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Abstract

In this thesis, we present expositions of Gromov-Witten invariants, Hurwitz numbers,

topological recursion and their connections. By remodeling theory, open Gromov-Witten

invariants of C3 and C3/Za satisfy the topological recursion of Eynard-Orantin defined on

framed mirror curve of toric Calabi-Yau three orbifold target spaces. Studies show that

simple/orbifold Hurwitz numbers can be obtained using topological recursion with spectral

curve given by Lambert/a-Lambert curve. Also, both the open Gromov-Witten invariants

of toric Calabi-Yau three orbifold and the simple and double Hurwitz numbers can be for-

mulated via Hodge integrals. We extend these connections by determining the relationship

between the open Gromov-Witten invariants of C3/Za (with insertions of orbifold cohomol-

ogy classes) and the full double Hurwitz numbers through referring to their Hodge integral

formulations and to orbifold Riemann-Roch formula. By remodeling theory and mirror

theorem for disk potentials, we make a conjecture relating a specific type of double Hurwitz

numbers Hg(ν(γ, 2), µ) and topological recursion. We predict that these double Hurwitz

numbers Hg(ν(γ, 2), µ) can be generated using topological recursion defined on the spectral

curve ye−2y − τxe−y + x2 = 0.
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Introduction

Unification is a wonderful notion that researchers endeavor to achieve. A unified sys-

tem may lead to great insights into each framework’s component and may provide key to

new door of studies. This thesis is about the connections among three seemingly unrelated

topics: topological recursion, Hurwitz numbers and Gromov-Witten invariants.

Topological recursion first arose from the context of random matrix theory. This recursion

developed by Eynard-Orantin originally provided a way to generate statistical solutions

to matrix model problem using a geometric object called spectral curve. The solutions

to matrix model can be obtained through topological recursion formula, which involves

meromorphic differentials on the spectral curve. Moreover, topological recursion has also

found surprising applications [EO] in various areas such as integrable systems, enumera-

tion of maps, number theory, physics and algebraic geometry. In particular, topological

recursion can be utilized to generate the enumerative quantities called Hurwitz numbers.

A Hurwitz number is an automorphic weighted count of covers of Riemann surfaces by

Riemann surfaces. This quantity depends on the partitions of the degree of the covering

map of Riemann surfaces. This quantity depends on the partitions of the degree of cov-

ering map of Riemann surfaces. The polynomiality of this in the partitions of covering

map degree was discovered in [GJ], then it was realized that this characteristic of Hurwitz

number can be formulated equivalently by integrals over moduli space of stable curves and

of stable maps (called Hodge integrals). This description of Hurwitz number was found in

[ELSV] and [JPT] through the process called localization technique on the moduli space

of stable curves and of stable maps.

On a different aspect, localization technique was also applied in the context of topological

string theory. In particular, it was used in order to get an expression for invariants called

Gromov-Witten invariants. These invariants are related to topological string amplitudes.

The invariant has enumerative interpretation as the number of holomorphic maps from

Riemann surface to Calabi-Yau manifold. By localization, it was shown in [KL] and [BC]

that the Gromov-Witten invariants can also be formulated in terms of Hodge integrals.
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Starting with the idea that the chiral boson theory is related to topological recursion

and that the B-model topological string is a specific type of chiral boson theory, con-

jectures were made in [M] and [BKMP] that topological string amplitude is related to

topological recursion as well. The conjecture, named remodeling conjecture, asserts that

the Gromov-Witten invariants of all toric Calabi-Yau three-orbifolds can be obtained us-

ing topological recursion, with spectral curve given by the framed mirror curve of the

B-model. This was later proved in [Chen], [Zhou] and [BCMS] for invariants of C3,

and further extended to Gromov-Witten invariants of all toric threefold in [EO2] and of

orbifolds in [FLZ].

On the other hand, the connection between simple Hurwitz numbers (covering with only

one arbitrary ramification profile over a branch point) and Gromov-Witten invariants of

C3 can be expressed in terms of Hodge integrals. It was found in [BM] that the gener-

ating function for simple Hurwitz numbers can be recovered from generating function for

Gromov-Witten invariants of C3 at large value of the framing parameter.

This relation motivated the formation of Bouchard-Marino conjecture, which claims that

the topological recursion, with Lambert curve as spectral curve, produces the simple Hur-

witz numbers. The Bouchard-Marino conjecture was later proved in [EMS] by identifying

that the direct image of Laplace transform of cut-and-join equation recovers the topological

recursion. The idea was further developed and proved in [BHLM], extending to orbifold

Hurwitz numbers (special type of double covering/double Hurwitz numbers), where the

associated spectral curve is the a-Lambert curve. The link was realized by referring to the

formula of orbifold Hurwitz numbers and Gromov-Witten invariants of C3/Za in terms of

Hodge integrals at large framing parameter, and to remodeling theory.

The goal of this study is to enlarge the connections by extending to the case of full

double Hurwitz numbers (covering with exactly 2 arbitrary ramification profiles over 2

branchpoints). On the Gromov-Witten side, this amounts to including insertions of orb-

ifold cohomology classes on the toric Calabi-Yau. The question is what is the relationship

among topological recursion, Hurwitz numbers and Gromov-Witten invariants when we

consider the full double Hurwitz numbers and when we include insertions in the Gromov-

Witten theory. We examine the relationship between the Hodge integral formulas for

double Hurwitz numbers and Gromov-Witten invariants of C3/Za (with insertion of coho-

mology classes included). After this, we predict the associated spectral curve for double
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Hurwitz numbers by extracting conditions from the generalized infinite framing limit and

applying mirror symmetry theorem for disk potentials. We do this by considering the case

of Gromov-Witten invariants of C3/Z2, since we can reasonably determine the spectral

curve for this case and the invariants of this were already determined in [Ross].

Besides from determining the relationship between double Hurwitz numbers and Gromov-

Witten invariants and giving a new conjecture relating topological recursion and double

Hurwitz numbers, another aim of this paper is to provide an exposition of each of topo-

logical recursion, Hurwitz numbers and Gromov-Witten invariants. We do this in a mix of

mathematical and physical way, which means that the explanation of concepts are similar

to physicists’ way of illustrating things: we give intuitive explanations of ideas and sketch

of some proofs. At the same time, we also attempt to maintain a degree of mathematical

rigor. Some of the topics are highly abstract, such as moduli spaces, localization tech-

nique and other algebraic geometry topics. Explaining these things in detail would cause

introduction of numerous prerequisites which may lead away from the main focus of the

paper. In this regard, we introduce these subjects in an intuitive manner so as to get a

clear big picture of this study.

We begin the thesis by providing background discussions about topological recursion,

Hurwitz numbers, Hodge integrals, toric Calabi-Yau variety and Gromov-Witten invari-

ants, which are the concepts necessary for the understanding the whole story of this study.

The second chapter contains a section about simple Hurwitz numbers and Gromov-Witten

invariants of C3 in terms of Hodge integrals. It is followed by the sections narrating the con-

nections among the three main topics, namely the infinite framing limit (GromovWitten-

Hurwitz), remodeling theory (GromovWitten-topological recursion) and Bouchard-Marino

theory (Hurwitz-topological recursion). Then the next chapter involves the generalization

of the topics in chapter two to the orbifold setting. Chapter three composes of topics

regarding theorems expressing orbifold Hurwitz numbers and Gromov-Witten invariants

of C3/Za via Hodge integrals, and their connection with topological recursion. In the

fourth chapter, we provide new results by generalizing everything to full double Hurwitz

numbers and Gromov-Witten invariants of C3/Za with insertions of orbifold cohomology

classes included. Lastly, we give conclusion and some future research directions regarding

the theme of the thesis.
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1 Background

The first chapter is about the objects that play important role in main story of the paper.

We give motivation, definition and examples for each topic. We start with topological

recursion. It is then followed by Hurwitz numbers. As Hurwitz numbers and Gromov-

Witten invariants can be formulated via Hodge integral, moduli space of stable curves and

of stable maps and Hodge integrals are the topics in the third section. Before presenting

Gromov-Witten invariants, toric variety is introduced in the fourth section. This is a

special class of variety that plays essential role in topological string theory. As will be

seen later, the three main topics in this paper can be sewn together if we consider a toric

Calabi-Yau as the target space in topological string. Lastly, we discuss Gromov-Witten

invariants in the last section of the first chapter.

1.1 Topological Recursion

The focus in this section is the tool that sprouted from the random matrix research pro-

gram. First investigated thoroughly in [EO], the topological recursion exhibits universality

in a way that it generates solution to many phenomena such as non-intersecting Brownian

motions, partitions with Plancherel weight, topological string theory, etc. It also pro-

vides insights to some purely mathematical problems in enumeration of discrete surfaces

or maps, Weil-Petersson volumes, intersection numbers and volumes of moduli spaces and

Hurwitz numbers. Motivation behind this recursion is the topic in the next subsection.

1.1.1 Matrix Models

Random matrix theory has been a very active area of research in recent years. Remarkable

applications of the theory were found in numerous studies, ranging from fluctuations in

atomic resonances, quantum chaos to statistical properties of zeros of Riemann zeta func-

tion. The basic idea in the field of random matrix theory is that properties of a system

can be modeled mathematically as matrix problems. As an example, there are studies

[K], [BK] suggesting that the statistical behavior of nontrivial zeros of the Riemann zeta

function resembles the statistical behavior of eigenvalues of large random matrices.
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Statistical properties, such as eigenvalue distribution and ensembles, from a matrix model

are encoded in the quantities called partition function Z and correlation function W . For

instance, the partition function and correlation function for a Hermitian matrix model are

Z =

∫
eN ·Tr[V (M)]dM, (1)

W (x1, .., xn) =

〈
Tr(

1

x1 −M
)...T r(

1

xn −M
)

〉
, (2)

respectively, where N is the rank of Hermitian matrix M , V is a polynomial and xi are

variables in matrix model theory. (The names come from the study [DGZ] on representa-

tion of discrete 2D gravity in terms if random matrices, where the Z above is the partition

function of 2D discrete gravity, as well as the generating function/formal matrix integral

of random triangulations of 2D surfaces. The expectation value W of a product of n

traces is the generating function for discrete surfaces with n holes and can be interpreted

as averages of one-body operators in a free N fermion state). Developments in the field

reveal that these have series expansion in inverse powers of rank N of matrices. As for

the Hermitian matrix model, we have the expansions

F := log(Z) =
∞∑
g=0

Fg
N2g−2

, (3)

W (x1, .., xn) =
∞∑
g=0

Wg(x1, .., xn)

N2g−n−2
, (4)

where F is called free energy. Solving the series coefficients Fg,Wg (called “amplitudes”) is

essential in the study of random matrix theory. Many methods were developed to compute

these quantities. One of the successful approaches is called loop equations method [Kaz].

A method was introduced in [E] to calculate the large N expansion of loop equations,

which consists of solving the equations recursively in inverse power of N2. To leading

order, loop equations becomes an algebraic equation, and give rise to an algebraic curve

P (x, y) called spectral curve. As a result, loop equations can be written entirely in terms

of geometric properties of spectral curve. In other words, the solution of loop equations

depends only on the properties of the spectral curve, and not on the matrix model which

gives that curve.
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1.1.2 Eynard-Orantin Topological Recursion

The central object in the recursion that solves the matrix model is an algebraic curve

P (x, y),

{P (x, y) = 0} ⊂ C2, (5)

called spectral curve. (Note that this can be generalized to (C∗)2 or C× C∗)

Put differently, a spectral curve S = (Σ, x, y) is a data consisting of compact Riemann

surface Σ and meromorphic functions x and y on Σ.

The main idea is that all the series coefficients Wg, Fg in the expansion of correlation

function and free energy can be determined recursively from the geometric data of the

spectral curve S.

To write down the recursion, we need the following items from the spectral curve:

• Zeros ai of the differential dx: dx(ai) = 0.

(We assume that all ai are simple zeros)

• Two distinct points z, z̄ in the vicinity of ai, called conjugated points, such that

x(z) = x(z̄).

• Canonical bilinear differential B(z1, z2), which is defined as a unique meromorphic

differential on Σ with double pole at z1 = z2, no residue, no other pole and normalized

such that

∫
Aα
B(z1, z2) = 0, (6)

wherein (Aα, Bα) is a canonical basis of cycles on Σ.

For instance, if Σ has genus 0, the canonical bilinear differential takes the form

B(z1, z2) =
dz1dz2

(z1 − z2)2
. (7)
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• One forms, defined locally near each ai:

dEz(z1) :=
1

2

∫ z̄

z′=z

B(z1, z
′), (8)

η(z) := (y(z)− y(z̄))dx(z). (9)

With these quantities from the spectral curve, it was found in [EO] that the amplitude Wg

can be determined recursively on 2g+n using the formula called topological recursion:

W (n)
g (z1, J) =

∑
Resz→ai

dEz(z1)

η(z)

[
W

(n+1)
g−1 (z, z̄, J)+

g∑
h=0

∑
I⊂J

W
(|I|+1)
h (z, I)W

(|J |−|I|+1)
g−h (z̄, J\I)

]
.

