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Abstract

The motivation to incorporate planning, temporal abstraction and value func-

tion approximation in reinforcement learning (RL) algorithms is to reduce the

amount of interaction with the environment needed to learn a near-optimal

policy. Although each of these concepts has been under intense scrutiny for

decades, less is known about their interplay, and specifically: under what cir-

cumstances does planning with options provide significant benefits over plan-

ning with only primitive actions or model-free alternatives? In this thesis

we examine this question by endowing the background planning algorithm,

Dyna with access to options with (near)-optimal option policies in two envi-

ronments: a non-stationary tabular one, in which the changing reward function

necessitates rapid value function updates, and in a deterministic, stationary,

continuous-state environment that requires value function approximation, a

setting in which planning with primitive actions is known to be suboptimal

compared to model-free approaches. We find that in the non-stationary en-

vironment without a state visitation bonus, all planning algorithms perform

significantly better than the model-free Q-learning algorithm; planning with

only options (Dyno) performs better than planning with both actions and op-

tions (Dyna+options) or planning with actions only (Dyna), the latter two

have comparable performance. When a state-visitation bonus is added, each

algorithm performs similarly near-optimally, and satisfactory performance can

be achieved by restricting the state visitation bonus to goal states. In the value

function approximation realm, we find that Dyno outperforms DDQN in terms
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of speed and robustness at the beginning of learning, but later on, its perfor-

mance degrades to that of DDQN’s in the instances examined. Dyna+options

performs better than Dyna and comparably to DDQN during much of the

learning process but with higher variance and occasional dips. We conclude

that having access to options with (near-)optimal option policies alone is not

sufficient to combat the suboptimality arising from planning with inaccurate

primitive models and argue that more sophisticated planning architectures are

necessary that bypass the reliance on primitive models.
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Success is not final; failure is not fatal: it is the courage to continue that

counts.

– Winston Churchill
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Chapter 1

Introduction

Reinforcement learning is a subfield of machine learning concerned with de-

veloping agents that learn a policy to behave optimally in an environment

by maximizing the expected sum of future rewards via trial and error (R. S.

Sutton and A. G. Barto 2018). In relatively simple, unchanging environments

correspondingly simple agents, such as Q-learning (Watkins and Dayan 1992)

tend to perform very well, with a tractable computational time (Koenig and

Simmons 1992). Applications of scientific and economic interest however often

require environments with large state and action spaces as well as changing dy-

namics and rewards (non-stationarity) where such classical methods struggle

or are even inapplicable, and hence additional extensions are needed. Some of

the proposed extensions that are currently researched with varying degrees of

intensity and success are: planning, temporal abstraction and value function

approximation.

Planning in reinforcement learning requires access to a model of the en-

vironment, which allows the agent to improve its policy without interacting

with the environment. Thus, model-based agents should have a significant

benefit over model-free ones: their ability to plan with an accurate model

should reduce the number of interactions with the environment that is neces-

sary to achieve an optimal policy. This is especially beneficial in environments

in which environmental interactions take a longer time/are costlier than in-

teracting with the agent’s internal model and/or where the aspects of the

environment change faster than the agent can update a corresponding optimal
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policy based on direct experience.

Temporal abstraction in reinforcement learning means the notion of actions

that span multiple timesteps: most commonly applied in the form of options

(R. S. Sutton, Precup, et al. 1999). The benefits of having options with a

near-optimal policy are similar to having an accurate model: the agent should

require fewer interactions with the environment to find the optimal policy and

it can update its value function sooner in case the environment dynamics or

rewards change.

Value function approximation in reinforcement learning refers to learning

a parameterised approximation of (a proxy of) the policy to account for the

impracticality or impossibility of calculating it exactly due to a too vast state

and/or action space.

Even though these additional components to bare reinforcement learning

algorithms have been under intense scrutiny for decades, as of today no empir-

ical analysis has been carried out on their combination, specifically: planning

with options, and planning with options with value function approximation,

which are the major subjects of this thesis.

The core question we want to answer is: in what circumstances does plan-

ning with options with (near-)optimal policies help. To answer this, we exam-

ine two settings:

1. a tabular environment with a non-stationary reward function, called

GrazingWorld

2. a continuous state, deterministic environment called the PinBall domain,

in which value function approximation is necessary

In our experiments, we assume that we have access to options with (near-

)optimal option policies in these environments from the start, and do not

consider the problem of option discovery - a separate research question beyond

the scope of this thesis.

The promise of Dyna is that we can exploit the Markov structure in the

RL formalism, to learn and adapt value estimates efficiently, but many open
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problems remain to make it more widely useful. These include that (1) one-

step models learned in Dyna can be difficult to use for long-horizon planning,

and (2) learning probabilities over outcome states can be complex, especially

for high-dimensional states.

A variety of strategies have been proposed to improve long-horizon plan-

ning. Incorporating options as additional (macro) actions in planning is one

approach. Options for planning has largely only been tested in tabular settings

(Singh et al. 2004; R. S. Sutton, Precup, et al. 1999; Wan, Naik, et al. 2021).

Recent work has considered a mechanism for identifying and learning option

policies for planning under function approximation (R. S. Sutton, Machado,

et al. 2022), but as yet did not consider issues with learning the models.

A variety of other approaches have been developed to handle issues with

learning and iterating one-step models. Several papers have shown that using

forward model simulations can produce simulated states that result in catas-

trophically misleading values (Jafferjee et al. 2020; Lambert et al. 2022; van

Hasselt et al. 2019). This problem has been tackled by using reverse models

(Jafferjee et al. 2020; Pan, Zaheer, et al. 2018; van Hasselt et al. 2019); pri-

marily using the model for decision-time planning (Chelu et al. 2020; Silver,

R. S. Sutton, et al. 2008; van Hasselt et al. 2019); and improving training

strategies to account for accumulated errors in rollouts (Talvitie 2014; Talvitie

2017; Venkatraman et al. 2015). An emerging trend is to avoid approximating

the true transition dynamics, and instead learn dynamics tailored to predict-

ing values on the next step correctly (Ayoub et al. 2020; Farahmand 2018;

Farahmand et al. 2017). This trend is also implicit in the variety of tech-

niques that encode the planning procedure into neural network architectures

that can then be trained end-to-end (Farquhar et al. 2018; Oh, Singh, et al.

2017; Schrittwieser et al. 2020; Silver, H. Hasselt, et al. 2017; Tamar, Wu, et

al. 2016; Weber et al. 2017).

The thesis is organised as follows: Chapter 2 provides the background

necessary to understand the rest of the thesis. Chapter 3 introduces Dyna with

Options in the tabular case and with value function approximation. Chapters 4

and 5 list the experimental setup and results for the GrazingWorld and PinBall
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environments, respectively. Chapter 6 draws the conclusions and discusses

potential future work worthy of investigation.

In the non-stationary, tabular environment we find that Q-learning with

options with (near-)optimal option policies and especially planning with an

adequate state visitation bonus achieves significantly better performance than

model-free Q-learning with primitive actions only. Planning with options how-

ever, does not provide significant additional benefits over planning with prim-

itive actions only.

In the PinBall Domain we find that access to options with (near-)optimal

option policies speeds up the learning progress in the beginning compared to

DDQN - with the performance slightly degrading to DDQN’s performance in

the instances examined. Dyna and Dyna with Options perform similarly in

this setting too: both learn faster than DDQN in the beginning and both

plateau at a policy that achieves significantly less rewards than their primitive

model-free counterparts. Dyna+options in the function approximation regime

performs significantly better than Dyna during much of the training regime

and comparably to DDQN, albeit with an extended dip in the middle of the

learning during which its performance is almost as suboptimal as Dyna’s.

1.1 Results and Contributions

To summarize, the key contributions of this thesis are as follows: we

1. propose two novel algorithms to appropriately investigate incorporating

temporal abstraction into Dyna: Dyno and Dyna+Options. We addi-

tionally provide pseudocode for Dyna with options under value function

approximation, previously only specified in the tabular setting.

2. empirically show that Dyna+options provides some benefit over Dyna,

but planning with the inaccurate primitive action model still significantly

corrupts the value function

3. empirically demonstrate in the investigated environments that Dyno

equipped with options with (near-)optimal option policies is both more
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effective and robust than Dyna+options due to the idiosyncrasies of plan-

ning with both actions and options with a uniformly sampled model

4. we show that in the non-stationary tabular environment all three algo-

rithms can be tuned to perform similarly with a uniform state visitation

bonus and near-optimal performance can be achieved when the state

visitation bonus is only added to the goal states
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Chapter 2

Background

This chapter enumerates the topics that are necessary to understand the rest

of the thesis and introduces the notation.

2.1 Reinforcement Learning

This thesis considers the standard reinforcement learning setting, where an

agent learns to make decisions through interacting with an environment with-

out knowledge of the environment’s dynamics (R. S. Sutton and A. G. Barto

2018).

