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ABSTRACT 

This thesis explores the application of continuous wavelet analysis (CWA) 

to hyperspectral data for the characterization of vegetation at the leaf level. The 

first study dealt with the spectral detection of green attack damage (pre-visual 

stress) due to mountain pine beetle (Dendroctonus ponderosae Hopkins) 

infestation that occurs on lodgepole pines at an early stage, in contrast to 

considerable research on the remote detection of red attack damage. A new 

methodology was developed to separate healthy pine trees from beetle infested 

trees, based on the CWA of hyperspectral measurements for pine needles. This 

pilot study showed that a decline in water content occurred for the pine trees at 

the green attack stage and the spectral response to that physiological change could 

be detected using a few features in the wavelet domain. The second topic 

addressed the application of CWA to the determination of leaf water content from 

remotely sensed reflectance. Unlike most previous studies involving a limited 

number of species, this study examined a wide range of tropical forest species 

with the aim to determine reliable and effective wavelet features (coefficients) 

sensitive to changes in leaf gravimetric water content (GWC). Of those significant 

wavelet features extracted, some related to the absorption of leaf water while 

more related to the absorption of dry matter. An evaluation of the wavelet features 

as compared with published water indices indicated their great potential for the 

estimation of leaf GWC. Lastly, the third study tested the wavelet-based 

methodology developed in the second study using a leaf spectral database 

generated by the PROSPECT radiative transfer model. The ability of PROSPECT 



to simulate leaf reflectance measured for the tropical data set was first assessed. 

Then the performance of the aforementioned methodology was evaluated in terms 

of the consistency of wavelet features extracted across data sets. This work 

demonstrated the effectiveness of the wavelet-based methodology and the 

robustness and reliability of recurrent wavelet features for the estimation of leaf 

GWC across a wide range of species. 
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CHAPTER 1 – INTRODUCTION 

 

1.1. Background 

As a key component of the earth system, vegetation influences the energy 

and mass exchange with the atmosphere and soil, particularly the cycling of 

carbon, water and nutrient in terrestrial ecosystems. Remote sensing, precisely 

imaging spectroscopy, offers an effective way to detect the spatial variations in 

chemical constituents of vegetation canopies such as pigment, water, nitrogen and 

carbon constituents at broad spatial scales and their relations with biodiversity and 

the Earth’s climate system (Asner & Vitousek, 2005; Ollinger et al., 2008; Ustin 

et al., 2004). Over the last few decades, imaging spectrometer data acquired from 

aircraft or spacecraft have become increasingly available for developing remote 

sensing techniques to estimate canopy chemistry in various forest ecosystems. 

(Coops et al., 2003; Martin & Aber, 1997; Peterson et al., 1988; Townsend et al., 

2003; Wessman et al., 1988). Following these successful estimations at the 

landscape level, the spatial distribution of ecosystem chemical composition over 

large portions of the globe may be revealed in the near future by a few new 

hyperspectral satellite missions such as HyspIRI and EnMAP (Kokaly et al., 

2009). 

Compared to imaging spectrometers that remotely measure the reflectance 

of plant canopies in hundreds of narrow and contiguous spectral bands (Goetz et 

al., 1985), laboratory spectrometers are able to measure the reflectance of leaves 

in thousands of spectral bands in a laboratory setting. The reflectance 

measurements from the former are more complex than those from the latter due to 

the impact of such factors as canopy structural variation and viewing geometry 

(Clark et al., 2005; Roberts et al., 2004). Therefore, the application of imaging 

spectroscopy to plant canopies could benefit from the advancement of laboratory 

research in which leaf chemical properties are more accurately estimated from 

higher quality spectroscopic data measured in more controlled conditions. 
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Previous laboratory studies on the determination of leaf chemistry have 

contributed significantly to our understanding of leaf spectral responses 

associated with changes in chemical concentrations (Asner & Martin, 2008; 

Curran, 1989; Curran et al., 2001; Kokaly, 2001; Kokaly & Clark, 1999). In 

addition, quantitative chemical information derived from leaf reflectance is of 

importance for the detection of vegetation stresses caused by the insufficient 

availability of such foliar chemicals as water, nitrogen, and total chlorophyll in 

plant physiological processes (Pu et al., 2008; Strachan et al., 2002; Zarco-Tejada 

et al., 2002). 

The reflectance spectra for different types of vegetation (400-2500 nm) are 

similar in shape because vegetation reflectance is mainly influenced by the 

spectral absorptions of common chemical components weighted by their 

concentrations (Curran, 1989; Kokaly & Clark, 1999). Due to the spectral 

absorptions by multiple chemicals, it is difficult to uniquely relate the reflectance 

at a wavelength to the concentration of a single chemical constituent in leaves. 

One solution to that problem is to utilize more than one wavelength to enhance 

the absorption features being examined and suppress the spectral variability 

caused by factors irrelevant to leaf chemistry (e.g., illumination variation). 

In order to resolve the absorption of a leaf chemical constituent with 

multiple wavelengths, many studies use stepwise multiple linear regression 

(SMLR) to build calibration equations by selecting a small number of 

wavelengths that separately correlate with concentrations of each of such 

constituents as water, nitrogen, lignin, cellulose (Card et al., 1988; Curran et al., 

1992; Gross et al., 1996). Two spectral preprocessing techniques have often been 

applied prior to the regression: derivative analysis and continuum removal. 

Derivative analysis, performed by means of applying the first or second derivative 

to reflectance spectra, has been widely used to emphasize subtle absorption 

features of leaf chemicals due to its lower sensitivity to illumination intensity and 

leaf internal structural variability (Curran et al., 1992; Danson et al., 1992; 

Johnson & Billow, 1996; Pe uelas et al., 1994). This approach does not provide a 
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flexible way to extract meaningful information on absorption features of various 

widths at a time (Bruce & Li, 2001). In addition, the sensitivity of derivative 

spectra to noise in reflectance spectra poses a problem for the effectiveness of 

second- or higher-order derivatives. Continuum removal is a spectral analysis tool 

specifically designed to isolate absorption features of interest from the continuum 

of reflectance spectra. The use of continuum-removed spectra enables us to build 

direct relationships between concentrations of chemical constituents and 

absorption characteristics (Curran et al., 2001; Kokaly, 2001; Kokaly & Clark, 

1999). However, the shape of continuum-removed spectra is non-deterministic 

because it is subject to the analyst’s definition of the absorption region of interest 

and to the choice of an algorithm to approximate the continuum (Rivard et al., 

2008).  

To avoid the direct use of reflectance or derivative reflectance, one can 

use spectral indices that are band ratios of spectral reflectance at a small number 

of wavelengths. However, spectral indices are often empirically developed 

through correlation between chemical concentrations and leaf spectral properties 

for a few species that are close in geographic location or taxonomy (Blackburn, 

1998; Eitel et al., 2006; Pe uelas et al., 1997). Those empirical relationships tend 

to become weaker when spectral indices are applied to a data set that exhibits 

much diversity in species composition and substantial variation in leaf spectral 

properties. Thus, further investigations are required to develop more robust 

relationships to reduce the spectral variation irrespective of leaf chemical 

properties by incorporating more informative wavelengths (Datt, 1999a; Datt, 

1999b; le Maire et al., 2004; Sims & Gamon, 2002). Recently, continuous wavelet 

analysis (CWA) has emerged as a promising tool in laboratory spectroscopy for 

deriving chemical properties from leaf reflectance spectra (Blackburn & 

Ferwerda, 2008; Ferwerda & Jones, 2006). CWA enables us to decompose a 

reflectance spectrum into a number of scale components each of which is directly 

comparable to a reflectance spectrum and therefore readily linked to the 

absorption features. The multi-scale representation of a reflectance spectrum 

facilitates the characterization of absorption features of different widths at various 
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scales. These characteristics of CWA offer a valuable opportunity to gain new 

insights into the spectral responses associated with changes in leaf chemical 

constituents. 

 

1.2. Thesis goal and objectives 

The main goal of this thesis is to investigate the application of CWA to the 

characterization of vegetation using hyperspectral data. The objectives are: 1) to 

develop methodologies based on continuous wavelet analysis of reflectance 

spectra for two specific applications: the early detection of beetle attack damage 

and the estimation of leaf water content across a variety of tropical species, and 2) 

to evaluate the generality of the methodology developed for the estimation of leaf 

water content using a modeling approach. Specifically, the first objective 

addresses how to use spectral signatures of pine needles to detect the insufficiency 

of water and chlorophyll as a physiological response to beetle infestation, and 

what spectral features are the most sensitive to changes in leaf water content. The 

second objective addresses the use of a simulated data set generated by a leaf 

radiative transfer model (PROSPECT) to test the wavelet-based methodology 

developed using a laboratory-measured data set. This research focuses on 

understanding the fundamentals of leaf-level spectral variations in relation to 

changes in concentrations of leaf water and chlorophyll through the use of CWA. 

It is therefore expected to be extended to canopy or landscape level in the future. 

Those methodologies, although specifically developed for the early detection of 

beetle attack damage and estimation of leaf water content in this thesis, should 

also assist in the stress detection and in the retrieval of any leaf biochemical 

constituent in other vegetation studies that use reflectance spectroscopy as a main 

tool. 
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1.3. Thesis outline 

This thesis is based on the compilation of three standalone papers 

published or submitted to peer-reviewed journals. Following the introduction, the 

three chapters deal with the application of continuous wavelet analysis to 

reflectance spectra coupled with leaf trait data (total chlorophyll and water) for 

characterizing vegetation conditions.  

The main goal of Chapter 2 is to search for spectral signals that relate to 

the early detection of the effect of mountain pine beetle (Dendroctonus 

ponderosae Hopkins) infestation on the spectral response of lodgepole pines. To 

detect the pre-visual beetle attack damage, two research questions were 

addressed: 1) do infested trees undergo water stress, chlorophyll stress, or both? 

2) if any of these stresses occurs, is the stress detectable using spectral 

reflectance? Several field campaigns were conducted to collect measurements of 

needle spectral reflectance, total chlorophyll concentration, and water content 

from healthy pine trees and infested trees that were at the green attack stage. 

Statistical analysis was performed on chlorophyll and water data to achieve a 

good understanding of the physiological mechanism of the green attack damage 

and provide guidance for subsequent spectral analysis. To detect the potential 

stress in the spectral domain, a novel method was developed to spectrally 

distinguish healthy trees from infested trees using CWA of reflectance spectra. 

This study, Continuous wavelet analysis for the detection of green attack damage due to 

mountain pine beetle infestation (Cheng et al., 2010), was published in Remote 

Sensing of Environment, 114, 899-910.  

As Chapter 2 concludes that the water content of needles is a physiological 

indicator of the green attack damage, Chapter 3 focuses on determining the most 

reliable spectral information that relates to the water content in a leaf. 

Measurements of leaf reflectance and gravimetric water content (GWC) for 47 

tropical forest species in Panama were collected from 265 leaf samples to 

represent the wide ranges of water content and spectral variability (Castro et al., 

2006; Sánchez-Azofeifa et al., 2009). Using CWA, an effective method was 

developed to determine the most significant wavelet features that are sensitive to 
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changes in leaf GWC across a variety of species. The performance of the wavelet 

features extracted using this new method was evaluated and compared with that of 

common spectral indices for the estimation of leaf GWC. In addition, the 

significance of those wavelet features was interpreted with reference to absorption 

features in leaf reflectance spectra.  

In Chapter 4, I test the wavelet-based methodology developed in Chapter 3 

using the leaf reflectance spectra simulated by the PROSPECT radiative transfer 

model. Input parameters for simulations with PROSPECT were defined based on 

the measurements of the tropical leaf data set used in Chapter 3. Two experiments 

were conducted, each with different simulation conditions. One was designed for 

assessing the ability of PROSPECT to simulate the measured reflectance in the 

tropical leaf data set. The other was used to evaluate the performance of the 

wavelet-based methodology for the estimation of leaf GWC from simulated 

spectra. The wavelet features derived from the simulated spectra were compared 

with common water indices in terms of the predictive capabilities. More 

importantly, these wavelet features were compared to those from the measured 

spectra to determine the robust wavelet features sensitive to changes in leaf GWC 

across data sets. This research in conjunction with the study in Chapter 3 provides 

a new insight into explaining the spectral variations caused by changes in leaf 

GWC through the use of CWA.   

Lastly, I close this thesis by summarizing the conclusions presented in the 

three chapters above and describing the directions of future research. 
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CHAPTER 2 – CONTINUOUS WAVELET ANALYSIS FOR 

THE DETECTION OF GREEN ATTACK DAMAGE DUE TO 

MOUNTAIN PINE BEETLE INFESTATION
1
 

 

2.1. Introduction 

The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a native 

insect of the pine forests of western Northern America, and significant outbreaks 

of its population periodically occur in these stands (Safranyik et al., 1974; Taylor 

et al., 2006). In Canada, the beetle population at epidemic levels has been 

primarily recorded in British Columbia where the cumulative area of beetle 

outbreak was 130,000 km
2
 by the end of 2006 (Westfall, 2007). However, forest 

monitoring indicated an increasing presence of mountain pine beetle and a spread 

from west-central Alberta to southwestern and northwestern Alberta since 1992, 

consistent with the expansion of mountain pine beetle outbreak areas in British 

Columbia (Alberta Sustainable Resource Development, 2007). During great 

outbreaks, beetle populations are capable to cause mortality of mature trees over 

many thousands of hectares (Safranyik & Carroll, 2006). The beetle-killed trees 

have an environmental impact by reducing forest carbon uptake and increasing 

future emissions (Kurz et al. 2008)) but they also represent a large economic loss 

to the forest industry. Recent research demonstrated that the current outbreak of 

mountain pine beetle in western Canada even affected forest carbon dynamics 

over large areas and contributed significantly to global climate change (Kurz et 

al., 2008). 

                                                           
1 A version of this paper has been published: Cheng, T., Rivard, B., Sánchez-Azofeifa, G. 

A., Feng, J. & Calvo-Polanco, M. (2010). Continuous wavelet analysis for the detection 

of green attack damage due to mountain pine beetle infestation. Remote Sensing of 

Environment, 114, 899-910. Reprinted with permission from Elsevier.  

Author contributions: Dr. Rivard and Dr. Sánchez-Azofeifa helped design the whole 

study, discussed the results, and provided editing comments on the manuscript. Dr. Feng 

was partly involved with discussion about data processing using continuous wavelet 

analysis. Dr. Calvo-Polanco helped with site selection and data collection for the girdling 

experiment. I collected spectral measurements in the field, did water content and 

chlorophyll concentration measurements in the laboratory, wrote the codes for data 

processing, processed the data, interpreted the results, and composed the manuscript. 
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The principal hosts killed by mountain pine beetle in western Canada are 

mature pine trees of which the lodgepole pine (Pinus contorta Dougl. Ex Loud. 

Var latifolia Engelm.) is extensively studied (Safranyik & Carroll, 2006). The 

beetle usually starts attacking the healthy trees by colonizing the hosts during late 

July through mid August. The trees bear green foliage during the early stage of 

attack also referred to as green attack. Subsequently, the damage is transitioned to 

red attack with the crown fading to uniform yellow to red and to brown by late 

summer of the following year (Amman, 1982; Henigman et al., 1999). 

To meet the information needs of the extent and damage level of the 

mountain pine beetle infestation, remotely sensed data have been extensively 

utilized over large areas (Wulder et al., 2006). In particular, a number of 

successful studies have focused on the detection of red attack damage using 

multispectral satellite imagery at a range of spatial resolutions (Coops et al., 

2006a; Coops et al., 2006b; Franklin et al., 2003; Skakun et al., 2003; White et al., 

2005; White et al., 2006). Franklin et al. (2003) used stratified Landsat TM 

imagery to identify red-attack stands from non-attack forest stands with an overall 

classification accuracy of 73%. White et al (2005) used IKONOS imagery to 

detect red attack at sites with different intensities of infestation. They obtained 

accuracies of 71% and 92% for stands that respectively contained 1-5% and 5-

20% trees with red attack. Using QuickBird imagery, Coops et al (2006a) 

generated a ratio of red to green reflectance to distinguish red-attack and non-

attacked pixels and found a significant relationship between the number of red 

attack pixels and red attacked crowns observed in the field (r
2
=0.48, p<0.001, 

standard error=2.8 crowns). In this case the identification of red-attack crowns is 

viable because the spatial resolution of Ikonos (4m) and QuickBird (2.5m) 

multispectral imagery are consistent with the size of individual tree crowns. The 

spectral resolution of these data is however insufficient to capture the spectral 

response of trees to the biophysical phenomena (e.g., water stress) caused by 

beetle attack. White et al (2007) recently examined six moisture indices derived 

from EO-1 Hyperion hyperspectral imagery and established a significant 

relationship between the Moisture Stress Index and levels of red attack (r
2
=0.51, 
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p=0.0001). Their study suggests that hyperspectral data may provide a means to 

detect the signals from red attacked stands with low densities of infestation.  

Studies investigating the spectral detection of green attack are sparse in 

the literature. Using foliage reflectance data acquired from 360-1050 nm, Ahern 

(1988) determined that the most promising spectral bands for the detection of 

green attack were located near the green peak, red edge and near-infrared 

shoulder. A red-shift of the red edge position was also observed in the spectra of 

trees under green attack. Runesson (1991) investigated the detection of green 

attack based on in-situ spectroscopy and digital airborne data and found that the 

separation between healthy and attacked tree canopies was poor. In contrast to the 

previous study, the analysis of foliage reflectance spectra demonstrated a blue-

shift of the red edge for attacked trees.  

The studies by Ahern (1988) and Runesson (1991) paid particular 

attention to the examination of pigment-driven spectral variations in the visible 

and near infrared regions. Changes in leaf water content and ensuing changes in 

leaf spectral reflectance were not investigated or were undetected because spectral 

data beyond 1100nm were unavailable.  Declines in sapwood moisture content 

resulting from beetle attack have been documented (Reid, 1961; Yamaoka et al., 

1990) and consequently moisture stress may result in non-visual symptoms that 

are detectable with spectral data particularly if data are acquired between 1000-

2500 nm where water absorption features in vegetation are well documented. 