(10)

In the above expression, J means the variables z2, .., zn, and the finite sum is taken over

residues at all zeros of dx. Also, the recursion starts with the initial values:

W
(1)
0 (z) := 0, W

(2)
0 (z1, z2) := B(z1, z2). (11)

Here, the Wg’s can be viewed as symmetric meromorphic differentials on Σ. So the topo-

logical recursion provides a way to generate infinite sequence of meromorphic differentials

defined on Riemann surface Σ. On the other hand, the amplitude Fg can be calculated

through the formula

Fg =
∑

Resz→aiΦ(z)W (1)
g (z), (12)

where Φ(z) is an arbitrary antiderivative of ydx, i.e. dΦ = ydx.

Besides from providing solutions to a matrix model, the topological recursion exhibits

a lot of nice properties such as homogeneity and symplectic invariance on Fg and modu-

larity on both amplitudes. As will be seen later, the topological recursion has connection

as well to Gromov-Witten invariants from topological string and to Hurwitz numbers.
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Examples:

(In the examples below, the Riemann surface Σ is P1. The origin of the first two examples

can be found in [EO], [TW]):

1) The curve described by y2 = x, called Airy curve, arises as the spectral curve in the

statistical study of extreme eigenvalues of a random matrix. This can be used also to

generate intersection numbers of stable classes on moduli space of curves [Zhou2], and

the topological recursion can be used to prove Witten’s conjecture [W].

2) The genus 0 hyperelliptical curve, y2 − 2 = x3 − 3x, is the spectral curve associated to

the application of topological recursion to pure gravity Liouville field theory.

3) It will be shown later that the Lambert curve, x = ye−y, and a-Lambert curve,

xa = ye−ay, is the spectral curve that generates the simple Hurwitz numbers and orb-

ifold Hurwitz numbers, respectively, using the topological recursion.

1.2 Hurwitz Numbers

As mentioned in the example above, topological recursion can be used to generate Hurwitz

numbers. We introduce in this section the definition of Hurwitz numbers, which is one

of the main topics of the thesis. We start with ramification on branched covering map of

Riemann surfaces, and then Hurwitz number’s definition via covering map.

1.2.1 Ramification

From complex analysis, holomorphic maps of Riemann surfaces can be given local expres-

sion of the form z → zk, with k ∈ Z+. Let f : X → Y be a branched covering map

of Riemann surfaces X, Y and V ⊂ Y . When the local expression at a particular point

x ∈ f−1(V ) is F (x) := xk, the positive integer k := rf (x) is called the ramification

order of f at x. If k ≥ 2, then the point x ∈ X is a ramification point of f . A point

y ∈ Y is a branch point of f if it is the image of a ramification point.

Suppose f−1(y) = {x1, ..., xn}, then the unordered collection of integers η(y) := {rf (x1), .., rf (xn)}
is the ramification profile of f over y. When η(y) = {2, 1, 1, .., 1}, f has simple rami-

fication or is simply ramified over y.

Let X, Y be Riemann surfaces, and p1, .., pr, q1, .., qs ∈ Y be the branch points of f : X →
Y . A Hurwitz cover of Y is a covering map f such that:

8



i) f has ramification profile η1, .., ηs over q1, .., qs ∈ Y , respectively.

ii) f is simply ramified over p1, .., pr ∈ Y .

Note that (i) above implies that the degree of f is equal to the sum of elements of ηi

∀i = 1, .., s. In other words, ηi’s are unordered partitions of deg(f). For compact Riemann

surfaces, the number of simple ramification points can be determined using the Riemann-

Hurwitz formula.

1.2.2 Hurwitz Numbers via Covering

Two covering maps f1 : X1 → Y,X2 → Y are said to be automorphic if ∃ isomorphism

g : X1 → X2 such that f2 ◦ g = f1. Each covering map f has naturally associated auto-

morphism group Aut(f).

A Hurwitz number Hg(η1, .., ηs) is a weighted count (up to isomorphism) of distinct Hur-

witz covers f mapping genus g Riemann surfaceX to Riemann surface Y , with ramification

profile ηi over qi ∈ Y for i = 1, .., s and simple ramification over all other branch points.

Each such cover is weighted by the inverse of the size |Aut(f)| of the automorphism group.

Hurwitz number comes in two different types, depending if the covering space X of Y

is connected or not. Connected covering space and Hurwitz covers mapping to Y = P1

will be considered in this thesis. In the case when there is only one arbitrary ramification

profile η over the ∞ point in P1, we have simple Hurwitz number. It is a double

Hurwitz number if there are exactly two arbitrary ramification profiles η1, η2 over the

points 0,∞, respectively.

Moreover, it can be easier to realize that a Hurwitz number is finite through its defini-

tion via symmetric group Sν . Focusing on simple Hurwitz number, consider the following

quantities:

i) ν = ν1 + ..+ νζ as a partition of ν

ii) m := ν + ζ + 2g − 2

iii) t1, .., tm as transpositions in Sν

iv) σ as a permutation with ζ cycles of lengths ν1, .., νζ .

9



When the product t1 · · · tm ·σ of permutations is equal to the identity permutation and the

group generated by t1, .., tm is transitive, then (t1, .., tm, σ) is said to be transitive factor-

ization of identity. Simple Hurwitz number Hg(ν1, .., νζ) is then 1/ν! times the number of

lists of transitive factorization of identity. In other words, Hg(ν) is 1/ν! times the number

of factorizations of a ν-cycle into a product of ν + 2g − 1 transpositions. The equivalence

between the above definitions of Hurwitz number can be realized by considering the mon-

odromies about the branch points of the covering.

It will be presented in chapters two and three that simple and double Hurwitz num-

bers can be expressed in terms of Hodge integrals. In order to define these integrals, we

need to know first what are moduli space of stable curves and stable maps, which bring

us into the next section.

1.3 Moduli Space of Stable Curves, Stable Maps and Hodge

Integrals

In order to introduce Hodge integrals, we begin with stable curves and stable maps. The

notions of stable curve and stable map were introduced in order to compactify the moduli

space of maps and of (rational and elliptic) curves.

A pre-stable curve is a compact connected curve which has only nodes as singularities. An

automorphism ` : (C, z1, .., zn)→ (C
′
, z
′
1, .., z

′
n) of pre-stable curves with n marked points

is a morphism such that `(zi) = z
′
i for all i = 1, .., n (i.e., marked points are preserved).

A pre-stable curve C is said to be a stable curve if its group of automorphisms is finite.

This condition on automorphism group is equivalent to the condition that every genus 0

(resp. genus 1) component of pre-stable curve has at least 3 (resp. 1) special point (marked

and nodal points) lying on it. The moduli space Mg,n of stable curves of genus g with

n marked points is defined as the set of isomorphism classes of these stable curves; two

stable curves being isomorphic if there is a holomorphic diffeomorphism between them.

The moduli space of stable curves is a projective variety [HM].

Remark: The terms curve and Riemann surface in this thesis will be used interchangeably.

In Hurwitz number context, we use the term curve most of the time, while in Gromov-

Witten setting, we use the term Riemann surface.
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With moduli space Mg,n of stable curves in hand, the Hodge bundle E on Mg,n is

defined as the vector bundle whose fiber over a point is the space H0(C, ωC) of holomor-

phic sections of the canonical line bundle ωC of C. The Hodge classes λi on Mg,n are

Chern classes of E, while the descendent classes ψi onMg,n is the first Chern class of the

cotangent line bundle to the i-th marked point. The Hodge integral over Mg,n is then

defined as an integral involving Hodge classes λi and descendent classes ψi.

It will be presented in chapter two that simple Hurwitz numbers can be written in terms

of Hodge integrals over Mg,n; Whereas the double Hurwitz numbers can be formulated

similarly, but with Hodge integrals over the moduli spaceMg,γ−µ(BZa) of stable maps to

classifying space BZa of cyclic group Za = {0, 1, .., a− 1}.
(Classifying space BZa of Za can be thought of as an orbifold [pt/Za], where Za acts triv-

ially on a point)

A stable map f : C → D is a pseudo-holomorphic map from a pre-stable curve C

of genus g with n marked points whose automorphism group is finite. Note that this does

not imply that C is a stable curve. However, it is easy to show that it is equivalent to

requiring that C has at least one stable component, and that for each component Ci ⊂ C,

either f is non-constant or Ci is stable.

Two stable maps f : C → D and f ′ : C ′ → D are isomorphic if ∃ isomorphism ` : C → C ′

such that f ′ ◦ ` = f . The moduli space of stable maps Mg,n(D) to topological space

D is the set of all isomorphism classes of stable maps from pre-stable curve C of genus

g with n marked points to D. The moduli space of stable maps is locally a quotient of

a smooth variety by a finite group, and its boundary is a normal crossing divisor [HM].

The moduli space of stable curves and of stable maps are always compact.

The Hodge bundle E and Hodge classes λi on moduli space Mg,n(D) of stable maps

from C to topological space D are defined in the same manner as the E and λi on moduli

spaceMg,n of stable curves. That is, Hodge bundle onMg,n(D) is the vector bundle whose

fiber at a point is H0(C, ωC), and Hodge classes onMg,n(D) are Chern classes of E. The
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descendent classes ψi on Mg,n(D) are defined by the pullback

ψi = ε∗(ψi) (13)

via map ε :Mg,n(D)→Mg,n. If a stable map f maps a pre-stable curve C to an orbifold,

such as BZa, then the theory of stable maps [AGV] requires that the source curve C

must acquire a stack structure at marked and nodal points, where they locally look like

[pt/Za]. This source curve is called twisted curve in literature. Denote by C the twisted

curve (source curve of stable maps to orbifold) with r marked points and n nodal points.

Let the vector

γ − µ := (γ1, .., γr,−µ1, ..,−µn) (14)

denotes the special points of twisted curve C, where γi ∈ Za\{0} are the marked points

with stack structure and µi ∈ Z+ are the nodal points. (Here, µi is a positive integer, but

in the vector γ − µ, −µi is understood mod a, i.e. as an element of Za).

Denote by Mg,γ−µ(BZa) the moduli space of stable maps F from C, with prescribed

monodromy data γ − µ, to orbifold BZa. The group action on Mg,γ−µ(BZa) induces a

Za action on Hodge bundle E, which gives a decomposition into subbundles. Let the

representation U of group Za be given by

φU : Za → C∗, φU(1) = e2πi/a. (15)

Then the Hodge bundle EU , corresponding to representation U , on Mg,γ−µ(BZa) is a

vector bundle constructed by associating each map [F ] ∈ Mg,γ−µ(BZa) the U -summand

of the Za-representation H0(C, ωC). The rank of EU can be determined using the orbifold

Riemann-Roch formula [AGV] (to be discussed in Appendix 1). The Hodge classes λUi

on Mg,γ−µ(BZa) are Chern classes of EU ,

λUi = ci(E
U). (16)

The descendent classes ψ on Mg,γ−µ(BZa) are defined by pullback

ψi = ε∗(ψi) (17)

via map ε :Mg,γ−µ(BZa)→Mg,n.

12



Then the Hodge integral over the moduli space Mg,γ−µ(BZa) is the integral involving

the Hodge classes λUi and descendent classes ψi.

Note that when the group is trivial (when a = 1 ), the moduli space Mg,γ−µ(BZa) of

stable maps reduces to moduli space Mg,n of stable curves. The formulation of simple

and double Hurwitz numbers via Hodge integrals was done through localization technique

(to be discussed briefly in section 1.5) on moduli space of stable curves and of stable

maps, respectively. On a completely different topic, similar technique on the same spaces

was applied to the Gromov-Witten context. It will be presented later that the geometric

invariant called Gromov-Witten invariants can be expressed as well in terms of Hodge

integrals. Basically, Gromov-Witten invariant counts the number of holomorphic maps

from Riemann surface Σ to Calabi-Yau manifold X. This thesis is mainly concerns with

the case when the target space X is also a toric variety. To build up things carefully and

to define Gromov-Witten invariants in turn, we introduce toric variety in the next section.

1.4 Toric Calabi-Yau Variety

Toric variety first arose in the study of torus embeddings. It can described equivalently

in various ways using symplectic geometry, algebraic geometry, commutative algebra and

gauged linear sigma model. For simplicity, we introduce in this section using the concept

of projective spaces. It is followed by describing it in terms of cones and fans, which

are combinatorial data of convex polytopes on a lattice. This combinatorial approach to

toric variety is considered because this description will be useful later in the discussions of

topological string B-model and spectral curve generating Gromov-Witten invariants. Then

we define toric Calabi-Yau after the presentation of toric variety. Toric Calabi-Yau is an

interest because this particular type of geometry gives surprisingly beautiful mathematical

and physical theories.