2.2 MDPs

Reinforcement Learning problems are typically formulated as Markov Decision

Processes (MDP) which are formally defined as a 5-tuple ⟨S,A,R,P , γ⟩, in

the discounted case, where S denotes the state and A the action space. R

and the transition probability P describe the expected reward and probability

of transitioning to a state, for a given state and action. In this thesis, we

examine discounted MDPs with discount factor γ ∈ [0, 1) with finite state and

action spaces and bounded rewards. We further assume that the agent makes

decisions at discrete time steps t ∈ N+.
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2.3 Episodes, Returns, and Policies

Our experiments consider the episodic RL setting, in which the agent starts

each episode in the same starting state, on each discrete timestep t the agent

selects an action At in state St, the environment transitions to a new state St+1

with probability P (St+1|St, At) and emits a scalar reward Rt+1, until it reaches

the terminal state, where the episode ends, the agent is reset to starting state

and a new episode begins for the specified number of episodes.

The agent’s objective is to find a policy π : S ×A→ [0, 1] that maximizes

the expected return, the future discounted reward Gt
.
= Rt+1 + γt+1Gt+1. The

state-based discount γt+1 ∈ [0, 1] depends on St+1 (R. S. Sutton, Modayil, et

al. 2011), which allows us to specify termination. If St+1 is a terminal state,

then γt+1 = 0; else, γt+1 = γc for some constant γc ∈ [0, 1].

2.4 Action-Value Functions and Optimal Poli-

cies

Action-value functions under policy π map taking action a in state s and then

following policy π to the expected return:

qπ(s, a)
.
= Eπ

[ ∞∑
t=0

Gt|St = s, At = a

]
, ∀s ∈ S, a ∈ A(s)

The action-value of the terminal state is always 0.

Action-value functions define a partial ordering over policies (R. S. Sutton and

A. G. Barto 2018).

π ≥ π′ ⇐⇒ qπ(s, a) ≥ qπ
′
(s, a), ∀s ∈ S, a ∈ A(s)

There is a unique action-value function, the optimal action-value function,

q∗(s, a)
.
= max

π
qπ(s, a), ∀s ∈ S, a ∈ A(s)

and there is at least one optimal policy π∗ associated with this unique action-

value function:

π∗(s)
.
= argmax

a
q∗(s, a), ∀s ∈ S
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2.5 Q-learning

Action-value functions can be estimated with Dynamic Programming (DP)

(Bellman 1957) methods, however, they require knowledge of the environment

dynamics P . Temporal-Difference (TD) learning algorithms (R. S. Sutton

1988) remove this strong assumption and estimate value functions with the

rest of the components of the MDP. A popular TD-learning algorithm is Q-

learning (Watkins and Dayan 1992), which after taking action At in state St

and observing St+1 and Rt+1 performs the following update:

Q(St, At) = Q(St, At) + α

[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
where α is the step-size hyperparameter that needs to be tuned for faster

learning, and Rt+1 + γmax
a

Q(St+1, a) is called the target.

2.6 The Exploration-Exploitation Dilemma

Reinforcement learning requires a balance between exploration and exploita-

tion (R. S. Sutton and A. G. Barto 2018): always executing the greedy action

(the one with the greatest action-value) may lead to a suboptimal policy, while

always taking random actions is seldom optimal either. Finding the right bal-

ance of exploration for optimal learning is an open research question that is

beyond the scope of this thesis. A simple and commonly used exploration

strategy that we will use in this thesis is called ϵ-greedy: the agent executes

a random action with probability ϵ and acts greedily with probability 1-ϵ,

usually with ϵ ∈ (0, 0.1].

2.7 Planning

We can incorporate models and planning to improve sample efficiency beyond

model-free algorithms. In this thesis, we focus on background planning algo-

rithms: those that learn a model during online interaction and asynchronously

update value estimates. Another class of planning algorithms is called model

predictive control (MPC). These algorithms learn a model and use decision-

time planning by simulating many rollouts from the current state. Other recent
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algorithms using this idea are those doing Monte Carlo tree search (MCTS)

online, such as MuZero (Schrittwieser et al. 2020).

2.7.1 Dyna

We choose to focus on background planning with Dyna because Dyna (R.

Sutton 1990) is a classic example of background planning. On each step, the

agent simulates several transitions according to its model and updates with

those transitions as if they were real experience. In this thesis, we examine the

DynaQ algorithm, which performs Q-learning updates on both real experience

and experience simulated from a learned model of the environment.

DynaQ+

DynaQ+ (R. S. Sutton and A. G. Barto 2018) is the DynaQ algorithm with

the extension of a state visitation bonus: the algorithm initializes a table

τ(s, a), ∀s ∈ S, a ∈ A(s) and increments its values by 1 at each step, setting

the value of the current state-action pair to 0. In the planning step, the Q-

learning update becomes:

Q(St, At) = Q(St, At)+α

[
R̂t+1+κ

√
τ(St, At)+γmax

a
Q(Ŝt+1, a)−Q(St, At)

]
for some small κ that needs to be tuned for optimal performance.

The state-visitation bonus is a form of a somewhat more directed explo-

ration than simple ϵ-greedy: it encourages the agent to explore state-action

pairs that it has not tried for a long time since their value will increase during

planning when they are sampled from the model.

We provide the pseudocode for DynaQ+ in Algorithm 1 below.
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Algorithm 1 DynaQ+ with a Tabular Value Function for Episodic Problems

Initialize Q(S,A), τ(S,A), κ, n, ϵ,
Sample initial state s0 from the environment
for t ∈ 0, 1, 2, ... do

ξ ∼unif(0, 1)
if ξ < ϵ then

at ∼unifdiscrete(A)
else

at ←argmaxa∈AQ(s, a)
end if
τ(·, ·) = τ(·, ·) + 1
Take action at, observe st+1, rt+1, γt+1

DirectExperienceValueUpdate(st, at, st+1, rt+1)
ModelUpdate(st, at, st+1, rt+1, γt+1)
for n iterations do

// Sample state and action from the primitive model
s, a ∼ PrimitiveModel()
PrimitiveModelValueUpdateKappaUniform(s, a)

end for
τ(s, a) = 0

end for

Algorithm 2 DirectExperienceValueUpdate(s, a, s′, r)

δ ← r + γmaxa′∈A Q(s′, a′)−Q(s, a)
Q(s, a)← Q(s, a) + αδ

Algorithm 3 PrimitiveModelValueUpdateKappaUniform(s, a)

// Generate experience from the primitive model
ŝ′, r̂, γ̂ ← PrimitiveModel(s, a)
// Add state visitation bonus to current reward
r̂ ← r̂ + κ

√
τ(s, a)

// Update the primitive action-values
δa ← r̂ + γ̂maxa′∈A Q(ŝ′, a′)−Q(s, a)
Q(s, a)← Q(s, a) + αδa

Algorithm 4 ModelUpdate(s, a, s′, r, γ)

// Update PrimitiveModel
PrimitiveModel(s, a)← s′, r, γ
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2.8 Temporal Abstraction

Options (R. S. Sutton, Precup, et al. 1999) provide temporally-extended ways

of behaving, allowing the agent to reason about outcomes further into the

future. A Markov option is a 3-tuple o = {Io, βo, πo}, where Io ⊂ S is the

initiation function of an option, which maps states to the probability of the

option being started there, βo : S → [0, 1] is a function that maps states to

the probability of the option’s termination and πo: S → ∆A is the option’s

policy that maps states to a distribution over the actions. Based on this

definition, it can be inferred that each (primitive) action a can be interpreted

as an option with an arbitrary initial state and the termination probability of

βa(s) = 1, ∀s ∈ S, following an arbitrary policy πa.

In our experiments we will consider the setup in which agents have access

to all primitive actions a ∈ A(s), ∀s ∈ S as well as a set of options with

(near-)optimal option policies o ∈ O(s), ∀s ∈ S. While interacting with the

environment, if the agent selects an option ot in state st, then at = πot(st) is

executed and used for the direct experience update. Furthermore, agents only

perform primitive exploratory actions. The option-values are learned with the

standard Q-learning update but with simulated ŝ′o, r̂o and γ̂o retrieved from

the learned option model of the sampled option o. In this thesis, the union of

primitive actions and options will be denoted u ∈ U = A ∪O.

There are two main unanswered research questions regarding options: how

the agent should discover them and how it should use them to learn more

efficiently and effectively. In this thesis, we assume that the agent has already

executed a successful option discovery phase and direct our attention to the

latter question.

2.9 Value Function Approximation

Until this point, we discussed algorithms with the implicit assumption that

their action-value can be stored in a table of size S × A. This assumption

is untenable in many applications from both a computational space and time
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complexity point of view.

One solution to resolve this issue is to approximate the action-value func-

tion with function approximation techniques. This can be done with e.g. a

parameterised weight vector θ ∈ Rd : qθ(s, a) ≈ q∗(s, a), which is updated dur-

ing learning - instead of the Q-table itself - to reduce the approximation error.

The parameter update in semi-gradient Q-learning for example, a variant of Q-

learning for function approximation with a given transition, (St, At, St+1, Rt+1)

is:

θt+1 = θt +

[
Rt+1 + γmax

a
q̂(St+1, a; θt)− q̂(St, At; θt)

]
∇θt q̂(St, At)

where ∇θt q̂(St, At) is the gradient of the approximate action-value function

q̂(St, At) with respect to θ at timestep t.

