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Abstract

Second language learners transfer rules from their native languages when trying

to communicate in the new language. When the transferred rules do not

match the second language grammar, this reuse results in errors. Although

this phenomenon is well known and documented by linguists and language

teachers, few computational methods have been applied to detect it in learner

writing. Without the automatic detection of language transfer, it is harder to

provide feedback that makes learners aware of the phenomenon. In this thesis,

I introduce a new method to identify when learner errors are related to the

negative language transfer phenomenon. Along with the method description,

this thesis contains the results of applying it to a dataset of errors made by

Chinese native speakers who were learning English. These results show that my

method achieves high precision scores in detecting negative language transfer

errors in the writing of Chinese native speakers. These results can be applied

in informing error feedback that explains the negative language transfer causes

of an error. Providing this type of feedback should help learners reflect on the

differences between language rules and refrain from reusing native language

rules in their English writing.
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Glossary

F1-score

Harmonic mean of precision and recall

FCE

First Certificate in English, an upper-intermediate level English language
examination offered by Cambridge Assessment English

GEC

Grammatical error correction, natural language processing task in which
the goal is to correct grammatical mistakes

L1

First language, an individual’s mother tongue

L2

Second language, a foreign language different from the individual’s mother
tongue

Language modelling

Natural language processing technique that creates a probability distri-
bution over sequences of tokens from a dataset

Negative language transfer

Second language acquisition phenomenon in which learners incorrectly
reuse rules from their native languages when communicating in the sec-
ond language

Part-of-speech (POS)

Grammatical word category

Precision

Ratio of relevant entries retrieved to total retrieved entries

Recall

Ratio of relevant entries retrieved to total relevant entries

RNN

Recurrent neural network, neural network architecture in which each out-
put unit value is computed based on current input and previous output
values
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Shallow syntactic language model

Language model trained with part of speech tag sequences extracted
from data in a particular language

UD

Universal Dependencies, a grammar annotation framework that is shared
across several languages
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Chapter 1

Introduction

Oftentimes knowing how to communicate in English can mean better opportu-

nities, be it studying abroad, attending graduate school, getting a better job,

or being promoted at work. Natural language processing research has devel-

oped several systems that help individuals learn languages and communicate

better. The output from grammatical error correction systems, for example,

can help learners prevent errors and improve their understanding of the lan-

guage they are learning (Monaikul and Di Eugenio, 2020). These systems have

been used to correct learner writing and to inform error feedback. They are

meant to provide direct corrective feedback to the learners’ incorrect utter-

ances (Nadejde and Tetreault, 2019).

Direct corrective feedback highlights the learners’ errors and suggests a

corrective action to address them (Bacquet, 2019). Education and language

learning researchers have found that having access to this type of feedback

is helpful to learners, as it not only supports the error’s correction but also

prevents that mistake from being made again (Sheen, 2007). However, research

in this area has found that direct corrective feedback is not the only type of

feedback that supports learning. Feedback that encourages learners to think

about error causes has been shown to improve writing accuracy. This feedback

type, called metalinguistic feedback, provides learners with information that

helps them understand error causes and increase their language knowledge

(Karim and Nassaji, 2020). Through metalinguistic error feedback, learners

are presented with the language rules and an explanation of how their errors
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violated these patterns.

One metalinguistic dimension that often causes problems for language

learners is the occurrence of language transfer. Language transfer is a second

language acquisition phenomenon in which learners reuse patterns from their

native languages when communicating in a second language1 (Lado, 1957).

This rule reuse, characterized as language transfer, can be harmless. However,

it frequently happens when there is a divergence between native and second

language rules. When this divergence occurs, language learners create utter-

ances that are invalid in the second language and, thus, make a mistake. This

type of mistake is called negative language transfer, and it is one of the most

common causes of learner errors in second language acquisition (Bardovi-Harlig

and Sprouse, 2017). Negative language transfer is a well known phenomenon

in second language acquisition research. It also has been widely reported by

language teachers in teaching guides, such as the one written by Swan and

Smith (2001). Although Monaikul and Di Eugenio (2020) discussed providing

contrastive feedback for missing preposition errors that are related to the neg-

ative language transfer phenomenon, I am not aware of any previous work on

detecting this phenomenon for a broader range of errors.

In this thesis project, I set out to investigate whether it is possible to detect

when Chinese native speakers who are learning English make errors that are

related to negative language transfer. More specifically, I examined erroneous

syntactic structures that were more similar to the learners’ first language (i.e.,

Chinese) than to English and whether computational models that represent

language structures could be used to correctly identify them. To demonstrate

my method’s feasibility, I analysed the performance of traditional and artifi-

cial neural network language structure representations in detecting negative

language transfer2. The results demonstrate that artificial neural network

methods outperform traditional ones in this task, with the best performing

model yielding an F1-score of 0.51 in detecting negative language transfer on

1By second language, I mean any additional language beyond the native tongue.
2The data and code used in this analysis are available at https://github.com/EdTeKLA/

LanguageTransfer
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English essays written by Chinese native speakers.

To ground my work, I discuss the limitations and potential applications of

my results. I hope the negative language transfer detection results can be used

to inform error feedback with more than just direct corrective feedback. Infor-

mation about the negative language transfer dimension of errors can enhance

error feedback with metalinguistic cues. These cues would highlight how the

rules in the first language and English diverge, which could support learners

in developing a more accurate understanding of English. By contrasting their

native languages and English, language learners will be able to reflect on each

languages’ rules and develop a better representation of both.

The choice to use errors made by Chinese native speakers to evaluate my

method comes from Chinese being one of the most common first languages

in the learner dataset analysed. Beyond that, the differences in language

representation and grammar between English and Chinese are reflected in

the number of structural errors found in learner writing. Finally, within my

research group I had the opportunity to work with a negative language transfer

annotator, who enhanced error annotated essays with information about the

negative language transfer phenomenon.

The work presented in this thesis is the first step in the pursuit of providing

negative language transfer informed feedback to English language learners.

It investigates whether it is possible to detect structural negative language

transfer by representing errors as sequences of word categories. This work

examines the use of word category sequences to represent learner errors as

well as first and second language syntax. Moreover, it models first and second

language patterns and compares the word category sequences extracted from

learner errors to those patterns. The models trained to represent the languages

are tasked with detecting traces of the learners’ first language in their writing.

This detection output could be used to enhance learner error feedback in the

future.

This thesis is organized as follows. Chapter 2 introduces background con-

cepts and research with the goal of helping the reader understand the methods

applied. Chapter 3 discusses research in natural language processing and sec-
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ond language acquisition that inspired and grounded this thesis. In chapter

4, I describe the datasets used to validate the method proposed, along with

the data preprocessing techniques applied to those datasets. Chapters 5 and 6

describe, respectively, the baseline and artificial neural network methodologies

used in the negative language transfer detection task. In chapter 7, I provide

an in-depth discussion of the results obtained and discuss the limitations, im-

plications, and future research directions that stem from this work. Finally,

chapter 8 concludes this manuscript with a summary of the work performed

and results achieved in this research.
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Chapter 2

Background

In this chapter, I discuss the background research that will help the reader

understand this thesis’ methodology and motivation. First, I introduce the

linguistic theories that explain the language transfer phenomenon. Then, I

describe part-of-speech tagging and language modelling, the natural language

processing techniques applied in the computational representation of language

structures.

2.1 Language transfer

Second language acquisition research has identified several strategies used by

learners to acquire a language. Repetition, memorization, and translation

are a few examples of learning strategies used by second language learners

(O’Malley and Chamot, 1990). Among these learning strategies, there is the

language transfer phenomenon. This phenomenon is characterized by learners

reusing patterns from their first languages (L1s) when communicating in a

second one (L2) (Lado, 1957).

Sometimes learners will transfer language rules intentionally, when they

know the languages share a grammatical pattern or when they are not familiar

with a particular structure in the L2. In other situations, learners are not aware

they are transferring structures from their L1. That is, the language transfer

phenomenon occurs unintentionally, due to learners resorting to known L1

structures while communicating in the L2. Although learners are not always

aware they are transferring L1 rules into L2 utterances, this phenomenon has
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been consistently reported by second language acquisition research (Lipka,

2020), as well as language teachers (Swan and Smith, 2001).

A second language acquisition theory that helps explain the language trans-

fer phenomenon is the Interlanguage theory. It posits that second language

learners maintain a dynamic psychological representation of the L2 that evolves

as they acquire more knowledge of that new language (Selinker, 1972). The

more primitive these representations are the more learners borrow from their

L1s. According to Interlanguage theory, the contrast between L1 and L2 rules

helps learners develop their L2 understanding and update their interlanguages

towards the L2 grammar. Using this conceptualization, the language transfer

phenomenon could be defined as learners applying developing areas of their in-

terlanguage to create L2 utterances. These incomplete areas, that still mirror

L1 rules and patterns, could be responsible for what is transferred (Bardovi-

Harlig and Sprouse, 2017).

Several methods have been applied to investigate the effects of a developing

interlanguage in learner writing. One of them is visualizing learner errors and

their features. Visualization tools enable the comparison of different learner

dimensions, such as L1s and proficiency levels. For example, the H-matrix

tool described in Shimabukuro et al. (2019) uses matrices and tree diagrams

to display learner error frequencies according to the learners’ L1s. This tool

groups learner mistakes by error category and displays their frequencies ac-

cording to their occurrence in essays written by learners with different L1s.

It allows users to analyse which error categories are more or less common de-

pending on the learners’ L1s. The circular heatmap and ranked visualizations

described in Shimabukuro and Collins (2019) can help learners prevent ac-

ceptability errors in English. That is, it may help learners to avoid applying

certain collocations in English that, although grammatically correct, sound or

look odd to native English speakers. This visualization highlights words that

are frequently used in the learners’ L1, Portuguese, where the translations are

rarely used in English (Shimabukuro and Collins, 2019).

To better research and act upon language transfer, the phenomenon is sub-

divided into two different categories. The first one, named positive language
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transfer, refers to situations in which the L1 and L2 share a language pattern.

Hence, when learners transfer that L1 pattern, the resulting L2 utterance is

valid. However, when L1 and L2 rules diverge, reusing L1 patterns results

in an L2 error. This second category of language transfer is called negative

language transfer. The occurrence of negative language transfer in learners’

utterances results in errors due to the transferred L1 rule not matching the L2

rules. These errors arise from learners not being familiar with the differences

between languages. To illustrate the negative language transfer phenomenon,

I turn to an exemplar sentence written by a Chinese native speaker:

“The idea of International Art Festival was great.”

In this sentence, the noun phrase “International Art Festival” should be pre-

ceded by a determiner, i.e., “the” or “an”. However, the language learner

did not use any determiners before that noun phrase. This determiner omis-

sion error may have occurred due to the fact that there are no determiner

equivalents in Chinese (Robertson, 2000). It is possible that when writing this

sentence, the language learner applied Chinese rules in their English writing.

The difference in Chinese and English determiner usage rules means that the

transferred pattern resulted in an error.

As this example illustrates, negative language transfer happens when learn-

ers incorrectly apply structures from the L1 in the L2. Some of these incor-

rectly applied structures can be represented by sequences of word categories

that are uncommon or invalid in the L2. To support my negative language

transfer detection methodology, language structures are represented using se-

quences of part-of-speech tags. These sequences are used to differentiate be-

tween syntactic patterns found in the L1 and L2. The natural language pro-

cessing tasks used to obtain these syntactic language representations are de-

scribed in the following section.

2.2 Part-of-speech tagging

Part-of-speech (POS) tagging is a natural language processing task in which

computational systems assign word categories to tokens in a text (Jurafsky

7



and Martin, 2009). These word categories, or part-of-speech tags, define the

syntactic function that tokens perform within the text. POS tagging systems

are trained to predict a word’s part-of-speech based on the word itself and its

neighbouring context. The set of parts-of-speech used to tag a piece of text

may vary depending on the text’s language and on the level of granularity

desired.

2.2.1 Part-of-speech tagsets

Different sets of POS tags serve different purposes. They mainly vary accord-

ing to which language characteristics are represented by the tags. Furthermore,

distinct languages may need different numbers and types of tags to comprehen-

sively represent their word categories. For example, unlike English, Chinese

does not have determiners, which makes the determiner POS tag unnecessary

in a Chinese POS tagset.