1.4.1 Toric Variety

The complex projective space Pm is a quotient of complex manifold Cm+1 defined as

Pm = (Cm+1\{0})/(C∗), (18)
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where the quotient by C∗ means the identification

(z1, ..., zm+1) ∼ (λz1, ...λzm+1), (19)

wherein λ ∈ C∗.

Generalizing the notion of Pm, the weighted complex projective space Pm(β1,...,βm+1) is

constructed by assigning weight βi ∈ N to zi coordinate of Cm+1. That is,

Pm(β1,...,βm+1) = (Cm+1\{0})/(C∗), (20)

where the weighted C∗ action is given by the equivalence relation

(z1, ..., zm+1) ∼ (λβ1z1, ..., λ
βm+1zm+1). (21)

Toric variety can be thought of as a further generalization of weighted complex projective

space in which there are more than one weighted C∗ action, with possibly negative weights.

Suppose

C∗ × ...× C∗︸ ︷︷ ︸
p

∼= (C∗)p, p < m+ 1, (22)

is an algebraic torus and U ⊂ Cm+1 is invariant under the weighted action of a subgroup

of (C∗)p, then the toric variety T is defined as

T = (Cm+1\U)/(C∗)p. (23)

All projective spaces and weighted projective spaces are clearly toric varieties. If X and Y

are toric varieties, then so is X × Y . Another example of toric variety is the tautological

bundle O(−3) over P2.

Alternatively, toric variety can be described combinatorially using cones and fans over a

lattice. The reader is referred to [CLS] for the proof of the equivalence of the two different

descriptions of toric variety.

14



Let E be an integer lattice contained in the vector space E . A cone C ∈ E is a set

C = {a1v1 + a2v2 + ...+ atvt|ai ≥ 0} (24)

generated by the vectors {v1, ..., vt} ∈ E with the condition that C ∩ (−C) = {0}.

A face of a cone C is the intersection of C with one of the hyperplanes bounding C. A fan

F is a set of cones C such that every face in F is also a cone and the intersection of two

cones in F is a face of each.

Focusing on three-dimensional toric varieties, suppose F is a fan in E. To each one

dimensional cone in F, we assign a homogeneous coordinate wi to each generator vi,

i = 1, .., t. From the resulting Ct, we remove the set

ZF =
⋃
I

{(w1, ..., wt) : wi = 0 ∀i ∈ I}, (25)

where the union is taken over all sets I ⊆ {1, ..., t} for which {wi : i ∈ I} does not belong

to a cone in F. This means that the wi’s are allowed to vanish simultaneously only if the

corresponding vi’s belong to the same cone. Then the toric variety T from the fan F is

given by

TΣ =
Ct\ZF

G
, (26)

where the group G is (C∗)t−3 acting by

(w1, ..., wt) ∼ (λQ
(j)
1 w1, ..., λ

Q
(j)
t wt),

t∑
i=1

Q
(j)
i vi = 0, (27)

wherein λ ∈ C∗ and j = 1, .., t − 3. The toric weights Q
(j)
i are integers. For a fixed j,

Q
(j)
i are relatively prime integers.

Examples:

1) The projective space P2 is toric variety with one dimensional cones generated by

the vectors (1, 0), (0, 1), (−1,−1), and the set ZF is simply {0}. The C∗ quotient is

made by the identification (w1, w2, w3) ∼ (λ1w1, λ
1w2, λ

1w3), where wi is the homoge-

neous coordinate associated to generating vector vi, and the weights are (1, 1, 1) since

1(1, 0) + 1(0, 1) + 1(−1,−1) = 0.
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2) The weighted projective space P2
(3,1,2) is another example of toric variety wherein the

generating vectors are (1, 0), (−1, 2), (−1,−1) and ZF = {0}. The weights are (3, 1, 2)

since 3(1, 0) + 1(−1, 2) + 2(−1,−1) = 0.

1.4.2 Toric Calabi-Yau Threefold

Calabi-Yau manifolds are significant in string theory since supersymmetry conditions

[CHSW] in the theory requires that the extra spatial dimensions are compactified in

a form of a Calabi-Yau manifold, which is a Kahler manifold with vanishing first Chern

class or trivial canonical bundle. Now that the definition of toric variety has built up, the

Calabi-Yau condition on it is simply stated in the following theorem:

Toric Calabi-Yau Condition:

A toric variety X is Calabi-Yau variety if only if:

• The vectors generating the cones defining X all lie in the same hyperplane ⇐⇒
The sum of the toric weights vanishes.

Proof of this can be found in [B]. This condition implies that the toric varities P2 and

P2
(3,1,2) are not Calabi-Yau, whereas the complex manifold Cn is a (rather trivial) example

of toric Calabi-Yau. In this paper, we are mainly focused on toric Calabi-Yau three-

fold, which is a toric Calabi-Yau of complex dimension 3

More examples of toric Calabi-Yau:

1) Another example is the resolved conifold O(−1)⊕O(−1)→ P1. Its cones are generated

by the vectors v1 = (1, 0, 1), v2 = (−1, 0, 1), v3 = (0, 1, 1), v4 = (0,−1, 1) that are all lying

in the plane z = 1. The toric weights are (1,1,-1,-1) since 1 · v1 + 1 · v2− 1 · v3− 1 · v4 = 0.

2) The bundle O(−3) → P2, with vectors generating its cones are v1 = (−1,−1, 1), v2 =

(1, 0, 1), v3 = (0, 1, 1), v4 = (0, 0, 1), is an example of toric Calabi-Yau threefold with toric

weights (1, 1, 1,−3).

Referring to the Calabi-Yau condition above, the vectors generating the cones of three

dimensional toric variety all lie in a two dimensional plane. Toric Calabi-Yau threefold

has diagrammatic representation developed in [CLS] that encodes the degeneration of

its fibers. The toric diagram Γ of toric Calabi-Yau threefold X is the dual graph of two

dimensional graph Γ̃ called fan triangulation, which is formed by the intersection of fan

of X with plane on which the vi’s lie.
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Example diagram:

(-1,-1)

(0,1)

(1,0)
(0,0)

Figure 1 (Toric diagram): For toric Calabi-Yau threefold O(−3)→ P2 (bundle over P2),

the thick planar graph corresponds to the toric diagram, while the triangle with vertices

(−1,−1), (1, 0), (0,−1) is the graph for the fan triangulation of this toric Calabi-Yau

generated by the cones (−1,−1, 1), (1, 0, 1), (0,−1, 1), (0, 0, 1).

1.5 Gromov-Witten Invariants

Now that the concept of toric Calabi-Yau has been established, it is time to introduce

Gromov-Witten invariants. We discuss in this section its origin from string theory and

then followed by its definition. We begin with the story of string theory.

1.5.1 String Theory

The goal of string theory is to combine general relativity and quantum theory into a sin-

gle unified framework. This ambitious endeavor has introduced an entirely new physical

picture into theoretical physics and new mathematics that has surprised even the mathe-

maticians. String theory originated from the dual models, which was a candidate for theory

of hadrons or strongly interacting particles. Physicists wanted to construct a scattering
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amplitude for hadrons obeying the stringent requirements of the S-matrix theory of strong

interactions (Bootstrap program), which includes the duality hypothesis between s- and t-

channel amplitudes. The desired scattering amplitude formula was discovered ‘acciden-

tally’, and it was later realized that the physical model behind such formula is actually a

relativistic string. Imposing quantum mechanical laws on these relativistic strings turns

out to give surprising results, such as the prediction of spacetime six extra dimensions,

as well as the natural emergence of graviton (particle that mediates gravitational interac-

tion) in the theory, to mention a few. The spacetime dimensionality problem is reconciled

through the notion of compactification that puts six of the extra spatial dimensions on a

small six real dimensional space. Physical conditions require these extra six dimensions

to be a Calabi-Yau manifold X [CHSW].

Propagating string in spacetime generates a surface called worldsheet, and this takes a form

of a Riemann surface Σ. Quantum vibrational modes of the string give rise to species of

particles. In string theory, the integral over the holomorphic maps ϕ : Σ → X defines

a two dimensional quantum field theory called sigma model. Shifting the operators on

sigma model worldsheet (in order to obtain the right physical quantum spins) gives rise

to a special version of the theory called topological string theory. This shift or ‘twist’

in the theory comes into two types, called A- and B-model, depending on the shifting

sector of the operators. These two models can be compactified on two different Calabi-

Yau manifolds giving rise to the same physics. These Calabi-Yau manifolds are said to be

mirror, and the relationship or duality between the two physical theories is called mirror

symmetry. Through this duality, statements in Calabi-Yau manifold can be translated

into equivalent statements in the mirror manifold, allowing mathematicians and physicists

to solve intractable problems on the other mirror Calabi-Yau manifold.

The Gromov-Witten invariant has origin from topological string theory, namely in Witten’s

work [W2] on integrals in two dimensional gravity with enumerative meaning of counting

instantons (non-trivial solutions of equations of motion) on X of topological string. The

object of interest in Gromov-Witten theory is a holomorphic map ϕ : Σ→ X. The number

of such maps is equivalent to the Gromov-Witten invariant∈ Q, which exhibits invariance

under complex deformations on X. These invariants can be gathered into Gromov-Witten

potential Fg. This potential physically gives the genus g amplitude of topological string

partition function with N = 2 sigma model defined on X whose twisting yields the A-

model topological string.
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1.5.2 Definition of Gromov-Witten Invariant and Localization

This thesis is mainly focused on open Gromov-Witten invariants. The term open pertains

to the domain bordered (pre-stable) Riemann surface Σ, which is Riemann surface whose

boundary consists of finitely many disjoint simple closed curves.

Open Gromov-Witten invariant counts the number of holomorphic maps ϕ : Σ→ X

from genus g bordered Riemann surface Σ to Calabi-Yau threefold (or three orbifold) X,

such that ϕ(∂Σ) ⊂ L, where L is a Lagrangian submanifold of X; The Lagrangian L is a

submanifold of Calabi-Yau X such that its dimension is half of the real dimension of X

and the Kahler form vanishes on L. If X is a toric Calabi-Yau, there is a special class of

L called toric branes [AV] that have topology S1×R2. In this case, the holes of bordered

Riemann surface map around nontrivial cycles in the toric brane, with prescribed winding

numbers. In the diagram of toric Calabi-Yau X, the toric brane projects to points in the

edges of toric diagram.

There is a formal definition of Gromov-Witten invariant in algebraic geometry, wherein

it can be expressed through cohomology classes on Calabi-Yau manifold X. With this

sophisticated definition of Gromov-Witten invariants for toric Calabi-Yau target spaces, it

was shown via localization technique that they can be written in terms of Hodge integrals.

Localization was first introduced and defined precisely in [AB] as a tool in equivariant

cohomology theory. The basic idea of localization is that if there is a group acting on a

variety (or stack) with isolated fixed points, cohomology classes on it ‘localizes’ to classes

on the fixed point locus. This is in turn allows calculation of global integral on variety in

terms of local information at a finite set of points.

Localization examples:

1) As shown in [AB], if a torus T acts on a manifold M with isolated fixed point set F ,

then the integral of any (equivariant) closed form Ω ∈M can be expressed as∫
M

Ω =
∑
p∈F

ω|p
eT (np)

, (28)

where Ω|p is the restriction of closed form Ω to a fixed point p and eT (np) is the (equiv-

ariant) Euler class of normal bundle np to p in M .

2) Example for Gromov-Witten invariants:
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The moduli space Mg,r(X) of stable maps ϕ from Riemann surface Σ of genus g, with

r-marked points p1, .., pr, to Calabi-Yau manifold X, consists of components of different

dimension. The lower bound to the local dimension is called virtual dimension. In the

case when all local dimensions are the same, the theory is said to be unobstructed. From

the deformation theory of stable maps, the virtual dimension can be calculated using

Riemann-Roch formula in the case when the theory is obstructed. Define the evaluation

map

evi : (Mg,r(X))→ X (29)

by sending a stable map ϕ to ϕ(pi). Then the Gromov-Witten invariant Gg(α1..αr) is

given by the integral involving cohomology classes αi ∈ H∗(X),

Gg(α1...αr) =

∫
[Mg,r(X)]vir

ev∗1(α1)...ev∗r(αr), (30)

where [Mg,r(X)]vir ∈ H2D(Mg,r(X),Q) means virtual fundamental class of Mg,r(X),

where D is the expected dimension of Mg,r(X). See section 7.1.4 of [CK] for complete

definition of virtual fundamental class and the clarification about how this integral gives

the number of holomorphic maps from Riemann surface to Calabi-Yau manifold. Via lo-

calization technique, it was shown [KL] that these invariants for toric Calabi-Yau target

spaces with toric branes L can be expressed in terms of Hodge integrals and of finite set

µ := (µ1, ..µn) denoting winding numbers of the n holes of genus g Riemann surface Σ, as

in (34) (to be presented shortly).