A well-understood type of function approximation involves linear functions,

where the approximate action-value function is a linear function of the weight

vector:

q̂(s, a; θ)
.
= θ⊤x(s, a)

where x(s, a) is the feature vector representing the state-action pair s, a and is

also the gradient of the approximate action-value function. The performance

of algorithms with linear functions depends largely on the feature vectors,

which must be specified in advance.

Another alternative is to use non-linear function approximators, such as

deep artificial neural networks, which innately find features with the back-

propagation algorithm (Rumelhart et al. 1986). Disadvantages of neural net-

works are that they are poorly understood and that they are difficult to op-

timize, especially on non-stationary, temporally correlated data inherent to

Reinforcement Learning. Nevertheless, with a number of techniques that have

been developed recently and extensive hyperparameter tuning, deep artificial

neural networks enabled RL algorithms to solve problems for which no other

approach succeeded.
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2.9.1 Deep Q-Networks

Deep Q-Network (DQN) (Mnih et al. 2015) was the first widely successful

RL algorithm applied to games in the Arcade Learning Environment (ALE)

(Bellemare et al. 2012). DQN is the moniker for a specific way to approximate

action-values using deep neural networks, featuring:

1. Convolutional Neural Networks (CNNs) (LeCun et al. 1989) to deal with

the large state space of ATARI games,

2. an “experience replay buffer” (L. J. Lin 1993) to store transitions, from

which a fixed-length i.i.d. batch is sampled and used to update the

parameters at each time-step, helping with temporally decorrelating the

data,

3. a “target network” parameterised by the weight vector θ− ∈ Rd, whose

values are updated every C steps with the main Q-network’s parameters

θ, while between updates they are kept fixed, which ensures stationarity.

Double Deep Q-Networks

Both Q-learning and DQN select and evaluate the action using the max oper-

ator on the same values, which makes it more likely to result in overestimated

values, a source of suboptimality (H. v. Hasselt et al. 2016). Double Q-learning

(H. Hasselt 2010) avoids this by learning two value functions with two sets of

weights θ and θ′. In each update, one set of weights is used for action selection

and the other for estimating its value, so Q-learning’s target:

Y Q
t

.
= Rt+1 + γQ(St+1, argmax

a
Q(St+1, a; θt); θt)

becomes

Y DoubleQ
t

.
= Rt+1 + γQ(St+1, argmax

a
Q(St+1, a; θt); θ

′
t)

as such, decoupling action selection and evaluation. By alternating the roles

of θ and θ′ during learning, both sets of weights can be updated.
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In the realm of value function approximation, the corresponding target of

DQN:

Y DQN
t

.
= Rt+1 + γmax

a
Q(St+1, a; θ

−
t )

in Double Deep Q-Networks (DDQN) becomes:

Y DDQN
t

.
= Rt+1 + γQ(St+1, argmax

a
Q(St+1, a; θt), θ

−
t )

i.e. action selection is done by the main network and evaluated by the target

network. The target network is updated periodically, the same way as DQN.

As DDQN empirically dominates DQN, we will use it as the baseline to

compare to its extensions: DynaDDQN and DynoDDQN. A slight change to

the original algorithm involves updating the target network towards the main

network using Polyak averaging (Polyak and Juditsky 1992):

θ−t+1 = αPolyakθ
−
t + (1− αPolyak)θt

i.e. an exponential moving average update between the main and target net-

works. As such αPolyak is the hyperparameter that needs to be tuned instead

of C, the number of steps until the target network is updated with the main

network’s parameters.

2.9.2 Dyna with Function Approximation

The tabular DynaQ algorithm performs planning updates with exact samples

s, a, s′, r, hence Experience Replay is essentially a Dyna-update with a perfect

model. However, a learned parametric model could simulate novel experiences

- never visited states and never taken actions and their corresponding rewards

and next states - which could further improve the approximate action-value

function. Therefore, in our implementation of DynaDDQN and DynoDDQN,

the planning step will use simulated (r̂, ŝ′, γ̂(s)) values retrieved from a learned

model of the environment. We provide a detailed overview of this algorithm

in the chapter 4
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2.10 Model Learning

There are three types of environment models: given a current state and action,

distribution models output a distribution over next states and rewards, sample

models produce a sample of a next state and reward, while expectation models

generate the expected next state and reward. Expectation models are unsuit-

able for stochastic environments as they produce invalid/non-existing states,

however, in this thesis, we will consider deterministic environments with fixed

transition probability p, for which they are adequate.

2.10.1 Primitive Models

Tabular Models

In the simpler, tabular setup, the model learning involves simply exploring the

environment with random actions and storing the state-action pairs and the

corresponding (next state, reward, discount factor)-triples in a look-up table.

Approximate Models

Environments with large state and/or action spaces require learning an ap-

proximate model. This can be done with supervised learning: as in tabular

models, the agent explores the environment with randomized actions, but in-

stead of storing the experienced environment data, it uses them to learn to

be able to predict the next states, rewards and state-based discount factors

accurately. In this thesis, for learning an approximate environment model, we

will use standard deep neural networks techniques. In particular, given the

input dataset D(s, a, s′, r, γ) we will learn the parameters θ of a function f ,

that maps (s, a) to (ŝ′, r̂, γ̂)

f θ((s, a))→ (ŝ′, r̂, γ̂),

such that the loss function [
(s′, r, γ)− (ŝ′, r̂, γ̂)

]2
is minimized. In our experiments, the parameters are the weights and biases

of a deep neural network model, and the loss is minimized by updating these
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parameters on each iteration with the backpropagation algorithm (Rumelhart

et al. 1986). As this is a regression problem, the loss function used is the mean

squared error (MSE).

2.10.2 Option Model

Tabular Option Model

Learning the option models requires learning s′(s, o), r(s, o) and γ(s, o), ∀s ∈

S, o ∈ O|Io(s) > 0. The latter two quantities will be learned directly as

described in (R. S. Sutton, Precup, et al. 1999):

r(s, o) = r(s, o) + α(r + γ(1− β(s, o))r(s′, o)− r(s, o))

γ(s, o) = γ(s, o) + α(β(s, o) + γ(1− β(s, o))γ(s′, o)− γ(s, o))

where α is the stepsize hyperparameter that must be tuned for optimal per-

formance. Since in the tabular case the state space is discrete, instead of the

expected next state we learn the transition probability:

p(s, o) = p(s, o) + α((β(s, o) ∗ 1|S|(s
′)) + (1− β(s, o)) ∗ p(s′, o)− p(s, o))

and sample the next state according to this p(s, o).

2.10.3 Approximate Option Model

Similarly to the primitive action model, we can learn to predict r̂(s, o) and

γ̂(s, o), and in deterministic environments we can reliably learn ŝ′(s, o) as

well. On each timestep, for each option o that is initialized in the current

state st, we sample a batch of transition data (s, a, r, s′, γ) from a buffer Bo

and update the option policy and model (the reward and discount factor) with

a DDQN-like update as described in Algorithm 5:
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Algorithm 5 Option Policy and Model Update

Require: batch of transitions (s, a, r, s′, γ) sampled from a buffer Bo for
option o(Io, βo, πo), parameters θπ, θr, θΓ

γo ← γ(1− βo(s
′))

// Update option policy
δπ ← 1

2
(r − 1) + γo maxa′∈A q̃(s′, a′, o; θπ)− q(s, a, o; θπ)

θπ ← θπ + απδπ∇q(s, a, o; θπ)
// Update reward model and discount model
a′ ← argmaxaq(s, oi; θ

π)
δr ← r + γorγ(s

′, a′, oi; θ
r)− rγ(s, a, oi; θ

r)
δΓ ← 1(γo = 0)γ + γoΓ(s

′, a′, oi; θ
Γ)− Γ(s, a, oi; θ

Γ)
θr ← θr + αrδr∇rγ(s, a, oi; θr)
θΓ ← θΓ + αΓδΓ∇Γ(s, a, oi; θΓ)

Finally, the option’s expected next state can be calculated with a TD-like

update for the states in which the option terminates:

if βo(s
′) == 1 then

ŝ′s,o ← ŝ′s,o + α(s′ − ŝ′s,o)

end if

We can then retrieve ŝ′s,o directly, while the r̂s,o and γ̂s,o can be calculated as

follows:

πs,·,o, rs,·,o, γs,·,o ← OptionModel(s; θo)

a′ ← argmaxa πs,·,o

rs,o ← rs,a′,o

γs,o ← γs,a′,o
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Chapter 3

Dyna with Options

In this chapter, we present and discuss combining Dyna with options with a

tabular value function and with value function approximation. We discuss the

major components of the algorithms and we provide their pseudocodes.

3.1 Dyna with Options with a Tabular Value

Function

3.1.1 Action Selection, Execution and Direct Experi-
ence Update

In each state, the agent takes a random primitive action with probability ϵ,

and with probability 1 − ϵ it selects the action or option that is initialized in

the current state with the highest action-value. If an option was selected, the

action according to the option’s policy is executed. The agent then transitions

to the next state and receives the corresponding reward and a standard Q-

learning update is carried out as in Algorithm 2.

