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Abstract	

This	 study	 presents	 the	 nonlinear	 design	 of	 a	 state	 space	 controller	 to	

control	hydraulic	actuators	under	displacement	control,	specifically	for	real‐

time	 pseudo‐dynamic	 testing	 applications.	 The	 proposed	 control	 design	

process	uses	the	nonlinear	state	space	model	of	the	dynamics	of	the	system	

to	 be	 controlled;	 and	 utilizes	 state	 feedback	 linearization	 through	 a	

transformation	of	 the	 state	 variables.	Comparisons	of	numerical	 simulation	

results	for	linear	state‐space	and	nonlinear	state‐space	controllers	are	given.	

Also	robustness	of	the	control	design	with	respect	to	identified	parameters	is	

investigated.	It	is	shown	that	a	controller	with	improved	performance	can	be	

designed	 using	 nonlinear	 state	 space	 control	 design	 techniques,	 provided	

that	a	representative	model	of	the	system	is	available.	

 	



Preface	

There	are	several	dynamic	testing	methods	that	have	been	introduced	and	

used	to	examine	and/or	verify	the	dynamic	performance	of	conventional	and	

new	 structural	 systems.	 Some	 of	 these	methods	 themselves	 are	 still	 under	

research	 in	 an	 attempt	 to	 make	 them	more	 efficient	 and	 accurate.	 Among	

these,	pseudo‐dynamic	(PSD)	testing	method	and	as	its	extension	hybrid	PSD	

testing	method	 offer	 economical	 and	 practical	ways	 to	 assess	 the	 dynamic	

behaviour	of	structural	systems.	If	executed	at	fast	rates	(ideally	in	real‐time)	

these	 testing	methods	 can	 handle	 load‐rate	 dependent	 structures	 (such	 as	

the	ones	that	have	dampers	installed	for	seismic	hazard	mitigation	purposes)	

appropriately.	

In	 a	PSD	 test	 the	 equation	of	motion	of	 the	 test	 structure	 is	 solved	by	 a	

direct	 step‐by	 step	 integration	 algorithm	 where	 the	 inertial	 and	 damping	

force	characteristics	are	kept	analytical.	These	displacements	are	imposed	on	

the	test	structure	by	hydraulic	actuators;	the	resulting	restoring	forces	from	

the	 deformed	 structure	 are	 measured	 and	 fed	 back	 to	 the	 integration	

algorithm	 for	 the	 computation	 of	 next	 step	 displacements.	 The	 method	 is	

called	 hybrid	 PSD	when	 the	whole	 structure	 is	 split	 into	 experimental	 and	

analytical	substructures	to	avoid	fabricating	a	big	structure	in	the	laboratory.	

During	 a	 hybrid	 PSD	 test	 the	 command	 displacements	 generated	 by	 the	



integration	 algorithm	 are	 imposed	 on	 the	 experimental	 and	 analytical	

substructures	and	the	results	from	both	are	combined	and	fed	back.	

One	of	 the	main	challenges	 in	using	PSD	method	 is	 the	sensitivity	of	 the	

results	to	the	experimental	errors.	This	is	because	of	the	closed	loop	nature	

of	 the	method;	 i.e.	 in	 each	 time	 step	 of	 the	 test	 procedure,	 the	 integration	

algorithm	 uses	 the	measured	 information	 (which	may	 be	 contaminated	 by	

errors)	 from	 the	 previous	 step	 to	 generate	 the	 new	 displacements	 to	 be	

applied.	This	 fact	 implies	 that	 the	errors	 in	each	 step	are	affected	 from	 the	

errors	of	the	previous	steps	which	may	be	cumulatively	added	together	until	

the	end	of	 the	test.	As	a	result	PSD	method	suffers	 from	propagation	of	 the	

error	which	at	best	causes	accuracy	problems	or	at	worst	renders	the	whole	

test	 unstable	 (i.e.,	 the	 test	 needs	 to	 be	 aborted	 as	 the	 displacements	 grow	

unboundedly).	

From	 a	 stability	 (and	 also	 accuracy)	 point	 of	 view,	 the	 delay	 in	 the	

measured	signals	 (as	opposed	to	 lead,	or	amplitude	errors)	has	been	found	

critical	in	real‐time	testing	(Mercan	and	Ricles	2008).	The	delay	mainly	arises	

due	 to	 the	 time	 it	 takes	 the	actuators	 to	reach	 the	command	displacements	

issued	by	the	integration	algorithm.	

In	general	a	PID	controller	(or	a	modified	version)	is	employed	to	control	

the	 actuator	 displacements	 which	 may	 not	 provide	 acceptably	 accurate	

tracking	 especially	 when	 large	 displacements	 need	 to	 be	 imposed	 at	 fast	

rates	under	considerable	load.	This	may	be	due	to	the	fact	that	under	these	



types	of	conditions,	the	servo‐hydraulic	system	nonlinearities	are	invoked	or	

the	 test	 structure	 presents	 highly	 nonlinear	 behaviour.	 Hence,	 when	

nonlinearities	 in	 the	 servo‐hydraulic	 system	 are	 invoked,	 there	might	 be	 a	

need	to	use	nonlinear	state‐space	controller	to	account	for	them.	

Due	 to	 its	 matrix	 form,	 a	 state‐space	 control	 is	 preferable	 to	 a	 PID	

controller	 in	 cases	 when	 physically	 coupled	 multiple	 degrees	 of	 freedom	

need	to	be	controlled.	The	main	effort	of	the	research	presented	is	to	develop	

a	control	algorithm	based	on	advanced	control	theories	(e.g.	nonlinear	state‐

space)	 and	 assess	 its	 performance	 in	 comparison	 with	 a	 PID	 controller.	

Simulations	 are	 done	 using	 a	 model	 of	 the	 servo‐hydraulic	 system	 that	

accounts	for	nonlinearities.	This	study	is	intended	to	lead	the	application	of	

nonlinear	state‐space	control	strategy	in	PSD	testing	method.	
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1 Introduction	

1.1 General	

This	 chapter	 contains	 background	 information	 about	 seismic	 testing	

methods.	The	motivation	 and	objective	of	 the	 research	 and	organization	of	

the	dissertation	are	also	described.	

1.2 Seismic	Testing	Methods	of	Structures	

One	of	the	main	goals	in	seismic	performance	testing	is	to	impose	loading	

conditions	 on	 a	 test	 specimen	 that	 are	 representative	 of	 those	 that	 might	

happen	 during	 a	 real	 earthquake.	 To	 achieve	 this	 goal,	 various	 forms	 of	

earthquake	and	structural	dynamic	testing	methods	have	been	the	subject	of	

research.	

Four	 experimental	 laboratory	 techniques	 are	 typically	 used	 in	 seismic	

performance	testing	of	structures:	quasi‐static	testing,	shaking	table	testing,	

effective	force	testing	(EFT)	and	pseudo‐dynamic	(PSD)	method		

In	a	quasi‐static	test,	a	predefined	cyclic	displacement	history	is	applied	to	

the	 structure	 or	 structural	 component	 under	 study	 and	 the	 behaviour	 is	

observed	and	analyzed.	The	predefined	displacement	history,	if	not	selected	
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from	 some	 typically	 used	 displacement	 histories,	 is	 based	 on	 a	 response	

computed	from	a	dynamic	time	history	analysis	prior	to	testing.	This	method	

is	 commonly	 used	 and	 economical.	 However,	 it	 is	 limited	 in	 terms	 of	

delivering	 the	 true	 earthquake	 response.	 This	 is	 because	 the	 model	 with	

which	the	pre‐test	dynamic	analysis	is	performed	may	not	accurately	predict	

the	behaviour	and	 in	 turn,	 the	resulting	displacement	 time	history	may	not	

correspond	to	the	real	earthquake	response.	

Placing	 a	 structure	 on	 a	 shaking	 table	 and	 exerting	 a	 properly	 scaled	

ground	 motion	 may	 be	 the	 most	 realistic	 method.	 In	 spite	 of	 this,	 due	 to	

payload	restrictions	of	shake	tables,	shaking	table	tests	are	implemented	on	

small‐scale	test	structures.	This	implies	that	the	ground	acceleration	needs	to	

be	 scaled	 (compressed)	 accordingly.	 As	 a	 result	 the	 available	 time	 for	

observing	 the	 behaviour	 will	 be	 very	 little	 during	 the	 test.	 Generally	

speaking,	despite	the	fact	that	the	shaking	table	may	be	representative	of	the	

actual	 seismic	behaviour,	 the	combined	effects	of	 the	need	 to	construct	 the	

complete	 structure,	 small	 scale	 test	 specimens,	 short	 observation	 time	 and	

finally	the	cost	limit	the	use	of	shaking	table.	

Effective	 force	 testing	 (EFT)	 is	 a	 real‐time	 testing	method.	 This	method	

uses	a	force	control	approach	and	can	be	employed	in	real‐time	earthquake	

simulation	of	large	scale	structures.	Knowing	the	structural	mass	and	ground	

acceleration	history,	the	complete	force	history	that	should	be	applied	to	the	

structure	 is	 calculated	 beforehand.	 Despite	 the	 conceptual	 simplicity,	 the	
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implementation	of	 this	method	has	been	observed	 to	be	challenging	due	 to	

actuator‐structure	interaction	(Dimig	et	al.	1999).	To	overcome	this	problem,	

Zhao	 (2003)	 proposed	 a	 nonlinear	 velocity	 compensation	 scheme	 and	

verified	 it	 through	 simulations	 and	 experimental	 studies	 under	 limited	

conditions.	

In	 the	 late	 1970s	 and	 early	 1980s	 PSD	 method	 was	 initiated	 as	 an	

experimental	technique	in	which	the	displacement	response	of	structure	to	a	

given	 ground	 acceleration	 is	 numerically	 calculated	 and	 quasi‐statically	

imposed	on	 the	 structure	 (Takanashi	 et	 al.	 1975;	Okada	 et	 al.	 1980;	Mahin	

and	Williams	1981;	Shing	and	and	Mahin	1983;	Mahin	and	Shing	1985).	This	

computed	 response	 is	 based	 on	 analytically	 predefined	 inertia	 and	 viscous	

damping	 as	well	 as	 the	 experimentally	measured	 structural	 resisting	 force.	

Details	for	the	procedure	are	given	below.	

1.3 PSD	and	Hybrid	PSD	testing	method	

In	a	PSD	test,	 the	 test	structure	 is	 first	 idealized	as	a	discrete	parameter	

system.	Thereby	for	a	structure	subjected	to	ground	acceleration	(Figure	1‐1)	

the	governing	equations	of	motion	can	be	expressed	as	a	 system	of	 second	

order	ordinary	differential	equations	with	respect	to	time.	
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components	 and	 devices	 are	 metallic,	 friction,	 visco‐elastic,	 viscous	 fluid,	

tuned	 mass,	 tuned	 liquid,	 elastomeric	 dampers	 and	 lead	 rubber	 bearings	

which	are	 introduced	 into	structures	 for	vibration	mitigation	purposes.	For	

assessing	 the	 capabilities	 of	 structures	 equipped	 with	 these	 devices,	 it	 is	

necessary	to	perform	the	PSD	test	dynamically	at	rates	approaching	to	real‐

time.	

In	 PSD	 testing	 method	 the	 results	 are	 sensitive	 to	 experimental	 errors.	

This	is	because	the	method	has	a	closed	loop	algorithm;	i.e.	in	each	time	step	

of	 the	 test	 procedure,	 the	 integration	 algorithm	 uses	 the	 measured	

information	from	the	previous	step	(which	may	be	contaminated	by	errors)	

to	generate	the	new	displacements	to	be	applied.	This	means	that	the	errors	

in	 each	 step	 are	 affected	 from	 the	 errors	 of	 the	 previous	 steps	 which	 are	

cumulatively	added	together	until	 the	end	of	the	test.	Hence	PSD	method	 is	

prone	to	propagation	of	the	error,	which	at	best	causes	accuracy	problems	or	

at	worst	renders	the	whole	test	unstable	(i.e.,	the	test	needs	to	be	aborted	as	

the	displacements	grow	unboundedly).	Mercan	(2007)	showed	that	actuator	

delay	 in	 following	 the	 command	 displacements	 in	 experimental	 setup	may	

impair	the	dynamic	stability	of	the	test	setup	in	a	real‐time	PSD	test.	This	is	

also	true	for	real‐time	hybrid	PSD	method.	

One	of	the	main	sources	of	time	delay	is	the	time	it	takes	the	actuator	to	

reach	 the	 command	 displacement	 calculated	 by	 the	 integration	 algorithm	

which	 cannot	 be	 done	 instantaneously.	 This	 is	 because	 it	 takes	 time	 to	
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convert	 energies	 (electrical	 to	 mechanical)	 in	 an	 experimental	 setup.	

Therefore	 it	 is	 critical	 to	use	 the	available	equipment	efficiently	so	 that	 the	

corresponding	 time	 delay	 is	 minimum.	 This	 is	 done	 by	 using	 the	 control	

theory	to	design	servo‐hydraulic	controllers.	The	commonly	used	controller	

in	 PSD	 tests	 is	 the	 well‐known	 PID	 (proportional‐Integral‐Derivative)	

controller.	PID	controllers	are	popular	because	they	can	be	adjusted	(tuned)	

to	control	 complex	systems	without	 the	need	 for	 complete	knowledge	over	

the	dominating	dynamics.	

Conducting	 a	 fast	 (ideally	 real‐time)	PSD	 test	 requires	 accurate	 actuator	

control	 by	 means	 of	 sophisticated	 servo‐hydraulic	 strategies	 and	 reliable	

computation	scheme	through	efficient	integration	algorithms.	

The	dynamics	of	an	electrohydraulic	servo	system	is	highly	nonlinear	and	

involves	sign	and	square	root	functions.	However	in	most	industrial	contexts	

linear	control	theory	is	used.	Although	linearization	about	an	operating	point	

decreases	 design	 effort,	 it	 degrades	 the	 performance	 at	 regions	 off	 the	

operating	 point.	 There	 have	 been	 several	 works	 on	 controlling	

electrohydraulic	servo	systems	using	advanced	control	methods.	

Lim	(2002)	applied	 linearization	and	pole	placement.	Yanada	and	Furuta	

(2007)	 combined	 linear	 theory	 with	 an	 adaptive	 approach.	 Kwon	 et	 al.	

(2007)	 applied	 full‐state	 feedback	 linearization.	 Seo	 et	 al.	 (2007)	 used		

feedback	 linearization	 to	 design	 controllers	 for	 displacement,	 velocity	 and	

differential	pressure	control	of	a	rotational	hydraulic	drive	and	Ayalew	and	
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Jablokow	(2007)	used	partial‐input	feedback	linearization	for	the	control	of	

electrohydraulic	 servo	 systems.	 Mintsa	 et	 al.	 (2009)	 used	 feedback	

linearization	 to	 design	 an	 adaptive	 control	 for	 electrohydraulic	 position	

servo	 system	 with	 the	 objective	 of	 enhancing	 robustness	 with	 respect	 to	

variations	of	supply	pressure.	

1.4 Research	goals	and	thesis	organisation	

In	order	to	improve	the	tracking	capability,	and	in	turn	the	accuracy	of	the	

overall	 real‐time	 PSD	 test	 results,	 this	 thesis	 investigates	 the	 design	 and	

implementation	of	advanced	control	algorithms.	

As	 stated	 before,	 currently	 the	 majority	 of	 the	 controllers	 used	 in	 PSD	

testing	 are	PID	based	 controllers.	 They	 are	 tuned	 according	 to	 a	 linearized	

model	of	the	system	dynamics	(for	single	input	single	output	systems),	or	by	

ad‐hoc	 tuning;	 where	 the	 accurate	 window	 of	 operation	 is	 limited	 to	 the	

linear	range	of	the	system	dynamics.	In	the	case	of	a	multi‐degree	of	freedom	

test	 structure,	 state‐space	 design	 offers	 considerable	 reduction	 in	 control	

design	effort	(Mercan	et	al.	2006).	The	above	mentioned	methods,	as	they	are	

designed	based	on	linear	models	of	the	system,	may	not	provide	acceptably	

accurate	 tracking	 when	 the	 servo‐hydraulic	 system	 nonlinearities	 are	

invoked	or	the	test	structure	presents	highly	nonlinear	behaviour.	

In	this	study	the	design	of	a	nonlinear	state‐space	controller	for	real	time	

pseudo‐dynamic	 testing	 of	 structural	 systems	 is	 presented	 based	 on	

advanced	control	theories	using	a	nonlinear	model	of	the	system.	
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After	 the	 introduction	in	this	chapter,	Chapter	2	considers	the	governing	

dynamics	and	equations	of	a	servo‐hydraulic	system.	Chapter	3	begins	with	

basics	of	control	 theory	and	afterwards	 linear	and	nonlinear	control	design	

methods	are	introduced	and	discussed.	Chapter	4	applies	the	control	design	

methods	 introduced	 in	 Chapter	 3	 on	 the	 dynamics	 discussed	 in	 Chapter	 2.	

Finally,	Chapter	5	 illustrates	 the	 implementation	of	 the	control	methods	by	

computer	simulation	and	compares	the	behaviour	of	different	controllers.	

Chapter	6	discusses	the	design	of	a	single	degree	of	freedom	test	setup	to	

investigate	 different	 aspects	 of	 a	 PSD	 test	 method	 (e.g.	 applying	 different	

controllers).	A	conference	paper	titled	“Modification	of	Integration	Algorithm	

to	Account	for	Load	Discontinuity	in	Pseudo‐Dynamic	Testing”	that	was	done	

along	with	this	research	is	presented	as	an	appendix.	
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2 Modelling	 of	 the	 Servo‐System	 and	 Identification	 of	

system	parameters	(system	ID)	

To	work	out	a	new	control	approach	with	an	improved	performance	for	a	

servo‐hydraulic	 system,	 the	 behaviour	 of	 the	 system	 has	 to	 be	 well	

understood	through	simulation	of	representative	models.	These	models	are	

based	 on	 the	 important	 dynamics	 that	 govern	 the	 behaviour	 and	 include	

physical	parameters	some	of	which	may	already	be	known	(e.g.	piston	area)	

while	 others	 need	 to	 be	 identified	 through	 system	 identification.	 While	

deciding	for	the	level	of	accuracy	(complexity)	of	the	model,	one	needs	also	

to	consider	if	the	parameters	that	appear	in	the	model	are	easily	obtainable	

through	system	identification	or	not.	 In	the	next	section	different	parts	of	a	

servo	hydraulic	system	and	the	governing	dynamics	are	elaborated.	

2.1 Components	of	a	Servo‐Hydraulic	System	

A	position	controlled	servo‐hydraulic	system	used	 in	a	PSD	test	typically	

consists	 of	 a	 hydraulic	 power	 supply,	 a	 flow	 control	 servo‐valve,	 a	 linear	

actuator,	 a	 displacement	 transducer,	 and	 an	 electronic	 servo‐controller.	