This study examines the spectral properties (350-2500 nm) and total 

chlorophyll and water content characteristics of needles obtained from infested 

and control (healthy) lodgepole pine trees to assess the detection of pre-visual 

symptoms. As a baseline, I also examine these properties for healthy trees and 

trees girdled to induce a water stress. The literature provides a number of spectral 

indices for the detection of pigment and water variability in leaves (Blackburn, 

1998; Gamon et al., 1992; Gao, 1996; Hunt & Rock, 1989; Peñuelas et al., 1993, 

1997; Rock et al., 1986; Sims & Gamon, 2002) but these employ only a limited 

number of spectral bands. Alternatively wavelet analysis has shown promise for 

the analysis of hyperspectral data  (Blackburn, 2007; Blackburn & Ferwerda, 
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2008; Ferwerda & Jones, 2006; Kalacska et al., 2007; Koger et al., 2003; Pu & 

Gong, 2004; Rivard et al. 2008; Zhang et al., 2006). Wavelet analysis has the 

merit of decomposing the reflectance spectra into components of different scales 

(or frequencies) thus facilitating the detection of subtle signals. The aim of this 

study was to focus on the detection of green attack induced by mountain pine 

beetle utilizing leaf-level reflectance spectra analysed with a continuous wavelet 

transform. Specifically the study compared the responses of healthy control trees 

to infested and girdled trees and investigated the feasibility of separating these 

two groups using an appropriate set of spectral features (at particular scales and 

wavelength positions). 

 

2.2. Data collection  

2.2.1. Study sites 

To assess the spectral detection of green attack for pine needles, two sites 

located northwest of Edmonton, Alberta, Canada were investigated (Fig. 2-1). The 

first site, located near Swan Hills, served for the girdling experiment to simulate 

the injury of sapwood tissues by a beetle attack. The second site, located near 

Grande Prairie, consisted of trees that were infested by mountain pine beetle 

(MPB).  

Lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) 

dominates the forests at the two sites. The trees investigated were approximately 

20 years old, 8 meter tall, and displaying a diameter at breast height of 15 cm. At 

each site a number of control and treatment pine tree pairs were sampled. The 

sites with girdled trees and MPB infested trees encompass 16 and 15 tree pairs, 

respectively. Trees showing pitch tubes and bearing green foliage at the beginning 

of the sampling period were chosen to comprise the infested samples. The 

selected lodgepole pine trees received extensive sunlight occurring along 

clearings. Each healthy tree used as control was located within 5 meters of the 

treatment tree to facilitate comparison between control and treatment samples.  
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 The girdling treatment was implemented in May 2007 to simulate the 

effect of MPB infestation where fungus transmitted by the beetle infects the 

sapwood and plugs the water-conducting xylem elements (tracheids) effectively 

preventing them from conducting water (Solheim, 1995; Yamaoka et al., 1990).  

An incision with a saw was made around the trunk of the tree approximately 50 

cm above the ground and 5 cm into the sapwood. In doing so I aimed to interrupt 

the continuity of xylem tracheids in the tree and interrupt the flow of xylem sap 

into the crown. This treatment has been previously used to induce water-deficit 

stress in trees (Brix & Mitchell, 1985; Kent et al., 2004; Riggs & Running, 1991; 

Running, 1980). All treatment and control pairs at the girdling site were densely 

distributed along two roads at two subset sites two kilometers apart. Field 

measurements were acquired at this site on June 18
th

 and August 30
th

 of 2007. 

Infested trees at the second site were attacked by mountain pine beetle in 

the summer of 2007 and all tree pairs occurred within an area of 1.5 km
2
 along a 

main road. Field measurements were acquired in 2008 on June 5
th

, July 13
th

, 

August 14
th

, September 20
th

 and October 14
th

. All tree samples were bearing 

green needles on June 5
th

 and two trees showing discoloration of foliage on 

subsequent dates were excluded from sampling. The final number of trees 

available for analysis at each date is shown in Table 2-1.  

 

2.2.2. Sampling of needles 

A pole pruner was used in the early afternoon to collect one sunlit branch 

from each tree. Needles were then collected throughout the branch excluding new 

shoots. Reflectance spectra were either immediately acquired or the branch 

samples were packed with ice bags and transported to a nearby indoor laboratory 

where they were measured. Within minutes of each spectral measurement, 

approximately one third of the needles were wrapped in moistened paper towels 

and sealed with foil paper in a cooler with ice (Foley et al., 2006). The samples 

were then kept at -18
o
C for subsequent leaf biochemical analysis.  
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2.2.3. Measurement of reflectance 

An optically thick layer of needles extracted from a given branch was 

arranged on a panel coated with spectrally flat black paint (maximum reflectance 

of 9.8% at 400 nm). The FieldSpec® FR spectroradiometer (ASD Inc., Boulder, 

CO, USA) was then used to measure the reflectance of needle samples from 350 

to 2500 nm. The instrument is characterized by a resolution of 3 nm at 700 nm, 10 

nm at 1500 nm, and 10 nm at 2100 nm. The FieldSpec® FR fiberoptic cable 

utilized to collect light reflected from a sample was coupled to a high intensity 

reflectance probe attachment which is equipped with an internal artificial light 

source thus providing measurements independent of solar illumination conditions. 

The probe attachment was placed on the optically thick layer of needles and it 

encompassed an approximate field of view of 2.5cm in diameter. The probe was 

in contact with the needle layer and excluded external light. Reflectance was 

determined by standardizing one sample spectrum to that of a white Spectralon 

reference panel (99% reflectance). Each measurement (e.g. sample and reference) 

were recorded as an average of twenty scans in order to minimize instrument 

noise.  

 

2.2.4. Measurement of pigment and water content 

For each sample, two bundles of two needles were placed in a 15 ml 

centrifuge tube and pigments were extracted by adding 10 ml of dimethyl 

sulphoxide (DMSO) to the tube and placing the tube in a 65°C water bath in the 

dark for more than 5 hours. The extract was transferred to a 4.5 ml cuvette and the 

absorbance at 664 nm, 646 nm and 470 nm was measured with a Smart® Spectro 

spectrophotometer (LaMotte, Chestertown, MD, USA). A blank sample was 

measured for calibration once for each wavelength. The concentrations of 

chlorophyll a, chlorophyll b and total carotenoids in µg/g were determined using 

the coefficients and equations derived by Wellburn (1994).  

The remaining needles for each sample were weighted to determine fresh 

weight (FW). Dry weight (DW) was then determined by weighing after oven 
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drying at 80°C for 24 hours. The water content of the needles as a percent of dry 

mass was given by: 

H2O% = ((FW-DW) / DW)×100     (2-1) 

 

2.3. Methodology 

2.3.1. Continuous wavelet transform  

Wavelet analysis is a powerful signal processing tool (Mallat, 1999) which 

has been used successfully in medical sciences (Addison, 2005), geophysics 

(Farge, 1992; Torrence & Compo, 1998) and remote sensing image processing 

(Núñez et al., 1999; Simhadri et al., 1998) to extract information from various 

scales. Past studies include spectral smoothing and noise removal (Schmidt & 

Skidmore, 2004), discrimination of weeds from crop (Koger et al., 2003), tree 

stress detection (Kempeneers et al., 2005), tropical tree species identification 

(Zhang et al., 2006), forest leaf area index (LAI) and crown closure mapping (Pu 

& Gong, 2004), and retrieval of foliar pigment content (Blackburn, 2007; 

Blackburn & Ferwerda, 2008).  

Recent studies (Bruce & Li, 2001; Bruce et al., 2001, 2002, 2006; Li & 

Bruce, 2004) have demonstrated the merits of using wavelet deconvolution for the 

analysis of hyperspectral data because such data exhibit non-stationarity, that is, 

spectral signals can vary in both amplitude (e.g. feature depth) and scale (e.g. 

feature width). Wavelet analysis can be implemented as a continuous wavelet 

transform (CWT) or a discrete wavelet transform (DWT). Most of the studies 

listed above exploited the DWT as a method for feature reduction but a 

substantial drawback is the inherent difficulty in interpreting the output 

coefficients. The CWT can decompose a signal at a continuum of positions rather 

than at dyadic positions and thus the outputs from the CWT are directly 

comparable to the original spectrum and are more easily interpretable. Recently, 

Rivard et al. (2008) provided an examination of CWT to highlight key spectral 

features in mineral spectra. Therefore, CWT was used in this study to examine its 
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potential to extract spectral information of various scales for leaf reflectance 

spectra. 

The wavelet transform uses a mother wavelet basis function to convert a 

hyperspectral reflectance spectrum f(λ) (λ=1, 2,..., n, n is the number of 

wavebands and n=2151 herein) into sets of coefficients. The wavelets ψa,b(λ)  are 

produced by scaling (dilating) and shifting (translating) the mother wavelet ψ(λ) 

(Bruce et al., 2001): 

)(
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a
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a
ba





       (2-2) 

where a and b are positive real numbers for CWT. a represents the scaling factor 

defining the width of the wavelet and b is the shifting factor determining the 

position. The output of CWT is given by: 





  dffbaW babaf )()(,),( ,,

    (2-3). 

Given any specific scale ai (i=1, 2, ..., m, m is the maximum scale available), the 

continuous wavelets can be shifted through any waveband and the CWT of a 

reflectance spectrum generates a 1×n vector of wavelet coefficients. The CWT 

coefficients (Wf(ai,bj), i=1, 2, ..., m, j=1,2,..., n) constitute a 2-dimensional 

scalogram (i.e. a m×n matrix) where one dimension is scale and the other is 

wavelength (or waveband). The value of each element of the scalogram represents 

the wavelet power which measures the correlation between the scaled and shifted 

mother wavelet and a segment of the reflectance spectrum and reflects the 

similarity of the local spectral shape to a particular wavelet basis. Low scale 

components of the scalogram capture absorption features of fine spectral details 

and high scale components emulate the overall continuum of the reflectance 

spectrum.  

Leaf reflectance spectra contain specific absorption features from 350 to 

2500 nm caused by the presence of pigments, water and dry matter. The shape of 

the absorption features is similar to Gaussian or quasi-Gaussian function, 
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therefore, the second derivative of Gaussian (DOG) also known as the Mexican 

Hat was used as the mother wavelet basis (Torrence & Compo, 1998) (Fig. 2). 

Since the wavelet decomposition at a continuum of possible scales (i=1, 2, ..., m.) 

would be computationally expensive and lead to a large data volume, the 

dimensions of the scalogram was reduced by decomposing the reflectance spectra 

at dyadic scales 2
1
, 2

2
, 2

3
, ..., and 2

10
 which are proportional to the effective length 

of the wavelet compressed or stretched at that scale. Note that those scales are 

labelled as scales 1  2  3  …  and 10 in the following and still comparable to the 

scales described in published studies by Blackburn & Ferwerda (2008) and Rivard 

et al. (2008). The maximum scale available for the data of this study is 2
11

=2048 

but this scale was discarded due to the low information content. All CWT 

operations were accomplished in the IDL 6.3 Wavelet Toolkit (ITT Visual 

Information Solutions, Boulder, CO, USA). 

 

2.3.2. Statistical analysis of leaf pigment and water properties 

The linear correlation coefficient between leaf pigment and water content 

was examined for each dataset listed in Table 2-1. For each biochemical property, 

a paired t-test was then performed on each dataset to evaluate the separability of 

control and treatment (girdled and infested) samples. The resulting p-values were 

used to determine the statistical significance of the observed separability (Zar, 

1996). The datasets displaying control and treatment samples with distinct leaf 

properties were then retained for subsequent wavelet analysis examining the 

correlation between spectral and chemical properties.  

 

2.3.3. Correlation scalograms  

The continuous wavelet analysis converts each 1-D reflectance spectrum 

to a 2-D wavelet power dataset which can be visualized as a scalogram with 

dimensions of wavelength and scale and power represented as amplitude. In this 

study, correlation scalograms (Fig. 2-3) were used to determine the wavelet power 

features that most strongly correlate with the leaf properties investigated (Cocchi 
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et al., 2003). Each correlation scalogram reports the squared correlation 

coefficient (R
2
), ranging in value from 0 to 1, at each wavelength and scale.  R

2 
is 

obtained for the linear correlation established between wavelet power and an 

independent variable across all measurements of a given dataset (e.g. combined 

control and treatment). To build the correlation scalogram the control and 

treatment (e.g. girdled or infested) data were combined to achieve a larger sample 

size. In doing so, there were concerns that the dependence of control and 

treatment samples might violate the statistical assumption of randomization for 

observations within a sample. The dependence between the wavelet power and 

water content of control and treatment samples was examined and no significant 

correlation was observed.  

In this study, the independent variables examined include the 

concentration of total chlorophyll, leaf water content, and class ID, the latter 

being used to identify features that distinguish the control and treatment samples. 

Fig. 2-3 provides an example correlation scalogram for the leaf water content and 

spectra of August 14 2008. Areas of the scalogram highlighted in blue on Fig. 2-3 

display the most significant correlation and were selected as described in the next 

section.  Scalogram outputs from the wavelet analysis were computed for 10 

scales and thus are not convenient for visualization. To facilitate the visual 

inspection of scalograms, values at each scale were replicated or interpolated 

resulting in resized scalograms (100×2151) that have a 10 times vertical 

exaggeration. The interpolated scalograms were resampled with a cubic 

convolution providing a smoother appearance that was used strictly for 

visualization of features (Fig. 2-3A). The replicated scalograms (Fig. 2-3B) have a 

rough appearance preserving the original data and were used for determining the 

location of features selected as described in the next section. 

 

2.3.4. Feature selection using correlation scalograms 

Each element of a correlation scalogram represents a feature characterized 

by a R
2 

value, wavelength and scale. The selection of the most informative 

features for a given independent variable involved two steps: 1) retaining features 
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where the correlations are statistically significant (p<0.05), and 2) sorting these 

features in descending order of R
2 

value to retain those encompassing the top 1% 

of R
2
 values (Fig. 2-4). These feature sets are highlighted in blue on Figs. 2-3, 2-6 

and 2-7.  

Fig. 2-5 provides a structured and labelled representation of the scalogram 

list for the girdled and infestation datasets. A total of 21 correlation scalograms 

were examined to produce 21 individual feature sets. Note that once a feature set 

was defined for a given independent variable and spectral dataset, the intersection 

of two feature sets could be established as a crossover feature set. For example, 

from the intersection of feature sets by class ID and water for August 14, 2008 

one can examine if features that allow separation of control and infested samples 

by class ID are consistent with features that correlate with water content for these 

samples. 

 

2.4. Results  

2.4.1. Leaf pigment and water properties 

A summary of correlations between laboratory-measured leaf properties is 

provided in Table 2-2. A weak correlation between total chlorophyll and water 

content is observed for the girdled and control datasets. As expected, a strong 

correlation is seen between total chlorophyll and carotenoid content for all 

datasets. Therefore, the leaf carotenoid data were excluded from the following 

analysis.  

The results of the two-tailed paired student’s t-tests are summarized in 

Table 2-3. Significant differences in water content are observed for the control 

and treatment samples of the two girdled datasets (Jun18-2007 and Aug30-2007) 

and two of the five infested datasets (Jul13-2008 and Aug14-2008). Significant 

differences in chlorophyll content are only observed for the two girdled datasets. 

For these four datasets, one-tailed t-tests (H0: control = treatment; HA: control > 

treatment) resulted in the same significance and stronger statistical power (one-

tailed test not shown). The distinct chlorophyll and water content for the control 
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and treatment samples of the two girdled datasets suggests that girdled trees 

suffered water and chlorophyll stress induced by the mechanical injury. However, 

the trees infested by mountain pine beetle show evidence of a water deficit but no 

significant reduction in chlorophyll. The absence of significant difference in water 

content between control and infested samples in June likely results from the lack 

of time for tree to develop a response. The lack of a response for September and 

October remains unexplained. Subsequent analysis of leaf pigment, water, and 

spectral properties were conducted on the two girdled datasets and the two 

infested datasets where control and treatment samples were separable based on 

leaf water content.  

 

2.4.2. Continuous wavelet analysis of the girdled datasets  

  The correlation scalograms produced with the Jun18-2007 dataset are 

displayed in Fig. 2-6A~E.  Fig. 2-6A highlights features strongly sensitive to 

chlorophyll concentration that are observed in the visible (VIS) (530-740 nm) and 

in the shortwave-infrared (SWIR) (1990-2120 nm) regions at scales of 1 to 7. The 

discrimination by class ID (Fig. 2-6B) highlights features found in the SWIR 

(1550-2150 nm) at scales of 2 to 5 that distinguish the control and treatment 

samples. Leaf water content was strongly correlated with a few features in the 

near-infrared (NIR) (950-1230 nm) (Fig. 2-6C) and in the SWIR (1500-2400 nm) 

at scales of 2 to 5. The intersection of features observed for class ID with those of 

chlorophyll (Fig. 2-6D) and water (Fig. 2-6E) respectively results in features near 

1990-2010 nm at scales of 4 to 5 and near 1560-2150 nm at scales of 3 to 5. These 

findings suggest that the significant differences in total chlorophyll and water 

between the two groups of samples derived from t-tests (Table 2-3) are detected 

in the CWT representation of spectral data. Scales of 4 and 5 are in general the 

most frequently selected. The location of features is listed in Table 2-4. 

Fig. 2-6F~J shows the resultant correlation scalograms produced for the 

Aug30-2007 dataset. Generally, the locations of features selected are similar to 

those of Jun18-2007 but there are more features at low scales. In the case of water 

(Fig. 2-6F) several narrow feature regions are observed in the visible region that 
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are absent in the June dataset. The features are generally concordant with broader 

feature regions observed for chlorophyll (Fig. 2-6H) and likely result from the 

significant correlation between leaf water content and chlorophyll concentration 

(r=0.57, p≤0.001  n=32) (Ceccato et al., 2001). The intersection of features 

selected from the class ID scalogram with those of the chlorophyll (Fig. 2-6J) 

scalogram shows no concordance with the feature set observed for the June 

dataset (Fig. 2-6D). For the feature intersection of water and class ID (Fig. 2-6I), 

features observed in June (Fig. 2-6E) do not align with those of August but a 

number of features occur in the same spectral region.  

Fig. 2-6K displays the class ID features common to the June and August 

2007 datasets indicating that girdled and control samples can be distinguished 

with two feature regions observed between 1560-2150 nm at scales 3, 4 and 5. As 

indicated above a number of water features occur in these spectral regions for 

both datasets (Fig. 2-6E and I). 

  Table 2-4 summarizes the wavelength regions and scales of the features 

selected from the intersection of class ID features with those observed for 

correlation scalograms of water and chlorophyll. It is worth noting that features 

from scale 3 and 4 are common and features from scale 5 are consistently 

selected. Ferwerda & Jones (2006) also found that features at this scale were 

optimal for the prediction of leaf nitrogen concentration. These three scales 

appear to represent the optimal combination of scales of decomposition for the 

detection of changes in water and chlorophyll content in the girdled data. The 

August dataset produced more chlorophyll features for the class ID separation 

(Fig. 2-6J) than the June dataset (totalAugust=41, totalJune=3), but less water features 

(totalAugust=40, totalJune=128). The increased capability to detect chlorophyll 

deficit later in the growing season may be attributed to the presence of a 

chlorophyll stress following water stress.  