When the target space is an orbifold X, the cohomology of X that is involved in the

Gromov-Witten invariant theory is called Chen-Ruan cohomology H∗CR(X). This is the

type of cohomology that is sufficient [CR], [S] for orbifolds, rather than the orbifold de

Rham cohomology (sufficient in the sense that this enlarges the orbifold de Rham coho-

mology by keeping track of the automorphisms that the cohomology classes might have).

This is defined as the cohomology of a related orbifold IX, called inertia orbifold. Inertia

orbifold IX of X := C3/Za is the union of Xγi ⊂ C3 that are fixed under the action of

γi ∈ Za on C3. Let 1γi be the cohomology classes on H∗CR(X) or the generators of Cγi ,

where
⊕

γi∈Za Cγi := H∗CR(X). Then the Gromov-Witten invariant of orbifold X is defined

as

Gg(1
m1
1 ...1

ma−1

a−1 ) =

∫
[Mg,

∑
mi

(X)]vir
(ev∗1(11))m1 ...(ev∗r(1a−1))ma−1 , (31)
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where (ev∗i (1i))
mi means union of mi ev

∗
i (1i). Here, we also let

∑r
j=1 γj =

∑a−1
i=1 imi. By

localization process in [BC], [Ross], it was shown that this expression for Gromov-Witten

invariant of orbifold X is equivalent to expression (76).

2 Simple Hurwitz Numbers and Open Gromov-Witten

Invariants of C3

This chapter contains the beginning of the connections. Simple Hurwitz numbers via

Hodge integrals is the first topic, followed by the discussion of Gromov-Witten invariants

of C3. The other parts are about the connections among simple Hurwitz numbers, Gromov-

Witten invariants of C3 and topological recursion.

2.1 ELSV Formula and Open Gromov-Witten Invariants of C3

The polynomiality of simple Hurwitz number Hg(µ) in partition µ of the Hurwitz cover

degree was discovered in [GJ]. Simple Hurwitz number can be calculated using the formula

Hg(µ) =
(2g − 2 + n+ d)!

|Aut(µ)|

n∏
i=1

µµii
µi!

Pg,n(µ), (32)

where g is the genus of the domain of Hurwitz cover of degree d =
∑n

i=1 µi and Pg,n is a

symmetric polynomial satisfying the following properties:

• deg(Pg,n) = 3g − 3 + n

• Pg,n does not have any term of degree less than 2g + n− 3

• The sign of the coefficient of a monomial of degree d is (−1)d−(3g−3+n)

It was later realized that the polynomial above can be expressed in terms of integral over

the moduli space of stable curves of genus g. The equivalent formulation of simple Hurwitz

number was discovered when localization technique was applied on the moduli space of

stable curves.
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Theorem 1. (ELSV Formula) Let C be pre-stable curve of genus g with n-marked

points, and h be the Hurwitz cover h : C → P1 of degree d with ramification profile

µ := {µ1, .., µn} over ∞ ∈ P1, i.e. d =
∑n

i=1 µi. Also, denote Mg,n as the moduli space of

genus g stable curves with n marked points, and λi, ψi as the Hodge classes and descendent

classes on Mg,n, respectively. Then the simple Hurwitz number Hg(µ1, .., µn), counting

weighted Hurwitz covers h of degree d from curve C of genus g to P1 with ramification µ

over ∞ and simple ramification elsewhere, can be expressed as

Hg(µ) =
(2g − 2 + n+ d)!

|Aut(µ)|

n∏
i=1

µµii
µi!

∫
Mg,n

∑g
j=0(−1)jλj∏n

i=1(1− µiψi)
, (33)

for g = 0, n ≥ 3 or g ≥ 1.

Proof. The reader is referred to the paper [ELSV] for the proof of the formula.

It will be demonstrated later than this way of expressing simple Hurwitz number is going

to be useful for relating it to topological recursion and Gromov-Witten invariants. On a

different note, it was mentioned earlier that localization technique onMg,n can be applied

as well in Gromov-Witten context. Through this, Gromov-Witten invariants of C3 can be

expressed also via Hodge integrals.

Theorem 2. The open Gromov-Witten invariant Gg of C3, counting holomorphic maps

ϕ : Σ → C3, can be formulated in terms of the Hodge integral and of the finite set µ :=

(µ1, .., µn) denoting the winding numbers of the n holes of the genus g bordered Riemann

surface Σ:

Gg(µ1, .., µn) =
(−1)g+n

|Aut(µ)|
(f(f + 1))n−1

n∏
i=1

∏µi
j=1(µif + j)

µi!

×
∫
Mg,n

Λ∨g (1)Λ∨g (−f − 1)Λ∨g (f)∏n
i=1(1− µiψi)

. (34)

Here, the parameter f is called the framing of open Gromov-Witten invariants, (framing

will be discussed in section 2.5). As in the Hurwitz context, ψi is the descendent classes

on the moduli space Mg,n of Σ, and

Λ∨g (y) := yg
g∑
i=0

(−1/y)iλi (35)
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wherein λi are the Hodge classes on Mg,n.

Proof. See [KL].

2.2 Infinite Framing Limit of Open Gromov-Witten Invariants

of C3

The explicit formulas for simple Hurwitz numbers (33) and Gromov-Witten invariants of

C3 (34) exhibit similar features. They only differ by the prefactors, numerator in the

integrand and the quantity µ has a different meaning in each theory. Also, the framing

f only exists on the Gromov-Witten side. It turns out that the expression for simple

Hurwitz number will be recovered by sending f to infinity in the Gromov-Witten theory.

We show here a direct calculation that leads to this infinite framing limit in [BM].

Theorem 3. Let

Fg(x1, .., xn) =
∑
µi∈Z+

Gg(µ1, .., µn)
n∏
i=1

xµii , (36)

Ng(x1, .., xn) =
∑
µi∈Z+

1

(2g − 2 + n+ d)!
Hg(µ1, .., µn)

n∏
i=1

xµii . (37)

be the generating function for open Gromov-Witten invariants of C3 and for simple Hurwitz

numbers, respectively. Then these two are related by

Ng(x1, .., xn) = lim
f→∞

(
(−1)nf 2−2g−nFg

(
x1

f
, ..,

xn
f

))
. (38)

Proof. Consider the following factors when f → ∞ in the Gromov-Witten invariant for-

mula (34):

• Clearly, the factor (f(f + 1))n−1 becomes f 2n−2.
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• At large f ,

n∏
i=1

∏µi
j=1(µif + j)

µi!
(39)

goes to

f
∑n
j=1 µj

n∏
i=1

µµii
µi!

. (40)

• For the Hodge integral, Λ∨g (−f − 1)Λ∨g (f) → Λ∨g (−f)Λ∨g (f). Then by Mumford

relation [Mum],

Λ∨g (−f)Λ∨g (f) = (−1)gf 2g. (41)

Using the definition in (35), the Hodge integral becomes

(−1)gf 2g

∫
Mg,n

∑g
j=0(−1)jλj∏n

i=1(1− µiψi)
. (42)

Now, to fix the prefactors we just construct the generating function (37) for simple Hurwitz

numbers. Also, the formal variable has to be rescaled by xi → xi/f in order to cancel the

factor f
∑n
j=1 µj . Collecting everything, we then have the relation

Ng(x1, .., xn) = lim
f→∞

(
(−1)nf 2−2g−nFg

(
x1

f
, ..,

xn
f

))
. (43)

This link between open Gromov-Witten invariants of C3 and simple Hurwitz numbers

motivates the conjecture of Bouchard-Mariño, which claims that the simple Hurwitz num-

bers can be constructed recursively through Eynard-Orantin topological recursion. The

conjecture is based on the remodeling theory, which is the topic in the next section.

2.3 Remodeling Theory

As mentioned earlier, topological string theory comes into two types, A- and B-model,

which are related by the mirror symmetry. Topological string amplitudes in A-model are

related to Gromov-Witten invariants. A formalism was developed in [AKMV] called

topological vertex, which computes these A-model amplitudes on toric Calabi-Yau three-

fold. However, this technique is not applicable to all points on the underlying Kahler
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moduli space. Specifically, orbifold and conifold points are not suited for this formalism.

This is where the remodeling theory comes into play, for it enables the calculation of all

topological string amplitudes of toric Calabi-Yau orbifolds.

Throughout this section, C3 will be considered as the target toric Calabi-Yau threefold.

We discuss first the B-model before presenting the meaning of remodeling theory for C3

and role of Eynard-Orantin topological recursion in this formalism.

2.3.1 Mirror Symmetry for Toric Calabi-Yau Threefold

In the case in which the Calabi-Yau threefold (or three orbifold) X is a toric, the mirror tar-

get space X̃ in the B-model [HIVf] is a family of hypersurfaces in C2(ξ1, ξ2)× (C∗)2(x, y),

ξ1ξ2 = PX(x, y), (44)

where PX(x, y) is the Newton polynomial corresponding to the polytope formed by the

fan triangulation of toric Calabi Yau X in the A-model. The zero locus PX(x, y) = 0 is

called the mirror curve of the B-model (or of X).

As a curve embedded on C∗×C∗, the mirror curve has reparameterization group SL(2,Z)

which acts as

(x, y)→ (xayb, xcyd),

(
a b

c d

)
∈ SL(2,Z). (45)

Under mirror symmetry [AV],[AKV], it turns out that:

• The mirror curve of the toric Calabi-Yau threefoldX can be visualized as a thickening

of the toric diagram ΓX of X such that the number of closed loops in ΓX corresponds

to genus of the mirror curve, while the toric branes in ΓX corresponds to points on

the mirror curve.

• The formal parameters xi in the generating function (36) of the A-model open ampli-

tudes (open Gromov-Witten invariants) correspond to choice of projection of mirror

curve of B-model onto C∗.
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• Choosing a different projection is analogous to changing the parameterization of the

mirror curve. Thus, this change leads to moving the location of toric brane on the

toric diagram ΓX .

• There exists a (one-parameter) subgroup of reparameterization group of the mirror

curve of B-model which fixes the position of the toric brane on the toric diagram

ΓX in A-model side. The action of this subgroup is given by a reparameterization

called framing transformation:

(x, y)→ (xy−f , y), f ∈ Z. (46)

The integer f is called framing of the toric brane (or Gromov-Witten invariants) on the

A-model, which is an ambiguity in the computation of open string amplitudes. Therefore,

fixing the location and framing of the toric brane on A-model will amount to fixing the

parameterization of the mirror curve of B-model.

Example:

1) The rays for the fan of C3 can be taken to be (0, 0, 1), (0, 1, 1), (1, 0, 1). So the fan trian-

gulation of C3 is a triangle whose vertices are (0, 0), (0, 1), (1, 0). The Newton polynomial,

in x, y variables, associated to this triangle is 1− y−x, where the coefficients were chosen

by convention. Therefore, the mirror curve of C3 is

1− y − x = 0. (47)

Applying the framing transformation (46), we get the framed mirror curve

− yf+1 + yf − x = 0. (48)

2) If we have the toric Calabi-Yau orbifold C3/Za, where Za acts as

(z1, z2, z3)→ (αz1, α
sz2, α

−s−1z3), s ∈ Z, α = e2πi/a, (49)

then its rays can be taken to be (0, 0, 1), (0, 1, 1), (a,−s, 1). It follows that the Newton
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polynomial associated to its fan triangulation is

1− y − xay−s = 0, (50)

where the signs where chosen by convention. Framing this will result to the framed mirror

curve of C3/Za
ys+af (1− y)− xa = 0. (51)

3) As mentioned in subsection 1.4.2, O(−3) → P2 is an example of toric Calabi-Yau. Its

rays are (−1,−1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 1). So the fan triangulation of this has vertices

(−1,−1), (1, 0), (0, 1). Then the associated Newton polynomial is

1− x− y − 1

xy
= 0. (52)

Framing this gives the framed mirror of O(−3)→ P2,

1− xy−f − y − 1

xy−f+1
= 0. (53)

2.3.2 Remodeling Theory for C3

Topological string B-model on mirror toric Calabi-Yau threefold is part of a larger physical

class called chiral boson theory on a (quantum) Riemann surface. In [ADKMV],[M], it

was argued that the topological recursion from the matrix models generates the ampli-

tudes of the chiral boson theory, as the recursion depends only on the Riemann surface.

Following this line of thought, it was claimed in [M] that the B-model amplitudes can

be extracted as well from the topological recursion. Developing this B-model formalism,

including the framing context, leads to the remodeling conjecture in [BKMP], which was

proved independently in the open sector in [Chen] and [Zhou], closed sector in [BCMS]

for the target space C3, and in full generality in [EO2] and [FLZ]:

Remodeling theory for C3: The differentials d1..dnFg(x1, .., xn) of the generating func-

tion for Gromov Witten invariants (A-model amplitudes) of C3 satisfy the topological

recursion, wherein the associated spectral curve is the framed mirror curve of a toric

Calabi-Yau threefold X := C3. In addition, the recursion starts with the fundamental one

form

dF0 = log(y)
dx

x
. (54)
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Note that in the above theory, we assumed the case when the mirror map, transformation

relating quantities in A- and B-model, is trivial. (Mirror map is trivial for genus 0 curve).