Figure	2‐1	shows	a	block	diagram	that	represents	how	the	above	mentioned	

parts	 are	 interconnected.	 The	 controller	 compares	 the	 command	

displacement	 with	 the	 measured	 displacement	 coming	 from	 the	

displacement	transducer	(e.g.	an	LVDT)	to	determine	the	position	error	and	
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then	sends	out	a	command	signal	to	drive	the	flow	control	servo‐valve.	In	fact	

the	 command	 signal	 introduces	 a	 spool	 displacement	 in	 the	 servo‐valve	 to	

adjust	 the	 flow	 of	 pressurized	 oil	 from	 the	 hydraulic	 power	 supply	 to	 the	

linear	actuator	chambers	in	order	to	move	the	actuator	piston	to	the	desired	

position.	

	

Figure	2‐1	Block	diagram	of	inner	loop	in	PSD	test	method	

The	following	gives	a	concise	explanation	of	the	parts	shown	in	Figure	2‐1.	

 Hydraulic	Power	supply	

A	 hydraulic	 power	 supply	 provides	 the	 pressurized	 fluid	 (oil)	 for	 the	

hydraulic	 system.	 The	 level	 of	 oil	 pressure	 in	 the	 power	 supply	 is	 selected	

considering	 several	 factors.	 Low	 pressure	 systems	 have	 less	 leakage	 but	

physically	larger	components	are	needed	to	provide	a	specified	force.	On	the	

other	hand,	high	pressure	systems	experience	more	leakage	but	have	better	
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dynamic	performance	and	have	smaller	(lighter)	components.	 In	many	high	

performance	systems	3000	psi	(210	bar)	is	selected	for	the	system	pressure.	

2.1.1 Flow	Control	Servo‐Valve	

An	 electro	 hydraulic	 flow	 control	 servo	 valve	 is	 a	 servo	 valve	 which	 is	

designed	to	produce	hydraulic	flow	output	proportional	to	electrical	current	

input.	The	mechanism	and	dynamics	are	discussed	later.	

2.1.2 Linear	Hydraulic	Actuator	

A	 hydraulic	 actuator	 converts	 hydraulic	 energy	 to	 mechanical	 force	 or	

motion.	They	are	implemented	where	large	actuation	forces	and	fast	motion	

are	required.	Governing	dynamics	are	given	later.	

2.1.3 Displacement	Transducer	

They	 generally	 come	 built‐in	 with	 actuators	 and	 are	 often	 attached	

directly	to	the	piston	rod.	There	are	various	types	of	feedback	transducers	in	

use	including	inductive	linear	variable	differential	transformer	(LVDT).	It	is	a	

common	 practice	 to	 include	 external	 displacement	 transducers	 in	 the	 test	

setup	to	check	the	measurements	of	the	internal	transducers	and	to	exclude	

the	actuator	support	motion.	

2.1.4 Servo	Controller	

A	 controller	 continuously	 compares	 the	 command	 displacement	 against	

the	 actuator	 position	 that	 is	 measured	 by	 a	 displacement	 transducer.	 The	

result	of	this	comparison	is	displacement	error	which	is	then	manipulated	by	
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a	control	 law	 in	order	 to	generate	and	send	a	command	signal	 to	 the	servo	

valve.	

2.2 Dynamics	of	a	Servo‐Hydraulic	System	

2.2.1 Servo‐valve	dynamics	

Servo‐valves	are	used	in	servo‐hydraulic	systems	to	convert	the	electrical	

command	 signal,	 coming	 from	 the	 controller,	 to	 a	 spool	 displacement.	 This	

displacement	 along	with	 the	 differential	 pressure	 between	 the	 servo‐valve	

ports	 results	 in	 oil	 flow	 through	 valve	 control	 ports	 into	 and	 out	 of	 the	

actuator	chamber	enabling	the	motion	of	the	hydraulic	piston.		

Among	several	 types	of	servo‐valves	are	the	 flow	control	servo‐valves	 in	

which	 the	 control	 flow	 at	 constant	 load	 pressure	 is	 proportional	 to	 the	

electrical	input	current	(Thayer	1958,	revised	in	1965). 

Figure	 2‐2	 shows	 a	 two	 stage	 flow	 control	 servo	 valve.	 It	 is	 called	 two‐

stage	 as	 it	 has	 two	 portions	 containing	 a	 hydraulic	 amplifier.	 A	 hydraulic	

amplifier	is	a	fluid	valving	device	which	acts	as	a	power	amplifier,	such	as	a	

sliding	spool	and	a	nozzle	flapper	and	will	be	elaborated	in	this	chapter.	
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(constant	 load	pressure)	the	load	flow	is	proportional	to	the	spool	position.	

The	 governing	 dynamics	 of	 the	 servo	 valve	will	 be	 discussed	 in	 two	 parts;	

valve	 spool	 dynamics	 which	 includes	 the	 relationship	 between	 the	 input	

current	and	the	spool	displacement	and	valve	flow	dynamics	which	explains	

how	the	spool	displacement	relates	to	the	flow	from	the	valve	to	the	actuator	

chambers.	

2.2.1.1 Valve	Spool	Dynamics	

Servo‐valves	 are	 complicated	 devices.	 Experience	 has	 shown	 that	 their	

nonlinear	and	non‐ideal	characteristics	make	it	hard	to	theoretically	analyze	

servo‐valve	dynamics	 in	 systems	design.	 Instead,	 it	 is	more	 convenient	but	

also	acceptably	accurate	to	approximate	servo‐valve	dynamics	with	suitable	

empirical	 transfer	 functions	 by	 using	 measured	 servo‐valve	 response	

(Thayer	 1958,	 revised	 in	 1965).	 Depending	 on	 the	 frequency	 range	 of	

interest	 the	 servo‐valve	 dynamics	 can	 be	 represented	 by	 a	 first	 order	

transfer	function.	

ܺ௩ሺݏሻ
ሻݏሺܫ

ൌ
݇௩

1 ൅ ݏ	߬
	

Eq.	2‐1

Where	 	,௩ݔ ݅,	 ݇௩	 and	 ߬	 are	 servo‐valve	 spool	 opening	 (see	 Figure	 2‐3),	

differential	current	input	to	servo‐valve,	servo‐valve	static	flow	gain	at	zero	

load	 pressure	 drop	 and	 ߬	 apparent	 servo‐valve	 time	 constant.	 It	 should	 be	

noted	 that	on	 the	 left	hand	 side	of	Eq.	 2‐1	 the	Laplace	 transforms	of	 spool	

opening	and	input	current	are	used.	
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ܳଷ ൌ ଷඨܣ	ௗܥ
2
ߩ
ሺ ௌܲ െ ଶܲሻ	

Eq.	2‐5

ܳସ ൌ ସඨܣ	ௗܥ
2
ߩ
	 ଵܲ	

Eq.	2‐6

In	the	above	equations,	ܣଵሺܣଶ, 	with	associated	area	orifice	the	is	ସሻܣ	ݎ݋	ଷܣ	

flow	ܳଵሺܳଶ, ܳଷ	ݎ݋	ܳସሻ,	and	 ௌܲ	 is	 the	supply	pressure.	Also	 ଵܲ	and	 ଶܲ	are	 the	

pressures	at	each	one	of	the	actuator	chambers.	

The	 return	 pressure	 ( ோܲ)	 is	 assumed	 to	 be	 zero	 as	 it	 is	 usually	 much	

smaller	 than	 the	 other	 pressures	 involved.	 If	 the	 return	 pressure	 is	 not	

negligible,	 the	supply	pressure	 in	 the	above	expressions	can	be	 interpreted	

as	supply	pressure	minus	return	pressure.	

The	areas	of	the	orifices	are	functions	of	the	spool	opening	ݔ௩.	Because	the	

valve	orifices	are	matched,	

௩ሻݔଵሺܣ ൌ ௩ሻݔଷሺܣ	and	௩ሻݔଶሺܣ ൌ 	௩ሻݔସሺܣ Eq.	2‐7

And	because	they	are	symmetrical,	

௩ሻݔଵሺܣ ൌ ௩ሻݔଶሺܣ	and	௩ሻݔଷሺെܣ ൌ 	௩ሻݔସሺെܣ Eq.	2‐8

It	can	be	shown	that	when	the	orifice	areas	are	matched	and	symmetrical		

ܳଵ ൌ ܳଶ	and	ܳଷ ൌ ܳସ	(Merritt	1967)	 Eq.	2‐9
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Combining	Eq.	2‐3,	Eq.	2‐4,	Eq.	2‐7	and	Eq.	2‐9	pressures	at	two	chambers	

can	be	related	to	supply	pressure	by,	

ௌܲ ൌ ଵܲ ൅ ଶܲ	 Eq.	2‐10

By	definition	the	load	pressure	is	the	pressure	difference	between	the	two	

actuator	chambers	and	is	expressed	as	

௅ܲ ൌ ଵܲ െ ଶܲ	 Eq.	2‐11

Using	Eq.	2‐10	and	Eq.	2‐11,	 ଵܲ	and	 ଶܲ	may	be	written	as	

ଵܲ ൌ
ሺ ௌܲ ൅ ௅ܲሻ

2
	

Eq.	2‐12

ଶܲ ൌ
ሺ ௌܲ െ ௅ܲሻ

2
	 Eq.	2‐13

Load	 flow,	 which	 is	 the	 flow	 from	 the	 valve	 to	 one	 of	 the	 actuator	

chambers,	can	be	expressed	as	

ܳ௅ ൌ ܳଵ െ ܳସ ൌ ܳଶ െ ܳଷ	 Eq.	2‐14

Finally	using	the	derived	equations	for	a	matched	and	symmetrical	valve,	

the	load	flow	may	be	written	as	

ܳ௅ ൌ ଵඨܣ	ௗܥ
1
ߩ
ሺ ௌܲ െ ௅ܲሻ െ ௗܥ ସඨܣ

1
ߩ
ሺ ௌܲ ൅ ௅ܲሻ	

Eq.	2‐15
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For	 an	 ideal	 critical	 center	 valve	with	matched	 and	 symmetrical	 orifices	

the	 leakage	 flows	 (ܳସ	 and	ܳଷ	when	 the	 spool	 displacement	 is	 positive)	 are	

zero	because	the	valve	geometry	 is	assumed	ideal.	On	the	other	hand	when	

the	 spool	 displacement	 is	 negative	 ଵܳ	 and	 ܳଶ	 will	 be	 the	 leakage	 flows.	

Considering	 the	 fact	 that	 the	 orifice	 areas	 are	 linear	 functions	 of	 the	 spool	

opening	as	the	product	of	 the	spool	opening	and	full	periphery	of	the	spool	

	1967)	(Merritt	as	expressed	be	can	flow	load	,(݀ߨ)

ܳ௅ ൌ ௩ඥݔ	ߟ ௦ܲ െ ௩ሻݔሺ݊݃݅ݏ ௅ܲ	 Eq.	2‐16

where	ߟ	is	defined	as	

ߟ ൌ ඨ݀	ߨ	ௗܥ
1
ߩ
	

Eq.	2‐17

Eq	 2‐16	 is	 not	 differentiable	 due	 to	 sign	 function.	 Sign	 function	may	 be	

approximated	by	some	smooth	function	and	then	used	in	the	control	design	

(Chapter	4)	

2.2.2 Actuator	Chamber	Pressure	Dynamics	

The	 oil	 flow	 between	 valve	 and	 actuator	 chambers	 causes	 the	 actuators	

piston	 to	move.	 Using	 conservation	 of	mass	 principle	 on	 both	 sides	 of	 the	

actuator	chambers,	the	actuator	pressure	dynamics	can	be	expressed	as	

ܳ௅ ൌ ሶ௣ݔ	௣ܣ ൅ 	௧௣ܥ ௅ܲ ൅
௧ܸ

௘ߚ4
ሶܲ௅	

Eq.	2‐18
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In	this	equation	ܣ௣	is	the	actuator	piston	cross‐sectional	area;	ݔሶ௣	is	piston	

velocity	or	the	time	derivative	of	piston	displacement	(ݔ௣);	ܥ௧௣	is	the	leakage	

coefficient	of	piston;	 ௅ܲ	and	 ሶܲ௅	are	load	pressure	as	defined	in	Eq.	2‐11	and	

rate	of	load	pressure	respectively;	 ௧ܸ	is	actuator	chamber	volume	and	ߚ௘	is	oil	

modulus.	

2.2.3 Piston	Dynamics	

Writing	the	force	equation	of	motion	and	considering	a	static	friction	and	

the	external	force	from	a	test	specimen	gives	

݉௣	ݔሷ௣ ൅ ܾ௣		ݔሶ௣ ൅ ௙ܶ ൅ ௘௫௧ܨ ൌ ௣ܣ ௅ܲ	 Eq.	2‐19

݉௣,	 ܾ௣	 and	 ௙ܶ	 are	 piston	 mass,	 viscous	 damping	 coefficient	 of	 actuator	

piston	 and	 static	 friction	 respectively	 and	 	௘௫௧ܨ represents	 the	 effect	 of	

stiffness,	damping	and	inertial	forces	from	a	test	specimen.	

2.2.4 Linear	Approximation	of	the	Dynamics	

For	controller	design	purposes	a	linearized,	simplified	model	is	necessary	

especially	when	the	controller	design	will	be	based	on	linear	control	theory.	

Note	 that	 the	 valve	 spool	 dynamics	 (Eq.	 2‐1)	 and	 actuator	 chamber	

pressure	 dynamics	 (Eq.	 2‐18)	 are	 already	 linear.	 Using	 Taylor	 series	

expansion,	 Eq.	 2‐15	 (that	 represents	 flow‐pressure	 relationship)	 can	 be	

linearized	about	an	operating	point	(ܳ௅ ൌ ௅ܲ ൌ ௩ݔ ൌ 0)	while	assuming	zero	

leakage	flow	and	ideal	geometry	(Merritt	1967)	to	be	
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ܳ௅ ൌ ௩ݔ	௤ܭ െ 	௖ܭ ௅ܲ	 Eq.	2‐20

	௤ܭ and	 	௖ܭ are	 called	 the	 flow	 gain	 coefficient	 and	 the	 flow	 pressure	

coefficient	 respectively.	 And	 for	 the	 piston	dynamics,	 in	 case	 the	 friction	 is	

negligible	Eq.	2‐19	can	be	rewritten	as	

݉௣	ݔሷ௣ ൅ ܾ௣		ݔሶ௣ ൅ ௘௫௧ܨ ൌ ௣ܣ ௅ܲ	 Eq.	2‐21

Table	 2‐1	 gives	 a	 summary	 of	 both	 nonlinear	 and	 linear	 equations	

discussed	so	far.	

Table	2‐1	Nonlinear	dynamics	of	a	servo‐hydraulic	system	and	its	linear	approximation	

Dynamics	 Nonlinear	 Linear	
Valve	spool	 ܺ௩ሺݏሻ

ሻݏሺܫ
ൌ

݇௩
1 ൅ ߬ ݏ

	

(Eq.	2‐1)	

ܺ௩ሺݏሻ
ሻݏሺܫ

ൌ
݇௩

1 ൅ ߬ ݏ
	

(Eq.	2‐1)	

Valve	flow	 ܳ௅ ൌ ௩ඥݔ	ߟ ௦ܲ െ ௩ሻݔሺ݊݃݅ݏ ௅ܲ 

(Eq.	2‐16) 

ܳ௅ ൌ ௤ܭ ௩ݔ െ 	௖ܭ ௅ܲ 

(Eq.	2‐20) 

Actuator	

chamber	

pressure	

ܳ௅ ൌ ሶ௣ݔ	௣ܣ ൅ ௧௣ܥ ௅ܲ ൅
௧ܸ

௘ߚ4
ሶܲ௅ 

(Eq.	2‐18) 

ܳ௅ ൌ ௣ܣ ሶ௣ݔ ൅ 	௧௣ܥ ௅ܲ ൅
௧ܸ

௘ߚ4
ሶܲ௅ 

(Eq.	2‐18) 

Actuator	

motion	

݉௣	ݔሷ௣ ൅ ܾ௣		ݔሶ௣ ൅ ௙ܶ ൅ ௘௫௧ܨ

ൌ ௣ܣ ௅ܲ 

(Eq.	2‐19) 

݉௣ ሷ௣ݔ ൅ ܾ௣ ሶ௣ݔ ൅ ௘௫௧ܨ ൌ 	௣ܣ ௅ܲ

(Eq.	2‐21) 
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2.3 System	Identification	

It	 is	 a	 good	 idea	 to	 identify	 the	 system	 starting	 from	 the	 simplified	

(linearized)	 model	 and	 finalize	 it	 by	 adding	 relevant	 nonlinearities	 and	

additional	dynamics	as	required	by	the	measured	response.	

Grey‐box	modeling	 option	 of	 the	 system	 ID	 toolbox	 of	MATLAB	 is	 ideal	

when	 the	 model	 to	 be	 identified	 is	 known	 (e.g.	 derived	 from	 the	 first	

principles)	 and	 the	 numerical	 values	 of	 the	 parameters	 that	 appear	 in	 this	

model	need	to	be	estimated	from	measured	data.	

In	 identifying	 the	 servo‐hydraulic	 system	mentioned	 above	 the	 transfer	

function	relating	the	input	current	and	the	spool	opening	is	known	to	be	

ܺ௩ሺݏሻ
ሻݏሺܫ

ൌ
݇௩

1 ൅ ݏ	߬
	

Eq.	2‐22

For	 a	 free	 standing	 actuator	 that	 have	 	௘௫௧ܨ equal	 to	 zero,	 a	 transfer	

function	can	be	established	using	Eq.	2‐18,	Eq.	2‐20,	and	Eq.	2‐21	which	 in	

turn	when	is	combined	with	Eq.	2‐22	will	give	a	direct	transfer	function	from	

input	current	to	actuator	piston	displacement.	

ܺ௣ሺݏሻ
ሻݏሺܫ

ൌ
௣ܣ4 ௘ߚ ௤ܭ ݇௩ ߱௩

	൫݉௣ൣݏ ௧ܸ൯ݏଶ ൅ ൫4ߚ௘	݇௖௘ ݉௣ ൅ ܾ௣ ௧ܸ൯ݏ ൅ ௣ܣ௘൫ߚ4
ଶ ൅ ܾ௣݇௖௘൯൧ሺݏ ൅ ߱௩ሻ

	 Eq.	2‐23

where	݇௖௘ ൌ ௧௣ܥ ൅ ߱௩	and	௖ܭ ൌ 1 ⁄ ߬.	

MATLAB	 identification	 toolbox	 has	 a	 general	 built‐in	 system	model	 that	

can	be	adjusted	to	have	four	poles	and	no	zeroes	as	
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݇	݁ି்೏	௦

ሾ1ݏ ൅ ߞ2 ௪ܶ	ݏ ൅ ሺ ௪ܶ	ݏሻଶሿሺ1 ൅ ௣ܶయݏሻ
	

Eq.	2‐24

The	term	݁ି்೏	௦	is	considered	to	take	care	of	any	time	delay	that	may	exist	

in	the	system.	

The	identification	procedure	basically	starts	with	exciting	the	system	with	

some	predefined	inputs	and	logging	the	response.	There	is	no	restriction	for	

selecting	 the	 inputs	 but	 usually	 step	 and	 sinusoid	 inputs	 with	 different	

frequencies	 are	 used.	 Then	 the	 logged	 data	 is	 analyzed	 by	 MATLAB	

identification	toolbox	and	values	for	transfer	function	parameters	are	found.	