3.1.2 Primitive Action and Option Model Learning

In order to be able to plan, the agent has to create a model of the environ-

ment. Thus, at each timestep the agent stores the current state-action pairs

and their corresponding next state, reward and state-based discount factor in a

look-up table that will serve as the primitive action model of the environment

(PrimitiveModel in Algorithm 4). The option models are learned by iterating

over each available option in the current state whose policy takes the selected
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action in the current state, and storing the reward, state-based discount factor

and transition probability models in a lookup-table for each state and option.

The reward and discount factor models are the sums of the discounted corre-

sponding quantities starting from the current state until option termination

learned via a temporal difference learning update. The transition probabilities

are modeled instead of the next states so that by sampling according to this

probability we ensure that the option models’ next states are states existing

in the Q-table.

At each timestep, for a prespecified number of planning steps, the agent

updates its value function with values retrieved from their models. As writ-

ten in Algorithm 8, the agent retrieves the stored reward, next state and

state-based discount factor for the sampled state-action pair and performs a

standard Q-learning update with the values.

Similarly, Algorithm 11 describes the corresponding Q-learning option-

value update with the ŝ′s,o, r̂s,o, γ̂s,o values retrieved from the option model

of a random available option o in a sampled state s.

3.1.3 Discussion of Components and Naming

The algorithm discussed thus far has no moniker in the literature, and in

the remaining of the thesis, we will refer to it as Dyna+options. We pro-

vide its pseudocode in Algorithm 13. Leaving out certain components from

Dyna+options results in a lesser-known and two well-known algorithms. We

will refer to the algorithm that only plans with options as Dyno, and provide

its pseudocode in Algorithm 10. If we do not have access to options and plan

with only primitive actions, we get Dyna (Algorithm 6). Finally, if we do not

have access to options, and perform no planning, we get Q-learning. In the

rest of the thesis, we will focus on investigating these algorithms and their

variants adapted to environments with challenges including non-stationarity,

and a state space that necessitates value function approximation.
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3.1.4 Pseudocode for Dyna, Dyno and Dyna+options
with a Tabular Value Function

In this section, we provide the pseudocode for Dyna+options, Dyno and Dyna,

each equipped with a tabular value function.

Algorithm 6 Dyna with a Tabular Value Function for Episodic Problems

Initialize Q(S,A ∪O), n, ϵ,
Sample initial state s0 from the environment
for t ∈ 0, 1, 2, ... do

ξ ∼unif(0, 1)
if ξ < ϵ then

at ∼unifdiscrete(A)
else

at ←argmaxa∈AQ(s, a)
end if
Take action at, observe st+1, rt+1, γt+1

DirectExperienceValueUpdate(st, at, st+1, rt+1,U)
PrimitiveModelUpdate(st, at, st+1, rt+1, γt+1)
for n iterations do

// Sample state and action from the primitive model
s, a ∼ PrimitiveModel()
PrimitiveModelValueUpdate(s, a,U)

end for
end for

Algorithm 7 DirectExperienceValueUpdate(s, a, s′, r,U)
δ ← r + γmaxu′∈U Q(s′, u′)−Q(s, a)
Q(s, a)← Q(s, a) + αδ

Algorithm 8 PrimitiveModelValueUpdate(s, a,U)
// Generate experience from the primitive model
ŝ′, r̂, γ̂ ← PrimitiveModel(s, a)
// Update the primitive action-values
δa ← r̂ + γ̂maxu′∈U Q(ŝ′, u′)−Q(s, u)
Q(s, a)← Q(s, a) + αδa

Algorithm 9 PrimitiveModelUpdate(s, a, s′, r, γ)

// Update PrimitiveModel
PrimitiveModel(s, a)← s′, r, γ
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Algorithm 10 Dyno with a Tabular Value Function for Episodic Problems

Assume given options O(I, β, π)
Initialize Q(S,U), n, ϵ,
Sample initial state s0 from the environment
for t ∈ 0, 1, 2, ... do

ξ ∼unif(0, 1)
if ξ < ϵ then

at ∼unifdiscrete(A)
else

ut ←argmaxu∈UsQ(s, u) // Us := {A ∪ O|Io∈O(s) > 0}
if ut ∈ O then

at ← πut(s)
else

at ← ut

end if
end if
Take action at, observe st+1, rt+1, γt+1

DirectExperienceValueUpdate(st, at, st+1, rt+1,U)
OptionModelUpdate(st, at, st+1, rt+1, γt+1)
for n iterations do

// Sample state from the environment model, a model
// that only keeps track of the states
s ∼ EnvironmentModel()
OptionModelValueUpdate(s)

end for
end for

Algorithm 11 OptionModelValueUpdate(s)

// Generate experience from the option model
o ∼ unifdiscrete(Os)
ŝ′s,o, r̂s,o, γ̂s,o ← OptionModel(s, o)
// Update the option-values
δo ← r̂s,o + γ̂s,o maxu′∈U Q(ŝ′s,u, u

′)−Q(s, o)
Q(s, o)← Q(s, o) + αδo
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Algorithm 12 OptionModelUpdate(s, a, s′, r, γ)

// Update OptionModel for each option whose policy takes action a in
current state s
for o ∈ O do

if πo == a then
rs,o ← rs,o + α(r + γ(1− βo)rs′,o − rs,o)
γs,o ← γs,o + α(βo + γ(1− βo)γs′,o − γs,o)
p(s′|s, o)← p(s′|s, o) + α((βo1(s

′)) + (1− βo)p(s
′′|s′, o)− p(s′|s, o))

end if
end for
// Update EnvironmentModel
EnvironmentModel()← s

Algorithm 13 Dyna+options with a Tabular Value Function for Episodic
Problems

Assume given options O(I, β, π)
Initialize Q(S,U), n, ϵ,
Sample initial state s0 from the environment
for t ∈ 0, 1, 2, ... do

ξ ∼unif(0, 1)
if ξ < ϵ then

at ∼unifdiscrete(A)
else

ut ←argmaxu∈UsQ(s, u) // Us := {A ∪ O|Io∈O(s) > 0}
if ut ∈ O then

at ← πut(s)
else

at ← ut

end if
end if
Take action at, observe st+1, rt+1, γt+1

DirectExperienceValueUpdate(st, at, st+1, rt+1,U)
PrimitiveModelUpdate(st, at, st+1, rt+1, γt+1,U)
OptionModelUpdate(st, at, st+1, rt+1, γt+1)
for n iterations do

// Sample state and action from the primitive model
s, a ∼ PrimitiveModel()
PrimitiveModelValueUpdate(s, a)
OptionModelValueUpdate(s)

end for
end for
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3.2 Dyna+Options with Value Function Ap-

proximation

In this section, we discuss the learning components of Dyna with options with

value function approximation and provide the corresponding pseudocode.

3.2.1 Action Selection, Execution, Direct Experience
Storage

The action selection and execution are equivalent to the algorithm with a

tabular value function, but instead of performing an update with the experi-

enced values at each timestep, we store the direct and simulated experiences in

buffers that will be used to update the parameters of the approximate primitive

action and option models and action- and option-value functions to improve

the agent’s performance on subsequent iterations (Algorithm 15):

• s, a and the predictions of the Primitive Model with this input ŝ′, r̂, γ̂

are stored in Bmodel primitive

• for each option o initialized in the current state

– add the experience (s, a, s′, r, γ) to a buffer dedicated to that option

(Bdirect o)

– generate the option’s policy π̂s,·,o, as well as rewards, discount fac-

tors and next states from its model: r̂(s, ·, o), γ̂(s, ·, o), ŝ′s,o

– pick a′s,o by choosing the action with the highest probability in π̂s,·,o

– add ŝ′s,o, r̂s,a′,,o, γ̂s,a′,o to a dedicated buffer of that option (Bmodel o)

3.2.2 Model Learning

Option Models

The option model learning described in Algorithm 19 is carried out as follows:

at each timestep, the agent stores its experience in a buffer for each option

(Bdirect oi) that is initialized in the current state s. The options’ policies, dis-

count factors and expected discounted rewards are then calculated by sampling
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from the buffer and performing a DDQN-update on the option model’s dis-

count rate and reward. The expected next state of each option is calculated

with a TD-like update.

Algorithm 19 includes the steps to learn the primitive model too: at each

timestep, a batch of s, a, ŝ′, r̂, γ̂ is sampled from Bmodel primitive, where ŝ′, r̂, γ̂

are the outputs of a supervised learning algorithm trained to minimize the loss

between the predicted and actual values given the current state and action.

Action- and Option-Value Function Updates

At each timestep, we sample a batch of

1. (s, a, s′, r, γ) from Bdirect primitive (Algorithm 16) ,

2. (s, a, ŝ′, r̂, γ̂) from Bmodel primitive (Algorithm 17)

3. (s, o, ŝ′s,o, r̂s,o, γ̂s,o) from the buffer Bmodel o (Algorithm 18)

and perform a standard DDQN-update.

3.2.3 Naming of Algorithms

Analogously to Algorithm 10, Algorithm 14 without Algorithms 17 and 18

corresponds to DDQN, without Algorithm 18 we get Dyna with value function

approximation, while without Algorithm 16, we get Dyno with value function

approximation. Algorithm 14 as a whole constitutes Dyna+options with

value function approximation.

