 1,2 … 𝑛 

(2.26) 

The kriging estimation setup for both kriging techniques requires the 

variogram model, min and max data, discretization, and search ellipsoid. This 

is built using the anisotropy directions and ranges, and depending on its size, 
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it could be necessary to make consecutive runs to fill the block model. This is 

more common on LTM estimation, while in STM, often is completed in one-

step estimation.  

2.2. Simulation 

Estimation is a process to produce a single set of values, calculated from a 

dataset for a particular domain. Simulation uses the same dataset and domain, to 

reproduce the distribution of the data, honouring its statistics and spatial variability.  

In this way, simulation produces several sets of values or realizations, each one with 

the same statistical properties. Simulation is used to model distribution uncertainty, 

which is necessary for different tasks like data spacing analysis, metallurgical 

recovery, or profits assessment. In research, simulation is vastly used, to reproduce 

the conditions and possible outcomes of distribution, and to provide synthetic data. 

There are different simulation techniques like turning bands, moving average or 

sequential gaussian. For this research, sequential Gaussian simulation has been 

applied. 

2.2.1. Sequential Gaussian Simulation (SGS) 

The SGS algorithm (Isaaks, 1990) is based on the Gaussian conditional 

distribution at each point to simulate. This conditional distribution is defined by the 

mean and variance of that point, calculated using simple kriging. From this 

distribution, a random percentile is drawn. It is good practice to consider one 

hundred or more realizations. The resulting realizations, which are in gaussian units, 

must be back-transformed into regular units. SGS can be conditioned to a dataset or 

not. In the case of conditioned simulation, the process considers the data, honouring 

its distribution and spatial variability. The SGS algorithm considers the following 

steps: 

1. Apply NS transformation to the data.  

2. Variogram calculation and modeling. 

3. Follow a random path through the grid. 

4. By simple kriging and using the conditioning dataset, estimate the value 

𝑚(𝒖) and kriging variance 𝜎𝑠𝑘(𝒖) for the point in evaluation. They will be the 

mean and variance of the conditional gaussian distribution (CCDF).  

5. Take a random value between 0 and 1 that represents a percentile of the CCDF 

and by back-transform get the simulated value 𝑍𝑠(𝒖).  



2.   Theoretical background 

23 

 

[OFFICIAL] 

6. The simulated value 𝑍𝑠(𝒖) is added to the conditioning dataset.  

7. Repeat steps 4 to 6 until complete the simulation of all points. 

8. Back-transform the estimation results. 

As all realizations have the same probability, one single realization is not 

enough to model the uncertainty. It is recommended to consider at least 25 

realizations. 

2.2.2. Drilling data simulation 

The access to real drilling data is quite limited, besides for a deep analysis we 

require exhaustive data. Simulation is an alternative to real data. Either by 

conditional or unconditional simulation, it is possible to simulate a distribution with 

specific features according to the research. The usual drilling data simulation consists 

of the simulation of a reference true distribution, then it is sampled and can be added 

a reasonable error and bias to simulate primary and secondary data. Simulated data 

can be used as any real data, in the estimation processes, model validation, profit 

evaluation, etc. The use of simulated data lets us know the true mineral distribution, 

so it is possible to measure error and bias directly and confirm the validity of research 

results.  

2.3. Estimation with multiple data sources 

Most of the estimation methods consider using a single drilling data type for 

the estimation. The use of multiple drilling data types in a single dataset is not 

recommended, as each drilling data type has its own set of statistical features, errors, 

and support. Although there are situations where multiple datasets could be 

combined, this is viable only if both datasets inform about the same variable, present 

similar distribution and statistics, high correlation, and after a detailed data analysis. 

Cokriging is a technique that permits the estimation of a point of interest using data 

from different attributes. This requires primary data with the same attribute as the 

variable to estimate and secondary data with different attributes, e.g., Au estimation 

of a block but using Au and Ag samples. Both datasets must be available in the 

neighbourhood of the estimation, and there must be a spatial correlation between 

them. The application of cokriging in resources estimation requires a somewhat 

complicated setup that has restricted its widespread use in the industry. The most 

optimal use would be the estimation of the grade using DD and BH data which inform 

the grades with different error and bias. Cokriging requires modelling the joint spatial 
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correlation between the data involved. This correlation can be modelled through the 

linear model of coregionalization.  

2.3.1. Linear model of coregionalization (LMC) 

The linear model of regionalization (LMR) describes the spatial continuity of 

a variable as the combination of nested structures. The LMC is the natural extension 

of LMR, but for multiple variables. As the LMR, the LMC assumes a regionalized 

variable as the sum of multiple independent factors: 

𝑍𝑘(𝒖) = 𝑚𝑘(𝒖) + ∑ 𝑎𝑘,𝑘′
𝑖 𝑌𝑖(𝒖)

𝑛𝑠𝑡

𝑖=0

    

𝑘 = 1,2, . . 𝐾
𝑖 = 1,2, . . 𝑛𝑠𝑡
𝐸{𝑌𝑖(𝒖)} = 0

𝐸 {(𝑌𝑖(𝒖))
2

} = 1

𝐸{𝑌𝑖(𝒖)𝑌𝑖(𝒖′)} = 0

 (2.28) 

There are K variables, nst defines the number of structures or factors, 𝑎𝑘
𝑖  is 

the contribution for each structure, 𝑌𝑖(𝒖)  the independent factors, and 𝑚𝑘(𝒖) the 

mean of the K variable. The 0th factor represents the nugget effect contribution. The 

mean of each factor is zero and the variance 1, as they are standard variables. The 

covariance between K variables will be 0, as they are independent, for all u ≠ u’.  

The LMC is a linear combination of structures ( Γ𝑖 ) weighted by its 

contributions (𝑏𝑘
𝑖 ) to the total variance: 

𝛶𝑘,𝑘′(𝒉) = ∑ 𝑏𝑘,𝑘′
𝑖 ∙ 𝛤𝑖(𝒉)

𝑛𝑠𝑡

𝑖=0

   

𝑘 = 1,2, . . 𝐾

𝑏𝑘,𝑘′
𝑖 = 𝑎𝑘

𝑖 𝑎𝑘′
𝑖

𝛤𝑖, 𝑖 = 1,2. . 𝑛𝑠𝑡

 (2.29) 

LMC is used to model the spatial variability between 2 or more variables and 

is applicable to the estimation by cokriging. For the case of 2 variables, 𝑍𝑖 and 𝑌𝑖, the 

equation system would be (Deutsch, 2002): 

𝛶𝑍,𝑍(𝒉) = 𝑏𝑍,𝑍
0 + 𝑏𝑍,𝑍

1 ∙ 𝛤1(𝒉) + 𝑏𝑍,𝑍
2 ∙ 𝛤2(𝒉) + ⋯ 

𝛶𝑍,𝑌(𝒉) = 𝑏𝑍,𝑌
0 + 𝑏𝑍,𝑌

1 ∙ 𝛤1(𝒉) + 𝑏𝑍,𝑌
2 ∙ 𝛤2(𝒉) + ⋯ 

𝛶𝑌,𝑌(𝒉) = 𝑏𝑍,𝑍
0 + 𝑏𝑌,𝑌

1 ∙ 𝛤1(𝒉) + 𝑏𝑌,𝑌
2 ∙ 𝛤2(𝒉) + ⋯ 

(2.30) 

The LMC models the direct and cross-variograms using the same structures 

(Γ𝑖), the contributions (𝑏𝑘
𝑖 ) can be variable but their sum must be equal to the total 

variance. To ensure the model be positive definite the next rules must be followed: 
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𝑏𝑍𝑍
𝑖  & 𝑏𝑌𝑌

𝑖 ≥ 0 
𝑏𝑍𝑍

𝑖 ∙ 𝑏𝑌𝑌
𝑖 − 𝑏𝑍𝑌

𝑖 ∙ 𝑏𝑌𝑍
𝑖 ≥ 0 

(2.31) 
 

The contributions of the direct variograms must be positive and larger than 

the cross-variogram contributions. The cross-variogram Υ𝑍,𝑌(𝒉) must be defined to 

fit a valid LMC, but this calculation requires collocated data, which is unusual with 

different data types. In most of the mining scenarios these can be calculated from the 

cross-covariance: 

𝛶𝑍𝑌(𝒉) = 𝐶𝑧𝑦(0) − 𝐶𝑍𝑌(𝒉) (2.32) 

The cross-covariance at h=0, is calculated by extrapolating the cross-

covariance and using simple calculation obtain the cross-variogram.  

