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Abstract

This study presents the nonlinear design of a state space controller to
control hydraulic actuators under displacement control, specifically for real-
time pseudo-dynamic testing applications. The proposed control design
process uses the nonlinear state space model of the dynamics of the system
to be controlled; and utilizes state feedback linearization through a
transformation of the state variables. Comparisons of numerical simulation
results for linear state-space and nonlinear state-space controllers are given.
Also robustness of the control design with respect to identified parameters is
investigated. It is shown that a controller with improved performance can be
designed using nonlinear state space control design techniques, provided

that a representative model of the system is available.



Preface

There are several dynamic testing methods that have been introduced and
used to examine and/or verify the dynamic performance of conventional and
new structural systems. Some of these methods themselves are still under
research in an attempt to make them more efficient and accurate. Among
these, pseudo-dynamic (PSD) testing method and as its extension hybrid PSD
testing method offer economical and practical ways to assess the dynamic
behaviour of structural systems. If executed at fast rates (ideally in real-time)
these testing methods can handle load-rate dependent structures (such as
the ones that have dampers installed for seismic hazard mitigation purposes)

appropriately.

In a PSD test the equation of motion of the test structure is solved by a
direct step-by step integration algorithm where the inertial and damping
force characteristics are kept analytical. These displacements are imposed on
the test structure by hydraulic actuators; the resulting restoring forces from
the deformed structure are measured and fed back to the integration
algorithm for the computation of next step displacements. The method is
called hybrid PSD when the whole structure is split into experimental and
analytical substructures to avoid fabricating a big structure in the laboratory.

During a hybrid PSD test the command displacements generated by the



integration algorithm are imposed on the experimental and analytical

substructures and the results from both are combined and fed back.

One of the main challenges in using PSD method is the sensitivity of the
results to the experimental errors. This is because of the closed loop nature
of the method; i.e. in each time step of the test procedure, the integration
algorithm uses the measured information (which may be contaminated by
errors) from the previous step to generate the new displacements to be
applied. This fact implies that the errors in each step are affected from the
errors of the previous steps which may be cumulatively added together until
the end of the test. As a result PSD method suffers from propagation of the
error which at best causes accuracy problems or at worst renders the whole
test unstable (i.e., the test needs to be aborted as the displacements grow

unboundedly).

From a stability (and also accuracy) point of view, the delay in the
measured signals (as opposed to lead, or amplitude errors) has been found
critical in real-time testing (Mercan and Ricles 2008). The delay mainly arises
due to the time it takes the actuators to reach the command displacements

issued by the integration algorithm.

In general a PID controller (or a modified version) is employed to control
the actuator displacements which may not provide acceptably accurate
tracking especially when large displacements need to be imposed at fast

rates under considerable load. This may be due to the fact that under these



types of conditions, the servo-hydraulic system nonlinearities are invoked or
the test structure presents highly nonlinear behaviour. Hence, when
nonlinearities in the servo-hydraulic system are invoked, there might be a

need to use nonlinear state-space controller to account for them.

Due to its matrix form, a state-space control is preferable to a PID
controller in cases when physically coupled multiple degrees of freedom
need to be controlled. The main effort of the research presented is to develop
a control algorithm based on advanced control theories (e.g. nonlinear state-
space) and assess its performance in comparison with a PID controller.
Simulations are done using a model of the servo-hydraulic system that
accounts for nonlinearities. This study is intended to lead the application of

nonlinear state-space control strategy in PSD testing method.
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1 Introduction

1.1 General
This chapter contains background information about seismic testing
methods. The motivation and objective of the research and organization of

the dissertation are also described.

1.2 Seismic Testing Methods of Structures

One of the main goals in seismic performance testing is to impose loading
conditions on a test specimen that are representative of those that might
happen during a real earthquake. To achieve this goal, various forms of
earthquake and structural dynamic testing methods have been the subject of

research.

Four experimental laboratory techniques are typically used in seismic
performance testing of structures: quasi-static testing, shaking table testing,

effective force testing (EFT) and pseudo-dynamic (PSD) method

In a quasi-static test, a predefined cyclic displacement history is applied to
the structure or structural component under study and the behaviour is

observed and analyzed. The predefined displacement history, if not selected

5



from some typically used displacement histories, is based on a response
computed from a dynamic time history analysis prior to testing. This method
is commonly used and economical. However, it is limited in terms of
delivering the true earthquake response. This is because the model with
which the pre-test dynamic analysis is performed may not accurately predict
the behaviour and in turn, the resulting displacement time history may not

correspond to the real earthquake response.

Placing a structure on a shaking table and exerting a properly scaled
ground motion may be the most realistic method. In spite of this, due to
payload restrictions of shake tables, shaking table tests are implemented on
small-scale test structures. This implies that the ground acceleration needs to
be scaled (compressed) accordingly. As a result the available time for
observing the behaviour will be very little during the test. Generally
speaking, despite the fact that the shaking table may be representative of the
actual seismic behaviour, the combined effects of the need to construct the
complete structure, small scale test specimens, short observation time and

finally the cost limit the use of shaking table.

Effective force testing (EFT) is a real-time testing method. This method
uses a force control approach and can be employed in real-time earthquake
simulation of large scale structures. Knowing the structural mass and ground
acceleration history, the complete force history that should be applied to the

structure is calculated beforehand. Despite the conceptual simplicity, the



implementation of this method has been observed to be challenging due to
actuator-structure interaction (Dimig et al. 1999). To overcome this problem,
Zhao (2003) proposed a nonlinear velocity compensation scheme and
verified it through simulations and experimental studies under limited

conditions.

In the late 1970s and early 1980s PSD method was initiated as an
experimental technique in which the displacement response of structure to a
given ground acceleration is numerically calculated and quasi-statically
imposed on the structure (Takanashi et al. 1975; Okada et al. 1980; Mahin
and Williams 1981; Shing and and Mahin 1983; Mahin and Shing 1985). This
computed response is based on analytically predefined inertia and viscous
damping as well as the experimentally measured structural resisting force.

Details for the procedure are given below.

1.3 PSD and Hybrid PSD testing method

In a PSD test, the test structure is first idealized as a discrete parameter
system. Thereby for a structure subjected to ground acceleration (Figure 1-1)
the governing equations of motion can be expressed as a system of second

order ordinary differential equations with respect to time.

Ma(t) + Cv(t) +r(t) = P(M,ay,t) Eq. 1-1



Ma(t) + Cv(t) +r(t) = P(M,ay,t)

Figure 1-1 Structure subject to ground acceleration in a real earthquake

In the above equation M and C are the mass and damping matrices,
respectively; a(t) and wv(t) are the acceleration and velocity vectors
respectively; r(t) is the resisting force vector in the structure and P(t) is the
external (effective) load vector that is obtained using the mass matrix and
the given ground acceleration. All of the matrices and vectors defined above
are associated with the degrees of freedom (DOFs) of the idealized structure.
For a step-by-step simulation or testing (e.g. PSD) a discretized form of Eq. 1-

1 is used

Ma,-+Cvl-+ri=P,- Eq1-2

At each step of a conventional (slow and in extended time scale) PSD test
(see Figure 1-2) the above equation of motion is solved using a direct step-

by-step integration algorithm to generate the command displacements.
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Figure 1-2 PSD testing method

These target displacements are imposed by hydraulic actuators under a
feedback control quasi-statically. Then the resisting forces from the structure
are measured and fed back to the integration algorithm to be used to
generate target displacements for the next step. It should be noted that
depending on the experiment rate and dynamic characteristics of the test
structure, the measured restoring force may include stiffness (strain-
dependent), damping or inertial forces. Capturing inertial force contribution
in the measured restoring force is not desirable, that is why special attention

is paid to minimize the moving mass in the experimental test set-up.

The main feature of PSD testing method is that the resisting forces are
measured experimentally from the deformed test structure and are used by
the integration algorithm in command generation. This assures that any
nonlinear characteristics associated with the resisting forces are properly

accounted for.
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Figure 1-3 Hybrid PSD testing method

Hybrid PSD test method (Figure 1-3) is an economical and practical
extension of PSD testing. In this method only a portion of the test structure,
for which a reliable analytical model may not exist is tested physically (which
is referred to as the experimental substructure), and the remaining part is
modeled in a computer (and referred to as the analytical substructure). In a
hybrid PSD test the two substructures are coupled together; the command
displacements generated by the integration algorithm are imposed to both
substructures simultaneously, and the restoring forces coming from both are

combined and fed back to the integration algorithm.

In a conventional PSD test, since the target displacements are imposed
quasi-statically (i.e. in an extended time scale), the behaviour of structures
with material properties or components that are load-rate dependent may

not be accurately captured. Examples of these load-rate dependent structural
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components and devices are metallic, friction, visco-elastic, viscous fluid,
tuned mass, tuned liquid, elastomeric dampers and lead rubber bearings
which are introduced into structures for vibration mitigation purposes. For
assessing the capabilities of structures equipped with these devices, it is
necessary to perform the PSD test dynamically at rates approaching to real-

time.

In PSD testing method the results are sensitive to experimental errors.
This is because the method has a closed loop algorithm; i.e. in each time step
of the test procedure, the integration algorithm uses the measured
information from the previous step (which may be contaminated by errors)
to generate the new displacements to be applied. This means that the errors
in each step are affected from the errors of the previous steps which are
cumulatively added together until the end of the test. Hence PSD method is
prone to propagation of the error, which at best causes accuracy problems or
at worst renders the whole test unstable (i.e., the test needs to be aborted as
the displacements grow unboundedly). Mercan (2007) showed that actuator
delay in following the command displacements in experimental setup may
impair the dynamic stability of the test setup in a real-time PSD test. This is

also true for real-time hybrid PSD method.

One of the main sources of time delay is the time it takes the actuator to
reach the command displacement calculated by the integration algorithm

which cannot be done instantaneously. This is because it takes time to

11



convert energies (electrical to mechanical) in an experimental setup.
Therefore it is critical to use the available equipment efficiently so that the
corresponding time delay is minimum. This is done by using the control
theory to design servo-hydraulic controllers. The commonly used controller
in PSD tests is the well-known PID (proportional-Integral-Derivative)
controller. PID controllers are popular because they can be adjusted (tuned)
to control complex systems without the need for complete knowledge over

the dominating dynamics.

Conducting a fast (ideally real-time) PSD test requires accurate actuator
control by means of sophisticated servo-hydraulic strategies and reliable

computation scheme through efficient integration algorithms.

The dynamics of an electrohydraulic servo system is highly nonlinear and
involves sign and square root functions. However in most industrial contexts
linear control theory is used. Although linearization about an operating point
decreases design effort, it degrades the performance at regions off the
operating point. There have been several works on controlling

electrohydraulic servo systems using advanced control methods.

Lim (2002) applied linearization and pole placement. Yanada and Furuta
(2007) combined linear theory with an adaptive approach. Kwon et al.
(2007) applied full-state feedback linearization. Seo et al. (2007) used
feedback linearization to design controllers for displacement, velocity and

differential pressure control of a rotational hydraulic drive and Ayalew and

12



Jablokow (2007) used partial-input feedback linearization for the control of
electrohydraulic servo systems. Mintsa et al. (2009) used feedback
linearization to design an adaptive control for electrohydraulic position
servo system with the objective of enhancing robustness with respect to

variations of supply pressure.

1.4 Research goals and thesis organisation
In order to improve the tracking capability, and in turn the accuracy of the
overall real-time PSD test results, this thesis investigates the design and

implementation of advanced control algorithms.

As stated before, currently the majority of the controllers used in PSD
testing are PID based controllers. They are tuned according to a linearized
model of the system dynamics (for single input single output systems), or by
ad-hoc tuning; where the accurate window of operation is limited to the
linear range of the system dynamics. In the case of a multi-degree of freedom
test structure, state-space design offers considerable reduction in control
design effort (Mercan et al. 2006). The above mentioned methods, as they are
designed based on linear models of the system, may not provide acceptably
accurate tracking when the servo-hydraulic system nonlinearities are

invoked or the test structure presents highly nonlinear behaviour.

In this study the design of a nonlinear state-space controller for real time
pseudo-dynamic testing of structural systems is presented based on

advanced control theories using a nonlinear model of the system.

13



After the introduction in this chapter, Chapter 2 considers the governing
dynamics and equations of a servo-hydraulic system. Chapter 3 begins with
basics of control theory and afterwards linear and nonlinear control design
methods are introduced and discussed. Chapter 4 applies the control design
methods introduced in Chapter 3 on the dynamics discussed in Chapter 2.
Finally, Chapter 5 illustrates the implementation of the control methods by

computer simulation and compares the behaviour of different controllers.

Chapter 6 discusses the design of a single degree of freedom test setup to
investigate different aspects of a PSD test method (e.g. applying different
controllers). A conference paper titled “Modification of Integration Algorithm
to Account for Load Discontinuity in Pseudo-Dynamic Testing” that was done

along with this research is presented as an appendix.
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2 Modelling of the Servo-System and Identification of

system parameters (system ID)

To work out a new control approach with an improved performance for a
servo-hydraulic system, the behaviour of the system has to be well
understood through simulation of representative models. These models are
based on the important dynamics that govern the behaviour and include
physical parameters some of which may already be known (e.g. piston area)
while others need to be identified through system identification. While
deciding for the level of accuracy (complexity) of the model, one needs also
to consider if the parameters that appear in the model are easily obtainable
through system identification or not. In the next section different parts of a

servo hydraulic system and the governing dynamics are elaborated.