 

2.4.3. Continuous wavelet analysis of the infested datasets 

 The correlation scalograms produced with the Jul13-2008 dataset are 

shown in Fig. 2-7L~O. Features strongly correlated to chlorophyll concentration 
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are not consistent in their wavelength location for both dates (Fig. 2-7L and R) 

and span the complete spectral region. A number of features observed for July 

have similar characteristics to those observed for June for the girdled dataset (Fig. 

2-6A). For the Aug14-2008 dataset the chlorophyll features are primarily selected 

at high scales. The absence of intersection features between chlorophyll and class 

ID features for both infested datasets (Fig. 2-5) is consistent with the lack of 

statistical difference in chlorophyll between control and infested samples (Table 

2-3). The results from the wavelet analysis and statistical test reveal the difficulty 

in separating control and infested samples based on chlorophyll abundance or 

spectral indicators of chlorophyll.  

 For the July and August 2008 data, features for the class ID (Fig. 2-7M 

and Q) and water (Fig. 2-7N and P) scalograms were found primarily in the NIR 

and SWIR regions. Both dates share a well defined feature region near 1310-

1390nm (Fig. 2-7U) for class ID discrimination spanning multiple scales of which 

a narrower region (1318-1322 nm) of limited scale is attributed to water for both 

dates (Fig. 2-7T).  

 Table 2-5 summarizes the locations of features selected from the 

intersection of scalograms for both infested datasets. In contrast to the girdled 

datasets, more features are obtained from high scales with the infested datasets 

(e.g., scale 7 and 8). While the number of water features that might be used to 

distinguish control and infested samples declines from July to August 

(totalJuly=74, totalAugust=14), there are five features at scale 7 between 1318-1322 

nm that are common to both datasets. Finally the class ID features common to 

both infested datasets (Fig. 2-7U) occur in a distinct region from the two key 

feature regions identified for the girdled datasets (Fig. 2-6K).  

 

2.5. Discussion 

2.5.1. Regression models for the infested datasets 

 The analysis of the scalograms has highlighted a narrow spectral region 

(1318-1322 nm) sensitive to needle water content that can be used to distinguish 
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needles of infested  and control trees sampled in July and August. In this section 

the correlation and data distribution of water content with wavelet power at 1320 

nm and scale 7 is examined (Fig. 2-8A). For August, a linear regression model 

shows a R
2
 value of 0.49 and RMSE of 7.84% while for July the accuracy is 

lower (R
2
=0.40; RMSE=9.77%). The slope and the intercept of the regression 

models for both dates are similar (Fig. 2-8A). These findings indicate that the 

feature at 1320 nm is consistently sensitive to needle water content for this part of 

the growing season. Fig. 2-8B and C provides a view of the distribution of the 

control and infested samples within each dataset. For both dates the infested 

samples span a wider range of water content and lower values than the control 

data as expected. Thus the regression for the infested samples is a closer match to 

that observed for the entire data (Fig. 2-8A). Infested samples for August provide 

the highest R
2
 and lowest RMSE (6.93%). A paired t-test for control and infested 

samples showed that the mean wavelet power at 1320 nm for scale 7 was 

significantly different for both July and August (July: t = -2.8419, p = 0.0131; 

August: t = -3.1684, p = 0.0081).  

 

2.5.2. Selection of scales for scalograms 

Scale 7 is found to be promising for green-attack detection whereas recent 

studies have suggested that scales 5 and 6 are optimal for nitrogen and 

chlorophyll estimation (Blackburn & Ferwerda, 2008; Ferwerda & Jones, 2006). 

These differences are tied to the width of absorption features in spectra, the water 

absorption near 1400 nm being relatively broad and thus better captured at a large 

scale. In this study the CWT was conducted for 10 scales even though a greater 

number of scales were permitted for the 2151 spectral bands of the data. The 

wavelet signature at the highest scales can suffer from zero-padding during CWT 

calculation (Torrence & Compo, 1998) and do not always provide reliable 

information. For example, the features observed at scale 10 near 1550 nm for 

chlorophyll in Fig. 2-6R are not considered to be relevant to chlorophyll 

absorption (Curran, 1989). The lowest scale can capture high frequency 

components of the input signal and thus tend to capture noise. Therefore, a 
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filtering of scales may facilitate the selection of significant features. In this study 

few features in scale 1 were selected (12 of 496, Tables 2-5 & 2-6).  

 

2.5.3. Wavelength regions of selected features 

Previous studies by Ahern (1988) and Runesson (1991) examined visible 

and near infrared spectra of healthy and infested trees reporting that significant 

differences could be observed in the visible and red edge regions. In this study the 

most significant and consistent spectral features attributed to changes in water 

content were detected in the short wave infrared region. In the case of the infested 

data set, all the features selected (Table 2-5) can be related to known water 

absorptions in leaves located at varying distances from the nominal band centers 

at 980, 1200, 1440, and 1920 nm. The results for the girdled data are more 

difficult to interpret given the greater number and diversity of feature regions 

detected for both dates. In this case features are not only observed near known 

water absorptions but are also observed near 490nm, 660nm and 2300nm as seen 

in August. The first two of these regions also produced features that correlated 

well with total chlorophyll in August (Table 2-4). The considerably lower needle 

water content observed for the girdled trees as opposed to the infested trees (Table 

2-7) may suggest significantly greater water stress for the girdled trees and 

explain the detection of features in the visible that correlate with water as well as 

chlorophyll. These observations are consistent with the significant correlations 

observed between leaf water and chlorophyll content for both dates of the girdling 

experiment (Table 2-2), correlations that are not observed for the infested 

datasets. The differing response of girdled and infested trees appears to indicate 

that the girdling process does not provide a perfect simulation of the effects 

caused by beetle infestation.  

 

2.5.4. Implications for airborne detection of MPB infestation 

In a study of hemlock abundance decline in the Catskills, USA, Pontius et 

al. (2005) used an index (R970/R900nm) applied to AVIRIS airborne imagery to 
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detect leaf water content. In this study the 970 nm feature was not found to be 

significantly correlated with water and a feature near 950nm correlated 

significantly with water only for July. However this study has revealed the 

presence of a narrow feature region (1318-1322 nm) for the detection of water 

stress occurring during green attack and observed in July and August. There are 

several implications of these findings for the potential airborne detection of green 

attack. It remains to be determined if the successful detection obtained at the leaf 

level study can be repeated at the canopy scale. The literature suggests that the 

detection of water content is enhanced from the leaf to the canopy level (Sims & 

Gamon, 2003). In this study needle stacks were measured as opposed to 

individual needles thus the measurements may already reasonably capture the 

spectral properties that would result from canopy scale observations particularly if 

the spatial resolution was commensurate with the dimensions of observed tree 

crowns (e.g. < 1.5 m).  

The location of the key features on the edge of a strong atmospheric water 

absorption may negatively impact the use of these features for detection of green 

attack from airborne data but this remains to be evaluated. Negative effects would 

include reduced signal to noise quality of the data and the likely requirement for a 

rigorous atmospheric correction of the imagery (Asner et al., 2008; Clark et al., 

2005; Kokaly et al., 2003). However the use of continuous wavelet analysis is 

well suited for the detection of key information because the noise component of 

the signal can be filtered by removal of low scale wavelets which in this study 

have not shown to incorporate key information for the detection of green attack. 

 Fig. 2-8B and C show that there is considerable overlap in the wavelet 

power data distribution of infested and control samples though the means of both 

groups are different. This observation would certainly preclude the separation of 

both groups with a high accuracy. It may be feasible to establish a threshold that 

would distinguish a substantial percentage of both populations, but a larger data 

set would be needed to facilitate this analysis.  
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2.5.5. Potential improvements 

This study revealed the detection of infested trees for two sites 

investigated in July and August. The small number of sites provides a limited 

perspective for the potential detectability of green attack at the canopy scale. The 

results are certainly encouraging in that detection was possible and the lack of 

detection early in the season (e.g. June) could have been a function of the growing 

conditions such as moisture availability at the selected sites. A greater number of 

sites spanning a range of growing conditions are needed to assess any dependence 

of detection capability on specific growing conditions. The lack of detection in 

June may also indicate that trees have not had a chance to respond thus limiting 

the time span for detection. 

The study established the correlation of features with class ID using 

wavelet analysis for the detection of infested trees. However, it has not provided 

an accuracy assessment of the class ID separation. The relatively small number of 

sites and samples meant that all measurements were used to develop the model. 

 

2.6. Conclusions  

A remote early detection of mountain pine beetle infestation would be of 

value to the monitoring and management of forests. Detailed spectral information 

provided by reflectance measurements of needles collected in July and August 

offer the potential for green-attack detection. Our work provides the following 

conclusions: 

 The tree samples at the green-attack stage displayed measurable water stress 

as did the girdled trees. While a deficit in total chlorophyll content was 

documented for girdled trees, no chlorophyll deficit was observed for infested 

trees. The deficits in chlorophyll and water content were also detectable from 

the wavelet analysis of the reflectance data. 

 A number of spectral features were defined to distinguish girdled and infested 

trees from healthy control trees. In general, the water features for the infested 

datasets occupied narrower spectral intervals. For the girdled trees, features 

attributed to changes in needle water content differed for June and August 
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(2007) and the majority were located in the SWIR region (1550-2370 nm) 

across scales 1 to 5. For the July and August (2008) datasets of infested trees, 

comparable water features were observed in the NIR and SWIR regions (950-

1390 nm) from scales 1 to 8.  

 Five features in the NIR (1318-1322 nm) spectral region at scale 7 were 

consistently found in the July and August datasets of infested trees and can be 

used to discriminate infested trees from healthy trees. These features are 

located on the edge of a strong water absorption centered at 1450 nm. Their 

spectral location and occurrence in the dataset of both dates imply they are 

the most promising features for green-attack detection. These features occur 

at longer wavelength than the range of wavelengths investigated in previous 

studies by Ahern (1988) and Runesson (1991). 

 Considering the effect of viewing geometry and canopy structural 

variability, it is unclear if the most persistent features could be enhanced or 

negatively impacted at the canopy level if measured with airborne hyperspectral 

systems.  
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Table 2-1. Description of sample size for each dataset 

Treatment Dataset No. of pairs No. of trees 

Control & girdled Jun18-2007 

Aug30-2007 

16 

16 

32 

32 

Control & infested Jun05-2008 

Jul13-2008 

Aug14-2008 

Sep20-2008 

Oct14-2008 

15 

15 

13 

13 

12 

30 

30 

26 

26 

24 

 

If no green needles were available from a non-control tree, then the corresponding control 

tree was not sampled. The lower number of trees sampled for the infested datasets was 

caused by the inaccessibility of branches and the mortality of trees.  
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Table 2-2. Correlation coefficient (r) between chemical properties derived from 

the Lodgepole Pine needle samples 

Treatment Dataset chl vs water chl vs car 

Control & girdled Jun18-2007 

Aug30-2007 

0.41 * 

0.57 ** 

0.94 *** 

0.96 *** 

Control & infested Jun05-2008 

Jul13-2008 

Aug14-2008 

Sep20-2008 

Oct14-2008 

-0.13 ns 

0.10 ns 

-0.20 ns 

-0.35 ns 

N/A 

0.89 *** 

0.95 *** 

0.94 *** 

0.86 *** 

N/A 

 

Decimal values are correlation coefficients r. Significance is: ns = not significant 

(p>0.05), * p≤0.05  ** p≤0.001  *** p≤0.0001. car = carotenoid; chl = total chlorophyll. 

The Oct14-2008 dataset only has measurements of water content. 
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Table 2-3. p-values of two-tailed paired student’s t-test results for control and 

treatment samples for each dataset 

Treatment Dataset Chl Water 

Control vs. Girdled Jun18-2007 0.0019 0.0004 

Aug30-2007 0.0001 0.0003 

Control vs. Infested Jun05-2008 0.3985 0.3741 

Jul13-2008 0.3674 0.0490 

Aug14-2008 0.7968 0.0320 

Sep20-2008 0.3784 0.5222 

Oct14-2008 N/A 0.5610 

 

p-values in bold indicate the significance at p≤0.05.  
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Table 2-4. Properties of features selected from the intersection of correlation 

scalograms for the girdled datasets 

Dataset Wavelengths (nm) and scales R
2
 [min, max]  

1
st
 variable 2

nd
 variable 

d. June:  

Class ID ∩ chl 

S4: 1997-1998 (2) 

S5: 2004 (1) (total = 3) 

[0.35, 0.55] [0.37, 0.55] 

e. June:  

Class ID ∩ water 

S3: 1570-1593 (24) 

S4: 1572-1593, 1993-1998,  

   2097-2119 (51) 

S5: 1995-2006, 2102-2142 (53)  

   (total = 128) 

 

[0.35, 0.55] [0.29, 0.47] 

i. August: 

Class ID ∩ water 

S1: 490, 2131 (1) 

S2: 660-661, 1559-1560,  

   1595-1599, 1704-1705 (11) 

S3: 570-571, 1561-1569, 

   1595-1598 (15) 

S5: 2351-2363 (13) (total = 40) 

 

[0.33, 0.51] [0.17, 0.40] 

j. August: 

Class ID ∩ chl 

S1: 489-490, 657-660, 2131 (7) 

S2: 657-661, 1596-1598 (8) 

S3: 1595-1599 (5) 

S5: 594-602 (9) 

S7: 717-728 (12) (total = 41) 

 

[0.33, 0.51] [0.20, 0.33] 

k. Class ID: 

June ∩  ugust  

S3: 1562-1574, 1582-1601 (33) 

S4: 1568-1597, 2102-2128 (57) 

S5: 2099-2142 (44) (total = 134) 

[0.35, 0.55] [0.33, 0.51] 

 

 1   2  …   8 refers to the scale of the wavelet decomposition. Values in parentheses are 

the number of features selected at that scale. The total number of features summed for all 

scales are shown following the last scale. Chl = chlorophyll. R
2
 [min, max] are the 

minimum and maximum values of R
2
 for the selected features of individual variables 

(e.g., class ID, water, chl).  
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Table 2-5. Properties of features selected from the intersection of correlation 

scalograms for the infested datasets. 

Dataset Wavelengths (nm) and scales R
2
 [min, max] 

1
st
 variable 2

nd
 variable 

o. July:  

Class ID ∩ water 

S1: 1142 (1) 

S3: 954-956 (3) 

S4: 953 (1) 

S7: 1316-1340 (25) 

S8: 1335-1378 (44) (total = 74) 

 

[0.19, 0.42] [0.35, 0.54] 

s. August:  

Class ID ∩ water 

S1: 1743-1744 (2) 

S2: 1141, 1388-1390 (4) 

S3: 1388-1390 (3) 

S7: 1318-1322 (5) (total = 14) 

 

[0.17, 0.40] [0.48, 0.71] 

t. o ∩ s S7: 1318-1322 (5) (total = 5) 

 

See o and s See o and s 

u. Class ID: 

July ∩  ugust 

S1: 1141 (1) 

S2: 1388-1390 (3) 

S3: 1388-1391 (4) 

S4: 1385-1390 (6) 

S5: 1376-1383 (8) 

S6: 1362-1370 (9) 

S7: 1315-1340 (26) (total = 57) 

[0.17, 0.40] [0.19, 0.42] 

 

 

 

 

 

 

 

 

 

 



42 
 

Table 2-6. Summary of leaf water content (%) for four datasets with significant 

differences between control and treatment samples. 

Dataset Treatment Min Max Mean ± S.D. 

Jun18-2007 Control 79.70 102.51 92.52 ± 6.07 

Girdled 76.48 96.82 83.76 ± 5.86 

Aug30-2007 Control 99.92 134.57 113.16 ± 8.32 

Girdled 92.06 109.66 100.91 ± 4.98 

Jul13-2008 Control 107.70 142.94 129.81 ± 10.35 

Infested 101.18 146.12 120.10 ± 13.53 

Aug14-2008 Control 114.34 143.27 128.91 ± 9.34 

Infested 96.51 138.72 120.10 ± 11.38 
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Fig. 2-1. Locations of the study sites in Alberta, Canada. 
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Fig. 2-2. Mexican Hat wavelets of scales 5 and 6 draped on a reflectance spectrum 

of healthy needles. The wavelet of scale 5 is an approximate match for the 

wavelength width of the green peak and the reversed wavelet of scale 6 is a 

reasonable match for the width of a major water absorption center. This feature 

and the green peak would be captured by wavelets of scale 6 and 5, respectively. 
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Fig. 2-3. Visualization of scalograms: (A) Scale interpolated; (B) Scale replicated. 

Scalograms were produced with the Aug14-2008 dataset (water features shown in 

blue). Wavelength is displayed along the horizontal direction and scale along the 

vertical axis. The R
2
 value at each wavelength and scale is displayed as amplitude 

or brightness. 
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Fig. 2-4. Example of the frequency distribution of R
2
 values observed for the 

scalogram in Fig. 2-3B. The cut-off R
2
 value used to delineate features correlated 

to biochemical properties or class ID is defined by the highest R
2
 values 

encompassing 1% of the data.  
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Fig. 2-5. Structure and labeling of feature sets derived from correlation 

scalograms indexed alphabetically from A to U. For example, the feature set A is 

derived from the correlation scalogram for the independent variable chlorophyll 

and the dataset Jun18-2007; D. A ∩ B refers to feature set D obtained by the 

intersection of feature set A and feature set B; E ∩ I =   indicates that the 

intersection of feature set E and feature set I is an empty set. 
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Fig. 2-6. Correlation scalograms A-K listed in Fig. 2-5 for the girdling datasets. 

The selected features are shown in blue on scalograms. 
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Fig. 2-7. Correlation scalograms L-U listed in Fig. 2-5 for the infested datasets.  
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Fig. 2-8. Relationships between water content and the wavelet power at 1320 nm 

and scale 7 for the infested datasets: (A) combined control and infested data for 

July and August, (B) control and infested for July, (C) control and infested for 

August. The thicker solid and dashed lines in (B) and (C) are those seen in (A). 
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CHAPTER 3 – SPECTROSCOPIC DETERMINATION OF 

LEAF WATER CONTENT USING CONTINUOUS WAVELET 

ANALYSIS
2
 

 

3.1. Introduction 

 Water is a fundamental chemical constituent of plants, and its abundance 

in leaves is closely tied to leaf vigor, phylogenic traits such as leaf structure and 

shape, and photosynthetic efficiency (Kramer & Boyer, 1995). Evaluation of plant 

water status plays an important role in assessing drought stress, predicting 

susceptibility to wildfire and monitoring the general physiological status of 

vegetation stands  Datt  1999 .  ccurate retrieval of leaf water content via 

remotely sensed data is a long-sought goal of the biological remote sensing 

community  Hunt    ock  1989; Pe uelas et al., 1997).  