2.3.2. Cokriging with full LMC 

Cokriging estimates a variable using data from the same variable and from an 

auxiliary one. There must be a spatial correlation between both variables so that the 

second variable provides useful information for the estimation. The cokriging 

technique must be selected according to the primary and secondary data conditions. 

Minnitt & Deutsch (2014) suggest the best performance of cokriging when both data 

types are unequally sampled and have different grades of quality and reliability. In a 

mining operation, DD and BH provide values from the same variable and have an 

evident spatial correlation between them but differ in the quality assay and the 

number of samples. Both drilling types are in different grids with different spacing 

and orientations. Collocated cokriging requires collocated data, this is primary and 

secondary data measured in the same location. This condition is uncommon, so its 

application is very limited. In a mining operation, it is more common to have data on 

different grids, so the cokriging techniques most used are simple cokriging (SCK) and 

ordinary cokriging (OCK). 

2.3.3. Simple cokriging (SCK) 

SCK estimates a variable using the primary and secondary datasets in a 

weighted linear combination derived from the simple kriging equation: 

𝑍𝑆𝐶𝐾
∗ (𝒖) − 𝑚𝑧 = ∑ 𝜆𝛼

𝑛

𝛼=1

(𝒖) ∙ [𝑍(𝒖𝛼) − 𝑚𝑍] + ∑ 𝜃𝛽

𝑟

𝛽=1

(𝒖) ∙ [𝑌(𝒖𝛽) − 𝑚𝑌] (33) 
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This is like simple kriging, except for the inclusion of weights (𝜃𝛽) and data 

(Y) from the secondary dataset. mz and my are the stationary means of each variable. 

In a similar way, the variance is defined by: 

𝜎𝑆𝐶𝐾
2 (𝒖) = 𝐶𝑍𝑍(0) − ∑ 𝜆𝛼

𝑛

𝛼=1

(𝒖) ∙ 𝐶𝑍𝑍(𝒖𝛼 − 𝒖) − ∑ 𝜃𝛽

𝑟

𝛽=1

(𝒖) ∙ 𝐶𝑍𝑌(𝒖𝛽 − 𝒖) (34) 

The weights 𝜆α  and 𝜆β  are determined by minimizing the estimation 

variances. The covariances matrix to solve the weights is: 

[
𝐶𝑍𝑍 … 𝐶𝑍𝑌

⋮ ⋱ ⋮
𝐶𝑌𝑍 … 𝐶𝑌𝑌

] [

𝜆𝛼

⋮
𝜆𝛽

] = [
𝐶𝑍∗

⋮
𝐶𝑌∗

] (35) 

𝐶𝑍𝑍 and 𝐶𝑌𝑌 are the direct covariances for each data type, and 𝐶𝑍𝑌 and 𝐶𝑌𝑍 the 

cross-covariances between both data types, 𝜆𝛼 and 𝜆β the data weights, and 𝐶𝑍∗ and 

𝐶𝑌∗ the covariances between the data and the estimation location. Cokriging requires 

the covariance matrix be positive definite. Ordinary cokriging (OCK). 

2.3.4. Ordinary cokriging (COK) 

The ordinary cokriging formula is pretty like ordinary kriging one, but adding the 

secondary variable Y: 

𝑍𝐶𝑂𝐾
∗ (𝒖) = ∑ 𝜆𝛼

𝑛

𝛼=1

(𝒖) ∙ 𝑍(𝒖𝛼) + ∑ 𝜆𝛽

𝑟

𝛽=1

(𝒖) ∙ 𝑌(𝒖𝛽) (2.36) 

As in the previous SCK, the system of equations requires direct covariances 

and cross-covariances to solve the weights, and a positive definite covariance matrix. 

To solve the equations, it is necessary to solve ensuring that the sum of weights be 

equal to 1, but as there are two sets of weights, this becomes hard to solve. There are 

different methods to solve: 

TRADITIONAL ORDINARY COKRIGING   

In this method, the sum of weights is applied only to the primary variable, 

making the secondary weights be equal to zero: 

∑ 𝜆𝛼

𝑛

𝛼=1

= 1 & ∑ 𝜆𝛽

𝑟

𝛽=1

= 0 (2.37) 
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The main issue with this method, is that the weight for secondary data is 

reduced to minimum, reducing its importance and contribution in the estimation 

process. 

STANDARDIZED ORDINARY COKRIGING (SOCK)   

SOCK considers standardized the secondary variable Y, in that way both 

variables would have the same mean, besides constraining the sum of weights to 1. 

𝑍𝑆𝑂𝐶𝐾
∗ (𝒖) − 𝑚𝑍

𝜎𝑍
= ∑ 𝜆𝛼

𝑛

𝛼=1

(𝒖) ∙ [
𝑍(𝒖𝛼) − 𝑚𝑍

𝜎𝑍
] + ∑ 𝜆𝛽

𝑟

𝛽=1

(𝒖) ∙ [
𝑌(𝒖𝛼) − 𝑚𝑌

𝜎𝑌
] (2.38) 

∑ 𝜆𝛼

𝑛

𝛼=1

+ ∑ 𝜆𝛽

𝑟

𝛽=1

= 1 (2.39) 

The user must carefully analyze its data and decide which technique is the 

most appropriate to use. For this research, standardized ordinary cokriging (SOCK) 

has been employed.  
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3. Multi type drill hole simulation 

Data simulation consists of the simulation of a reference spatial distribution 

and the sampling of different drilling types. The drilling procedure, volume support 

and sampling protocol must be considered. The DH simulation outline developed 

considers a procedure, where instead of the simulation of a whole deposit, it is 

simulated a set of drill holes. The DH distribution is simulated using a point-scale 

grid where each node corresponds to a single and pure mineral species. The 

simulation is limited to a volume that includes the largest drilling diameter and 

repeated until obtaining the required number of DH. All simulated DH must be 

conditioned to the same reference distribution. Finally, data are obtained from a 

specific drilling type by applying the drilling support and sampling protocols. 

Different degrees of error and bias are considered. 

3.1. Simulation procedure 

The entire process has been prepared in a python folder, using GSLIB 

executables and calculation tools. The procedure has been separated into three 

stages: 

1. General setup and reference distribution simulation.  

2. Drill hole simulation. 

3. DH compositing and datasets 

The simulation takes place in a scenario of a copper porphyry, specifically the 

potassic domain, with mineralization of chalcopyrite (Cpy) and bornite (Bo) in a ratio 

of 4:1, the average grade of the deposit is 1% Cu. The work area involves a single 

bench, although, for some cases studies, it has been extended to five benches. 

3.1.1. Reference distribution simulation 

This stage includes the general setup and the simulation of the reference 

distribution used as the conditional dataset for further stages.  

1. Work area: The work area has an extension of 400 by 300 m with a bench 

height of 10 m.  

2. Grid size: The simulation grid size is 0.25 m on each axis, resulting in a 

distribution of 76.8 million points. 
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3. Input variogram: The reference distribution is an unconditional 

simulation, not having conditioning data, only input variogram. The 

variogram used considers seven nested structures at different ranges, from 

mm to hundreds of meters. This is necessary as the input variogram must 

ensure variability at very short ranges, including the millimetre and 

centimetre scales to represent different drilling diameters. Setting up the list 

of structures has been a complicated work that has required multiple tests, 

tried different numbers and types of structures, ranges and contributions, 

until obtaining an acceptable result. Table 3.1 summarizes the list of 

structures selected. 

Table 3.1: input variogram parameters 

NST Type CC Ranges Angles  

0 - 0.05 - -  

1 Sph 0.15 0.02 0o  

2 Sph 0.15 0.05 0o  

3 Sph 0.10 1.00 0o  

4 Sph 0.10 2.50 0o  

5 Sph 0.05 10.0 0o  

6 Sph 0.20 120.0 0o  

7 Sph 0.20 240.0 0o  

 

 

Figure 3.1: Input variogram 
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4. Simulation: it is done using the USGSIM tool from the GSLIB library. A 

single realization is created with 25 previously simulated samples to condition 

each node. It is important to set up an adequate number of samples to 

conditioning, as a low number does not guarantee a correct simulation and a 

high value will increase the processing time with no better results. 