2.1 Components of a Servo-Hydraulic System

A position controlled servo-hydraulic system used in a PSD test typically
consists of a hydraulic power supply, a flow control servo-valve, a linear
actuator, a displacement transducer, and an electronic servo-controller.
Figure 2-1 shows a block diagram that represents how the above mentioned
parts are interconnected. The controller compares the command
displacement with the measured displacement coming from the

displacement transducer (e.g. an LVDT) to determine the position error and

15



then sends out a command signal to drive the flow control servo-valve. In fact
the command signal introduces a spool displacement in the servo-valve to
adjust the flow of pressurized oil from the hydraulic power supply to the

linear actuator chambers in order to move the actuator piston to the desired

position.
Hydraulic
Power Supply
Command v
Displacement
—  »|  Servo Flow Control Linear Load
» Controller Servo-Valve Actuator

Displacement |

Measured Transducer | Applied
Displacement Displacement
Figure 2-1 Block diagram of inner loop in PSD test method

The following gives a concise explanation of the parts shown in Figure 2-1.

e Hydraulic Power supply
A hydraulic power supply provides the pressurized fluid (oil) for the
hydraulic system. The level of oil pressure in the power supply is selected
considering several factors. Low pressure systems have less leakage but
physically larger components are needed to provide a specified force. On the

other hand, high pressure systems experience more leakage but have better

16



dynamic performance and have smaller (lighter) components. In many high

performance systems 3000 psi (210 bar) is selected for the system pressure.

2.1.1 Flow Control Servo-Valve
An electro hydraulic flow control servo valve is a servo valve which is
designed to produce hydraulic flow output proportional to electrical current

input. The mechanism and dynamics are discussed later.

2.1.2 Linear Hydraulic Actuator
A hydraulic actuator converts hydraulic energy to mechanical force or
motion. They are implemented where large actuation forces and fast motion

are required. Governing dynamics are given later.

2.1.3 Displacement Transducer

They generally come built-in with actuators and are often attached
directly to the piston rod. There are various types of feedback transducers in
use including inductive linear variable differential transformer (LVDT). It is a
common practice to include external displacement transducers in the test
setup to check the measurements of the internal transducers and to exclude

the actuator support motion.

2.1.4 Servo Controller
A controller continuously compares the command displacement against
the actuator position that is measured by a displacement transducer. The

result of this comparison is displacement error which is then manipulated by

17



a control law in order to generate and send a command signal to the servo

valve.

2.2 Dynamics of a Servo-Hydraulic System

2.2.1 Servo-valve dynamics

Servo-valves are used in servo-hydraulic systems to convert the electrical
command signal, coming from the controller, to a spool displacement. This
displacement along with the differential pressure between the servo-valve
ports results in oil flow through valve control ports into and out of the

actuator chamber enabling the motion of the hydraulic piston.

Among several types of servo-valves are the flow control servo-valves in
which the control flow at constant load pressure is proportional to the

electrical input current (Thayer 1958, revised in 1965).

Figure 2-2 shows a two stage flow control servo valve. It is called two-
stage as it has two portions containing a hydraulic amplifier. A hydraulic
amplifier is a fluid valving device which acts as a power amplifier, such as a

sliding spool and a nozzle flapper and will be elaborated in this chapter.
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Figure 2-2 Cross section of a two-stage flow control valve

In a two-stage servo-valve the electrical command signal applied to the
torque motor coils creates a magnetic force. This magnetic force causes a
deflection of armature-flapper assembly where the resulting deflection
restricts fluid flow through one of the two nozzles and redirects the flow to

displace the spool.
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Figure 2-3 Cross section of a two-stage flow control valve at operation

Spool displacement opens the supply pressure port (Ps) to one of the
control ports and at the same time opens the return tank port (Pg) to the
other control port. The displaced spool applies a force to the cantilever
spring shown in Figure 2-3 that creates a restoring torque on the armature-
flapper assembly. Spool movement continues until the restoring force
becomes equal to the torque from the magnetic force and that is when the
assembly moves back to the neutral position and the spool is held open in a
state of equilibrium until the electrical command signal changes to a new

level (Moog 2010).

In summary, as pointed out before, the spool position is proportional to

the input current. Also with constant pressure drop across the valve

20



(constant load pressure) the load flow is proportional to the spool position.
The governing dynamics of the servo valve will be discussed in two parts;
valve spool dynamics which includes the relationship between the input
current and the spool displacement and valve flow dynamics which explains
how the spool displacement relates to the flow from the valve to the actuator

chambers.

2.2.1.1 Valve Spool Dynamics

Servo-valves are complicated devices. Experience has shown that their
nonlinear and non-ideal characteristics make it hard to theoretically analyze
servo-valve dynamics in systems design. Instead, it is more convenient but
also acceptably accurate to approximate servo-valve dynamics with suitable
empirical transfer functions by using measured servo-valve response
(Thayer 1958, revised in 1965). Depending on the frequency range of
interest the servo-valve dynamics can be represented by a first order
transfer function.

Xy(s) Kk Eq.2-1
I(s) 1+4+7s

Where x, i, k, and t are servo-valve spool opening (see Figure 2-3),
differential current input to servo-valve, servo-valve static flow gain at zero
load pressure drop and t apparent servo-valve time constant. It should be
noted that on the left hand side of Eq. 2-1 the Laplace transforms of spool

opening and input current are used.
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2.2.1.2 Valve Flow Dynamics
As can be seen in the Figure 2-3, four flows can be recognized between the

servo-valve and the actuator ports.

T

202,
A>; \\B
T vy

— —

Figure 2-4 Turbulent flow through an orifice

These flows are classified as turbulent flows. Eq. 2-2 represents the turbulent

flow through an orifice (see Figure 2-4)

- Eq. 2-2
Q =CqAp /—)(PA—PB)

C4, Ay, p and P, — Py are discharge coefficient, orifice area, density of the

flowing liquid and differential pressure between point A and B respectively.

Rewriting the above turbulent orifice flow for Figure 2-3 assuming for

now that C, is the same for all orifices gives

2 Eq. 2-3
Q; =Cq A4 E(Ps_Pl)

2 Eq. 2-4
Q; =Cq Ay ’; p,
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2 Eq. 2-6
Qs = Cyq Ay ; Py

2 Eq. 2-5
Q3 =Cq As E(PS_PZ)

In the above equations, A, (4,, A3 or A,) is the orifice area associated with
flow Q1(Q,, Q3 or Q,), and Ps is the supply pressure. Also P; and P, are the

pressures at each one of the actuator chambers.

The return pressure (Pg) is assumed to be zero as it is usually much
smaller than the other pressures involved. If the return pressure is not
negligible, the supply pressure in the above expressions can be interpreted

as supply pressure minus return pressure.

The areas of the orifices are functions of the spool opening x,,. Because the

valve orifices are matched,

A1 (x,) = Ay(x,) and A5 (x,) = A, (%) Eq.2-7
And because they are symmetrical,

A1 (xy) = A3(—=xy) and A, (x,) = A4(—xy) Eq.2-8
It can be shown that when the orifice areas are matched and symmetrical

Q1 - Qz and Q3 = Q4 (Merritt 1967) Eq 2'9
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Combining Eq. 2-3, Eq. 2-4, Eq. 2-7 and Eq. 2-9 pressures at two chambers

can be related to supply pressure by,

P=P, +P, Eq.2-10

By definition the load pressure is the pressure difference between the two

actuator chambers and is expressed as

PL:P1_P2 Eq.2'11

Using Eq. 2-10 and Eq. 2-11, P; and P, may be written as

_(Ps+P) Eq.2-12
= st
2
p, = (P%PL) Eq.2-13

Load flow, which is the flow from the valve to one of the actuator

chambers, can be expressed as

QL=01—0,=0;—05 Eq. 2-14

Finally using the derived equations for a matched and symmetrical valve,

the load flow may be written as

1 1 Eq. 2-15
QL=Cq Ay ;(PS_PL)_CdAél- ;(PS+PL)

24



For an ideal critical center valve with matched and symmetrical orifices
the leakage flows (Q4 and Q3 when the spool displacement is positive) are
zero because the valve geometry is assumed ideal. On the other hand when
the spool displacement is negative Q; and Q, will be the leakage flows.
Considering the fact that the orifice areas are linear functions of the spool
opening as the product of the spool opening and full periphery of the spool

(rd), load flow can be expressed as (Merritt 1967)

Q.=n€ x,,\/PS — sign(x,)P, Eq. 2-16

where 7 is defined as

1 Eq. 2-17
n= C,mtd |—
d

Eq 2-16 is not differentiable due to sign function. Sign function may be
approximated by some smooth function and then used in the control design

(Chapter 4)

2.2.2 Actuator Chamber Pressure Dynamics
The oil flow between valve and actuator chambers causes the actuators
piston to move. Using conservation of mass principle on both sides of the

actuator chambers, the actuator pressure dynamics can be expressed as

. Ve Eg. 2-18
Qu = Ay &y + Cop Pr+ 3P, q
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In this equation A, is the actuator piston cross-sectional area; x,, is piston
velocity or the time derivative of piston displacement (x,); C, is the leakage
coefficient of piston; P, and P, are load pressure as defined in Eq. 2-11 and
rate of load pressure respectively; V; is actuator chamber volume and £, is oil

modulus.

2.2.3 Piston Dynamics
Writing the force equation of motion and considering a static friction and

the external force from a test specimen gives

My %y + by X+ Ty + Fope = Ay Py Eq. 2-19

my, b, and Ty are piston mass, viscous damping coefficient of actuator
piston and static friction respectively and F,,; represents the effect of

stiffness, damping and inertial forces from a test specimen.

2.2.4 Linear Approximation of the Dynamics
For controller design purposes a linearized, simplified model is necessary

especially when the controller design will be based on linear control theory.

Note that the valve spool dynamics (Eq. 2-1) and actuator chamber
pressure dynamics (Eq. 2-18) are already linear. Using Taylor series
expansion, Eq. 2-15 (that represents flow-pressure relationship) can be
linearized about an operating point (Q;, = P, = x,, = 0) while assuming zero

leakage flow and ideal geometry (Merritt 1967) to be
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QL= Kq Xy

_KCPL

Eq. 2-20

K, and K, are called the flow gain coefficient and the flow pressure

coefficient respectively. And for the piston dynamics, in case the friction is

negligible Eq. 2-19 can be rewritten as

My, iy + by % + Foxr = Ay P

Eq.2-21

Table 2-1 gives a summary of both nonlinear and linear equations

discussed so far.

Table 2-1 Nonlinear dynamics of a servo-hydraulic system and its linear approximation

Dynamics Nonlinear Linear
Valve spool | Xy(s)  ky X,(s) _ ky
I(s) 147s I(s) 147s
(Eq. 2-1) (Eq. 2-1)
ValVE ﬂOW QL — n x‘l}\/PS — Slgn(xv)PL QL = Kq xv - KC PL
(Eq. 2-16) (Eq. 2-20)
Actuator ) Ve . ) Ve .
QL=Apxp+CtpPL+jPL QL=Apxp+CtpPL+jPL
chamber e e
pressure (Eq. 2-18) (Eq. 2-18)
Actuator My X, + by Xp + T + Foxy My X, + by Xp + Foxe = Ap Py
motion (Eq. 2-21)

(Eq. 2-19)

:APPL
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2.3 System Identification
It is a good idea to identify the system starting from the simplified
(linearized) model and finalize it by adding relevant nonlinearities and

additional dynamics as required by the measured response.

Grey-box modeling option of the system ID toolbox of MATLAB is ideal
when the model to be identified is known (e.g. derived from the first
principles) and the numerical values of the parameters that appear in this

model need to be estimated from measured data.

In identifying the servo-hydraulic system mentioned above the transfer

function relating the input current and the spool opening is known to be

X,(s) Kk Eq. 2-22
I(s) 147s

For a free standing actuator that have F,,; equal to zero, a transfer
function can be established using Eq. 2-18, Eq. 2-20, and Eq. 2-21 which in
turn when is combined with Eq. 2-22 will give a direct transfer function from
input current to actuator piston displacement.

Xp(s) _ 4Ap ﬁe Kq kv Wy Eq 2-23
I(s)  s[(my Vi)s? + (4B kee My + by Vi)s + 4B (Ap% + bykee) (s + w,,)

where k., = Cp + Kcand w, =1/ 7.

MATLAB identification toolbox has a general built-in system model that

can be adjusted to have four poles and no zeroes as
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ke Tas Eq. 2-24
s[1+2{T, s + (T, $)*]1(1 + Tp,s)

The term e~ 745 is considered to take care of any time delay that may exist

in the system.

The identification procedure basically starts with exciting the system with
some predefined inputs and logging the response. There is no restriction for
selecting the inputs but usually step and sinusoid inputs with different
frequencies are used. Then the logged data is analyzed by MATLAB

identification toolbox and values for transfer function parameters are found.

Comparing Eq. 2-23 and Eq. 2-24 and considering the fact that £=° Op Keee ~has a

p

very small value and can be neglected (Zhang et al. 2005), it can be shown

mp Vt Eq 2-25
T, = >
46, A
[ = b, V; E my Be Eq. 2-26
44, ImpBe Ay Vi
1
Ty, = (U_v Eq. 2-27
k= Kq ko Eq. 2-28
Ap

29



3 Control Theory

General

In a servo-hydraulic system the controller calculates the displacement
error and uses it as an input to a control law. The output of the control law is
the command signal to the servo valve. In this chapter some principles of
feedback control theory is given. Then classic control design, linear state-
space control design and nonlinear state-space control design are

introduced.