Comparing	Eq.	2‐23	and	Eq.	2‐24	and	considering	the	fact	that	
௕೛	௞೎೐
	஺೛

మ 	has	a	

very	small	value	and	can	be	neglected	(Zhang	et	al.	2005),	it	can	be	shown	

௪ܶ ൌ ඨ
݉௣	 ௧ܸ

௣ܣ	௘ߚ4
ଶ	

Eq.	2‐25

ߞ ൌ
ܾ௣
௣ܣ	4

ඨ
௧ܸ

݉௣	ߚ௘
൅
݇௖௘
௣ܣ	

ඨ
݉௣ ௘ߚ

௧ܸ
	

Eq.	2‐26

௣ܶయ ൌ
1
߱௩
	 Eq.	2‐27

݇ ൌ
݇௩	௤ܭ	
௣ܣ	

	 Eq.	2‐28
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3 Control	Theory	

General	

In	 a	 servo‐hydraulic	 system	 the	 controller	 calculates	 the	 displacement	

error	and	uses	it	as	an	input	to	a	control	law.	The	output	of	the	control	law	is	

the	 command	 signal	 to	 the	 servo	 valve.	 In	 this	 chapter	 some	 principles	 of	

feedback	 control	 theory	 is	 given.	 Then	 classic	 control	 design,	 linear	 state‐

space	 control	 design	 and	 nonlinear	 state‐space	 control	 design	 are	

introduced.	

3.1 Feedback	Control	of	Dynamic	Systems	

In	 the	context	of	 this	study	a	controller	 is	designed	to	give	the	 following	

characteristics	 to	 the	 system;	 (1)	 the	 ability	 to	 follow	 command	

displacements	(tracking);	(2)	the	ability	to	maintain	the	system	stability;	(3)	

the	 ability	 to	 reduce	 the	 sensitivity	 of	 the	 system	 to	 external	 disturbances	

(disturbance	rejection).	Some	criteria	need	to	be	defined	 in	order	to	have	a	

basis	of	 comparison	between	 the	performances	of	different	 controllers.	For	

this	 purpose	 specific	 input	 signals	 like	 step	 functions	 and	 sinusoidal	

functions	are	used.	Figure	3‐1	shows	a	typical	response	of	a	system	to	a	unit	
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Figure	 3‐2	 gives	 a	 block	 diagram	 of	 the	 system	 including	 the	 possible	

disturbances	and	noises.	It	should	be	noticed	that	external	disturbances	may	

also	be	present	in	individual	components	(e.g.,	the	servo	valve)	but	in	order	

to	be	concise	in	Figure	3‐2,	only	the	resultant	of	the	disturbances	is	shown.	

	

Figure	3‐2	 Block	diagram	of	a	servo	hydraulic	model	including	disturbance	and	noise

The	dynamics	of	a	system	can	be	defined	by	a	set	(system)	of	differential	

equations	 which	 are	 obtained	 from	 principles	 of	 physics.	 For	 a	 quick	

approximate	analysis	and	for	controller	design	purposes	using	linear	control	

theory,	 linear	 approximation	 of	 the	 differential	 equations	 (whenever	 they	

entail	nonlinear	terms)	 is	used.	On	the	other	hand,	 to	represent	 the	system	

dynamics	 more	 realistically	 computer	 simulations	 including	 system	

nonlinearities	 can	 be	 performed.	 Moreover,	 in	 the	 event	 that	 the	 linear	

controllers	that	are	based	on	linear	models	are	not	efficient,	nonlinear	design	

of	feedback	control	may	be	used.	

Servo	
Controller	

Linear	
Actuator

Load	Flow	Control	
Servo‐Valve

Displacement	
Transducer	

Hydraulic	
Power	Supply

Command	
Displacement	

Measured	
Displacement	

Applied	
Displacement

Disturbance

Noise
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3.2 Linear	Control	Design	(Basics)	

One	of	the	attributes	of	a	linear	time‐invariant	system	is	that	it	obeys	the	

principle	 of	 superposition.	 This	 principle	 states	 that	 if	 the	 system	 has	 an	

input	 that	 can	 be	 expressed	 as	 a	 sum	 of	 signals	 then	 the	 response	 of	 the	

system	 can	 be	 expressed	 as	 the	 sum	 of	 the	 individual	 responses	 to	 each	

signal.	 In	 control	 engineering	 the	 dynamics	 of	 the	 system	 are	 typically	

studied	 using	 root	 locus	 (in	 s‐plane),	 frequency	 response	 or	 state‐space	

methods.	 The	 first	 two	 methods	 are	 based	 on	 Laplace	 transform	 and	 are	

mainly	 used	 in	 classical	 control	 analysis	 or	 design.	 State‐space	 based	

methods	are	used	in	modern	control	design.	

3.2.1 Laplace	Transform	and	Transfer	Function	

The	 Laplace	 transform	 is	 the	 mathematical	 tool	 that	 transforms	

differential	equations	into	an	algebraic	form	which	are	easier	to	manipulate.	

Compared	 to	 the	 Fourier	 transform	which	 is	 informative	 about	 the	 steady	

state	 response,	 the	 Laplace	 transform	 yields	 complete	 response	

characteristics	 (both	 transient	 and	 steady	 state	 response)	 (Franklin	 et	 al.	

2010).	

The	unilateral	 (one	sided)	Laplace	 transform	 for	a	 time	domain	 function	

like	݂ሺݐሻ	is	

ࣦ൫݂ሺݐሻ൯ ൌ ሻݏሺܨ ൌ න ݂ሺݐሻ݁ି௦ ௧ ݐ݀
ஶ

଴
	

Eq.	3‐1



a

fu

in

1

p

ex

2

݉

A

tr

	

Where	ݏ	 i

nd	 ߱	 is	 th

unctions	in	

n	Appendix	

.	

The	 inte

erforming	

xemplar	wh

).	

The	equat

ሷݔ	݉ ሺݐሻ ൅ ሶݔ	ܿ

Assuming	ze

ransform	of

is	 a	 comple

he	 imagina

time	domai

A.	therefor

rpretation	

Laplace	 t

here	a	mass

Fig

tion	of	moti

ሻݐሺݔ ൅ ሻݐሺݔ	݇

ero	initial	co

f	both	sides	

ܿ

݇

ex	variable	

ry	 part	 of	

in,	their	Lap

e	there	is	n

of	 the	 d

transformat

s‐damper‐s

gure	3‐3 a	m

on	for	the	a

ሻ ൌ 	ሻݐሺ݌

onditions	(ݔ

of	Eq.	3‐2	

݉

ܿ	

݇	

of	 the	 form

the	 compl

place	transfo

o	need	to	p

dynamic	 be

tion)	 is	 pr

pring	syste

mass‐damper

above	oscilla

ሺ0ሻݔ ൌ ሶݔ	,0 ሺ

ݔ

m	ݏ ൌ ߪ ൅ ݅	߱

lex	 variabl

forms	are	ta

erform	the	

ehaviour	 in

rovided	 us

em	 is	consid

r‐spring	system

ator	in	time

ሺ0ሻ ൌ 0)	an

ሻݐሺ݌

ሻݐሺݔ

	ߪ	.߱ is	 the	

e.	 	 For	 ele

abulated	as	

integration

n	 s‐domai

sing	 the	 f

dered	(see	F

	

m

e	domain	is	

d	taking	the

34	

real	part	

ementary	

provided	

n	in	Eq.	3‐

n	 (upon	

following	

Figure	5‐

Eq.	3‐2

e	Laplace	



35	
	

ࣦ൫݉	ݔሷ ሺݐሻ ൅ ሶݔ	ܿ ሺݐሻ ൅ ሻ൯ݐሺݔ	݇ ൌ ࣦሺ݌ሺݐሻሻ

⇒ ሻݏܺሺ	ଶݏ	݉ 	൅ ሻݏሺܺ	ݏ	ܿ ൅ ݇	ܺሺݏሻ ൌ ܲሺݏሻ	

Eq.	3‐3

From	Eq.	3‐3	ܺሺݏሻ	can	be	solved	as	

ܺሺݏሻ ൌ
ܲሺݏሻ

ଶݏ	݉ ൅ ݏ	ܿ ൅ ݇
	

Eq.	3‐4

If,	for	example,	ܲሺݐሻ	is	a	given	force	time	function	like	a	unit‐step	function	

(1ሺݐሻ),	which	is	defined	as	

1ሺݐሻ ൌ ൜
0, ݐ ൏ 0
1, ݐ ൒ 0.

	
Eq.	3‐5

Again	looking	at	the	table	in	Appendix	A,	it	is	known	that	

ࣦ൫1ሺݐሻ൯ ൌ
1
ݏ
	

Eq.	3‐6

Therefore	 the	 response	 of	 the	 system	 to	 a	 unit	 step	 input	 in	 Laplace	

domain	

ܺሺݏሻ ൌ
1

ଶݏ	ሺ݉ݏ ൅ ݏ	ܿ ൅ ݇ሻ
	

Eq.	3‐7

To	get	the	response	in	time	domain,	inverse	Laplace	transform	can	be	used	

and	it	is	defined	as	
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ࣦିଵ൫ܨሺݏሻ൯ ൌ ݂ሺݐሻ ൌ
1
݅	ߨ2

න ሻ݁௦ݏሺܨ ௧ ݏ݀
ఙ೎ା௜ஶ

ఙ೎ା௜ஶ
	

Eq.	3‐8

Where	ߪ௖	is	a	chosen	value	to	the	right	of	all	the	singularities	of	ܨሺݏሻ	in	the	

ߪ)	variables	type‐ݏ	the	which	on	plane	the	is	plane‐ݏ	.plane‐ݏ ൅ ݅	߱	)	can	be	

shown.	In	 fact,	Eq.	3‐8	 is	seldom	used.	 Instead,	complex	Laplace	transforms	

are	broken	down	into	simpler	expressions	that	are	listed	in	the	tables	along	

with	 their	 corresponding	 time	 responses	 (Appendix	A).	 For	 example,	 if	 the	

numerical	 values	 of	 the	 physical	 properties	 are	 such	 that	 Eq.	 3‐7	 can	 be	

written	as	

ܺሺݏሻ ൌ
1

ଶݏ	ሺݏ ൅ ݏ	3 ൅ 2ሻ
	

Eq.	3‐9

Using	 the	 partial‐fraction	 expansion	 technique	 Eq.	 3‐10	 can	 be	 broken	

down	into	simpler	expressions	

ܺሺݏሻ ൌ

1
2
ݏ
െ

1
ݏ ൅ 1

൅

1
2

ݏ ൅ 2
	

Eq.	3‐10

Using	 the	matching	 time	 functions	 from	 Appendix	 A,	 the	 corresponding	

time	 function	of	 each	component	 can	be	 found	and	 the	 total	 time	 response	

for	ݔሺݐሻ	will	be	the	sum	of	these	time	functions.	Hence	

ሻݐሺݔ ൌ
1
2
െ ݁ି௧ ൅

1
2
݁ିଶ௧			݂ݎ݋ ݐ ൒ 0	

Eq.	3‐11
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3.2.2 The	Block	Diagram	

A	transfer	function	is	defined	as	the	ratio	of	the	Laplace	transform	of	the	

output	 to	 the	 Laplace	 transform	 of	 the	 input.	 In	many	 control	 systems	 the	

dynamic	equations	can	be	written	so	 that	 their	components	do	not	 interact	

except	by	having	the	input	of	one	transfer	function	as	the	output	of	another	

one.	 The	 dynamics	 of	 a	 system	 having	 multiple	 components	 are	 easier	 to	

represent	in	a	block	diagram	form	where	each	block	represents	the	transfer	

function	 of	 one	 component	 (e.g.	 G1(s),	 G2(s)	 in	 Figure	 3‐4)	 and	 the	 input‐

output	relationships	between	the	blocks	are	shown	by	lines	and	arrows.	The	

resulting	 transfer	 function	 for	 the	whole	 can	be	obtained	by	block	diagram	

algebra.	 This	 method	 is	 often	 easier	 and	 more	 informative	 than	 algebraic	

manipulation.	 Some	 examples	 for	 block	 diagrams	 and	 their	 equivalent	

algebraic	input‐output	relationships	are	shown	in	Figure	3‐4.	

	

Figure	3‐4	 Three	examples	of	elementary	block	diagrams	

	ሻݏଵሺܩ 	ሻݏଶሺܩ
R(s)	 Y(s)

ܻ
ܴ
ൌ 	ଶܩ	ଵܩ

ሻݏଵሺܩ

ሻݏଶሺܩ

R(s) Y(s)	+

+

ܻ
ܴ
ൌ ଵܩ ൅ ଶܩ

ሻݏଵሺܩ

ሻݏଶሺܩ

R(s)+
െ

Y(s)

ܻ
ܴ
ൌ

ଵܩ
1 ൅ ଵܩ ଶܩ

(a)	 (b)

(c)	
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Figure	3‐4(c)	 illustrates	a	negative	 feedback	arrangement	 that	 is	used	to	

compare	 the	 output	 of	 a	 system	 with	 the	 command	 input	 to	 perform	 a	

tracking	 task.	 This	 is	 also	 referred	 to	 as	 closed‐loop	 control	 as	 opposed	 to	

open‐loop	 control.	 Open‐loop	 control	 is	 generally	 simpler	 and	 does	 not	

introduce	stability	problems.	Although	feedback	control	is	more	complicated	

and	may	have	stability	 issues,	 it	has	 the	potential	 to	achieve	a	much	better	

performance.	Moreover,	 if	 the	 process	 is	 naturally	 (in	 open‐loop)	 unstable,	

feedback	control	 is	 the	only	possibility	 to	attain	a	stable	system	that	meets	

any	performance	criteria	(Franklin	et	al.	2010).	

3.2.3 S‐plane,	Poles	and	Zeros	

In	the	design	and	analysis	of	a	control	system,	the	transfer	function	of	the	

system	 gives	 useful	 information	 about	 the	 system	 characteristics	 including	

its	frequency	response.	

The	roots	of	the	numerator	of	the	system	transfer	function	are	called	zeros	

of	 the	 system	which	 correspond	 to	 the	 locations	 in	 the	 	where	plane‐ݏ the	

transfer	function	is	zero.	The	roots	of	the	denominator	of	the	system	transfer	

function	 are	 called	 the	 poles	 of	 the	 system.	 Apparently,	 the	 poles	 are	 the	

locations	 in	 the	 	plane‐ݏ where	 the	 magnitude	 of	 the	 transfer	 function	

becomes	infinite.	For	example,	in	the	previous	example	the	transfer	function	

had	no	zero	and	three	poles.	The	zeros	and	poles	may	be	complex	quantities	

and	their	location	can	be	displayed	in	a	complex	plane,	which	is	referred	to	as	

the	ݏ‐plane.	
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3.3 PID	Controller	Design	

The	fact	that	PID	controllers	are	able	to	control	complex	systems	without	the	

need	 for	precise	 identification	of	 their	dynamics	has	made	 them	popular	 in	

control	 applications.	 A	 PID	 controller	 controls	 the	 dynamic	 error	 based	 on	

the	magnitude,	 history	 and	 rate	 of	 the	 calculated	 error.	 The	 corresponding	

transfer	function	of	a	PID	controller	has	three	terms.	

ሻݐሺݑ ൌ ሻݐ݁ሺ	௣ܭ ൅ ௜ܭ 	න ݁ሺ߬ሻ
௧

଴
݀߬ ൅ ௗܭ

݀ሺ݁ሺݐሻሻ
ݐ݀

	
Eq.	3‐12

In	the	above	equation	݁ሺݐሻ	is	the	error	signal	and	ݑሺݐሻ	is	controller	output.	

	.terms	the	of	each	to	corresponding	(coefficients)	gains	the	are	ௗܭ	and	௜ܭ	,௣ܭ

In	fact	designing	a	PID	controller	is	to	decide	on	a	combination	of	these	three	

gains	 to	 get	 the	 desired	 system	 behaviour.	 Figure	 3‐6	 shows	 the	 block	

diagram	of	a	PID	controller.	

	

Figure	3‐6 Block	diagram	of	a	PID	controller

Therefore	 the	 transfer	 function	 for	 a	 PID	 controller	 is	 as	 below,	 which	

introduces	an	extra	pole	to	the	system.	

௣ܭ

E(s)	 + U(s)ܭ௜
ݏ
	

ௗܭ ݏ

+

+
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ଶݏ	஽ܭ ൅ ݏ	௉ܭ ൅ ூܭ
ݏ

	
Eq.	3‐13

A	PID	controller	may	be	designed	using	the	root	 locus	method,	 frequency	

response	method	or	can	be	tuned	experimentally	via	an	in‐situ	approach	such	

as	using	Ziegler	Nichols	tuning	rules(Franklin	et	al.	2010).	

Root	locus	method	studies	the	effect	of	any	one	parameter	that	enters	the	

equation	 linearly	 to	 modify	 the	 location	 of	 system’s	 poles	 in	 the	 	.plane‐ݏ

Typically	that	one	parameter	is	chosen	from	one	of	the	PID	gains	(where	the	

others	are	expressed	in	relation	to	that	one).	

The	use	of	frequency	response	methods	is	more	common	in	the	design	of	

feedback	 control	 systems	 for	 industrial	 applications.	 One	 of	 the	 reasons	 is	

that	 with	 frequency	 response	 method	 it	 is	 easy	 to	 use	 experimental	

information	 for	design	purposes.	 Frequency	 response	methods	utilize	Bode	

plots	that	portray	the	steady	state	response	of	a	system	to	sinusoidal	input.	

When	a	representative	analytical	model	for	the	system	is	not	available,	a	

PID	controller	can	still	be	used	by	using	experimental	tuning	approaches	like	

Ziegler	Nichols	(Franklin	et	al.	2010).	

3.4 State‐Space	Controller	Design	

Studying	 the	system	dynamic	 in	state	space	 form	has	 the	 following	main	

advantages	(Franklin	et	al.	2010):	
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 Having	 the	 differential	 equations	 in	 state‐variable	 form	 gives	 a	

compact	 standard	 form	 where	 multi‐input	 multi‐output	 systems	

can	be	studied	easily	even	in	the	presence	of	nonlinearities.	

 In	contrast	to	transfer	function	which	relates	only	the	input	to	the	

output	and	does	not	show	the	internal	behaviour	of	the	system,	the	

state	 form	 connects	 the	 internal	 variables	 to	 external	 inputs	 and	

outputs.	 This	 keeps	 the	 internal	 information	 at	 hand,	 which	 at	

times	is	important.	

The	 state‐variable	 representation	 of	 a	 continuous	 linear	 time‐invariant	

open‐loop	dynamic	system	can	be	expressed	as	

ሶ࢞ ሺݐሻ ൌ ሻݐሺ࢞	࡭ ൅ 	ሻݐሺ࢛	࡮

ሻݐሺ࢟ ൌ ሻݐሺ࢞	࡯ ൅ 	ሻݐሺ࢛	ࡰ

Eq.	3‐14

where	 the	 ݊ ൈ 1	 column	 vector	 	ሻݐሺ࢞ is	 called	 the	 state	 (vector)	 of	 the	

system,	࢛ሺݐሻ	 is	 the	݉ ൈ 1	 input	vector,	࢟ሺݐሻ	 is	 the	݌ ൈ 1	output	vector,	࡭	 is	

the	 ݊ ൈ ݊	 system	 matrix,	 	࡮ is	 the	 ݊ ൈ ݉	 input	 matrix,	 	࡯ is	 the	 ݌ ൈ ݊	 the	

output	 matrix,	 	ࡰ is	 the	 ݌ ൈ ݉	 direct	 transmittance	 matrix;	 and,	 as	 can	 be	

understood	 from	above,	݊,	݉,	 and	݌	 are	 the	dimensions	of	 state,	 input	 and	

output	vectors,	respectively.	