 Common methods for determining leaf water content include equivalent 

water thickness (EWT) and gravimetric water content (GWC) (Datt, 1999). The 

EWT expresses leaf water content in mass per unit leaf area (g/cm
2
), whereas the 

GWC method employs a direct measurement that compares fresh leaf mass (with 

intrinsic water) to dry leaf mass (without intrinsic water). In general, the GWC is 

a preferred indicator of leaf water status when the measurement of leaf area is not 

easily achieved, as is the case for conifer needles. The GWC, which indicates the 

gravimetric proportions of water relative to other plant materials in leaves, can be 

expressed as leaf water content either by dry weight (LWCD, %) or  fresh weight 

(LWCF, %). The LWCD is extensively used in fire risk modeling and is referred to 

as the fuel moisture content (Chuvieco et al., 2002). The LWCF serves as a key 

leaf trait in ecological studies (Garnier & Laurent, 1994).  

                                                           
2  A version of this chapter has been submitted as: Cheng, T., Rivard, B., Sánchez-

Azofeifa, G. A. Spectroscopic determination of leaf water content using continuous 

wavelet analysis.  

Author contributions: Dr. Sánchez-Azofeifa provided the dataset. Dr. Rivard input 

critiques on the research. Dr. Rivard and Dr. Sánchez-Azofeifa discussed the results, and 

provided editing comments on the manuscript. I organized the data, wrote the codes for 

data processing, processed the data, interpreted the results, and composed the manuscript. 
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A number of studies have examined the empirical relationship of leaf 

reflectance in the near infrared (NIR) and shortwave infrared (SWIR) regions 

with leaf GWC or EWT (Ceccato et al., 2001; Danson et al., 1992; Danson & 

Bowyer, 2004; Sims & Gamon, 2003). Some studies have compared the 

estimation of GWC and EWT using leaf reflectance illustrating that GWC is 

considerably more difficult to estimate than EWT (Table 3-1) (Danson & Bowyer, 

2004; Datt, 1999; Li et al., 2007; Maki et al., 2004; Riaño et al., 2005). 

Investigations estimating GWC from leaf reflectance report various strengths of 

correlation (Table 3-1). Some studies use spectral indices that employ a NIR or 

SWIR band to detect the leaf water content and a NIR band as a reference to 

normalize the effect of leaf structural variability (Colombo et al., 2008; Danson & 

Bowyer, 2004). Studies focusing on a single species (Dawson et al., 1998; Pu et 

al., 2004; Tian et al., 2001) are likely less influenced by variability in leaf 

structure and have achieved good predictions (Table 3-1, R
2
≈0.86  using neural 

networks or a combination of bands. However, the knowledge gained from 

studying either a limited number of plant species or a narrow range of GWC 

values is difficult to apply to more complex datasets encompassing a diversity of 

species or a wide range of GWC values. Riaño et al. (2005) investigated the 

inversion of the PROSPECT radiative transfer model to indirectly estimate LWCD 

of 37 species and obtained a poor estimation of LWCD due to the high uncertainty 

in estimating DMC (R
2
 = 0.33). More recently, a combination of genetic 

algorithms with partial least squares (GA-PLS, Li et al, 2007) regression was 

proposed for the accurate estimations of LWCD of 37 species (R
2
 = 0.89). 

However, these methods are computationally intensive and complex, and thus of 

limited practical use.  

 Continuous wavelet analysis (CWA) is emerging as a promising tool in 

laboratory spectroscopy for deriving biochemical constituent concentrations from 

leaf reflectance spectra (Cheng et al. 2010; Blackburn, 2007; Blackburn & 

Ferwerda, 2008; Ferwerda & Jones, 2006). The continuous wavelet transform 

(CWT) provides a decomposition of leaf reflectance spectra into a number of 

scale components and each component is directly comparable to the reflectance 
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spectra. In this study, I aim to extract wavelet features (coefficients) that are 

sensitive to the change in GWC and insensitive to variations in leaf structural 

properties across a wide range of species. Inherent to the good estimation of GWC 

is the relationship of GWC to dry matter content (DMC), a topic that has received 

little attention in studies aiming to estimate GWC from leaf reflectance. Kokaly & 

Clark (1999) and Tian et al.(2001) noted that the spectral variation in the 

shortwave infrared induced by increasing leaf GWC included not only a decrease 

in the amplitude of reflectance but also changes in the depth and shape of 

absorption features centered near 1730 nm and 2100 nm and attributed to leaf dry 

matter. Continuous wavelet analysis is used in this study as a spectral feature 

analysis tool to examine the changes in leaf spectral response as a function of 

GWC and gain insights on the influence of water and DMC. Specifically, I seek to 

answer two questions: (i) Is CWT more effective than the commonly used spectral 

indices to estimate leaf GWC? (ii) What are the most informative wavelet features 

to estimate leaf GWC? Do they provide new insights into spectral variation due to 

changes in leaf water content?  

  

3.2. Data set 

3.2.1. Site description 

Leaf samples were collected from two sites in the Republic of Panama. 

The first site is located in a tropical dry forest of Parque Natural Metropolitano 

(PNM) near the Pacific coast. This forest experiences a severe dry season from 

mid-December until the end of April and has an annual rainfall of about 1,740 

mm. The second site is located in a tropical wet forest of Fort Sherman (FS) on 

the Caribbean coast. This ecosystem experiences a mild dry season from January 

to March and has an annual rainfall of about 3300 mm. Construction cranes 

owned by the Smithsonian Tropical Research Institute (STRI) were used at both 

sites to access the top of the canopy and collect leaf samples (Castro-Esau et al. 

2004). 
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3.2.2. Data collection 

At PNM, leaves were collected from 23 species of lianas and eight species 

of trees. At FS, eight species of lianas and eight species of trees were sampled. 

Collection of leaves took place in March 2007. All samples consisted of sun 

leaves. 

Clipping of leaves and handling protocols were followed as described in 

Sánchez-Azofeifa et al. (2009). Reflectance measurements were recorded between 

350 and 2500 nm with a FieldSpec
®
 FR spectroradiometer (ASD Inc., Boulder, 

CO, USA). The instrument provides a resolution of 3 nm at 700 nm, 10 nm at 

1500 nm, and 10 nm at 2100 nm. Five or ten leaf samples were collected per 

species and a total of 265 leaf samples were collected for the 47 species. Three 

reflectance spectra were taken per leaf using an ASD leaf clip covering a halogen 

bulb-illuminated area with a radius totaling 10mm. From these measurements, a 

mean reflectance spectrum was calculated for each leaf. The leaf water content 

was estimated by comparing the weight of the fresh leaf  the leaf’s total mass less 

than one hour after clipping) and the mass of the same leaf after a three-day 

drying period at 60
o
C. 

 

3.3. Methods 

3.3.1. Estimation of leaf gravimetric water content  

 Gravimetric water content in leaves was estimated using the following 

expressions:  

      
     

  
           (3-1) 

      
     

  
           (3-2) 

where FW is the leaf fresh weight and DW is the dry weight. As the amount of 

water may exceed the leaf dry weight, some measurements of LWCD were over 

100% but all measurements of LWCF were less than 100%. A summary of LWCD 
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and LWCF measurements is provided in Table 3-2. The two GWC expressions are 

convertible by: 

     
    

         
           (3-3)  

     
    

         
           (3-4) 

 his study’s LWCD or LWCF value range exceeds the range reported in all similar 

studies, with the exception of studies investigating the LOPEX data (Table 3-1) 

(e.g. Danson & Bowyer, 2004). This sizeable range correlates to the wide range of 

species examined in this study, species that span both dry and wet tropical forest 

environments. 

 

3.3.2. Wavelet analysis 

Wavelet analysis is an effective signal-processing tool that functions by 

decomposing the original signal into multiple scales (Mallat, 1989). In the last 

two decades, wavelet analysis has been intensively explored for applications in 

medicine and biology (Addison, 2005; Unser & Aldroubi, 1996), chemistry 

(Leung et al., 1998) and geophysics (Farge, 1992; Torrence & Compo, 1998). In 

remote sensing, the wavelet analysis approach is widely applied to multispectral 

satellite imagery for image fusion (Gonz lez- ud cana et al., 2004; Núñez et al., 

1999; Shi et al., 2003; Zhang & Hong, 2005; Zhou et al., 1998) and texture 

classification (Arivazhagan & Ganesan, 2003; Laba et al., 2007; Myint et al., 

2004; Ouma et al., 2008). Wavelet analysis is a promising method for processing 

hyperspectral signatures and has been successfully applied to hyperspectral data 

for dimensionality reduction (Bruce et al., 2002; Kaewpijit et al., 2003). Recent 

studies have compared the advantages of wavelet analysis to more conventional 

methods for identifying plant species (Kalácska et al., 2007; Koger et al., 2003; 

Zhang et al., 2006) and for estimating forest biophysical parameters (Pu & Gong, 

2004) by means of hyperspectral imagery.  
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Wavelet transforms include two variations: the discrete wavelet transform 

(DWT) and the continuous wavelet transform (CWT) (Blackburn & Ferwerda, 

2008; Bruce et al., 2001). The former method is mostly used for data compression 

and feature extraction/reduction, but the latter is preferred to generate a more 

readily interpretable multi-scale representation of signals (Bruce et al., 2001; Du 

et al., 2006). The DWT wavelet coefficients, after transformation, are difficult to 

interpret and require an inverse discrete wavelet transform for comparison with 

the original reflectance bands (Kalacska et al., 2007). In contrast, each CWT 

wavelet coefficient is directly comparable to a reflectance band and thus provides 

substantially more information on the shape and position of absorption features in 

leaf spectra (Blackburn & Ferwerda, 2008). 

 

3.3.3. Continuous wavelet transform (CWT) 

The CWT is a linear operation that uses a mother wavelet function to 

convert a hyperspectral reflectance spectrum f(λ) (λ=1, 2,..., n, n is the number of 

wavebands and n=2151 herein) into sets of coefficients. Mathematically, the 

continuous wavelets ψa,b(λ)  are produced by scaling (dilating) and shifting 

(translating) the mother wavelet ψ(λ) (Bruce et al., 2001): 

)(
1

)(,
a

b

a
ba





       (3-5) 

where a and b are positive real numbers. a represents the scaling factor defining 

the width of the wavelet and b is the shifting factor determining the position. The 

output of CWT is given by (Mallat, 1991): 

                      
  

  
    

          (3-6) 

where     
     is the complex conjugate of        

3.  

                                                           
3
 Note that complex conjugation changes the function only if a complex wavelet function such as 

Morlet function is used. The derivatives of Gaussian function are real functions. 
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For all scales of decomposition, the CWT coefficients (Wf(ai,bj), i=1, 2, ..., m, 

j=1,2,..., n) constitute a 2-dimensional scalogram (i.e. a m×n matrix) of which one 

dimension is scale  1  2  …  m) and the other is wavelength (or waveband, 1, 2, 

…  n). Each scale component of the scalogram is of the same length as the 

reflectance spectrum and this representation is readily interpretable. Low scale 

components are suitable to capture the characteristics of narrow absorption 

features and high scale components are well suited to define the overall spectral 

shape of leaf spectra (Blackburn & Ferwerda, 2008; Ferwerda & Jones, 2006; 

Rivard et al., 2008). The wavelet power, which refers to the magnitude of each 

wavelet coefficient, measures the correlation between the scaled and shifted 

mother wavelet and a segment of the reflectance spectrum and reflects the 

similarity of the local spectral shape to the mother wavelet (Rivard et al., 2008). It 

can be used to identify the change in shape and depth of absorption features 

across spectra and record the spectral variation introduced by changes in GWC.  

A typical leaf reflectance spectrum in the 350-2500 nm range consists of a 

background continuum on which a number of absorption features attributable to 

pigments, water and dry matter are superimposed (Curran, 1989). Previous 

research suggests that the shape of the absorption features is similar to Gaussian 

or quasi-Gaussian function (Miller et al., 1990) or a combination of multiple 

Gaussian functions (le Maire et al., 2004). Therefore, the second derivative of 

Gaussian (DOG) also known as the Mexican Hat was used as the mother wavelet 

basis (Torrence & Compo, 1998). The effective support range of the Mexican Hat 

is [-5, 5] for the scale a=1 and [-5a1, 5a1] for a=a1 (Du et al., 2006). The width of 

a scaled wavelet (10a1) determines the number of wavebands that are to be 

convolved with the wavelet and attributed to the wavelet coefficient. Since the 

wavelet decomposition at a continuum of possible scales (i=1, 2, ..., m.) would be 

computationally expensive and lead to a large data volume, the dimensions of the 

scalogram were reduced by decomposing the reflectance spectra at dyadic scales 

2
1
, 2

2
, 2

3
, ..., and 2

10
. For a simple representation of the scalograms, those scales 

are labeled as scales 1  2  3  …  and 10 in the following section and are 

comparable to the scales described in related studies by Blackburn & Ferwerda 
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(2008) and Rivard et al. (2008). For the leaf reflectance spectra from the ASD 

Fieldspec Pro spectrometer, there are 2151 bands available (350-2500 nm). Any 

scale greater than 2
10

=1024 is discarded because the decomposed components at 

higher scales do not carry meaningful spectral information. All CWT operations 

were accomplished by means of the IDL 6.3 Wavelet Toolkit (ITT Visual 

Information Solutions, Boulder, CO, USA). 

 

3.3.4. Feature selection from correlation scalograms 

To deal with the redundancy of wavelet features caused by continuous 

decomposition, a feature-selection technique is required to identify the most 

important features used to derive the GWC. The method to select meaningful 

wavelet features comprises four main steps (Fig. 3-1). At Step 1, CWT was 

applied to all reflectance spectra to calculate the wavelet power as a function of 

wavelength and scale. Therefore, the wavelet data resulting from each spectrum 

were stored as a wavelet power scalogram with dimensions of power, wavelength, 

and scale. To identify features sensitive to variations in GWC, a correlation 

scalogram was constructed at  tep 2 by establishing the Pearson’s linear 

correlations between each element of wavelet power scalograms and GWC of all 

leaf samples. The correlation scalogram reports a squared correlation coefficient 

(R
2
), ranging in magnitude from 0 to 1, at each wavelength and scale. Each 

element of the correlation scalogram represents a feature that could be selected. 

At Step 3, the features where R
2
 is not statistically significant (p>=0.05) were 

masked. The remaining features were then sorted in descending order of R
2
, and a 

threshold R
2
 was applied to delineate the top 1% features that most strongly 

correlated with GWC. These features delineated by the threshold formed a 

number of scattered feature regions on the correlation scalogram (Fig. 3-2). 

Because features within each region were produced at consecutive wavelength 

positions and scales, they carried redundant spectral information. At step 4, the 

feature with the maximum R
2
 within each region was determined to represent the 

spectral information captured by the feature region and expressed as (wavelength 
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in nm, scale). Eventually, a small number of sparsely distributed features were 

selected representing these regions and capturing the most important information 

related to changes in leaf water content. 

 

3.3.5. Spectral indices 

Three commonly used spectral indices (Table 3-3) designed to estimate 

vegetation water content were calculated to test their usefulness for estimating 

leaf GWC for the 47 tropical forest tree and liana species included in this study. 

The moisture stress index (MSI) was developed by Hunt et al. (1986) and further 

investigated by Hunt & Rock (1989) to relate leaf reflectance with leaf  elative 

Water Content   WC .  he normalized difference water index  NDWI  was 

originally proposed by Gao  1996  to remotely sense the EW  at the canopy 

level.  he water index  WI  was originally designed by Pe uelas et al. (1997) to 

relate LWCD with leaf reflectance spectra across species. 

 

3.3.6. Calibration and validation of regression models 

The entire dataset, consisting of reflectance spectra and leaf water content 

for 265 leaf samples, was split into two parts, with 60% of the data assigned to the 

calibration of regression models and 40% used for validating the models. The 

splitting led to 3 (or 6) samples per species in the calibration set and 2 (or 4) 

samples per species in the validation set. Suitable wavelet features were identified 

from the measurements in the calibration set using the method described in 

Section 3.4. Linear functions were applied to the calibration data to model the 

relationship between water content and wavelet features or spectral indices. For 

the wavelet approach, both individual and combinations of multiple spectral 

features were examined to calibrate the predictive models. Prior to combining 

features  a stepwise selection based on  kaike’s Information Criterion   IC  

(Estes et al., 2008; Venables & Ripley, 2002; Zhou et al., 2006) was applied to 

determine the features that should be included in the model. Coefficients of 
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determination (R
2
) and p-values were derived from analyses of data to assess how 

well the linear regressions corresponded to the calibration set. Calibrated models 

were then applied to the validation set and their predictive capabilities were 

assessed based on the predictive coefficient of determination (R
2
) and the root 

mean square error (RMSE) between the measured and predicted water content. 

 

3.4. Results 

3.4.1.  Response of leaf reflectance to variations in leaf water content 

In Fig. 3-3, associations between five reflectance spectra and various 

LWCD values are displayed. These associations illustrate the spectral variation in 

the 350-2500 nm range caused by changes in leaf water content. As LWCD 

decreases from the highest (418.18%) to the lowest (32.31%) value, the strong 

water absorption features at 1445 nm and 1930 nm become weaker, and the 

amplitude of the reflectance spectrum in the SWIR region increases.  In addition, 

the absorption features in the 1670-1830 nm and 2000-2200 nm regions, which 

have been found to correspond to leaf dry matter constituents (e.g., protein, lignin 

and cellulose) (Elvidge, 1990; Kokaly & Clark, 1999), become more apparent 

with decreasing LWCD. In particular, the absorption centered in the 1670-1830 

nm shifts towards shorter wavelength regions, and the spectral shape observed 

from 2000 to 2200 nm changes gradually from convex to concave as LWCD 

decreases. Below, I illustrate that the wavelet analysis extracts information 

pertaining to water by capturing the aforementioned changes in overall amplitude 

and spectral shape. 

 

3.4.2. Correlation of water indices with leaf water content for a wide 

range of species 

Fig. 3-4 displays the linear regression models for spectral indices (Table 3-

3) and water content expressed as LWCD and LWCF. MSI displays the weakest 

correlation (LWCD: R
2
 = 0.05; LWCF: R

2
 = 0.08). Low values of R

2
 are observed 
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for the three indices (R
2
 from 0.05 to 0.12) either for LWCD or LWCF. Most of 

the values of spectral indices were scattered vertically, indicating that these 

indices were not effective to capture the change in leaf water content for the wide 

range of plant species.  