3.1 Feedback Control of Dynamic Systems

In the context of this study a controller is designed to give the following
characteristics to the system; (1) the ability to follow command
displacements (tracking); (2) the ability to maintain the system stability; (3)
the ability to reduce the sensitivity of the system to external disturbances
(disturbance rejection). Some criteria need to be defined in order to have a
basis of comparison between the performances of different controllers. For
this purpose specific input signals like step functions and sinusoidal

functions are used. Figure 3-1 shows a typical response of a system to a unit
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step input. A physical system stores energy therefore when it is subjected to
an input it cannot instantly follow it. Instead a steady state condition is

reached after exhibiting a transient response.

tsteady state
error

0.8
@
w
c
[=]
[=8
S 06
E < A4 A
% < - i< >
7 transient | steady state

04 response | response

0.2

i H
0 0.5 1 15 2 25 3 3.5 4

Time (sec)

Figure 3-1 an example for a unit step response of a system

For the case of a PSD test, other than stability requirement, which is an
essential factor for the system to be operational, transient response
characteristics and steady-state error are also considered as controller
performance criteria. Mercan (2007) showed that phase error (i.e. the time
delay taking the system to apply the command displacement and to measure
the resisting force) has much more of a detrimental effect compared to an
amplitude error. Phase error introduces an equivalent negative damping that
causes inaccuracy and if it goes beyond a critical value, dynamic instability

will occur.
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Figure 3-2 gives a block diagram of the system including the possible
disturbances and noises. It should be noticed that external disturbances may
also be present in individual components (e.g., the servo valve) but in order

to be concise in Figure 3-2, only the resultant of the disturbances is shown.

Hydraulic

Power Supply gTTTTmImmI ,

1 Disturbance |

————— 7 -—— - ’

/
Command /
Displacement
— p»  Servo Flow Control
» Controller Servo-Valve Actuator

Displacement |

Measured Transducer | Applied
Displacement Displacement

Figure 3-2  Block diagram of a servo hydraulic model including disturbance and noise

The dynamics of a system can be defined by a set (system) of differential
equations which are obtained from principles of physics. For a quick
approximate analysis and for controller design purposes using linear control
theory, linear approximation of the differential equations (whenever they
entail nonlinear terms) is used. On the other hand, to represent the system
dynamics more realistically computer simulations including system
nonlinearities can be performed. Moreover, in the event that the linear
controllers that are based on linear models are not efficient, nonlinear design

of feedback control may be used.
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3.2 Linear Control Design (Basics)

One of the attributes of a linear time-invariant system is that it obeys the
principle of superposition. This principle states that if the system has an
input that can be expressed as a sum of signals then the response of the
system can be expressed as the sum of the individual responses to each
signal. In control engineering the dynamics of the system are typically
studied using root locus (in s-plane), frequency response or state-space
methods. The first two methods are based on Laplace transform and are
mainly used in classical control analysis or design. State-space based

methods are used in modern control design.

3.2.1 Laplace Transform and Transfer Function

The Laplace transform is the mathematical tool that transforms
differential equations into an algebraic form which are easier to manipulate.
Compared to the Fourier transform which is informative about the steady
state response, the Laplace transform yields complete response
characteristics (both transient and steady state response) (Franklin et al.

2010).

The unilateral (one sided) Laplace transform for a time domain function

like f(t) is

L(f(t))=F(S)=f f®e stdt Eq. 3-1
0
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Where s is a complex variable of the form s = ¢ + i w. ¢ is the real part
and w is the imaginary part of the complex variable. For elementary
functions in time domain, their Laplace transforms are tabulated as provided
in Appendix A. therefore there is no need to perform the integration in Eq. 3-

1.

The interpretation of the dynamic behaviour in s-domain (upon
performing Laplace transformation) is provided using the following
exemplar where a mass-damper-spring system is considered (see Figure 5-

2).

Figure 3-3 a mass-damper-spring system

The equation of motion for the above oscillator in time domain is

mi(t) +cx(t) + kx(t) =p(t) Eq. 3-2

Assuming zero initial conditions (x(0) = 0, x(0) = 0) and taking the Laplace

transform of both sides of Eq. 3-2
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L(m i) + cx(t) + kx(t)) = L(p(t)) Eq. 3-3

>ms?X(s) +csX(s)+kX(s)=P(s)

From Eq. 3-3 X(s) can be solved as

P(s) Eq. 3-4
ms2+cs+k

X(s) =

If, for example, P(t) is a given force time function like a unit-step function

(1(t)), which is defined as

0, t<0 Eq. 3-5
1, t> 0.

100 ={

Again looking at the table in Appendix 4, it is known that

L(l(t)) _ 1 Eq.3-6

S

Therefore the response of the system to a unit step input in Laplace

domain

1 Eq.3-7

X(s) :s(m52+cs+k)

To get the response in time domain, inverse Laplace transform can be used

and it is defined as
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Oc+ioo Eqg. 3-8

L7YF(s)) =f(t) = F(s)eStds

2mi Oc+ico

Where o, is a chosen value to the right of all the singularities of F(s) in the
s-plane. s-plane is the plane on which the s-type variables (o + i w ) can be
shown. In fact, Eq. 3-8 is seldom used. Instead, complex Laplace transforms
are broken down into simpler expressions that are listed in the tables along
with their corresponding time responses (Appendix A). For example, if the
numerical values of the physical properties are such that Eq. 3-7 can be
written as

1 Eq. 3-9
s(s24+3s+2)

X(s) =

Using the partial-fraction expansion technique Eq. 3-10 can be broken

down into simpler expressions

1 Eq.3-10
2

1

2
X == — +
(s) s s+1 s+2

Using the matching time functions from Appendix A, the corresponding
time function of each component can be found and the total time response

for x(t) will be the sum of these time functions. Hence

1 1 -
X(t) =5 - et +se fort>0 Eq. 3-11
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3.2.2 The Block Diagram

A transfer function is defined as the ratio of the Laplace transform of the
output to the Laplace transform of the input. In many control systems the
dynamic equations can be written so that their components do not interact
except by having the input of one transfer function as the output of another
one. The dynamics of a system having multiple components are easier to
represent in a block diagram form where each block represents the transfer
function of one component (e.g. G1(s), G2(s) in Figure 3-4) and the input-
output relationships between the blocks are shown by lines and arrows. The
resulting transfer function for the whole can be obtained by block diagram
algebra. This method is often easier and more informative than algebraic
manipulation. Some examples for block diagrams and their equivalent

algebraic input-output relationships are shown in Figure 3-4.

Figure 3-4 Three examples of elementary block diagrams
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Figure 3-4(c) illustrates a negative feedback arrangement that is used to
compare the output of a system with the command input to perform a
tracking task. This is also referred to as closed-loop control as opposed to
open-loop control. Open-loop control is generally simpler and does not
introduce stability problems. Although feedback control is more complicated
and may have stability issues, it has the potential to achieve a much better
performance. Moreover, if the process is naturally (in open-loop) unstable,
feedback control is the only possibility to attain a stable system that meets

any performance criteria (Franklin et al. 2010).

3.2.3 S-plane, Poles and Zeros
In the design and analysis of a control system, the transfer function of the
system gives useful information about the system characteristics including

its frequency response.

The roots of the numerator of the system transfer function are called zeros
of the system which correspond to the locations in the s-plane where the
transfer function is zero. The roots of the denominator of the system transfer
function are called the poles of the system. Apparently, the poles are the
locations in the s-plane where the magnitude of the transfer function
becomes infinite. For example, in the previous example the transfer function
had no zero and three poles. The zeros and poles may be complex quantities
and their location can be displayed in a complex plane, which is referred to as

the s-plane.
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The poles of the system determine its stability properties and also the
natural or unforced behaviour of the system. Basically the shape of the
response is determined by the poles. Figure 3-5 shows the responses in time
domain associated with poles at different locations in the s-plane. As a
general rule poles farther to the left in the s-plane (LHP in Figure 3-5) are
associated with natural signals that decay faster than those associated with
poles closer to the imaginary axis. Also as indicated in the figure, the poles
with positive real values (in right half-plane, i.e. RHP) correspond to growing

exponential functions which are unstable.

Im(s)
STABLE A UNSTABLE
[] )
A, %ﬂoﬂvﬂ, vl
V \Vj U
X
X
LHP 1
\ /\ {‘ X RHP
t V'V -
= Re(s)
> s —X > S >
N L] h

Figure 3-5 Time function associated with points in the s-plane (Franklin et al. 2010).

A feedback controller improves the dynamic response by mainly

modifying the system’s poles locations.
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3.3 PID Controller Design

The fact that PID controllers are able to control complex systems without the
need for precise identification of their dynamics has made them popular in
control applications. A PID controller controls the dynamic error based on
the magnitude, history and rate of the calculated error. The corresponding
transfer function of a PID controller has three terms.

t d(e(t)) Eq. 3-12

u(t) = K, e(t) + K, f (o) dr+ Ky

In the above equation e(t) is the error signal and u(t) is controller output.
K,, K; and K, are the gains (coefficients) corresponding to each of the terms.
In fact designing a PID controller is to decide on a combination of these three
gains to get the desired system behaviour. Figure 3-6 shows the block

diagram of a PID controller.

_E(s) ¥ Us)

&
%)

oL

E

Figure 3-6  Block diagram of a PID controller

Therefore the transfer function for a PID controller is as below, which

introduces an extra pole to the system.

40



Kps?+Kps+K, Eq.3-13
s

A PID controller may be designed using the root locus method, frequency
response method or can be tuned experimentally via an in-situ approach such

as using Ziegler Nichols tuning rules(Franklin et al. 2010).

Root locus method studies the effect of any one parameter that enters the
equation linearly to modify the location of system’s poles in the s-plane.
Typically that one parameter is chosen from one of the PID gains (where the

others are expressed in relation to that one).

The use of frequency response methods is more common in the design of
feedback control systems for industrial applications. One of the reasons is
that with frequency response method it is easy to use experimental
information for design purposes. Frequency response methods utilize Bode

plots that portray the steady state response of a system to sinusoidal input.

When a representative analytical model for the system is not available, a
PID controller can still be used by using experimental tuning approaches like

Ziegler Nichols (Franklin et al. 2010).

3.4 State-Space Controller Design

Studying the system dynamic in state space form has the following main

advantages (Franklin et al. 2010):

41



e Having the differential equations in state-variable form gives a
compact standard form where multi-input multi-output systems
can be studied easily even in the presence of nonlinearities.

e In contrast to transfer function which relates only the input to the
output and does not show the internal behaviour of the system, the
state form connects the internal variables to external inputs and
outputs. This keeps the internal information at hand, which at

times is important.

The state-variable representation of a continuous linear time-invariant

open-loop dynamic system can be expressed as

x(t) = Ax(t) + Bu(t) Eq. 3-14

y(t) = Cx(t) + Du(t)

where the n X 1 column vector x(t) is called the state (vector) of the
system, u(t) is the m X 1 input vector, y(t) is the p X 1 output vector, 4 is
the n X n system matrix, B is the n X m input matrix, C is the p X n the
output matrix, D is the p X m direct transmittance matrix; and, as can be
understood from above, n, m, and p are the dimensions of state, input and

output vectors, respectively.

As a result of the freedom in choosing the state vector, state space
representation of a system is not unique. However, for a given system they

are equivalent in terms of the input-output relationship.
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The eigenvalues of matrix A are the roots of the characteristic equation
(i.e., the roots of the denominator polynomial (poles) of the open-loop

transfer function for a single-input single-output system).

In state-space method moving the closed-loop pole locations to desired
locations is accomplished through a full state feedback. For the state-variable

system described above, with full state feedback, the input vector becomes

u(t) =r() — K x(t) Eq. 3-15

Where r(t) is the m X 1 reference input vector and K is an m X n gain
matrix. For example if the reference input r(t) is zero (such a controller is

called a regulator) for the closed loop system dynamics x(t) becomes

x(t) =Ax(©) + B(-Kx(t)) = (A— BK) x(t) = Ay x(¢) Eq. 3-16

In this case, the eigenvalues of matrix A,; (roots of det(s I — A,;) = 0) are
the closed-loop poles. It can be shown that the closed-loop poles of the
system can be placed anywhere in the complex plane as long as all the states
are controllable (How 2007). This is called pole-placement method. There is
a function called place in the commercially available software package
MATLAB which calculates matrix K to have the closed loop poles of the

system move to the desired locations.

In the case of tracking a reference input (r(t) # 0), the nonzero reference

input needs to be introduced properly for a good performance in tracking.
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This is done by scaling the reference input and then combining it with full

state feedback to get the proper input vector (How 2007).

u(t) =Nr(t) — K x(t) Eq.3-17
where
N=—-(C(A-BK)'B)! Eq.3-18

Eq. 3-17 ensures that for a step input there will be no steady state error

after transient behaviour.

One way to select the location of closed loop poles is to consider treating
the system as a second order system by selecting a pair of dominant poles,
with the remaining poles having a real part corresponding to sufficiently
damped modes. This will result in a system which is similar to a second order

system (How 2007).