As	 a	 result	 of	 the	 freedom	 in	 choosing	 the	 state	 vector,	 state	 space	

representation	of	a	system	is	not	unique.	However,	 for	a	given	system	they	

are	equivalent	in	terms	of	the	input‐output	relationship.	
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The	 eigenvalues	 of	matrix	࡭	 are	 the	 roots	 of	 the	 characteristic	 equation	

(i.e.,	 the	 roots	 of	 the	 denominator	 polynomial	 (poles)	 of	 the	 open‐loop	

transfer	function	for	a	single‐input	single‐output	system).		

In	 state‐space	method	moving	 the	 closed‐loop	 pole	 locations	 to	 desired	

locations	is	accomplished	through	a	full	state	feedback.	For	the	state‐variable	

system	described	above,	with	full	state	feedback,	the	input	vector	becomes	

ሻݐሺ࢛ ൌ ሻݐሺ࢘ െ 	ሻݐሺ࢞	ࡷ Eq.	3‐15

Where	 	ሻݐሺ࢘ is	 the	݉ ൈ 1	 reference	 input	 vector	 and	ࡷ	 is	 an	݉ ൈ ݊	 gain	

matrix.	 For	 example	 if	 the	 reference	 input	࢘ሺݐሻ	 is	 zero	 (such	a	 controller	 is	

called	a	regulator)	for	the	closed	loop	system	dynamics	࢞ሶ ሺݐሻ	becomes	

ሶ࢞ ሺݐሻ ൌ ሻݐሺ࢞	࡭ ൅ ሻ൯ݐሺ࢞	ࡷ൫െ	࡮ ൌ ሺ࡭ െ ࡮ ሻࡷ ሻݐሺ࢞ ൌ ௖௟࡭ 	ሻݐሺ࢞ Eq.	3‐16

In	this	case,	the	eigenvalues	of	matrix	࡭௖௟	(roots	of	݀݁ݐሺݏ	ࡵ െ ௖௟ሻ࡭ ൌ 0)	are	

the	 closed‐loop	 poles.	 It	 can	 be	 shown	 that	 the	 closed‐loop	 poles	 of	 the	

system	can	be	placed	anywhere	in	the	complex	plane	as	long	as	all	the	states	

are	controllable	(How	2007).	This	is	called	pole‐placement	method.	There	is	

a	 function	 called	 place	 in	 the	 commercially	 available	 software	 package	

MATLAB	 which	 calculates	 matrix	 	ࡷ to	 have	 the	 closed	 loop	 poles	 of	 the	

system	move	to	the	desired	locations.	

In	the	case	of	tracking	a	reference	input	(࢘ሺݐሻ ് 0),	the	nonzero	reference	

input	 needs	 to	 be	 introduced	properly	 for	 a	 good	performance	 in	 tracking.	
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This	 is	 done	by	 scaling	 the	 reference	 input	 and	 then	 combining	 it	with	 full	

state	feedback	to	get	the	proper	input	vector	(How	2007).	

ሻݐሺ࢛ ൌ ሻݐሺ࢘	ഥࡺ െ 	ሻݐሺ࢞	ࡷ Eq.	3‐17

where	

ഥࡺ ൌ െሺ࡯ሺ࡭ െ 	ሻିଵ࡮ሻିଵࡷ	࡮ Eq.	3‐18

Eq.	3‐17	ensures	that	 for	a	step	input	there	will	be	no	steady	state	error	

after	transient	behaviour.	

One	way	to	select	the	location	of	closed	loop	poles	is	to	consider	treating	

the	system	as	a	second	order	system	by	selecting	a	pair	of	dominant	poles,	

with	 the	 remaining	 poles	 having	 a	 real	 part	 corresponding	 to	 sufficiently	

damped	modes.	This	will	result	in	a	system	which	is	similar	to	a	second	order	

system	(How	2007).	

3.5 Nonlinear	State	Space	Controller	Design	

In	all	of	the	aforementioned	methods	the	dynamic	system	to	be	controlled	

was	 assumed	 to	 be	 linear.	 Most	 dynamic	 systems	 have	 some	 sort	 of	

nonlinearity.	 In	 some	 cases	 the	 nonlinearities	 may	 safely	 be	 ignored	 or	

linearized	 about	 an	operating	point.	However	 there	 are	 systems	where	 the	

nonlinearities	 cannot	 be	 ignored	 or	 the	 range	 of	 operation	 is	 beyond	 the	

limits	where	linear	approximations	are	valid.	In	order	to	design	a	controller	

for	such	systems	nonlinear	techniques	need	to	be	used.	
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Instead	 of	 using	 linear	 approximations	 of	 the	 dynamics	 as	 done	 in	

Jacobian	 linearization,	 feedback	 linearization	 is	 a	 nonlinear	 control	 design	

approach	 which	 algebraically	 transforms	 nonlinear	 system	 dynamics	 into	

linear	 ones	 and	 permits	 the	 subsequent	 application	 of	 linear	 control	

techniques.	

These	nonlinear	techniques	make	use	of	differential	geometry	concepts.	In	

the	following	sections	wherever	a	new	differential	geometric	concept	is	used	

it	 is	 defined	 briefly,	 and	 also	 a	 more	 detailed	 summary	 of	 differential	

geometry	is	provided	in	Appendix	B.	

A	 single	 input	nonlinear	 system	 in	 the	neighbourhood	of	 an	 equilibrium	

point,	 	,ࢋ࢞ corresponding	 to	 ݑ ൌ 0	 i.e.	 ሻࢋ࢞ሺࢌ ൌ ૙.	 can	 be	 expressed	 in	 state‐

variable	form	as	

ሶ࢞ ሺݐሻ ൌ ሻ൯ݐሺ࢞൫ࢌ ൅ 	ሻݐሺݑ	ሻ൯ݐሺ࢞൫ࢍ Eq.	3‐19

or	simply	

ሶ࢞ ൌ ሻ࢞ሺࢌ ൅ 	ݑ	ሻ࢞ሺࢍ Eq.	3‐20

In	Eq.	3‐20	ࢌ	and	ࢍ	are	assumed	to	be	smooth	vector	fields	and	ࢍሺࢋ࢞ሻ ് ૙.	

A	vector	field	is	a	map	that	assigns	each	࢞	a	vector	ࢌ	ሺ࢞ሻ	of	the	same	size.	So	

for	example,	if	࢞	is	a	state	vector	of	size	݊ ൈ 1,	
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ሻ࢞ሺࢌ ൌ ൮

ଵ݂ሺ࢞ሻ

ଶ݂ሺ࢞ሻ
⋮

௡݂ሺ࢞ሻ

൲	 Eq.	3‐21	

As	will	 be	 elaborated	 later	 there	 are	necessary	 and	 sufficient	 conditions	

under	which	the	system	defined	by	equation	Eq.	3‐20	is	transformable	into	a	

linear	 controllable	 system	 by	 nonlinear	 feedback	 and	 coordinate	

transformation.	 This	 problem	 is	 called	 feedback	 linearization.	 Feedback	

linearization	 is	 viewed	 as	 a	 generalization	 of	 pole	 placement	 for	 linear	

systems.	

The	 nonlinear	 single	 input	 system	 in	 Eq.	 3‐20	 is	 said	 to	 be	 locally	 state	

feedback	linearizable	if	it	is	locally	feedback	equivalent	to	a	linear	system	in	

Brunovsky	controller	form	(Marino	and	Tomei	1995)	which	is	

ሶࢠ ൌ ࢠ	ࢉ࡭ ൅ 	ݒ	ࢉ࢈ Eq.	3‐22

where	 the	 state	 vector	 and	 input	 in	 the	 new	 coordinate	 are	 	ࢠ and	 	ݒ

respectively	and	

ࢉ࡭ ൌ

ۏ
ێ
ێ
ێ
ۍ
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
0 0 0 ⋯ ے0

ۑ
ۑ
ۑ
ې

	

Eq.	3‐23
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ࢉ࢈ ൌ

ۏ
ێ
ێ
ێ
ۍ
0
0
⋮
0
ے1
ۑ
ۑ
ۑ
ې

	

Eq.	3‐24

where	 the	 state	 vector	 and	 input	 in	 the	 new	 coordinate	 are	 	ࢠ and	 	ݒ

respectively.	

In	order	to	be	able	to	cast	a	set	of	equations	in	Brunovsky	controller	form,	

the	 theorem	 of	 feedback	 linearization	 needs	 to	 be	 satisfied.	 This	 theorem	

indicates	that	the	single	input	system	in	Eq.	3‐20	with	݊	states	is	locally	state	

feedback	linearizable	if	and	only	if	in	a	neighbourhood	of	origin:	

(i) the	distribution	span൛ࢍ,… , ࢌ݀ܽ
௡ିଵࢍൟ	is	of	rank	݊,	and	

(ii) the	 distribution	 span൛ࢍ,… , ࢌ݀ܽ
௡ିଶࢍൟ	 is	 involutive	 and	 of	

constant	rank	݊ െ 1.	

Expressions	 like	 ࢌ݀ܽ
௡ିଵࢍ	 are	 iterative	 forms	 of	 Lie	 bracket	 which	 is	 a	

function	in	differential	geometry	acting	on	two	vector	fields	like	ࢌ	and	ࢍ.	Lie	

bracket	 function	 is	 illustrated	 in	 Appendix	 B.	 Also	 an	 exact	 mathematical	

explanation	of	distribution	and	its	rank	is	given	in	Appendix	B.	However	as	a	

simple	explanation,	condition	(i)	requires	that	the	space	generated	from	the	

indicated	 vector	 fields	 has	 a	 dimension	 of	 ݊	which	means	 the	 vector	 fields	

have	 to	 be	 linearly	 independent.	 Condition	 (ii)	 requires	 that	 the	 space	

generated	 from	 the	 indicated	 vector	 fields	 has	 a	 dimension	 of	݊ െ 1.	

Moreover	a	distribution	is	 involutive	if,	given	any	two	vector	fields	ࢌ	and	ࢍ	
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belonging	 to	 that	 distribution,	 their	 Lie	 bracket,	ሾࢌ, 	,ሿࢍ also	 belongs	 to	 the	

distribution.	

The	above	two	conditions	guarantee	the	existence	of	a	function	݄: ܴ௡ → ܴ	

such	 that	 in	 the	 neighbourhood	 of	 origin,	 the	 following	 conditions	 are	

satisfied.	

〈݄݀	, ܽ݀ሺିࢌሻ
௡ିଵࢍ〉 ് 0	

〈݄݀	, ܽ݀ሺିࢌሻ
௜ 〈ࢍ ൌ 0, 0 ൑ ݅ ൑ ݊ െ 2	

Eq.	3‐25

In	the	above	expressions	݄݀	is	called	gradient	of	݄	and	is	defined	as	

݄݀ ൌ
߲݄
߲࢞

ൌ ൬
߲݄
ଵݔ߲

,
߲݄
ଶݔ߲

, … ,
߲݄
௡ݔ߲

൰	
Eq.	3‐26

and	inner	product	is	defined	as	

〈݄݀	, 〈ࢌ ൌ෍൬
߲݄
௜ݔ߲

. ௜݂൰

࢔

ୀ૚࢏

	
Eq.	3‐27

Having	solved	the	conditions	in	Eq.	3‐25	for	݄,	the	transformation	from	࢞	

to	ࢠ	will	be	

ࢠ ൌ ሺݖଵ, ,ଶݖ … , ௡ሻ்ݖ ൌ ൫݄ሺݔሻ, ,ሻݔ௙݄ሺܮ … , ௙ܮ
௡ିଵ݄ሺݔሻ ൯

்
	 Eq.	3‐28

where	 the	 expression	 	ሻݔሺ݄ࢌܮ is	 called	 the	 Lie	 derivative	 of	 function	 ݄ሺݔሻ	

along	the	vector	field	ࢌ.	This	operator	is	also	defined	in	Appendix	B	
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Hence	the	dynamic	system	in	Eq.	3‐20	i.e.	

ሶ࢞ ൌ ሻ࢞ሺࢌ ൅ 	ݑ	ሻ࢞ሺࢍ Eq.	3‐29

transforms	into	

ሶ௜ݖ ൌ ,௜ାଵݖ 1 ൑ ݅ ൑ ݊ െ 1	

ሶ௡ݖ ൌ ݒ ൌ ࢌܮ
௡݄ሺ࢞ሻ ൅ ࢌܮࢍܮ

௡ିଵ݄ሺ࢞ሻ	ݑ	

Eq.	3‐30

Eq.	3‐31

The	 system	 expressed	 above	 is	 dynamically	 equivalent	 to	 the	 original	

system	 which	 means	 they	 have	 identical	 poles.	 	ݒ is	 the	 input	 of	 the	

transformed	system	and	ݑ	(input	 for	 the	original	system)	can	be	calculated	

from	it	using	equation	Eq.	3‐31.	So	the	state	feedback	is	

ݑ ൌ
ݒ െ ࢌܮ

௡݄ሺ࢞ሻ

ࢌܮࢍܮ
௡ିଵ݄ሺ࢞ሻ

	
Eq.	3‐32
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4 Implementation	of	Control	Methods	

General	

In	this	chapter	the	control	techniques	introduced	in	Chapter	3	are	utilized.	

As	 discussed	 before	 an	 actuator	 delay	 resulting	 in	 a	 time	 delay	 in	

experimental	substructure	can	impair	the	dynamic	stability	and	accuracy	of	

the	 system.	 Control	 theory	 is	 used	 to	 design	 servo‐hydraulic	 controller	 to	

minimize	actuator	delay.	

In	 this	study	a	 linearized	model	of	 the	system	dynamics	was	used	 in	 the	

design	of	 the	 controller	using	 linear	 control	design	 techniques.	A	nonlinear	

model	 of	 the	 system	 whose	 parameters	 were	 obtained	 through	 system	

identification	 (Mercan	2007)	was	used	 in	 the	nonlinear	 state	 space	 control	

design	and	also	 in	 the	numerical	 simulations.	This	 is	because	 the	nonlinear	

model	 is	 accepted	 to	provide	a	more	 realistic	 representation	of	 the	 system	

dynamics.	

4.1 Dynamic	Model	of	a	Servo‐Hydraulic	System	

The	 dynamic	 equations	 that	 govern	 a	 servo‐hydraulic	 system	 were	

explained	in	Chapter	2	and	two	versions	of	the	model	(linear	and	nonlinear)	
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were	 introduced.	 These	 dynamics	 are	 modelled	 in	 commercial	 software	

package	MATLAB/Simulink	to	simulate	the	inner	loop	of	a	PSD	test	setup.	

Linear	Model	

Equations	 for	 the	 linear	model	 presented	 in	 Chapter	 2	 are	 summarized	

here.	

Table	4‐1	Linearized dynamics	of	a	servo‐hydraulic	system

Valve	spool	(in	ݏ	

domain)	

ܺ௩ሺݏሻ
ሻݏሺܫ

ൌ
݇௩

1 ൅ ߬ ݏ
	

(Eq.	2‐1)	

Valve	flow		
ܳ௅ ൌ ௤ܭ ௩ݔ െ ௖ܭ ௅ܲ (Eq.	2‐

20) 

Actuator	chamber	

pressure	
ܳ௅ ൌ ௣ܣ ሶ௣ݔ ൅ ௧௣ܥ ௅ܲ ൅

௧ܸ

௘ߚ4
ሶܲ௅ 

(Eq.	2‐

18) 

Actuator	motion	 ݉௣ ሷ௣ݔ ൅ ܾ௣ ሶ௣ݔ ൅ ௘௫௧ܨ ൌ ௣ܣ ௅ܲ (Eq.	2‐21) 

	 	 	

Figure	 4‐1	 shows	 the	 Simulink	model	 for	 a	 servo‐hydraulic	 system	with	

the	 above	 dynamics	 that	 is	 connected	 to	 a	 linear	 single‐degree	 of	 freedom	

test	structure.	This	structure	has	a	mass	of	݉,	damping	of	ܿ	and	stiffness	of	݇.	

As	it	is	shown	in	the	figure	this	adds	a	load	dynamics	to	the	above	equations	

as	

௘௫௧ܨ ൌ ሷ௣ݔ	݉ ൅ ሶ௣ݔ	ܿ ൅ 	௣ݔ	݇ Eq.	4‐1	
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Nonlinear	Model	

Equations	for	the	nonlinear	model	are	

Table	4‐2	Nonlinear	dynamics	of	a	servo‐hydraulic

Valve	spool	(in	ݏ	

domain)	

ܺ௩ሺݏሻ
ሻݏሺܫ

ൌ
݇௩

1 ൅ ߬ ݏ
	 (Eq.	2‐1)	

Valve	flow	
ܳ௅ ൌ ߟ ௩ඥݔ ௦ܲ െ ௩ሻݔሺ݊݃݅ݏ ௅ܲ  (Eq.	2‐

16) 

Actuator	chamber	
pressure	

ܳ௅ ൌ ௣ܣ ሶ௣ݔ ൅ ௧௣ܥ ௅ܲ ൅
௧ܸ

௘ߚ4
ሶܲ௅ 

(Eq.	2‐

18) 

Actuator	motion	
݉௣ ሷ௣ݔ ൅ ܾ௣ ሶ௣ݔ ൅ ௙ܶ ൅ ௘௫௧ܨ

ൌ ௣ܣ ௅ܲ 

(Eq.	2‐

19) 

	 	 	

Figure	4‐2	shows	the	Simulink	model	for	a	servo‐hydraulic	system	of	the	

above	dynamics	 that	 is	 connected	 to	 a	 linear	 single‐degree	of	 freedom	 test	

structure.	

The	linear	model	will	be	used	for	designing	a	PID	and	a	linear	state	space	

controller	and	the	nonlinear	model	will	be	used	to	design	a	nonlinear	state	

space	controller.	
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4.2 PID	Controller	Design	

Figure	4‐3	shows	the	Simulink	model	 for	a	servo‐hydraulic	system	along	

with	 a	 PID	 controller.	 As	 it	 can	 be	 seen,	 the	 servo‐hydraulic	 system	 is	

represented	 by	 a	 block	which	 has	 an	 input	 as	 a	 command	 signal,	which	 is	

issued	by	the	controller,	and	four	outputs	that	may	be	measured	during	a	test	

and	are	namely	piston	displacement,	piston	velocity,	load	pressure	and	valve	

opening.	 In	 this	 study	 the	 nonlinear	 models	 introduced	 in	 Figure	 4‐2	 was	

used	and	embedded	to	this	block.	

The	 following	 gives	 a	 summary	 of	 the	 roles	 of	 each	 PID	 gains	

(Ahmadizadeh	2007).	