 

3.4.3. Most informative wavelet features to estimate leaf water content 

Using continuous wavelet analysis of reflectance spectra, eight wavelet 

features (one per feature region) were extracted from the correlation scalogram 

for LWCD. Similarly, eight wavelet features were extracted from the correlation 

scalogram for LWCF. Regression models indicated that all extracted features 

significantly correlated to water content (p<0.0001). This represents an R
2
 

improvement of at least 0.3 over the values derived from linear regressions 

(R
2
>0.40) obtained using spectral indices (Table 3-4). For LWCD, the strongest 

correlation was produced by the wavelet power at 2165 nm at scale 4 (R
2
 = 0.62) 

and the weakest by the wavelet power at 2227 nm at scale 3 (R
2
 = 0.43).  

Wavelength locations of all extracted features for LWCF were similar to those for 

LWCD and the minimal differences were within the sampling uncertainty (10 nm) 

for the SWIR region of the spectrometer. The magnitude of R
2
 values for LWCF 

features (R
2
 from 0.51 to 0.69) were higher than those for corresponding LWCD 

features. The two groups of features differed in the ranking of R
2
. 

All wavelet features correlating with LWCD and LWCF are observed in the 

SWIR region (Fig. 3-5; LWCF features are not shown because these are roughly 

equivalent to LWCD features). Two high-scale features (1343nm, 7) and (1869nm, 

6) (Table 3-5) occur on the left shoulder of two strong water absorption features 

(Fig. 3-5).  The remaining features, primarily caused by leaf dry matter, occur at 

low scales and relate to absorption regions centered at approximately 1730, 2100 

and 2300 nm.  Feature (1734nm, 4) lies near a lignin-cellulose absorption center 

at 1730 nm, while features (2034nm, 3) and (2165nm, 4) are close to absorptions 

indicative of proteins, centered at 2054 nm and 2172 nm, respectively (Kokaly & 
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Clark, 1999; Kokaly, 2001). These three absorption bands become more 

prominent with decreasing water content in leaves.  

The strongest relationship between leaf water content and wavelet power 

for an individual feature is observed for feature (2165nm, 4) as shown in Fig. 3-6. 

For LWCD, the relationship was linear up to a water content of approximately 

250% after which it became asymptotic and the wavelet power became insensitive 

to changes in leaf water content. This data pattern was observed for the eight 

features listed in Table 3-4. This data pattern was not observed for LWCF (Fig. 3-

6), though LWCD with all other wavelet features showed similar relationships 

(data not shown). Excluding those observations of LWCD above 250% led to a 

slight increase of R
2
 by 0.02.   

Models combining a number of features were then investigated. A 

stepwise selection of regression models based on AIC suggested that the 

combination of six features excluding (1579nm, 3) and (2227nm, 3) produced the 

best model for LWCD with a R
2
 of 0.69 (I in Table 3-4). For LWCF, the best 

model was produced with six features excluding features (1870nm, 6) and 

(1576nm, 3). The reduced feature sets for LWCD or LWCF were then split into 

high-scale and low-scale feature subsets for modeling, and higher R
2
 values were 

found for low-scale feature sets (e.g. J in Table 3-4).  

 

3.4.4. Prediction of leaf water content using the wavelet features  

The regression models calibrated using LWCD and LWCF wavelet features 

were applied to the validation set to determine the accuracy with which water 

content could be estimated. Feature (2165 nm, 4) produced the most accurate 

predictions of LWCD and LWCF, with RMSE values of 28.33% and 4.86%, 

respectively (Table 3-6). LWCD and LWCF were best predicted using a linear 

combination of six individual features resulting in a RMSE of 26.04% (R
2
 = 0.71) 

and 4.34% (R
2
 = 0.75) respectively. The latter compares to the accuracy of LWCF 

estimation reported by Asner & Martin (2008; Fig. 2).  



63 
 

The results obtained from applying the most accurate single feature and 

multiple feature models (A & I in Table 3-6) to the validation set are shown on 

Fig. 3-7. The data points for both models are scattered near the 1:1 line except for 

LWCD values exceeding 250%. This poor sensitivity at high levels of water 

content was also observed in the results of Danson & Bowyer (2004) where the 

WI underestimated most of the LWCD observations ranging from 250% to 1400% 

and the accuracy was much lower. Interestingly, this phenomenon was not seen 

for the estimations and predictions of LWCF (Figs. 3-6, 3-7). 

  

3.5. Discussion 

I investigated the relationship between spectral properties and leaf water 

content expressed as LWCD and LWCF for a diverse tropical species dataset 

(Sánchez-Azofeifa et al. 2009). To the best of our knowledge, this investigation is 

the first successful study linking the two measures of leaf water content to 

reflectance spectroscopy.  

 

3.5.1. Wavelet features for the estimation of leaf water content 

The wavelet features used to estimate LWCD and LWCF were not 

significantly different. Two high-scale LWCD features (1343nm, 7) and (1869nm, 

6) were found on the leading edge of the two strongest water absorption bands, 

and they captured the variations in amplitude of leaf reflectance over a broad 

spectral interval. The remaining significant features (1734nm, 4), (2034nm, 3), 

(2165nm, 4), and (2375nm, 4)  that were found at low scales appeared away from 

strong water absorptions and accounted for changes in the depth and shape of dry 

matter absorption features. More information on LWCD was captured by the 

variation in depth and shape of dry matter absorptions than by changes in water 

absorptions. The use of CWT has facilitated the detection of dry matter absorption 

features that are obscured by the presence of leaf water. Past studies by Danson & 

Bowyer (2004) and Riaño et al. (2005) concluded that the presence of spectral 
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features due to dry matter similarly complicated the estimation of LWCD from 

leaf reflectance spectra. However, the results of this study suggest that the 

variable strength of dry matter absorptions in response to changes in leaf water 

content in our data contributes significantly to the estimation of LWCD. Indeed, 

the correlation of leaf water content with the dry matter wavelet feature (2165nm, 

4) is the strongest among those observed for an individual feature in this study.  

However, a combination of low-scale and high-scale features results in the best 

leaf water content predictive capability. 

 

3.5.2. Why do spectral indices not work? 

The results confirm the difficulty in relating LWCD or LWCF to 

commonly used spectral indices (Maki et al. 2004). One reason spectral indices 

relate poorly to leaf water content could be the large spectral variability that arises 

from the richness of species composition (Sims & Gamon, 2002). This has been 

documented in a number of studies of tropical ecosystems (Castro-Esau et al., 

2006; Sánchez-Azofeifa et al., 2009). The poor sensitivity of MSI, WI and NDWI 

to the changes in LWCD and LWCF may indicate that ratios and normalized 

differential ratios are not effective in addressing the confounding effects of 

variable leaf structural properties across a wide selection of tropical species. This 

is not surprising given that MSI and NDWI were designed for the analysis of 

multispectral data, and thus have limitations in terms of the optimization of the 

location of bands that could be selected. WI may perform poorly because it was 

fashioned from an investigation including only thirteen species. However, it is 

likely that the spectral range (390-1100 nm) selected for the WI is the most likely 

cause of the inconsistent results as our findings suggest that the key features 

related to leaf water content are observed beyond 1100nm.   
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3.5.3. Advantages of the continuous wavelet analysis 

This study presented CWA as an effective method for both analyzing the 

spectra and selecting features for the estimation of leaf water content. Unlike 

spectral indices that use ratios to normalize variations in the magnitude of 

reflectance, CWA provides a multiscale representation of a reflectance spectrum 

isolating absorption features at various scales from within the continuum. The 

correlation scalogram resulting from the analysis of multiple leaf samples then 

enables the optimal selection of spectral features most indicative of leaf water 

(Fig. 3-2). Therefore, no ratios of wavelet power are necessary for normalization. 

For example, the wavelet feature at (1579nm, 3) is a close match to the index 

wavelength (1600 nm) of the MSI but it yields a stronger correlation to water 

content (LWCD: R
2

wp.(1579, 3) = 0.44, R
2
MSI = 0.05). The continuum removal 

technique is also capable of isolating specific absorption features from the 

continuum. CWA however, provides more robust information by using scaled 

wavelets to separate narrow and broad absorptions into different scales. The 

continuous displacement of the wavelet along the spectrum ensures that no 

absorption features are omitted and that all absorption features are detected at one 

time. The partial least squares (PLS) regression is comparable to CWA in 

predictive performance, but it is a more difficult operation with complex 

calibration requirements.  

A small number of wavelet features are selected from the correlation 

scalogram based on thousands of input reflectance bands. The number of features 

extracted is dependent on the number of feature regions that are delineated on the 

correlation scalogram (Fig. 3-2) by the adjustable percentage threshold. In this 

study, a 1% threshold was utilized, since a smaller percentage threshold would 

have reduced the number of feature regions. The feature selection process ensures 

an optimization of wavelet features that correlate with leaf water content. The 

multi-scale analysis of absorption features offers an opportunity to capture water 

and dry matter absorptions that are manifested at different scales. 
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In a study aiming to determine the leaf water content (EWT) for a variety 

of species, Danson et al., (1992) attempted to suppress the variations in leaf 

internal structure by relating EWT to the first derivative of reflectance spectra. 

Our results suggest that the decomposition of reflectance spectra with CWT also 

effectively decreases the influence of leaf structural variation for the 

spectroscopic estimation of LWCD and LWCF.   

 

3.5.4. Improvements of leaf water content by dry mass (LWCD) 

The data set of this study displays values of LWCD ranging from 32.3% to 

418.2%. For values of LWCD exceeding 250%, our wavelet-based predictive 

models display poor sensitivity to changes in LWCD (Fig. 3-6). This poor 

sensitivity was also observed, but not discussed in the study of Danson & Bowyer 

(2004; Fig. 5a) where LWCD values ranged from 9% to 1258% and 

underestimation occurred for most observations above 250%. However, LWCF 

with high levels of water content corresponded well to the predictions generated 

by wavelet-based models (Fig. 3-7). I demonstrated that LWCF was more strongly 

correlated to wavelet power than LWCD based on a linear fit. According to Eq. (3-

4), if LWCF is linearly related to wavelet power, then LWCD, which is a non-

linear function of LWCF, would have a non-linear relation to wavelet power (Fig. 

3-8). Thus, non-linear functions (e.g., power, exponential) might be explicitly 

employed to more completely describe the relationship between wavelet power 

and LWCD over a wide range of values. However, the relatively low number of 

samples in this study with a high water content (ten data points with 

LWCD>250%) precludes a thorough investigation of non-linear functions. In 

addition, ideally the water content would be more uniformly distributed across the 

data set to explore such functions. 

As an attempt to improve the estimation of LWCD, Eq. (3-4) was used to 

transform the LWCF values predicted from the wavelet models shown in Fig. 3-7, 

C and D. The corresponding LWCD estimates are shown in Fig. 3-9, A and B, 

respectively. The indirect estimates of LWCD resulted in higher accuracies than 
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the direct estimates (Table 3-6) and the sensitivity at high water content levels 

was slightly enhanced (Fig. 3-9). Using the best feature combination (I in Table 3-

6), the RMSE value of the indirect LWCD estimation decreased by 3% (from 

26.04% to 23.04%) and the R
2
 value increased by 0.07 (from 0.71 to 0.78). The 

transformation of LWCF to LWCD offers an opportunity to bridge the studies 

estimating LWCF and LWCD from leaf reflectance.  

  

3.6. Conclusion 

This study has demonstrated the use of CWA applied to leaf reflectance 

spectra for the accurate prediction of leaf water content expressed as percent of 

dry mass (LWCD) and fresh mass (LWCF). A small number of wavelet features 

were strongly correlated to LWCD and LWCF, whereas established spectral 

indices were more poorly correlated. By decomposing the reflectance spectra into 

various scales, CWA was shown to be effective in identifying meaningful spectral 

information that relates to the estimation of leaf water content. The eight wavelet 

features used to predict LWCD and LWCF were not significantly different, but the 

predictive models were different. The method more accurately estimated LWCF 

than it did LWCD, and LWCD values exceeding 250% tended to be 

underestimated.  

The wavelength positions of the eight wavelet features occur in the SWIR 

region (1300–2500 nm). The high-scale features captured amplitude variations in 

the broad shape of the reflectance spectra. The low-scale features captured 

variations in the shape and depth of dry matter absorptions centered near 1730 nm 

and 2100 nm. Our results provide new insights into the role of dry matter 

absorption features in the SWIR region for the accurate spectral estimation of 

LWCD and LWCF. The advantages of wavelet analysis over existing spectral 

indices for the estimation of leaf water content should appeal to communities 

interested in the accurate estimation of LWCD or LWCF particularly for 

investigations of diverse ecosystems. The method developed for estimating leaf 

water content is promising for determining leaf biochemistry from spectra and 
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may be extended to the estimation of chlorophyll, lignin, cellulose, and nitrogen 

concentrations in ecosystem studies. 
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Table 3-1. Summary of studies on the spectroscopic determination of leaf water content with a focus on LWCD and LWCF. The 

references are indexed by the year of publication and summarized with the species examined, the spectral range of the reflectance 

data, the analytical method, the expression of leaf water content, and the best result within each study. Note that the studies not related 

to LWCD and LWCF but only related to EWT are beyond the scope of this research and not listed. 

Reference Species 
Spectral 

range (nm) 
Method Related to Best accuracy 

Curran et al., 

1992 

Amaranthus tricolor 400-2400 First derivative spectra  LWCD (22.31-91.43 %) 

 

R
2
 = 0.45,  

RMSE = 15.9% 

Pe uelas et 

al., 1997 

  

5 species (from field) 

8 species (potted 

seedlings) 

390-1100 

  

Spectral index WI  

 

 

LWCD 

LWCD 

R
2
 = 0.31 

R
2
 = 0.49 

Dawson et 

al., 1998 

Pinus elliottii 400-2500 Artificial Netural Network LWCD (52-63 %) 

 

R
2
 = 0.86,  

RMSE = 1.3% 

Datt, B., 

1999 

  

  

21 Eucalyptus species 

  

  

400-2500 

  

  

Spectral indices MSI, WI, 

(R850 – R2218)/(R850 – R1928); 

(R850 – R1788)/(R850 – R1928); 

NDWI and TM5/TM7 

EWT (0.009-0.025 g/cm
2
) 

LWCF (40.8-71.7 %) 

LWCD (70.4-221.5 %) 

R
2
 = 0.61 

Not significant  

Not significant 

Tian et al., 

2001 

winter wheat 350-2500 CR over 1650-1850 nm  LWCF (39.62-80.12 %) 

 

R
2
 = 0.87 

Pu et al., 

2003 

Quercus agrifolia 350-2500 CR centered at 975 nm, 

1200 nm and 1750 nm; 

three-band ratio indices 

derived at 975 nm and 1200 

nm 

LWCF (0.45-57.94 %) 

 

 

 

R
2
 = 0.86 

Maki et al., 

2004 

  

Nerium oleander var. 

indicum, Liriodendron 

tulipifera, Betula 

platyphylla 

400-2400 

  

Spectral index: NDWI 

  

EWT (0.002-0.138 g/cm
2
) 

LWCD (33.33-285.71 %) 

 

R
2
 = 0.62 

R
2
 = 0.08 
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Continued to Table 3-1 

Reference Species 
Spectral 

range (nm) 
Method Related to Best accuracy 

Danson & 

Bowyer, 

2004 

  

  

subset of LOPEX 

  

Simulations with 

PROSPECT model 

400-2500 

  

400-2500 

  

 

Spectral indices MSI, WI, 

NDWI, TM5/TM7 and 

GVMI 

EWT (0.0003-0.0655 g/cm
2
) 

LWCD (9-1258 %) 

 

EWT (0.0425 ± 0.0142 g/cm
2
) 

LWCD (184 ± 101%) 

R
2
 = 0.88, N.L. 

R
2
 = 0.54, N.L. 

 

R
2
 = 0.88, N.L. 

R
2
 = 0.78, N.L. 

Riaño et al., 

2005 

37 species from 

LOPEX 

400-2500 PROSPECT model inversion EWT  

LWCD  

R
2
 = 0.94 

R
2
 = 0.33 

Stimson et 

al., 2005 

  

Pinus edulis 

 

Juniperus 

monosperma 

350-2300 

  

CR based absorption indices 

at 970 nm and 1200 nm; red 

edge; spectral indices NDWI 

and NDVI 

LWCD (approx. 30-60 %) 

 

LWCD (approx. 35-45 %) 

R
2
 = 0.71 

 

R
2
 = 0.50 

Li et al., 

2007 

  

37 species from 

LOPEX 

  

400-2500 

  

Genetic Algorithm Partial 

Least Squares (GA-PLS) 

  

EWT   

 

LWCD  

R
2
 = 0.94, RMSE 

= 0.0017 g/cm
2
  

R
2
 = 0.89, 

RMSE = 68.5% 

Colombo et 

al., 2008 

  

  

  

poplar trees 

  

  

  

350-1800 

  

  

  

Spectral indices WI, NDWI, 

SRWI, NDII, MSI, SR,  

(R895 – R675)/(R895 + R675) 

 

PROSPECT model inversion 

EWT (0.0091-0.0154 g/cm
2
) 

LWCD (110.65-217.64 %) 

 

EWT (0.0091-0.0154 g/cm
2
) 

LWCD (110.65-217.64 %)  

R
2
 = 0.52 

R
2
 = 0.25 

 

R
2
 = 0.65 

R
2
 = 0.00 

Asner & 

Martin, 2008 

162 tropical forest 

species 

400-2500 PLS regression LWCF (43-79 %) R
2
 = 0.69,  

RMSE = 4% 

 

CR: continuum removal; REIP: red edge inflection point 

WI = R900/R970; MSI = R1600/R820; NDWI = (R860 - R1240)/(R860 + R1240); GVMI = ((NIR + 0.1) – (SWIR + 0.02))/((NIR + 0.1) + (SWIR + 0.02)) 

NDVI = (R860 - R690)/(R860 + R690); MDWI = (Rmax1500-1750 - Rmin1500-1750)/(Rmax1500-1750 + Rmin1500-1750), SR = R895/R675, SRWI = R860/R1240 
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Table 3-2. Summary of water content measurements for 265 leaf samples 

collected from tropical forests in Panama.  

Leaf water content Mean S.D. Minimum Maximum 

LWCD (%) 143.60 52.44 32.31 418.20 

LWCF (%) 57.23 8.62 24.42 80.70 
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Table 3-3. Spectral indices for predicting vegetation water content 

Spectral index Acronym Formula Reference 

Water index WI     
    

    
 

Peñuelas et al. 