So the amplitudes are the same in both topological string models. The precise statement of

the remodeling conjecture is that the B-model amplitude satisfy the topological recursion.

Hence, mirror map has to be determined for nontrivial mirror map so that the Gromov-

Witten invariants defined on A-model can be obtained. Moreover, differentials of the

generating function are the object that can be constructed recursively since the quantity

that obeys the topological recursion are meromorphic differentials. Another important

thing is the crucial difference that the mirror curve lives on C∗ × C∗, rather than C2. In

turn, the one form η(z) that is needed in the recursion takes the form

η(z) = (log{y(z)} − log{y(z̄)})dx(z)

x(z)
(55)

instead of η(z) = [y(z)− y(z̄)]dx(z) in (9), reflecting the notion that the symplectic form

on C∗ × C∗ is

dx

x
∧ dy
y
. (56)

2.4 Bouchard-Mariño Theory

Taking into consideration the remodeling theory in the last section and the infinite fram-

ing limit in theorem 3, which relates simple Hurwitz numbers and open Gromov-Witten

invariants of C3, we are naturally led into thinking that simple Hurwitz numbers should

be related as well to the topological recursion.

The question out from this is what is the spectral curve that will be used for recursive

construction of simple Hurwitz numbers. Recall from the infinite framing statement that

the generating function for simple Hurwitz numbers can be recovered from the generating

function for open Gromov-Witten invariants by sending f →∞. As claimed in [BM], the

spectral curve for this recursion can be obtained by taking f → ∞ in the framed mirror

curve in (48) from the Gromov-Witten side.

The infinite framing limit in (43) implies that the variables x, y must be rescaled. By

(43), it is clear that x should be reparameterized to x/f . For the variable y, consider the

initial value (54),

dF0 = log(y)
dx

x
, (57)
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and the infinite framing limit (43). It follows that we should have the rescaling

y → 1− y

f
. (58)

This is because when f →∞, dF0 = log(1− y
f
)dx
x

has leading order of

− y

f

dx

x
, (59)

and the −1/f above will cancel out the factor (−1)nf 2−2g−n in the infinite framing limit

(43) for all g and n, since

η(z)→ −1

f
η(z) ⇒ W (n)

g → (−1)nf 2g+n−2W (n)
g . (60)

So reparameterizing the variables in framed mirror curve (48) as

x→ x

f
, y → 1− y

f
, (61)

the framed mirror curve becomes

x

f
=
y

f

(
1− y

f

)f
. (62)

Taking the limit at large f , we obtain the Lambert curve

x = ye−y. (63)

Bouchard-Mariño Theory: The differentials d1..dnNg(x1, ..xn) of the generating func-

tions for simple Hurwitz numbers can be constructed recursively using the topological

recursion, with the spectral curve given by the Lambert curve x = ye−y and the funda-

mental one form dN0 = ydx/x.

This was conjectured in [BM] by the reasoning above and through comparing the simple

Hurwitz numbers calculations using the conjecture and its formula via Hodge integrals.

The conjecture was later proved in [EMS] by first calculating the Laplace transform of

the cut-and-join equation (which expresses Hurwitz number of a given genus and profile in

terms of profiles modified by either cutting a part into two pieces or joining two parts into
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one). Then identifying that the direct image of this Laplace transform is the topological

recursion.

3 Orbifold Hurwitz Numbers and Open Gromov-Witten

Invariants of C3/Za
The goal of this chapter is to extend the ideas from the previous chapter to orbifold setting.

First section in this chapter is about double Hurwitz numbers in terms of Hodge integrals.

It is then be followed by Gromov-Witten invariants. The target space that is considered

is the toric Calabi-Yau orbifold X := C3/Za, i.e. toric Calabi Yau threefold quotiented by

finite group Za. Then connections among these, together with topological recursion, are

the topics in the remaining sections of this chapter.

3.1 JPT Formula

In section 2.1, simple Hurwitz numbers Hg(µ := (µ1, .., µn)) has an expression, called

ELSV formula, in terms of Hodge integrals. This was obtained using localization on mod-

uli spaceMg,n of genus g pre-stable curves with n marked points. Extending this process

to moduli space Mg,γ−µ(BZa) of stable maps from twisted curve C to classifying space

of the cyclic group Za gives a relationship between double Hurwitz number Hg(ν, µ) and

Hodge integral. This was the main result in [JPT], and we present in this section the nec-

essary ingredients in the relation proved in [JPT], without explaining the proof through

localization. The orbifold Hurwitz number (to be defined shortly) is just a special type of

double Hurwitz numbers, and so similar result applies for this case.

Let C be a twisted curve of genus g, and h be the Hurwitz cover h : C → P1 of degree d

with non-simple ramification profiles ν, µ over 0,∞ ∈ P1. For µj ∈ Z+ and γi ∈ Za\{0},
suppose the partitions of degree d into elements of ν and µ are as follows:

d =
r+t∑
i=1

νi, ν := {γ1, .., γr, a, .., a}, (64)
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d =
n∑
j=1

µj, µ := {µ1, .., µn}, (65)

where the number of a in the ramification profile ν is

t :=
d−

∑
γi

a
, (66)

and we define
∑a−1

i=1 imi =
∑r

j=1 γj; i.e., there are mi ∈ N number of i in the vector

γ := (γ1, .., γr).

Denote Hg(ν(γ, a), µ) as the double Hurwitz number counting weighted Hurwitz covers h

of degree d from curve C of genus g to P1, with ramifications ν, µ as above.

The orbifold Hurwitz number Hg(ν(a), µ) is a special type of double Hurwitz number

wherein γ = ∅ in (64). Take note that a 6= 1 here so it is still a particular case of double

Hurwitz number. For a = 1, we recover simple Hurwitz numbers.

Theorem 4. (JPT Formula) The double Hurwitz number Hg(ν(γ, a), µ), counting weighted

Hurwitz covers h of degree d from twisted curve (Riemann surface) C of genus g to P1,

with ramifications ν, µ as in (64),(65), can be expressed in terms of Hodge integral as

Hg(ν(γ, a), µ) =
(2g − 2 + r + n+ d

a
−
∑a−1

i=1
imi
a

)!

|Aut(γ)||Aut(µ)|

× a1−g−
∑a−1
i=1

imi
a

+
∑n
i=1〈

µi
a
〉
n∏
i=1

µ
bµia c
i⌊
µi
a

⌋
!

×
∫
Mg,γ−µ(BZa)

∑
j≥0(−a)jλUj∏n
i=1(1− µiψi)

. (67)

The integer and fractional parts of a number θ ∈ Q above is given by θ = bθc+ 〈θ〉. The

above formula was proved in [JPT] by considering virtual localization technique on the

moduli space of stable maps to stack P1[a]. Take note that the formula is valid provided
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that the following conditions are satisfied:

d−
a−1∑
i=1

imi = 0 (mod a) (nonemptiness), (68)

d−
a−1∑
i=1

imi ≥ 0 (nonnegativity), (69)

∀i 6= j, γi + γj ≤ a (boundedness). (70)

Consequently, the orbifold Hurwitz number (or when γ = ∅ but a 6= 1) can be written as

Hg(ν(a), µ) =
(2g − 2 + n+ d

a
)!

|Aut(µ)|
a1−g+

∑n
i=1〈

µi
a
〉
n∏
i=1

µ
bµia c
i⌊
µi
a

⌋
!

∫
Mg,−µ(BZa)

∑
j≥0(−a)jλUj∏n
i=1(1− µiψi)

. (71)

When a = 1 (γ = ∅ in turn), the formula for double Hurwitz number in terms of Hodge

integral reduces to ELSV formula,

Hg(µ) =
(2g − 2 + n+ d)!

|Aut(µ)|

n∏
i=1

µµii
µi!

∫
Mg,n

∑g
j=0(−1)jλj∏n

i=1(1− µiψi)
, (72)

which expresses the simple Hurwitz number as an integral over the moduli space of stable

curves.

3.2 Open Gromov-Witten Invariants of C3/Za

We present in this section the results in [BC] and [Ross], which relate the open orbifold

Gromov-Witten invariants C3/Za and Hodge integrals.

Consider the toric Calabi-Yau orbifold X := C3/Za as the target space, where group Za
acts on (z1, z2, z3) ∈ C3 as

(z1, z2, z3)→ (ε1z1, ε
sz2, ε

−s−1z3), (73)

with ε = e2πi/a, and toric weights w := (w1, w2, w3) = (1, s,−s− 1), s ∈ Z.
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This orbifold is treated as an open chart of a global quotient of resolved conifold, i.e.

X ⊂ [O(−1) ⊕ O(−1)/Za]. By this identification, the C∗ action on the resolved conifold

must lift the canonical action on P1, descend to the quotient, be compatible with the

properties of OP1(−1)⊕OP1(−1) and with the anti-holomorphic involution defined on it.

It was argued in [AC] that only the Calabi-Yau action (action in which the sum of weights

vanishes) satisfies these conditions. Choosing fractional weights (t1, t2, t3) by convention,

the weights for the induced C∗ action on the resolved conifold can be taken to be

(t1, t2, t3) :=

(
1

a
, f,−f − 1

a

)
, (74)

where the parameter f ∈ Z is the framing.

Through localization, open Gromov-Witten theory can be viewed as theory of stable maps

wherein the fixed loci on the moduli space of stable maps consist of maps, ϕ : Σ → X,

from twisted Riemann surface of genus g, with n disks attached at n distinct twisted nodes

and r marked points, to orbifold X. This map contracts the compact Riemann surface

to the origin, and sends the attached disk di to the i-th axis with disk boundary winding

around the intersection of i-th axis and Lagrangian submanifold Li ⊂ X. The fixed locus

is encoded by (i) winding number µi ∈ Z+, i = 1, ...n, of a disk di, and by (ii) twisting

ki ∈ Za of the nodes attaching the corresponding disk di. The case that we are going to

consider is the effective action of Za, which means that the Lagrangian submanifold L ⊂ X

intersects the z1-axis of X where the action of Za is effective.

Also, it was shown that in order for the locus to be nonempty, the following relation must

hold:

µi ≡ ki (mod a), ∀i = 1, .., n. (75)

Taking into account the objects described above, and the contribution from each combi-

natorial data [KL],[BC] of the fixed locus in localization, then the open orbifold Gromov-

Witten invariant of X := C3/Za (with mj insertions of classes 1j of orbifold cohomology

H∗CR(X) of X) has the following form:
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Gg(1
m1
1 ...1

ma−1

a−1 , µ) =
an

|Aut(γ)||Aut(µ)|

n∏
j=1

δ
(j)
0 δ

(j)
1 δ

(j)
2 Dkj(di, a)

×
∫
Mg,γ−µ(BZa)

eeq(E∨1 (1/a)⊕ E∨s (f)⊕ E∨−s−1(−f − 1/a))∏n
j=1( 1

µj
− ψj)

. (76)

Here, δi = ti if kwi ≡ 0 (mod a) and 1 otherwise. Dki is called the disk function, defined

as

Dki(µi, a) :=

(
1

µi

)2
⌊
µi
a

+〈 kis
a
〉− gcd(ki,a)

a

⌋
−bµia c+1

1⌊
µi
a

⌋
!

Γ(µit1 + 〈kjα2

a
〉+ µi

a
)

Γ(µit1 − 〈kjα1

a
〉+ 1)

. (77)

The numerator in the integrand is the equivariant Euler class of three copies of the dual

of wi-character sub-bundles of Hodge bundle Ewi(ti). ψi are the descendent classes on

moduli space Mg,γ−µ(BZa). Note that the mi will appear on the right side of (76) upon

integration over Mg,γ−µ(BZa) (as will be seen in section 4.1).

3.3 Remodeling Theory for C3/Za

For the first connection, topological recursion and Gromov-Witten invariants of C3/Za
are also related by the remodeling theory. The work in [BKMP] extends the remodeling

theory for C3 in [M] to the case when the target space is the orbifold C3/Za. This was

proved in [FLZ]. In the case where the mirror map is trivial, the remodeling theory simply

states that:

Remodeling theory for C3/Za: The differentials d1..dnFg(x1, .., xn) of the generating

function for open Gromov Witten invariants of C3/Za (with or without insertion of orb-

ifold cohomology classes 1j) can be obtained recursively using Eynard-Orantin topological

recursion, with spectral curve given by the framed mirror curve of C3/Za and fundamental

one form dF0 = log(y)dx/x.
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3.4 Infinite Framing Limit of Open Gromov-Witten Invariants

C3/Za

In order to relate all the topological recursion, Gromov-Witten invariants of C3/Za (with-

out insertion of cohomology classes) and orbifold Hurwitz numbers, we first need to extend

the infinite framing (theorem 3) for Gromov-Witten invariants of C3/Za. The extension

to orbifold case was shown [BHLM], and it is stated in the next theorem.