3.5 Nonlinear State Space Controller Design

In all of the aforementioned methods the dynamic system to be controlled
was assumed to be linear. Most dynamic systems have some sort of
nonlinearity. In some cases the nonlinearities may safely be ignored or
linearized about an operating point. However there are systems where the
nonlinearities cannot be ignored or the range of operation is beyond the
limits where linear approximations are valid. In order to design a controller

for such systems nonlinear techniques need to be used.
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Instead of using linear approximations of the dynamics as done in
Jacobian linearization, feedback linearization is a nonlinear control design
approach which algebraically transforms nonlinear system dynamics into
linear ones and permits the subsequent application of linear control

techniques.

These nonlinear techniques make use of differential geometry concepts. In
the following sections wherever a new differential geometric concept is used
it is defined briefly, and also a more detailed summary of differential

geometry is provided in Appendix B.

A single input nonlinear system in the neighbourhood of an equilibrium
point, x,, corresponding to u = 0 i.e. f(x,) = 0. can be expressed in state-

variable form as

x(t) = f(x(@®) + g(x(t)) u(®) Eq.3-19
or simply
x=fx)+gx)u Eq. 3-20

In Eq. 3-20 f and g are assumed to be smooth vector fields and g(x,) # 0.
A vector field is a map that assigns each x a vector f (x) of the same size. So

for example, if x is a state vector of sizen X 1,
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f1(x)
foo = 2™ Eq.3-21

o)

As will be elaborated later there are necessary and sufficient conditions
under which the system defined by equation Eq. 3-20 is transformable into a
linear controllable system by nonlinear feedback and coordinate
transformation. This problem is called feedback linearization. Feedback
linearization is viewed as a generalization of pole placement for linear

systems.

The nonlinear single input system in Eq. 3-20 is said to be locally state
feedback linearizable if it is locally feedback equivalent to a linear system in

Brunovsky controller form (Marino and Tomei 1995) which is

z=A.z+b.v Eq. 3-22

where the state vector and input in the new coordinate are z and v

respectively and

010 - 0 Eq. 3-23
0 0 1 0

A, = ;
0 0 O 1
0 0 O 0
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0 Eq. 3-24
of

where the state vector and input in the new coordinate are z and v

respectively.

In order to be able to cast a set of equations in Brunovsky controller form,
the theorem of feedback linearization needs to be satisfied. This theorem
indicates that the single input system in Eq. 3-20 with n states is locally state

feedback linearizable if and only if in a neighbourhood of origin:

(i) the distribution span{g, s ad?"lg} is of rank n, and
(ii) the distribution span{g, ...,ad}l"zg} is involutive and of

constant rankn — 1.

Expressions like ad}?—lg are iterative forms of Lie bracket which is a

function in differential geometry acting on two vector fields like f and g. Lie
bracket function is illustrated in Appendix B. Also an exact mathematical
explanation of distribution and its rank is given in Appendix B. However as a
simple explanation, condition (i) requires that the space generated from the
indicated vector fields has a dimension of n which means the vector fields
have to be linearly independent. Condition (ii) requires that the space
generated from the indicated vector fields has a dimension ofn — 1.

Moreover a distribution is involutive if, given any two vector fields f and g
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belonging to that distribution, their Lie bracket, [f, g], also belongs to the

distribution.

The above two conditions guarantee the existence of a function h: R™ - R
such that in the neighbourhood of origin, the following conditions are

satisfied.
(dh,ad(f9) # 0 Eq. 3-25
(dh,ad{_;g)=0, 0<i<n-—2

In the above expressions dh is called gradient of h and is defined as

dh_ah_(
==

oh  oh ah) Eq.3-26
ox, dx,” " 0x,

and inner product is defined as

(dh,f) = Zn: (%_ﬁ) Eq. 3-27

i=1

Having solved the conditions in Eq. 3-25 for h, the transformation from x

to z will be

z = (24,23 -, 2p)" = (h(x), Leh(x), ...,L}‘_lh(x) )T Eq.3-28

where the expression Lgh(x) is called the Lie derivative of function h(x)

along the vector field f. This operator is also defined in Appendix B
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Hence the dynamic system in Eq. 3-20 i.e.

x=fx)+gx)u Eq. 3-29
transforms into

Zi = Ziy1, 1<i<n-1 Eq. 3-30
Zn = v = Lph(x) + LgL} ' h(x) u Eq.3-31

The system expressed above is dynamically equivalent to the original
system which means they have identical poles. v is the input of the
transformed system and u (input for the original system) can be calculated

from it using equation Eq. 3-31. So the state feedback is

v — Lth(x) Eq. 3-32
U=
LyLt h(x)
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4 Implementation of Control Methods

General

In this chapter the control techniques introduced in Chapter 3 are utilized.
As discussed before an actuator delay resulting in a time delay in
experimental substructure can impair the dynamic stability and accuracy of
the system. Control theory is used to design servo-hydraulic controller to

minimize actuator delay.

In this study a linearized model of the system dynamics was used in the
design of the controller using linear control design techniques. A nonlinear
model of the system whose parameters were obtained through system
identification (Mercan 2007) was used in the nonlinear state space control
design and also in the numerical simulations. This is because the nonlinear
model is accepted to provide a more realistic representation of the system

dynamics.

4.1 Dynamic Model of a Servo-Hydraulic System

The dynamic equations that govern a servo-hydraulic system were

explained in Chapter 2 and two versions of the model (linear and nonlinear)
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were introduced. These dynamics are modelled in commercial software

package MATLAB/Simulink to simulate the inner loop of a PSD test setup.

Linear Model

Equations for the linear model presented in Chapter 2 are summarized

here.
Table 4-1 Linearized dynamics of a servo-hydraulic system

Valve spool (in s X,(5)  ky (Eq. 2-1)
domain) I(s) 1+47ts

Q. =K,x,—K_.P, (Eq. 2-
Valve flow g L cr

20)

Actuator chamber . Ve . Eq. 2-

QLzApxp+CtpPL+ﬁPL (q
pressure e 18)
Actuator motion My X, + by Xp + Foxe = Ap P, (Eq. 2-21)

Figure 4-1 shows the Simulink model for a servo-hydraulic system with
the above dynamics that is connected to a linear single-degree of freedom
test structure. This structure has a mass of m, damping of ¢ and stiffness of k.
As it is shown in the figure this adds a load dynamics to the above equations

as

Fext =mi, +cx, +kx, Eq. 4-1
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Nonlinear Model

Equations for the nonlinear model are

Table 4-2 Nonlinear dynamics of a servo-hydraulic

Valve spool (in s X,(s) Kk
I(s) 147s (Eq. 2-1)
domain)
Q=1 xpy/ Py — sign(x,)P, (Eq. 2-
Valve flow
16)
. Ve . (Eq. 2-
Actuator chamber L= Ap Xy + Cop P+ 4_,89PL
pressure 18)
my Xy + by Xp + Ty + Fexr (Eq. 2-
Actuator motion
= A, P, 19)

Figure 4-2 shows the Simulink model for a servo-hydraulic system of the
above dynamics that is connected to a linear single-degree of freedom test

structure.

The linear model will be used for designing a PID and a linear state space
controller and the nonlinear model will be used to design a nonlinear state

space controller.
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4.2 PID Controller Design

Figure 4-3 shows the Simulink model for a servo-hydraulic system along
with a PID controller. As it can be seen, the servo-hydraulic system is
represented by a block which has an input as a command signal, which is
issued by the controller, and four outputs that may be measured during a test
and are namely piston displacement, piston velocity, load pressure and valve
opening. In this study the nonlinear models introduced in Figure 4-2 was

used and embedded to this block.

The following gives a summary of the roles of each PID gains

(Ahmadizadeh 2007).

Proportional (K, ) - This is to handle the present requirements. The error
is multiplied by K,. Hence, the greater the proportional gain, the more the
servo-valve opens for a given error. There is a trade-off for selecting an
appropriate K. Although a large proportional gain may decrease the error
resulting in a closer tracking of reference signal and reduced response time,
it decreases the stability margin of the system and increases the frequency of

the oscillation in the transient response.
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Integral (K;) - The error is integrated (added up) over a period of time,
multiplied by a constant K; and added to the control signal. A well-tuned PI
controller will converge to the reference signal (zero steady-state error),

leading to a reduced error between command and feedback.

Integral (K,) - This is to handle the future requirements. The first
derivative of the error over time is calculated, multiplied by K, and added to
the control signal. Basically, this term controls the response to a change in
the system. In practice due to noises that enter the measured signal in a real

PSD test, a controller without a derivative term may be used.

4.2.1 Controller Tuning
Tuning a controller is adjusting its parameters to get a desired system
response. The goal is to have a system that has a stable and fast response (i.e.,

a short response time) with a small steady-state error.

One of the Ziegler-Nichols tuning methods is called ultimate sensitivity
method and is used in this study. In this method the criteria for adjusting the
parameters are based on evaluating the amplitude and frequency of the
oscillations of the system at the limit of stability rather than taking the step
response. To use the method, the proportional gain is increased until the
system becomes marginally stable and continuous oscillations just begin,
with amplitude limited by the saturation of the actuator. The corresponding
gain is defined as K;, (known as ultimate gain) and the period of oscillation is

P, (known as ultimate period). P, should be measured when the amplitude of
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oscillation is as small as possible. Then the tuning parameters for a PI

controller are selected as k, =0.45K, andT, =Pu/1'2. Experience has

shown that the controller settings according to Ziegler-Nichols rules provide
acceptable closed-loop response for many systems. Ziegler-Nichols gives a
good starting point for the controller parameters and the fine tuning of the
controller is still needed to achieve a desired behaviour. Details for this

method can be found in (Franklin et al. 2010).

Tuning the nonlinear model in Simulink results in K, = 80, K; = 0.5 and

Kp = 0. And closed-loop poles of the system can be calculated as following.
p1 = —242,p, = —141, p3, = —219 £31.21i, ps = —0.00625

As shown in Equation 3-13, the transfer function of a PID controller adds a
pole at origin to the open loop transfer function in Equation 2-23. Here, in the
closed loop transfer function this extra pole moves a bit off the origin

(ps = —0.00625).
4.3 Linear State-Space Controller Design

4.3.1 State-variable form of equations
As pointed out before, for a given system, depending on the states
selected, there may be multiple state space representations. Using the linear

equations introduced in Table 4-1, four states and one input can be chosen.
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*2 *p ' Eq. 4-2
x = = S ou=i . 4-

X3 P, q

X4 Xy

Alternatively, if the servo-valve is assumed to have a fast response to the
input signal compared to the rest of the system; its dynamics can be omitted

without compromising the tracking capability.

X1 Xp
X = (xz> = (%), u=x, Eq. 4-3
X3 P,

Considering these three states, the state-variable representation

(Equation 3-14) of the system will be

0 1 0
Xp / —k_ (b te) A \ Xp
x=|% ='mp+m my, +m m, +m '(xp>
P, k 0 —Ay4 B, —(K.+Cpp)4 ﬁe) P,
Vi Vi
0
0 Eq. 4-4
+ K4 Be Xy
Ve
Xp
yzxp =(1 0 ())(Xp>
Py

And if all four states are considered
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p
p
x=|"7
Py
Xy
0 1 0 0
—k —(bp + c) Ap 0
m,+m m,+m m, +m zp
— 14
= . —Ap4 e —(Ke+ Cep)dBe Kyt PBe p, Eq. 4-5
Vi Vi Vi Xy
1
0 0 0 —=
T

It should be noticed that the valve spool dynamics (Equation 2-1) in time

domain is
. 1 ky
xv=—;xv+?vl Eq. 4-6

4.3.2 Pole Placement

Both three-state and four-state presentation of the system can be used to
design the controller. For the four-state case, poles are selected equal to the
poles corresponding to the previously designed system with PID controller

ignoring the pole associated to PID itself, i.e.

P11 = _242, P2 = _141, p3’4 =-219 i 31.21
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Function place.m of commercial software package MATLAB is used to find
matrix K and then using equation 3-18 matrix N is calculated to introduce

the signal input as

u(t) =Nr(t) — K x(¢t) Eq. 4-7

Appendix C contains the MATLAB code which is used to calculate these

matrices.

If the servo-valve spool dynamics is ignored (assumed to be faster than
other parts of the system) considering only three states, the corresponding
pole needs to be ignored too. As illustrated before, the poles far left in the
complex plane are related to fast responses. Therefore pole p = —242 is the
one associated to servo-valve spool dynamics. Consequently, the selected

poles to design a three-state controller are

p; = —141, p,5 = —21.9+31.21i

4.4 Nonlinear State-Space Controller Design

4.4.1 State-variable form of equations
State-variable form of a nonlinear system needs to be written in the form

of

x() =fx)+gx)u Eq. 4-8
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[t can be shown that the only way to write down the nonlinear equations

in the above form is to consider all four states. So having

X1 Xp
Xy X
p .
X = = u=i Eqg. 4-9
X3 P |’ q
x4, xv

state-variable form of the dynamics according to Table 4-2 will be

Xp
% / —k x, — (bp + C)J'cp + A4, P, \ 0
2
% m, +m | 0
x=|7 =1 4g, +| 0 |[i Eq.4-10
I?L (—Ap Xp — Cep P+ 1 Xy P — sign(xv)PL) k,
Xy Ve B
xU

T

To follow the calculations the following notation will be used instead

X3
) —kx; — (bp + c)xz + Ap x5 0
;.CI m, +m 0
. 2
x=["|=| 4p : +1 0 |u -
3;3 v £ (_Ap Xy — Cip X3 + 1 X4/ By — Slgn(x4)x3) k, Eq.4-11
4 t -
X4 T

T
fx)

g(x)

It was stated in Chapter 3 that f and g must be smooth vector fields but
the sign function in the third term of f does not allow differentiation
at x, = 0. Figure 4-4 shows that for a large coefficient n sign function can be
approximated by using an Arc Tan. Mintsa et al. (2009) used an equation

involving exponential terms to approximate the sign function.
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Sian(x 2 —ArcTan(1000x)
gn(x) EArcTan(loéx) T
05
2
;ArcTan(lrQrer)
oo -0601 BE— oo oo
,05,
1o
Figure 4-4 Approximation of function Sign(x)

Hence the dynamics in Eq. 4-11 can be approximated as

X2
. —k x1~(bp+c)xa+Ap x3
X1 mp+m
X, ’

x=| . = *

X3 2B —Apx; — Cipx3 +1 x4\/Ps - EArcTan(n X)Xz
i, v )

_Xa

T
2 Eq. 4-12
u

[amooo

g(x)

f and g in Eq. 4-12 are smooth vector fields which can be used to design a

nonlinear controller.