A very popular tagset for English is the Penn Treebank tagset (Marcus

et al., 1993). This tagset contains 48 tags that represent parts-of-speech (36

tags) and other writing symbols (12 tags), such as punctuation marks. Each

of the 36 POS tags in the Penn Treebank dataset holds information about

distinct syntactic characteristics, such as number, tense, and inflection, along

with the main word categorization (e.g., verb, noun, adverb). However, the

syntactic characteristics described by the tags are only reflective of properties

found in the English language. That is, the Penn Treebank tagset specializes

in representing English syntactic structures. Although this specialization sup-

ports more detailed tagging, it does not fit my thesis’ purpose as my goal is

to directly compare language structures. My methodology requires a shared

tagset, a tagset that can be used to tag texts written in different languages

with the same part-of-speech tags.

The Universal Dependencies (UD) project is a cross-linguistic effort to cre-

ate and maintain a shared treebank annotation scheme (Nivre et al., 2016).

This treebank describes syntactic features that are shared among several lan-

guages and defines an annotation scheme to support cross-lingual syntactic

annotation. There are 17 different POS tags in the UD tagset, and they repre-
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sent common word categories across languages. The UD project was created

with the objective of supporting comparative analysis among languages (Nivre

et al., 2016). It enables syntactic comparison across languages, as different

languages can be annotated using a shared scheme. The UD tagset fits my

methodology as it provides a POS tagging scheme that is common to English

and Chinese. This means that it is possible to POS tag texts in English and

Chinese using the same tags and directly compare these languages’ structures.

A sequence of POS tags can be used to represent a language structure,

as the ordered POS tags extracted from a sentence reflect a language pat-

tern. Hence, POS tag sequences extracted from a large set of sentences in a

given language can serve as a proxy to that language’s grammatical structures.

To enable the representation of language structures and their application in

negative language transfer detection, I used POS tag sequences to train shal-

low syntactic language models. The following chapter discusses the classes of

language modelling techniques used in my thesis.

2.3 Language modelling

Language models are computational systems that assign probabilities to se-

quences of tokens (Jurafsky and Martin, 2009). These models are trained to

recognize token sequences that belong to a language, and upon seeing a test

sequence, compute the likelihood of that sequence belonging to the language

they represent. Hence, language modelling is a task in which training data

is used to create a model that represents its language and is able to identify

other sequences that likely belong to that language.

Recent advances in artificial neural network architectures have achieved

high performance in natural language processing tasks, such as language mod-

elling. The state of the art methodology for language modelling is the trans-

former approach (Alikaniotis and Raheja, 2019). These novel models forgo the

use of recurrent architectures and apply self-attention to train artificial neu-

ral network units and learn latent language patterns (Vaswani et al., 2017).

Transformer models allow for the processing of an entire sequence at one sin-
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gle time step, as opposed to recurrent approaches, which process one token

at a time and tend to lose important information from distant points in the

sequence (Vaswani et al., 2017). Transformers are able to model languages

through a series of self-attention layers that process the input sequence in

parallel. The ability to parallelize the computation and to take in more infor-

mation from previous tokens, makes the transformer architecture a powerful

language modelling approach (Jurafsky and Martin, 2020).

Although transformer models have achieved impressive results in natural

language processing tasks, this architecture was not explored in my thesis.

Most of the power in such models comes from the existence of pre-trained

models. These models are pre-trained on large amounts of data and can be

fine-tuned to perform a specific task (Devlin et al., 2019; Radford et al., 2018;

Peters et al., 2018). The task proposed in this thesis focuses on modelling the

structures of languages using part-of-speech sequences extracted from textual

data. I am not aware of any pre-trained transformer model that was trained

using this specific syntactic representation. Furthermore, my objective is to

explore the task’s feasibility, as well as its applicability in educational settings.

The cost of training and maintaining a large-scale transformer model may

become prohibitive in such environments.

The following subsections introduce the language modelling techniques

used in my thesis. With them, I hope to provide the background knowledge

to support the understanding of the methodology described in chapters 5 and

6.

2.3.1 N-gram models

N-gram models are a statistical natural language processing approach to lan-

guage modelling. These models work by deriving a token sequence distribution

from the training data and observing how well a test sequence fits that distri-

bution (Jurafsky and Martin, 2009). More specifically, n-gram models compute

the probability of a token based on the tokens that precede it. That is, the

likelihood of seeing a token at position i depends on the tokens at positions 0

to i - 1.
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N-gram models apply the Markov assumption to condition a token’s like-

lihood on closer previous tokens instead of on all its preceding tokens. For

example, in a bigram model (n = 2) the probability of a bigram (wi-1wi) is

conditioned on the unigram (wi-1) probability. In this manner, the probability

of a sentence can be computed by multiplying the probability of each bigram

in the sentence (equation 2.1).

P (S) ≈
n∏︂

i=1

P (wi|wi−1) (2.1)

The length of the sequences analysed by an n-gram model is one of the

model’s parameters. For example, n-gram models that analyse the distribution

of one-word sequences are called unigram models, while models that compute

the distribution of two-word sequences are called bigram models. The simplest

way to compute an n-gram probability is to compute its relative frequency.

This value is calculated based on the number of times the n-gram in question

occurs in the training data and the number of times its respective (n - 1)-gram

occurs. See equation 2.2 for the bigram probability computation formula.

P (wi|wi−1) =
C(wi−1wi)

C(wi−1)
(2.2)

Although straightforward, this frequency computation may lead to a few

complications depending on the datasets used. There could be cases in which

a token is present in the test data, but not in the training data. In such cases,

a problem would arise due to the denominator in equation 2.2 being zero, as

there are no occurrences of the token in the training data. The result of this

computation would be an undefined number that would invalidate the entire

sentence’s probability. N-gram language models solve this problem by defining

a vocabulary during training. This vocabulary is the set of tokens from the

training data that occur at a high frequency. It contains the most frequent

training data words. Training data words that occur at a lower frequency than

the one defined in the vocabulary creation are replaced by an unknown token.

Before testing, the test data tokens that are not present in this pre-defined vo-

cabulary are replaced by the unknown token. This procedure prevents unseen
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tokens from driving a sentence’s probability to zero.

Another issue that arises in n-gram model computations is the occurrence

of unseen n-grams. Unseen n-grams are token sequences that do not occur

in the training data even though the tokens that compose it belong to the

model’s vocabulary. Unlike unseen tokens, unseen n-grams only drive the

numerator on equation 2.2 to zero. To cope with this issue, it is common

to apply smoothing techniques to the n-gram distribution. These techniques

distribute a small portion of the probability weight among unseen but possible

n-grams. The redistribution of probability weight prevents the occurrence of

zero probabilities when test sequences contain unseen n-grams.

Note that, applying smoothing techniques to n-gram models that represent

the POS tag sequences’ distribution in a language implies assigning small

probability weights to POS tag sequences that may be invalid. That is, by

smoothing the POS tag n-grams distribution, POS tag sequences that did

not occur in the training data are assigned a probability greater than zero.

The reason why those POS tag sequences did not occur in the training data

could be attributed to them representing ungrammatical structures or to those

structures being grammatical but infrequent in the language. Although the

application of these techniques creates a somewhat artificial distribution, it

only assigns a small probability to unseen n-grams, maintaining the shape of

the distribution and preventing the invalidation of entire test sequences.

2.3.2 Recurrent neural networks

Sequential data is characterized by data in which the order of the input tokens

is meaningful. When learning from sequential data, information from previous

tokens is often highly relevant for the current token’s computation. Recurrent

neural networks (RNNs) are artificial neural network architectures that main-

tain a representation of previous outputs when computing the current output

value (Jurafsky and Martin, 2020). This recurrent architectural feature makes

RNNs suitable for use with sequential data, as the network is able to take pre-

vious information into account while it processes current input values (Dyer

et al., 2016).
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Natural language data is inherently sequential. To understand the meaning

of each word in a sentence, it is necessary to have information about the words

that precede it. For this reason, RNN models can be successfully applied in

language modelling.

RNN-based language models work by processing sentences word-by-word

and keeping a representation of the previously seen words at each time step

(Mikolov et al., 2010). It is possible to model languages using a simple recur-

rent neural network architecture, also known as an Elman network (Elman,

1990). Figure 2.1 illustrates a simple recurrent neural network architecture.

Figure 2.1: Unrolled simple recurrent neural network structure

Simple recurrent neural networks are composed of an input layer x, a hidden

unit layer h, and an output layer y. Each element in each of the layers can be

indexed by time step (e.g., yt means the output layer at time t). Each word

in the input sequence is processed in one time step t. The input layer unit at

time t is the vector wt, which is the vectorized representation of the word at

position t (equation 2.3).

xt = wt (2.3)

ht = g(Wxt + Uht−1) (2.4)

yt = f(V ht) (2.5)

The weight matrices W and U in equation 2.4 are two of the three model

parameters learnt during training. The current input vector and previous
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hidden layer vector are multiplied by W and U, respectively. The results

of these operations are added, and the activation function g in equation 2.4

determines the hidden layer activation value at the current time step (Jurafsky

and Martin, 2020).

Finally, the weight matrix V is the last parameter learnt during training. It

multiplies the final hidden layer vector to get to the network’s output. In RNN-

based language models, the function f in equation 2.5 is usually a softmax. The

softmax function is used to normalize the scores from the Vht vector into a

probability distribution over the training vocabulary (Jurafsky and Martin,

2020). During training, the loss is computed after each training iteration and

used to update the model parameters (W, U, and V) via backpropagation.

The resulting vector yt contains one probability value for each token in the

training data vocabulary. To obtain the probability of the next token in a

sequence, one needs to look at its respective entry in the output vector. The

probability of a sentence, i.e., a sequence of words, can be computed as the

product of the probability of each word in the sequence at its respective time

step (see equation 2.6).

P (S) =
n∏︂

i=0

ywi
i (2.6)

The recurrent nature of RNN language models allows the model to maintain

a representation of all the previously seen sequence tokens. Unlike n-gram

language models, in which n determines the number of previous tokens that

inform the computation, RNNs can take the entire previous sequence into

account to compute the output vector. This property elucidates the superior

performance of RNNs in the language modelling task.
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Chapter 3

Related work

In this chapter, I discuss research areas that use non-native English learner

data and language transfer information to improve computational and educa-

tional tasks. These tasks range from the automatic detection of authors’ first

languages to the provisioning of corrective language feedback for language

learners. Related research shows that native language informed data is benefi-

cial in both computational linguistics and second language acquisition settings

and that this thesis’ results can be integrated into other tasks to improve their

performance and explainability.

3.1 Native language identification

Native language identification is a natural language processing task in which

the objective is to predict the native language (L1) of a text’s author. In

the task’s most common format, native language identification models take

English text written by a non-native English speaker as input and output their

prediction about the speaker’s first language (Tetreault et al., 2013; Malmasi

et al., 2017). During training, native language identification models learn to

identify writing patterns that distinguish speakers of different first languages

when writing in English.

A latent pattern that can be applied in native language identification is the

use of cognates in the target language. Cognates are words that have similar

forms and meanings in the L1 and L2. Rabinovich et al. (2018) showed that

non-native English speakers tend to overuse English words that have cognates
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in their L1s. Their experiments show that it is possible to reconstruct language

family trees from the frequency with which certain cognates are used by non-

native English speakers (Rabinovich et al., 2018).

Another writing pattern that can aid native language identification models

in their task is the error type distribution in the author’s writing. This is

possible because some of the errors made by language learners are a result of

transfer from their first languages, as shown by second language acquisition

research (Bardovi-Harlig and Sprouse, 2017; Lipka, 2020). Flanagan et al.

(2015) showed that using error distributions extracted from learner data out-

performed a native language identification model trained on unbiased word

vectors from the same dataset. Their results show that English error patterns

can be used to identify the learners’ first languages (Flanagan et al., 2015).

Some systems apply second language acquisition hypotheses to the native

language identification task. One of those theories is the contrastive anal-

ysis hypothesis. It posits that challenging areas for language learners vary

according to the linguistic distance between the L1 and L2 (Lado, 1957). This

hypothesis proposes that the more distinct the two languages are the more

difficult it is for learners to acquire the L2. It also posits that the more chal-

lenging structures for language learners to acquire are the ones in which the

L1 and L2 diverge.

Wong and Dras (2009) examined the application of the contrastive analysis

hypothesis by using information about three syntactic error types as features

in native language identification models. The resulting models show that ap-

plying the contrastive analysis hypothesis between L1 and L2 supports native

language identification tasks. The contrastive analysis hypothesis also inspired

experiments that function in the opposite direction. Berzak et al. (2015) used

the typological differences between the learners’ L1s and English to predict

error patterns in learner data. They applied contrastive analysis to discover

challenging areas in English as a second language learning that are L1-specific.

That is, they identified English patterns that are difficult to acquire and vary

according to the learners’ L1.
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3.2 Grammatical error correction

Another natural language processing task that benefits from information about

differences between L1 and L2 is grammatical error correction (GEC). In this

task, the goal is to find and correct grammatical errors in learner data (Ng

et al., 2013, 2014; Bryant et al., 2019). GEC systems learn to detect and correct

errors from error-annotated learner data. State-of-the-art GEC systems model

the task as a translation problem in which the erroneous data is the source

language, and its corrected version the target language (Bryant et al., 2019).