Theorem 5. If we set the generating function for orbifold Hurwitz numbers and open

Gromov-Witten invariants of C3/Za (without insertion of cohomology classes) as

Ng(x1, .., xn) =
∑
µi∈Z+

1

(2g − 2 + n+ d
a
)!

(
Hg(ν(a), µ)

n∏
i=1

xµii

)
. (78)

,

Fg(x1, .., xn) =
∑
µi∈Z+

(
(−1)g−1+

∑n
i=1〈

−µi(s+1)

a
〉Gg(µ)

n∏
i=1

xµii

)
, (79)

respectively, then these are related by

Ng(x1, .., xn) = lim
f→∞

(
(−1)nf 2−2g−nFg

(
x1

f 1/a
, ..,

xn
f 1/a

))
. (80)

This will be shown later as a particular case of the first theorem in next chapter. By

remodeling theory, the differential of Fg is related to topological recursion, then this the-

orem suggests that the orbifold Hurwitz numbers can be generated as well through the

recursion. The spectral curve will then be obtained by reparameterizing the framed mirror

curve (51) of C3/Za and then taking its limit as f →∞.

Using the same reasoning in section 2.4, variables x, y are reparameterized as

x→ x

f 1/a
, y → 1− y

f
. (81)
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This will in turn transform the framed mirror curve (51) into

xa = y

(
1− y

f

)af (
1− y

f

)s
. (82)

Taking the limit as f →∞, we get the a-Lambert-curve,

xa = ye−ay, (83)

as the spectral curve for the differentials of generating function for orbifold Hurwitz num-

bers.

Theorem 6. The differentials d1..dnNg(x1, ..xn) of the generating function (78) for orb-

ifold Hurwitz numbers can be obtained recursively through topological recursion, with the

spectral curve given by the a-Lambert curve xa = ye−ay and fundamental one form dN0 =

ydx/x.

Proof. Complete proof can be found in [BHLM]. This was proved by identifying that

the Laplace transform of the cut-and-join equation, after Galois averaging and restricting

the principal part, changes into Eynard-Orantin topological recursion defined on the a-

Lambert curve.

4 Generalization to Double Hurwitz Numbers

This chapter is about the new developments in the study. It will be shown that previous

results can be obtained as particular cases of the generalization made in this part of the

thesis.

4.1 Generalized Infinite Framing Limit

In section 2.2, as the framing parameter f goes to infinity, the generating functionNg(x1, .., xn)

for simple Hurwitz numbersHg(µ) can be recovered from the generating function Fg(x1, .., xn)

for Gromov-Witten invariants of C3:
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Ng(x1, .., xn) = lim
f→∞

(
(−1)nf 2−2g−nFg

(
x1

f
, ..,

xn
f

))
. (84)

The following question is how are the Gromov-Witten invariants of C3/Za and the double

Hurwitz numbers Hg(ν(γ, a), µ) are related. A calculation in [BHLM] shows that the

generating function Ng(x1, .., xn) for the orbifold Hurwitz numbers Hg(ν(a), µ) and the

generating function Fg(x1, .., xn) for Gromov-Witten invariants of C3/Za (without insertion

of cohomology classes) also exhibit the infinite framing limit but with the rescaling xi →
xi/f

1/a:

Ng(x1, .., xn) = lim
f→∞

(
(−1)nf 2−2g−nFg

(
x1

f 1/a
, ..,

xn
f 1/a

))
. (85)

We extend these notions to the full double Hurwitz numbers and to the case when there

are insertions of cohomology classes in the Gromov-Witten side, i.e. when γ 6= ∅. We will

show that the next statement is true by explicit calculations.

Theorem 7. Let x = (x1, .., xn) and τ = (τ1, .., τa−1) be formal parameters. If

Ng(x, τ) =
∑
µi∈Z+

∑
mj∈N

1

(2g − 2 + r + n+ d
a
−
∑a−1

i=1
imi
a

)!

×(Hg(ν(γ, a), µ)
n∏
i=1

xµii

a−1∏
j=1

τ
mj
j )

(86)

and

Fg(x, τ) =
∑
µi∈Z+

∑
mj∈N

((−1)g−1+
∑n
i=1〈

−µi(s+1)

a
〉−
∑a−1
i=1 mi〈−i(s+1)

a 〉

×Gg(1
m1
1 ...1

ma−1

a−1 , µ)
n∏
i=1

xµii

a−1∏
j=1

τ
mj
j )

(87)

denotes the generating functions for (full) double Hurwitz numbers and open Gromov Wit-

ten invariants of C3/Za (with insertion of orbifold cohomology classes), respectively. Then

we have the generalized infinite framing limit,
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Ng(x, τ) = lim
f→∞

(
(−1)nf 2−2g−nFg

(
x

f 1/a
,

τ

f〈
is
a 〉+〈− i(s+1)

a 〉

))
, (88)

where the rescaling of variables denotes

x

f 1/a
:= (

x1

f 1/a
, ...,

xn
f 1/a

), (89)

τ

f〈
is
a 〉+〈− i(s+1)

a 〉
:=

(
τ1

f〈
1·s
a 〉+〈− 1·(s+1)

a 〉
,

τ2

f〈
2·s
a 〉+〈− 2·(s+1)

a 〉
, ...,

τa−1

f〈
(a−1)·s

a 〉+〈− (a−1)·(s+1)
a 〉

)
. (90)

Proof. The proof of this statement is similar to the procedure done in [BHLM] in prov-

ing (85), wherein we rewrite the open Gromov-Witten invariant expression into a form

that is closer to the Hurwitz number formula in terms of Hodge integral and then we will

evaluate the limit when framing f →∞. Clearly, when there are no insertions of orbifold

cohomology classes then all mi’s vanish, which means that the generalized infinite framing

limit (87) reduces to the infinite framing limit (85) established in [BHLM]

Let us obtain first the equivalent expressions for the following factors in open Gromov-

Witten invariant formula for C3/Za (76):

• The factor δ0δ1δ2 can be written as (1/a)
δ
〈 kia 〉,0f

δ
〈 kisa 〉,0(−f − 1

a
)
δ
〈−ki(s+1)

a 〉,0 , due to the

definition of δi. So taking the products of δ
(i)
0 δ

(i)
1 δ

(i)
2 over i, we get(

1

a

)∑n
i=1 δ〈 kia 〉,0

f

∑n
i=1 δ〈 kisa 〉,0

(
−f − 1

a

)∑n
i=1 δ〈−ki(s+1)

a 〉,0
. (91)

• The disk function Dki becomes

Dki(µi, f) =

(
1

µi

)2
⌊
µi
a

+〈 kis
a
〉− gcd(ki,a)

a

⌋
−bµia c+1

1⌊
µi
a

⌋
!

Γ(µif + 〈ki(−s−1)
a
〉+ µi

a
)

Γ(µif − 〈kisa 〉+ 1)
(92)
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=

(
1

µi

)2
⌊
µi
a

+〈 kis
a
〉− gcd(ki,a)

a

⌋
−bµia c+1

1⌊
µi
a

⌋
!
(µi)

⌊
µi
a

+〈 kis
a
〉− gcd(ki,a)

a

⌋

×

⌊
µi
a

+〈 kis
a
〉− gcd(ki,a)

a

⌋∏
j=1

(f − 1

µi
〈kis
a
〉+

j

µi
)

(93)

=

(
1

µi

)⌊µi
a

+〈 kis
a
〉− gcd(ki,a)

a

⌋
−bµia c+1

1⌊
µi
a

⌋
!

⌊
µi
a

+〈 kis
a
〉− gcd(ki,a)

a

⌋∏
j=1

(fµi − 〈
kis

a
〉+ j) (94)

We have used equation (17) in [BC] in moving from (92) to (93).

• From [CC], the equivariant Euler class in the integrand takes the form:

eeq(E∨α1(1/a)⊕E∨αs(f)⊕E∨α−s−1(−f−
1

a
)) = Λ∨,αg (

1

a
)Λ∨,α

s

g (f)Λ∨,α
−s−1

g (−f− 1

a
), (95)

where

Λ∨,α
t

g (ω) := ωrk(Eαt )
rk(Eαt )∑
i=0

(−1/ω)iλi,αt , (96)

with Eαt as Hodge bundle corresponding to Za representation given by

ϕαt : Za → C∗, ϕαt(1) = e
2πit
a , (97)

and λi,αt := ci(Eαt) are its Chern classes ci.

Collecting the above equivalent expressions for each factor in (76), we obtain

Gg(1
m1
1 ...1

ma−1

a−1 , µ) =
a
n−
∑n
i=1 δ〈 kia 〉,0

|Aut(γ)||Aut(µ)|
f

∑n
i=1 δ〈 kisa 〉,0

(
−f − 1

a

)∑n
i=1 δ〈−ki(s+1)

a 〉,0

×
n∏
i=1

1

µ

⌊
µi
a

+〈 kis
a
〉− gcd(ki,a)

a

⌋
−bµia c

i

⌊
µi
a

⌋
!

×

⌊
µi
a

+〈 kis
a
〉− gcd(ki,a)

a

⌋∏
j=1

(fµi − 〈
kis

a
〉+ j)

×
∫
Mg,γ−µ(BZa)

Λ∨,αg ( 1
a
)Λ∨,α

s

g (f)Λ∨,α
−s−1

g (−f − 1
a
)∏n

i=1(1− µiψi)
. (98)
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Taking into account the dependancy of winding numbers µi and twisting ki of attachment

points, then ∃Ii ∈ Z, i = 1, ..., n such that (µi − ki)/a = Ii. Hence, 〈kiλ
a
〉 = 〈µiλ

a
〉 for any

λ ∈ Z. Also, since the twisting ki is constrained by 0 < ki < a, then gcd(ki, a) = gcd(µi, a).

Setting teff := a/gcd(µi, a), the open orbifold Gromov-Witten invariant becomes:

Gg(1
m1
1 ...1

ma−1

a−1 , µ) =
a
n−
∑n
i=1 δ〈µia 〉,0

|Aut(γ)||Aut(µ)|
f
∑n
i=1 δ〈µisa 〉,0

(
−f − 1

a

)∑n
i=1 δ〈−µi(s+1)

a 〉,0

×
n∏
i=1

1

µ

⌊
µi
a

+〈µis
a
〉− 1

teff

⌋
−bµia c

i

⌊
µi
a

⌋
!

⌊
µi
a

+〈µis
a
〉− 1

teff

⌋∏
j=1

(fµi − 〈
µis

a
〉+ j)

×
∫
Mg,γ−µ(BZa)

Λ∨,αg ( 1
a
)Λ∨,α

s

g (f)Λ∨,α
−s−1

g (−f − 1
a
)∏n

i=1(1− µiψi)
. (99)

We now proceed to the evaluation of limit when the framing f goes to infinity.

We first consider the numerator in Hodge integral in Gromov-Witten invariant (99). Using

the definition in (96), this has leading order term at large f expansion as

Λ∨,αg (
1

a
)Λ∨,α

s

g (f)Λ∨,α
−s−1

g (−f − 1

a
) '

a−rk(Eα)

rk(Eα)∑
i=0

(−a)iλi,α

 f rk(Eαs )(−f)rk(Eα−s−1 )

(100)

Through orbifold Riemann-Roch formula [JPT], we have the following rank of Hodge

bundles over Mg,γ−µ(BZa) (More details on Appendix):

rk(Eα) = g − 1 +
n∑
i=1

〈−µi
a
〉+

a−1∑
i=1

imi

a
, (101)

rk(Eαs) = g − 1 +
n∑
i=1

〈−µis
a
〉+

a−1∑
i=1

mi

〈
is

a

〉
, (102)

rk(Eα−s−1) = g − 1 +
n∑
i=1

〈µi(s+ 1)

a
〉+

a−1∑
i=1

mi

〈
−i(s+ 1)

a

〉
, (103)
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Thus, the Hodge integral in (99) has the following leading order term as f →∞:

(−1)g−1+
∑n
i=1〈

µi(s+1)

a
〉+
∑a−1
i=1 mi〈− i(s+1)

a 〉a1−g−
∑n
i=1〈−

µi
a
〉−
∑a−1
i=1

imi
a

×f 2g−2+
∑n
i=1(〈−µis

a
〉+〈µi(s+1)

a
〉)+
∑a−1
i=1 mi(〈 isa 〉+〈− i(s+1)

a 〉)
∫
Mg(BZa)

∑
j≥0(−a)jλj∏n

i=1(1− µiψi)
.