5. Tri-mineral distribution: The simulation results, in Gaussian units, must 

be transformed into a tri-mineral distribution (Cpy-Bo-Gangue). The 

transformation is done by Cu cut-offs to ensure an average distribution grade 

of 1.0 % Cu. Each node is assigned to a single mineral species and its Cu 

content. Table 3.2 shows the cut-offs for assigning mineralization.  

Table 3.2: Cu mineral species 

Mineral specie Cut-off Cu 

Gangue =<0.955 0.0% 

Cpy >0.975 35.0% 

Bo >0.955 63.3% 

 

Figure 3.2 shows the histograms for the NS distribution and the tri-mineral 

distribution. The first plot shows the expected shape of a gaussian 

distribution. The second one shows the shape for a log-normal distribution 

with a very high content that correspond to gangue and low content to 

minerals. This is a realistic mineral composition, where the gangue 

compounds most of the rock mass and the minerals just a fraction, most of 

the time below 5%.  

 

Figure 3.2: Reference distribution histograms in a) NS units and b) Tri-mineral 
units 
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As a final step, the reference distribution is resized for use in further evaluations. The 

original grid size of 0.25x0.25x0.25 m is changed to 1x1x10 m, and 5x5x10 m. The 

grades for the new block sizes are calculated using volume average. The resized 

distributions will be used in the case studies. Figure 3.3 shows the Cu grades map for 

the original grid size and the resized grids. 

 

Figure 3.3: Reference distribution with different block sizes a) original grid size, b) 1 m, 
and c) 5 m. 

3.1.2. DH simulation 

The second stage involves the simulation of drill holes and includes the steps: 

DH grid definition, conditioning dataset preparation, DH simulation, validation, tri-

mineral distribution, and discretization. 

1. DH grids: Each drilling type, DD and BH, has a specific drilling grid. DD 

uses an orthogonal grid of 50 m. The DD collars are randomly moved inside 

a radius of 5 m concerning the initial position, which brings a realistic degree 

to the grid. BH drilling uses a spacing of 10 by 12 m and a triangular grid with 

an orientation of N15W. The BH collars have been randomly moved in a 

radius of 0.5 m. The difference in drilling spacing significantly impacts the 

number of drill holes. Figure 3.4 shows the BH grid with +1400 collars, while 

the DD grid does not reach 50 collars. 
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Figure 3.4: Drilling grids for a) DD and b) BH 

 

2. Conditioning datasets: The conditioning datasets are prepared from the 

reference distribution simulated in the previous stage, using the distribution 

at a grid size of 0.25x0.25x0.25 m. Each DH has a specific conditioning 

dataset, that includes the nodes located in a 5 m square around the DH collar. 

Figure 3.5 shows a plan view of the samples of a conditioning dataset for a 

diamond drill hole. 

 

Figure 3.5: DH collar and reference dataset 

 

3. Simulation: The DH simulation is done in a volume defined according to 

the drilling type. DD requires a horizontal area of 0.1x0.1 m and BH of 0.2x0.2 

m. Both have the same length at the Z-axis, a single bench or 10 m. The 

simulation grid sizes are very short in the order of mm. This is to reproduce 

the distribution at point-scale. The simulation is performed using the 

USGSIM tool from the GSLIB library. The setup requires the input variogram 
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used previously in the reference distribution, the conditioning dataset, and 

the number of samples for conditioning. This last parameter is important 

because it directly impacts the results. A number below ten samples will 

produce a fast but low-accurate result, while a number above 50 samples have 

a better result but increases the processing time significantly. After many 

trials, this parameter was fixed in 75 samples. From each DH simulation are 

collected forty realizations. Table 3.3 summarizes these parameters. 

Table 3.3: DH simulation setup 

 DD BH 

Simulation area 10-2x10-2x10 m 10-2x10-2x10 m 

Grid size 1-2x1-2x1-2 m 2-2x2-2x2-2 m 

Conditioning samples 75 75 

N0 Realizations 40 40 

Nodes by DH 100K 50K 

 

4. Results validation: After completing the simulation, it is necessary to 

check that the results are honoring the simulation input parameters. 

Histograms and variograms are checked, looking for an acceptable 

reproduction with respect to the input parameters. Besides the results are 

checked to be in the range of the conditioning datasets and the samples of the 

reference distribution. Figure 3.6 shows the variogram reproduction for a 

single DH, and Figure 3.7 the histogram reproduction. 

 

Figure 3.6: Input variogram (red dotted line) versus simulated DDH variogram 
(Vertical), showing 40 realizations.  
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Figure 3.7: Reference distribution histogram (red dotted line) versus simulated 

DDH histograms, showing 40 realizations 

 

5. Discretization: The resulting simulation can have 100 000 nodes per drill 

hole, which makes processing difficult, so it is necessary to perform a 

discretization. This reduces the number of nodes, honouring the grades and 

distribution features. DD holes are discretized into 5 steps of  20 mm for the 

horizontal direction and  250 steps of 40 mm for the vertical direction. BH 

holes have a discretization of 5 steps of 40 mm in the horizontal direction and 

250 steps of 40 mm in the vertical direction. Figure 3.8 shows the original 

simulation grid and the discretized one for a single DH. 

  

Figure 3.8: a) raw DH and b) discretized DH 

 



3.   Multi type drill hole simulation 

35 

 

[OFFICIAL] 

6. Tri-mineral distribution: The tri-mineral distribution transformation is 

the last step of this stage. It is applied using the same cut-offs used previously 

for the reference distribution. This will ensure that all drill holes have the 

same mineral distribution. Table 3.4 summarizes the main features for both 

drilling types. 

Table 3.4: Drilling type features 

 DD BH 

# DH 48 1038 

Diameter 64mm 200mm 

Data spacing 50x50 m 10x12 m 

DH area 0.1x0.1x10 m 0.2x0.2x10 m 

# Realizations 40 40 

Discretization 5x5x250 5x5x250 

# Nodes 100K 50K 

 

3.1.3. Sampling protocol  

In this stage, the raw drill holes are transformed into samples datasets. 

Besides, error and bias are added to BH data, as they are needed for specific tests.  

1. Drilling support: The support is defined by the drilling diameter, 

discarding the points outside it. As each drilling type has a different diameter, 

this will result in drilling samples with a different number of points. Figure 

3.9 shows how this process is done. 

 

Figure 3.9: Plan view of a DH, the red dotted line indicates the DH diameter. 
Nodes outside the circle are eliminated from the simulation. 



3.   Multi type drill hole simulation 

36 

 

[OFFICIAL] 

2. Sampling protocol: The sampling protocol differs for each drilling type, in 

the case of DD, the core is cut along the length and half is collected. A half of 

the nodes are discarded, and the other half represents the sample. Figure 3.10 

shows this process. For BH drilling, the sampling is based on weights, in this 

case, 6 kg are taken per BH. Thus, BH sampling will be a random selection of 

the nodes, until the sample weight is reached. 

 

Figure 3.10: DD sampling, only a half of the DH is collected for lab assays. 
  

3. Compositing: Both drilling types are composited to the bench height, which 

is 10 m in this study. The grades are the arithmetic average of the points inside 

each composite sample. 

4. Error and bias: Error and bias are added to the BH dataset. These are added 

by multiplying the original grades and adding a random error between fixed 

intervals.  DD is considered primary data, so no bias is added, just an error of 

± 3%. BH is considered secondary data, with a 10% or 25% bias, depending 

on the database. An error of ±25% is added to all BHs. 

5. Datasets: The composite samples are collected in datasets according to their 

drill type (DD & BH) and realization. A third dataset, called combination data 

(CD), joins both datasets. This last dataset only is used for checking purposes. 

6. Data standardization: The last step is data standardization, which is 

necessary as lets us reduce the bias due to different drilling support. This is 

done for each dataset according to the formula: 

𝑍𝑘
𝑆𝑇𝐷 =

𝑍𝑘 − 𝑚𝑍

𝜎𝑍
 (3.1) 
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Where mz and σZ are the mean and standard deviation of dataset k. All 

variography and estimations are calculated using standardized data, and the 

results are back-transformed to regular units for the assessments, following 

the inverse calculation. 

3.2. Dataset acquisition 

This research has required two databases to be used in the study cases. The 

areal extent is the same for both databases but differs in height. The first database is 

for a single bench and the second for five benches. The DH simulation and sampling 

are done using a similar setup but with minor differences.  

3.2.1. Single bench database 

This database involves a single bench, and it is used in chapter 4 as data to 

evaluate the performances of the different resources model. This database has been 

simulated using the same outline described in subchapter 3.1.1. Tables 3.5 summarize 

the features of the reference distribution. 