Proportional	(ܭ௣)	–	This	is	to	handle	the	present	requirements.	The	error	

is	multiplied	 by	ܭ௣.	Hence,	 the	 greater	 the	 proportional	 gain,	 the	more	 the	

servo‐valve	 opens	 for	 a	 given	 error.	 There	 is	 a	 trade‐off	 for	 selecting	 an	

appropriate	ܭ௣.	Although	 a	 large	proportional	 gain	may	decrease	 the	 error	

resulting	in	a	closer	tracking	of	reference	signal	and	reduced	response	time,	

it	decreases	the	stability	margin	of	the	system	and	increases	the	frequency	of	

the	oscillation	in	the	transient	response.	



	

	

Fi
gu
re
	4
‐3
	

Si
m
ul
in
k	
m
od
el
	fo
r	
a	
se
rv
o‐
hy
dr
au
lic
	s
ys
te
m
	w
it
h	
a	
PI
D
	c
on
tr
ol
le
r	

56	



57	
	

Integral	 	error	The	–	(ூܭ) is	 integrated	(added	up)	over	a	period	of	 time,	

multiplied	by	a	constant	ܭூ	and	added	to	the	control	signal.	A	well‐tuned	PI	

controller	 will	 converge	 to	 the	 reference	 signal	 (zero	 steady‐state	 error),	

leading	to	a	reduced	error	between	command	and	feedback.	

Integral	 	(஽ܭ) –	 This	 is	 to	 handle	 the	 future	 requirements.	 The	 first	

derivative	of	the	error	over	time	is	calculated,	multiplied	by	ܭ஽	and	added	to	

the	 control	 signal.	Basically,	 this	 term	controls	 the	 response	 to	 a	 change	 in	

the	system.	In	practice	due	to	noises	that	enter	the	measured	signal	in	a	real	

PSD	test,	a	controller	without	a	derivative	term	may	be	used.	

4.2.1 Controller	Tuning	

Tuning	 a	 controller	 is	 adjusting	 its	 parameters	 to	 get	 a	 desired	 system	

response.	The	goal	is	to	have	a	system	that	has	a	stable	and	fast	response	(i.e.,	

a	short	response	time)	with	a	small	steady‐state	error.	

One	 of	 the	 Ziegler‐Nichols	 tuning	 methods	 is	 called	 ultimate	 sensitivity	

method	and	is	used	in	this	study.	In	this	method	the	criteria	for	adjusting	the	

parameters	 are	 based	 on	 evaluating	 the	 amplitude	 and	 frequency	 of	 the	

oscillations	of	the	system	at	the	limit	of	stability	rather	than	taking	the	step	

response.	 To	 use	 the	 method,	 the	 proportional	 gain	 is	 increased	 until	 the	

system	 becomes	 marginally	 stable	 and	 continuous	 oscillations	 just	 begin,	

with	amplitude	limited	by	the	saturation	of	the	actuator.	The	corresponding	

gain	is	defined	as	ܭ௨	(known	as	ultimate	gain)	and	the	period	of	oscillation	is	

௨ܲ	(known	as	ultimate	period).	 ௨ܲ	should	be	measured	when	the	amplitude	of	
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oscillation	 is	 as	 small	 as	 possible.	 Then	 the	 tuning	 parameters	 for	 a	 PI	

controller	 are	 selected	 as	 ݇௣ ൌ 	௨ܭ	0.45 and	 ூܶ ൌ ௨ܲ
1.2ൗ .	 Experience	 has	

shown	that	the	controller	settings	according	to	Ziegler‐Nichols	rules	provide	

acceptable	 closed‐loop	 response	 for	 many	 systems.	 Ziegler‐Nichols	 gives	 a	

good	starting	point	 for	 the	controller	parameters	and	the	 fine	 tuning	of	 the	

controller	 is	 still	 needed	 to	 achieve	 a	 desired	 behaviour.	 Details	 for	 this	

method	can	be	found	in	(Franklin	et	al.	2010).	

Tuning	 the	nonlinear	model	 in	Simulink	results	 in	ܭ௉ ൌ ூܭ	,80 ൌ 0.5	and	

஽ܭ ൌ 0.	And	closed‐loop	poles	of	the	system	can	be	calculated	as	following.	

ଵ݌ ൌ െ242, ଶ݌ ൌ െ141, ଷ,ସ݌		 ൌ െ21.9 േ 31.2	݅, ହ݌	 ൌ െ0.00625	

As	shown	in	Equation	3‐13,	the	transfer	function	of	a	PID	controller	adds	a	

pole	at	origin	to	the	open	loop	transfer	function	in	Equation	2‐23.	Here,	in	the	

closed	 loop	 transfer	 function	 this	 extra	 pole	 moves	 a	 bit	 off	 the	 origin	

ହ݌	) ൌ െ0.00625).	

4.3 Linear	State‐Space	Controller	Design	

4.3.1 State‐variable	form	of	equations	

As	 pointed	 out	 before,	 for	 a	 given	 system,	 depending	 on	 the	 states	

selected,	there	may	be	multiple	state	space	representations.	Using	the	linear	

equations	introduced	in	Table	4‐1,	four	states	and	one	input	can	be	chosen.	
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࢞ ൌ ൮

ଵݔ
ଶݔ
ଷݔ
ସݔ

൲ ൌ ൮

௣ݔ
ሶ௣ݔ
௅ܲ
௩ݔ

൲ ݑ					, ൌ ݅	 Eq.	4‐2

Alternatively,	if	the	servo‐valve	is	assumed	to	have	a	fast	response	to	the	

input	signal	compared	to	the	rest	of	the	system;	its	dynamics	can	be	omitted	

without	compromising	the	tracking	capability.	

࢞ ൌ ൭
ଵݔ
ଶݔ
ଷݔ
൱ ൌ ൭

௣ݔ
ሶ௣ݔ
௅ܲ

൱ ݑ					, ൌ 	௩ݔ Eq.	4‐3

Considering	 these	 three	 states,	 the	 state‐variable	 representation	

(Equation	3‐14)	of	the	system	will	be	

ሶ࢞ ൌ ቌ

ሶ௣ݔ
ሷ௣ݔ
ሶܲ௅

ቍ ൌ

ۉ

ۈۈ
ۇ

0 1 0
െ݇

݉௣ ൅݉
െ൫ܾ௣ ൅ ܿ൯
݉௣ ൅݉

௣ܣ
݉௣ ൅݉

0
െܣ௣4	ߚ௘

௧ܸ

െ൫ܭ௖ ൅ ௘ߚ	௧௣൯4ܥ
௧ܸ ی

ۋۋ
ۊ
൭

௣ݔ
ሶ௣ݔ
௅ܲ

൱

൅ ൮

0
0

௘ߚ	௤4ܭ
௧ܸ

൲ 	௩ݔ

࢟ ൌ ௣ݔ ൌ ሺ1 0 0ሻ ൭

௣ݔ
ሶ௣ݔ
௅ܲ

൱	

Eq.	4‐4

And	if	all	four	states	are	considered	
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ሶ࢞ ൌ

ۉ

ۈ
ۇ
ሶ௣ݔ
ሷ௣ݔ
ሶܲ௅
یሶ௩ݔ

ۋ
ۊ

ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

0 1 0 0
െ݇

݉௣ ൅݉
െ൫ܾ௣ ൅ ܿ൯
݉௣ ൅݉

௣ܣ
݉௣ ൅݉

0

0
െܣ௣4	ߚ௘

௧ܸ

െ൫ܭ௖ ൅ ௘ߚ	௧௣൯4ܥ
௧ܸ

௘ߚ	௤4ܭ
௧ܸ

0 0 0 െ
1
߬ ی

ۋ
ۋ
ۋ
ۋ
ۊ

൮

௣ݔ
ሶ௣ݔ
௅ܲ
௩ݔ

൲

൅

ۉ

ۈ
ۇ

0
0
0
݇௩
߬ ی

ۋ
ۊ
݅	

Eq.	4‐5

It	should	be	noticed	that	the	valve	spool	dynamics	(Equation	2‐1)	in	time	

domain	is	

ሶ௩ݔ ൌ െ
1
߬
௩ݔ ൅

݇௩
߬
݅	 Eq.	4‐6

4.3.2 Pole	Placement	

Both	three‐state	and	four‐state	presentation	of	the	system	can	be	used	to	

design	the	controller.	For	the	four‐state	case,	poles	are	selected	equal	to	the	

poles	 corresponding	 to	 the	previously	designed	 system	with	PID	controller	

ignoring	the	pole	associated	to	PID	itself,	i.e.	

ଵ݌ ൌ െ242, ଶ݌ ൌ െ141, ଷ,ସ݌		 ൌ െ21.9 േ 31.2	݅	
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Function	 place.m	 of	 commercial	 software	 package	MATLAB	 is	 used	 to	 find	

matrix	ࡷ	and	 then	using	equation	3‐18	matrix	ࡺഥ	 is	 calculated	 to	 introduce	

the	signal	input	as	

ሻݐሺ࢛ ൌ ሻݐሺ࢘	ഥࡺ െ 	ሻݐሺ࢞	ࡷ Eq.	4‐7	

Appendix	 C	 contains	 the	 MATLAB	 code	 which	 is	 used	 to	 calculate	 these	

matrices.	

If	 the	 servo‐valve	 spool	 dynamics	 is	 ignored	 (assumed	 to	 be	 faster	 than	

other	parts	of	 the	system)	considering	only	 three	states,	 the	corresponding	

pole	needs	 to	be	 ignored	 too.	As	 illustrated	before,	 the	poles	 far	 left	 in	 the	

complex	plane	are	related	to	fast	responses.	Therefore	pole	݌ ൌ െ242	is	the	

one	 associated	 to	 servo‐valve	 spool	 dynamics.	 Consequently,	 the	 selected	

poles	to	design	a	three‐state	controller	are	

ଵ݌ ൌ െ141, ଶ,ଷ݌		 ൌ െ21.9 േ 31.2	݅	

4.4 Nonlinear	State‐Space	Controller	Design	

4.4.1 State‐variable	form	of	equations	

State‐variable	form	of	a	nonlinear	system	needs	to	be	written	in	the	form	

of		

ሶ࢞ ሺݐሻ ൌ ሻ࢞ሺࢌ ൅ 	ݑ	ሻ࢞ሺࢍ Eq.	4‐8	
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It	can	be	shown	that	the	only	way	to	write	down	the	nonlinear	equations	

in	the	above	form	is	to	consider	all	four	states.	So	having	

࢞ ൌ ൮

ଵݔ
ଶݔ
ଷݔ
ସݔ

൲ ൌ ൮

௣ݔ
ሶ௣ݔ
௅ܲ
௩ݔ

൲ ݑ					, ൌ ݅	 Eq.	4‐9	

state‐variable	form	of	the	dynamics	according	to	Table	4‐2	will	be	

ሶ࢞ ൌ

ۉ

ۈ
ۇ
ሶ௣ݔ
ሷ௣ݔ
ሶܲ௅
یሶ௩ݔ

ۋ
ۊ
ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

ሶ௣ݔ
െ݇	ݔ௣ െ ൫ܾ௣ ൅ ܿ൯ݔሶ௣ ൅ ௣ܣ ௅ܲ

݉௣ ൅ ݉
௘ߚ	4	

௧ܸ
ቀെܣ௣	ݔሶ௣ െ 	௧௣ܥ ௅ܲ ൅ ௩ඥݔ	ߟ ௦ܲ െ signሺݔ௩ሻ ௅ܲቁ

௩ݔ
߬ ی

ۋ
ۋ
ۋ
ۋ
ۊ

	൅

ۉ

ۈ
ۇ

0
0
0
݇௩
߬ ی

ۋ
ۊ
݅	 Eq.	4‐10

To	follow	the	calculations	the	following	notation	will	be	used	instead	

ሶ࢞ ൌ ൮

ሶଵݔ
ሶଶݔ
ሶଷݔ
ሶସݔ

൲ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

ଶݔ
െ݇	ݔଵ െ ൫ܾ௣ ൅ ܿ൯ݔଶ ൅ ௣ܣ ଷݔ

݉௣ ൅݉
௘ߚ	4	

௧ܸ
ቀെܣ௣	ݔଶ െ ଷݔ	௧௣ܥ ൅ ସඥݔ	ߟ ௦ܲ െ signሺݔସሻݔଷቁ

െ
ସݔ
߬ ی

ۋ
ۋ
ۋ
ۋ
ۊ

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ሻ࢞ሺࢌ

	൅

ۉ

ۈ
ۇ

0
0
0
݇௩
߬ ی

ۋ
ۊ

ᇣᇤᇥ
ሻ࢞ሺࢍ

	ݑ Eq.	4‐11

It	was	stated	in	Chapter	3	that	ࢌ	and	ࢍ	must	be	smooth	vector	fields	but	

the	 sign	 function	 in	 the	 third	 term	 of	 	ࢌ does	 not	 allow	 differentiation	

at	ݔସ ൌ 0.	Figure	4‐4	shows	that	for	a	large	coefficient	݊	sign	function	can	be	

approximated	 by	 using	 an	 Arc	 Tan.	 Mintsa	 et	 al.	 (2009)	 used	 an	 equation	

involving	exponential	terms	to	approximate	the	sign	function.	
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Figure	4‐4	 Approximation	of	function	ܵ݅݃݊ሺݔሻ

Hence	the	dynamics	in	Eq.	4‐11	can	be	approximated	as	

ሶ࢞	 ൌ ൮

ሶଵݔ
ሶଶݔ
ሶଷݔ
ሶସݔ

൲ ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

ଶݔ
ି௞	௫భି൫௕೛ା௖൯௫మା஺೛	௫య

௠೛ା௠

	ସఉ೐
௏೟
ቆെܣ௣ݔଶ െ ଷݔ௧௣ܥ ൅ ସටݔ	ߟ ௦ܲ െ

ଶ

గ
ଷቇݔସሻݔ	ሺ݊݊ܽܶܿݎܣ

െ
௫ర
ఛ ی

ۋ
ۋ
ۋ
ۊ

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ሻ࢞ሺࢌ

	൅

ۉ

ۇ

0
0
0
௞ೡ
ఛ ی

ۊ

ᇣᇤᇥ
ሻ࢞ሺࢍ

	ݑ

Eq.	4‐12

	a	design	to	used	be	can	which	fields	vector	smooth	are	4‐12	Eq.	in	ࢍ	and	ࢌ

nonlinear	controller.	

As	 it	 was	 stated	 in	 Chapter	 3,	 for	 a	 system	 to	 be	 locally	 state	 feedback	

linearizable	 two	 conditions	 must	 be	 satisfied.	 These	 conditions	 are	 now	

checked	for	the	above	nonlinear	system.	
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 Condition	(i)	 the	distribution	span൛ࢍ,… , ࢌ݀ܽ
௡ିଵࢍൟ	is	of	rank	݊.	

ࢍ ൌ

ۉ

ۈ
ۇ

0
0
0
݇௩
߬ ی

ۋ
ۊ
ൌ ൮

0
0
0
⋆

൲,	 Eq.	4‐13

ࢌ݀ܽ
ଵࢍ ൌ

ࢍ߲
߲࢞

ࢌ െ
ࢌ߲
߲࢞

ࢍ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

0
0

െ
௘ߚ	4	

௧ܸ

݇௩
߬
	ߟ
൬ ௦ܲ െ

݊ ଷݔ ସݔ
ߨ ൅ ݊ଶ	ߨ		ݔସଶ

െ
ሺ݊݊ܽܶܿݎܣଷݔ2 ସሻݔ

ߨ ൰

ට ௦ܲ െ
2
ߨ ଷݔସሻݔ	ሺ݊݊ܽܶܿݎܣ

݇௩
߬ଶ ی

ۋ
ۋ
ۋ
ۋ
ۊ

	

ൌ ൮

0
0
⋆
⋆

൲		

Eq.	4‐14

And	in	the	same	manner,	

ࢌ݀ܽ
ଶࢍ ൌ ࢌ݀ܽ

ଵ൫ܽ݀ࢌ
ଵࢍ൯ ൌ ൮

0
⋆
⋆
⋆

൲ ܽ݊݀	 Eq.	4‐15

ࢌ݀ܽ
ଷࢍ ൌ ቌ

⋆
⋆
⋆
⋆

ቍ	 Eq.	4‐16

In	the	above	equations	“⋆”	represents	a	nonzero	expression.	Since	

span൞൮

0
0
0
⋆

൲ ,൮

0
0
⋆
⋆

൲ ,൮

0
⋆
⋆
⋆

൲ , ቌ

⋆
⋆
⋆
⋆

ቍൢ	 Eq.	4‐17
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has	a	rank	equal	to	4,	the	first	condition	is	satisfied.	

 Condition	(ii)	 the	distribution	span൛ࢍ,… , ࢌ݀ܽ
௡ିଶࢍൟ	 is	 involutive	

and	of	constant	rank	݊ െ 1.	

It	is	already	known	that	

span൞൮

0
0
0
⋆

൲ ,൮

0
0
⋆
⋆

൲ ,൮

0
⋆
⋆
⋆

൲ൢ	 Eq.	4‐18

has	a	rank	of	3.	However	the	distribution	needs	to	be	involutive.	

It	can	be	shown	that	

,ࢍൣ ࢌ݀ܽ
ଵࢍ൧ ൌ ൮

0
0
⋆
0

൲	 Eq.	4‐19	

,ࢍൣ ࢌ݀ܽ
ଶࢍ൧ ൌ ൮

0
0
0
0

൲	 Eq.	4‐20	

ࢌ݀ܽൣ
ଵࢍ, ࢌ݀ܽ

ଶࢍ൧ ൌ ൮

0
⋆
⋆
0

൲	 Eq.	4‐21	

All	above	vector	 fields	belong	to	the	distribution	 in	Equation	4‐15	which	

means	the	distribution	is	involutive	and	the	second	condition	is	also	satisfied.	
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Therefore	 the	 nonlinear	 system	 is	 locally	 state	 feedback	 linearizable	 and	

there	is	a	function	like	݄: ܴସ → ܴ	such	that	

〈݄݀	, ܽ݀ሺିࢌሻ
ଷ 〈ࢍ ് 0	

〈݄݀	, ܽ݀ሺିࢌሻ
௜ 〈ࢍ ൌ 0, 0 ൑ ݅ ൑ 2	

Eq.	4‐22	

The	above	conditions	are	examined	in	more	detail	in	the	following.	

1. 〈݄݀	, 〈ࢍ ൌ 0,	which	gives	

൬
߲݄
ଵݔ߲

,
߲݄
ଶݔ߲

,
߲݄
ଷݔ߲

,
߲݄
ସݔ߲

൰

ۉ

ۈ
ۇ

0
0
0
݇௩
߬ ی

ۋ
ۊ
ൌ 0 ⇒

߲݄
ସݔ߲

݇௩
߬
ൌ 0 ⇒

߲݄
ସݔ߲

ൌ 0	 Eq.	4‐23	

2. 〈݄݀	, ܽ݀ሺିࢌሻ
ଵ 〈ࢍ ൌ 0,	which	in	the	same	manner	gives	

߲݄
ଷݔ߲

ൌ 0	 Eq.	4‐24	

3. 〈݄݀	, ܽ݀ሺିࢌሻ
ଶ 〈ࢍ ൌ 0,	which	also	in	the	same	manner	gives	

߲݄
ଶݔ߲

ൌ 0	 Eq.	4‐25	

4. 〈݄݀	, ܽ݀ሺିࢌሻ
ଷ 〈ࢍ ് 0,	which	gives	

߲݄
ଵݔ߲

് 0	 Eq.	4‐26	
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It	 should	 be	noted	 that	 the	 function	݄	 is	 not	unique	 (Marino	 and	Tomei	

1995).	