Apart from large amounts of error-annotated data, GEC systems can take

advantage of other types of information, such as the learners’ native languages

and proficiency levels in the target language. Rozovskaya and Roth (2011)

showed that information about the learner’s native language was useful to

the GEC task by using distribution priors extracted from L1-specific errors

to improve a Näıve Bayes GEC model. In their work, they improved prepo-

sition error correction by suggesting preposition replacements that frequently

occurred in learner data from other learners with the same L1 (Rozovskaya

and Roth, 2011).

L1-specific data can also improve the performance of artificial neural net-

work GEC systems. Chollampatt et al. (2016) used L1-specific data to fine-

tune a neural network joint model and then integrated it into a statistical

machine translation GEC system. Their results showed that this L1-specific

adaptation improved the GEC system’s performance in correcting errors made

by Spanish, Chinese, and Russian native speakers (Chollampatt et al., 2016).

More recently, Nadejde and Tetreault (2019) adapted general neural ma-

chine translation GEC systems to the learner’s L1 and proficiency level in

English. Their experiments analysed five proficiency levels and twelve dif-

ferent L1s. The results showed that fine-tuning the GEC systems to both

properties improved the model’s performance compared to the baseline. The

best results were achieved when adapting to L1 and proficiency level at the

same time (Nadejde and Tetreault, 2019). These results corroborate second

language acquisition hypotheses, namely interlanguage and contrastive analy-
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sis, that posit that learner error patterns change according to the learner’s L1

and familiarity with the target language (Bardovi-Harlig and Sprouse, 2017).

Although experiments such as the ones described above show that infor-

mation about the learner’s L1 is beneficial for GEC performance, GEC re-

search has not specifically focused on negative language transfer. Monaikul

and Di Eugenio (2020) proposed providing negative language transfer informed

feedback along with their preposition error correction results. As preposition

errors are one of the most common errors in second language learning and are

often related to negative language transfer, their work envisioned providing

contrastive feedback for those error types (Monaikul and Di Eugenio, 2020).

Similarly, I hope to use my models’ results to enhance error feedback with

information that contrasts the L1 and L2. Unlike the work described by Mon-

aikul and Di Eugenio (2020), mine aims to detect structural negative language

transfer by determining if learner errors are related to divergences between L1

and L2 rules.

3.3 Error feedback

Error feedback is an important area of research in second language acquisition.

Although some researchers posit that no feedback should be given to language

learners, most of them defend that some type of error feedback should be pro-

vided (Bacquet, 2019). The output from GEC systems can be used to provide

direct corrective feedback to learners, as their output contains a suggested

correction to the learner’s errors. Direct corrective feedback such as this has

been shown to be effective in helping learners acquire language knowledge

(Liaqat et al., 2020). There are, however, other feedback types that support

language learning, such as recasts, elicitation, and metalinguistic cues (Lyster

and Ranta, 1997). In their written form, recasts are similar to direct corrective

feedback, as they involve the instructors rewriting the learner’s phrase without

the error. Elicitation involves highlighting the learner’s errors and encouraging

them to correct it. Metalinguistic cues also highlight the learner’s errors, but

they do so by providing information about possible error causes (Lyster and

18



Ranta, 1997).

3.3.1 Metalinguistic feedback

Metalinguistic feedback invites learners to look back at their utterances and

understand why they are incorrect (Lyster and Ranta, 1997). Its goal is to sup-

port learners in examining language as an object, analysing and internalizing

its rules. In written language tasks, this goal is achieved through annotating

learners’ written work with observations on their language usage. For example,

when an agreement error occurs, adding comments on why the words involved

do not agree with one another.

Second language acquisition research has examined how this feedback type

impacts language learning (Shintani and Ellis, 2013; Karim and Nassaji, 2020).

Experimental results show that providing some type of error feedback improves

writing performance when compared to not providing feedback. They also in-

dicated that metalinguistic information improved learners’ short-term writing

accuracy (Karim and Nassaji, 2020). Additionally, language learners reported

that the metalinguistic cues helped them become more aware of the target

language rules (Shintani and Ellis, 2013).

Second language acquisition research examining the application of metalin-

guistic feedback to negative language transfer related errors has suggested that

contrasting L1 and L2 rules in the error feedback supports the acquisition of

accurate language structures (Tomasello and Herron, 1989; Kupferberg, 1999).

Han (2001) discusses the application of fine-tuned error correction feedback.

By their definition, fine-tuning means highlighting the causal factors of an

error when providing feedback, bringing the learner’s attention to these fac-

tors. The study’s results show that acknowledging learners’ perspectives about

the feedback they have received when fine-tuning error feedback improved the

learners’ language awareness (Han, 2001).

To further understand the learners’ perspective, Watts (2019) surveyed

English language learners’ awareness of the negative language transfer phe-

nomenon. The study’s participants reported that information about the phe-

nomenon helped them prevent transfer related errors and improved their En-
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glish writing accuracy. With my work, I hope to enable the automation of

metalinguistic feedback that contrasts L1 and L2 patterns, as it has been

shown that this contrast can help second language acquisition and metalin-

guistic awareness.
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Chapter 4

Data

In this chapter, I provide an overview of the training and test datasets used

in my thesis. Following the datasets overview, I describe the preprocessing

procedures applied to extract structural information from parallel text in dif-

ferent languages and from learner data. These procedures were necessary as

my goal was to compare language structures as opposed to word sequence

distributions.

At this point, it is important to highlight the meaning of “language struc-

ture” in this manuscript. I modelled a language’s structure as the distribution

of part-of-speech tag sequences that are used in that language. Using these

sequences to train language models resulted in a “shallow syntactic language

model”. That is, language models that represent language through part-of-

speech tags, which are simple, yet pertinent, linguistic features.

4.1 Training data

Two datasets were used to train the models that represent language structures.

As my thesis’ goal is to compare erroneous written structures to the learners’

L1 (Chinese) and English syntaxes, I needed to obtain textual data in both

English and Chinese. The selected datasets contain parallel English and Chi-

nese textual data aligned at the sentence level (Tiedemann, 2012). Parallel

datasets were chosen to ensure that the Chinese and English sentences used to

train the models were equivalent. These datasets are equivalent with regards

to number of sample sentences and context.
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Dataset Number of sentences
Global Voices 138 582
WMT19 11 960
Combined 150 542

Table 4.1: Training datasets sizes

One of my data sources is the Global Voices corpus (Prokopidis et al.,

2016). This dataset contains news stories published on the Global Voices

website1. The news stories from this website discuss global news and events.

They are written and translated by a team of collaborators and volunteers.

The other data source is the news test set from the ACL 2019 Fourth Confer-

ence on Machine Translation (WMT19)2. This dataset contains parallel news

stories selected from online sources. The selected news stories were translated

specifically for the machine translation shared task (Barrault et al., 2019).

These datasets were chosen as training data because news stories usually

contain simple and grammatical language structures. Language learners are

encouraged to use patterns such as those in their writing. As a preprocessing

step, sentences that did not have a parallel version in the other language were

excluded from the training dataset. Table 4.1 presents the number of parallel

sentences in each dataset, as well as the total number of training sequences.

4.2 Test data

To understand whether models that represent language structures were able

detect negative language transfer on learner data, it was necessary to create

a dataset that contained information about errors related to the language

transfer phenomenon.

English learner data is readily available online due to well-known natural

language processing tasks, such as grammatical error correction and native

language identification. The datasets used in these tasks usually contain text

written by non-native English speakers and, especially in the GEC corpora,

these datasets are often annotated with learner error information. Error anno-

1https://globalvoices.org/
2http://www.statmt.org/wmt19/translation-task.html
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tated datasets usually highlight and correct learner errors. In these datasets,

errors and corrections are shared along with the learner text.

For my thesis, the learner dataset selected was the First Certificate in

English (FCE) from the Cambridge Learner Corpus (Yannakoudakis et al.,

2011). This dataset contains 1244 essays written by English as a second lan-

guage learners while taking the FCE exam, an intermediate-level English test.

The FCE dataset not only contains information about learner errors and their

corresponding corrections, but also information about the learners’ scores, age

range, and native language. The learners whose essays are part of the FCE

dataset have in total 16 different L1s. Each error in the dataset is also an-

notated with an error type, following the error coding described by Nicholls

(2003). In the FCE datasets there are 66 essays written by Chinese native

speakers. These essays have 30916 words in total and on average 468 words

per essay (SD = 101).

Each essay in the FCE dataset is an Extensible Markup Language (XML)

file, the errors and corrections are highlighted using XML tags. This mark-up

enables the addition of extra features to a text file by encapsulating text with

tags. Consequently, to correctly extract the erroneous utterances and POS

tag them, preprocessing steps were necessary. First, the incorrect words and

phrases were extracted from the enclosing XML formatted character sequences.

This procedure aimed to make sure that the POS taggers did not get confused

with the non-alphanumeric characters, such as “>”, “<”, and “=”, that are

habitually used in the XML format. After this extraction, plain text versions,

i.e., text without XML features, of the learner essays were created. Table

4.2 provides examples of the FCE dataset’s error mark-up and the error’s

respective plain text version.

In addition to that, the positional indices of the learner errors were calcu-

lated and stored for each error in the dataset. This procedure was envisioned

to facilitate the localization of errors in the plain text versions of the learner

essays. These indices were also useful to enable the precise extraction of the

incorrect utterances and their neighboring words.
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XML Plain text
The idea of <NS type=”MD”>
<c>an</c></NS> International
Art Festival was great.

The idea of International Art Festival
was great.

I <NS type=”TV”>
<i>had been</i><c>went</c>
</NS> to your annual international
art festival.

I had been to your annual interna-
tional art festival.

Table 4.2: Examples of learner text before and after error extraction from
XML format

4.2.1 Negative language transfer dataset

The L1 information available in the FCE dataset allowed the manual identi-

fication of negative language transfer related errors. As the essays could be

grouped by their authors’ L1s, it was possible to compare erroneous patterns

from the essays with rules and structures from their authors’ L1s. Then, if the

grammatical structure of an error was incorrect in English, but resembled the

learner’s L1, that error would be flagged as negative language transfer related.

The errors from the FCE dataset were annotated with information about

their relation with the language transfer phenomenon. This annotation en-

abled the evaluation of the shallow syntactic language models’ performance

in detecting negative language transfer. Each error in the negative language

transfer annotated dataset contains a feature that indicates if the error is re-

lated to negative language transfer or not. The manual annotation process that

allowed my models’ evaluation was performed as part of this research. More

information about the resulting annotated dataset can be found in Appendix

A.

There are 3584 errors made by Chinese native speakers in the FCE dataset.

Out of those, 1891 (52.76%) are tagged as negative language transfer and

1389 (38.76%) are tagged as non-transfer errors. The remaining 304 (8.48%)

errors were left unlabelled for one of two reasons, they were spelling errors

or the negative language transfer annotator was uncertain about its correct

classification in the original dataset.

Most of the errors flagged as not related to negative language transfer were
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Structural error type Number of errors
Negative language transfer errors 1457
Not negative language transfer errors 914

Table 4.3: Distribution of structural negative language transfer errors in the
test dataset

caused by learners applying English rules where they were not necessary. This

phenomenon, called overcorrection, is characterized by learners attempting to

conform to L2 grammatical rules by overusing them. Another common non-

transfer error cause is connected to the learners’ vocabularies. It is related to

words being used out of context. As learners had yet to acquire the appropriate

vocabulary, they would use words that did not fit their surroundings.

As my thesis’ focus is to detect structural negative language transfer, I

filtered the errors on the test set to only contain structural errors. I borrow

some of the definition of structural errors from Berzak et al. (2015), filtering

out spelling and word replacement errors from the test dataset. The resulting

dataset contains 2371 structural error instances. Among those, 61.45% are

related to negative language transfer and 38.55% are not. Table 4.3 presents

the distribution of structural errors between these categories.

4.2.2 Test sequences

Each word unit in a sentence usually has some type of connection to other

words in its surroundings. Hence, some learner errors in the FCE dataset

are incorrect because of their relation to other words. Even though these

other words may not be part of the incorrect structure, they contain relevant

information about the learner error. For example, in the error “This remind

me of what I experienced.”, the incorrect verb inflection “remind” is only

incorrect because its preceding word, “This”, is a third person demonstrative

pronoun.