(1993, 1997) 

Normalized 

difference water 

index 

NDWI       
            

            
 Gao (1996) 

Moisture stress 

index 
MSI      

     

    
 

Hunt et al. (1987), 

Hunt & Rock 

(1989) 
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Table 3-4. Coefficients of determination (R
2
) for correlations between water 

content and spectral metrics (wavelet features and spectral indices) derived from 

the calibration set (n = 159)  

 LWCD LWCF 

Feature 

code 

Feature location 

 

R
2
 

Feature location  

R
2
 Wavelength 

(nm) Scale 

Wavelengt

h (nm) Scale 

A
 

2165 4 0.62*** 2165 4 0.69*** 

B 1343 7 0.57*** 1344 7 0.62*** 

C 1869 6 0.51*** 1870 6 0.62*** 

D
 

1736 4 0.47*** 1736 4 0.51*** 

E 2375 4 0.44*** 2378 4 0.51*** 

F 2034 3 0.44*** 2029 3 0.54*** 

G 1579 3 0.44*** 1576 3 0.52*** 

H 2227 3 0.43*** 2226 3 0.54*** 

I 

combo = A, 

B, C, D, E, 

F, (G, H) 

high 

& low 0.69*** 

combo = A, 

B, D, E, F, 

H, (C, G) 

high 

& low 0.77*** 

J 

combo = A, 

D, F, (E) low 0.67*** 

combo = A, 

D, E, H, 

(F) 

 

low 

 

0.76*** 

K 

combo = B, 

C high 0.60*** combo = B high 0.62*** 

L MSI 0.05* MSI 0.08** 

M NDWI 0.09*** NDWI 0.12*** 

N WI 0.09*** WI 0.10*** 
 

LWCD: leaf water content by dry mass; LWCF: leaf water content by fresh mass. Scales 

were divided into two groups: high (6 and 7) and low (3 and 4). The features in brackets 

(e.g. G & H in I) were not included in the feature combination models because they were 

rejected during the stepwise regression procedure. Significance is: *p<0.005, 

**p<0.0005, ***p<0.0001. 
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Table 3-5. Wavelet features related to major absorptions of particular leaf 

biochemical constituents and obtained for LWCD using the calibration set 

Feature Related to 

(2165, 4) Protein @2172 nm 

(1343, 7) Water @ 1400 nm 

(1869, 6) Water @ 1940 nm 

(1736, 4) Lignin, cellulose @ 1730 nm 

(2375, 4) Cellulose, protein @ 2350 nm 

(2034, 3) Protein @ 2054 nm 

(1579, 3) Not attributable 

(2227, 3) Not attributable 

 

* Information on wavelengths of absorption features is from Curran (1989), Kokaly 

(2001) and Kokaly & Clark (1999).  
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Table 3-6. Coefficient of determination (R
2
) and RMSE values comparing the measured water content with that estimated from the 

predictive models applied to the validation set (n = 106). 

 

LWCD LWCF 

LWCD inverted 

from LWCF 

Feature code Feature location Accuracy Feature location Accuracy Accuracy 

WL (nm) Scale R
2
 RMSE (%) WL (nm) Scale R

2
 RMSE (%) R

2
 RMSE (%) 

A 2165 4 0.66 28.34 2165 4 0.68 4.86 0.70 26.53 

B 1343 7 0.60 30.69 1344 7 0.62 5.28 0.64 29.26 

C 1869 6 0.55 32.62 1870 6 0.64 5.20 0.60 30.79 

D 1736 4 0.48 35.22 1736 4 0.50 6.07 0.52 33.60 

E 2375 4 0.44 36.51 2378 4 0.47 6.27 0.43 36.88 

F 2034 3 0.45 36.06 2029 3 0.50 6.09 0.47 35.56 

G 1579 3 0.46 35.91 1576 3 0.51 6.02 0.45 36.02 

H 2227 3 0.44 36.45 2226 3 0.51 6.05 0.43 36.74 

I 

combo = 

A, B, C, 

D, E, F 

high 

& 

low 0.71 26.04 

combo = 

A, B, D, E, 

F, H 

high 

& 

low 0.75 4.34 

 

 

0.78 

 

 

23.04 

J 

combo = 

A, D, F low 0.69 26.91 

combo = 

A, D, E, H 

 

low 0.73 4.47 

 

0.76 

 

23.91 

K 

combo = 

B, C high 0.64 29.30 

combo = 

B high 0.62 5.28 

 

0.64 

 

29.26 
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Fig. 3-1. Schematic representation of the feature extraction method using 

continuous wavelet analysis. Input data sets include the water content and 

reflectance measurements of leaf samples. Output is a list of wavelet features 

extracted for the estimation of leaf water content. 
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Fig. 3-2. Feature regions extracted from the correlation scalograms relating 

wavelet power with water content expressed on the basis of (A) dry mass (LWCD) 

and (B) fresh mass (LWCF) in the calibration dataset (n = 159). 
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Fig. 3-3. Example spectra illustrating the effect of different amounts of LWCD on 

the reflectance response. Note the change in the amplitude of reflectance in the 

1300–2500 nm region and the variations in depth and shape of the absorption 

features in the wavelength regions 1670–1830 nm and 2000–2200 nm (denoted by 

the horizontal bars) as LWCD changes from the minimum (32.31%) to the 

maximum (418.18%) value.  
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Fig. 3-4. Relationships between water content and spectral indices calculated from 

the calibration set. Rows represent the same spectral indices. The left column is 

for LWCD and the right column for LWCF. All relationships are statistically 

significant (p<0.005). 
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Fig. 3-5. Wavelength location of wavelet features indicated by vertical lines and 

the corresponding wavelets. The two reflectance spectra are associated with 

highest (top) and lowest (bottom) LWCD. Each wavelet feature is positioned on 

the spectra with the scaled and shifted continuous wavelet used to compute the 

wavelet power. The three numbers beside each vertical line are wavelengths of 

start, center and end points of the wavelet. The two dashed vertical lines denote 

two features which are removed during the stepwise multiple regression 

procedure. 
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Fig. 3-6. Relationships between the wavelet power at (2165 nm, 4) and water 

content (A) LWCD and (B) LWCF established with the calibration data set 

(p<0.0001). The solid lines are for the entire data set and the dashed line in (A) is 

for a subset excluding observations of LWCD above 250%.    
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Fig. 3-7. (A) and (B) are plots of measured versus predicted water contents LWCD 

using wavelet feature (2165, 4) and a combination of six features (I, Table 3-6), 

respectively. (C) and (D) are plots of measured versus predicted LWCF using 

wavelet feature (2165 nm, 4) and a combination of six features, respectively. The 

predictive R
2
 and RMSE values shown are obtained for the validation set. Dashed 

lines are 1:1 lines. 
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Fig. 3-8. Inter-relationships between wavelet power, LWCD, and LWCF. 
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Fig. 3-9. Measured versus predicted LWCD transformed from LWCF estimates 

presented in Fig. 3-7 C and D. Note the differences as compared to the upper plots 

in Fig. 3-7. 
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CHAPTER 4 – EVALUATION OF THE PROSPECT MODEL 

AND CONTINUOUS WAVELET ANALYSIS FOR EFFICIENT 

ESTIMATION OF LEAF WATER CONTENT
4
 

 

4.1. Introduction 

Over the last two decades, laboratory and imaging spectroscopy data have 

been extensively used to estimate chemical constituents (e.g., chlorophyll, water, 

nitrogen) in vegetation in response to the need for information on vegetation 

chemistry (Asner & Vitousek, 2005; Curran et al., 2001; Kokaly & Clark, 1999; 

Peterson et al., 1988; Smith et al., 2002). In particular, the accurate retrieval of 

vegetation water content is crucial to the assessment of plant physiological status 

 Pe uelas et al., 1997; Pu et al., 2004; Stimson et al., 2005), to the determination 

of wildfire risk (Chuvieco et al., 2002; Dennision & Moritz, 2009; Dennison et 

al., 2008; Maki et al., 2004; Yebra et al., 2008) and as a critical leaf trait in 

ecological applications (Asner & Martin, 2008; Garnier & Laurent, 1994; 

Sánchez-Azofeifa et al., 2009).  

A common measure of water content in leaves is the leaf gravimetric 

water content (GWC) which is defined as the amount of water as a percentage of 

dry mass or fresh mass (Datt, 1999). The detection of leaf GWC in the optical 

domain has been estimated based on the relationship between the reflectance at 

the 700-2500 nm and the abundance of water (Carter, 1991; Tucker, 1980). Many 

studies suggest that it is difficult to derive accurate estimates of GWC from leaf 

reflectance, particularly for a variety of species (Colombo et al., 2008; Danson & 

Bowyer, 2004; Datt, 1999; Li et al., 2007; Maki et al., 2004; Riaño et al., 2005).  

Some studies have established strong relationships between leaf GWC and 

spectral indices that are designed to capture the spectral variation in water 

absorption features centered near 970 nm  1200 nm  and 1450 nm  Danson   

                                                           
4 Thanks to Stéphane Jacquemoud, Jean-Baptiste Feret, and Christophe Francois for 

making the version 4 of the PROSPECT model available online 

(http://teledetection.ipgp.jussieu.fr/prosail/). 

 

http://teledetection.ipgp.jussieu.fr/prosail/


93 
 

 owyer  2004; Pe uelas et al., 1997). Changes in leaf GWC may also be related 

to variations in reflectance associated with dry matter absorption features that are 

clearly discernable in the reflectance spectra of dry plants but obscured due to the 

presence of leaf water. Ceccato et al. (2001) have shown that leaves with different 

values of GWC are likely to have different amounts of dry mass (i.e., dry matter 

content) that directly affects the spectral reflectance in the shortwave infrared 

(SWIR) region. Tian et al. (2001) provided the only study that paid particular 

attention to the absorption features of dry matter in the 1650-1850 nm range in 

relation to leaf GWC. However, there has been no assessment of the relative 

merits of dry matter and water absorption features over the entire SWIR region 

for the purpose of leaf GWC estimation.  

Continuous wavelet analysis (CWA) is an emerging spectral analysis tool 

for decomposing leaf reflectance spectra into a number of scale components. 

CWA provides an effective way to examine all absorption features in leaf 

reflectance at various scales (Blackburn & Ferwerda, 2008). The use of CWA also 

makes it possible to extract wavelet features (coefficients) that capture useful 

spectral information pertinent to leaf water (Cheng et al., 2010). In Chapter three, 

CWA was applied to measured leaf reflectance spectra from a collection of 

tropical forest species and models for the prediction of leaf GWC were presented. 

Using this methodology, a number of wavelet features were extracted from leaf 

reflectance spectra and used to derive accurate estimates of leaf GWC. In this 

study, I conduct a comparative assessment of the CWA method when applied to a 

leaf spectral database simulated with the PROSPECT leaf radiative transfer 

model.  

The radiative transfer model PROSPECT has been successfully used to 

design or evaluate vegetation indices (Ceccato et al., 2002; Haboudane et al., 

2002) and develop inversion approaches (Demarez et al., 1999; Jacquemoud et 

al., 1996; Zarco-Tejada et al., 2003), to retrieve vegetation properties from 

remotely sensed reflectance. The principal aim of this study is to evaluate the 

performance of the wavelet-based methodology for the estimation of leaf GWC 

using spectra simulated with PROSPECT and to determine whether the wavelet 
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features derived from the simulated spectra are consistent with those obtained in 

Chapter three from the measured spectra. A secondary objective of this study is to 

assess the ability of the PROSPECT model to simulate leaf reflectance for a range 

of Mesoamerican tropical forest species. Few studies have evaluated the 

performance of PROSPECT against experimental data (Feret et al., 2008; 

Jacquemoud et al., 1996; Jacquemoud et al., 2000; le Maire et al., 2004). 

 

4.2. Materials and methods 

4.2.1. Description of leaf reflectance and mass measurements  

Leaf samples were collected from two tropical forest sites in the Republic 

of Panama. The first site is located in the dry forest of Parque Natural 

Metropolitano (PNM) near the Pacific coast and the second site in the wet forest 

of Fort Sherman (FS) on the Caribbean coast. The PNM forest experiences a 

severe dry season from mid-December to the end of April and has an annual 

rainfall of about 1,740 mm. The FS forest experiences a mild dry season from 

January to March and has an annual rainfall of about 3300 mm. Construction 

cranes owned by the Smithsonian Tropical Research Institute (STRI) at both sites 

allow flexible access to the top of the canopy and convenient collection of leaf 

samples (Castro-Esau et al. 2004). 

In March 2007, 265 leaf samples were collected from twenty-three species 

of lianas and eight species of trees at PNM and from eight species of lianas and 

eight species of trees at FS. All samples consisted of sun leaves. Protocols for leaf 

clipping and handling presented in Sánchez-Azofeifa et al. (2009) were followed 

to prepare for reflectance and leaf mass measurements. The reflectance of leaves 

was recorded from 350 to 2500 nm with a FieldSpec
®

 FR spectroradiometer 

(ASD Inc., Boulder, CO, USA) that provides a spectral resolution of 3 nm at 700 

nm, 10 nm at 1500 nm and 10 nm at 2100 nm. Three reflectance measurements 

were taken per leaf with an ASD leaf clip covering a halogen bulb illuminated 

area with a radius totaling 10 mm. The mean of the three reflectance 

measurements provided a representative reflectance spectrum for each leaf. Five 
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or ten leaf samples were measured per species. For each leaf, the wet weight was 

determined within one hour after clipping and the dry weight was obtained from 

the sample after a three-day drying process at 60
o
C. Leaf water content was then 

estimated using the wet weight and the dry weight. 

 

4.2.2.  Simulation of leaf reflectance with the PROSPECT model  

4.2.2.1. Principle of the PROSPECT model  

PROSPECT is a radiative transfer model that describes the leaf optical 

properties from 400 nm to 2500 nm (Jacquemoud & Baret, 1990). With a new 

version of the model (PROSPECT-4, Feret et al., 2008), leaf reflectance spectra 

can be simulated at 1nm steps with four input parameters: leaf structure N, leaf 

chlorophyll a+b concentration (Ca+b), equivalent water thickness (Cw), and dry 

matter content (Cm). All parameters can be measured from leaves except N. The 

model considers a leaf to consist of N stacked elementary homogeneous layers 

that account for leaf internal scattering and absorption by specific biochemical 

constituents. Therefore, N affects the reflectance in the entire spectral range with a 

dominant influence in the near-infrared (NIR) region. Ca+b mainly controls 

spectral variation in the visible and NIR regions, while Cw coupled with Cm 

affects the reflectance in the NIR and SWIR regions. As described below, 

chlorophyll concentration was kept constant for the simulations of this study. As a 

physically based model, PROSPECT is commonly used to represent leaf optical 

properties for specific ecosystems based on a range of parameter values that are 

site specific (Danson & Bowyer, 2004; Yebra et al., 2008; Yebra & Chuvieco, 

2009).  

 

4.2.2.2. Parameterization for the simulations 

Simulations of leaf reflectance spectra were conducted as part of two 

experiments. In the first experiment, the simulation of reflectance for each leaf 

sample was optimized to match the measured reflectance spectrum. 

Measurements of Cw and Cm for each leaf were used to optimize N during 

simulations. From this experiment, I estimated the range of N values necessary to 
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simulate all spectral measurements and assessed the performance of PROSPECT 

to simulate the reflectance measurements from tropical leaves. In the second 

experiment, leaf reflectance spectra were simulated for a range of input 

parameters and used to test the wavelet-based method for the estimation of leaf 

GWC. 

 

 Experiment I: simulation of the measured leaf reflectance  

The first experiment aimed to simulate the measured reflectance from 800 

to 2500 nm (n=265). To constrain the simulation, Cw and Cm were obtained from 

the measured leaves and Ca+b was kept at a constant value of 33 µg/cm
2
 (Ceccato 

et al., 2001). For each observation, a number of simulations were conducted by 

varying N from a value of 1 to 4 at increments of 0.1.  The optimal N value for 

each leaf was taken as the value that minimized the Euclidean distance between 

the measured spectrum and the simulated spectrum. The N values determined in 

this experiment were then used to constrain the range of N values utilized in the 

second experiment. The overall ability of PROSPECT to model the observed leaf 

reflectance was evaluated using the root mean square error (RMSE) per 

wavelength defined as follows: 

         
                                 

   

 
   (4-1) 

where              
 and               

 are the measured and simulated reflectance 

values at wavelength λ for sample i, respectively. 

 

 Experiment II: simulation of leaf spectra for the estimation of leaf GWC  

In the second experiment, a total of 530 simulations were conducted using 

a combination of input values for each of the four PROSPECT parameters. The 

outcome was a spectral database twice as large as that of the measured spectra 

(n=265). The simulated spectral database was divided into two portions, with 60% 

of the data being used to develop predictive models for the estimation of leaf 

GWC and 40% to validate the predictive models. For each simulation Ca+b was 

kept at a constant value of 33 µg/cm
2
 and N, Cw and Cm were randomly selected 
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from uniform distributions within specific data ranges. The measured ranges of 

Cw and Cm values were used and the range of N value was set to that obtained in 

Experiment I. A summary of all parameters is provided in Table 4-1. For each 

simulation, GWC was computed as follows on the basis of dry weight (LWCD) 

and fresh weight (LWCF): 

     
  

  
            (4-2) 

     
    

         
           (4-3) 

In Chapter three I was able to obtain more accurate estimates of LWCF than 

LWCD. Estimates of LWCD can be determined from estimates of LWCF using the 

following equation: 

     
    

         
           (4-4) 

A summary of the LWCF values measured for the 265 leaf samples and calculated 

for the 530 simulated leaf reflectance spectra is shown in Fig. 4-1.  

 

4.2.3. Feature extraction from wavelet analysis to estimate leaf GWC 

4.2.3.1. Wavelet analysis 

Wavelet analysis is a useful mathematical tool that provides a way to 

analyze spectral signatures at various scales by decomposing the original data into 

multiple scale components (Bruce et al., 2001; Kaewpijit et al., 2003; Mallat, 

1989; Rivard et al., 2008). In particular, wavelet analysis of hyperspectral data has 

proven to be effective for a variety of vegetation studies such as forest species 

identification (Kalácska et al., 2007; Zhang et al., 2006), biochemical/biophysical 

parameter estimation (Blackburn, 2007; Blackburn & Ferwerda, 2008; Ferwerda 

& Jones, 2006; Pu & Gong, 2004) and stress detection (Cheng et al., 2010).   