Function	݄	may	be	selected	to	be	

݄ ൌ 	ଵݔ Eq.	4‐27	

As	was	introduced	in	Equation	3‐25,	coordinate	transformation	is	defined	

as	

ࢠ ൌ ሺݖଵ, ,ଶݖ ,ଷݖ ସሻ்ݖ ൌ ൫݄ሺ࢞ሻ, ,ሻ࢞௙݄ሺܮ ௙ܮ
ଶ݄ሺ࢞ሻ, ௙ܮ

ଷ݄ሺ࢞ሻ൯
்
	 Eq.	4‐28	

So	

ଵݖ ൌ ݄ሺ࢞ሻ ൌ 	ଵݔ Eq.	4‐29	

ଶݖ ൌ ሻ࢞ሺ݄ࢌܮ ൌ ሺ1 0 0 0ሻࢌ ൌ 	ଶݔ Eq.	4‐30	

ଷݖ ൌ ࢌܮ
ଶ݄ሺ࢞ሻ ൌ ሺ0 1 0 0ሻࢌ ൌ

െ݇ ଵݔ െ ൫ܾ௣ ൅ ܿ൯ݔଶ ൅ ௣ܣ ଷݔ
݉௣ ൅݉

	 Eq.	4‐31	

ସݖ ൌ ࢌܮ
ଷ݄ሺ࢞ሻ ൌ ଵ

௠೛ା௠
൭െ݇ ଶݔ െ

௕೛ା௖

௠೛ା௠
൫െ݇ ଵݔ െ ൫ܾ௣ ൅ ܿ൯ݔଶ ൅

ଷ൯ݔ	௣ܣ ൅

௣ܣ
	ସ	ఉ೐
௏೟
	ቆെܣ௣	ݔଶ െ ଷݔ	௧௣ܥ ൅ ସටݔ	ߟ ௦ܲ െ

ଶ

గ
		ଷቇ൱ݔସሻݔ	ሺ݊݊ܽܶܿݎܣ

Eq.	4‐32	



68	
	

This	transformation	of	coordinates	lets	the	system	dynamics	to	be	written	

in	Brunovsky	controller	form	as	

൞

ሶଵݖ ൌ ଶݖ
ሶଶݖ ൌ ଷݖ
ሶଷݖ ൌ ସݖ
ሶସݖ ൌ ݒ

	 Eq.	4‐33	

where	

ݒ ൌ ࢌܮ
ସ݄ሺ࢞ሻ ൅ ࢌܮࢍܮ

ଷ݄ሺ࢞ሻ	ݑ	 Eq.	4‐34	

and	in	the	above	equation	

ࢌܮ	
ସ݄ሺ࢞ሻ ൌ 	 ൬

௕೛௞

൫௠ା௠೛൯
మ ൅

௖	௞

൫௠ା௠೛൯
మ൰ ଶݔ െ

௞ቆି
ೖ ೣభ

೘శ೘೛
ି
൫್೛శ೎൯ೣమ
೘శ೘೛

ା
ಲ೛ೣయ
೘శ೘೛

ቇ

௠ା௠೛
൅

൬
௕೛൫௕೛ା௖൯

൫௠ା௠೛൯
మ ൅

௖൫௕೛ା௖൯

൫௠ା௠೛൯
మ൰ ൬െ

௞	௫భ
௠ା௠೛

െ
൫௕೛ା௖൯௫మ
௠ା௠೛

൅
஺೛௫య
௠ା௠೛

൰ െ

஺೛
మቆି

ೖ	ೣభ
೘శ೘೛

ି
൫್೛శ೎൯ೣమ
೘శ೘೛

ା
ಲ೛ೣయ
೘శ೘೛

ቇ

൫௠ା௠೛൯

	ସ	ఉ೐
௏೟

െ

ଵ

ఛ೘
ସሺെݔ	

஺೛௡	ఎ	௫య		௫ర

൫௠ା௠೛൯గ
	ర	ഁ೐
ೇ೟

ሺଵା௡మ		௫రమሻට௉ೞି
మ	ೣయ	ఽ౨ౙ౐౗౤ሾ೙	ೣరሿ

ഏ

൅
஺೛ఎට௉ೞି

మ	ೣయ	ఽ౨ౙ౐౗౤ሾ೙	ೣరሿ
ഏ

൫௠ା௠೛൯

	ସ	ఉ೐
௏೟
ሻ ൅

ሺെ
஺೛ୠ೛

൫௠ା௠೛൯
మ െ

஺೛௖

൫௠ା௠೛൯
మሻሺെܣ௣	ݔଶ

	ସ	ఉ೐
௏೟

െ ଷݔ	௧௣ܥ
	ସ	ఉ೐
௏೟

൅

	ସ	ఉ೐
௏೟

ସටݔ		ߟ ௦ܲ െ
ଶ	௫య	୅୰ୡ୘ୟ୬ሾ௡	௫రሿ

గ
ሻ ൅ ሺെ

஺೛஼೟೛
ሺ௠ା௠೛ሻ

	ସ	ఉ೐
௏೟

െ

	ସ	ఉ೐
௏೟

஺೛ఎ		௫ర	୅୰ୡ୘ୟ୬ሾ௡	௫రሿ

ሺ௠ା௠೛ሻగට௉ೞି
మ	ೣయ	ఽ౨ౙ౐౗౤ሾ೙	ೣరሿ

ഏ

ሻሺെ
	ସ	ఉ೐
௏೟

ଶݔ	௣ܣ െ
	ସ	ఉ೐
௏೟

ଷݔ௧௣ܥ ൅

	ସ	ఉ೐
௏೟

ସටݔ	ߟ ௦ܲ െ
ଶ	௫య	୅୰ୡ୘ୟ୬ሾ௡	௫రሿ

గ
ሻ	

Eq.	4‐35	

and	
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ࢌܮࢍܮ
ଷ݄ሺ࢞ሻ

ൌ
݇௩
߬௠

ሺെ
݁ߚ	4	
ݐܸ

ସݔ	ଷݔ	ߟ		݊	݌ܣ

ሺ݉ ൅݉௣ሻߨሺ1 ൅ ݊ଶݔସଶሻට ௦ܲ െ
ସሿݔ	ଷArcTanሾ݊ݔ2

ߨ

൅
ටߟ݌ܣ ௦ܲ െ

ସሿݔ	ଷArcTanሾ݊ݔ2
ߨ

ሺ݉ ൅݉௣ሻ
݁ߚ	4	
ݐܸ
ሻ	

Eq.	4‐36	

Therefore	the	state	feedback	will	be	calculated	as	

ݑ ൌ
ݒ െ ࢌܮ

ସ݄ሺ࢞ሻ

ࢌܮࢍܮ
ଷ݄ሺ࢞ሻ

	 Eq.	4‐37	

Chapter	 5	 illustrates	 implementation	 of	 the	 above	 coordinate	

transformation	in	a	Matlab‐Simulink	model	along	with	linear	controllers.	
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5 Simulations	Results	

General	

This	 chapter	 presents	 simulation	 results	 for	 the	 inner	 loop	 of	 PSD	 test	

models	 i.e.	 the	 control	 of	 servo‐hydraulic‐test	 structure	 system.	 Simulink,	

which	 is	developed	by	MathWorks,	 is	 an	 interactive	 graphical	 environment	

for	modeling,	 simulating	and	analyzing	dynamic	 systems	and	 it	works	with	

MATLAB.	The	Simulink	models	presented	 in	 this	 chapter	 include	 linearized	

and	nonlinear	model	of	a	servo‐hydraulic	system	discussed	in	Chapter	2	and	

the	 controllers	 discussed	 and	 implemented	 in	 Chapter	 3	 and	 Chapter	 4	

including	PID,	linear	state‐space	and	nonlinear	state‐space	controllers.	These	

simulations	 only	 consider	 the	 servo‐hydraulic	 system	 connected	 to	 a	 test	

structure.	To	better	understand	the	proposed	control	method,	for	a	complete	

simulation	 of	 a	 PSD	 test,	 the	 outer‐loop	 needs	 to	 be	 introduced	where	 the	

integration	 algorithm	 and	 also	 the	 analytical	 substructure	model	 (if	 it	 is	 a	

hybrid	PSD	test)	reside.	
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5.1 Numerical	 Values	 for	 Servo‐Hydraulic	 System	 and	 Test	

Structure	in	Linear	and	Nonlinear	Models	

The	 values	 of	 the	 parameters	 for	 linear	 and	 nonlinear	 formulation	 of	

dynamics	 of	 a	 servo‐hydraulic	 system	 are	 given	 in	 Table	 5‐1.	 These	

numerical	 values	 are	 obtained	 through	 system	 identification	 for	 a	 servo‐

hydraulic	 system	 used	 in	 another	 PSD	 test	 research	 program	 (Zhang	 et	 al.	

2005)	and	are	assumed	to	be	representative.	For	the	structure	selection,	the	

important	 thing	 for	an	SDOF	are	 the	natural	period	(should	be	around	1	or	

1.3	sec),	damping	(around	2	to	5	%).	 In	a	PSD	test,	 it	 is	desired	to	keep	the	

inertial	and	damping	forces	analytical.	

Table	5‐1	Values for Parameters for Linear and Nonlinear Servo-Hydraulic System 
Models	

parameter value 
݉ mass of test structure 1025	kg 

ܿ viscous damping coefficient of test structure 500 N െ sec/m 

݇ stiffness test structure 5.00ܧ଺	N/m 

݉௣ mass of actuator piston 1025	kg 

ܾ௣ viscous damping coefficient of actuator piston 356.18 ଷNܧ െ sec/m 

 mଶ	௣ actuator piston cross section area 0.0808ܣ

௧ܸ

௘ߚ4
 ௧ܸ ൌ actuator chamber volume 

5.65  mଷ/Pa	ଵ଴ିܧ
௘ߚ ൌ oil modulus  

௦ܲ supply pressure of the hydraulic system 207  ହPaܧ

ߟ ൌ ௗΓට1ܥ ൗߩ  
ௗܥ ⟶orifice coeffiecient  
Γ ⟶valve opening gradient 
ߩ ⟶hydraulic oil density 

2.62 ଷିܧ mଷ/s	/Pa଴.ହ 

௖ servo-valve flow-pressure coefficient 1.5ܭ ଵଵିܧ mଷ/ሺPa െ secሻ 

௤ servo-valve flow gain 0.035ܭ mଷ/sec 

௧௣ actuator leakage coefficient 3ܥ Eିଵଵ mଷ/ሺPa െ secሻ 

݇௩ servo-valve gain 0.9613 

߬௠ servo-valve time constant 0.004	sec 

߱௡,௘௫௣	 natural frequency of the test structure 69.8 1 sec⁄  

	௘௫௣ߞ damping ratio of the test structure 0.00349 
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5.2 Comparison	 of	 Controllers	 With	 and	 Without	 Saturation	

Limits	

Numerical	 simulations	 were	 performed	 to	 compare	 the	 tracking	

capabilities	 of	 the	 PID,	 linear	 state‐space	 and	 nonlinear	 state‐space	

controllers.	 As	 explained	 in	 Chapter	 4,	 all	 the	 controllers	were	designed	 to	

have	 the	 same	 dynamic	 characteristics.	 This	 was	 done	 by	 figuring	 out	 the	

pole	locations	from	the	tuned	PID	controller	and	using	them	for	designing	the	

linear	 and	 nonlinear	 state‐space	 controllers.	 Linear	 state	 space	 controller	

uses	 the	 linearized	 state	 space	 representation	 (Table	 4‐1)	 in	 the	 pole	

placement	 procedure.	 On	 the	 other	 hand,	 the	 nonlinear	 controller	 design	

accounts	 for	 the	 nonlinearity	 in	 servo‐valve	 flow‐pressure	 relationship	

(Table	4‐2).	 It	utilizes	a	coordinate	transformation	to	express	the	system	in	

Brunovsky	form	which	provides	an	equivalent	 linear	system	representation	

for	the	system	dynamics.	It	should	be	noted	that	the	calculated	input	to	this	

equivalent	system	(ݒ)	has	to	be	transformed	back	to	the	input	of	the	original	

system	 	(ݑ) using	 the	 corresponding	 expression	 in	 Equation	 4‐34.	 While	

performing	 the	numerical	 simulations,	 the	dynamics	 of	 the	 servo‐hydraulic	

test	 structure	 system	 was	 represented	 by	 the	 nonlinear	 model	 as	 it	 is	

presumed	to	be	more	representative	of	the	real	behaviour.	Figure	5‐1	shows	

step	 responses	 of	 the	 system	 with	 linear	 and	 nonlinear	 state‐space	

controllers.	 It	was	 observed	 that	 the	 PID	 response	was	 almost	 identical	 to	

linear	 state‐space	 controller	 which	 was	 expected	 as	 both	 were	 based	 on	

linearized	representation	of	the	system.	Therefore	only	the	linear	state‐space	
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Figure	5‐15	compares	the	case	when	the	value	 for	ܾ௣	 in	 the	controller	 is	

overestimated	by	10%	with	the	case	when	there	is	no	error.	It	is	readily	seen	

that	 10%	 of	 error	 has	 made	 the	 system	 unstable.	 A	 similar	 graph	 was	

conducted	 for	 5%	 error	 (not	 shown	 in	 figure	 for	 sake	 of	 clarity)	 and	 the	

control	 design	 was	 able	 to	 handle	 it	 without	 stability	 problems.	 Similar	

comparisons	 were	 done	 for	 negative	 percent	 errors	 (underestimation)	

wherein	 the	 accuracy	 did	 not	 change	 much	 and	 there	 were	 no	 instability	

problems.	

Conducting	 the	 same	 procedure	 for	ܥ௧௣,	
௏೟
ସఉ೐
	 and	 	ߟ showed	 that	 the	

proposed	 control	 design	 can	 easily	 handle	 errors	 within	 20%	 of	 the	 real	

value.	

5.5 Conclusion	

The	controller’s	ability	to	track	the	command	displacements	accurately	is	

crucial	in	the	overall	stability	and	accuracy	of	the	real‐time	PSD	testing.	For	

the	displacement	control	loop,	it	was	shown	that	a	controller	with	improved	

performance	 can	 be	 designed	 using	 nonlinear	 state	 space	 control	 design	

techniques,	provided	that	a	representative	model	of	the	system	is	available.		

Simulations	were	done	 for	a	 servo‐hydraulic	 system	attached	 to	a	 linear	

structure	 for	 cases	 with	 and	 without	 saturation	 in	 servo‐valve	 and	 it	 was	

concluded	that	a	NL	controller	can	improve	the	tracking	capabilities.	
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Moreover,	the	proposed	NL	controller	was	compared	to	PID	controller	by	

implementing	 it	 in	 a	 real‐time	 PSD	 test	 simulation	 to	 show	 that	 it	 can	

decrease	the	time	lag	of	the	measured	displacement.	

Robustness	of	the	nonlinear	control	design	with	respect	to	some	identified	

physical	parameters	was	investigated	and	it	was	observed	that	errors	within	

reasonable	range	can	be	easily	handled	in	terms	of	instability	without	loss	of	

accuracy.	

Future	 research	 is	 needed	 on	 application	 of	 the	 nonlinear	 controller	 to	

multi‐input,	 multi‐output	 system	 control	 together	 with	 a	 comprehensive	

numerical	study	and	experimental	validation.	
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6 Test	setup	design	

The	 design	 of	 the	 test	 specimen	 considers	 the	 displacement	 and	 force	

limitations	of	 the	existing	actuators.	These	actuators	have	a	stroke	range	of	

േ5"	(12.7	cm)	and	have	a	force	limit	of	5.5	Kip	(24.5	kN).	

The	aim	is	to	design	a	test	setup	that	exhibits	nonlinear	behaviour	within	

above	actuators	limitations.	Figure	3‐1	shows	a	sketch	of	the	test	setup.	This	

single‐degree‐of‐freedom	system	consists	of	a	short	column	with	wide	flange	

section	that	 is	hinged	to	a	support	by	means	of	a	plate	and	a	clevis.	As	 it	 is	

seen	 in	 the	 figure,	 replaceable	 steel	 coupons	 are	 used	 to	 provide	moment	

resistance	 for	 the	 support.	 Since	 the	 moment	 resistance	 capacity	 of	 the	

coupons	 is	 smaller	 than	 the	 columns,	 the	 nonlinear	 behaviour	 (yielding)	

initiates	 in	 the	 coupons	 and	 the	 column	 is	 expected	 to	 remain	 elastic.	

Therefore,	 after	 each	 nonlinear	 PSD	 test,	 the	 sacrificial	 coupons	 can	 be	

replaced	easily	at	a	low	cost.	
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In	order	to	be	able	to	observe	nonlinear	response	in	the	experimental	test	

set‐up,	the	design	base	rotation	ߠௗ	will	be	set	higher	than	the	yield	rotation	

	.௬ߠ

ௗߠ ൌ ௬ߠ	ߙ ൌ ߙ ௬݂	݈
ܧ	݀

݁ݎ݄݁ݓ			 ߙ ൐ 1	 Eq.	6‐4	

On	the	other	hand,	because	of	the	actuator	stroke	limit,	test	setup	cannot	

move	more	than	5”	(12.7	cm)	to	either	side.	Hence	according	to	the	Figure	3‐

1	

݄	sin	ሺߠௗሻ ൑ 5"	 Eq.	6‐5	

or	approximately	

ௗߠ	݄ ൑ 5" ⇒ ߙ	݄
	 ௬݂	݈
ܧ	݀

൑ 5" ⇒ ݄ ൑ 5"
݀ ܧ
ߙ ݈ ௬݂

	 Eq.	6‐6	

Also	for	a	single‐degree	of	freedom	system	such	as	the	one	in	Figure	3‐1,	

ignoring	the	self‐weight	of	 the	system,	static	equilibrium	of	moments	about	

point	݋	gives	

݄	݌ ൌ ܶ	݀ ⇒ ݌ ൌ
ܶ	݀
݄
	 Eq.	6‐7	

And	the	force	applied	by	the	actuator	cannot	exceed	5.5	Kip	ሺ24.5	kNሻ.	So,	
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௠௔௫݌ ൌ
௠ܶ௔௫	݀
݄

൑ 5.5	Kip	 Eq.	6‐8	

which	according	to	Eq.	6‐2	gives	

2	 ௬݂	ܣ	݀
݄

൑ 5.5	Kip ⇒
	1
݄
	൑

5.5 Kip
2 ௬݂ ܣ ݀

	 Eq.	6‐9	

Combining	Eq.	6‐6	with	Eq.	6‐9	shows	that	the	column	needs	to	be	in	the	

following	range.	