Table 3.5: Reference distribution features 

Reference distribution 

Plane area 400 x 300 m2 

Bench height 10 m 

# benches 1 

Tonnage 13.5 MT 

Cu grade 1.0% 

Grid size 0.25 m 

# nodes 76.8 M 

 

There are two datasets, diamond drilling (DD) with 48 samples and blast-

holes (BH) with 1489 samples, and a third one, that combines both data (CD). There 

are forty realizations for each dataset. DD and BH have been set as Primary and 

Secondary data, respectively. DD data is unbiased, and the samples have an aleatory 

error of ±3%, while BH has a bias of +25% and an error of ±25%. CD dataset is 

majority formed by BH samples, so both have a similar bias and error. Table 3.6 

summarizes the features of the datasets but averaging the forty realizations.  
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Table 3.6: Dataset features 

 DD BH CD 

# samples 48 1489 1537 

Cu grade 1.0% 1.24% 1.23% 

Bias 1.0 1.25 1.24 

Error ±3% ±25% ±25% 

 

Figure 3.11 shows the reference distribution and the location maps for each 

drilling type. Visually, BH data shows a better reproduction of the reference 

distribution than the DD data, this is due to the bigger number of BH samples than 

DD.   

Figure 3.11: a) Reference distribution, b) DD dataset, c) BH dataset and d) CD dataset 

 

Figure 3.12 shows the histograms and statistics for datasets. BH and CD show 

a remarkable bias, while DD data is unbiased. All datasets have a higher CV than the 

reference distribution, although the DD data has the closest CV to the reference 

distribution. Despite the difference in the number of samples, all datasets present 

similar statistics to the reference distribution. 
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Figure 3.12: Histograms for a) Reference distribution b) DD data c) BH data and d) CD  

3.2.2. Multi- bench database 

This database is used in Chapter 5 to assess the performance of resources 

models to predict ore zones during a medium-term production period. It has been 

used the same outline described in section 3.1.1 but modified to extend the simulation 

volume to five benches. The grid size has changed from 0.25 m to 0.5 m, because the 

shorter grid would produce +380 M of nodes, which exceeds the current 

computational resources.  Table 3.7 shows the features of the reference distribution.  

Table 3.7: Reference distribution features 

Reference distribution 

Plane area 400 x 300 m2 

Bench height 10 m 

# benches 5 

Tonnage 67.5 MT 

Cu grade 1.0% 

Grid size 0.50 m 

# nodes 48.0 M 
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The datasets are prepared according to the drilling type, DD and BH, and have 

increased the number of samples. The DD holes were simulated, including all 

benches, but the BHs were simulated bench by bench, using a different grid on each 

one.  Both drilling types are composited to the same length of 10 m, totalizing 240 

DD and 5661 BH samples.  Regarding bias and errors, DD has no bias and an error 

of ±3% and BH has a bias of +10% and an error of ±25%. Table 3.8 summarizes the 

features of the datasets but averaging the forty realizations. 

Table 3.8: Dataset features 

Drilling type Bench DH grid # samples Bias Error 

DD All 50x50m 240 1.00 ±3% 

BH 5050 10x10m 1185 1.10 ±25% 

BH 5040 15x15m 822 1.10 ±25% 

BH 5030 12x10m 987 1.10 ±25% 

BH 5020 10x10m 1185 1.10 ±25% 

BH 5010 10x8m 1482 1.10 ±25% 

 

There is no need to prepare a combination dataset for this database. DD and 

BH will be used separately for ordinary kriging estimation, and jointly for cokriging 

estimation.  
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4. Case study I: Ore control model assessment 

This first case study evaluates the performance of the models and estimation 

methods applied in the ore control process. The models being evaluated include a 

long-term model (LTM), medium-term model (MTM), and short-term model (STM). 

The combined data model (CDM) is considered for checking purposes. The models 

are estimated using different methods and datasets but share most estimation 

parameters. The Bias, MSE, ore/waste classification and profits are used to evaluate 

the performance of the models.  

4.1. Setup 

This case study uses the simulated database presented in Section 3.2.1. Sets 

of exploration (DD) and production (BH) drill holes are simulated, collecting 40 

realizations for each drill hole. All drill holes have been composited to a standard 

length of 10 m.  

4.1.1. Data 

There are two datasets according to the drilling type (DD & BH) and a third 

dataset corresponding to the combination of both datasets (CD). DD and BH data are 

considered Primary and Secondary data, respectively. From this point and forward, 

DD and BH data will be called primary and secondary data, respectively. Primary 

data has relatively few samples, just 48, while Secondary data has almost 1500 

samples. Secondary data is overrepresented in the CD, representing 97%. Grade 

overestimation is expected in the models that directly use Secondary data (STM & 

CDM). Table 4.1 summarizes the features of each data type across the 40 realizations. 

 

Table 4.1: Data summary 

 Primary Secondary Combined 

# Samples 48 1489 1537 

# Reals. 40 40 40 

Mean 1.00 1.25 1.24 

SD 2.21 3.10 3.08 

Min 0.01 0.05 0.01 

Max 15.19 44.29 44.29 
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All datasets have been standardized for the variogram calculation and 

resources estimation. Once the estimation finishes, the results are back-transformed 

to regular units to proceed with the evaluation stage. 

4.1.2. Variograms calculation 

The experimental (semi) variograms are calculated for the three data sets and 

40 realizations. For ease of the process, an omnidirectional variogram is used. As 

each dataset has different grid spacing, the lag distances are fixed at 50, 10, and 20m 

for Primary, Secondary, and combined data. Figure 4.1 shows how the experimental 

variogram has minor fluctuations between each dataset. The experimental variogram 

for secondary and combined data shows a better definition and stability, which is 

expected considering the larger number of samples available. Primary data has a little 

noisier variogram due to its smaller number of samples, but in general, both 

variograms are similar in ranges and shapes.  

 

Figure 4.1: Experimental variograms including all realizations for a) Primary data, b) 
Secondary data and c) Combined data 
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The variogram is modelled by drilling type and for each realization, but all 

variograms are expected to have the same structures with minor differences in ranges 

and contributions. The variogram models  must share the same structures for the 

LMC. As seen in Figure 4.2, the three variogram models present two structures, 

exponential and spherical, with maximum ranges between 250 to 300m. The nugget 

effect is fixed with a maximum contribution of 10%, 15%, and 25% for Primary, 

Secondary, and CD. Table 4.2 summarizes the model parameters. 

 

Figure 4.2: Experimental and variogram models including all realizations for a) Primary 
data, b) Secondary data and c) Combined data 
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Table 4.2: Variogram model summary 

 Primary data Secondary data Combined data 

# Structures 2 2 2 

Nugget <0.10 <0.15 <0.25 

Type 1 Exponential Exponential Exponential 

Type 2 Spherical Spherical Spherical 

Contribution 1 0.40-0.60 0.35-0.45 0.25-0.35 

Contribution 2 0.30-0.50 0.40-0.50 0.35-0.50 

Range 1 100-125 30-60 5-50 

Range 2 275-300 250-300 250-275 

 

4.1.3. LMC models 

Cokriging estimation requires an LMC of the Primary and Secondary data. 

This implies the calculation of the cross-variogram, but as both datasets are non-

collocated, the direct calculation of cross-variograms is not possible. But the cross-

variogram can be calculated indirectly through the cross-covariance. The procedure 

for this calculation is:  

1. Calculation of the experimental variograms for Primary and Secondary 

variables. 

2. Calculation of the cross-covariance between Primary and Secondary data. 

This is done through the GSLIB tool VARCALC, which uses the same setup as 

the variogram calc, requiring a lag distance, directions, and the respective 

tolerances. 

3. The cross-covariance at 0 m (C(0)) is defined by extrapolating the cross-

covariance curve until it intersects the Y-axis. This point will be used as a pivot 

to flip the cross-covariance. The nugget effect could be set to zero, as the data 

is non-collocated. 

4. The cross-variogram is calculated by inverting the values of the cross-

covariances, using as a pivot point C(0) (see Equation 2.32).  
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Figure 4.3 shows cross-covariances and the cross-variograms for the 40 

realizations, having all of them similar ranges and shapes. Although each one of the 

realizations has a different cross-covariance curve, it is valid to use the same C(0) for 

all realizations, as this value indicates the degree of correlation between both datasets 

that seems quite stable. The C(0) is fixed in 0.85 by extrapolating the cross-

covariance curve and considering the correlation between both datasets.  