3.2.4 Pseudocode for Dyna+options with Value Func-
tion Approximation

In this section we provide the pseudocode for Dyna+options with value func-

tion approximation.
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Algorithm 14 Dyna+Options with value function approximation

Assume given options O
Initialize model parameters θ = (θr, θΓ, θπ), θpm = (θrpm, θ

s′
pm, θ

γ
pm), θpn,

θmodel on

Sample initial state s0 from the environment
for t ∈ 0, 1, 2, ... do

ξ ∼unif(0, 1)
if ξ < ϵ then

at ∼unifdiscrete(A)
else

ut ←argmaxuq(s,UI) // UI := {A ∪ O|Io∈O(s) > 0}
if ut ∈ O then

at ← argmaxaq(s, ut; θ
π)

else
at ← ut

end if
end if
Take action at, observe st+1, rt+1, γt+1

AddToBuffer(st, at, st+1, rt+1, γt+1)
ModelUpdate()
DirectExperienceParameterUpdate()
PrimitiveModelParameterUpdate()
OptionModelParameterUpdate()

end for
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Algorithm 15 AddToBuffer(s, a, s′, r, γ)

Add new transition (s, a, s′, r, γ) to buffer Bdirect primitive

ŝ′, r̂, γ̂ ← PrimitiveModel(s, a; θpm)
Add new transition/data (s, a, ŝ′, r̂, γ̂) to buffer Bmodel primitive

for oi ∈ O do
// Store sample for oi if the experience doesn’t lead it away
if Ioi(s) and (βoi(s) or Ioi(s

′)) then
Add new transition (s, a, s′, r, γ) to buffer Bdirect oi

else
Add new transition (s, a, s′, 0, 0) to buffer Bdirect oi

end if
if Ioi(s) then

π̂s,a,oi , r̂s,a,oi , γ̂s,a,oi , ŝ
′
s,o ← OptionModel(s; θi)

a′ ← argmaxa∈A π̂s,a,oi

r̂s,oi ← r̂s,a′,oi
γ̂s,oi ← γ̂s,a′,oi
Add new transition/data (s, o, ŝ′s,o, r̂s,o, γ̂s,o) to buffer Bmodel oi

end if
end for

Algorithm 16 DirectExperienceValueUpdate()

for n iterations, for multiple transitions (s, a, r, s′, γ) sampled from
Bdirect primitive do

δ ← r + γmaxu′∈UI
q(s′, u′; θpn)− q(s, a; θpn)

θpn ← θpn + αδ∇q(s, a; θpn)
end for

Algorithm 17 PrimitiveModelValueUpdate()

for n iterations, for multiple transitions (s, a, r̂, ŝ′, γ̂) sampled from
Bmodel primitive do

δ ← r̂ + γ̂maxu′∈UI
q(ŝ′, u′; θpn)− q(s, a; θpn)

θpn ← θpn + αδ∇q(s, a; θpn)
end for

Algorithm 18 OptionModelValueUpdate()

for n iterations, for multiple transitions (s, o, ŝ′s,o, r̂s,o, γ̂s,o) sampled from
Bmodel oi do

δ ← r̂s,o + γ̂s,o maxu′∈UI
q(ŝ′s,o, u

′; θmodel on)− q(s, o; θmodel on)
θmodel on ← θmodel on + αδ∇q(s, o; θmodel on)

end for
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Algorithm 19 ModelUpdate()

for oi ∈ Ō, for multiple transitions (s, a, r, s′, γ) sampled from Bdirect oi do
γo ← γ(1− βoi(s

′))
// Update option policy
δπ ← 1

2
(r − 1) + γo maxa′∈A q̃(s′, a′, oi; θ

π)− q(s, a, oi; θ
π)

θπ ← θπ + απδπ∇q(s, a, oi; θπ)
// Update reward model and discount model
a′ ← argmaxaq(s, oi; θ

π)
δr ← r + γorγ(s

′, a′, oi; θ
r)− rγ(s, a, oi; θ

r)
δΓ ← 1(γo = 0)γ + γoΓ(s

′, a′, oi; θ
Γ)− Γ(s, a, oi; θ

Γ)
θr ← θr + αrδr∇rγ(s, a, oi; θr)
θΓ ← θΓ + αΓδΓ∇Γ(s, a, oi; θΓ)
if βoi(s

′) == 1 then
ŝ′s,oi ← ŝ′s,oi + α(s′ − ŝ′s,oi)

end if
end for
// Update state to next state model (PrimitiveModel)
for n iterations do

sample s, a, r, s′ from Bdirect primitive

θrpm ← θrpm + αr
pm(r(s, a, θ

r
pm)− r)∇θrpm

θs
′

pm ← θs
′

pm + αs′
pm(s

′(s, a, θs
′

pm)− s′)∇θs′pm
θγpm ← θγpm + αγ

pm(γ(s, a, θ
γ
pm)− γ)∇θγpm

end for
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Chapter 4

An Empirical Evaluation of
Dyna with Options in a
Non-stationary, Tabular
Environment

In this chapter, we examine Dyna with options with a tabular value function.

We begin by introducing the environment and motivating why it is an ap-

propriate testbed for investigating the benefits of planning with options. We

continue by providing implementation details of the algorithms and listing the

experimental design choices. Finally, we present and discuss the results.

4.1 Environment

The environment that we use to evaluate Dyna with Options is called Grazing-

World (Figure 4.1) and is designed based on discussions with Rich Sutton and

Adam White. It is an 8x12 grid, in which the agent starts from the bottom

left corner, and can take four actions (up, down, left, right), each incurring

a penalty of 1 per timestep. The environment has three terminal states (G1,

G2 and G3), two of which have alternating reward schedules. For the first

250 episodes in the episode both G1 and G2 give 0 reward, then G2 gives a

reward of 50 for 500 episodes, after which it reverts to giving a reward of 0

for 500 episodes. In the middle of G2’s “on” state, i.e. after 500 episodes, G1

begins to give a reward of 100 for 500 steps, after which the cycle restarts. G3
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Figure 4.1: The GrazingWorld environment. Grey squares depict walls, white
squares depict valid states. Goal states are marked with green and start state
is represented by orange.

outputs a reward of 1 constantly. Figure 4.2 provides a visual demonstration

of the reward schedule of the three terminal states. As Figure 4.1 depicts, the

grid and the two goals with non-stationary rewards are surrounded by walls:

if the agent takes a step to bump into them, the agent remains put with a

penalty of 1. The discount rate γ is set to 0.95, so that the effective horizon

1
1−γ

= 20, well within the longest optimal trajectory length (12 steps).

The -1 reward per timestep was chosen to encourage the agent to terminate,

the reward of 1 for G3 was chosen to be a low reward for the agent to revert

when the rewards of the other goals are 0. The rewards of 50 and 100 were

chosen to be high for the agent to want to go to these goals, and also have

a substantial difference between them so that when G1 activates, the agent

would switch from a decent policy to an even better one. The reward schedule

was chosen to allow enough time steps for the agents to find out if rewards

have changed anywhere while exploring.

At first, the GrazingWorld looks like a deceptively simple, small grid world

environment. However, as we will show, the non-stationarity of the rewards

makes it a challenging environment that necessitates at least one of the fol-

lowing:

• temporal abstraction

• planning
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Figure 4.2: The reward schedule of the GrazingWorld environment. G1 (green)
alternates between 0 and 100, G1 (blue) does so between 0 and 50, each
changing after 500 episodes. G3 (red) outputs a constant reward of 1 in each
episode. The plot includes 200 initial exploratory episodes, after which the
cycle starts with both G1 and G2 outputting a reward of 0.

• an exploration strategy beyond basic ϵ-greedy

As discussed in Chapter 1, non-stationarity is an essential problem: the

real world is non-stationary and hence most applications found in it are as

well. Demonstrating the behaviour of the different approaches to tackling

non-stationarity in a small environment can aid our understanding of them

and thus help us design solution methods for more challenging problems.

4.2 Experiment Details

We divide the problem of finding a close-to-optimal policy in an environment

with periodically changing reward function to two phases: first - leveraging the

tabular environment - we learn perfect action and option models (according

to the current reward function of the environment). Then, making use of

the learned models and direct experience, we let the agent learn a policy

that optimises for the expected return. We assume that we are given options

O(I, π, β) where I, β and π are the predefined initiation function, termination

function and policy, respectively.
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(a) G1’s option policy (b) G2’s option policy (c) G3’s option policy

Figure 4.3: Illustration of the predefined three optimal policies to the three
goal states

4.2.1 Agent Details

Learning the model can be done online: as the agent interacts with the envi-

ronment, it builds and improves its model of the environment and uses this

ever-improving model to improve its value function; or the model learning can

be executed as a prelearning phase: the agent takes random actions in the

environment for a specified number of steps with the sole purpose of learning

a model of the next states, rewards and state-based discount factors given the

current state-action pairs. As the former setup is more difficult, and our main

interest is examining the agent’s behaviour of planning with options, we will

have a model-learning phase in our experiments.

At the beginning of the algorithm, for a set number of episodes at each

timestep the agent takes a random primitive action with probability 1 until

termination. The primitive model can be implemented as a lookup-table, in

which the agent stores the current state-action pairs and their correspond-

ing next states, rewards and discount rates, and the option models can be

implemented as arrays of size S ×O.