Wavelet transforms include the discrete wavelet transform (DWT) and the 

continuous wavelet transform (CWT) (Blackburn & Ferwerda, 2008; Bruce et al., 

2001). The latter is adopted in this study because each scale component is directly 

comparable to the input reflectance spectrum (Bruce et al., 2001; Du et al., 2006). 

In addition, CWT is able to provide valuable information pertinent to the shape 
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and position of spectral features in leaf reflectance spectra (Blackburn & 

Ferwerda, 2008). 

 

4.2.3.2. Continuous wavelet transform (CWT) 

The CWT is a linear operation that uses a mother wavelet function ψa,b(λ) 

to convert a reflectance spectrum f(λ) into sets of coefficients based on the 

following equation (Mallat, 1991): 

                      
  

  
    

          (4-5)  

where     
     is the complex conjugate of        

5 . a and b are positive real 

numbers with the scaling factor a defining the width of a continuous wavelet and 

the shifting factor b defining the position. The magnitude of a wavelet coefficient, 

also referred to as wavelet power, denotes the correlation between a scaled and 

shifted version of the mother wavelet and a spectral segment of the input 

spectrum. The scale components are of the same length and are suited to 

characterize absorption features of various widths.  

In order to detect the absorption features attributable to leaf water and dry 

matter, the second derivative of Gaussian (DOG), also known as the Mexican Hat, 

was used as the mother wavelet basis (Torrence & Compo, 1998; Cheng et al., 

2010). The effective support range of the Mexican Hat is [-5, 5] for the scale a=1 

and [-5a1, 5a1] for a=a1 (Du et al., 2006). The width of a scaled wavelet (10a1) 

determines the number of input wavebands that are to be convolved with the 

wavelet and attributed to the wavelet coefficient. To reduce the data volume, the 

CWT was performed at dyadic scales 2
1
, 2

2
, 2

3
, ..., and 2

8
. Those scales were 

labeled as scales 1  2  3  …  and 8 and were comparable to the scales described in 

relevant studies by Blackburn & Ferwerda (2008) and Rivard et al. (2008). For 

the PROSPECT-simulated reflectance spectra, 1701 wavebands were available 

(800-2500 nm). Any scale greater than 2
8
=256 was discarded as they were not 

observed to carry meaningful spectral information (Cheng et al., 2010). All CWT 

                                                           
5
 Note that complex conjugation changes the function only if a complex wavelet function such as 

Morlet function is used. The derivatives of Gaussian function are real functions. 
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operations were conducted using the IDL 6.3 Wavelet Toolkit (ITT Visual 

Information Solutions, Boulder, CO, USA). 

 

4.2.3.3. Feature selection from correlation scalograms 

Four procedural steps were involved to define spectral features that 

significantly correlated with LWCF. A brief description of the procedure is 

provided in this section and readers are referred to Chapter three for further detail. 

Firstly, CWT was applied to each of the reflectance spectra simulated in 

Experiment II to generate a wavelet power scalogram representing the wavelet 

power as a function of wavelength and scale. Secondly, a correlation scalogram 

was constructed by establishing the Pearson’s correlation for each element of the 

wavelet power scalograms and LWCF across all simulations. The correlation 

scalogram formed a feature set from which wavelet features most sensitive to 

LWCF could be selected. Thirdly, features with the least statistically significant 

R
2
 (p>=0.05) values were discounted. The remaining features were sorted in 

descending order of R
2
 and a R

2
 cut-off value was applied to retain the 1% 

features that most strongly correlated to LWCF. This process delineated a number 

of feature regions on the correlation scalogram. As a last step, the feature with the 

maximum R
2
 within each feature region was selected and expressed as 

(wavelength in nm, scale). This feature selection approach resulted in a small 

number of wavelet features that were sparsely distributed on the correlation 

scalogram and capable of capturing the most important information with respect 

to changes in LWCF. 

 

4.2.4.  Calculation of spectral indices  

The wavelet-based method was compared to three spectral indices 

reported in the literature and designed to estimate vegetation water content from 

remotely sensed reflectance were calculated. The water index (WI), originally 

developed to relate LWCD with leaf reflectance in narrow wavebands, is 

formulated as follows (Peñuelas et al., 1993, 1997): 
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        (4-6) 

The moisture stress index (MSI) was developed using Landsat TM bands TM4 

and TM5 (Hunt et al., 1987) and tested with high spectral resolution data. MSI 

was calculated using the following equation (Hunt & Rock, 1989): 

     
     

    
        (4-7) 

The normalized difference water index (NDWI) was designed by Gao (1996) to 

remotely sense the EWT from space and was originally formulated using two 

narrow wavebands from MODIS imagery as follows:  

      
            

            
       (4-8). 

 

4.3. Results 

4.3.1. Experiment I: simulation of the measured leaf reflectance 

Fig. 4-2A shows a summary of leaf reflectance for measured and 

simulated spectra. The shape of the mean reflectance spectra and deviations to the 

mean for the two data sets is similar in the entire spectral range with exception for 

the 800-900 nm region. For the 900 to 2500 nm region, of interest for estimating 

leaf water content, the spectral RMSE was less than 0.03, indicating a very good 

agreement between the simulated and measured leaf reflectance spectra (Feret et 

al., 2008; Jacquemoud et al., 1996; Jacquemoud et al., 2000) (Fig. 4-2B). 

Specifically, the globally lowest RMSE of 0.006 was observed at 1370 nm 

on the leading edge (1310-1386 nm) of a broad water absorption region where 

PROSPECT performed best. Two other spectral regions at 1660-1780 nm and 

2130-2230 nm displayed locally low values in RMSE (RMSE1702 = 0.009, 

RMSE2159 = 0.020). These two regions denote absorption by dry matter. The 

following section shows that the three spectral regions carry considerable spectral 

information sensitive to changes in LWCF. 
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4.3.2. Experiment II: simulation of leaf spectra for the estimation of 

leaf GWC 

4.3.2.1. Feature regions determined from the correlation scalogram 

Six feature regions that correlate with leaf water content were determined 

from the correlation scalogram (Fig. 4-3).  All feature regions were located in the 

SWIR region (1300-2500 nm) and the largest extended from 1692 nm to 1748 nm 

across scale 3 to 5. The spatial pattern of the feature regions was highly uneven, 

with the largest region encompassing 81.36% of the features (96 of 118 features) 

and the remaining five regions encompassing 18.64%. 

 

4.3.2.2. Wavelet features most strongly correlated to LWCF  

Six wavelet features (one per feature region) were identified and shown to 

be strongly sensitive to LWCF (Table 4-2). The R
2
 value of the linear regression 

for each feature was high (R
2
 from 0.989 to 0.975). The difference in R

2
 between 

the strongest (feature A) and weakest feature (feature F) was only 0.014. All 

features except feature F (scale 7) are observed in low scales (scales 3 and 4). 

Feature D (1802 nm) is spectrally redundant with feature C (1800 nm) given the 

spectral uncertainties of the spectrometer used in the SWIR region. 

Fig. 4-4A displays the wavelength and scale of the five distinct wavelet 

features. These are shown with reflectance spectra for the lowest (16.80%) and 

highest LWCF (85.57%). The low-scale features occurred in two spectral regions 

where leaf dry matter (e.g., protein, lignin, cellulose) constituents produce broad 

and overlapping absorption features (Curran, 1989). In response to changes in 

LWCF, four of the low-scale features captured spectral variation in the 1660-1820 

nm range that is primarily influenced by the presence of lignin and cellulose in 

plants (Table 4-2). Feature E captured the spectral variation in the 2140-2220 nm 

range attributed to the presence of protein, lignin, and cellulose (Curran, 1989; 

Kokaly, 2001). Feature F (1337 nm, 7) occurred on the edge of a broad water 

absorption and was attributed to broader changes in the shape of reflectance 

spectra affected by changes in LWCF. 
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4.3.2.3. Relative performance of wavelet features and spectral indices  

Fig. 4-5 shows the regression model for the best performing wavelet 

feature (1740nm, 4) and the comparison between measured and predicted LWCF 

values derived from the model. The relationship between measured LWCF and 

wavelet power at this feature is strongly linear. Similarly strong linear 

relationships were observed for all features in Table 4-2.  

When the regression model for each feature is applied to the validation set 

for the prediction of  LWCF, the ranking of R
2
 for the six feature (Table 4-3) is 

almost the same as that obtained for the calibration set (Table 4-2). The accuracy 

for the estimation of LWCF based on the six wavelet features ranged from RMSE 

values of 1.58% (R
2
 = 0.988) to 2.37% (R

2
 = 0.974) (Table 4-3). A model based 

on the combination of the five low-scale features predicted LWCF with the same 

accuracy as the combination of all features (R
2
 = 0.990, RMSE = 1.46%), whereas 

the model based on the high-scale feature resulted in a lower accuracy (R
2
 = 

0.974, RMSE = 2.37%). These accuracy values are higher than those reported in 

the literature (Asner & Martin, 2008). Fig. 4-6 compares the actual LWCF for 

simulated spectra with LWCF predicted using the combination of all features and 

the data were distributed more uniformly around the 1:1 line than that observed 

using the best performing individual feature (Fig. 4-5). 

All three spectral indices yielded significantly less accurate estimates of 

LWCF than wavelet features with the WI being the best performing index (Table 

4-3). The calibration model obtained for WI displays a weaker correlation (R
2
 = 

0.575) (Fig. 4-7A) compared to that obtained for the best wavelet feature (Fig. 4-

5A). Using WI, LWCF values of less than 35% appeared to be substantially 

overestimated (Fig. 4-7B) and the RMSE of the prediction was 7.65% higher than 

that for feature (1740 nm, 4) (RMSE=1.58%).  

 

4.3.2.4. Transformation of LWCF to LWCD 

To facilitate comparison with previous studies on LWCD, LWCF estimates 

were transformed to LWCD using Eq. (4-4). For this purpose I used LWCF 

predicted with the best performing wavelet feature (1740nm, 4) and the 
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combination of six wavelet features (Table 4-3). The accuracy of LWCD 

estimated using feature (1740nm, 4) (Fig. 4-8A, R
2
 = 0.933, RMSE = 25.07%) 

and the combination of the six features (Fig. 4-8B, R
2
 = 0.950, RMSE = 21.70%) 

were higher than that reported for PROSPECT simulated spectra (Danson & 

Bowyer, 2004) and LOPEX data (Danson & Bowyer, 2004; Li et al., 2007; Riaño 

et al., 2005). The LWCD estimates compare well with the actual values at low 

values but the comparison degrades with increasing values of LWCD (Fig. 4-8). 

Such a pattern was not observed for predicted LWCF (Figs. 4-5, 4-6).  

 

4.4. Discussion 

This study introduces a wavelet-based methodology applied to simulated 

reflectance spectra to achieve accurate estimates of both measures of leaf GWC 

(LWCF or LWCD). This method is effective to extract spectral information 

indicative of changes in leaf GWC and differs from that reported in related studies 

(Asner & Martin, 2008; Danson & Bowyer, 2004; Tian et al., 2001).    

 

4.4.1. Advantages of the continuous wavelet analysis 

As a response to changes in a leaf chemical, significant spectral variation 

tends to occur over particular absorption regions rather than at scattered 

individual wavelengths. The use of CWA provides a multiscale representation of 

input reflectance information and facilitates the analysis of all absorption features 

of various widths. The wavelet features are especially important for capturing 

variations in the shape of relevant spectral regions. Furthermore, the selection of 

optimal features from the entire correlation scalogram ensures that the significant 

spectral variation is captured regardless of its width and wavelength locations. In 

contrast, spectral indices simply use a small number of wavebands to characterize 

the leaf water-induced spectral variation over a broad range, which explains their 

poorer performance.  

Empirical relationships between leaf GWC and the reflectance at water 

absorption bands have been employed to estimate leaf GWC  Danson    owyer  
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2004; Pe uelas et al., 1997). For this purpose, little attention has been paid to date 

to the use of spectral regions recording light absorption by dry matter. Tian et al., 

(2001) examined the 1650-1850 nm dry matter absorption feature and found a 

strong relationship between continuum-removed reflectance spectra and GWC. 

The wavelet-based method of this study exploited a number of absorption features 

of dry matter in the SWIR region, thereby emphasizing the important role of dry 

matter features in estimating GWC. 

 

4.4.2. Comparison of wavelet features derived from the simulated 

spectra and the measured spectra 

To compare the performance of the wavelet-based methodology across 

data sets, the procedures presented in Section 4.2.3 were also applied to the 

measured reflectance data set. The wavelet features derived are displayed in Fig. 

4-4B and their predictive capabilities are summarized in Table 4-4. The 

PROSPECT-simulated spectra resulted in a smaller number of informative 

wavelet features that showed stronger capabilities to predict leaf GWC (Tables 4-

3 & 4-4). Six significant features were extracted from the simulated spectra and 

eight were extracted from the measured spectra. The smaller number of features 

for the simulated spectra might be explained by a large feature region (Fig. 4-3) 

that accounted for a large portion of the top 1% features in the correlation 

scalogram.  

Three features ((1740nm, 4), (2180nm, 3), (1337nm, 7)) determined from 

the simulated spectra were closely matched by features from the measured spectra 

((1736nm, 4), (2165nm, 4), (1344nm, 7)). Interestingly, these similar wavelet 

features occurred in spectral regions where the simulated leaf reflectance was in 

good agreement with the measured reflectance (Fig. 4-2). Differences in the 

location of the remaining features between the two data sets cannot be explained 

at this time but may be related to the relatively lower accuracy of simulation in 

the remaining spectral regions. 
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4.4.3. Distribution of spectral information across scales 

The most apparent spectral change for dehydrating leaves is the increase 

in reflectance  throughout the 400-2500 nm range, with the most prominent 

increase occurring in the SWIR region (1300-2500 nm) (Aldakheel & Danson, 

1997; Carter, 1991, Lee et al., 2007). Thus one might expect that changes in leaf 

GWC might be best captured by high-scale wavelet features in response to 

changes over broad spectral regions. However, the relative importance of high-

scale features among all features for each data set was significantly different. 

Among the eight features derived from the measured spectra, two high-scale 

features ((1344nm, 7) & (1870nm, 6)) showed relatively strong correlations with 

leaf GWC, ranking immediately below the feature with the strongest correlation. 

This feature distribution across scales for the measured spectra is not unexpected. 

For the simulated spectra, the high-scale feature (1337nm, 7) provided the 

weakest correlation amongst the six features, which is unexpected. 

The unexpectedly least important high-scale feature for the simulated data 

set might be explained by the difficulty in parameterizing the PROSPECT model 

in an appropriate way. The PROSPECT model provides a user with control of 

four input variables but random selections of each variable value can lead to 

unrealistic input combinations (Yebra & Chuvieco, 2009). N affects the spectral 

variation throughout the 800-2500 nm range, and it impacts variations in 

reflectance amplitude as GWC does (i.e., Cw and Cm) (Fig. 4-9). Usually, a leaf 

with low GWC would be accompanied by a high value of structural parameter N 

giving a reasonably high reflectance. Through random combinations of input 

variables, a low GWC value (derived from Cw and Cm) can be assigned to any N 

in the defined range, resulting in an unrealistic combination. Fig. 4-10 illustrates 

some problematic spectra generated by unrealistic combinations of input 

variables. As LWCF decreased from 83.65% to 67.47% (top to bottom in Fig. 4-

10), the leaf reflectance should have increased in the infrared region but decreased 

due to the considerable influence of N. In our simulation I did not fix N as doing 

so would have failed to represent leaf structural variations present in measured 

spectra. A large number of such problematic spectra resulting from unrealistic 
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parameter combinations might confound the link between GWC and spectral 

reflectance. At the very least, they may prevent high-scale wavelet features from 

capturing significant information on amplitude variation over a broad spectral 

region. 

 

To reduce the risk of generating a large number of problematic spectra, 

further efforts could eliminate the simulations resulting from unrealistic 

combinations of N, Cw and Cm by applying a filter criterion based on the empirical 

relationships between input variables (Yebra et al., 2008). Alternatively, some 

conditions could be applied to constrain the combination of input parameters prior 

to simulation. Previous studies have kept all variables independent because no 

accurate information on the relationship between variables was available for a 

specific geographic site. To avoid the presence of site-specific information in the 

model, future versions of PROSPECT may need to incorporate more input 

variables to account for the interacting effect between the current variables. 

This study suggests that the wavelet features derived for the estimation of 

leaf GWC are not sensitive to variability in N that represents the leaf structural 

variation for a wide range of tropical forest species. With the use of the wavelet-

based methodology, the influence of variation in leaf structure was implicitly 

suppressed but never explicitly removed. This suppression is beneficial in tropical 

ecosystem studies for reducing the spectral variability that often changes 

significantly with species diversity (Castro-Esau et al., 2006).  

 

4.5. Conclusions 

The PROSPECT model was able to well represent the reflectance of 

leaves collected from Mesoamerican tropical forest environments and performed 

best while reconstructing the reflectance in three local regions (1310-1386 nm, 

1660-1780 nm, and 2130-2230 nm). Using the wavelet-based method, six 

significant wavelet features were determined from the PROSPECT-simulated 

spectra and all were able to produce accurate estimates of leaf GWC. Three of 
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these features closely matched those obtained in Chapter three for the measured 

spectra. These recurrent features occurred in spectral regions where the leaf 

reflectance was best modeled by PROSPECT. It appears that these features may 

serve as robust and efficient predictors of leaf GWC for a broad variety of tropical 

forest species. Results from both the simulated spectra and measured spectra 

showed that low-scale features were reliable for the estimation of leaf water 

content but observations regarding the importance of high-scale features remain 

inconclusive.  

This research provided a valuable opportunity to assess the ability of 

PROSPECT to simulate the spectral reflectance of Mesoamerican tropical forest 

species with particular considerations paid to their link to leaf water content. It 

also demonstrated the robustness of the wavelet-based methodology to extract 

meaningful spectral features in the wavelet domain through a modeling approach. 