Figure 4.3: Primary-secondary data a) cross-covariances, and b) cross-variograms 

 

The LMC must be fitted to the direct and cross variograms simultaneously. 

The same structures and ranges are repeated in all models, only varying the 

contributions. The contributions matrices must be positive definite (see Equation 

2.31). The LMC fitting evaluates multiple combinations of structures and 

contributions for each realization. As there is an evident difference between the direct 

and cross variograms, the LMC will not necessarily match perfectly to them. In this 

case, the LMC must first fit the primary and then the cross variogram preferentially. 

The direct variogram models help to define the LMC. All models must share the same 

structures but not the contributions. After an in-depth review, exponential and 

spherical structures are chosen, with max ranges lower to 300 m. The nugget effect 

of the cross variogram is 0, as the data is non-collocated. The resulting LMC models 

fulfill the positive definite conditions. Figure 4.4 shows the LMC model for one 

realization, and table 4.4 summarizes the model parameters for the 40 realizations. 

Table 4.3 summarizes the LMC parameters. 
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Figure 4.4: Experimental variogram and model for a) Primary data, b) Secondary data and 
c) Primary-secondary data 

 

Table 4.3: LMC model summary 

 Primary data LMC Secondary data 

# Structures 2 2 2 

Nugget <0.10 0.0 <0.15 

Type 1 Exponential Exponential Exponential 

Type 2 Spherical Spherical Spherical 

Contribution 1 0.40-0.60 0.40-0.60 0.40-0.60 

Contribution 2 0.30-0.50 0.30-0.50 0.30-0.50 

Range 1 75-125 75-125 75-125 

Range 2 260-300 260-300 260-300 

 

Fitting the LMC model for each of the 40 realizations requires multiple 

evaluations of the number of structures, contributions, and ranges. A close fit LMC is 

not always possible because it depends on the correlation between data types. This 

complex setup and data requirements make the application of cokriging in resource 

estimation limited to specific tasks or research.           
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4.2. Estimation 

The estimation is done using the GSLIB tools KT3DN and COKB3D for 

ordinary kriging and cokriging, respectively. All models use the same estimation grid, 

fixed at 5x5x10 m, to make the estimation results comparable. Besides, other 

estimation parameters like the search radius and discretization are shared. Table 4.4 

summarizes the estimation parameters of each model. 

Table 4.4: Estimation parameters summary 

 LTM STM CDM MTM 

# samples 48 1489 1537 1537 

Method OK OK OK SOCK 

Grid size 5x5x10 m 5x5x10 m 5x5x10 m 5x5x10 m 

# Min samples 4 4 4 4 

# Max samples 12 12 12 12 

Search radio 500 m 500 m 500 m 500 m 

Discretization 4x4x1 4x4x1 4x4x1 4x4x1 

 

There are 40 estimation results for each model, the same number as 

realizations. The estimation results are in standard units, so they are back-

transformed by applying the inverse calculation, using the mean and SD of their 

respective dataset and realization. In the case of the MTM, which uses both data 

types, the back-transformation uses the mean and variance of Primary data. 

4.3. Evaluating the results 

The models are compared to the Reference distribution by each of the 40 

realizations. As the models have been estimated using a grid size of 5x5x10 m, they 

must be compared to the reference distribution resized at the same size. The average 

of all realizations is used to evaluate the performance by model. The parameters to 

assess are the Cu grades, histograms, MSE and Bias.     

4.3.1. General statistics, Bias & MSE 

The general statistics for each model are collected in Table 4.5, here are 

presented the average of the 40 results by model. The over-estimation in grades by 

STM and CDM is evident due to the use of biased secondary data, and their SD 

indicates a higher variability than the reference distribution. In the case of LTM, its 

average grade and SD are below the reference distribution, evidence of smoothing by 
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using kriging and limited dataset. MTM shows closer results to the reference 

distribution.  

Table 4.5: Result models summary 

 Ref. Dist. LTM STM CDM MTM 

Cu 1.00 0.97 1.25 1.24 0.99 

SD 2.02 1.39 2.41 2.31 1.66 

Min 0.07 0.04 0.07 0.07 0.03 

Max 22.19 11.31 21.53 19.89 14.50 

Bias 1.00 0.97 1.25 1.24 0.99 

MSE 0.00 1.63 1.38 1.22 0.93 

 

Figure 4.5 shows the histograms of each model compared to the Reference 

distribution. STM and CD have a very similar histogram to the reference distribution, 

although they are systematically biased relative to the reference distribution. The 

MTM shows a more accurate histogram, although there is a discrepancy in the 1st 

interval for grades below 0.15 Cu.  

Figure 4.5: Reference distribution histogram (Red dots) vs the histograms of a) LTM, b) 
STM, c) CDM, and d) MTM.  

LTM and MTM present the lowest bias, an average of 0.97 and 0.99 for the 

LTM and MTM, while the STM and CDM present an average bias of 1.25 and 1.24. 
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The high bias of these models is due to biased datasets. Besides, although ordinary 

kriging minimizes the MSE, it does not deal with the bias from the datasets. The MTM 

uses primary and secondary datasets, but the Cokriging method does not transfer the 

bias from Secondary data to the estimation. The lowest MSE corresponds to the 

MTM, then LTM, STM, and CDM. This demonstrates that cokriging is the best-

unbiased estimator, providing results with the lowest error possible. Figure 4.6 shows 

the Bias and MSE by model and realization.  

 

Figure 4.6: a) Bias by model and realization, and b) MSE 

These metrics show that MTM has the best performance of all models in 

evaluation. STM and CDM have poorer performance than the MTM, although in 

some realizations, the STM/CDM has a better result, but on average, the MTM is the 

best. 

4.3.2. Profit evaluation 

The profit is an important metric to evaluate the performance of the models 

and the estimation methods. The profit is the difference between the revenues by 

selling the mineral contents of a block and the costs by its mining and processing. 

The profit is produced only by the ore blocks sent to processing, while the waste 

blocks, as they are not processed, only represent costs by their mining and hauling to 

the dumps. This makes the ore/waste classification a critical step in ore control. An 

incorrect block classification is costly.  

The profit calculation requires the ore/waste classification, estimated and 

real. The estimated classification is done according to the estimated block grades 

from the models. The real one uses the same estimated classification but identifies 

the misclassified blocks by comparison with the reference distribution. The 
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comparison to the reference distribution allows assessment of how much 

misclassification is included in each model.   

The misclassifications are Ore loss and dilution, each with a different 

frequency and impact on profit. The Ore loss is perhaps the most damaging as it 

includes the lost opportunity cost, which is equivalent to the profit if the block would 

have been processed as ore, luckily this misclassification is quite limited. Dilution has 

a minor economic loss by block, equivalent to the costs of mining and processing the 

block. Even there could be a limited income by processing the low-grade mineral. 

Commonly, this misclassification is more abundant than the ore loss.  

A different profit calculation is applied to those misclassified blocks (see 

Equations 2.18, 2.19 and 2.20). The block classification and profits calculation 

require to define the cut-off grade and other parameters, summarized in Table 4.6.    