As it was stated in Chapter 3, for a system to be locally state feedback

linearizable two conditions must be satisfied. These conditions are now

checked for the above nonlinear system.
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e Condition (i) the distribution span{g, s ad}‘_lg} is of rank n.

0 0
0 0
ky
—_— *
T
0
0
(P __ nx3x,  2x3ArcTan(n x4))
g agf of 4Bk, 'S m+n?m x,? T
adgg =259 v, ©
9x 9x et \/PS - %ArcTan(n X4)X3
\ ky / Eq. 4-14
TZ
0
lo
- *
*
And in the same manner,
0
ad;g = ad}(adtg) = : and Eq. 4-15
*
*
adig=|" Eq. 4-16
*

o, n

In the above equations “x” represents a nonzero expression. Since

span Eq. 4-17

*x © O© O
* * O O
* % * O
* % o %
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has a rank equal to 4, the first condition is satisfied.

e Condition (ii) the distribution span{g, ...,ad}‘_zg} is involutive

and of constant rankn — 1.

[t is already known that

0 0 0
0 0 *
span ol'l« 'l « Eq. 4-18
* * *
has a rank of 3. However the distribution needs to be involutive.
It can be shown that
0
1 0
[9,ad}g] =1 | Eq. 4-19
0
0
2 0
|9,ad}g] = 0 Eq. 4-20
0
0
lad}g, ad}g| = : Eq. 4-21
0

All above vector fields belong to the distribution in Equation 4-15 which

means the distribution is involutive and the second condition is also satisfied.

65



Therefore the nonlinear system is locally state feedback linearizable and

there is a function like h: R* — R such that

(dh,ad?_fg) # 0
Eq. 4-22
(dh,ad{_;g)=0, 0<i<2

The above conditions are examined in more detail in the following.

1. (dh,g) = 0, which gives

0
<6h oh  oh 6h>(8\‘_0:>6hk,,_0:>6h_0 a3
0x, 0x, 0x3 0x, \kv/ B 0x, T 0x, 4

T

2. {(dh, ad%_f)g) = 0, which in the same manner gives

oh

=0 Eq. 4-24
0x3 q

3. (dh, ad(z_f)g) = 0, which also in the same manner gives

Oh = Eqg. 4-25
ox, a

4. (dh, ad?_f)g) # 0, which gives
oh 0 Eq. 4-26
0x, 4%
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It should be noted that the function h is not unique (Marino and Tomei

1995).

Function h may be selected to be

h=x; Eq. 4-27

As was introduced in Equation 3-25, coordinate transformation is defined

as

z = (21, 23,23, 2,)" = (h(x), Lrh(x), L2h(x), Lf’ch(x))T Eq. 4-28
So

z; = h(x) = x; Eq. 4-29

Zy = th(x) =1 0 0 0O)f=nx, Eq. 4-30

—k x; — (bp + c)x2 + A, x5

zz=Lh(@x) =0 1 0 0)f= o —— Eq. 4-31
14
by+
zy = L3h(x) = mp1+m (—k Xy — m;:n (—kx; — (by + c)x, +
Apx3) + Eq. 4-32

4 Be 2
Ap A <_Ap X2 = Cep X3+ 1 x4\/Ps — —ArcTan(n x4)x3>>
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This transformation of coordinates lets the system dynamics to be written

in Brunovsky controller form as

Zl = Zz
% =2 Eq. 4-33
Z3z = Zy
Zy =V
where
v =Lih(x) + LgLh(x) u Eq. 4-34

and in the above equation

( kxy (bptc)xz  Apxs >
L4h(x) _ bpk ck X — m+mp m+mp m+mp +
f m+my)° m+mp)°) "2 m+m
14 14 4

(bp(bp+c) N c(bp+c) ) (_ kx;  (bptc)xs i Apx3 ) _

(m+mp)2 (m+mp)2 m+my, m+my m+my

a2 kxq (bp+C)xz*ApX3
P m+mp  mimp  mimp 4B,

(m+mp) Ve

A p _2x3 ArcTan([n x4]
1 Xa(— Apnn X3 X4 " LN 7 4-_,88) n
4
(m+mp)n4vlie(1+n2 x42) PS_Z X3 Arczan[n x4] (m+mp) Ve Eq 4_35

Tm
Apbp Apc

4 Pe 4 Be
- —A ——=C —+
(m+mp)2 (m+mp)2)( p X2 Ve tp X3 Ve

4 Be 2 x3 ArcTan[n x4] ApCtp 4 Be
Loy x, [Py~ )+ (-2 the
t b2 (m+mp) Vg

4 Be Apn x4 ArcTan[n x4]

4 4
Vi 2 x3 ArcTan[n x. ]) (_ VBe Ap X2~ Vﬁe Cth3 +
t (m+mp)11:\/Ps——3 = 4 t t

4 e n x4\/PS _2x3 ArcTan[n x4])

Ve s

and

68



LgL3h(x)

kv(_4ﬂe A, M 1) X3 Xy

2x3ArcTan[n x,]
n Eq. 4-36

Tm

V
' (m+my)m(1+ n2x42)\/PS —

2x:ArcTan[n x
Apn\/Ps_ 3 — [ 4] 4‘88

(m+m,) V,

)

Therefore the state feedback will be calculated as

V- Lth(x)

== Eq. 4-37
LyLh(x) 1

Chapter 5 illustrates implementation of the above coordinate

transformation in a Matlab-Simulink model along with linear controllers.
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5 Simulations Results

General

This chapter presents simulation results for the inner loop of PSD test
models i.e. the control of servo-hydraulic-test structure system. Simulink,
which is developed by MathWorks, is an interactive graphical environment
for modeling, simulating and analyzing dynamic systems and it works with
MATLAB. The Simulink models presented in this chapter include linearized
and nonlinear model of a servo-hydraulic system discussed in Chapter 2 and
the controllers discussed and implemented in Chapter 3 and Chapter 4
including PID, linear state-space and nonlinear state-space controllers. These
simulations only consider the servo-hydraulic system connected to a test
structure. To better understand the proposed control method, for a complete
simulation of a PSD test, the outer-loop needs to be introduced where the
integration algorithm and also the analytical substructure model (if it is a

hybrid PSD test) reside.
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5.1 Numerical Values for Servo-Hydraulic System and Test

Structure in Linear and Nonlinear Models

The values of the parameters for linear and nonlinear formulation of

dynamics of a servo-hydraulic system are given in Table 5-1. These

numerical values are obtained through system identification for a servo-

hydraulic system used in another PSD test research program (Zhang et al.

2005) and are assumed to be representative. For the structure selection, the

important thing for an SDOF are the natural period (should be around 1 or

1.3 sec), damping (around 2 to 5 %). In a PSD test, it is desired to keep the

inertial and damping forces analytical.

Table 5-1 Values for Parameters for Linear and Nonlinear Servo-Hydraulic System

Models
parameter value
m mass of test structure 1025 kg
c viscous damping coefficient of test structure 500 N — sec/m
k stiffness test structure 5.00E® N/m
m, | mass of actuator piston 1025 kg
b, viscous damping coefficient of actuator piston | 356.18 E3N — sec/m
A actuator piston cross section area 0.0808 m?

Ve V, = actuator chamber volume

4B. | B. = oil modulus

5.65 E~10m3/Pa

P, supply pressure of the hydraulic system

207 ESPa

77=Cdr,f1/p

C, —orifice coeffiecient

I' —valve opening gradient

p —hydraulic oil density

2.62 E=3 m3/s /Pa%®

K. | servo-valve flow-pressure coefficient

1.5 E711 m3/(Pa — sec)

{exp | damping ratio of the test structure

K, | servo-valve flow gain 0.035 m3/sec
Cp | actuator leakage coefficient 3E"'* m3/(Pa — sec)
k., servo-valve gain 0.9613
T,, | Servo-valve time constant 0.004 sec
wnexp | Natural frequency of the test structure 69.8 1/sec
0.00349

71



5.2 Comparison of Controllers With and Without Saturation
Limits

Numerical simulations were performed to compare the tracking
capabilities of the PID, linear state-space and nonlinear state-space
controllers. As explained in Chapter 4, all the controllers were designed to
have the same dynamic characteristics. This was done by figuring out the
pole locations from the tuned PID controller and using them for designing the
linear and nonlinear state-space controllers. Linear state space controller
uses the linearized state space representation (Table 4-1) in the pole
placement procedure. On the other hand, the nonlinear controller design
accounts for the nonlinearity in servo-valve flow-pressure relationship
(Table 4-2). It utilizes a coordinate transformation to express the system in
Brunovsky form which provides an equivalent linear system representation
for the system dynamics. It should be noted that the calculated input to this
equivalent system (v) has to be transformed back to the input of the original
system (u) using the corresponding expression in Equation 4-34. While
performing the numerical simulations, the dynamics of the servo-hydraulic
test structure system was represented by the nonlinear model as it is
presumed to be more representative of the real behaviour. Figure 5-1 shows
step responses of the system with linear and nonlinear state-space
controllers. It was observed that the PID response was almost identical to
linear state-space controller which was expected as both were based on

linearized representation of the system. Therefore only the linear state-space
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response is shown. In Figure 5-1 the servo-valve is assumed to be able to

open as much as needed (i.e., the system does not saturate). The nonlinear

controller is observed to be faster than the linear one in the transient portion

of the response. Moreover, in the steady state part of the response linear

design has some steady state error while the nonlinear design has a zero

steady state error.

(1 (0 T— X\ o

T

0.06-

displacement (m)

0.02

linear design

time (sec)
0.8 1 1.2 1.4 1.6 1.8 2

Figure 5-1  Step responses for a system without saturation

Figure 5-2 shows the step response for the same systems in Figure 5-1

with the difference that it takes saturation limits into account. As can be seen,

when the servo-valve opening is limited, the nonlinear design is still

performing better than the linear design during both transient and steady

state response phases.
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Figure 5-2  Step responses for a system with saturation

In Figure 5-3 response to a sinusoid input is shown for a system without

saturation. Nonlinear state-space controller can be seen to have less time lag.

aisplacement (m)

P nonlinear design
4 linear design
0.05
]
-0.05
-0.1
time (sec)

-0.15

0 0.5 1 15 2 25 3

Figure 5-3  Response to sinusoid input

Figures 5-4 gives a comparison between nonlinear and linear state-space

controllers looking at load pressure variation for the case when there is no
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saturation in the servo-valve. Figures 5-5 gives the same comparison for the

case when saturation happens in servo-valve.

x 10
3
= nonlinear design
&
o
2251} linear design
g
="
o
g2
1.5} "
1 !
0.5]
time (sec)
0 05 1 1.5 2 25 3
Figure 5-4 load pressure variation without servo-valve saturation
7 & 10° i
[ nonlinear design
s I

linear design

(4]

load pressure(Pa)

iy

time (sec)

0 0.5 1 1.5 2 25 3

Figure 5-5 load pressure variation with servo-valve saturation
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In addition, Figures 5-6 gives a comparison between nonlinear and linear
state-space controllers looking at the servo-valve opening variation for the
case when there is no saturation in the servo-valve. Figures 5-7 gives the
same comparison for the case when saturation happens in servo-valve. It can
be noticed that the better behaviour of the proposed nonlinear controller is

achieved by a small change in servo-valve opening.

-3
x 10

o

(5]

Servo-valve spool opening (m)
Py

ra

linear design

nonlinear design
time (sec)

0 0.5 1 1.5 2 25 3

Figure 5-6  Servo-valve opening variation without servo-valve saturation
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Figure 5-7  Servo-valve opening variation with servo-valve saturation
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5.3 Implementing the Nonlinear State-Space controller in a PSD

Test Simulation

The implementation of hybrid PSD test method in a flowchart is shown in

Figure 5-8.
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Figure 5-8  Hybrid PSD test method (Mercan 2007)

To investigate the behaviour of an elastomeric damper a hybrid PSD test
was conducted at Lehigh University (Mercan 2007). Figure 5-9 gives the
Simulink model of the test simulation that was used in the numerical
simulations during that study, where a PID controller was used along with a
velocity feed forward. In this model the same Simulink model is used to
investigate the behaviour of the system when a NL state-space controller is

used.
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Figure 5-9  Simulink model for real-time hybrid PSD testing with MDOF analytical
substructure and an elastomeric damper as the experimental substructure

As shown in Figure 5-9 subsystem 2 consists of the servo-hydraulic
system and the experimental substructure. Figure 5-10 shows details for
subsystem 2 when a PID controller is used and Figure 5-11 shows details for
subsystem 2 when a NL state-space controller is used. As it can be seen in

these figures the servo-hydraulic system has two similar servo-valves.
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Since the behaviour of the elastomeric damper is nonlinear, approximate
values of stiffness and damping was used to design the state-space controller.
Again, pole placement was done such that both systems have identical pole
locations. Canoga Park earthquake ground motion was used in the following
simulations. All the parameters used in design were the same as in Table 5-1

except for the test structure parameters that are as below.