The three wavelet features consistently determined from the simulated spectra and 

the measured spectra are thereby recommended to the reflectance spectroscopy 

community for efficient estimation of GWC at least as a supplement to spectral 

indices. If one is to design any GWC metric for a specific application without 

relation to wavelets, attention to the spectral regions covered by the wavelet 

features of this study is recommended.  
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Table 4-1. Ranges of input variables used for the PROSPECT simulations in 

Experiment II 

Input parameter Unit Range 

Chlorophyll µg/cm
2
 33 

Equivalent water content (EWT) cm or g/cm
2
 0.0037-0.0255 

Dry matter content (DMC) g/cm
2
 0.0041-0.0189 

Structural parameter N - 1.1-2.9 
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Table 4-2. List of wavelet features ranked by R
2
 using the calibration set and 

relating wavelet power to measured leaf water content 

 

Note: Wavelet features were associated with broad absorptions tabled in Curran 

(1989) and Kokaly & Clark (1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature Wavelength (nm) Scale R
2
 Attributed to 

A 1740 4 0.989 Cellulose, lignin @ 1730 nm 

B 1780 3 0.987 Cellulose, sugar @ 1780 nm 

C 1800 4 0.984 Not attributable 

D 1802 3 0.982 Not attributable 

E 2180 3 0.976 Protein, nitrogen @ 2180 nm 

F 1337 7 0.975 Water @ 1400 nm 
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Table 4-3. Accuracies for the estimation of LWCF in the validation set using 

spectral indices, individual wavelet features or a combination of wavelet features 

derived from the simulated spectra. 

Feature 

code 

Feature location Accuracy 

Wavelength (nm) Scale   R
2
 RMSE (%) 

A 1740 4  0.988 1.58 

B 1780 3  0.982 1.94 

C 1800 4  0.982 1.96 

D 1802 3  0.982 1.95 

E 2180 3  0.978 2.18 

F 1337 7  0.974 2.37 

G Combo = A, B, C, D, E, F High & Low  0.990 1.46 

H Combo = A, B, C, D, E Low  0.990 1.46 

I Combo = F High  0.974 2.37 

     J              MSI  0.308 12.1 

     K             NDWI  0.495 10.3 

     L               WI  0.599 9.23 
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Table 4-4. Accuracies for the estimation of LWCF in the validation set using 

individual wavelet features derived from the measured spectra. 

Feature code 
Feature location  Accuracy 

Wavelength (nm) Scale  R
2
 RMSE (%) 

A 2165 4  0.68 4.86 

B 1344 7  0.62 5.28 

C 1870 6  0.64 5.20 

D 1736 4  0.50 6.07 

E 2378 4  0.47 6.27 

F 2029 3  0.50 6.09 

G 1576 3  0.51 6.02 

H 2226 3  0.51 6.05 
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Fig. 4-1. Histograms of leaf water content by fresh weight (LWCF) derived from 

(A) the laboratory measurements on each leaf and (B) values of Cw and Cm for the 

PROSPECT simulations. 
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Fig. 4-2. (A) Plot of mean and mean ± s.d. of reflectance spectra for the measured 

leaf reflectance dataset and the PROSPECT simulated dataset. (B) The root mean 

square error (RMSE) per wavelength as described in Eq. (4-1). The dashed circles 

highlight spectral regions displaying local minimum in RMSE. 
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Fig. 4-3. Features regions extracted from the correlation scalogram relating 

wavelet power and leaf water content (LWCF). The feature with strongest 

correlation (1740 nm, 4) originates from the largest feature region. Arrows mark 

the wavelength position of wavelet features representative of each feature region. 
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Fig. 4-4. Wavelet features used for the estimation of LWCF. The wavelength 

position and scale of those features are indicated by vertical lines and the 

corresponding wavelets. Also shown are reflectance spectra for highest LWCF 

(dashed line) and lowest LWCF (dotted line). Each wavelet feature is positioned 

on the spectra with the scaled and shifted continuous wavelet used to compute its 

wavelet power. (A) Wavelet features derived from the PROSPECT simulated 

reflectance spectra. (B) Wavelet features derived from the measured reflectance 

spectra. 
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Fig. 4-5. (A) Correlation between the best performing wavelet feature (1740 nm, 

4) and leaf water content (LWCF) for the calibration set. (B) Estimates of LWCF 

derived from the regression model in (A).   
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Fig. 4-6. Plot of actual versus predicted LWCF derived using a combination of the 

six wavelet features for the simulated spectra. 
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Fig. 4-7. (A) Relationship between the water index (WI) and leaf water content 

(LWCF) for the calibration set. (B) Estimates of LWCF derived with the 

regression model in (A).   
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Fig. 4-8. Actual LWCD plotted against predicted LWCD inverted from LWCF 

estimates. The LWCF were obtained from wavelet feature (1740 nm, 4) for (A) 

and from the combination of all features for (B). 
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Fig. 4-9. Effects of leaf properties on the reflectance simulated by the PROSPECT 

model: (A) leaf structure, (B) equivalent water thickness, and (C) dry matter 

content. Also shown in (D) is the coupled effect of equivalent water thickness and 

dry matter content. 
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Fig. 4-10. Example PROSPECT-simulated reflectance spectra with randomly 

generated combinations of LWCF and N. Note that reflectance spectra simulated 

with higher LWCF values should display lower reflectance in the infrared region 

but do not as a result of unrealistic combinations of input variables. 
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CHAPTER 5 - CONCLUSIONS 

5.1. Summary 

This research has focused on the development of methodologies to extract 

useful spectral information from leaf reflectance spectra using continuous wavelet 

analysis (CWA). One methodology has been used for detecting the effect of 

mountain pine beetle infestation at the early stage on lodgepole pine trees, and the 

other for deriving robust predictors of leaf water content from measured and 

simulated reflectance spectra. As presented in the preceding chapters, CWA 

provides a novel approach to optimize the selection of wavelet features as a 

function of wavelength and scale. 

Three research issues were addressed in this thesis. The first issue dealt 

with the development of an effective method to detect the green attack stage on 

lodegepine trees affected by mountain pine beetles. Through the use of CWA, a 

small number of wavelet features were determined to distinguish healthy trees 

from infested trees at the green attack stage. Water was found to be a 

physiological indicator of the beetle infestation at the early stage, therefore the 

second issue focused on the development of a methodology to determine the 

universal spectral information that relates to the leaf gravimetric water content 

(GWC) for a variety of forest species. In an effort to derive accurate estimates of 

leaf GWC, eight meaningful wavelet features were extracted to account for the 

spectral variations linked to changes in leaf GWC. To further determine the robust 

wavelet features pertinent to leaf water, the third issue addressed a simulation 

study to test the newly developed methodology for the estimation of leaf GWC 

from the reflectance spectra simulated by the radiative transfer model 

PROSPECT. 

 

5.2. Synthesis of contributions  

In the context of vegetation studies, previous research involved with 

wavelet analysis of hyperspectral data has focused on the exploration of discrete 

wavelet transform (DWT) as a means to reduce the dimensionality of 
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hyperspectral signatures (Bruce et al., 2001; Koger et al., 2003; Pu & Gong, 

2004).  I chose continuous wavelet transform (CWT) instead of DWT to 

decompose the leaf reflectance spectra because it is easier to interpret the outputs 

of CWT and to compare them with the input spectra (Blackburn & Ferwerda, 

2008; Rivard et al., 2008). To date, there are very few studies that apply CWA to 

hyperspectral signatures of vegetation (Blackburn & Ferwerda, 2008; Ferwerda & 

Jones, 2006). This is likely due to the research gap in the development of effective 

feature extraction/selection techniques that serve to derive a small number of 

useful features from a large volume of CWT outputs. A methodological highlight 

of this work lies in the development of a new way to select in the wavelet domain 

the most significant features for detecting the green attack damage and for 

predicting leaf GWC.  

Chapter 2 reports the most promising findings to date on the remote 

detection of green attack damage due to mountain pine beetle infestation. The two 

relevant studies (Ahern, 1988; Runesson, 1991) focused on the examination of 

spectral variations in the visible and near infrared regions (350-1100 nm) and thus 

precluded the potential contribution of spectral signatures from water. However, 

the reflectance measurements from 350 to 2500 nm are readily available now with 

the advancement of the state of the art of reflectance spectrometry. The primary 

findings of this study are: 1) The infested trees at the green attack stage suffer 

from water deficit. This study presents the first explicit examination of tree-level 

water availability related to mountain pine beetle green attack damage, although 

White et al. (2007) indicated the water deficiency at the stand level as a 

consequence of beetle attack at a later stage (red attack). The finding increases our 

understanding of the physiological mechanism of the pre-visual stress from 

mountain pine beetle attack. 2) The water deficit occurring in infested trees could 

be detected with hyperspectral reflectance measurements of pine needles. Despite 

the reported challenge in detecting green attack damage via remote sensing 

(Wulder et al., 2006), the use of CWA allows us to capture the spectral response 

to the water deficit triggered by the beetle attack on pine trees. It is shown that the 

spectral detection of green attack damage should focus on spectral regions where 
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the variation in reflectance is strongly associated with changes in foliage water. In 

recognition of the importance of water content as an indicator of green attack 

damage, the following two chapters focus on examining the spectral contributions 

of water and strive to achieve accurate estimates of leaf GWC.  

Chapter 3, unlike previous investigations conducted on a limited number 

of species or a narrow range of water content levels, is based on a data set 

encompassing 47 species from two tropical forest environments (dry forest and 

rainforest) in Panama. CWA was shown to be effective to capture the spectral 

variations in response to changes in GWC despite the diverse composition of 

species. The most interesting finding of this chapter stems from the outcome of 

the selection of optimal wavelet features through the use of CWA. Two groups of 

features were determined at various scales to be sensitive to changes in leaf GWC. 

The first group, found at high scales, captures the amplitude variation across a 

broad spectral range that is primarily attributed to changes in the amount of leaf 

water. The second group, found at low scales, captures the variations in the shape 

and depth of absorption features by dry matter that comprises the dry mass of 

leaves such as protein, lignin, and cellulose. Although GWC is dependent on the 

absolute amount of leaf water and the dry matter content (Danson & Bowyer, 

2004), the results suggest that spectral information pertinent to both leaf water 

and dry matter is useful for the spectroscopic estimation of leaf GWC. In addition, 

it adds a new dimension to the understanding of the spectral variations induced by 

changes in leaf GWC. This study is the first to use a species-rich data set collected 

from the Mesoamerican tropical ecosystem to address the estimation of leaf 

chemistry. The most similar published study was conducted by Asner & Martin 

(2008) who used a Partial Least Squares (PLS) method to investigate the 

estimation of leaf chemistry for 162 Australian tropical forest species. Compared 

with CWA, PLS requires more effort to calibrate models and does not provide 

determinant information to interpret the relative importance of wavelengths 

involved in the regression equations (Martin et al., 2008; Smith et al., 2002; Smith 

et al., 2003). The methodology developed in this chapter to estimate leaf 

chemistry would be beneficial to ecologists, in particular those who are involved 
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with spectral and chemical analysis of tropical forests because it is less affected 

by variations in species composition.  

Chapter 4 employs a simulated spectral database to provide an evaluation 

of the methodology developed in Chapter 3 to determine effective predictors of 

leaf GWC. The PROSPECT radiative transfer model is able to accurately 

represent the measured reflectance in the 800-2500 nm range, with  M E’s less 

than 0.03. Three of the six wavelet features derived from the simulated spectra are 

in accordance with those derived from the measured spectra. The predictive 

capability of these consistent wavelet features demonstrates that more spectral 

information associated with leaf GWC could be extracted from the absorption 

features of dry matter than from those of water. It is the decline in the strength of 

water absorptions that makes the dry matter absorption more detectable in leaf 

reflectance spectra (Kokaly & Clark; Tian et al., 2001). The wavelet-based 

methodology, developed using measured spectra and tested using simulated 

spectra, proves to be effective in predicting leaf GWC from reflectance spectra 

even in the presence of a diverse set of tree species. 

 

5.3. Avenues of future research 

This thesis has investigated the detection of beetle attack stress and the 

quantification of leaf water content using spectroscopic measurements at the leaf 

level. Future research seeks to extend these studies to canopy level using airborne 

or spaceborne hyperspectral imagery. Further research should either apply the 

leaf-level wavelet features to hyperspectral imagery or revisit the problem using 

canopy-level data. The methodologies presented in the thesis would first have to 

be adapted to process imagery negatively impacted by atmospheric absorption. 

For the spectral detection of green attack damage, a narrow feature region (1318-

1322 nm) was located on the edge of a strong atmospheric absorption region and 

may still be of use dependent on the quality of the atmospheric correction for 

hyperspectral imagery. High-frequency noise in imagery data is not a concern 

since it could be readily removed with low-scale wavelets. As to the estimation of 
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water content in vegetation canopies, there are also possibilities for 

implementation on airborne data because multiple wavelet features have been 

determined from across the shortwave infrared region (1300-2500 nm). However, 

a question that arises is whether spectral properties at the leaf level could be 

transferred to the canopy level due to the confounding effect of canopy 

architecture and background materials within (Ahern, 1988; Daughtry et al., 2000; 

Sánchez-Azofeifa & Castro-Esau, 2006). Fortunately, the reflectance signals from 

water could be enhanced at the canopy level due to the more intensive multiple 

scattering process within canopies (Asner, 1998; Sims & Gamon, 2003) and 

background materials such as soil typically have little high frequency spectral 

information. 

Research opportunities also exist to apply the developed methodologies to 

other data sets collected under different scenarios. The approach to detect green 

attack damage could be evaluated using samples collected from other areas that 

are also affected by the current outbreak of mountain pine beetle (e.g., British 

Columbia). As to the estimation of leaf water content, the wavelet features 

consistently derived in Chapter 3 and Chapter 4 are particularly useful for 

ecosystems with considerable diversity in species composition, such as tropical 

forests in Australia (Asner & Martin, 2008) and in Americas (Castro-Esau et al., 

2006; Sánchez-Azofeifa et al., 2009). Experience gained utilizing other data sets 

will help to improve the procedure of feature selection on the correlation 

scalogram. The number of features selected was dependent on the percentage 

threshold that was set to an empirical value of 1% for all analyses. Further 

exploration of the relationship between the threshold and the size and spatial 

pattern of feature regions might suggest a better strategy to determine the 

threshold. The distribution of a feature region as a function of wavelength and 

scale also has implications for potential detection of representative features as 

constrained by the resolution of airborne and spaceborne sensors. The pattern of 

feature regions is also useful for refining feature selection in the future. As a 

result of the feature selection procedure, the feature set may also be useful for 

refining feature selection in the future.  
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While constructing correlation scalograms, linear models were used to fit 

the relationships between wavelet power and all dependent variables and these 

models worked well as shown in Chapter 2. It was not appropriate to apply linear 

fitting to LWCD in Chapter 3 but non-linear fitting could be avoided by 

converting linearly modeled LWCF to LWCD.  As this conversion is not generally 

applicable, future work should investigate non-linear models such as polynomial 

functions for the wavelet-based methodology to fit the relationship between 

wavelet power and other leaf chemical constituents.  

Although the wavelet features derived for the estimation of leaf GWC 

were insensitive to species, the question of how to explicitly suppress the effect of 

leaf structural variability on spectral reflectance using CWA remains. The 

variation in leaf structural characteristics represented by the wide range of species 

in the tropical data set could be quantified by a number of structural parameters 

(Castro-Esau et al., 2006; Sánchez-Azofeifa et al., 2009). Future research could 

focus on how to relate structural properties to spectral features in the wavelet 

domain and then reducing the influences of those wavelet features on spectral 

estimation of leaf water content. In addition, it is worth investigating whether it is 

feasible to separate the spectral variability caused by structural properties and 

chemical properties by means of multiscale representation of CWA. This is 

important for hyperspectral applications where the effect of leaf structural 

variability on spectral reflectance is to be minimized (Danson et al., 1992; Sims & 

Gamon, 2002). 

Other than foliar water, the methodology developed using the tropical leaf 

data set could also be applied to quantify other chemical constituents such as 

chlorophyll, nitrogen, lignin, and cellulose to better understand their roles in 

ecosystem processes and biogeochemical cycles (Kokaly et al., 2009; Schimel, 

1995; Wessman et al., 1998). In fact, the correlation scalogram includes a whole 

set of features characterized by wavelength and scale in the wavelet domain. Here 

I used a tropical data set to label the features sensitive to leaf water content. The 

next step could be to identify and label the features sensitive to all other leaf 
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chemical constituents used in the literature. This scalogram with labeling of 

wavelet features has the potential to provide improved estimation of leaf 

chemistry and valuable knowledge about the control of individual constituents on 

leaf spectral properties. 
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APPENDIX 

Appendix 1. Continuous wavelet transform of a reflectance spectrum 

 

Fig. A-1. Schematic representation of the continuous wavelet transform 

workflow.  

 

Each reflectance spectrum in data sets used in this thesis is an input to the 

continuous wavelet transform function implemented in a professional software 

(IDL). The output for each input is a wavelet power scalogram showing wavelet 

power (magnitude of a wavelet coefficient) as a function of wavelength and scale. 
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Two of the ten scale components are extracted from the wavelet power scalogram 

and displayed at the bottom of Fig. A-1 as a Scale 3 spectrum and a Scale 7 

spectrum. Both can be compared to the reflectance spectrum. The Scale 3 

spectrum captures various absorption features and the Scale 7 spectrum captures 

the overall shape of the reflectance spectrum. 
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Appendix 2. Workflow of the wavelet-based methodology 

 

Fig. A-2. Workflow of the wavelet-based methodology. 

 

The general procedures of the wavelet-based methodology developed in 

this thesis are the same for stress detection and water content estimation: 

1. CWT is applied to each reflectance spectrum to calculate the wavelet 

power as a function of wavelength and scale as displayed in Fig. A-1. 

Each reflectance spectrum is transformed to a wavelet power 
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scalogram and the outcome of this step is a series of wavelet power 

scalograms for the samples in a data set (Fig. A-2A).  

2. A correlation scalogram (Fig. A-2B) was constructed by establishing 

the Pearson’s linear correlations between each element of the wavelet 

power scalograms and a dependent variable (i.e., chlorophyll 

concentration, water content, or class ID) across all samples. The 

correlation scalogram reports a squared correlation coefficient (R
2
), 

ranging in magnitude from 0 to 1, at each wavelength and scale. Each 

element of the correlation scalogram represents a feature that could be 

selected.  

3. The features where R
2
 is not statistically significant (p>=0.05) are 

masked. The remaining features are then sorted in descending order of 

R
2
, and a threshold R

2
 value is applied to delineate the top 1% features 

that most strongly correlate with the dependent variable. These 

features delineated by the threshold form a number of scattered feature 

regions on the correlation scalogram (Fig. A-2C).  

If the user is satisfied with the feature regions, the methodology terminates 

here. Otherwise, an additional step is required to select the most representative 

feature for each feature region because each region may carry redundant spectral 

information across consecutive wavelengths and scales. This can be done by 

determining a feature with the maximum R
2
 within each region and the feature is 

expressed as (wavelength in nm, scale). Under this circumstance, the ultimate 

output of the wavelet-based methodology is a small number of wavelet features 

sparsely distributed on the correlation scalogram. 

 

 