Errors also vary with regard to length. Some errors, such as the one in the

previous example, only contain one incorrect word, while others are composed

of a set of words. An incorrect word order error, for example, always contains

more than one word incorrectly ordered. With that in mind, I posit that it
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Incorrect
sentence

Error
type

Padded
error span

Error +
unigram
span

Error +
bigram
span

Moreover, the
stars and artists
were only from
six countries.

Wrong
word order

were only
from six

only from
six

only from six
countries

AUX ADV
ADP NUM

ADV ADP
NUM

ADV ADP
NUM
NOUN

This are only
my immature
views.

Pronoun
agreement

This are This are This are
only

DET AUX DET AUX DET AUX
ADV

This remind me
of what I
experienced.

Verb
agreement

This remind
me

remind me remind me
of

DET VERB
PRON

VERB
PRON

VERB
PRON ADP

I wanted
somebody to
share my
feeling.

Wrong
noun form

my feeling. feeling. feeling.
PRON
NOUN
PUNCT

NOUN
PUNCT

NOUN
PUNCT

Table 4.4: Learner errors and test spans examples

is not enough just to look at the incorrect word sequence. Its surrounding

context is also meaningful for the detection of negative language transfer.

To analyse how an error’s context impacts the detection of negative lan-

guage transfer, I decided to test three different POS tagged error spans. They

are:

• The padded error span, which encompasses the POS tag extracted from

the word that precedes the error, followed by the POS tags extracted

from the error, followed by the POS tag extracted from the word that

follows the error;

• The error + unigram span, which consists of the POS tags that belong

to the error followed by the POS tag extracted from the subsequent word;

and

• The error + bigram span, which is composed of the POS tagged error

followed by the POS tags from its two subsequent words.
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Note that the POS tags that belong to the incorrect words are always part

of the test sequences. The different spans only define how much of the previous

and subsequent context is added to the test POS tag sequences. Also note that

context POS tags are only included in the test sequences if the word they are

meant to represent occurs. That is, if an error occurs at the beginning of a

sentence, its respective padded error sequence will not contain the leftmost

context tag. In the same way, if an error occurs at the end of a sentence,

its respective error + unigram and error + bigram sequences will not contain

subsequent words’ POS tags. Table 4.4 illustrates the different spans used in

my thesis.

Although the definition of error spans helps the models to focus on learner

misconceptions and their contexts, there is an error type that might not be

well-represented by these spans’ general definition. Omission errors are errors

characterized by learners refraining from using certain words where they are

necessary. For example, in the sentence “I hope she knows that [it] was her

fault and won’t do it again.”, the word “it” was omitted by the learner although

it was required. If represented by the error + unigram or error + bigram

spans following their general definition, the context from missing, or omission,

errors would not be fully captured. As an example, the error + unigram

representation of the error described above would only contain the POS tag

extracted from the word “was”, which does not convey a lot about the error’s

context.

To better characterize missing errors, an adjustment was made to the error

+ unigram and error + bigram spans. When representing this type of error, the

error + unigram span consisted of the POS tags extracted from the two words

that followed the error, and the error + bigram span contained the POS tags

extracted from three words after the error position. This adjustment allowed

the model to better analyse missing errors’ contexts. The missing error spans’

adjustment also helped keep the amount of information represented by each

error span consistent throughout the evaluation. As it can be seen in Table

4.5, the test sequences’ lengths are fairly homogeneous within each span.

The manually-annotated errors from the FCE dataset allow for a focused
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Span Min Q1 Median Q3 Max
Error (no padding) 0 1 1 1 12
Padded error 1 3 3 3 14
Error + unigram 1 2 2 3 13
Error + bigram 1 3 3 4 14

Table 4.5: Length statistics of part-of-speech tagged test sequences

analysis of the learner errors. Using the error positions and types to extract

the POS tags from the errors and their contexts created a condition that is

hard to replicate. That is, grammatical error correction systems have achieved

impressive results in detecting and correcting learner errors, however, their

outputs are not always correct. When detecting negative language transfer on

these systems’ outputs, it will be necessary to design around possible system

misclassifications.

4.3 Data preprocessing

In this project, language models that assign probabilities to part-of-speech tag

sequences were used to represent a language’s structure. These models were

created to enable the comparison of a POS tag sequence’s likelihood in both

the L1 and L2 (Chinese and English). As the same POS tag sequence needed

to be compared with L1 and L2 structures, both languages’ structures were

modelled using the same POS tagset, the Universal Dependencies tagset. This

tagset was chosen because it contains a set of POS tags that are common and

consistent among languages, including English and Chinese.

The POS tag sequences used to train the shallow syntactic language mod-

els were extracted from parallel data in English and in the learners’ L1, Chi-

nese. After collecting parallel data from different sources, each sentence in the

datasets was part-of-speech tagged. The Chinese sentences were tagged by a

POS tagger trained on Chinese data, and the equivalent sentences in English

were tagged by an English POS tagger. Figure 4.1 illustrates the preprocessing

procedure.

The POS taggers used to tag the training and test data come from the
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Figure 4.1: Illustration of the data preprocessing step

Python library spaCy version 2.33. SpaCy is a natural language processing

library equipped with pre-trained models in several different languages. I used

spaCy’s Chinese and English POS taggers to tag the parallel sentences written

in Chinese and English, respectively. The English POS tagger was also used

to tag the FCE test sentences, as they were written in English.

The POS tag sequences obtained through the process described above were

used to train and test the language models used in negative language trans-

fer detection. These shallow syntactic language models learnt to represent

language structures and were applied in identifying Chinese patterns in the

learners’ English writing. The methodology used to train n-gram and RNN

shallow syntactic language models and their results in the negative language

transfer detection task are described in the two following chapters.

3https://spacy.io/usage/v2-3
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Chapter 5

N-gram baseline approach

In this chapter, I describe the methodology and results from the n-gram nega-

tive language transfer detection approach. This approach uses n-gram models

to represent Chinese and English language structures and detect negative lan-

guage transfer in learner errors. It is the baseline approach to the task.

5.1 Methods

N-gram language models are probabilistic models that represent the distri-

bution of token sequences in a language (Jurafsky and Martin, 2009). With

n-gram language models, this baseline approach modelled the distribution of

POS tag sequences extracted from textual data in English and Chinese.

Prior to training the n-gram models, the POS tag sequences in the train-

ing set were split into two sets according to the language they represent. This

process resulted in two distinct training datasets, one for English and one

for Chinese. Each training set was used to train an n-gram shallow syntac-

tic language model to represent that language. Hence, two n-gram models

were trained for the negative language transfer detection task. One of the

models represented the structure of the learners’ L1 (Chinese) and the second

modelled English language structures. Each of these models was trained on

its corresponding set of POS tag sequences. That is, the English model was

trained on POS tag sequences extracted from English data, while the Chinese

model was trained on the POS tag sequences extracted from the equivalent

parallel data in Chinese. This procedure was devised to generate models with
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analogous training sets, i.e., the training data had the same structural context

and the same number of training sequences.

The n-gram models used in negative language transfer detection were trained

using the Python interface for KenLM1. KenLM is an n-gram language model

implementation that combines an advanced smoothing technique (modified

Kneser-Ney smoothing) with optimized querying data structures (Heafield,

2011; Heafield et al., 2013).

The negative language transfer detection process consisted of computing

the probability of POS tag sequences extracted from learner errors using both

English and Chinese n-gram shallow syntactic language models. Each model

outputted the likelihood of the POS tag sequence belonging to the language

structure they represented. These likelihoods were compared to determine the

error’s relation to negative language transfer. If the likelihood assigned by the

Chinese model was greater than the one assigned by the English model, the

error was classified as negative language transfer (Figure 5.1).

Figure 5.1: N-gram baseline approach testing procedure

For each error in the test dataset, each POS tag sequence span (padded

error, error + unigram, and error + bigram spans) was processed by both shal-

low syntactic language models and the resulting probabilities were compared.

When a POS tag sequence extracted from an error was assigned a greater

probability by the Chinese model, in comparison to the probability assigned

by the English model, it was interpreted that the erroneous POS tag sequence

1https://kheafield.com/code/kenlm/
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Learner error Chinese
model
output

English
model
output

Negative language
transfer classification

This remind me of
what I experienced.

-5.05 -5.06 True

They flew out of the
window and hit directly
the headmaster’s head.

-7.88 -7.23 False

Table 5.1: Negative language transfer classification results based on Chinese
and English shallow syntactic language models’ outputs

was more similar to Chinese language structures than to English ones. Hence,

the learner error was classified as negative language transfer.

Table 5.1 contains examples of the baseline negative language transfer clas-

sification process and output. The negative language transfer classification

output, derived from the models’ probabilistic results, was compared to the

negative language transfer annotation that accompanied the learner errors.

The baseline approach’s performance in detecting negative language transfer

was calculated from this comparison’s results.

5.2 Hyperparameter tuning

To select the parameter setting that best enabled the representation of lan-

guage structures, the length of the POS tag sequences analysed by the n-gram

models was tuned. The best performing n-gram length setting was used to

train the models applied in detecting negative language transfer. Hence, the

hyperparameter tuning step happened before the training and testing steps

described in the previous section.

The n-gram length refers to the length of the POS tag sequences anal-

ysed by the model. Five different n-gram lengths were analysed, from 2 to 6.

Before tuning, each monolingual training dataset was split into training and

evaluation sets. The dataset that contained sequences extracted from English

sentences was used to train English n-gram models and the one containing

sequences extracted from Chinese sentences was used to train Chinese n-gram

models.
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The best parameter setting was selected according to the average source

language prediction accuracy computed in a 5-fold cross-validation process

with the training data. This process consisted of each monolingual training

dataset being randomly split into 5 distinct folds. Then, on each iteration,

models were trained using 4 of those folds and evaluated on the remaining

one. This procedure was repeated for each n-gram length analysed. The

best performing n-gram length was the one the achieved the highest average

accuracy over all 5 iterations. Table 5.2 presents the average number of POS

tag sequences on the splits used in hyperparameter tuning.

Training split Evaluation split
Chinese 120 433 30 109
English 120 433 30 109

Table 5.2: Number of sequences in the training and evaluation splits used for
hyperparameter tuning

Each monolingual training split was used to train one English and one Chi-

nese shallow syntactic language model for each hyperparameter combination.

The models’ performance was determined using both evaluation splits. The

evaluation process consisted of computing the probabilities for each POS tag

sequence in the evaluation split using the English and Chinese models trained

with the same hyperparameter combination. Then, the models’ outputs were

compared and the sequence was labelled according to the model that assigned

the highest likelihood, e.g., if the English shallow syntactic language model’s

output was greater than its Chinese counterpart, the sequence was classified as

English. The labels assigned in this step were then compared to the sequences’

source languages. The models’ accuracy was computed based on these compar-

isons. The hyperparameter’s performance was defined as the models’ accuracy

on the evaluation split.

The evaluation process described in the previous paragraph was repeated

for each n-gram length analysed. The resulting evaluation accuracies were

recorded and compared. Finally, the POS tag sequence length that yielded

the best accuracy on the evaluation set was selected to train the models used

in negative language transfer detection. The models that achieved the highest
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Span Precision Recall F1-score
Padded error 0.68 0.32 0.43
Error + unigram 0.64 0.34 0.45
Error + bigram 0.66 0.27 0.38

Table 5.3: N-gram baseline negative language transfer detection results

accuracy on the evaluation split had n = 5. That is, they analysed one sequence

of five POS tags at a time. The best accuracy achieved in the tuning process

was 96.97%. This result refers to the accuracy yielded by the n-gram models

in predicting the source language of the POS tag sequences in the evaluation

split. The evaluation split accuracy results for all n-gram lengths analysed can

be found in Appendix B.

5.3 Results

The n-gram models trained to predict the source language of a POS tag se-

quence were then used to assign the negative language transfer label of learner

errors. Table 5.3 contains the precision, recall, and F1-score results attained

by the n-gram baseline in the negative language transfer detection task. The

n-gram baseline achieved the highest recall and F1-score results at detecting

negative language transfer related learner errors when the error + unigram

span was used. The error + unigram span includes the POS tags extracted

from the error along with the POS tag extracted from the word that comes

immediately after the error. For example, the error + unigram sequence re-

trieved from a verb agreement error in the sentence “This remind me of what

I experienced.” contains the POS tags extracted from the words “remind me”.

The error + unigram span, however, yielded the lowest precision scores

in the n-gram baseline approach. The best performing span with regards to

precision was the padded error span. This span encompasses the POS tags

extracted from the words that surround the error along with the POS tags

extracted from the error. These results indicate that both previous and fol-

lowing contexts influence the accurate detection of negative language transfer

in this approach.
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When compared to the error + unigram span, it is possible to perceive that

the extra POS tag that is included by the error + bigram span made negative

language transfer detection more precise. However, the error + bigram span

yielded the lowest recall and F1-score results with the n-gram baseline. This

added POS tag may have misled the models into classifying negative language

transfer related errors as not transfer related, as the recall value for this error

span was the lowest one among the error spans analysed. These results indicate

that including information from words that are further away from the error

may not be beneficial for negative language transfer detection in all cases.