(104)

For the third line in (99), the leading order term is

n∏
i=1

µ
bµia c
i⌊
µi
a

⌋
!
f

⌊
µi
a

+〈µis
a
〉− 1

teff

⌋
, (105)

while for the first and second lines, we have

a
n−
∑n
i=1 δ〈µia 〉,0

|Aut(γ)||Aut(µ)|
f
∑n
i=1 δ〈µisa 〉,0(−f)

∑n
i=1 δ〈−µi(s+1)

a 〉,0 . (106)

We then obtain the following overall exponents:

• For f :

n∑
i=1

(
〈−µis

a
〉+ 〈µi(s+ 1)

a
〉+ δ〈µis

a
〉,0 + δ〈−µi(s+1)

a
〉,0 +

⌊
µi
a

+ 〈µis
a
〉 − 1

teff

⌋)

+2g − 2 +
a−1∑
i=1

mi

(〈
is

a

〉
+

〈
−i(s+ 1)

a

〉)

= 2g − 2 + n+
n∑
i=1

µi
a

+
a−1∑
i=1

mi

(〈
is

a

〉
+

〈
−i(s+ 1)

a

〉)
,

(107)

where we have used the equality

n∑
i=1

(〈−µis
a
〉+ 〈µi(s+ 1)

a
〉+ δ〈µis

a
〉,0 + δ〈−µi(s+1)

a
〉,0

+

⌊
µi
a

+ 〈µis
a
〉 − 1

teff

⌋
) = n+

n∑
i=1

µi
a

(108)

from section 3.2 of [BHLM]. Note that
〈
is
a

〉
+
〈
− i(s+1)

a

〉
has two possible values,

2− i
a

or 1− i
a
, depending on the numerical values of i, s, a.
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• For a:

1− g + n−
n∑
i=1

(
〈−µi

a
〉+ δ〈µi

a
〉,0

)
−

a−1∑
i=1

imi

a

= 1− g +
n∑
i=1

〈µi
a
〉 −

a−1∑
i=1

imi

a

(109)

Here, we used the fact that

〈−µi
a
〉 =

1− 〈µi
a
〉 〈µi

a
〉 6= 0

0 〈µi
a
〉 = 0

(110)

• For −1:

Including the minus one factor, (−1)g−1+
∑n
i=1〈

−µi(s+1)

a
〉−
∑a−1
i=1 mi〈−i(s+1)

a 〉, in (87), we

have the following overall exponent of −1:

2g − 2 +
n∑
i=1

(
〈−µi(s+ 1)

a
〉+ 〈µi(s+ 1)

a
〉+ δ〈−µi(s+1)

a
〉,0

)
= 2g − 2 + n (111)

Piecing everything together, the leading term of

(−1)g−1+
∑n
i=1〈

−µi(s+1)

a
〉−
∑a−1
i=1 mi〈−i(s+1)

a 〉Gg(1
m1
1 ...1

ma−1

a−1 , µ) (112)

at large f expansion is

(−1)nf 2g−2+n+
∑n
i=1

µi
a

+
∑a−1
i=1 mi(〈 isa 〉+〈− i(s+1)

a 〉)

|Aut(γ)||Aut(µ)|

× a1−g−
∑a−1
i=1

imi
a

+
∑n
i=1〈

µi
a
〉
n∏
i=1

µ
bµia c
i⌊
µi
a

⌋
!

×
∫
Mg,γ−µ(BZa)

∑
j≥0(−a)jλUj∏n
i=1(1− µiψi)

.

(113)

Now, referring to the formula for double Hurwitz numbers in (67) and to the generating

functions in equations (86) and (87), together with the rescaling of formal parameters,

then the statement in the theorem clearly follows.
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4.2 New Spectral Curve

Since the double Hurwitz numbers and Gromov-Witten invariants of C3/Za are related

through the generalized infinite framing limit in the last section and the remodeling theory

for the same orbifold implies the recursive structure of Gromov-Witten invariants, then

the double Hurwitz numbers must be related to the topological recursion as well. The new

question is what is the associated spectral curve for the full double Hurwitz numbers. To

do this, we have to discuss first the topological string B-model side.

As mentioned in subsection 2.3.1, the mirror curve captures the geometry of the B-model

side. The mirror curve expression can be extracted from the fan of the toric Calabi-Yau

threefold.

Consider the target orbifold X := C3/Za, where Za acts on C3 as

(z1, z2, z3)→ (αz1, α
sz2, α

−s−1z3), α = e2πi/a, s ∈ Z. (114)

As mentioned earlier, the rays for the fan can be taken to be

(0, 0, 1), (0, 1, 1), (a,−s, 1). (115)

This fan intersects the plane z = 1 forming a polytope with (planar) vertices (0, 0), (0, 1), (a,−s).
Then the mirror curve is given by the Newton polynomial associated to this polytope:

1 + y + xay−s = 0. (116)

Now, we are interested in the general case when there are insertions of orbifold cohomology

classes on the target space C3/Za. The curve above is the mirror curve of C3/Za when

there are no insertions of cohomology classes. To include the insertions, and in turn to

determine the spectral curve for the full double Hurwitz numbers, we have to consider

this time the lattice points (ui, vi) on the edge and inside the polytope. So the full mirror

curve of C3/Za (with insertions of orbifold cohomology classes included) takes the form

1 + y + xay−s +
∑
i

ρix
uiyvi = 0. (117)
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Remark: The signs in the mirror curves above are not necessarily all positive. The signs

will be chosen in accordance with the mirror symmetry theorem that will be presented

shortly.

Now, to get the spectral curve for Hurwitz theory, recall that the Gromov-Witten in-

variants and Hurwitz numbers are related via infinite framing. So in order to obtain the

spectral curve, we frame first the mirror curve (117), reparameterized it, and then take

the limit as framing f goes to infinity. The remaining thing to be determined beforehand

are the coefficients ρi in the mirror curve (117). We can determined ρi by implementing

the following theorem as a consequence of mirror symmetry:

Theorem 8. Mirror symmetry for disk potentials

The disk potential F0, defined as

F0(x, τ1, .., τa−1) :=
∑
µ∈Z+

∑
mj∈N

(
G0(1m1

1 ...1
ma−1

a−1 , µ)xµ
a−1∏
j=1

τ
mj
j

)
, (118)

of toric Calabi-Yau X in A-model and the disk potential F0,

F0(x, y) =

∫
log(y)

x
dx, (119)

of the mirror X̃ in B-model are equivalent up to a change in variables (y can be expressed

in terms of x, ρ, and we need to find a relation between ρi and τi).

Hence, all we have to do in order to completely determine the expression of the full mirror

curve of C3/Za (and in turn the spectral curve for double Hurwitz numbers) is to equate

the disk potentials of A- and B-models.

Note that in previous studies or chapters, the spectral curve for simple and orbifold Hur-

witz numbers were determined without referring to the above theorem since in those cases,

only the vertices in the polytope were considered in the Newton polynomial. To determine

the spectral curve for the Gromov-Witten invariants of C3/Za (with insertions of orbifold

cohomology classes) and the full double Hurwitz numbers, we have to consider as well the
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lattice points on the edge and inside the polytope.

The equality of the disk potential F0(x, τ1, .., τa−1) in the B-model and the integral of

data from the mirror curve was established in [FJ], [Hosono]. As similar in the A-model,

the disk potential in B-model gives the topological string amplitude on mirror target space

X̃. It has been known that the B-model disk potential can be calculated by integrating

the holomorphic 3-form Ω on X̃:

F0(x, τ1, .., τa−1) =

∫
Ω. (120)

It was shown in [FJ], [Hosono] that the holomorphic 3-form Ω is equivalent to 1-

differential log(y)d(log(x)) on mirror curve.

4.2.1 Case: Orbifold C3/Z2 and s = 0

Going back to the mirror curve, we consider the target orbifold C3/Z2 where Z2 acts on

coordinate of C3 as

(z1, z2, z3)→ (−z1, z2,−z3), i.e., s = 0 in (73). (121)

The reason for choosing this case is because the rescaling of parameter τ in the infinite

framing limit (88) is simple or does not depend on i = 1, .., a − 1 when s = 0, and the

open Gromov-Witten invariants were already determined explicitly in [Ross] in this case.

More explicitly, when s = 0 and the group is Z2, conclusion in theorem 7 becomes

Fg(x1, .., xn, τ) = lim
f→∞

(
(−1)nf 2−2g−nFg

(
x1

f 1/2
, ..,

xn
f 1/2

,
τ

f〈−
1
2〉

))
, (122)

which implies a simpler rescaling

τ → τ

f〈−
1
2〉

=
τ

f 1/2
(123)

for the variable τ .

For the effective action of Z2, the generating function [Ross] for genus 0 open Gromov-

Witten invariants or the A-model disk potential of C3/Z2 is given by
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F0(x, τ) =
∑
j∈Z+

(
(−1)j+1

2j2
cos(jτ)x2j +

2(−1)j

(2j − 1)2
sin[τ(2j − 1)/2]x2j−1

)
. (124)

In the B-model on mirror of C3/Z2, let us consider the mirror curve of the form

1− y + x2 − ρx = 0, (125)

where the signs were chosen so that the disk potentials will be equivalent. Applying the

mirror symmetry for disk potentials (theorem 8), we get a chord function

ρ = 2 sin(τ/2). (126)

The above value of ρ works since if the B-model disk potential is

F0(x, y(x, τ)) =

∫
log(1 + x2 − 2 sin(τ/2)x)

dx

x

= (
1

2
x2 − 1

8
x4 +

1

18
x6 + ..) + (−x+

1

3
x3 − 1

5
x5 + ..)τ

+(
−1

4
x2 +

1

4
x4 − 1

4
x6 + ..)τ 2 +O(τ 3),

(127)

then one can check that the above expression is equivalent to A-model disk potential (124).

Now, to get the spectral curve, we will just frame the mirror curve, reparameterize the

variables, and then evaluate the limit when f →∞.

Framing the mirror curve via x→ xy−f and then reparameterizing the variables by

x→ x

f 1/2
, (128)

y → 1− y

f
, (129)

τ → τ

f 1/2
, (130)
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the mirror curve (125) becomes

− 2f 1/2 sin

(
τ

2f 1/2

)
x

(
1− y

f

)−f
+ x2

(
1− y

f

)−2f

+ y = 0. (131)

At large f , this becomes the spectral curve for the generating function for double Hurwitz

numbers Hg(ν(γ, 2), µ):

ye−2y − τxe−y + x2 = 0. (132)

We end this chapter by giving the following conjecture:

Conjecture: The differentials d1..dn+1Ng(x1..xn, τ) of the generating function

Ng(x1, .., xn, τ) =
∑
µi∈Z+

1

(2g − 2 + r + n+ d
2
− m

2
)!

×(Hg(ν(γ, 2), µ)
n∏
i=1

xµii τ
m)

(133)

for the double Hurwitz numbers Hg(ν(γ, 2), µ) satisfy the topological recursion of Eynard-

Orantin defined on the spectral curve ye−2y− τxe−y + x2 = 0, with fundamental one form

dN0 = ydx/x.

5 Conclusion and Future Directions

The last chapter of this thesis extended the relations among topological recursion, Hurwitz

numbers and Gromov-Witten invariants. In summary, we make the following conclusions

based on the calculations from the previous chapter:

• The double Hurwitz numbers’ generating function Ng(x, τ) can be recovered from in-

finite framing limit of the generating function Fg(x, τ) for Gromov-Witten invariants

of C3/Za via:

Ng(x, τ) = lim
f→∞

(
(−1)nf 2−2g−nFg

(
x

f 1/a
,

τ

f〈
is
a 〉+〈− i(s+1)

a 〉

))
. (134)
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• Considering the generalized infinite framing limit above and the remodeling theory,

we conjecture that:

Double Hurwitz numbers Hg(ν(γ, 2), µ) can be generated recursively using topolog-

ical recursion, with spectral curve given by the a-Lambert curve with an additional

term τxe−y:

ye−2y − τxe−y + x2 = 0. (135)

More precisely, the differentials d1..dn+1Ng(x1..xn, τ) of the generating function for

double Hurwitz numbers Hg(ν(γ, 2), µ) satisfy the topological recursion defined on

the above spectral curve, with fundamental one form dN0 = ydx/x.

In addition to these new things in the topological recursion-Hurwitz-Gromo-Witten study,

we give the following prospective:

One of the main results of this thesis is giving a conjecture that the double Hurwitz

numbers Hg(ν(γ, 2), µ) can be generated recursively via topological recusion with spectral

curve given by the spectral curve (132). This conjecture was made by referring to the re-

modeling theory for C3/Za and generalized infinite framing limit. Proof of this conjecture,

extending the proof in [BHML], would be desirable, confirming the validity of the idea

produced in this study.

Another thing is that the expression for mirror curve was determined experimentally.