The model learning is followed by the active learning phase, in which in

each episode the agent starts in the starting state and takes actions according

to its policy, which is improved on each step. A model update is performed at

each step just as in the initial exploration phase to keep track of changes in

the environment.

The initial exploration phase, during which DynoQ+ learns the primitive

action and option models was set to 200 episodes. These models, along with
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the Q-table and τ were implemented as simple hash maps (dictionaries). We

assumed that we had access to three options with optimal option policies (to

each terminal state): these could be initiated in each state, they terminated

in each terminal state and their policies were hard-coded with shared paths

to their goals as shown in Figure 4.3. The Q-table Q(S,U) was thus of size

(96× (4 + 3)) for the 4 primitive actions and 3 options.

We set ϵ to a standard 0.1 value, which is empirically generally the high-

est that encourages the agent to explore the environment, but not as much

that would be very detrimental to performance, and given the chosen re-

ward schedule in GrazingWorld, it allowed for seeing the differences in per-

formance between the algorithms. We swept the stepsize parameter α ∈

[0.1, 0.3, 0.5, 0.7, 0.9], and κ ∈ [0, 0.01, 0.02, . . . , 0.1, 0.15, . . . , 0.4, 0.5, . . . , 1.2],

and we tested the algorithm with 5 planning steps per timestep. Each hyper-

parameter combination was evaluated by averaging the results of 30 different

seed values.

4.3 Encouraging Exploration

Since the reward functions of the terminal states change significantly as time

passes, the agent must occasionally visit states other than its current policy

dictates. To achieve this, we rely on the state visitation bonus component of

the original DynaQ+ algorithm. Here, an additional table (τ) of size (|S| ×

|A∪O|) keeps being incremented by 1 after each timestep and the entry of the

current state and action/option in τ is reset to 0. During each planning step,

the reward from the action/option model is incremented by the square root

of τ(s, u) scaled by an additional hyperparameter κ. A uniform increase of τ

across states would encourage the agent to explore the environment uniformly,

including states that the agent would never need to visit to stay on the given

option policies, therefore we will examine three cases:

• κ = 0 (i.e. no state visitation bonus)

• uniform κ for all s ∈ S
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• κ > 0 on goal states, κ = 0 otherwise

The pseudocode for replacing Algorithms 8 and 11 with state visitation

bonuses are provided below:

Algorithm 20 PrimitiveModelValueUpdateKappaOnGoals(s, a)

// Generate experience from the primitive model
ŝ′, r̂, γ̂ ← PrimitiveModel(s, a)
// State visitation bonus on states where the options terminate
if βo(s) == 1 for any o ∈ OI(s) then

r̂ ← r̂ + κ
√
τ(s, a)

end if
// Update the primitive action-values
δa ← r̂ + γ̂maxa′∈A Q(ŝ′, a′)−Q(s, a)
Q(s, a)← Q(s, a) + αδa

Algorithm 21 OptionModelValueUpdateKappaOnGoals(s)

// Generate experience from the option model
o ∼ unifdiscrete(Os)
ŝ′s,o, r̂s,o, γ̂s,o ← OptionModel(s, o)
// State visitation bonus on states where the options terminate
if βo(s) == 1 for any o ∈ OI(s) then

r̂s,o ← r̂s,o + κ
√
τ(s, o)

end if
// Update the option-values
δo ← r̂s,o + γ̂s,o maxo′∈O Q(ŝ′s,o, o

′)−Q(s, o)
Q(s, o)← Q(s, o) + αδo

To implement uniform κ for all s ∈ S, one just needs to remove the if clause

in the above two algorithms. Note that τ(s, a) and τ(s, o) for the current

state-action pair s, a, and state-option pair s, o are reset to 0 at each timestep.

4.4 Results

In this section, we present the results of the experiments carried out with

Dyna+options, Dyno, and Dyna in the GrazingWorld environment. We begin

by discussing the results when the agents had no state visitation bonus hyper-

parameter, then move on to presenting the results with uniform and goal-state

visitation bonuses.
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Figure 4.4: Average accumulated rewards over 30 runs per episode on the Graz-
ingWorld environment with no state visitation bonus of Q-learning (purple),
Dyna (green), Dyno (red), Dyna+options (blue). The shaded regions repre-
sent the standard errors and the orange line depicts the maximum achievable
sum of rewards per episode.

4.4.1 Planning with Options without State Visitation
Bonus

Figure 4.4 depicts the performance of the investigated algorithms with no

state-visitation bonus. The initial 200 episodes cannot be seen on the plot

as during those episodes all algorithms are in the exploration phase, receiving

a lot of negative rewards. Given the non-stationary nature of the reward

function and the slow updating of its action-value function, Q-learning fails

to consistently go to G1 or G2 when they are giving high rewards: Q-learning

resorts to the safe but very suboptimal G3 the majority of the time. Even

without any state visitation bonus, all planning algorithms outperform Q-

learning significantly. Dyna and Dyna+options perform similarly: much better

than the model-free Q-learning, but significantly worse than Dyno. Dyno

quickly finds the optimal goal state G2 as it begins to output a reward of 50,

but after that does not explore the state space enough to find the meanwhile

better G1 as it commences to emit a reward of 100 - only after G1 reverts to

giving a reward of 0.
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As soon as Dyno visits the current optimal goal state due to a sequence of

exploratory actions, the corresponding option’s reward model is updated and

as the agent plans with options, each s, o pair is quickly updated across the

state space. Thus, the option’s value will be high in each state, the agent will

choose it on each greedy step until the goal state begins to give a low reward

again, which will quickly deter the agent from taking that option the same

way. In comparison, Dyna plans with primitive actions only, and Figure 4.4

demonstrates that the agent is unable to update its value function to achieve

a close-to-optimal policy with the given number of planning steps times the

number of timesteps until the reward schedule changes.

Dyna+options performs similarly to Dyna, demonstrating that Dyna+options

even with access to options with optimal option policies is severely hindered

by planning with primitive actions in the given setup. Similarly to Dyno, once

the Dyna+options agent visits the current optimal goal state, and the agent

updates the values of the sampled state-option pairs across the state space.

However, the agent also samples state-action pairs: some of them will likely

be suboptimal, but their corresponding next state may have an option with

a high option-value, updated while planning with options. As Q-learning up-

dates with the greatest action-(option)-value of the next state, this suboptimal

action will be given a high action-value, which the agent may decide to execute

on a greedy step while interacting with the environment. As this keeps occur-

ring throughout the state space, the agent will often go wandering and end up

in suboptimal goal states, and similarly to Dyna, the amount of planning steps

in the available reward schedule is not sufficient for the agent to converge to

a policy that would steadily direct the agent to the then optimal goal state.

4.4.2 Planning with Options with State Visitation Bonus

Once we add uniform state-visitation bonus, Figure 4.5a depicts that all al-

gorithms converge to a policy similar to that of Dyno without exploration

bonuses: they quickly find Goal 2 when it provides high rewards, but only

venture out to Goal 1 once Goal 2 gives low rewards again. With high κ, we

can force the agents to find Goal 1 sooner, however with the price of being
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(a) Uniform state visitation bonus (b) Goal state visitation bonus

Figure 4.5: Average accumulated rewards over 30 runs per episode on the
GrazingWorld environment with (a) uniform state visitation bonus and (b)
state visitation bonus only on the goal states, of Q-learning (purple), Dyna
(green), Dyno (red), Dyna+options (blue). The orange line depicts the maxi-
mum achievable sum of rewards per episode.

overall more suboptimal, see Appendix A for further details. Finally, Figure

4.5b demonstrates that if we only add state-visitation bonus to goal-states,

all planning algorithms perform similarly: they find the goals with the high-

est rewards fairly soon and continue to visit them across the episodes fairly

consistently.
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Chapter 5

Examining Dyna with Options
with Value Function
Approximation

In the previous chapter we investigated Dyna with Options and demonstrated

its benefits over algorithms with only its individual components in a non-

stationary, tabular environment. In this chapter, we examine Dyna+options

and its variants with value function approximation, a setting that is more

realistic and challenging, as it can deal with much larger state spaces. As be-

fore, we first introduce the environment and motivate why it is an appropriate

testbed for comparing these algorithms. Then, we list the experimental design

choices, and finally present and discuss the results.

5.1 Environment

The PinBall Domain (Konidaris and A. Barto 2009a) is an RL environment,

in which the agent (represented by a small blue dot) must navigate its way

from the starting position to the red goal area.The state space of the agent

is 4-dimensional and continuous (x, y, ẋ, ẏ ∈ [0, 1]4). The agent is dynamic,

with drag coefficient 0.995. As Figure 5.1 demonstrates, the environment has

obstacles which the agent can learn to use to its advantage to reach the goal

faster by bouncing off of them, rather than simply avoiding them. The agent

has five primitive actions: increase or decrease the x or y velocity, incurring

a penalty of 5 per step or do nothing (penalty of 1 per step). Reaching the
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goal state area (irrespective of the speed of the agent) results in a reward of

+10,000. The discount factor γ is 0.99.