For all error spans analysed, the precision scores were always higher than

the recall scores. The low recall results show that the n-gram baseline per-

formed poorly at identifying most of the negative language transfer related

errors. However, their precision results indicate that this approach made more

accurate predictions regarding those errors. That is, most of the errors classi-

fied as negative language transfer are indeed related to the negative language

transfer phenomenon.

Overall, the low recall scores yielded by the n-gram baseline may indicate

that the n-gram baseline methodology does not fully support the negative lan-

guage transfer detection task. This methodology uses two independent shallow

syntactic language models to detect negative language transfer. Each n-gram

shallow syntactic language model was trained to represent the structures from

one of the languages, and negative language transfer detection relied on a

comparison between two independent results.

By design, one n-gram model is only able to represent one language. These

models process the training data and derive a sequence distribution from it.

This feature of n-gram models made it necessary to train one model to repre-

sent English structures and another one to represent Chinese structures. Each

of the shallow syntactic language models trained does not recognize other lan-

guages’ structures. Hence, for the n-gram baseline, a model’s output is solely

based on how similar the error structure is to the language structures it rep-

resents. The independence between the models’ sequence distributions may

have caused negative language transfer related errors to be misclassified as not
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transfer related.

5.4 Error analysis by grammatical error type

The error coding used by the FCE annotators defines five general error cate-

gories. These categories are “missing”, “replacement”, “unnecessary”, “wrong

form used”, and “wrongly derived” (Nicholls, 2003). These error categories

are augmented with information about which part-of-speech is missing, un-

necessary, used in the wrong form, wrongly derived, or needs replacing. For

example, when an error is annotated with the “unnecessary adverb” code,

it means that the learner used an adverb where it was not needed, e.g., the

word “directly” in the sentence “They flew out of the window and hit directly

the headmaster’s head.” was annotated as an unnecessary adverb error. The

learner wrote “hit directly the headmaster’s head” when they should have

written “hit the headmaster’s head”.

By grouping the n-gram baseline negative language transfer predictions

using the error coding described in Nicholls (2003), it is possible to notice

some patterns in the results. The most common errors made by Chinese

native speakers in the FCE dataset are punctuation replacement, wrong verb

tense, and missing determiner errors (with 336, 267, and 209 instances in

the dataset, respectively). Table 5.4 presents the precision, recall, and F1-

score results achieved by the n-gram models when detecting negative language

transfer for these error subtypes.

Note that the best scores for punctuation replacement and wrong verb tense

errors are lower than the ones for missing determiner errors. This difference

can be attributed to the POS tagset used to represent the language structures.

The Universal Dependencies tagset uses the tag “PUNCT” to represent all

punctuation marks. This means that the POS tag sequences extracted from

punctuation replacement errors do not have additional information about the

type of punctuation mark that was used incorrectly, e.g., it is not possible to

distinguish a period from a comma using the error’s POS tag sequence. There

are differences between the usage of certain punctuation marks in English
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Error type Span Precision Recall F1-score

Replace punctuation
(n = 336)

Padded error 0.65 0.30 0.41
Error + unigram 0.69 0.43 0.53
Error + bigram 0.62 0.23 0.34

Wrong verb tense
(n = 267)

Padded error 0.70 0.21 0.32
Error + unigram 0.78 0.36 0.49
Error + bigram 0.73 0.22 0.33

Missing determiner
(n = 209)

Padded error 1.00 0.43 0.60
Error + unigram 0.97 0.33 0.50
Error + bigram 1.00 0.35 0.52

Table 5.4: N-gram models’ results on most common error types (an extended
version of this table, containing all error types, is available in Appendix D)

and Chinese (Liu, 2011) that may cause negative language transfer, but that

difference is not represented by the n-gram models on account of a too general

POS tag.

A similar issue occurs to the representation of verb tenses. The Univer-

sal Dependencies tagset uses two POS tags to represent verbs, “VERB” and

“AUX”. Although the POS tags used differentiate between auxiliary and main

verbs, they do not provide any information about verb tenses. Hence, informa-

tion about different verb tense usage patterns in each language is not modelled

by the n-gram shallow syntactic language models and cannot be reliably used

to detect negative language transfer in wrong verb tense errors.

The detection of negative language transfer in missing determiner errors,

is not hindered by the POS tags used. These errors’ structure is marked

by the absence of a determiner before a noun phrase, and it is related to

negative language transfer as there are no determiner equivalents in Chinese

(Robertson, 2000). All the error spans used achieved high precision scores

when detecting transfer in missing determiner errors. However, the padded

error span yielded the highest recall score, meaning that the models were able

to detect more negative language transfer related missing determiner errors

when analysing this span.

The padded error span may have been the error span that best represented

this error type because it contains the POS tags that surround the error.

The English model did not recognize the error structure because in English
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structures it is more common for a determiner to be between those POS tags.

The Chinese model, on the other hand, assigns it a higher probability to the

sequence as determiners are not used between any POS tags in Chinese.
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Chapter 6

Recurrent neural network
approach

One of the disadvantages of the n-gram baseline approach is that the model

that represents the Chinese structures and the one that represents English

structures are independent of one another. Even though they were trained on

parallel data, the English n-gram shallow syntactic language model is never

exposed to Chinese structures and vice versa. The probability value outputted

by one of the models only represents the likelihood of a POS tag sequence be-

longing to the language structures represented by that model. It does not

signify the probability of the sequence not belonging to the language repre-

sented by the parallel n-gram model.

To address this shortcoming, a recurrent neural network (RNN) architec-

ture was selected to represent language structures. This language modelling

architecture enables one single model to differentiate between two languages.

This chapter reports on the usage of a recurrent neural network approach to

negative language transfer detection. It describes the methodology applied and

discusses the results achieved by a recurrent neural network shallow syntactic

language model in the negative language detection task.

6.1 Methods

RNN-based language models are able to maintain a representation of preceding

tokens when computing the current state of a sequence (Mikolov et al., 2010).
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By doing this, these models can make inferences based on previous tokens

as well as on the current one. This RNN architecture feature enables the

modelling of sequential data, such as natural language.

To perform the negative language detection task, an RNN model was in-

troduced to POS tag sequences extracted from both English and Chinese sen-

tences during training. Throughout this process, it learnt to predict to which

language a given POS tag sequence belongs. The RNN shallow syntactic lan-

guage model analysed POS tag sequences extracted from sentences in both

languages and created an internal representation that was able to differentiate

between language structures.

The RNN’s input units are vectorized Universal Dependencies POS tags.

Each POS tag from the UD tagset is represented by a one-hot-encoding vector.

As there are 17 tags in the UD tagset, each input vector is 17 units long, and

each of those 17 vector positions is equivalent to one of the UD tags. Each of

the training and test data POS tag sequences was transformed into an ordered

list of POS tag vectors. The training POS tag vector lists are processed by the

RNN during training, while the ones that represent the test data are only used

during testing. The RNN’s output is a language label, i.e., English or Chinese.

This output represents the language that the input POS tag sequence most

resembles, according to the RNN syntactic model.

The recurrent neural network implementation from the Python library Py-

Torch1 was used to create the negative language transfer detection model.

The model was trained for ten epochs with Adam optimization (Kingma and

Ba, 2015). The RNN model’s hyperparameter combination (16 hidden units,

learning rate = 0.0001, mini batch size = 1, and negative log likelihood as the

loss function) was selected from a set of options in the hyperparameter space.

The hyperparameter tuning process is described in section 6.2.

Throughout the training process, the RNN model learnt how to make a

prediction based on the POS tag vector lists. It received these sequence repre-

sentations as input and made a language prediction, i.e., English or Chinese.

This prediction reflected the language structures that the input sequence was

1https://pytorch.org/
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more related to, according to the RNN shallow syntactic language model in-

ternal computation. The RNN weights were adjusted via backpropagation.

The backpropagation error vector was computed based on the difference be-

tween the model’s output and the true language value for the input POS tag

sequence.

After being trained with the training dataset and the best hyperparameter

combination, the RNN shallow syntactic language model was used to deter-

mine the relation between errors made by English as a second language learners

and the language transfer phenomenon. When the RNN shallow syntactic lan-

guage model outputted that a given POS tag sequence extracted from a learner

error was more similar to Chinese structures than to English structures, the

error was deemed related to negative language transfer and classified as such.

Figure 6.1 illustrates the RNN testing procedure.

Figure 6.1: RNN approach testing procedure

Each structural error made by Chinese native speakers in the FCE dataset

was analysed by the RNN model using the three distinct error spans. During

testing, the RNN assigned a language label to the POS tag sequence extracted

from the error. When that language label was “Chinese”, the error was classi-

fied as negative language transfer. The RNN model’s output was interpreted

as an indication that that error’s structure was more similar to Chinese than

to English structures. The negative language transfer label associated with the

error was compared to the negative language transfer annotation that accom-
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panied that error. The model’s performance in detecting negative language

transfer was computed based on how often the model’s outputs matched the

negative language transfer annotations.

6.2 Hyperparameter tuning

Akin to the n-gram models, parameter tuning was performed to select the best

hyperparameter combination for the recurrent neural network model. In this

process, the training dataset was divided into training and evaluation splits.

The training split contained 80% of the training dataset, while the evaluation

split was composed of the remaining 20% of the training dataset. Table 5.2 in

section 5.2 contains the number of POS tag sequences in each of these splits.

In the RNN tuning procedure, the training and evaluation splits contain

POS tag sequences extracted from both English and Chinese sentences. Each

RNN model was trained with a different parameter combination and learnt to

predict the source language of POS tag sequences from the training split. In

the n-gram model tuning, the training data was split according to the source

language of its sentences and each of the two resulting monolingual splits

was used to train a distinct n-gram model. In the RNN tuning procedure,

however, the monolingual training splits were merged into a single dataset,

and the sequences in this dataset were the RNN model’s input. The model’s

output was a prediction of the language represented by the input POS tag

sequences.

The hyperparameters analysed during the tuning procedure were the num-

ber of hidden units, learning rate, mini batch size, and loss function. Five

learning rate values were analysed, 0.01, 0.001, 0.0001, 0.00001, and 0.000001.

One of seven hidden layer sizes was used to test each hyperparameter combi-

nation. The hidden layers were composed of 8, 16, 32, 64, 128, 256, or 512

units. The networks computed 1, 2, 4, 8, 16, or 32 samples per mini batch.

Finally, two loss functions were analysed, negative log likelihood2 and binary

cross entropy with logits3.

2https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
3https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.
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Each combination of these parameters and the training split were used to

train one RNN shallow syntactic language model for 10 epochs. The resulting

RNN models were tested on the evaluation split. Each resulting model’s ac-

curacy was computed as the percentage of correctly identified samples in the

evaluation split.

The model that achieved the best accuracy on the evaluation set had 16

hidden units, a learning rate of 0.0001, mini batch size = 1, and negative log

likelihood as its loss function. Although the learning rate value selected may

seem small, it is used in parallel with mini batch size = 1. This combina-

tion should be acceptable because the network weights are updated after each

training sample is processed, and in this setting a small learning rate helps to

prevent the network from overshooting local minima, i.e., making weight up-

dates that are too large to converge over time (Buduma and Locascio, 2017).

The best performing model achieved 95.16% accuracy on the evaluation split,

and it was used to train the RNN shallow syntactic language model applied in

negative language transfer detection. The evaluation split accuracy results for

all hyperparameter combinations analysed can be found in Appendix C. The

evaluation results yielded during tuning were consistent across multiple runs

with random initialization.

Note that the evaluation accuracy achieved in the n-gram models hyper-

parameter tuning is greater than the best evaluation accuracy attained by the

RNN during tuning. These results can be explained by the type of data being

modelled. POS tag sequences extracted from grammatical and high-quality

(i.e., manually generated and translated) data follow a well-defined and consis-

tent structure. The regular structure of these sequences is well-represented by

n-gram models. Hence, the superior performance observed in the n-gram mod-

els’ tuning. Each monolingual n-gram model is capable of inferring whether a

POS tag sequence belongs to the language structure represented. However, it

is not able to make inferences about that sequence belonging to the language

modelled by the other n-gram model. In this aspect, an RNN model fits the

negative language transfer detection task better. It is able to distinguish be-

html
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Span Precision Recall F1-score
Padded error 0.69 0.34 0.46
Error + unigram 0.67 0.41 0.51
Error + bigram 0.70 0.35 0.46

Table 6.1: RNN approach negative language transfer detection results

tween English and Chinese and classify POS tag sequences as belonging to a

language instead of the other.