Table 5-2 Approximate values for the elastomeric damper parameters

parameter value
m | mass of test structure 1335 kg
c viscous damping coefficient of test structure 0.5618E°N — sec/m
k stiffness test structure 3.92E° N/m

Figure 5-12 is the result simulations for PID and NL sate-space controller.
In each of the figures the measured displacement is given against the

command response from the controller.

displacement (m)

time(sec)
0 5 10 15 20 25 0

s o
= =1
1 2

~ displacement (m)

time(sec)
o L] 10 15 20 25 0

(b)
Figure 5-12 comparison between command and measured displacement (a)PID controller (b)
NL controller
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For both controllers, command and measured displacements are almost

overlapping in this time scale. Hence a narrower view of the responses is

given in Figure 5-13.
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45

Figure 5-13 comparison between command and measured displacement (a)PID controller

(b) NL controller

It can be seen that the NL controller is improving the tracking to some

extent. This much of improvement could also be achieved by adding a

velocity feed forward to PID controller but as shown in 5-14 (a) adding a

velocity feed forward may distort the spool opening response. 5-14 (b)

shows that spool opening has a much smoother behaviour when NL state-

space controller is used.
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Figure 5-14 comparison between servo-valve spool opening (a)PID controller with a velocity
feed forward (b) NL controller
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5.4 Robustness of the Control Design

There is always the possibility that the identified values of physical
parameters used in the controller block are inaccurate and different from
what is really in the system. The robustness of the control design needs to be
examined with respect to potential errors in the identified physical
parameters. Mintsa et al. (2009) addressed the robustness regarding the
variations in supply pressure by designing a Lyapunov approach to derive an
enhanced feedback-linearization-based control law. Herein to investigate the
robustness of the proposed control design, the values of some identified
physical parameters in the controller block were contaminated by some

percent of over/underestimation error while their values in the system

Ve

5 and n are the parameters considered.
e

model remained intact. bp, Ceps

Supply pressure is considered almost constant due to the presence of
accumulators.

x 10

-

o
oo

10% error

o o
= ®

displacement (m)

time(sec)
0 0.5 1 15 2 25 3 35 4 4.5 5

Figure 5-15 effect of 10% error in b, on the response
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Figure 5-15 compares the case when the value for b, in the controller is
overestimated by 10% with the case when there is no error. It is readily seen
that 10% of error has made the system unstable. A similar graph was
conducted for 5% error (not shown in figure for sake of clarity) and the
control design was able to handle it without stability problems. Similar
comparisons were done for negative percent errors (underestimation)
wherein the accuracy did not change much and there were no instability

problems.

Conducting the same procedure for Cyp, % and 1 showed that the

proposed control design can easily handle errors within 20% of the real

value.

5.5 Conclusion

The controller’s ability to track the command displacements accurately is
crucial in the overall stability and accuracy of the real-time PSD testing. For
the displacement control loop, it was shown that a controller with improved
performance can be designed using nonlinear state space control design

techniques, provided that a representative model of the system is available.

Simulations were done for a servo-hydraulic system attached to a linear
structure for cases with and without saturation in servo-valve and it was

concluded that a NL controller can improve the tracking capabilities.
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Moreover, the proposed NL controller was compared to PID controller by
implementing it in a real-time PSD test simulation to show that it can

decrease the time lag of the measured displacement.

Robustness of the nonlinear control design with respect to some identified
physical parameters was investigated and it was observed that errors within
reasonable range can be easily handled in terms of instability without loss of

accuracy.

Future research is needed on application of the nonlinear controller to
multi-input, multi-output system control together with a comprehensive

numerical study and experimental validation.
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6 Testsetup design

The design of the test specimen considers the displacement and force
limitations of the existing actuators. These actuators have a stroke range of

+5" (12.7 cm) and have a force limit of 5.5 Kip (24.5 kN).

The aim is to design a test setup that exhibits nonlinear behaviour within
above actuators limitations. Figure 3-1 shows a sketch of the test setup. This
single-degree-of-freedom system consists of a short column with wide flange
section that is hinged to a support by means of a plate and a clevis. As it is
seen in the figure, replaceable steel coupons are used to provide moment
resistance for the support. Since the moment resistance capacity of the
coupons is smaller than the columns, the nonlinear behaviour (yielding)
initiates in the coupons and the column is expected to remain elastic.
Therefore, after each nonlinear PSD test, the sacrificial coupons can be

replaced easily at a low cost.
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Figure 6-1 Experimental setup for PSD test

Looking at the deflected shape and assuming that two pairs of coupons
have been used, the internal force in the coupons (T) at either side of the

hinge can be worked out as the product of their deflection and axial stiffness.

6 —— Eq. 6-1

d 2EA
2
Two of the coupons will experience tension and the other two will be in

. . d . : .
compression. In the above equation S is the horizontal distance between the

hinge and the coupons in the direction of applied force. [ is the length of the
coupons. E is the modulus of elasticity of the coupon material and A4 is the

cross sectional area of one coupon.
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Also it is obvious that the force in the coupons cannot exceed their

yielding force, so

Tonax = 2 f, A Eq. 6-2

Tinax i the maximum force that two coupons can provide at one side of

the beam and f, is yielding stress of the coupon steel.

As mentioned before the coupons are intended to experience some

nonlinearity. The rotation of the base at which the coupons yield (6,) can be

calculated by equating T in Eq. 6-1 to T,,,,, in Eq. 6-2.

2EA

d
EQyT fyA =0, ==— Eq. 6-3

Y

6, 64=ab,

Figure 6-2 Expected base rotation at base used in design
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In order to be able to observe nonlinear response in the experimental test
set-up, the design base rotation 8, will be set higher than the yield rotation

6,.

fyl
9d=at9y=ad—E where a > 1 Eq. 6-4

On the other hand, because of the actuator stroke limit, test setup cannot
move more than 5” (12.7 cm) to either side. Hence according to the Figure 3-

1

hsin(6,) < 5" Eq. 6-5

or approximately

£yl dE
ho;<5"=>ha=X-<5"=h<5"

15 alf, Eq. 6-6

Also for a single-degree of freedom system such as the one in Figure 3-1,
ignoring the self-weight of the system, static equilibrium of moments about

point o gives

Td
ph=Td:;~p:T Eq. 6-7

And the force applied by the actuator cannot exceed 5.5 Kip (24.5 kN). So,
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max

Trnax @
= —— < 55Kip Eq. 6-8

pmax

which according to Eq. 6-2 gives

2f,Ad

Eq. 6-9

Combining Eq. 6-6 with Eq. 6-9 shows that the column needs to be in the

following range.

2f,Ad dE
<h<5"
5.5 Kip alf,

Eq. 6-10

It was decided to use a wide-flange section of W6 x 20 for the column and
for the coupons a diameter of 0.25" (0.635 cm) was selected that gives an
area of A =98.2x1073in? (0.634cm). The clevises available in the
structural laboratory at the University of Alberta dictates a coupon length of
[ =8.13"(20.65cm). The distance between the coupons, as indicated in the

Figure 3-1, .was chosen to be d = 6"(15.24cm).

N

mm?

N

mm?

Assuming f,, = 34 ksi (234

), E = 29000 ksi (2 x 105

)and a = 3,

Eq 3-10 becomes
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34ksi (982)10%in?6" _ 6" 29000 ksi
5.6 kips =" =7 '3(8.13") 34 ksi

Eq.6-11

= 7.16" < h <£1000"

As can be observed for height of the column there is a wide range to select
from. However one should be aware that the upper limit is corresponding to
a = 3. That implies that any height less than 1000" corresponds to bigger
values of a. According to the space available in the structural lab a height of

50"(127cm) was chosen to be used.

Buckling of the coupons also needs to be considered. Knowing that the

ends of the coupons are fixed, buckling load of a coupon is

N
L2 T2 29000 ksi %(%)
= = 3.32 kips (14.8 kKN
(k D2 (0.5 8.13")2 3.32 kips (14.8 kN)
while the yielding force is
m 0.252
fy A =34 = 1.67 kips(7.43 kN)

This means that the coupons will yield long before buckling.
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Appendix A

Table of Laplace Transforms

Number F(s) f@®),t=0
1 1 6(t)
2 1 1)
s
3 1 t
s2
4 2! t?
s3
5 m! t™
gm+1
6 1 e—at
(s+a)
7 1 t e—at
(s + a)?
8 ; 1 tm—l e—at
(s+a)m m—1
9 a 1-— e—at
s(s+a)
10 a 1 —at
2G+a) E(at—1+e )
11 b—a et — bt

(s+a)(s+b)
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12

13

14

15

16

17

18

19

s
(s + a)?

aZ

s(s + a)?

b—a)s
(s+a)(s+b)

a
(s2 4+ a?)

s
(s2 4+ a?)

s+a
(s + a)? + b2

b
(s + a)? + b2

a’ + b?

s[(s + a)? + b?]

(1—at)e 4t
1—e 4% (1+at)
hebt_ge-at
sin(a t)
cos(at)

e~ cos(b t)

e sin(b t)

1—e™® (cos(b t) + %sin(b t))
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Appendix B Some on Differential Geometry (Lynch 2009)

1 Changes of Coordinates or Diffeomorphisms
A nonlinear change of coordinates z = z(x) is a function defined on

U € R™ and mapping to R™. It must have the properties

1. z(x) is an invertible function, i.e., there must exist an inverse

function z~1 such that
zl(z(x))=x, VxeU
2.  Bothz and z~! are C*® mappings.

When U € R" the change of coordinates is called global. When this is not
the case, the change of coordinates is said local. A sufficient condition for a
mapping to be a local change of coordinates is given by the Inverse Function
Theorem (Marino and Tomei 1995). Note that Condition 2 is required, i.e., that
the change of coordinate is C*, since these coordinates changes will be applied to
the state of a system, and the systems are required to be expressed in the new
coordinates also to be C* or smooth. An infinite degree of smoothness is not

usually required, but it is assumed to avoid keeping track of the degree of
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smoothness. The invertibility Condition 1 allows to uniquely recover the original
state coordinate from the new one. In addition to applying a change of coordinates
to a system’s state, transformation of a system’s output variable or time is also

possible.

2 Vector Fields

A vector field on U € R" is a C* mapping from U to R™. It is customary to
write vector fields using one of two notations. The first notation represents vector
fields as column vectors. The basis used to represent the vector field is implied

and this might lead to confusion.

fi(x)
f =9 = (L@, LG, . fu0)
fa(x)

Alternately
S 9
FO) = fi() 5

J . , . . .
where o s the ith unit tangent vector in the x-coordinates. The latter

Xi
notation provides more information in that the basis used to express the
vector field is stated explicitly.

3 Differential Geometry Functions Used in the Text

Lie brackets
Lie brackets between two vector fields f and g is another vector field

which is defined in local coordinates as
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d d
adtg = 1f,91= 25 -7

[terated Lie brackets are defined as
adfg = [f.adf 'g], k=1
adig =g

Lie Derivative

Lie derivative of function h(x) along vector field f is the inner product of

the gradient of h(x) defined as

oh ,O0n On  oh
dh = —( )

T ox  \ox, ox,’ " ox,

and vector field f, therefore
n
Lyh=(dh.f) =) o
A ,f B - 1fi Oxi
i=

and the iterative form of it is explained as
Léh = Ll *h = (d(L57th) . f),  k>1
0p —
L¢h=h
Sequential form of Lie Derivative is defined as

LyLeh = (d(Lsh), g)
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4 Distributions

A k-dimensional distribution A defined on U € R" is a map which assigns to
each x € U, a k-dimensional subspace of R" (or more precisely the tangent
space T,R") such that for all x, € U there exists a neighbourhood U, € U
containing xyand k smooth vector fields such that

1. {fi(x), ..., fx(x)} are linearly independent Vx € U,

2. A(x) = span{f,(x), ..., fi,(x)} for all x € U,.

Note that in Condition 1, “linear independence” is the usual definition on R"
from linear algebra. In Condition 2 the span on the RHS involves real linear
combinations of the constant vectors f;(x), ..., fx(x) in R", that is, it is a
subspace of R™. In many cases we use so-called generating vector fields
fi(x),1 <i <k to define a distribution, however, the f;(x) are only one
choice of basis for the subspace A(x) and others can be chosen. For example
if A(x) = span{f;(x), f,(x)} then we also haveA(x) = span{f;(x) +
fa(x), f1(x) — fo ()}

The dimension of a distribution A, denoted as dim(A(x)) is a function of x
and is equal to the dimension of the subspace A(x). A distribution is said
nonsingular on U if it has constant dimension on U. In nonlinear control, we
often assume the relevant distributions are non-singular.