  

Table 4.6: Cut-off parameters 

Parameter Values 

Cu price 9070 $/T 

Recovery 80% 

Mining costs 2.5 $/T 

Processing costs 14.5 $/T 

Cut-off 0.23 

 

Figure 4.7 shows the grade maps for the estimated models and reference 

distribution, just for a single realization. LTM, CDM, and MTM models present a 

good resolution and accuracy concerning the reference distribution, while the LTM 

does not. The low resolution of the LTM and the grades over-estimation in STM and 

CDM are sources of misclassification. Visually, all models reasonably reproduce the 

reference model. 
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Figure 4.7: Grades map for a) Reference distribution, b) LTM, c) STM, d) CDM, and e) 
MTM 

 

The estimated and real ore/waste classification maps are shown in Figures 

4.8 and 4.9. The significant presence of dilution in all models is evident, while the ore 

loss is more limited although present in all models.  
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Figure 4.8: Ore/waste classification for a) Reference distribution, b) LTM, c) STM, d) 
CDM, and e) MTM  
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Figure 4.9: Real ore/waste classification for a) Reference distribution, b) LTM, c) STM, d) 
CDM, and e) MTM  

 

Table 4.7 summarizes the average ore/waste classification according to the 

model. LTM presents the higher content of dilution, almost 20% of the whole 

tonnage. Models using secondary data, STM and CDM, have significantly lower 

dilution, around the 12%. This was expected, as the secondary data is abundant, 

which improves the resolution and classification, but as this data is positively biased 

in 25%, an overestimation in grades and additional dilution is expected. 
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Table 4.7: Ore/waste contents 

Model 
Estimated Real 

Ore Waste Ore Ore loss Dilution Waste 

Ref. dist 57.29 42.71 57.29 - - 42.71 

LTM 71.91 28.12 51.88 5.41 20.03 22.68 

STM 60.11 39.89 48.99 8.30 11.23 31.47 

CDM 63.48 36.52 50.70 6.59 12.77 29.94 

MTM 68.74 31.26 52.65 4.65 16.47 26.24 

 

Table 4.8 summarizes the results of profits, estimated and real for the average 

of the 40 realizations, and the respective reconciliation between the real and 

estimated profit. The profits have been standardized by dividing them for the 

reference distribution profit. LTM and MTM present the closer estimated profits to 

the reference distribution one, while the STM and CDM are highly over-estimated, 

on average a 30%. The real profit of STM and CDM are similar in value, but the MTM 

presents the highest profit. The reconciliation between the expected and real profit is 

very good for the MTM and LTM, slightly above 100%, while the STM and CD are far 

below the objective, around 30%. 

Table 4.8: Profits summary 

Model 
Estimated Real 

Reconciliation 
M$ % M$ % 

Ref. dist. 175.42 100.00 175.42 100.00 100.00 

LTM 171.58 94.66 166.05 91.61 105.34 

STM 239.05 131.88 168.11 92.92 68.12 

CDM 235.55 129.99 170.04 93.89 70.05 

MTM 174.98 96.86 170.70 94.15 103.46 

 

4.4. Conclusions 

MTM, estimated using cokriging, has been demonstrated to be the best-

unbiased estimation technique providing estimation results with the lowest bias and 

MSE and ensuring the highest profit and best reconciliation between all models in 

evaluation.  

STM and CDM also present high real profits, but their reconciliation ratio is 

low, and their estimated profits are over-estimated. The overestimation of estimated 
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profits can create false expectations, besides directing the planning and production 

to a wrong objective causing low productivity and economic losses.  

Table 4.5 indicates that STM and CDM present a lower dilution but higher ore 

loss relative to MTM. This difference in the ore loss content makes MTM more 

profitable than STM and CDM, as the economic magnitude by ore loss is higher than 

dilution for the problem setup in this thesis.  

 The high performance in profits for the STM and CDM is counterintuitive, 

considering the use of biased and highly-error data on these models. The high profit 

can be related to the combination of the BH dataset, densely drilled and the short 

estimation grid. These features increase the model resolution and improve ore/waste 

classification, which directly impacts profits. Indeed, it is observed that STM and 

CDM present the lowest content of dilution, even lower than MTM, but their contents 

of ore loss are higher, which in the end, makes them less profitable. MTM uses DD 

and BH data, but the cokriging technique used assigns to the secondary data a lower 

weight than primary data and corrects the bias in the standardization. 

CDM presents better profits than the STM and below the MTM, but the 

combined data joins primary and secondary data without any treatment so that both 

data can take the same weight in the estimation. This is not the best approach, 

considering the different supports for both datasets. Besides, ordinary kriging does 

not deal the secondary data bias. 
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5. Case study II: Resource model evaluation for 

medium-term planning 

This case study evaluates the performance of the LTM and MTM to predict 

potential ore zones for planning and mining operations. The models are assessed 

during four months, and their results are compared to the STM and reference 

distribution. The LTM is estimated using only DD data and is updated once a year, 

several months after new data collection. Their results are globally accurate and 

widely used for long-term scheduling (+12 months). The LTM uses large block sizes, 

usually the SMU, resulting in a low-resolution model, low accuracy at a local scale, 

and with extensive dilution. These features make LTM not so useful for medium and 

short-term planning. The MTM is specifically built to provide information for 

intermediate planning, with improved model resolution and accuracy relative to the 

LTM. The MTM uses DD and BH data in a cokriging framework and can be updated 

several times a year as the BH dataset is updated. The STM is used to design mining 

polygons and for ore control operations. STM could be considered as the closest 

approximation to the underlying mineralization, as it uses a dense grid of samples, 

although a cokriging estimation properly set up can provide better results. LTM and 

MTM are reported by benches, indicating the average Cu grade, the ore/waste 

classification, and expected profits. These parameters are compared to the STM and 

the reference distribution to define the best performance. 

5.1. Setup 

This case study uses the simulated database presented in Section 3.2.2. As in 

case study I, it takes place in a synthetic Cu-porphyry deposit operated in an open-

pit mining setting. In this area, 40 realizations of exploration (DD) and production 

(BH) drill holes are simulated. The LTM is estimated just one time using all DD data 

available and embracing the whole work area, the MTM is estimated monthly using 

the data available at the moment, this means that the database increases with each 

month. Finally, the STM is estimated by bench and month but using only the data for 

that specific bench. 
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5.1.1. Data 

The work area occupies a volume of 400x300x50 m, including five benches. 

There are two datasets, DD and BH, both with 40 realizations. DD data present no 

bias and has a random error of ±5%, so it is considered the Primary data. BH data 

has a bias of +10% and an error of ±25% and is regarded as the Secondary data. 

Primary data uses an orthogonal grid and includes 48 drill holes and 240 samples, 

composited to 10 m. Secondary data are drilled using different grids according to the 

bench, making there were a different number of samples per bench, with 4476 

samples in total. The ratio of primary:secondary samples is relatively high, 1:22. 

Table 5.1 summarizes the features of each data by a bench, averaged across the 40 

realizations. 

Table 5.1: Data summary 

 
Primary 

Secondary 

 5040 5030 5020 5010 All 

# Samples 240 822 987 1185 1482 4476 

# Reals. 40 40 40 40 40 40 

Mean 0.95 1.10 1.09 1.10 1.10 1.10 

SD 2.01 2.12 2.07 2.06 2.10 2.09 

Min 0.01 0.01 0.01 0.01 0.01 0.01 

Max 18.00 31.48 27.36 28.73 36.35 36.35 

 

The data has been standardized to perform the variogram calculations and 

estimations. After estimation the results are back-transformed to regular units to 

proceed with the assessment. 

5.1.2. Variogram calculation 

The direct variogram models are necessary to run the ordinary kriging for 

LTM and STM, while the cokriging applied in the MTM requires modelling the LMC 

of primary and secondary data. Some practitioners consider the use of local 

variogram models for the estimation of specific areas or benches. This practice 

improves the results, as there is a better orientation to the local anisotropies. But as 

this research uses stationary simulated data, the local variograms show just minor 

changes. Global variogram models, calculated using all data available, are used 

instead of local variogram models. 
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The direct variograms for both data types use omni-directional semi-

variograms. Figure 5.1 summarizes the experimental variograms for both data types. 

There is an evident difference between the primary and secondary variograms 

probably due to bias and error applied on datasets. 

Figure 5.1: Experimental variograms for a) Primary data, and b) Secondary data. 

 

The variogram models have exponential and spherical structures, and the 

nugget effect is fixed at a maximum of 20% for both models. Figure 5.2 summarizes 

the model variograms for each data type, and Table 5.2 summarizes the main model 

parameters. 

Figure 5.2: Variogram models including all realizations for a) Primary data, and b) 
Secondary data. 
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Table 5.2: Variogram model summary 

 Primary data Secondary data 

# Structures 2 2 

Nugget <0.20 <0.20 

Type 1 Exponential Exponential 

Type 2 Spherical Spherical 

Contribution 1 0.10-0.30 0.35-0.45 

Contribution 2 0.60-0.70 0.35-0.45 

Range 1 10-20 10-25 

Range 2 175-230 90-170 

 

5.1.3. LMC models 

A valid  LMC is necessary to run the cokriging for MTM. As explained above, 

the direct calculation of the cross-variogram is not possible, so the cross-covariance 

is calculated using the same outline as in case study I. The correlation between 

primary and secondary data is fixed at 0.6. Figure 5.3 shows the cross-covariances 

and cross-variograms for the 40 realizations. 