6.3 Results

Table 6.1 contains the precision, recall, and F1-score results attained by the

RNN shallow syntactic language model in detecting negative language transfer.

The error span that yielded the best recall and F1-score results was the error +

unigram span. This span encompasses the POS tags extracted from the error

followed by the POS tag extracted from the word that comes immediately

after the error. For example, the error + unigram sequence retrieved from the

pronoun agreement error in the sentence “This are only my immature views.”

contains the POS tags extracted from the words “This are”.

A parallel can be drawn between the RNN and the n-gram baseline analysing

errors represented by the error + unigram span, as this error span also yielded

the lowest precision scores among the RNN results. With the RNN approach,

the padded error span and error + bigram span representation attained higher

precision scores, 0.69 and 0.70 respectively. Compared to the error + unigram

span, the padded error span encompasses one extra POS tag, extracted from

the word that precedes the error. The error + bigram span also contains one

extra POS tag, extracted from the word that follows the words represented by

the error + unigram span. These results may indicate that to make more accu-

rate predictions regarding negative language transfer, the RNN model benefits

from more context extracted from the errors’ surroundings.

The results yielded by the RNN approach where learner errors were rep-

resented by the padded error and error + bigram spans were analogous. The

F1-scores achieved by the RNN analysing these error spans were the same,
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but the error + bigram span performed slightly better in precision and recall.

Both spans yielded considerably lower recall scores when compared to the er-

ror + unigram span results. Lower recall scores indicate that the padded error

and error + bigram spans drove the RNN to classify more negative language

transfer related errors as not related to transfer.

Furthermore, the recall results using the padded error span are lower than

the ones from the error + unigram and error + bigram spans. This may be an

indication that, in the RNN approach, the POS tag extracted from the word

that precedes the error may not benefit negative language transfer detection as

much as the words that follow the error. That is, the error’s preceding context

is not as important as its successive context for detecting negative language

transfer related errors.

Another feature that may hinder the RNN shallow syntactic language

model’s performance in detecting language transfer is the level of detail of-

fered by the POS tagset used. The RNN model is able to distinguish between

English and Chinese structures more accurately than the n-gram baseline.

However, there are some error types for which the current POS tag represen-

tation is not detailed enough to support negative language transfer detection.

For example, replacement errors are a category in which learners use an

incorrect token from the correct category. This means that the POS tag se-

quence extracted from these errors is the same as the POS tag sequence that

would be extracted from correct versions of the learners’ writing. The POS tag

sequence extracted from replacement errors is valid in English. The learner

error lies on the choice of token, not on its category. Representing language

structures using POS tags does not convey enough information for replace-

ment errors to be correctly classified as related to negative language transfer

or not.

As my language structure representation and POS tagset choices affect

both n-gram baseline and RNN approaches, the limitations of the chosen

methodology are considered in greater depth in the discussion chapter. The

following section examines the RNN performance on the most common errors

made by Chinese native speakers when writing in English in the FCE dataset.
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Error type Span Precision Recall F1-score

Replace punctuation
(n = 336)

Padded error 0.71 0.39 0.51
Error + unigram 0.70 0.47 0.56
Error + bigram 0.71 0.38 0.50

Wrong verb tense
(n = 267)

Padded error 0.78 0.39 0.52
Error + unigram 0.77 0.41 0.54
Error + bigram 0.79 0.29 0.42

Missing determiner
(n = 209)

Padded error 1.00 0.26 0.41
Error + unigram 0.98 0.45 0.61
Error + bigram 0.98 0.40 0.57

Table 6.2: RNN model’s results on most common error types (an extended
version of this table, containing all error types, is available in Appendix E)

6.4 Error analysis by grammatical error type

Table 6.2 presents the RNN shallow syntactic language model’s precision, re-

call, and F1-score results for three of the most common Chinese native speaker

error types. As discussed in section 5.4, punctuation replacement and wrong

tense of verb errors are harder to represent in this methodology due to the

POS tagset used. This tagset represents punctuation marks and verbs using

POS tags that are too general and do not convey information about the type

of punctuation or verb tense used. Nonetheless, the error spans seem to be

reasonably precise when applied to represent negative language transfer in in-

stances from these error types. This may occur because the RNN model is

able to detect usage patterns that happen in parallel with punctuation and

verb tense errors and that may be indicative of negative language transfer.

In contrast, missing determiner errors seem to be better represented by Uni-

versal Dependencies POS tag sequences. The RNN shallow syntactic language

model is able to differentiate between Chinese and English usage patterns that

involve missing words, such as in the POS tag sequences from missing deter-

miner errors. This ability is corroborated by the higher scores achieved in

detecting negative language transfer in “missing” error instances.

When the RNN model analysed missing determiner errors using the padded

error span, it was very precise. All of the missing determiner errors that the

model classified as negative language transfer related were in fact related to
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language transfer. However, this error span was not so successful in capturing

all of the negative language transfer related missing determiner errors. Its

recall score was 0.26.

The error + unigram span achieved high precision and the highest recall

scores when classifying missing determiner errors. It seems to be more suitable

for representing this error type. In the RNN shallow syntactic language model

approach, the POS tag extracted from the word that precedes the error was not

as helpful in detecting negative language transfer as the one extracted from the

word that follows the error. The model performed better in detecting negative

language transfer when only the POS tag that followed the error was added

to the POS tag sequence analysed.

One possible explanation for this result is that it is common in English for

determiners to be at the beginning of sentences. The error + unigram POS

tag sequences began with a POS tag that should be preceded by a determiner

in English but was not, then the model correctly assigned the sequence a

Chinese, i.e., negative language transfer, label. The padded error span was

not so successful in that regard because there are more mid-sentence contexts

in English in which determiners are not necessary.

The hypothesis that the RNN expects determiners to be at the beginning of

POS tag sequences in English, as opposed to Chinese, is supported by the error

+ bigram span scores in detecting negative language transfer related missing

determiner errors. This span is analogous to the error + unigram span as it

begins with the POS tag that should be preceded by a determiner in English.

Its recall and F1-score results indicate that the RNN was able to detect more

missing determiner errors that are related to negative language transfer with

the error + bigram span than with the padded span.

Altogether, the RNN approach achieved higher scores than the n-gram

baseline in most of the settings analysed. In the following chapter, I will

discuss the similarities and differences between these two negative language

transfer detection approaches.
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Chapter 7

Discussion

This chapter compares and discusses the results obtained using the n-gram

baseline and RNN approaches described in chapters 5 and 6. Beyond that, it

discusses the approaches’ limitations, the implications of the methods used,

and possible future research directions.

7.1 Performance analysis across models

The error span being equal, the RNN approach achieved higher scores than the

n-gram baseline in all settings. The only setting in which the n-gram models

outperformed any of the RNN results was when the n-gram models classified

negative language transfer errors using the padded error span. The precision

achieved by that combination was higher than the one achieved by the RNN

when using the error + unigram span. Overall, the n-gram models yielded

lower recall scores regardless of the error span analysed. This resulted in the

n-gram baseline’s F1-scores also being lower than the RNN F1-scores.

The results yielded by each approach indicate that RNN models are more

suited to identify negative language transfer in learner errors. Compared

to n-gram models, RNN can take more previous context into account when

analysing a POS tag sequence. This feature can be useful to detect negative

language transfer in errors which are longer than the n-gram models’ length,

i.e., are composed of 6 POS tags or more. Apart from this, the RNN model

used in this task was trained to differentiate between Chinese and English

structures. The knowledge about both language structures might have given
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RNN correct RNN incorrect
N-gram correct 896 234
N-gram incorrect 270 965

Table 7.1: Padded error span contingency table

Error span Test statistics Additional
errors

Padded error χ2 = 2.43, p = .11, OR = 0.86 36
Error + unigram χ2 = 4.33, p = .03, OR = 0.78 38
Error + bigram χ2 = 33.25, p < .001, OR = 0.56 121

Table 7.2: McNemar’s test results for each error span representation (OR
stands for odds ratio, this measure represents the ratio between RNN and
n-gram misclassifications)

the RNN approach the upper hand as it could directly delineate the distinction

between negative language transfer related errors and non-negative language

transfer related errors.

To analyse whether the incorrect classifications made by the language

modelling approaches are statistically different, the approaches’ misclassifica-

tions were compared using McNemar’s test. This statistical test examines the

amount of test samples that were misclassified by each approach to comment

on whether the approaches err similarly (Dietterich, 1998). Under McNemar’s

test, the null hypotheses is that both the n-gram models and the RNN mis-

classify a similar amount of test samples.

The test statistic for McNemar’s test is computed from a contingency table.

This table represents the distribution of correct and incorrect classifications

for each classifier as well as how the classification results overlap. Table 7.1

presents the contingency table for these models when learner errors were rep-

resented by the padded error span. The value 896 in the first table cell is

the number of learner errors that were correctly assigned a negative language

transfer label by both of the RNN and n-gram models. Similarly, the value 965

is the number of learner errors that received, from both approaches, a negative

language transfer label that differed from their gold standard annotation. The

values 234 and 270 represent learner errors that were correctly classified by

one of the approaches but not by the other.
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RNN correct RNN incorrect
N-gram correct 1038 139
N-gram incorrect 177 1011

Table 7.3: Error + unigram span contingency table

RNN correct RNN incorrect
N-gram correct 907 156
N-gram incorrect 277 1025

Table 7.4: Error + bigram span contingency table

McNemar’s test evaluates how different the errors made by the approaches

are. That is, whether the values 234 and 270 are statistically different in

this context. As show in Table 7.2, the test statistics computed from the

padded error span contingency table were not significant, which means that

the misclassifications made by two approaches were not measurably different

when analysing errors represented by the padded error span.

The null hypotheses could not be rejected based on the results achieved

when errors were represented by the padded error span, but the statistical

analysis of results obtained when learner errors were represented using the

error + unigram and error + bigram spans yielded significant results. Table

7.2 contains the test statistics, p-values, and number of additional misclassifi-

cations for each of the error spans analysed. The RNN model made 38 fewer

misclassifications than the n-gram models when learner errors were represented

by the error + unigram span, and this difference was statistically significant.

The null hypothesis was rejected with p = .03. Table 7.3 is the contingency

table for the models’ results when analysing learner errors represented by the

error + unigram span.

Representing learner errors with the error + bigram span also yielded dif-

ferent amounts of misclassifications from the two approaches, with the RNN

model making fewer misclassifications again. When errors were represented

by the error + bigram span, the n-gram models made 121 additional misclas-

sifications when compared to the RNN model. By applying McNemar’s test

to the models’ misclassifications, the null hypothesis was rejected with a small

p-value (p < .001), which means that there is a significant difference in the
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number of errors made by each approach. Table 7.4 contains the distribution

of model mistakes between n-gram and RNN models when learner errors were

represented by the error + bigram span.

7.2 Error analysis across models

By examining the different approaches’ results on the most common error

types, it is possible to identify a similar pattern, in which the RNN approach

frequently yields higher scores. As previously discussed, the two most com-

mon error types in the test dataset are replacement and verb tense errors.

These error types are not comprehensively represented by the methodology

used. Representing language structures with POS tag sequences means that

information that is important to detect negative language transfer in instances

of these error types is not modelled. Therefore, to provide a fair comparison

between the approaches, their performance on instances of the third and fourth

most common error types made by Chinese native speakers are compared and

contrasted.

Both the third and fourth most common error types in the test dataset are

omission, or “missing”, errors. Missing determiner is the third most common

error type in the dataset, with 209 instances, and missing punctuation is the

fourth most frequent error type with 152 instances. Determiner omission er-

rors are highly correlated to negative language transfer as Chinese does not

have determiner equivalents, which causes Chinese native speakers to omit

determiners (Robertson, 2000; Han et al., 2006). Similarly, the usage of punc-

tuation marks in Chinese diverges from English rules (Liu, 2011). In Chinese,

commas are commonly used as sentence boundaries, in parallel to how periods

are used in English (Xue and Yang, 2011). Chinese speakers who are learn-

ing English may refrain from using commas mid-sentence as they are used to

commas marking the end of complete thoughts.

The scores achieved by analysing missing determiner errors with differ-

ent error spans are consistent with the overall RNN approach results. The

RNN’s highest F1-score came from analysing the errors using the error + un-
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igram span. Unlike the overall trend, the n-gram baseline yielded the highest

F1-score when it analysed missing determiner errors using the padded error

span. The highest F1-scores achieved by each best performing approach and

span combination are similar (Figure 7.1). The baseline and RNN approaches

achieved F1-scores of 0.6 and 0.61 when detecting negative language trans-

fer in missing determiner errors using the padded error and error + unigram

spans, respectively.