Specifically, the signs were chosen so that the disk potentials in A- and B- models will

match exactly. A systematic rule or additional theorem for determining the coefficients in

mirror curve will be useful, since it would be a tedious task to experimentally determine

the exact form of mirror curve for arbitrary group Za. If possible, this would enable us to

determine the spectral curve for an arbitrary double Hurwitz numbers Hg(ν(γ, a), µ), i.e.

for any value of toric weight s and group Za.

Calculating Hurwitz numbers is not a straightforward task to do, it would be great to

formulate arbitrary Hurwitz numbers, i.e. with more than two ramification profiles, in

terms of a more generalized formula involving Hodge integrals. If possible, of course, it

would not make the Hurwitz numbers calculation easier, but it would lead to possibility

of extending the conjecture made here. Paralleling the extension in Gromov-Witten side,
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a formulation of Gromov-Witten invariants of an arbitrary orbifold would be a necessity

in order to relate any Hurwitz numbers with Gromov-Witten invariants. These extensions

would likely involved a more sophisticated localization technique on a moduli space having

a complicated yet richer structure.

On the other context, as the Hurwitz numbers and Gromov-Witten invariants can be

extracted from the topological recursion, which originated from matrix model theory, we

are led into thinking that these two objects may be represented as matrix models. A

research about matrix models for these would be great and may shed more light on the

structure of Hurwitz numbers and Gromov-Witten invariants. In turn, the matrix model

for Gromov-Witten invariants would hopefully say something deeper about the nature of

topological string theory.
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Appendix: Rank of Hodge Bundle over Moduli Space
of Stable Maps

We present here the ideas and theorems in [JPT] that are needed in the calculation of

rank of Hodge bundle over the moduli space of stable maps. Refer to [JPT] for detailed

explanation of the concepts that will be described in the following parts of this appendix.

A.1 Preliminaries

Let C be a twisted curve of genus g with stack structure at points p1, ..., pr determined by

the monodromy data γi ∈ Za\{0}, where i = 1, ..., r, respectively. (γi’s here are the same

as the γi’s in section 3.1). Also, let P1[a] be the projective line with stack point of order

a at 0. At point 0, P1[a] is treated as a quotient stack C/〈ζa〉, where ζa is the ath-root of

unity and 〈ζa〉 ⊂ C∗.
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Denote Mg,γ(P1[a], µ) as the stack of stable maps

f : (C, p1, ..., pr)→ P1[a], (136)

where γ := (γ1, ..., γr) is a vector of nontrivial elements of Za and µ is a (unordered) parti-

tion of the map’s degree d ≥ 1 with parts µj and length n. The compactified moduli space

Mg,γ(P1[a], µ) parametrizes the maps [f ] ∈ Mg,γ(P1[a], µ) for which relative conditions

over ∞ ∈ P1[a] are given by the partition µ.

A.2 Localization

The symmetric product Symk(P1) := (P1)k/Sk is defined as the quotient space of k-

fold cartesian product (P1)k by the group action of symmetric group Sk of k symbols.

The work in [FP] and lemma 3 in [JPT] imply the existence of the restricted branch

morphism

br0 :Mg,γ(P1[a], µ)→ Symk(P1) (137)

Let the C∗ action on P1 be defined by

η · (z0, z1) = (z0, ηz1), η ∈ C∗, (z0, z1) ∈ P1. (138)

This group action on P1 lifts canonically to C∗ actions on P1[a],Mg,γ(P1[a], µ) and Symk(P1).

In the localization procedure in [JPT], if we consider the stack

MC∗
0 :=Mg,γ(P1[a], µ)C

∗ ∩ br−1
0 (r[0]), (139)

where Mg,γ(P1[a], µ)C
∗

is the C∗-fixed locus on Mg,γ(P1[a], µ) and r[0] is the C∗-fixed

point on Symk(P1), then the strong restriction on branching will impose the following

structures on maps [f : C → P1[a]] ∈MC∗
0 :

• C = C0 ∪ qnj=1Cj.

• C0 intersects Cj at a node qj.

• The map fC |Cj : CC
j → P1 is a C∗-fixed cover of degree µj for j > 0.

• f |C0 is a constant map from curve of genus g to [0/Za] ∈ P1[a].
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Moreover, the stack structure at qj ∈ Cj is of type µj ∈ Za, whereas at qj ∈ C0 where Cj

is attached is of the opposite type −µj. The constant map

f |C0 : (C, p1, ..., pr, q1, ..., qn)→ [0/Za] (140)

is an element of the moduli spaceMg,γ−µ(BZa) of stable maps from (twisted) stable curve

C, with stack structures determined by the vector γ − µ := (γ1, ..., γr,−µ1, ...,−µn), to

classifying space BZa.

A.3 Hodge Bundle

The following idea will be used in the calculation of rank of Hodge bundle:

Suppose f ∗TP1[a](−∞) is a locally free sheaf of rank 1 over C, then the spaceH1(C0, f |∗C0
TP1[a](−∞))

yields the dual (EU)∨ of the Hodge bundle EU over Mg,γ−µ(BZa) corresponding to irre-

ducible representation U of Za, given by

φU : Za → C∗, φU(1)→ e
2πi
a . (141)

The Hodge bundle over moduli space of stable maps can be obtained in the following way:

Let G be a finite group and R its irreducible representation, given by φR : G → C∗.
Denote the classifying space of G by BG. By associating to each map

[F : C → BG] ∈Mg,γ(BG) (142)

the R-summand of G-representation H0(C, ωC), we then obtain the Hodge bundle

ER →Mg,γ(BG). (143)

So if [F : C → BZa] ∈Mg,γ−µ(BZa), then the Hodge bundles EU , (EU)∨ are vector bundles

over Mg,γ−µ(BZa) with fibers

EU |F ' H0(C, ωC), (EU)∨|F ' H1(C0, f |∗C0
TP1[a](−∞)), (144)

respectively.
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Note that there is a relation between Hodge bundles ER,EU differing by irreducible rep-

resentation of group. Consider the exact sequence associated with representation R

0→ K → G
φR−→ Im(φR) ' Za → 0. (145)

By construction, R ' (φR)∗(U). The homomorphism φR induces a morphism

ρ :Mg,γ(BG)→Mg,φR(γ)(BZa) (146)

by sending a principal G-bundle to its quotient by K. Then lemma 5 in [JPT] states that

ER ' ρ∗(EU).

A.4 Orbifold Riemann Roch Formula

Let I1, ..., Ir be the cyclic isotropy groups associated to stack points p1, ..., pr of curve C.

The isotropy group Ii is a subgroup of Za generated by the element γi of order ai. This

group is identified with the aith roots of unity that acts on TpiC as

Ii
∼−→ 〈ζai〉 ⊂ C∗ (147)

Suppose E is a locally free sheaf over the curve C, then Ii also acts on E|pi . Let

E|pi =
⊕

0≤s≤ai−1

V
⊕
es

s (148)

be the direct sum decomposition of E|pi into irreducible representation Vs of Zai with

associated character

φs : Ii → C∗, φs(ζai) = ζsai . (149)

Define the age of E at pi as

agepi(E) =
∑

0≤s≤ai−1

s

ai
es. (150)

The orbifold Riemann Roch formula [AGV] is given by

χ(C,E) = rk(E)(1− g) + deg(E)−
r∑
i=1

agepi(E). (151)
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The Euler characteristic χ of f ∗TP1[a](−∞) can be calculated using the above formula. By

the quotient presentation of P1[a], the character of f ∗TP1[a](−∞) at pi is

ζai → ζ
γiai
a

ai = ζγia . (152)

So the agepi(f
∗TP1[a](−∞)) is γi/a. Also, deg(f ∗TP1[a](−∞)) = d/a. Therefore,

χ(C, f ∗TP1[a](−∞)) = 1− g +
d

a
−

r∑
i=1

γi
a
. (153)

A.5 Rank of Hodge Bundle

The Euler characteristic χ can be expressed as alternating sum of sizes of cohomology

groups:

χ(C,E) =
∑

(−1)irk(H i(C,E)). (154)

As rk(f ∗TP1[a](−∞)) = 1, then H i(C, f ∗TP1[a](−∞)) = 0 for all i > 1 by Grothendieck’s

vanishing theorem. Hence,

χ(C, f ∗TP1[a](−∞)) = 1− g +
d

a
−

r∑
i=1

γi
a

= rk(H0(C, f ∗TP1[a](−∞)))

−rk(H1(C, f ∗TP1[a](−∞)))− rk(H0(qj, f
∗TP1[a](−∞)|qj)), (155)

where the last term above is the H1 −H0 contribution from nodal points qj’s.

Taking note of (144) and the additivity of cohomology groups, it follows that

rk(EU) = rk((EU)∨) = rk(H1(C0, f |∗C0
TP1[a](−∞))) = g − 1− d

a
+

r∑
i=1

γi
a

+rk(H0(C0, f |∗C0
TP1[a](−∞))) +

n∑
j=1

rk(H0(Cj, f |∗CjTP1[a](−∞)))

−
n∑
j=1

rk(H1(Cj, f |∗CjTP1[a](−∞)))− rk(H0(qj, f
∗TP1[a](−∞)|qj)). (156)
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The space H0(C0, f |∗C0
TP1[a](−∞)) is the subspace of TP1[a](−∞)[0/Za] consisting of vectors

invariant under the action of the image of the monodromy representation πorb1 (C0)→ Za.
This imply thatH0(C0, f |∗C0

TP1[a](−∞)) vanishes for nontrivial monodromy representation,

otherwise it is 1-dimensional. The trivial monodromy representation πorb1 (C0) → Za is

possible when

γ = ∅, ∀j, µj = 0 mod a. (157)

Since

deg(f |∗CjTP1[a](−∞)) =
µj
a
, (158)

then

Hk(Cj, f |∗CjTP1[a](−∞)) = Hk
(
P1,OP1

(⌊µj
a

⌋))
. (159)

Therefore, we have the following

rk(H0(Cj, f |∗CjTP1[a](−∞))) = rk
(
H0
(
P1,OP1

(⌊µj
a

⌋)))
=
⌊µj
a

⌋
+ 1, (160)

rk(H1(Cj, f |∗CjTP1[a](−∞))) = rk
(
H1
(
P1,OP1

(⌊µj
a

⌋)))
= 0. (161)

In addition, the contribution from the nodal point qj should be considered. In the case

µj 6= 0(mod a), qj is a stack point and

H0(qj, f
∗TP1[a](−∞)|qj) = 0 (162)

because there is no invariant section. If µj = 0(mod a), then H0(qj, f
∗TP1[a](−∞)|qj) is

1-dimensional. H1(qj, f
∗TP1[a](−∞)|qj) vanishes as well for dimension reasons.

Therefore, for nontrivial monodromy representation, the rank of the Hodge bundle takes

the form

rk(EU) = g − 1− d

a
+

r∑
i=1

γi
a

+
n∑
j=1

(⌊µj
a

⌋
+ 1
)
−

∑
µj=0 mod a

1, (163)

rk(EU) = g − 1 +
r∑
i=1

γi
a

+
∑

µj 6=0( mod a)

(
1−

〈µj
a

〉)
. (164)
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(The last term in 163 is the contribution from the nodes). Otherwise, the rank is g.

A.6 Rank of Hodge Bundle Corresponding to Different Representations

In completing the generalization of infinite framing limit to full double Hurwitz numbers,

we need to determine the rank of the Hodge bundle corresponding to different Za represen-

tation. Recall in section 4.1 that the Hodge bundle Eα` corresponds to Za representation

given by

ϕα` : Za → C∗, ϕα`(1) = e
2πi`
a . (165)

Paralleling with the relations in subsection A.3, consider the following:

ρ∗(Eα) ' Eα`

��

Eαoo

��

ρ :Mg,π
α`

(γ−µ)(BZa) //Mg,γ−µ(BZa)

where πα`(γ − µ) := u ◦ ϕα` , and

u : C∗ → Za, e
2πi`δ
a 7→ `δ(mod a). (166)

It follows that the rank of Hodge bundle Eα` corresponding to representation ϕα` is given

by

rk(Eα`) = g − 1 +
r∑
i=1

πα`(γi)

a
+

∑
µj 6=0( mod a)

(
1−

〈
πα`(µj)

a

〉)
. (167)

Also note that the monodromy data in the calculation is given by γ := {γ1, .., γr} in such

a way that there are mi number of i ∈ Za\{0}, i.e.
∑r

i=1 γ =
∑a−1

i=1 imi. Combining all

together, we have the rank of Hodge bundles overMg,γ−µ(BZa) corresponding to different

representations of Za:

rk(Eα) = g − 1 +
n∑
i=1

〈−µi
a
〉+

a−1∑
i=1

imi

a
, (168)

rk(Eαs) = g − 1 +
n∑
i=1

〈−µis
a
〉+

a−1∑
i=1

mi

〈
is

a

〉
, (169)

rk(Eα−s−1) = g − 1 +
n∑
i=1

〈µi(s+ 1)

a
〉+

a−1∑
i=1

mi

〈
−i(s+ 1)

a

〉
. (170)
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