Given a k -dimensional distribution A defined on U and a vector field f on
U € R", we say f belongs to A if

f(x) e A(x),Vx eU

For more information please refer to the reference.
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Appendix C Matlab Codes and Simulink Models

Typical Matlab Code to define the parameters and design the controller

(pole placement) using the “place” function of Matlab.

clear all;

clc;

% Structure
m=1000;
c=500;
k=5000000;

% Both systems
mp=1025;
bp=356.18e3;
%ap=0.0808;
ap=0.1095;
%v4b=5.65e-10;
vdb=4e-11;
cp=3e-11;
tm=0.004;
xvmax=2.73e-3;
Y%xvmax=2.73e+3;

% Linear
kc=1.5e-11;
kg=0.035;

% Nonlinear
ps=207e5;
n=2.617e-3;
%hxvmax=2.73e-3;
kv=1;
wv=1/0.004;

% PID
kp=80;
kd=0;
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%State-space design for linear model with 3 states

al=[0 1 0; -k/(m+mp) -(bp+c)/(m+mp) ap/(m+mp); O -ap/vib -
(kc+cp)/vab];

b1=[0; 0; kag/v4b];

cl=[1 0 0];

p=[-123,-26.8+29.9*1i,-26.8-29.9*11];

kcll=place(al,bl,p);

nbarl=-inv(cl*((al-bl*kcl1)\b1l));

%State-space design for linear model with 4

a2=[0 1 0 0; -k/(m+mp) -(bp+c)/(m+mp) ap/(m+mp) O; O -ap/v4b
-(kc+cp)/vab kq/v4ab; 0 0 O -wv];

b2=[0; 0; 0; kv*wv];

c2=[1 0 0 0];

p=[-242,-21.9+31.2*1i,-21.9-31.2*1i,-141];

kcl2=place(a2,b2,p);

nbar2=-inv(c2*((a2-b2*kcl2)\b2));

% Nonlinear state-space design for non-linear model with 4 states
a3=[0 1 00; 0010; 0O001; 000 0];
b3=[0; 0; 0; 1];
c3=[1 0 0 0O];
p=[-242,-21.9+31.2*1i,-21.9-31.2*1i,-141];
kcl3=place(a3,b3,p);
nbar3=-inv(c3*((a3-b3*kcl3)\b3));
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Function definition for nonlinear behaviour of the servo-valve.

function flowB = fcn(xv,PL)

Xv;PL;

%%% this fcn calculates the flow considering the leakage
Cd=0.58;

rho=700; %kg/m"3, mass density

PS=207e5; %Pa , supply pressure

d=0.038; %m, spool diameter

% Xxvmax=2.73e-3; %m max spool opening
xvmax=2.73e-3;

%%%% leakage properties of the individual valve
%xvIlap=6/100;

xvlap=0;

%Aeffnul 1=2_.056e-6; %m~"2

Aeffnul1=0;

xvlapm=-1*xvlap;

%% default A1l and A4

A1=0;

A4=0;

%%% define the orifice areas
if xv <= xvlapm
Al1=0;
Ad=((pi*d*xvmax-2*Aeffnul 1)/ (1-xvlap))*abs(xv)-(((pi*d*xvmax-
2*Aeffnul 1)/ (1-xvlap))*xvlap-2*Aeffnull);
end
if xv >= xvlap
A4=0;
Al=((pi*d*xvmax-2*Aeffnul 1)/ (1-xvlap))*abs(xv)-(((pi*d*xvmax-
2*Aeffnul 1)/ (1-xvlap))*xvlap-2*Aeffnull);
end
if xv > xvlapm && xv <=0
Al= -(Aeffnull/xvlap)*abs(xv)+Aeffnull;
Ad= (Aeffnull/xvlap)*abs(xv)+Aeffnull;
end
if xv >0 && xv < xvlap
Al= (Aeffnull/xvlap)*abs(xv)+Aeffnull;
Ad= —-(Aeffnull/xvlap)*abs(xv)+Aeffnull;
end

%%% calculate the flow
FflowB=(Cd*A1*((PS-PL)/rho)"0.5)-(Cd*A4*((PS+PL)/rh0o)"0.5);
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MODIFICATIONS OF INTEGRATION ALGORITHMS TO ACCOUNT FOR LOAD
DISCONTINUITY IN PSEUDODYNAMIC TESTING

S. Hadi Moosavi', Oya Mercan

ABSTRACT
When there is a sudden change in the loading (e.g., rectangular pulse), the
discretized version of the load history will involve an artificial impulse, which
manifests itself as an amplitude distortion in the structural response obtained by
the numerical solution of the equation of motion. An approach to account for load
discontinuity by modifying existing integration algorithms used in the solution of
force equation of motion is introduced in this paper. Modified versions of four
different algorithms, namely Central Difference, Newmark Explicit, a-method
with a fixed number of iterations, and Rosenbrock-W integration algorithms are
presented. The general approach in modifying an integration algorithm to account
for load discontinuity is discussed and the improved accuracy of these modified
algorithms is presented through numerical simulations.

Introduction

Pseudodynamic (PSD) test method is a displacement based experimental technique that
can be used to determine the behavior of structural systems subjected to dynamic loading. In a
PSD test, a direct step by step integration algorithm generates the command displacements by
solving the force equation of motion. These displacements are imposed on the test structure by a
servo-hydraulic system, and using the measured restoring force feedback from the deformed test
structure, the integration algorithm computes the subsequent command displacements. For load-
rate insensitive structures, PSD testing method can be applied in slow time (using an expanded
time axis), or for structures that exhibit load-rate dependent vibration characteristics, it can be
applied at fast rates (ideally in real-time). Both the slow-time and real-time PSD testing have
been successfully applied for seismic loading (Mahin 1985, Nakashima 1999), but if the loading
history has a sharp discontinuity as in the case of pulse loading (see Fig. 1-a), the numerical
solution of the force equation of motion will have an amplitude distortion which may render the
PSD test results inaccurate. This is due to the extra impulse (shaded area in Fig. 1-b) introduced
during the discretization of the loading history.

To circumvent this problem, the use of step by step solution of the momentum equation
of motion was suggested and the resulting improved accuracy was verified through numerical
simulations (Chang, 2001, 2002, 2007a) and experiments (Chang, 1998). In this approach, the
force equation of motion is replaced by its integral form, which is the momentum equation of
motion. As a result of the time integration of the load that appears on the right hand side of the
momentum equation, provided that the area under the load history is computed correctly, the
discontinuity in the load history is eliminated. Although the success of the momentum approach
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has been presented for Newmark explicit integration algorithm, replacing the force equilibrium
equation with the momentum equation may not be a trivial task if one wishes to use an
integration algorithm customized (e.g., unconditionally stable, implicit, real-time compatible) for
particular testing needs. Other than the momentum approach, in an attempt to obtain an accurate
solution in the presence of load discontinuity, Chang, (2007b) also proposed the use of a single
time step immediately after the discontinuity that is much smaller than the discretization step
size. This small step was recommended to be one-hundredth of the discretization step size or
smaller. Especially within the context of real-time PSD testing, a variable time step is
detrimental for it would result in inaccurate velocities as the displacement commands are
typically imposed using a digital controller with a constant clock speed.

The study presented here introduces an approach, which is referred to as limit approach,
to account for the load discontinuity by modifying a given integration algorithm that solves the
force equation of motion in its final form. Depending on the way a particular integration
algorithm is formulated, these modifications generally involve updated force and/or acceleration
values at the time of discontinuity. In the paper, the general approach (i.e., the limit approach)
that introduces modifications to a given integration algorithm is discussed and then implemented
to derive modified versions of the Central difference, Newmark explicit, a-method with a fixed
number of iterations, and Rosenbrock-W integration algorithms. Both a-method and
Rosenbrock-W algorithms are suitable for real-time testing, where the former is an implicit
scheme. For each of the four integration algorithms considered in this paper, a summary of the
original formulation is provided together with its modified version. The improved accuracy of
the modified algorithms is presented through numerical simulations.

The Limit Approach

The limit approach starts by defining an intermediate step j just after the load
discontinuity between times i (where the discontinuity takes place) and i + 1 (see Fig. 1-c). In
order to be able to set it apart from the discretization time step size of At and thereby make the
implementation of the limit approach for the modification of an algorithm easier to follow, the
time step size associated with step j is identified as At". It should be noted the load value p; is
the value of the load at the lower end of the discontinuity at step i. From the original formulation
of a given integration algorithm, the information for step j (which may include the displacement
(u), velocity (1) and/ or acceleration (ii), or an intermediate quantity defined by the particular
integration algorithm to march forward) can be obtained using the information from step i (see
Fig. 1-c) and considering p; and At’. In order to obtain the information at the lower end of the
discontinuity (i*) and thereby account for discontinuity effects properly, next step involves
taking the limit of the expressions that define step j information where At’goes to zero. On Fig.
1-d the information (i.e., the expressions for the load, displacement etc.) associated with i*are the
results of this limit process. In programming the resulting modified algorithm, a flag needs to be
set in order to identify the time step when discontinuity (i.e., step i) takes place. When that
happens, the numerical values of for p;+, u;- etc. need to be evaluated from the expressions
obtained by the limit approach, and using these, the integration algorithm in its original form can
march forward to compute information for step i + 1.
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Fig. 1. (a) Load history with discontinuity, (b) Discretized load history, (c) Load history with step J,
(d) Load history after performing the limit

Implementation of the Limit Approach
Central Difference Method

The discretized form of the equation of motion for a single-degree-of-freedom (SDOF)
system at time step i is:

mili+cui+kui=pi (1)
Central difference method uses a finite difference approximation for velocity and

acceleration (Chopra, 2007). With a constant time step size of At, the velocity and acceleration at
step i are expressed as:

g = dirr Wizt (2)
' 2t

i = i(ui+1 L ui—l) _ Uirr — 22U Ui 3)
bOAEN At At At?

Substituting the velocity and acceleration from Egs. (2) and (3) in Eq. (1), and solving the
expression for u;,q:

m c 2Zm m c €))
uivs = [pi = (35~ 77) ws — (K~ 52 )] /[ + 53
pi k

Implementation of Limit Approach to Obtain (i*) Information

Considering Fig. 1-c and rewriting Egs. (2) and (3) for step i, velocity and acceleration at
that step are:

ui = =, u; =
At + At %(At +At)

At' At

Uj — Uiy . 1 (uj —U U — ui—l) (5), (6)

Also, using the same equations, velocity and acceleration at step j can be expressed as:
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_ U1 — Y " 1 (ui+1 — U U= ui) (7, (8)

YT A+ A ufzzl(At4_At9 At At'
2

Egs. (9) and (10) express the equation of motion at time steps i and j, respectively:
mili+cﬂi+kui=pl- (9)

Once Eq. (9) is solved for u; (after substituting for @; and ii; from Egs. (5) and (6)), the
result can be used to replace u; in Eq.(10) which then can be solved for u; 4 (after substituting
for u; and ii; from Egs. (7) and (8)). Performing a limit where At" — 0 gives an expression for
U;4q Interms of u;_; and u;:

(1

_|pi +p; m c 2m m c
Uir1 = |77 _(AtZ_ZAt)ui‘1_<k_F)”"/[FJFZM]

pi* k

i’
Comparing Eq. (4) with Eq.(11), application of limit approach to Central difference

method reveals that to account for the load discontinuity, only the load value for (i*) needs to be
redefined as the average value of the loads at each end of the discontinuity.

Explicit Newmark method

Newmark family integration methods (Newmark, 1959) can be customized by selecting
two parameters (¥ and ) which specify the variation of acceleration over a time step. These
parameters also determine the accuracy and stability characteristics of the method. Fory = 0.5
[ = 0 Newmark's method becomes explicit and conditionally stable:

Uit1 =Yg + At 'L'LL' + 0.5 Atzill- (12)

i _ Pi+1 — k Ujy1 — C[ui + 0.5 At ul] (13)
t m+ 0.5 c At

ui+1 S l:li + At[OS ul + 05 ﬁl’+1] (14)

Implementation of Limit Approach to Obtain (i*) Information
Defining the information for step j using Egs. (12)-(14) as required by the limit approach:

u]' =U; + At' 'L'LL' +0.5 Atlzﬁi (15)
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W= m + 0.5 ¢ At
Performing a limit on the above expressions where At’ — 0, will yield
ul* = Uy, ui* = lli (18)5 (19)
L P —ku—ciy (20)

where p;" = p;

From above equations, it turns out that, while the values for displacement and velocity
remain the same, the acceleration value at the lower end of the discontinuity (i*) needs to be
updated. By stepping forward to step i + 1 using the updated information from Eqgs. (18)- (20)
derived consistently with Newmark explicit method formulation, the load discontinuity will be
taken care of properly.

Rosenbrock
Considering an SDOF system the general implementation of Rosenbrock integration

method proposed by Lamarche (2009) for real-time pseudo-dynamic testing is described in
Fig. 2.

Initial restoring force:
Effective mass:

T'O=C1;t0+ku0
Mg =m+yAtc+ y?At?k

Mid-step between i and i + 1 L= 1| Impose w4 and 144 to the structure and
t = At(i + 1) measure the restoring force 7; 4
2
N S 4

ui+%—ui+2 ' ui+%—ui+2e Upg = U +d, Uy = t+e
Where Where

,_ At . At (pi + Dits 5
é= E(Pi — 1+ vy At(—k 1)), e= m(%—ri% +(y Bo Atk +VC)€)
d=At(u; + vy é) d=At(u; + f1é+vye)

' t

Impose u, 1 and 1,1 to the structure and measure the restoring force r, 1
2 2 2

Fig. 2. Rosenbrock integration algorithm
Implementation of Limit Approach to Obtain (i*) Information
Introducing step j and taking the limit for the Rosenbrock algorithm, it can be easily

shown that u; and 1; approach to u; and 1;, respectively (or equivalently u;* and ;" are the
same as u; and u;, respectively). As a result, for Rosenbrock algorithm to handle the load
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discontinuity properly, the information at step i + 1 right after the discontinuity needs to be
calculated using u;*, ;" and p;* which are the same as u;, @;, and p j» Tespectively.