As previously discussed, the padded error span was more successful in

representing missing determiner errors for the n-gram models. This may hap-

pen because this span encapsulates the POS tags that surround the position

where the determiner should be, and the n-gram models can make accurate

inferences from these sequences. Determiner omission is a pattern in Chinese

native speakers’ English writing because determiners are not used in Chinese

(Robertson, 2000). The POS tag sequences extracted from missing determiner

errors, which do not contain determiner POS tags, are more similar to Chinese

structures and are related to negative language transfer.

The English n-gram model assigned the missing determiner error sequences

a low probability, because it is more common in English to have determiners

between the sequence’s POS tags. The Chinese model did not expect de-

terminers to be present in any POS tag sequence, consequently, it assigned

the missing determiner error sequences a high probability. As the probabil-

ity assigned by the Chinese n-gram model is higher than the one assigned by

the English model, most missing determiner errors were correctly classified as

negative language transfer.

The RNN model achieved the highest F1-score when it analysed missing

determiner errors using the error + unigram span. This error span was able

to represent missing determiner errors as negative language transfer as it lacks

a determiner POS tag at the beginning of the sequence. The RNN model

has learnt to process English POS tag sequences that begin with a determiner

tag followed by the POS tags extracted from a noun phrase. The POS tag

sequences extracted from missing determiner errors using the error + unigram

span begin with the tags extracted from the noun phrase. This represents a
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disconnect with what the RNN model expects from an English sequence, which

prompts the model to classify the sequence as Chinese, i.e, negative language

transfer related.

The RNN model is not able to correctly classify most missing determiner

errors when analysing them with the padded error span. The RNN achieved

the lowest F1-score among all model/span combinations when it analysed de-

terminer omission errors represented by the padded error span. Although not

expected at first, these results can be explained by the RNN model learning

that certain patterns extracted from missing determiner errors are valid in

English. There are certain English grammar rules that allow noun phrases to

be introduced without a determiner in the middle of a sentence. For exam-

ple, determiners are omitted after some prepositional phrases, such as in “He

went to bed”, and before lists of nouns, such as in “We talked to father and

grandfather”. The RNN model may have learnt that these patterns are valid

in English and identified them as English in POS tag sequences extracted from

missing determiner errors represented by the padded error span.

As Figure 7.1 shows, the error span that yielded the highest F1-scores in

analysing missing punctuation errors was the same for both approaches. The

n-gram baseline and RNN approaches achieved the highest F1-scores when

analysing missing punctuation errors using the padded error span.

The padded error span encompasses the words that surround the position

where a punctuation mark should be. It is composed of the POS tag extracted

from the word that precedes the error followed by the POS tag extracted from

the word that succeeds the error. When detecting negative language transfer

in missing punctuation errors, the padded error span achieved higher scores

than the error + unigram and error + bigram spans in both approaches. This

indicates that missing punctuation errors’ preceding contexts are useful for

negative language transfer detection.

One possible explanation for these results is that the structural pattern

represented by the padded error span helped the n-gram and RNN models to

connect POS tag sequences to Chinese punctuation usage. Another explana-

tion is that the lack of a punctuation mark between the sequences’ POS tags
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Figure 7.1: F1-scores for shallow syntactic language models and error spans
combinations

diverges from English grammar rules and causes the models to classify the

sequences as belonging to Chinese language structures.

The n-gram models analysing missing punctuation errors represented by

the padded error span outperformed all of the RNN results. They achieved

an F1-score of 0.52, while the RNN F1-score results were 0.48, 0.43, and 0.41.

These results are an indication that the n-gram models were more successful

in associating missing punctuation errors to negative language transfer effects.

The n-gram models analysing errors represented by the padded error span

yielded the highest precision and recall scores in detecting when a POS tag

sequence was more similar to Chinese language structures than to English

ones. That is, this setup was able to more accurately and broadly detect when

the POS tag sequence required a punctuation mark in English, but did not in

Chinese.

The results discussed in this chapter suggest that to achieve more precise

and comprehensive negative language detection performance it is necessary to

analyse distinct contexts depending on the error type and detection approach.

For example, when analysing missing determiner errors with an RNN shallow

syntactic language model, the model performance increased by representing
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the errors with the error + unigram span. However, if n-gram models were

used, the best representation for these errors was the padded error span. Sim-

ilarly, punctuation omission errors benefitted from being represented by the

padded error span regardless of the detection approach. These observations

indicate that different errors need to be represented using different spans to

accurately represent the errors’ negative language transfer characteristics. Er-

rors from each error type should be represented by an appropriate span before

being analysed by negative language detection models in an automatic gram-

matical error feedback system.

7.3 Limitations

The methodology used to detect negative language transfer in Chinese learners’

writing introduced a few limitations that hindered model performance. Both

approaches were limited in their ability to represent language structures using

the Universal Dependencies tagset, as this tagset can be too general to capture

some language patterns.

As previously mentioned, the Universal Dependencies POS tagset was cre-

ated as a multilingual annotation scheme. Its POS tags represent word cat-

egories that are common among a variety of languages. This commonality

allowed my negative language transfer detection models to be trained and

tested using the same language structure representation for two distinct lan-

guages. However, to provide a multilingual annotation scheme, the Universal

Dependencies POS tagset sacrificed the level of detail that each POS tag is

able to represent.

The POS tags in the Universal Dependencies tagset represent general word

categories, e.g., nouns, verbs, and adjectives, but these POS tags do not con-

tain information about grammatical features such as tense, number, gender,

or form. Although the Universal Dependencies scheme provides morphologi-

cal annotations that cover some of these features, they are not common across

languages and, hence, not represented by the main tagset.

The lack of details encountered in some of the POS tag representations
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of learner errors hindered the models’ negative language transfer detection

performance. For example, the accurate classification of most errors involving

verb usage are harmed by the POS tagset used. The Universal Dependencies

tagset uses two POS tags to represent verbs, and these tags do not contain

information about features, such as person, form, and tense. Being able to

analyse these verb features would help the model distinguish among verb usage

patterns that are more common in English than in Chinese, and vice versa.

Although a more detailed POS tagset, such as the Penn Treebank (Marcus

et al., 1993), could improve the representation of learner English structures, the

methodology applied required that both language structures were represented

using the same POS tags. At the moment, the Universal Dependencies tagset

is the only tagset I am aware of that provides a shared annotation scheme

between English and Chinese.

To overcome the limitation posed by Universal Dependencies POS tagset’s

level of detail, it would be valuable to create a POS annotation scheme specific

to English and Chinese word categories. This process would involve developing

an inventory of POS tags that are applied similarly in both languages, e.g.,

both languages distinguish between nouns and proper nouns (Xue et al., 2005).

The resulting shared POS tagset would then be applied to POS tag the training

and test data used in the task. A POS tagset based on shared word categories

between English and the learners’ L1 would allow POS language structures to

be represented in as much detail as possible, and perhaps, improve the models’

negative language transfer performance.

A more detailed POS tagset would help identify negative language transfer

in some learner structures. However, representing language structures with

POS tags does not suffice to identify all types of language transfer related er-

rors. For example, model performance in detecting negative language transfer

related replacement errors shows that these error types cannot be well repre-

sented by POS tag sequences. The methodology reported in this thesis is only

suited for structural errors, errors in which the learner has incorrectly arranged

the words in their writing. However, there are errors which are more related

to semantic incongruences. For example, the word “number” in the sentence
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“It is because of the increasing number of the population” was annotated as a

noun replacement error. The annotator suggested that it should be replaced

by the word “size”. The POS tag sequence extracted from the incorrect sen-

tence would not be different from the one extracted from the corrected version

of the sentence. Semantic negative language transfer such as the one shown in

this error requires more information than POS tag sequences to be correctly

identified.

A negative language transfer detection solution for semantic errors would

require a new methodology, one that does not solely consider structural pat-

terns in the errors. One possible direction is to use the negative language

transfer annotations developed as part of this thesis work to fine-tune gram-

matical error detection models. After the adaptation, these models would

be able to recognize semantic patterns that are related to negative language

transfer. For example, whenever the word “number” is used to refer to an

uncountable noun, such as the word “population” in the example above, the

models would classify the error as negative language transfer related.

Apart from the POS tag language representation, the n-gram baseline was

also limited by n-gram models not being able to directly distinguish between

two languages. That is, the n-gram baseline’s negative language transfer detec-

tion was derived from the outputs from two independent models. The model

trained on POS tag sequences extracted from English sentences was only able

to output how similar a test POS tag sequence was to English structures. It

could not infer its similarity to Chinese structures. In the same way, the model

trained on Chinese POS tag sequences was only able to compare the test POS

tag sequences to Chinese structures.

The n-gram models’ independence may have limited their negative lan-

guage transfer detection power as each model’s output only indicated the sim-

ilarity shared between the POS tag sequence and the language represented by

the model. It is possible that the comparison between model outputs worked

well when there was a clear distinction between the structure from the learner

errors and English language structures. For example, when the structure used

by the learner is very common in Chinese but rare or invalid in English. In
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those situations, the n-gram model that represents Chinese structures would

assign the POS tag sequence a high probability value, while the one that rep-

resents English structures would assign it a low probability value. As a result,

the learner error would be correctly identified as negative language transfer.

Sequences such as these, in which erroneous structures were assigned high Chi-

nese probabilities and low English ones, occurred in 34% of negative language

transfer related learner errors.

The FCE test-takers have acquired some level of proficiency in English.

Hence, they may not fully rely on Chinese patterns when writing in English,

but rather inconsistently try to apply both languages’ patterns, using both

language structures at the same time or erratically switching between the two.

This interlingual process could make the learner error structures ambiguous to

the independent n-gram shallow syntactic language models, and cause them

not to be able to correctly identify many negative language transfer related

errors.

In relation to that, it is important to note that as the FCE exam assesses

an upper-intermediate level of English proficiency, FCE test-takers commonly

demonstrate high proficiency in English. This proficiency factor may influence

what type of negative language transfer occurs in the test dataset, and hence,

the models’ performance in negative language transfer detection. As language

learner errors and negative language transfer occurrences vary according to

learner proficiency level (Bardovi-Harlig and Sprouse, 2017), it would be valu-

able to investigate negative language transfer detection performance on learner

datasets that represent other learner populations, e.g., language learners who

have only recently started to learn English.

7.4 Implications

My methods perpetuate biases favouring what is viewed as grammatical En-

glish. The datasets used to train the shallow syntactic language models are

filled with a formal and grammatical English variant, and the language struc-

tures extracted from it are used to evaluate learner errors. As discussed by
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Dixon-Román et al. (2020), the use of these datasets is, in a certain way, im-

posing that same writing style and its associated structures on learners. The

errors in the test dataset were annotated following a procedure that penalizes

divergence from English grammatical rules, regardless of whether the learner

sentences’ were able to convey their intended meaning or not. That is, even if

a piece of text is completely understandable in the way that it was written, it

will be annotated as erroneous where it diverges from English grammar rules.

The nature of the datasets and methods used in this work conserves these

biases towards a “standard” grammar usage.

In many cases, individuals learn a new language due to social expectations.

It is expected that to join graduate school or get a promotion one would need to

be proficient in a language other than their mother tongue. English proficiency

is often recognized via certification exams, such as the International English

Language Testing System (IELTS), Test of English as a Foreign Language

(TOEFL), or even the FCE exam. Exams like these tend to prioritize what

can be defined as a standard English grammar, the application of formal and

grammatical variants of the English language. Although in everyday life, both

native and non-native speakers are accustomed to a more informal language

usage. The fact that certification exams require certain types of language

structures prevents learners from deviating from this standard and compels

learners to follow these rules. For language learners, it is necessary to abide

by these rules so that certification is obtained. Such requirements suppress

the usage of other English variants, perhaps more familiar to the learners, and

standardize English teaching to non-native speakers. Unfortunately, the power

dynamic in language learning environments is hardly in favour of learners, and

this could be viewed as an attempt to homogenize non-native English teaching

and learning.

However damaging this homogenization may be, it is still the system in

place. Add to it the advances in automatic writing assessment, and it is

possible that the language requirements applied currently will become more

strict, since it is considerably more difficult for a computational system to

understand language nuances that occur in learner writing. Given that the
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assessment of learner writing becomes more deterministic and precise, my work

is an attempt to provide an error cause explanation to learners. I aim to help

learners understand how using elements of their native language influences

their English writing and support their acquisition of a better understanding

of both languages. This information can help learners improve their writing

accuracy, according to a standard English grammar and ultimately support

them in high-stakes situations, such as taking a proficiency exam.