2	 ௬݂	ܣ	݀
5.5	Kip

൑ ݄ ൑ 5"
ܧ	݀
	݈	ߙ	 ௬݂

	 Eq.	6‐10	

It	was	decided	to	use	a	wide‐flange	section	of	ܹ6 ൈ 20	for	the	column	and	

for	 the	 coupons	 a	 diameter	 of	 0.25"	ሺ0.635	cm)	was	 selected	 that	 gives	 an	

area	 of	 ܣ ൌ 98.2 ൈ 10ିଷ	inଶ	ሺ0.634	cmሻ.	 The	 clevises	 available	 in	 the	

structural	laboratory	at	the	University	of	Alberta	dictates	a	coupon	length	of	

݈ ൌ 8.13"ሺ20.65cmሻ.	 The	distance	 between	 the	 coupons,	 as	 indicated	 in	 the	

Figure	3‐1,	.was	chosen	to	be	݀ ൌ 6"ሺ15.24cmሻ.	

Assuming	 ௬݂ ൌ 34	ksi	ሺ234	 ୒

୫୫మሻ,		ܧ ൌ 29000	ksi	ሺ2 ൈ 10ହ ୒

୫୫మሻ	and	ߙ ൌ 3,	

Eq	3‐10	becomes	
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2
	34	ksi	ሺ98.2ሻ10ିଷ	inଶ	6"

5.6	kips
൑ ݄ ൑ 5"

6" 29000 ksi
3ሺ8.13"ሻ 34 ksi

	

⇒ 7.16" ൑ ݄ ൑ 1000"	

Eq.	6‐11	

As	can	be	observed	for	height	of	the	column	there	is	a	wide	range	to	select	

from.	However	one	should	be	aware	that	the	upper	limit	is	corresponding	to	

ߙ ൌ 3.	 That	 implies	 that	 any	 height	 less	 than	 1000"	 corresponds	 to	 bigger	

values	of	ߙ.	According	to	the	space	available	in	the	structural	lab	a	height	of	

50"ሺ127cmሻ	was	chosen	to	be	used.	

Buckling	 of	 the	 coupons	 also	 needs	 to	 be	 considered.	 Knowing	 that	 the	

ends	of	the	coupons	are	fixed,	buckling	load	of	a	coupon	is	

ܫ	ܧ	ଶߨ
ሺ݇	݈ሻଶ

ൌ
		ksi	29000		ଶߨ

ߨ
4 ൬
0.25′′
2 ൰

ସ

ሺ0.5		8.13′′ሻଶ
ൌ 3.32	kips	ሺ14.8	kNሻ	

while	the	yielding	force	is	

௬݂	ܣ ൌ 34		
0.25ଶ	ߨ

4
ൌ 1.67	kipsሺ7.43	kNሻ	

This	means	that	the	coupons	will	yield	long	before	buckling.	
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Appendix	A	

Table	of	Laplace	Transforms	

Number	 	ሻݏሺܨ ݂ሺݐሻ, ݐ ൒ 0

1	 1	 ሻݐሺߜ

2	 1
ݏ
	

1ሺݐሻ

3	 1
ଶݏ
	

ݐ

4	 2!
ଷݏ
	

	ଶݐ

5	 ݉!
	௠ାଵݏ

௠ݐ

6	 1
ሺݏ ൅ ܽሻ

	
݁ି௔ ௧	

7	 1
ሺݏ ൅ ܽሻଶ

	
ݐ ݁ି௔ ௧	

8	 1
ሺݏ ൅ ܽሻ௠

	
1

݉ െ 1
௠ିଵݐ ݁ି௔ ௧	

9	 ܽ
ݏሺݏ ൅ ܽሻ

	 1 െ ݁ି௔ ௧	

10	 ܽ
ݏଶሺݏ ൅ ܽሻ

	 1
ܽ
ሺܽ ݐ െ 1 ൅ ݁ି௔ ௧ሻ	

11	 ܾ െ ܽ
ሺݏ ൅ ܽሻሺݏ ൅ ܾሻ

	
݁ି௔ ௧ െ ݁ି௕ ௧	
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12	 ݏ
ሺݏ ൅ ܽሻଶ

	 ሺ1 െ ܽ ሻ݁ି௔ݐ ௧	

13	 ܽଶ

ݏሺݏ ൅ ܽሻଶ
	

1 െ ݁ି௔ ௧ሺ1 ൅ ܽ 	ሻݐ

14	 ሺܾ െ ܽሻݏ
ሺݏ ൅ ܽሻሺݏ ൅ ܾሻ

	
ܾ ݁ି௕ ௧ െ ܽ ݁ି௔ ௧	

15	 ܽ
ሺݏଶ ൅ ܽଶሻ

	 sinሺܽ ሻݐ

16	 ݏ
ሺݏଶ ൅ ܽଶሻ

	 cosሺܽ ሻݐ

17	 ݏ ൅ ܽ
ሺݏ ൅ ܽሻଶ ൅ ܾଶ

	 ݁ି௔௧ cosሺܾ ሻݐ

18	 ܾ
ሺݏ ൅ ܽሻଶ ൅ ܾଶ

	
݁ି௔௧ sinሺܾ ሻݐ

19	 ܽଶ ൅ ܾଶ

ݏሾሺݏ ൅ ܽሻଶ ൅ ܾଶሿ
	 1 െ ݁ି௔௧ ቀcosሺܾ ሻݐ ൅

ܽ
ܾ
sinሺܾ 	ሻቁݐ
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Appendix	B	 Some	on	Differential	Geometry	(Lynch	2009)	

1	 Changes	of	Coordinates	or	Diffeomorphisms	

A	 nonlinear	 change	 of	 coordinates	 ࢠ ൌ 	ሻ࢞ሺࢠ is	 a	 function	 defined	 on	

ܷ ⊆ Թ௡	and	mapping	to	Թ௡. It must have the properties 

	ሻ࢞ሺࢠ .1 is	 an	 invertible	 function,	 i.e.,	 there	 must	 exist	 an	 inverse	

function	ିࢠ૚	such	that	

ሻ	ሻ࢞ሺࢠ૚ሺିࢠ ൌ ,࢞ ࢞∀ ∈ ܷ	

2. Both ࢠ and ିࢠ૚ are ܥஶ mappings. 

When	ܷ ⊆ Թ௡	the	change	of	coordinates	is	called	global.	When	this	is	not	

the	case,	 the	change	of	coordinates	 is	said	 local.	A	sufficient	condition	 for	a	

mapping	 to	be	 a	 local change	of coordinates is given by the Inverse Function 

Theorem (Marino and Tomei 1995). Note that Condition 2 is required, i.e., that 

the change of coordinate is ܥஶ, since these coordinates changes will be applied to 

the state of a system, and the systems are required to be expressed in the new 

coordinates	also	to	be	ܥஶ	or	smooth.	An	infinite	degree	of	smoothness	is	not	

usually	 required,	 but it is assumed to avoid keeping track of the degree of 
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smoothness. The invertibility Condition 1 allows to uniquely recover the original 

state coordinate from the new one. In addition to applying a change of coordinates 

to a system’s state, transformation of a system’s output variable or time is also 

possible. 

2 Vector	Fields	

A	vector field on	ܷ ⊆ Թ௡	is	a	ܥஶ	mapping	from	ܷ	to	Թ௡. It is customary to 

write vector fields using one of two notations. The first notation represents vector 

fields as column vectors. The basis used to represent the vector field is implied 

and this might lead to confusion. 

ሻ࢞ሺࢌ ൌ ൮

ଵ݂ሺ࢞ሻ

ଶ݂ሺ࢞ሻ
⋮

௡݂ሺ࢞ሻ

൲ ൌ ൫ ଵ݂ሺ࢞ሻ, 	 ଶ݂ሺ࢞ሻ, … , ௡݂ሺ࢞ሻ൯
்
	

Alternately 

ሻ࢞ሺࢌ ൌ෍ ௜݂

௡

௜ୀଵ

ሺ࢞ሻ	
߲
௜ݔ߲

	

where	 డ

డ௫೔
	 is	 the	 ݅th	 unit	 tangent	 vector	 in	 the	 	.coordinates‐ݔ The	 latter	

notation	 provides	 more	 information	 in	 that	 the	 basis	 used	 to	 express	 the	

vector	field	is	stated	explicitly.	

3	 Differential	Geometry	Functions	Used	in	the	Text	
Lie	brackets	
Lie	 brackets	 between	 two	 vector	 fields	 	ࢌ and	 	ࢍ is	 another	 vector	 field	

which	is	defined	in	local	coordinates	as	
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ࢌ݀ܽ
ଵࢍ ൌ ሾࢌ, ሿࢍ ൌ

ࢍ߲
߲࢞

ࢌ െ
ࢌ߲
߲࢞

	ࢍ

Iterated	Lie	brackets	are	defined	as	

ࢌ݀ܽ
௞ࢍ ൌ ,ࢌൣ ࢌ݀ܽ

௞ିଵࢍ൧, ݇ ൒ 1	

ࢌ݀ܽ
଴ࢍ ൌ 	ࢍ

Lie	Derivative	

Lie	derivative	of	function	݄ሺ࢞ሻ	along	vector	field	ࢌ	is	the	inner	product	of	

the	gradient	of	݄ሺ࢞ሻ	defined	as	

݄݀ ൌ
߲݄
߲࢞

ൌ ൬
߲݄
ଵݔ߲

,
߲݄
ଶݔ߲

, … ,
߲݄
௡ݔ߲

൰	

and	vector	field	ࢌ,	therefore	

݄ࢌܮ ൌ 〈݄݀	, 〈ࢌ ൌ෍ ௜݂

௡

௜ୀଵ

	
߲݄
௜ݔ߲

	

and	the	iterative	form	of	it	is	explained	as	

ࢌܮ
௞݄ ൌ ࢌܮࢌܮ

௞ିଵ݄ ൌ 〈݀൫ࢌܮ
௞ିଵ݄൯	, ,〈ࢌ ݇ ൒ 1	

ࢌܮ
଴݄ ൌ ݄	

Sequential	form	of	Lie	Derivative	is	defined	as	

݄ࢌܮࢍܮ ൌ 〈݀൫݄ࢌܮ൯, 	〈ࢍ
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4	 Distributions	

A	݇‐dimensional	distribution	∆	defined	on	ܷ ⊆ Թ௡	is	a	map	which	assigns	to	

each	ݔ ∈ ܷ,	a	݇‐dimensional	subspace	of	Թ௡	(or	more	precisely	 the	 tangent	

space	 ௫ܶԹ௡)	 such	 that	 for	 all	 ଴ݔ ∈ ܷ	 there	 exists	 a	 neighbourhood	 ܷ଴ ⊆ ܷ	

containing	ݔ଴and	݇	smooth	vector	fields	such	that	

1.		ሼ ଵ݂ሺݔሻ, … , ௞݂ሺݔሻሽ	are	linearly	independent	∀ݔ ∈ ܷ଴	

2.		∆ሺݔሻ ൌ ሼ݊ܽ݌ݏ ଵ݂ሺݔሻ, … , ௞݂ሺݔሻሽ	for	all	ݔ ∈ ܷ଴.	

Note	that	in	Condition	1,	“linear	independence”	is	the	usual	definition	on	Թ௡	

from	linear	algebra.	In	Condition	2	the	span	on	the	RHS	involves	real	 linear	

combinations	 of	 the	 constant	 vectors	 ଵ݂ሺݔሻ, … , ௞݂ሺݔሻ	 in	Թ௡,	 that	 is,	 it	 is	 a	

subspace	 of	Թ௡.	 In	 many	 cases	 we	 use	 so‐called	 generating	 vector	 fields	

௜݂ሺݔሻ, 1 ൑ ݅ ൑ ݇	 to	 define	 a	 distribution,	 however,	 the	 ௜݂ሺݔሻ	 are	 only	 one	

choice	of	basis	for	the	subspace	∆ሺݔሻ	and	others	can	be	chosen.	For	example	

if	 ∆ሺݔሻ ൌ ሼ݊ܽ݌ݏ ଵ݂ሺݔሻ, ଶ݂ሺݔሻሽ	 then	 we	 also	 have	∆ሺݔሻ ൌ ሼ݊ܽ݌ݏ ଵ݂ሺݔሻ ൅

ଶ݂ሺݔሻ, ଵ݂ሺݔሻ െ ଶ݂ሺݔሻሽ.	

The	dimension	of	 a	distribution	∆,	denoted	as	dim	൫∆ሺݔሻ൯	 is	 a	 function	of	 	ݔ

and	 is	 equal	 to	 the	 dimension	 of	 the	 subspace	 ∆ሺݔሻ.	 A	 distribution	 is	 said	

nonsingular	on	ܷ	if	it	has	constant	dimension	on	ܷ.	In	nonlinear	control,	we	

often	assume	the	relevant	distributions	are	non‐singular.	

Given	a	݇	 ‐dimensional	distribution	∆	defined	on	ܷ	and	a	 vector	 field	݂	on	

	ܷ ⊆ Թ௡,	we	say	݂	belongs	to	∆	if	

݂ሺݔሻ ∈ ∆ሺݔሻ, ݔ∀ ∈ ܷ		

For	more	information	please	refer	to	the	reference.	
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Appendix	C	 Matlab	Codes	and	Simulink	Models	

Typical	Matlab	 Code	 to	 define	 the	 parameters	 and	 design	 the	 controller	

(pole	placement)	using	the	“place”	function	of	Matlab.	

  
clear all; 
clc; 
% Structure 
    m=1000; 
    c=500; 
    k=5000000; 
        
% Both systems 
    mp=1025; 
    bp=356.18e3; 
    %ap=0.0808; 
    ap=0.1095; 
    %v4b=5.65e-10; 
    v4b=4e-11; 
    cp=3e-11; 
    tm=0.004; 
    xvmax=2.73e-3; 
    %xvmax=2.73e+3; 
     
% Linear 
    kc=1.5e-11; 
    kq=0.035; 
     
% Nonlinear 
    ps=207e5; 
    n=2.617e-3; 
    %xvmax=2.73e-3; 
    kv=1; 
    wv=1/0.004; 
    
% PID 
    kp=80; 
    kd=0; 



101	
	

    ki=0.5; 
     
 %State-space design for linear model with 3 states 
    a1=[0 1 0; -k/(m+mp) -(bp+c)/(m+mp) ap/(m+mp); 0 -ap/v4b -
(kc+cp)/v4b]; 
    b1=[0; 0; kq/v4b]; 
    c1=[1 0 0]; 
    p=[-123,-26.8+29.9*1i,-26.8-29.9*1i]; 
    kcl1=place(a1,b1,p); 
    nbar1=-inv(c1*((a1-b1*kcl1)\b1)); 
     
 %State-space design for linear model with 4 
    a2=[0 1 0 0; -k/(m+mp) -(bp+c)/(m+mp) ap/(m+mp) 0; 0 -ap/v4b 
-(kc+cp)/v4b kq/v4b; 0 0 0 -wv]; 
    b2=[0; 0; 0; kv*wv]; 
    c2=[1 0 0 0]; 
    p=[-242,-21.9+31.2*1i,-21.9-31.2*1i,-141]; 
    kcl2=place(a2,b2,p); 
    nbar2=-inv(c2*((a2-b2*kcl2)\b2)); 
     
% Nonlinear state-space design for non-linear model with 4 states 
    a3=[0 1 0 0; 0 0 1 0; 0 0 0 1; 0 0 0 0]; 
    b3=[0; 0; 0; 1]; 
    c3=[1 0 0 0]; 
    p=[-242,-21.9+31.2*1i,-21.9-31.2*1i,-141]; 
    kcl3=place(a3,b3,p); 
    nbar3=-inv(c3*((a3-b3*kcl3)\b3));  
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Function	definition	for	nonlinear	behaviour	of	the	servo‐valve.	

 
function flowB = fcn(xv,PL) 
xv;PL; 
%%% this fcn calculates the flow  considering the leakage  
Cd=0.58; 
rho=700; %kg/m^3, mass density 
PS=207e5; %Pa , supply pressure 
d=0.038; %m, spool diameter 
% xvmax=2.73e-3; %m max spool opening 
xvmax=2.73e-3; 
%%%% leakage properties of the individual valve 
%xvlap=6/100;  
xvlap=0;  
%Aeffnull=2.056e-6; %m^2 
Aeffnull=0; 
xvlapm=-1*xvlap; 
%% default A1 and A4 
A1=0; 
A4=0; 
  
%%% define the orifice areas  
if xv <= xvlapm 
    A1=0; 
    A4=((pi*d*xvmax-2*Aeffnull)/(1-xvlap))*abs(xv)-(((pi*d*xvmax-
2*Aeffnull)/(1-xvlap))*xvlap-2*Aeffnull); 
end 
if xv >= xvlap 
    A4=0; 
    A1=((pi*d*xvmax-2*Aeffnull)/(1-xvlap))*abs(xv)-(((pi*d*xvmax-
2*Aeffnull)/(1-xvlap))*xvlap-2*Aeffnull); 
end 
if xv > xvlapm && xv <=0 
    A1= -(Aeffnull/xvlap)*abs(xv)+Aeffnull; 
    A4= (Aeffnull/xvlap)*abs(xv)+Aeffnull; 
end 
if xv > 0 && xv < xvlap 
    A1= (Aeffnull/xvlap)*abs(xv)+Aeffnull; 
    A4= -(Aeffnull/xvlap)*abs(xv)+Aeffnull; 
end 
     
%%% calculate the flow 
flowB=(Cd*A1*((PS-PL)/rho)^0.5)-(Cd*A4*((PS+PL)/rho)^0.5); 
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MODIFICATIONS OF INTEGRATION ALGORITHMS TO ACCOUNT FOR LOAD 
DISCONTINUITY IN PSEUDODYNAMIC TESTING 

 
 

S. Hadi Moosavi1, Oya Mercan2 

 
 

ABSTRACT 
When there is a sudden change in the loading (e.g., rectangular pulse), the 
discretized version of the load history will involve an artificial impulse, which 
manifests itself as an amplitude distortion in the structural response obtained by 
the numerical solution of the equation of motion. An approach to account for load 
discontinuity by modifying existing integration algorithms used in the solution of 
force equation of motion is introduced in this paper. Modified versions of four 
different algorithms, namely Central Difference, Newmark Explicit, α-method 
with a fixed number of iterations, and Rosenbrock-W integration algorithms are 
presented. The general approach in modifying an integration algorithm to account 
for load discontinuity is discussed and the improved accuracy of these modified 
algorithms is presented through numerical simulations. 

 
 

Introduction 
 

Pseudodynamic (PSD) test method is a displacement based experimental technique that 
can be used to determine the behavior of structural systems subjected to dynamic loading. In a 
PSD test, a direct step by step integration algorithm generates the command displacements by 
solving the force equation of motion. These displacements are imposed on the test structure by a 
servo-hydraulic system, and using the measured restoring force feedback from the deformed test 
structure, the integration algorithm computes the subsequent command displacements. For load-
rate insensitive structures, PSD testing method can be applied in slow time (using an expanded 
time axis), or for structures that exhibit load-rate dependent vibration characteristics, it can be 
applied at fast rates (ideally in real-time). Both the slow-time and real-time PSD testing have 
been successfully applied for seismic loading (Mahin 1985, Nakashima 1999), but if the loading 
history has a sharp discontinuity as in the case of pulse loading (see Fig. 1-a), the numerical 
solution of the force equation of motion will have an amplitude distortion which may render the 
PSD test results inaccurate. This is due to the extra impulse (shaded area in Fig. 1-b) introduced 
during the discretization of the loading history. 
 