 

Figure 5.3: a) Cross-covariances, b) Cross-variograms 

 

The LMC requires the variograms to share the same structures and ranges, 

and the contribution matrices must be positive definite. Two structures, exponential 

and spherical, with variable ranges and contributions according to the realization are 

selected. Figure 5.4 shows the LMC model for a single realization, and table 5.3 

summarizes the model parameters for the 40 realizations. 
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Figure 5.4: a) Primary model, b) LMC model and c) Secondary model 

 

Table 5.3: LMC model summary 

 Primary data LMC Secondary data 

# Structures 2 2 2 

Nugget <0.20 0.0 <0.20 

Type 1 Exponential Exponential Exponential 

Type 2 Spherical Spherical Spherical 

Contribution 1 <0.35,0.45> <0.35,0.45> <0.35,0.45> 

Contribution 2 <0.35,0.45> <0.35,0.45> <0.35,0.45> 

Range 1 <20,35> <20,35> <20,35> 

Range 2 <190,210> <190,210> <190,210> 

 

The direct secondary variogram model differs from the primary and the LMC. 

This could be due to the low correlation between the datasets, which is fixed at 0.6. 

In this case, the LMC must be fitted preferentially to the primary variogram, and then 

to the cross-variogram. 

5.2. Estimation  

Each model uses different estimation methods, data, grid size, and volumes, 

so their estimation setups are different, although they share some parameters. The 
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estimations are done using the GSLIB tools KT3DN and COKB3D for ordinary 

kriging and cokriging, respectively. The LTM is estimated using ordinary kriging, 

with an estimation grid based on the SMU, 50x50m, and a bench height of 10m. The 

estimation setup for this model is summarized in Table 5.4.   

 

Table 5.4: LTM Estimation parameters summary 

 LTM 

# samples 240 

Method OK 

Grid size 50x50x10 

# Min samples 4 

# Max samples 6 

Search radio 500x500x50 

Discretization 4x4x1 

 

The MTM must provide an intermediate resolution and accuracy between the 

LTM and STM, so its estimation grid is fixed at 25x25x10m. As the MTM is estimated 

monthly, there are four estimation setups, that differ in the dataset used. The primary 

dataset is the same in all monthly estimations, but secondary data changes, adding 

more BH data each month. In this way, the deepest bench will have much more data 

than the highest one. Table 5.5 summarizes the setup.  

 

Table 5.5: MTM Estimation parameters summary 

 MTM 

 5040 5030 5020 5010 

# samples 1425 2247 3234 4419 

Method SOCK SOCK SOCK SOCK 

Grid size 25x25x10 25x25x10 25x25x10 25x25x10 

# Min samples 4 4 4 4 

# Max samples 8/8 8/8 8/8 8/8 

Search radio 500x500x50 500x500x50 500x500x50 500x500x50 

Discretization 4x4x1 4x4x1 4x4x1 4x4x1 

 

The STM requires a high resolution and accuracy, conditioned by the 

estimation grid size applied. The most recommended is to use a quarter distance of 
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the data spacing; this is 2.5 m. Like the MTM, the STM is estimated monthly, only for 

the bench in the evaluation and using the bench data. Table 5.6 summarizes the 

estimation parameters.  

Table 5.6: STM Estimation parameters summary 

 STM 

 5040 5030 5020 5010 

# samples 822 987 1185 1482 

Method OK OK OK OK 

Grid size 2.5x2.5x10 2.5x2.5x10 2.5x2.5x10 2.5x2.5x10 

# Min samples 4 4 4 4 

# Max samples 20 20 20 20 

Search radio 500x500x50 500x500x50 500x500x50 500x500x50 

Discretization 4x4x1 4x4x1 4x4x1 4x4x1 

 

5.3. Evaluating the results 

The reference distribution has an average Cu grade of 1% over the five 

benches. As the evaluation only considers the last four benches, the average grade 

changes to 0.97% Cu. The estimated models are used to calculate the average grades, 

block classification and profits, per bench. The main evaluation is the performance 

to predict ore zones, so LTM and MTM results are compared with the reference 

distribution. Each of the 40 realizations is evaluated, and the average is used to assess 

the performance by model. As each model uses different grid sizes, resizing them to 

a standard size is necessary to compare them to the reference distribution. All models 

are resized to 1x1x10 meters. 

5.3.1. Grades, MSE and bias 

MTM has the closest average grade to the reference distribution, followed by 

LTM. The STM differs from them, showing an average Cu grade of 1.10%. The results 

bench by bench are similar, with the MTM and LTM close to the reference 

distribution grades, and the STM overestimated around 10%. The bias and MSE have 

been measured relative to the reference distribution. The MTM presents the lowest 

bias, followed by the LTM and STM, something expected considering the use of 

cokriging, which has been demonstrated to be the best-unbiased estimator. The STM 

has the lowest MSE value. Although this result could indicate a better performance 
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of the ordinary kriging above the cokriging, it must be remarked that the STM is 

locally estimated using data from the same bench, and the MTM is estimated using 

data from the upper benches, decreasing its performance. Table 5.7 summarizes the 

results. 

Table 5.7: Grades. MSE & bias summary  

Bench Model Cu grades Bias MSE 

10040 

LTM 0.90% 0.90%  3.99  

MTM 1.05% 1.05%  3.19  

STM 1.10% 1.11%  2.26  

Ref. dist 0.99% 1.00%  0.00   

10030 

LTM 0.89% 0.99%  2.79  

MTM 0.84% 0.93%  2.10  

STM 1.10% 1.22%  1.83  

Ref. dist 0.90% 1.00%  0.00    

10020 

LTM 0.86% 0.93%  2.59  

MTM 0.86% 0.93%  2.22  

STM 1.10% 1.19%  1.72  

Ref. dist 0.92% 1.00%  0.00     

10010 

LTM 0.87% 0.81%  3.70  

MTM 0.92% 0.86%  3.56  

STM 1.10% 1.03%  2.11  

Ref. dist 1.07% 1.00%  0.00      

Average 

LTM 0.88% 0.91%  3.27  

MTM 0.92% 0.94%  2.77  

STM 1.10% 1.14%  1.98  

Ref. dist 0.97% 1.00%  0.00      

 

5.3.2. Ore/waste classification  

The ore/waste classification is critical in the ore control process and 

eventually in the profit calculation. In real operations, it is not possible to exactly 

quantify dilution and ore loss, but simulated data allows the performance of the 

resource model to be assessed. 

The estimated ore/type classification for LTM and MTM differ in tonnage and 

location. The MTM has the lowest content of waste, around 12%, the LTM and STM 

have similar contents of 20% and 23%. These values are far from the reference 

distribution with 51% of waste content. In the case of ore, all models are over-

estimated, with contents around 80%. These results are evidence of dilution in all 

models. Table 5.8 summarizes these results. 
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Table 5.8: Estimated ore/waste classification  

Bench Model Ore Waste 

10040 

LTM 77% 22% 

MTM 89% 11% 

STM 81% 19% 

Ref. dist 49% 51% 

10030 

LTM 81% 19% 

MTM 86% 14% 

STM 77% 23% 

Ref. dist 49% 51% 

10020 

LTM 80% 20% 

MTM 88% 12% 

STM 77% 23% 

Ref. dist 49% 51% 

10010 

LTM 82% 18% 

MTM 87% 13% 

STM 75% 25% 

Ref. dist 50% 50% 

Average 

LTM 80% 20% 

MTM 88% 12% 

STM 77% 23% 

Ref. dist 49% 51% 

 

The real ore/waste classification shows the ore loss and dilution quantities for 

each model, and their results are summarized in Table 5.9. The MTM has the closest 

content of ore to the reference distribution, followed by the STM and LTM. This 

indicates that the MTM is the best in ore recovery. MTM also has the lowest content 

of ore loss, the best misclassification, 2%, which is almost half of the content in LTM. 