Alpha method

Alpha method (Shing et a/ 2002) is an implicit method used in real-time pseudo-dynamic
testing which is based on Hilber a-method (Hilber et al 1977). As can be seen from Fig. 3, Alpha
method starts by computing a predictor displacement in stage [1], which is followed by a fixed
number of iteration substeps in stages [2] and [3]; during the last iteration substep an equilibrium

correction is performed. Through the equilibrium error correction (stages [4] and [5]) the

displacement and restoring force values are made available for the computation of the next step
predictor displacement and, as a result, the actuator moves without interruption.

Predicted displacement
At?
Q01 = u; + At 1; + At? (0.5 — B)ii; + 7 [A+ a)pjs —ap; —cu; — (1 + a)(1 —y)c Atii; + a ry]
i 'y
2
U; 1= ﬁ 1 wrk . < k=k+1 Impose ulgg—‘r}z,mand:
o o M measured measure the displacement uftLl .
k41 k Uiy — ufneasured > and measure the restoring force
Ucommand = Ucommand —k k+1
n-— Tmeasured
y —
i
At2B(1 + «a U = Ut — —error
error = u;ln_e}lsured - ﬁi+1 L r?lgésured > 1 measured KL . .
M M i=i+1
Tit1 = Tr?le_zalsured —k F@TTOT

r _________________ |
| Note that: : 1 v
l'k=0ton—-1, 10 =1 | . . 2 .
| = > "measured — T U1 = —55 (Ui — w; — Aty — At* (0.5 — B)il;]
| K* =M+ A2B(1 + a)k | LT Azt ' '
: M=m+A+a)yAtc | Uipr = U + At [(1 — )il +y U4
__________________ d

Fig. 3. Alpha method algorithm

Implementation of Limit Approach to Obtain (i*) Information

Upon the application of the limit approach starting from stage[1]in Fig. 3, the predicted
displacement at step j approaches to u; after setting At’ — 0 (or equivalently ©i;" = u;) and the
displacement term in stage [2| becomes constant (i.e., u;* = u;). Considering that both parameters
K* and M approach to m application of the limit to stages [4] and [5] gives:
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— yn-1
error = Umeasured — Ui 1)

: — * _ ,,n—1 n-1 _

Alg,rllo Ui = Ui = Umeasured — (umeasured - ui) =U; (22)
: — * _ .n—1 n-—1 _

Alg,r_r}o 7} =T, = Tmeasured — k(umeasured - ui) =T (23)

Eq. (23) is true for linear elastic systems. In stage [6] the expression for acceleration can
be revised for step j as

. 1 [ ' 1] 24
ty = Sl - = A~ 2205 - By o

Upon substituting the expression of u; from stage [2] which has the expression for #;
embedded from stage [1], and as a result of the cancellations that take place, the zero over zero
indeterminacy as At’approaches to zero is eliminated; and the acceleration for i* is obtained:

.. —bhia+t(Q+a)p—cu —r (25)
ui = m
where p;" = p;

And the expression for velocity in stage [6] yields

The above application of the limit approach in modifying Alpha method reveals that, to
compute the information at step i + 1 right after the discontinuity, information from i* needs to
be used where the updated acceleration from Eq.(26) is used together with the value of the load
at the lower end of the discontinuity.

Numerical Simulations

In order to verify the success of the proposed modifications in handling the load
discontinuity, numerical simulation results for each integration algorithm are presented here. An
undamped linear SDOF system with m = 0.2533 kip.sec?/in, and k = 10kips/in
(i.e.,undamped natural period T,, = 1 sec.) subjected to the two loading cases shown in Fig.4 is
considered. Fig. 4 (a) is a step pulse with an amplitude of 10 kips and duration of 0.1 sec.;
whereas in Fig. 4 (b) the load value changes from +10 to -10 kips at the discontinuity and then
increases to zero linearly over a duration of 0.1 sec.
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Fig. 4. Load cases with discontinuity

When discretizing the loading history for subsequent use in the step-by-step solution of
the equation of motion, selection of a very small time step will minimize the extra impulse and in
turn the amplitude distortion introduced in the response. To be able to check the ability of the
modified algorithms in handling large extra impulses, the time step size for the numerical
simulations was selected as 0.1 sec.; which also made the results of this study comparable with
that of Chang (2001), where it was shown that time step can be selected as large as the impulse
duration when the momentum equation is used. It needs to be pointed out that for Central

difference and Newmark explicit algorithms ?ZO.I sets the limit for accuracy, beyond which the

amplitude decay and period elongation introduced by the algorithm may be significant (Chopra,
2007).
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Fig. 5. Simulation results for the loading case in Fig. 4(a)

Fig. 5 compares the theoretical response with the results obtained from the original
(unmodified) and modified versions of the integration algorithms considered in this study. Both
versions of each algorithm were programmed in MATLAB. In the modified version, a flag was
set to identify the discontinuity, and the modified expressions for load and/or acceleration were
introduced as derived here. As can be seen from Fig. 5, there is a significant difference between
the unmodified and theoretical responses; whereas the modified results are in good agreement
with the theoretical response. Similarly, for Fig. 6 which considers nonzero load values after the
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discontinuity, the proposed modifications provide considerable improvements in the accuracy of
the numerical results. The unmodified responses from each algorithm between Fig. 5 and 6 are
the same as expected, since with a time step size of 0.1 sec., the discretized versions of the load
cases in Fig. 4 (a) and (b) are the same (see Fig. 1 (b)). Depending on the accuracy
characteristics of the particular integration algorithm, the agreement between the theoretical
response and the modified numerical solution can be improved by using a smaller time step.
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Fig. 6. Simulation results for the loading case in Fig. 4(b).
Conclusion

Pseudodynamic testing method has been implemented successfully both in slow and real-
time for seismic loading of structures. However, when a sharp discontinuity exists in the loading
history as in the case of pulse loading, the discretized version of the load will have an extra
distortion which manifests itself as an amplitude distortion in the numerical response and may
render the pseudodynamic test results inaccurate. Other than using very small time steps in
discretizing the load, previous studies proposed the use of numerical solution of the momentum
equation of motion that replaces the force equation of motion. Although the success of the
momentum approach has been presented using Newmark explicit integration algorithm,
replacing the force equilibrium with the momentum equation may not be a simple task if one
wishes to use an integration algorithm customized for particular testing needs. The study
presented here introduces a limit approach that considers the force equation of motion and
modifies the integration algorithms in their final form to account for the load discontinuity. The
general modification approach and its implementation to four integration algorithms are provided
together with numerical simulation results that show the improved accuracy of the modified
algorithms.

References

Chang, S. Y., Tsai, K. C., & Chen, K. C. (1998). Improved time integration for pseudodynamic
tests. Earthquake Engineering & Structural Dynamics, 27 (7), 711-730.

117



Chang, S. Y. (2001). Analytical study of the superiority of the momentum equations of motion
for impulsive loads. Computers & Structures, 79 (15), 1377-1394.

Chang, S. Y. (2002). An improved on-line dynamic testing method. Engineering Structures , 24
(5), 587-596.

Chang, S. Y. (2007 a). A technique for overcoming load discontinuity in using Newmark
method. Journal of Sound and Vibration , 304, 556-569.

Chang, S. Y. (2007 b). Approach for overcoming numerical inaccuracy caused by load
discontinuity. Journal of Engineering Mechanics, 133 (5), 555-565.

Chopra, A. K. (2007). Dynamics of Structures. New Delhi: Prentice-hall Of India Pvt Ltd.

Hilber, H. M., Hughes, T. J., & Taylor, R. L. (1977). Improved numerical dissipation for time
integration algorithms in structural dynamics. Earthquake Engineering & Structural
Dynamics, 5, 283-292.

Lamarche, C. P., Bonelli, A., Bursi, O. S., & Tremblay, R. (2009). A Rosenbrock-W method for
real-time dynamic substructuring and pseudo-dynamic testing. Earthquake Engineering
& Structural Dynamics, 38, 1071-1092.

Mahin, S. A., & Shing, P.-s. B. (1985). Pseudodynamic method for seismic testing. Journal of
Structural Engineering, 111 (7), 1482-1503.

MATLAB is a registered trademark of The MathWorks, Inc. http://www.mathworks.com/

Nakashima, M., & Masaoka, N. (1999). Real-time on-line test for MDOF systems. Earthquake
Engineering and Structural Dynamics, 28 (4), 393-420.

Newmark, N. M. (1959). A method of compuation for structural dynamics. Journal of
Engineering Mechanics Division, 67-94.

Shing, P. B., Spacone, E., & Stauffer, E. (2002). Conceptual design of fast hybrid test system at
the University of Colorado. 7th U.S. National Conference on Earthquake Engineering,
(2389-2398). Boston, MA (USA).

118



References
Ahmadizadeh, M. 2007. Real-time seismic hybrid simulation procedures for
reliable structural performance testing. Doctor of philosophy, State

University of New York at Buffalo, United States, New York.

Ayalew, B. and Jablokow, K. 2007. Partial feedback linearising force-tracking
control: Implementation and testing in electrohydraulic actuation, Control

Theory & Applications, IET, 1: 689-698.

Dimig, J., Shield, C., French, C., Bailey, F., and Clark, A. 1999. Effective force
testing: A method of seismic simulation for structural testing, Journal of

Structural Engineering, 125: 1028-1037.

Franklin, G.F., Powell, ].D., and Emami-Naeini, A. 2010. Feedback control of

dynamic systems. Pearson, Upper Saddle River N.].

How, J. 2007. Course materials for 16.31 feedback control systems. MIT

OpenCourseWare, Massachusetts Institute of Technology.

Kwon, ], Kim, T., Jang, ].S., and Lee, 1. 2007. Feedback linearization control of
a hydraulic servo system. In SICE-ICASE, 2006. International Joint

Conference, pp. 455-460.

Lim, T. 2002. Pole placement control of an electrohydraulic servo motor. In
Power Electronics and Drive Systems, 1997. Proceedings., 1997 International

Conference on, Vol. 1, pp. 350-356.

119



Lynch, A. 2009. Differential geometry - basic, notes for nonlinear control

design. University of Alberta.

Mahin, S.A. and Williams, M.E. 1981. Computer controlled seismic
performance testing. In Second ASCE-EMD Specialty Conference

on Dynamic Response of Structures, Atlanta, GA.

Mahin, S., A. and Shing, P, B. 1985. Pseudodynamic method for seismic

testing, Journal of Structural Engineering, 111: 1482-1503.

Marino, R. and Tomei, P. 1995. Nonlinear control design: Geometric, adaptive,

and robust. Prentice Hall, .

Mercan, O. and Ricles, ]J.M. 2008. Stability analysis for real-time
pseudodynamic and hybrid pseudodynamic testing with multiple sources of

delay, Earthquake Engineering & Structural Dynamics, 37: 1269-1293.

Mercan, O., Zhang, X.P., and Ricles, ].M. 2006. State-space control design for
real-time pseudodynamic testing applications. In Proceedings of the 8th U.S.
National Conference on Earthquake Engineering, San Francisco, California,

USA.

Mercan, 0. 2007. Analytical and experimental studies on large scale, real-
time pseudodynamic testing. Ph.D., Lehigh University, United States --

Pennsylvania.

Merritt, H.E. 1967. Hydraulic control systems. Wiley, New York.
120



Mintsa, H.A., Kenne, ]J.P., and Venugopal, R. 2009. Adaptive control of an
electrohydraulic position servo system. In AFRICON, 2009. AFRICON'09., pp.

1-6.

Moog, I.C.D. 2010. G761 series servo-valves, product catalog. East Aurora, NY.

Okada, T., Seki, M., and Park, Y.J. 1980. A simulation of earthquake response
of reinforced concrete building frames to bi-directional ground motion by IIS
computer-actuator on-line system. In Seventh World Conference on

Earthquake Engineering, Istanbul, Turkey.

Seo, J., Venugopal, R, and Kenné, ]J.P. 2007. Feedback linearization based
control of a rotational hydraulic drive, Control Engineering Practice, 15:

1495-1507.

Shing, P.B. and and Mahin, S.A. 1983. Experimental error propagation in
pseudo-dynamic testing. UCB/EERC-83/12, Earthquake Engineering

Research Center, University of California, Berkeley, California.

Takanashi, K. Udagawa, K., Seki, M. Okada, T. and Tanaka, H. 1975.
Nonlinear earthquake response analysis of structures by a computer-
actuator on-line system. 8, Earthquake Resistant Structure Research Center,

Institute of Industrial Science, University of Tokyo, Tokyo, Japan.

Thayer, W.]. 1958 (revised in 1965). Transfer functions for MOOG servo-

valves, technical bulletin 103. MOOG Inc., Control Division, East Aurora, NY.

121



Yanada, H. and Furuta, K. 2007. Adaptive control of an electrohydraulic servo
system utilizing online estimate of its natural frequency, Mechatronics, 17:

337-343.

Zhang, X., Ricles, ].M., Mercan, 0., and Chen, C. 2005. Servo-hydraulic system
identification for the NEES real-time multi-directional earthquake simulation

facilty. 05-14, ATLSS, Lehigh University.

Zhao, J. 2003. Development of EFT for nonlinear SDOF systems. Ph.D,,

University of Minnesota, United States -- Minnesota.

122