To circumvent this problem, the use of step by step solution of the momentum equation 
of motion was suggested and the resulting improved accuracy was verified through numerical 
simulations (Chang, 2001, 2002, 2007a) and experiments (Chang, 1998). In this approach, the 
force equation of motion is replaced by its integral form, which is the momentum equation of 
motion. As a result of the time integration of the load that appears on the right hand side of the 
momentum equation, provided that the area under the load history is computed correctly, the 
discontinuity in the load history is eliminated. Although the success of the momentum approach 
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has been presented for Newmark explicit integration algorithm, replacing the force equilibrium 
equation with the momentum equation may not be a trivial task if one wishes to use an 
integration algorithm customized (e.g., unconditionally stable, implicit, real-time compatible) for 
particular testing needs. Other than the momentum approach, in an attempt to obtain an accurate 
solution in the presence of load discontinuity, Chang, (2007b) also proposed the use of a single 
time step immediately after the discontinuity that is much smaller than the discretization step 
size. This small step was recommended to be one-hundredth of the discretization step size or 
smaller. Especially within the context of real-time PSD testing, a variable time step is 
detrimental for it would result in inaccurate velocities as the displacement commands are 
typically imposed using a digital controller with a constant clock speed. 

 
The study presented here introduces an approach, which is referred to as limit approach, 

to account for the load discontinuity by modifying a given integration algorithm that solves the 
force equation of motion in its final form. Depending on the way a particular integration 
algorithm is formulated, these modifications generally involve updated force and/or acceleration 
values at the time of discontinuity. In the paper, the general approach (i.e., the limit approach) 
that introduces modifications to a given integration algorithm is discussed and then implemented 
to derive modified versions of the Central difference, Newmark explicit, α-method with a fixed 
number of iterations, and Rosenbrock-W integration algorithms. Both α-method and 
Rosenbrock-W algorithms are suitable for real-time testing, where the former is an implicit 
scheme. For each of the four integration algorithms considered in this paper, a summary of the 
original formulation is provided together with its modified version. The improved accuracy of 
the modified algorithms is presented through numerical simulations. 

 
The Limit Approach 

 
The limit approach starts by defining an intermediate step ݆ just after the load 

discontinuity between times ݅ (where the discontinuity takes place) and	݅ ൅ 1 (see Fig. 1-c). In 
order to be able to set it apart from the discretization time step size of ∆ݐ and thereby make the 
implementation of the limit approach for the modification of an algorithm easier to follow, the 
time step size associated with step ݆ is identified as ∆ݐᇱ.	 It should be noted the load value ݌௝ is 
the value of the load at the lower end of the discontinuity at step	݅. From the original formulation 
of a given integration algorithm, the information for step	݆ (which may include the displacement 
ሶݑ) ሻ, velocityݑ) ) and/ or acceleration (ݑሷ ), or an intermediate quantity defined by the particular 
integration algorithm to march forward) can be obtained using the information from step ݅ (see 
Fig. 1-c) and considering ݌௝ and ∆ݐᇱ. In order to obtain the information at the lower end of the 
discontinuity ሺ݅∗ሻ and thereby account for discontinuity effects properly, next step involves 
taking the limit of the expressions that define step ݆ information where ∆ݐᇱgoes to zero. On Fig. 
1-d the information (i.e., the expressions for the load, displacement etc.) associated with	݅∗are the 
results of this limit process. In programming the resulting modified algorithm, a flag needs to be 
set in order to identify the time step when discontinuity (i.e., step	݅) takes place. When that 
happens, the numerical values of for ݌௜∗	 ,  etc. need to be evaluated from the expressions	௜∗ݑ
obtained by the limit approach, and using these, the integration algorithm in its original form can 
march forward to compute information for step	݅ ൅ 1. 
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Implementation of the Limit Approach 
 

Central Difference Method 
 

The discretized form of the equation of motion for a single-degree-of-freedom (SDOF) 
system at time step ݅ is:  
 

ሷݑ	݉ ௜ ൅ ሶݑ	ܿ ௜ ൅ ௜ݑ	݇ ൌ ௜ (1)݌
 
 Central difference method uses a finite difference approximation for velocity and 
acceleration (Chopra, 2007). With a constant time step size of ∆ݐ, the velocity and acceleration at 
step	݅ are expressed as:  
 

ሶݑ ௜ ൌ
௜ାଵݑ െ ௜ିଵݑ

ݐ∆2
	 (2)

ሷݑ ௜ ൌ
1
ݐ∆
ቀ
௜ାଵݑ െ ௜ݑ

ݐ∆
െ
௜ݑ െ ௜ିଵݑ

ݐ∆
ቁ ൌ

௜ାଵݑ െ ௜ݑ2 ൅ ௜ିଵݑ
ଶݐ∆

 
(3)

 
 Substituting the velocity and acceleration from Eqs. (2) and (3) in Eq. (1), and solving the 
expression for	ݑ௜ାଵ:  
 

௜ାଵݑ ൌ ൤݌௜ െ ቀ
݉
ଶݐ∆

െ
ܿ

ݐ∆	2
ቁ ௜ିଵݑ െ ൬݇ െ

2 ݉
ଶݐ∆

൰ ௜൨ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥݑ
௣ො೔

/ ቂ
݉
ଶݐ∆

൅
ܿ

2 ݐ∆
ቃᇣᇧᇧᇧᇤᇧᇧᇧᇥ

௞෠

 
(4)

 
Implementation of Limit Approach to Obtain (݅∗) Information 
 

Considering Fig. 1-c and rewriting Eqs. (2) and (3) for step	݅, velocity and acceleration at 
that step are: 
 

ሶݑ ௜ ൌ
௝ݑ െ ௜ିଵݑ
ݐ∆ ൅ ݐ∆ ′

	 , ሷݑ ௜ ൌ
1

1
2 ሺ∆ݐ ൅ ݐ∆ ′ሻ

ቀ
௝ݑ െ ௜ݑ
ݐ∆ ′

െ
௜ݑ െ ௜ିଵݑ

ݐ∆
ቁ 

(5), (6)

 
Also, using the same equations, velocity and acceleration at step ݆ can be expressed as: 

Fig. 1. (a) Load history with discontinuity, (b) Discretized load history, (c) Load history with step ݆,      
(d) Load history after performing the limit

 ௜݌

 ݐ∆ ݐ∆ ݐ∆

 ௜ାଵ݌

ݐ∆ ݐ∆ ݐ∆

 ௜݌

 ௜ାଵ݌

,௝݌ ሺ݆ݑ, ሶݑ ݆, ሷݑ ݆ሻ

,௜ାଵ݌ ሺ݅ݑ൅1, ሶݑ ݅൅1, ሷݑ ݅൅1ሻ

݆ ݅ ൅ 1

,௜݌ ሺ݅ݑ, ሶݑ ݅, ሷݑ ݅ሻ 

݅, ݅∗	

ݐ∆ݐ∆ ݐ∆ ݐ∆ ′ݐ∆ ݐ∆

load 

time 

load 

time 

load 

time 

load 

time 

,௜݌ ሺ݅ݑ, ሶݑ ݅, ሷݑ ݅ሻ

݅ ݅ ൅ 1݅ ൅ 1	 ݅ ൅ 1݅	 ݅	

ሺܽሻ	 ሺܾሻ ሺܿሻ ሺ݀ሻ	

,௜ାଵ݌ ሺ݅ݑ൅1, ሶݑ ݅൅1, ሷݑ ݅൅1ሻ

,∗௜݌ ሺ݅ݑ∗, ሶݑ ݅
∗, ሷݑ ݅

∗ሻ
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ሶ௝ݑ ൌ
௜ାଵݑ െ ௜ݑ
ݐ∆ ൅ ′ݐ∆

	 , ሷ௝ݑ ൌ
1

1
2 ሺ∆ݐ ൅ ሻ′ݐ∆

ቀ
௜ାଵݑ െ ௝ݑ

ݐ∆
െ
௝ݑ െ ௜ݑ
′ݐ∆

ቁ 
(7), (8)

 
Eqs. (9) and (10) express the equation of motion at time steps ݅ and ݆, respectively: 
 

ሷݑ	݉ ௜ ൅ ሶݑ	ܿ ௜ ൅ ௜ݑ	݇ ൌ ௜ (9)݌

ሷ௝ݑ	݉ ൅ ሶ௝ݑ	ܿ ൅ ௝ݑ	݇ ൌ ௝ (10)݌
 
 Once Eq. (9) is solved for ݑ௝ (after substituting for	ݑሶ ௜ and	ݑሷ ௜ from Eqs. (5) and (6)), the 
result can be used to replace ݑ௝ in Eq.(10) which then can be solved for	ݑ௜ାଵ (after substituting 
for	ݑሶ௝ and	ݑሷ௝ from Eqs. (7) and (8)). Performing a limit where ∆ݐ′ → 0 gives an expression for 
 :௜ݑ	௜ିଵ andݑ	௜ାଵ in terms ofݑ	
 

௜ାଵݑ ൌ ൦
௜݌ ൅ ௝݌
2ᇣᇧᇤᇧᇥ
௣೔∗

െ ቀ
݉
ଶݐ∆

െ
ܿ

2 ݐ∆
ቁ ௜ିଵݑ െ ൬݇ െ

2 ݉
ଶݐ∆

൰ ௜൪ݑ

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௣ො೔
∗

/ ቂ
݉
ଶݐ∆

൅
ܿ

2 ݐ∆
ቃᇣᇧᇧᇧᇤᇧᇧᇧᇥ

௞෠

 

(11)

 
Comparing Eq. (4) with Eq.(11), application of limit approach to Central difference 

method reveals that to account for the load discontinuity, only the load value for (݅∗) needs to be 
redefined as the average value of the loads at each end of the discontinuity. 

 
Explicit Newmark method 

 
Newmark family integration methods (Newmark, 1959) can be customized by selecting 

two parameters (ߛ and	ߚ) which specify the variation of acceleration over a time step. These 
parameters also determine the accuracy and stability characteristics of the method. For	ߛ ൌ 0.5 
ߚ ൌ 0 Newmark's method becomes explicit and conditionally stable: 

 
௜ାଵݑ ൌ ௜ݑ ൅ Δݐ	ݑሶ ௜ ൅ 0.5	Δݐଶݑሷ ௜ (12)

ሷݑ ௜ାଵ ൌ
௜ାଵ݌ െ ௜ାଵݑ	݇ െ ܿሾݑሶ ௜ ൅ 0.5 Δݐ ሷݑ ௜ሿ

݉ ൅ 0.5	ܿ Δݐ
 

(13)

ሶݑ ௜ାଵ ൌ ሶݑ ௜ ൅ 	Δݐሾ0.5	ݑሷ ௜ ൅ 0.5 ሷݑ ௜ାଵሿ (14)
 
Implementation of Limit Approach to Obtain (݅∗) Information 
 
Defining the information for step ݆ using Eqs. (12)-(14) as required by the limit approach: 
 

௝ݑ ൌ ௜ݑ ൅ ሶݑ	′ݐ߂ ௜ ൅ ሷݑଶ′ݐ߂	0.5 ௜ (15)
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ሷ௝ݑ ൌ
௝݌ െ ௝ݑ	݇ െ ܿሾݑሶ ௜ ൅ ′ݐ߂	0.5 ሷݑ ௜ሿ

݉ ൅ ′ݐ߂	ܿ	0.5
 

(16)

ሶ௝ݑ ൌ ሶݑ ௜ ൅ 0.5	Δݐᇱሺݑሷ ௜ ൅ ሷ௝ሻ (17)ݑ
 
Performing a limit on the above expressions where	∆ݐ′ → 0, will yield 
 

∗௜ݑ ൌ ሶݑ  ,௜ݑ ௜
∗ ൌ ሶݑ ௜ (18), (19)

ሷݑ ௜
∗ ൌ

∗௜݌ െ ௜ݑ	݇ െ ሶݑ	ܿ ௜
݉

 
(20)

where ݌௜∗	 ൌ  ௝݌
 

From above equations, it turns out that, while the values for displacement and velocity 
remain the same, the acceleration value at the lower end of the discontinuity ሺ݅∗ሻ needs to be 
updated. By stepping forward to step 	݅ ൅ 1 using the updated information from Eqs. (18)- (20) 
derived consistently with Newmark explicit method formulation, the load discontinuity will be 
taken care of properly. 

 
Rosenbrock 
 

Considering an SDOF system the general implementation of Rosenbrock integration 
method proposed by Lamarche (2009) for real-time pseudo-dynamic testing is described in      
Fig. 2. 

 

 
 
Implementation of Limit Approach to Obtain (݅∗) Information  
 

Introducing step ݆ and taking the limit for the Rosenbrock algorithm, it can be easily 
shown that ݑ௝ and	ݑሶ௝ approach to ݑ௜ and	ݑሶ ௜, respectively (or equivalently ݑ௜∗ and	ݑሶ ௜

∗ are the 
same as ݑ௜ and	ݑሶ ௜, respectively). As a result, for Rosenbrock algorithm to handle the load 

Fig. 2. Rosenbrock integration algorithm 
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discontinuity properly, the information at step ݅ ൅ 1 right after the discontinuity needs to be 
calculated using	ݑ௜∗, 	ݑሶ ௜

∗ and ݌௜∗ which are the same as	ݑ௜,	ݑሶ ௜, and ݌௝, respectively. 
 

Alpha method 
 

Alpha method (Shing et al 2002) is an implicit method used in real-time pseudo-dynamic 
testing which is based on Hilber ߙ-method (Hilber et al 1977). As can be seen from Fig. 3, Alpha 
method starts by computing a predictor displacement in stage	 1 , which is followed by a fixed 
number of iteration substeps in stages 2  and	 3 ; during the last iteration substep an equilibrium 
correction is performed. Through the equilibrium error correction (stages 4  and	 5 ) the 
displacement and restoring force values are made available for the computation of the next step 
predictor displacement and, as a result, the actuator moves without interruption. 

 
 

 

 
 
 
 
 
 
Implementation of Limit Approach to Obtain (݅∗) Information  
 

Upon the application of the limit approach starting from stage	 1  in Fig. 3, the predicted 
displacement at step ݆ approaches to ݑ௜ after setting	∆ݐ′ → 0 (or equivalently	ݑො௜

∗ ൌ  ௜) and theݑ
displacement term in stage 2  becomes constant (i.e., ݑ௜∗ ൌ  ௜). Considering that both parametersݑ
ഥܯ	and ∗ܭ	  approach to	݉ application of the limit to stages 4  and 5  gives: 
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ݎ݋ݎݎ݁ ൌ ௠௘௔௦௨௥௘ௗݑ
௡ିଵ െ ௜ (21)ݑ

lim
∆௧′→଴

௝ݑ ൌ ∗௜ݑ ൌ ௠௘௔௦௨௥௘ௗݑ
௡ିଵ െ ሺݑ௠௘௔௦௨௥௘ௗ

௡ିଵ െ ௜ሻݑ ൌ ௜ݑ (22)

lim
∆௧′→଴

௝ݎ ൌ ∗௜ݎ ൌ ௠௘௔௦௨௥௘ௗݎ
௡ିଵ െ ݇ሺݑ௠௘௔௦௨௥௘ௗ

௡ିଵ െ ௜ሻݑ ൌ ௜ݎ (23)

 
 Eq. (23) is true for linear elastic systems. In stage	 6  the expression for acceleration can 
be revised for step ݆ as 
 

ሷ௝ݑ ൌ
1

Δݐ′ଶߚ
௝ݑൣ െ ௜ݑ െ Δ′ݐ	ݑሶ ௜ െ Δݐ′ଶሺ0.5 െ βሻݑሷ ௜൧ 

(24)

 
 Upon substituting the expression of ݑ௝ from stage 2  which has the expression for ݑො௝ 
embedded from stage 1 	, and as a result of the cancellations that take place, the zero over zero 
indeterminacy as 	∆ݐ′ approaches to zero is eliminated; and the acceleration for ݅∗ is obtained: 
 

ሷݑ ௜
∗ ൌ

െ݌௜ߙ ൅ ሺ1 ൅ ∗௜݌ሻߙ െ ܿ ሶݑ ௜ െ ௜ݎ
݉

 
(25)

where ݌௜∗	 ൌ  ௝݌
 
And the expression for velocity in stage 6  yields 
 

ሶݑ ௜
∗ ൌ ሶݑ ௜ (26)

 
The above application of the limit approach in modifying Alpha method reveals that, to 

compute the information at step	݅ ൅ 1 right after the discontinuity, information from ݅∗ needs to 
be used where the updated acceleration from Eq.(26) is used together with the value of the load 
at the lower end of the discontinuity. 
 

Numerical Simulations 
 

In order to verify the success of the proposed modifications in handling the load 
discontinuity, numerical simulation results for each integration algorithm are presented here. An 
undamped linear SDOF system with	݉ ൌ .݌݅݇	0.2533 ݇ ଶ/݅݊, andܿ݁ݏ ൌ  ݊݅/ݏ݌10݇݅
(i.e.,undamped natural period ௡ܶ ൌ  subjected to the two loading cases shown in Fig.4 is (.ܿ݁ݏ	1
considered. Fig. 4 (a) is a step pulse with an amplitude of 10 kips and duration of 0.1 sec.; 
whereas in Fig. 4 (b) the load value changes from +10 to -10 kips at the discontinuity and then 
increases to zero linearly over a duration of 0.1 sec. 
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discontinuity, the proposed modifications provide considerable improvements in the accuracy of 
the numerical results. The unmodified responses from each algorithm between Fig. 5 and 6 are 
the same as expected, since with a time step size of 0.1 sec., the discretized versions of the load 
cases in Fig. 4 (a) and (b) are the same (see Fig. 1 (b)). Depending on the accuracy 
characteristics of the particular integration algorithm, the agreement between the theoretical 
response and the modified numerical solution can be improved by using a smaller time step.  

 

 
Fig. 6. Simulation results for the loading case in Fig. 4(b). 

 
Conclusion 

 
Pseudodynamic testing method has been implemented successfully both in slow and real-

time for seismic loading of structures. However, when a sharp discontinuity exists in the loading 
history as in the case of pulse loading, the discretized version of the load will have an extra 
distortion which manifests itself as an amplitude distortion in the numerical response and may 
render the pseudodynamic test results inaccurate. Other than using very small time steps in 
discretizing the load, previous studies proposed the use of numerical solution of the momentum 
equation of motion that replaces the force equation of motion. Although the success of the 
momentum approach has been presented using Newmark explicit integration algorithm, 
replacing the force equilibrium with the momentum equation may not be a simple task if one 
wishes to use an integration algorithm customized for particular testing needs. The study 
presented here introduces a limit approach that considers the force equation of motion and 
modifies the integration algorithms in their final form to account for the load discontinuity. The 
general modification approach and its implementation to four integration algorithms are provided 
together with numerical simulation results that show the improved accuracy of the modified 
algorithms. 
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