The STM presents an intermediate content of ore loss. Dilution is extensive in all 

models, on average above 30%, reaching the MTM the 40% of dilution. Figures 5.5 

and 5.6 show the estimated and real ore/waste classification; Figure 5.7 and 5.8 

shows the block classification maps estimated and real. 
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Table 5.9: Real ore/waste classification  

Bench Model Ore Ore loss Dilution Waste 

10040 

LTM 45% 5% 33% 18% 

MTM 47% 2% 42% 8% 

STM 46% 3% 35% 16% 

Ref. dist 49% - - 51% 

10030 

LTM 45% 4% 36% 15% 

MTM 47% 2% 40% 12% 

STM 45% 4% 32% 19% 

Ref. dist 49% - - 51% 

10020 

LTM 45% 4% 35% 16% 

MTM 47% 2% 41% 10% 

STM 45% 4% 31% 19% 

Ref. dist 49% - - 51% 

10010 

LTM 47% 3% 35% 15% 

MTM 48% 2% 39% 11% 

STM 47% 4% 28% 22% 

Ref. dist 50% - - 50% 

Average 

LTM 45% 4% 35% 16% 

MTM 47% 2% 40% 10% 

STM 46% 3% 32% 19% 

Ref. dist 49% - - 51% 

 

 

Figure 5.5: Estimated ore/waste classification 
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Figure 5.6: Real ore/waste classification 

 

Figure 5.7: Estimated ore/waste classification maps for bench 10010 a) Reference 
distribution, b) LTM, c) MTM and d) STM. 
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Figure 5.8: Real ore/waste classification maps for bench 10010 a) Reference distribution, 
b) LTM, c) MTM and d) STM. 

5.3.3. Profits evaluation 

The profit depends on the ore/waste classification for each model. Bias, error, 

and grid size influence this classification. The STM presents the highest expected 

profit, followed by the MTM and LTM. The estimated profit of LTM and MTM are 

important as they will be used for the planning and mining schedule. The real profit 

is calculated considering the misclassification content on each model. From Table 

5.9, the ore loss is relatively low in all models, although the LTM doubles the content 

of the MTM. But dilution is the most extended, with contents above 30%, with the 

STM presenting the lowest content. The low content of both misclassifications in the 

STM, makes it has the highest real profit, followed again by MTM and then LTM. The 

expected reconciliation between the expected profit and the real one shows that the 

STM is over-estimated, with the MTM and LTM having better ratios. Indeed, the 

MTM has the best reconciliation, around 103%. The real reconciliation, this is the 

ratio between the real profit and the reference distribution profit, shows that the STM 

has a good performance, reaching the 88% of the real profit, with the MTM below 
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87% and then the LTM with 85% of reconciliation. Table 5.10 summarizes the results 

of estimated and true profits and Figure 5.9 shows the average profits by model. 

Table 5.10: Profits & reconciliation by models 

Bench Model 
Estimated 

(M$) 

Real  

(M$) 

Estimated 

Reconciliation 

Real 

Reconciliation 

10040 

LTM  153.4   158.2  104% 85% 

MTM  186.5   160.9  87% 86% 

STM  199.9   165.7  83% 88% 

Ref. dist  187.2   187.2  100% 100% 

10030 

LTM  152.1   138.9  92% 84% 

MTM  139.3   144.4  104% 87% 

STM  202.2   143.7  71% 86% 

Ref. dist  166.3   166.3  100% 100% 

10020 

LTM  145.7   144.3  99% 84% 

MTM  143.3   149.0  105% 87% 

STM  201.4   149.0  74% 87% 

Ref. dist  171.3   171.3  100% 100% 

10010 

LTM  146.9   180.8  123% 88% 

MTM  157.7   181.1  115% 88% 

STM  202.6   184.1  91% 90% 

Ref. dist  205.1   205.1  100% 100% 

Average 

LTM  149.5   155.6  104% 85% 

MTM  156.7   158.8  103% 87% 

STM  201.5   160.6  80% 88% 

Ref. dist  182.5   182.5  100% 100% 

 

 

Figure 5.9: Profits by models 
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5.4. Conclusions 

The MTM has a better performance than LTM to predict ore zones in a 

scenario of medium-term planning. The ore prediction for the MTM is more accurate 

than the LTM, showing the lowest ore loss content, although its dilution content is 

the highest. Besides, the real profit is higher for MTM than for LTM. The best-

estimated reconciliation corresponds to MTM, too. This is possible for two main 

reasons: the use of a cokriging outline, which takes advantage of the primary and the 

secondary data available, and the use of smaller estimation grid sizes. The 

performance of MTM is just below the STM, even in some benches, the MTM profit 

is the same or higher than STM, which confirms its accuracy for ore prediction in 

short to middle planning.  

Cokriging is accurate when there are available primary and secondary data, 

but its performance decreases as the estimation gets far from the secondary data. The 

MTM is estimated monthly, using the data available from upper benches, not from 

the bench in estimation, which makes the MTM performance and accuracy not 

necessarily be the best. This low performance is detected in the MSE, which lowest 

value, by benches and on average, corresponds to the STM, not the MTM.  

Table 5.9 shows that dilution is more abundant misclassification in all models 

and is above 30%, reaching 40% for the MTM. The high content of dilution in the 

MTM can be reduced by incrementing the resolution model, which is done by 

lowering the estimation grid size. The massive occurrence of dilution in all models is 

worrying, no matter it has a limited impact on profits. Besides, the negative effect of 

dilution on planning and the processing plant is not quantified. The processing plant 

is not prepared to receive an overload of ore/dilution, so delays and economic losses 

could happen in refined mineral production. Finally, highly optimistic planning 

results in poor reconciliation and low productivity. 

MTM estimated with cokriging is the best option for predicting mineral zones. 

It provides more accurate ore/waste contents than the LTM, and their profits are very 

similar to the STM and the Reference distribution model. The LTM has a good 

performance and is quite accurate considering its estimation setup. Even so, the LTM 

has a lower performance in predicting ore zones, bias, MSE and profits than the 

MTM. 
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6. Conclusions and future work 

Data simulation for research is practical when access to real data is not 

possible or data with specific features are required. Many applications of simulation 

aim to simulate relatively widely spaced discretization points to assess resources at a 

large scale. This research is focused on the distribution inside a drill hole. Data are 

obtained from a specific drilling type by explicitly considering the drilling support 

and sampling protocols. According to the research requirements, different degrees of 

bias and error can be applied to data. Simulated DH data have been tested to 

reproduce the input parameters like histograms and variograms. 

Simulated data show acceptable results, reproducing the spatial variability 

(variogram) of the reference distribution. The point-scale simulation and drilling 

support have a moderate impact on grades. The sampling protocol and error/bias 

also significantly impact grades and distribution. After applying the sampling 

protocol, DD and BH distributions differ more in most statistical parameters like 

histogram, mean, SD, or variograms. The sampling protocols imply a significant 

change in the drilling support, mainly for the BH data. After applying the sampling 

protocol, the estimation with BH data increments its MSE and bias.  

The diamond drilling (DD) and blast hole (BH) data are classified as primary 

and secondary based on their quality and confidence. The best performance was 

achieved with cokriging with multiple drilling data types. Cokriging uses primary and 

secondary data and has a lower MSE and bias than models estimated using single 

datasets of primary and secondary data and even combined data from both datasets. 

The profits evaluated from the models show that the MTM has the highest and most 

accurate of all assessed models. The reconciliation is critical as it indicates the 

accuracy of the model to predict ore composition or profits. MTM has the most 

acceptable and realistic reconciliation ratio. 

The bias can impact the estimation in unexpected ways. It is known that a 

positive bias over-estimates grade, distorting the ore/waste classification, which has 

a direct impact on the profit calculation. The misclassifications are dilution and ore 

loss. Ore loss is of critical economic importance in this study because, apart from the 

production costs, it includes the economic loss of not recovering the mineral content 

in the block. In contrast, the economic loss of dilution is limited to production costs 
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by block. Bias affects the estimation increasing average grades, which increases 

dilution but has an unexpected secondary effect of ensuring the recovery of more ore 

blocks. It has been observed that only a 1% difference in ore loss can make a model 

more profitable than others, but a difference of 5% to 10% in dilution, not necessarily 

imply a better profit. In this study, ore loss is economically more damaging than 

dilution.   

The performance of medium and long-term resources models has been 

compared to assess which one better predicts ore zones and profits. The MTM 

estimated with cokriging demonstrated a better result. The MTM presents unbiased 

results, lower MSE and, importantly, an accurate reconciliation. The reconciliation 

ratio is critical as it is an important indicator for future planning and mining 

schedule. 

FUTURE WORKS 

The tests run in this research present acceptable results that confirm the 

validity of the simulated DH data. But these results are not definitive. The main 

observation relates to the input variogram, specifically in the setup of structures. This 

includes seven structures defined by trial and error. It is necessary to manually adjust 

this setup to obtain an acceptable outcome, valid for any mineral distribution or 

element.  

The cokriging outline has provided better results than ordinary kriging, but 

this improvement is of modest magnitude. The setup of cokriging is more 

complicated. It is necessary to improve the LMC fitting. 
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