The PinBall domain has been used as a test environment for many RL

algorithms (Bacon et al. 2017; Konidaris, Kuindersma, et al. 2010; Tamar, Di

Castro, et al. 2013). It is an influential and popular domain, because due to

its dynamic nature, sudden changes make function approximation challenging,

more so than e.g. Mountain Car. Given its smaller state space however, it does

not require as much computation as for example the ATARI suite (Bellemare

et al. 2012), allowing for more thorough empirical investigations.

(a) (b) (c)

Figure 5.1: The PinBall Domain a) in a single configuration, without options.
The blue dot depicts the agent, and the red dot represents the final termination
area, b) with four option termination areas depicted with a green (and a fifth
around the final termination area with a red) dot and their initiation radii
(green circles around the dots) used for model learning, c) with the reduced
initiation radii used while the agent is learning its behaviour policy

5.2 Experiment Details

As in the previous chapter, we divide the problem of finding a near-optimal

policy into two main parts: first, we let the agent explore the environment

by taking random actions and learn both the primitive action and the option

models. Then, leveraging the learned models and direct experience, we let the

agent learn a policy that optimises for the return. As before, we assume that

we are given options O(I, π, β) where I and β are the predefined initiation

and termination functions and π is a policy learned via a DDQN update.
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5.3 Experiment Design

In this section, we first give details about our specific implementation, followed

by a detailed description of the experiments we ran to compare Dyna+options

with DDQN, Dyna and Dyno.

5.3.1 Implementation of Model Learning

Environment Exploration Phase

To ensure that the agent gets a roughly uniform coverage of the entire state

space while learning the action and option models, instead of letting the agent

explore randomly until termination (which would cause the experienced states

to be skewed very heavily towards the starting state), we reset the state of

the agent according to the following schedule: the agent keeps taking random

actions until either it enters the goal state or 10 timesteps have passed. In the

former case, the agent starts from the start state and a new episode begins as

usual. In the latter case, with probability 0.01 the agent is reset at an area, in

which a random option terminates, and with probability 0.99 the agent is reset

at a random valid state in the environment (i.e. not on top of an obstacle).

The option model learning described in Algorithm 19 is carried out as fol-

lows: at each timestep, the agent stores its experience in a buffer for each

option (Bdirect oi) that is initialized in the current state s. If the option termi-

nates in the next state we fill the buffer with s, a, s′, r, γo = 0, πcumulant o = γ.

If the option does not terminate but is initialized in the next state, we fill the

buffer with s, a, s′, r, γo = γ, πcumulant o = 0. If the option is not initialized in

the current state s, we fill the buffer with s, a, s′, r = 0, γo = 0, πcumulant o = 0

because we want to encourage the agent to learn the policies for the experiences

that keep the agent in states in which the option is initialized or terminates.

The options’ discount factors and expected discounted rewards are then

calculated by sampling from the buffer and performing a DDQN-update on

the option discount rate and the reward, with the targets γoption t, roption t as:

γoption t = πcumulant o + γoγ̂(s
′, a′, θ−γoption)
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roption t = r + γor̂(s
′, a′, θ−roption)

where a′ = argmaxa∈A(γ̂(s
′, a, θγoption))

We implemented the option model learning with two separate neural net-

works, with layers [128, 128, 128, 64, 64], with ReLU activations and the Adam

optimizer with standard β1 and β2 hyperparameters, the stepsize parameter α

swept in [2−9, 2−10, (2−10 + 2−11)/2, 2−11, 2−12, 2−13] (we found the best model

with α = (2−10+2−11)/2) , and the Polyak stepsize for the target network was

set to 0.1.

The stepsize parameter αs′,o for learning the expected s′ of each option was

set to 0.005, and learned with the update below, if βo(s
′) > 0

s′o = αs′,o(s
′ − s′o)

The option policies πo(s) were given by argmaxa∈A γ̂s,a,o , ∀s ∈ S where

option o is initialized, as the higher γ̂s,a,o the closer the agent is predicted to

be to the option’s termination area.

The primitive model was implemented similarly: three separate neural net-

works for the learned parameters ŝ′, r̂ and γ̂, each with layers [128, 128, 128, 64, 64],

with ReLU activations and the Adam optimizer with standard β1 and β2 hyper-

parameters. The stepsize parameter was swept individually for each network:

[2−12, 2−13] for both s′ and r. The stepsize parameter for learning γ was set to

2−13. To account for class imbalance (all three components are very different

in the goal state area than elsewhere in the environment), 1
4
of the batch was

forced to be sampled from the goal state area.

We used the average squared loss as the loss function for each network.

The model learning was run for 300,000 timesteps. We stored the primitive

action and option experience at each step in the corresponding buffers. Each

buffer was sampled uniformly to get a batch of 16 datapoints (other than the

aforementioned goal area sampling) and the networks were updated at each

timestep once the stored data in their corresponding buffers exceeded 10,000

datapoints. The options’ termination radii were set to 0.04 (the same as the

final goal area) (within which βo(s) = 1 and 0 for all other s ∈ S) and their

initiation radii were set to 0.48 (within which Io(s) = 1 and 0 for all other
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s ∈ S) during the model learning part, which was reduced to 0.32 during the

behaviour policy learning, which we found crucial to get good performance out

of Dyna+Options and Dyno.

Since the purpose of the model learning phase is simply to learn an as

accurate model as possible, each set of hyperparameters was run with one seed,

and we chose the best performing seed. We used the model which appeared

to have learned the environment best according to heatmaps of the option

models’ predicted values and the errors of the primitive model’s predictions.

5.3.2 Implementation of the Agent

The exploration strategy we chose was epsilon-greedy, with ϵ = 0.1, and we

ran each agent for 300,000 steps. We created two neural networks to learn

the action- and option-values. Both had the layer structure: [128, 128, 64, 64],

with random initializations, ReLU activation functions and we used the Adam

optimizer with standard β1 and β2 values. The stepsize parameter was swept:

α ∈ [2−8, 2−9 . . . 2−12] and the Polyak stepsize for the target network was set

to 2−6, as we found that DDQN performs best with this hyperparameter and

to limit computation.

Similarly to the model learning phase, we stored experience at each step in

the corresponding buffers. Each buffer was sampled uniformly to get a batch

of 16 datapoints and the networks were updated at each step - 4 times for

the direct and simulated option experience and once for the simulated primi-

tive experience - once the stored data in their corresponding buffers exceeded

10,000 datapoints, with the buffer size set to 1,000,000 after which the oldest

experiences are removed - which would only ever potentially happen to the

option buffers as the agents were run for only 300,000 steps.

Each set of hyperparameters was run with 30 different seeds for each agent.

5.4 Results

In this section, we present the results of executing variants of Dyna+options

with value function approximation in the PinBall domain. We begin by dis-
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cussing the difficulty of learning the primitive and option models, then list

the hyperparameters that achieved the highest return in our experiments, and

finally, we present and discuss the performance of the algorithms.

5.4.1 Difficulty of Learning the Models

Figures 5.2 and 5.3 provide the γ̂s,·,o and r̂s,·,o predictions for each option o for

6400 states scattered uniformly across the state space. On the figures, yellow

values signify high, deep blue low values, and white areas mean that the option

is not initialized in those states. We can see the shapes of obstacles with blue

colours demonstrating the agent learned that those areas have low values, and

high values around the options termination areas (the middle white area for

each option) and gradually lower values as we move further away from them -

indicating decent option models.

Figure 5.2: Heatmap of the discount factor predictions of option models. γ ∈
[0, 1]

Figure 5.3: Heatmap of the reward predictions of option models. r ∈ [−500, 1]

Learning an accurate primitive model is difficult without additional as-

sumptions about the environment. Highly accurate next state values are dif-

ficult to learn due to the set drag factor as well as the elasticity of the agent.

Very small inaccuracies can cause big differences in the movement of the agent:

e.g. whether an agent bumps into a wall or not. The state-based discount fac-

tor γ and the reward r are easier to learn since they are the same across most of

the state space except at the final (relatively small) goal state area. However,
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Model ComponentMin. ErrorMax. Error
Next state s′ 0.00104 0.38928
Reward r 0.01407 10652.89746
Discount factor γ 0.00000 1.05156

Table 5.1: Minimum and maximum errors of the primitive model’s predicted
and the environment’s actual next state s′, r, γ for 6400 states across the
entire state space × 5 actions in the PinBall Domain used for Dyna+Options

the relative difference is significant for γ: 0.99 to 0, and large for the rewards:

-5 to +10,000. This class imbalance is accounted for while sampling from the

data, but even so, the MSE loss function causes the model to predict values

between the two extreme values in most of the states. As Figure 5.4 depicts,

all three model components suffer large errors close to the final goal state, but

the rest of the states have low errors.

In Table 5.1 we report the minimum and maximum errors across the state

space for each primitive model component:

5.4.2 Comparison of Algorithms

Table 5.2 lists the best hyperparameters from the set of hyperparameters tried

for Dyna+options, Dyno, Dyna and DDQN. Both DDQN and Dyna achieve

the best performance with the stepsize parameter for the primitive network

(a) Next State Errors (b) Reward Errors (c) Discount Factor Errors

Figure 5.4: Heatmap of errors between the PrimitiveModel’s predicted
and actual next states, rewards and state-based discount factors used for
Dyna+Options in the PinBall Domain’s 6400 states scattered uniformly across
the state space × 5 primitive actions. Bright yellow depicts the highest, deep
blue represents the lowest errors.
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Alg./Hyperp. Stepsize Polyak Stepsize
Dyna+options 2−10 2−6

Dyno 2−10 2−6

Dyna 2−9 2−6

DDQN 2−9 2−6

Table 5.2: Hyperparameters that achieved the most cumulative rewards (av-
eraged over 30 independent seeds) among the swept hyperparameters of
Dyna+options, Dyno, Dyna and DDQN on the Pinball domain with γ = 0.99

set to 2−9, while Dyno and Dyna+options do so with 2−10, as they also have

access to an option network, and as such their functions to be approximated

are more complex.

As Figure 5.5 depicts, in the very beginning of learning, all algorithms

with access to a primitive and/or option models perform similarly and slightly

better than DDQN. However, the inaccuracy of the primitive model causes

the performance of Dyna to plateau early and allows DDQN to outperform

it already at the 20,000th step. As Dyna+Options has access to option, this

allows it to offset the inaccuracy of the primitive model updates and make it

perform comparably to DDQN, apart from a dip between the 120,000-220,000th

step, when it performs almost as badly as Dyna. Dyno learns the quickest

Figure 5.5: Performance of Dyna+options (blue), Dyno (red), Dyna (green)
and DDQN (purple) in the Pinball Environment. Results averaged over 30
seeds with the shaded regions representing standard errors.
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and the most robustly among the examined algorithms, achieving the best

performance around the 150,000th step, performing significantly better than

any of the algorithms. Later on, however, performance degrades a bit and the

agent performs comparably to DDQN in this instance of the environment with

the option initiation radii, hyperparameters and seeds examined. In Appendix

B we provide the results of experiments with a different, slightly more accurate

primitive model. We show that Dyna and Dyna+options perform better with

a more accurate primitive model, but planning with a primitive action model

still hinders performance.
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Chapter 6

Conclusion

In this thesis, we investigated Dyna+options in a non-stationary environment

and with value function approximation with the assumption of having access to

options with (near-)optimal option policies. We broke the learning process into

two parts: a model-learning phase in which the agent takes random actions

and learns the action- and option-models and an active learning phase, in

which the agent gradually improves its policy using direct experience from the

environment and simulated experience from its models.

We carried out experiments in a non-stationary, tabular environment called

GrazingWorld and in a deterministic, continuous state environment that ne-

cessitates value function approximation: the PinBall Domain. We compared

against baselines, the individual components of the algorithm: leveraging only

direct experience (DDQN), direct experience with simulated experience from

the primitive model (Dyna), and direct experience with simulated experience

from the option model (Dyno). We found that Dyno performs very well even

without the presence of a state visitation bonus. Dyna+options and Dyna

performed similarly, hinting that planning with primitive actions can hinder

performance even when having access to options with optimal option policies.

Furthermore, we found that a state visitation bonus is still crucial in achiev-

ing satisfactory performance in our non-stationary environment, diminishing

the differences between the examined planning algorithms in the investigated

instances. When extending the algorithms with value function approxima-

tion, we found that Dyno outperforms DDQN in both speed and robustness
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of learning early during training, but its performance may later on degrade

to DDQN’s. Furthermore, the accuracy of the primitive model is crucial in

terms of performance: Dyna exacerbates the performance of DDQN, while

Dyna+Options exacerbates that of Dyno’s. The access to options with near-

optimal option policies improved the performance of Dyna+options compared

to Dyna: allowing it to perform comparably to DDQN during a significant

part of the training regime, but almost as bad as Dyna during the rest of the

training regime in the instances we examined.

Given that

• the Experience Replay Buffer used to train DDQN with direct experience

is essentially a perfect Dyna model

• the more inaccurate the primitive model, the more suboptimal the per-

formance

• the more complicated the environment the more difficult it is to learn

the model, but

• planning with options only - even if they are suboptimal and their option

models inaccurate - can demonstrably help the agent learn faster,

future work should consider whether it makes sense to direct efforts to develop

methods to learn more accurate primitive models or instead develop more

advanced search control methods and more sophisticated algorithms to plan

with options.

Furthermore, future work could examine the crucial questions of option

discovery, and learn the models concurrently with policy improvement.
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Appendix A

Hyperparameter Sensitivity in
the Non-stationary Tabular
Environment

In this section, we provide the plots of sensitivity to the κ hyperparameter of

the investigated planning algorithms in the GrazingWorld environment. Figure

A.1a depicts that Dyna and Dyna+options are both very sensitive to the κ

hyperparameter: the best being 0.02 among the investigated values. Dyno

on the other hand is a lot less sensitive: it achieves very similar near-optimal

performance between values of 0 and 0.1, and performance degrades much

slower as we increase κ.

(a) Uniform state visitation bonus (b) Goal state visitation bonus

Figure A.1: Sensitivity curve of the kappa hyperparameter for Dyna+options
(blue), Dyno (magenta), Dyna (green) in the GrazingWorld environment with
a) uniform state visitation bonus and b) state visitation bonus only on goal
states
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Figure A.1b shows the κ hyperparameter sensitivity of the investigated

planning algorithms when it is only added to the goal states. In this setup the

difference between the algorithms is not as striking, however, Dyna consistently

performs worst across all 24 values, and the gaps are greatest at low and high

values of κ. Dyna+options performs similarly to Dyno in this setting, but the

gaps are greatest at very low and high κ values. As the near-optimal policy in

this non-stationary setting is largely dependent on an appropriate exploration

strategy, the results may indicate that planning with options with optimal

option policies may make finding such an appropriate exploration strategy

easier.
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Appendix B

Results with Value Function
Approximation with a More
Accurate Primitive Action
Model

In this section, we provide results for the investigated planning algorithms in

the PinBall Domain with a more accurate primitive action model. Table B.1

shows the smallest and largest errors between this model’s ŝ′, r̂, γ̂ predictions

for 6400 states × 5 actions - where the states had been taken uniformly from

across the state space - and the environment’s actual s′, r, γ for these state-

action pairs. Figure B.1 shows the heatmap of these errors across the state

space.

After having learned this new primitive model, we reran Dyna and Dyna+options

with the same settings as in Chapter 5 and swept the same hyperparameter

ranges. Dyna performed best with stepsize α = 2−9 and Dyna+options with

α = 2−9. As Figure B.2 demonstrates, both Dyna and Dyna+options perform

Model ComponentMin. ErrorMax. Error
Next state s′ 0.00139 0.50985
Reward r 0.00008 9496.874
Discount factor γ 0.00000 1.01251

Table B.1: Minimum and maximum errors of the primitive model’s predicted
and the environment’s actual next state s′, r, γ across the entire state space
in the PinBall domain used for Dyna and Dyna+options
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(a) Next State Errors (b) Reward Errors (c) Discount Factor Errors

Figure B.1: Heatmap of errors between a more accurate PrimitiveModel’s
predicted and actual next states, rewards and state-based discount factors
used for Dyna+Options. Bright yellow depicts highest, deep blue represents
the lowest errors.

significantly better with a more accurate model than with a less accurate one,

and Dyna+options achieves better performance than DDQN in the first half

of the training steps. However, just as before even one planning step with the

primitive action model per timestep is sufficient to exacerbate the performance

of Dyna+options compared to Dyno, and that of Dyna compared to DDQN.

Figure B.2: Performance of Dyna+options (blue), Dyno (red), Dyna (green)
and DDQN (purple) in the Pinball Environment. Results averaged over 30
seeds with the shaded regions representing standard errors.

61


	Introduction
	Results and Contributions

	Background
	Reinforcement Learning
	MDPs
	Episodes, Returns, and Policies
	Action-Value Functions and Optimal Policies
	Q-learning
	The Exploration-Exploitation Dilemma
	Planning
	Dyna

	Temporal Abstraction
	Value Function Approximation
	Deep Q-Networks
	Dyna with Function Approximation

	Model Learning
	Primitive Models
	Option Model
	Approximate Option Model


	Dyna with Options
	Dyna with Options with a Tabular Value Function
	Action Selection, Execution and Direct Experience Update
	Primitive Action and Option Model Learning
	Discussion of Components and Naming
	Pseudocode for Dyna, Dyno and Dyna+options with a Tabular Value Function

	Dyna+Options with Value Function Approximation
	Action Selection, Execution, Direct Experience Storage
	Model Learning
	Naming of Algorithms
	Pseudocode for Dyna+options with Value Function Approximation


	An Empirical Evaluation of Dyna with Options in a Non-stationary, Tabular Environment
	Environment
	Experiment Details
	Agent Details

	Encouraging Exploration
	Results
	Planning with Options without State Visitation Bonus
	Planning with Options with State Visitation Bonus


	Examining Dyna with Options with Value Function Approximation
	Environment
	Experiment Details
	Experiment Design
	Implementation of Model Learning
	Implementation of the Agent

	Results
	Difficulty of Learning the Models
	Comparison of Algorithms


	Conclusion
	References
	Appendix Hyperparameter Sensitivity in the Non-stationary Tabular Environment
	Appendix Results with Value Function Approximation with a More Accurate Primitive Action Model