7.5 Future directions

The results reported in the previous chapters show that it is possible to de-

tect some negative language transfer related structural errors in learner data.

Overall, the negative language transfer detection models achieved good preci-

sion results, with the RNN model performing better than the n-gram models in

most cases. To understand whether and how these models’ negative language

transfer detection outputs could aid language learning, the next step in this

research project is to analyse language learner writing performance in English

after receiving negative language transfer informed error feedback.

To instrument this analysis, the negative language transfer detection model

output would need to be integrated into a pre-existing writing assistant appli-

cation that provides error feedback to language learners. Feedback for learner

errors also needs to be developed from the error cause annotation described

in Appendix A and integrated into this application. As a result, along with

feedback on how to correct the errors, application users would be presented

with feedback detailing why their errors were possibly related to differences

between their first language (i.e., Chinese) and English.

The analysis of changes in learner writing performance could be accom-

plished through a user study in which two groups of Chinese native speakers

who are learning English work on essay writing tasks and receive error feedback

with and without metalinguistic cues. In this study, the learners in the control

group would work on essay writing tasks using a writing assistant that provides

direct corrective feedback. The learners in the treatment group would work
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in the same environment, but the direct corrective feedback provided by the

writing assistant would be enhanced with metalinguistic feedback regarding

negative language transfer. The high precision scores achieved by the detec-

tion models mean that using their output to inform error feedback represents

a lower risk of potentially confusing learners. That is, as the number of false

positives in the model’s outputs is low, there is a smaller chance that learners

will mistakenly get negative language transfer feedback when their errors are

not connected to the phenomenon.

The learners’ writing performance would be recorded before and after com-

pleting the tasks. Their performance could be measured with metalinguistic

awareness assessments such as error correction tasks, in which learners are

tasked with correcting negative language transfer errors in ungrammatical sen-

tences; cloze tests, in which learners need to select the most appropriate word

or phrase to fill the gap in a sentence from a set negative language transfer

and correct alternatives; and selection tasks, in which learners need to select

the grammatical version of a sentence from a list of options (Chireac et al.,

2019).

These metalinguistic awareness assessments would happen soon after the

experiment, i.e., after the participants used the writing assistant to work on

essays, and at least once again after more time is passed to analyse if improve-

ments from receiving metalinguistic feedback, if any, are lasting. The results

from these tests would then be compared and contrasted within and between

groups to draw conclusions regarding the effectiveness of negative language

transfer feedback on English learners’ writing.
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Chapter 8

Conclusion

Native and non-native speakers make different errors when writing in English.

The errors made by non-native speakers are often related to patterns from

their first languages that get transferred to their L2, i.e., English, writing.

This transfer phenomenon is called language transfer, and it is a well-studied

phenomenon in second language acquisition research. The occurrence of lan-

guage transfer between L1 and L2 is also investigated in natural language

processing research, as it can aid native language identification and grammat-

ical error correction systems to perform their tasks.

Although the strategy of transferring language patterns across languages

can positively impact learners’ communication, this strategy can cause errors

when L1 and L2 patterns are divergent. When the language transfer strategy

results in mistakes, it is classified as negative language transfer. Most language

learners are not aware of it when they transfer structures incorrectly, as they

are accustomed to those structures in their L1s.

To attempt to address the issue of learners’ lack of awareness regarding

negative language transfer, this thesis presents a method to identify when

learner errors are related to their L1 structures. The method presented involves

extracting part-of-speech tags from parallel, high-quality text in English and in

the learners’ L1. These POS tag sequences are used to train language models

to differentiate between language structure representations of each language.

After the language models are trained, they are used to analyse part-of-speech

tag sequences extracted from learner errors. If the language models deem that
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the error structure is more similar to the learner’s L1, the error is classified as

negative language transfer related.

Two language modelling techniques were used to represent the language

structures in my thesis. They were n-gram language modelling and RNN-

based language modelling. Each learner error was presented to the language

models along with varying amounts of context to investigate how much of

their surrounding context is necessary to better represent negative language

transfer.

This methodology was validated by applying it to errors made by Chi-

nese native speakers whose essays are part of the First Certificate in English

dataset. These errors were annotated with information about their relation to

the negative language transfer phenomenon. The RNN-based language model

outperformed the n-gram language models in all settings analysed. The results

also show that representing the errors with the POS tags extracted from the

error along with the POS tag extracted from the word that follows the error

achieved the highest recall and F1-score results. The highest precision scores

were achieved by spans that incorporated more of the error’s surrounding con-

text in the POS tag sequence representations.

The negative language transfer detection methodology applied was limited

by the type of language structure representation chosen, POS tag sequences.

A POS tagset that can be applied to two languages needs to abstract some

syntactic and morphological features as they might not be common across

languages. This factor causes some POS tag sequences to be too coarse to

capture the incorrectness of the learner structure. Furthermore, some learner

errors cannot be comprehensively represented by POS tag sequences as it is

the semantics of the text in the error that are incorrect.

Nonetheless, the high precision scores achieved by the models in detecting

negative language transfer in structural learner errors indicate that it would

be safe to perform a user study with language learners. That is, as the mod-

els output few false positives, the participants in a user study would not be

faced with negative language transfer feedback for errors that are not related

to negative language transfer, helping them create an accurate concept of the
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phenomenon. The models’ output would need to be integrated into a writing

assistant in order for metalinguistic feedback about negative language transfer

to be provided to language learners. Through a user study, it would be possi-

ble to analyse the impact of negative language transfer feedback in language

learner writing and, hopefully, find evidence that this feedback type improves

their understanding of English.
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Appendix A

Negative language transfer
dataset

The errors made by Chinese native speakers whose essays are part of the

FCE dataset were manually annotated with information about their relation

to negative language transfer. Each learner error in that subset of essays

received a binary flag representing whether it was related to transfer or not.

Along with this flag and regardless of the error’s relation to negative language

transfer, each error was annotated with a possible error cause.

The annotation process lasted 4 months and the annotations were per-

formed by an English and Mandarin Chinese native speaker who teaches Chi-

nese as a second language. The annotator is able to read and write in both

languages and has higher proficiency in English writing. She speaks several di-

alects of Mandarin Chinese originating from South-East China and has taken

linguistics courses on syntax.

In total, 3584 errors made by Chinese native speakers, whose essays are

part of the FCE dataset, were annotated. Out of those, 1891 (52.76%) er-

rors were tagged as negative language transfer related and 1389 (38.76%) were

tagged as non-negative language transfer. The remaining 304 errors did not

receive any tags as they were either spelling errors (292 errors), or they were

omitted (12 errors) due to being annotated as errors because of language va-

riety divergences or because the correction proposed by the FCE annotators

was not enough to correct the mistake.

Among the labelled errors, a distinction can be made between errors that
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received correction suggestions from the FCE annotator and errors which did

not. Most errors in the FCE data are accompanied by suggested corrections.

However, when the annotators were unsure about how to correct a learner

error, they opted for not suggesting any edits. Out of the 3280 errors that

received negative language transfer labels, 207 errors are not accompanied by

annotator corrections.

During the annotation procedure the annotator had access to all the errors

made by Chinese native speakers in FCE essays. For each error data point that

needed annotation, the annotator could analyse the XML text corresponding

to the error, a version of the learner’s sentence in which the error was present,

a version of the sentence in which the error was replaced by the FCE annota-

tor’s correction, and the error type according to the error coding described in

Nicholls (2003). Using the error coding, it was possible to group learner errors

according to their type. This procedure proved itself valuable as it allowed the

annotator to focus on a few specific structures at a time.

Similarly, the XML error text, original sentence, and corrected version of

the sentence in which the error happened were also useful during the annota-

tion process. Through them the annotator was able to detect when the errors

were semantic as opposed to structural. For example, the word “never” does

not seem to be incorrect in the sentence “I have never been to in my life”.

However, it is tagged as such in the FCE dataset. Looking at the error’s sur-

roundings “It was the worst show and theatre I have never been to in my life”,

it is possible to see that the word “never” is incorrect and should be replaced

by “ever”.

During the annotation process, ambiguous cases such as the one illustrated

above were discussed among the research team in weekly meetings. The an-

notator would bring to the meeting errors that caused her to be confused

about the negative language transfer label they should receive. These errors

were ambiguous with regard to their relation to the negative language transfer

phenomenon. The errors discussed in these meetings fell under three major

categories, English variety errors, error structures that do not have parallels

in Chinese, and semantic errors. Table A.1 presents a few examples of these
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ambiguous error categories.

Incorrect
utterance

Correct
utterance

Ambiguity Number
of cases

British vs
American
English
varieties

We all
would like
to go there.

We would
all like to
go there.

The incorrect ver-
sion of the sentence
is more commonly
used in the Amer-
ican variety of En-
glish. It is not incor-
rect in that variety.

18

Chinese does
not have an
equivalent
structure

I’m stand-
ing on your
left hand
side.

I’m stand-
ing on your
left-hand
side.

Hyphens do not have
a parallel structure
in Chinese.

17

Semantic
errors tagged
as structural
errors

You could
find a
restaurant.

You can
find a
restaurant.

Although the verb
“could” is in the past
tense, some learners
may choose to use it
to indicate respect.

10

Table A.1: Ambiguous errors from the FCE dataset

All labelled errors in this dataset were also annotated with a possible cause

for their occurrence. That is, along with the negative language transfer binary

label, each error is accompanied by a short sentence that describes a possible

reason for that error’s occurrence. When the error in question is related to

negative language transfer, its respective error cause annotation highlights the

differences between English and Chinese. In the future, these error causes will

be useful to inform the development of negative language transfer feedback for

learners.
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Appendix B

N-gram model hyperparameter
tuning results

N-gram length Evaluation accuracy
5 96.97%
4 96.95%
6 96.90%
3 96.34%
2 95.81%

Table B.1: N-gram model hyperparameter tuning results

78



Appendix C

RNN model hyperparameter
tuning results

Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

NLLoss 16 0.0001 1 95.16%
BCEwithLL 16 0.001 4 95.13%
NLLoss 16 0.0001 8 95.12%
BCEwithLL 8 0.001 8 95.12%
NLLoss 64 0.0001 4 95.11%
NLLoss 64 0.0001 2 95.11%
NLLoss 16 0.0001 4 95.11%
NLLoss 16 0.0001 2 95.1%
NLLoss 32 0.0001 4 95.1%
NLLoss 128 0.0001 16 95.1%
NLLoss 512 0.0001 4 95.1%
NLLoss 8 0.001 8 95.1%
NLLoss 32 0.001 8 95.09%
NLLoss 32 0.0001 8 95.09%
BCEwithLL 256 0.0001 2 95.09%
BCEwithLL 32 0.001 16 95.08%
BCEwithLL 16 0.001 16 95.08%
NLLoss 16 0.001 16 95.08%
NLLoss 64 0.0001 1 95.08%
NLLoss 8 0.001 16 95.08%
NLLoss 8 0.0001 8 95.08%
BCEwithLL 16 0.001 2 95.07%
BCEwithLL 64 0.0001 2 95.07%
NLLoss 32 0.0001 32 95.07%
BCEwithLL 64 0.001 4 95.07%
NLLoss 64 0.0001 8 95.07%
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Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

NLLoss 32 0.0001 16 95.07%
NLLoss 8 0.0001 2 95.07%
NLLoss 8 0.0001 1 95.07%
BCEwithLL 16 0.0001 4 95.07%
NLLoss 64 0.001 16 95.07%
NLLoss 128 0.0001 4 95.07%
BCEwithLL 8 0.0001 1 95.06%
BCEwithLL 8 0.001 32 95.06%
BCEwithLL 16 0.001 1 95.06%
NLLoss 16 0.0001 16 95.06%
BCEwithLL 8 0.0001 4 95.06%
BCEwithLL 256 0.0001 16 95.05%
BCEwithLL 64 0.0001 1 95.05%
NLLoss 128 0.0001 2 95.05%
NLLoss 128 0.0001 32 95.05%
NLLoss 8 0.0001 4 95.05%
BCEwithLL 32 0.0001 1 95.05%
BCEwithLL 512 0.0001 16 95.05%
BCEwithLL 64 0.001 32 95.04%
NLLoss 256 1e-05 8 95.04%
NLLoss 512 0.0001 8 95.04%
BCEwithLL 32 0.0001 2 95.04%
BCEwithLL 16 0.0001 1 95.04%
BCEwithLL 32 0.001 32 95.04%
NLLoss 32 0.001 16 95.04%
BCEwithLL 64 0.0001 4 95.04%
NLLoss 128 1e-05 8 95.04%
BCEwithLL 32 0.0001 16 95.04%
NLLoss 512 0.0001 32 95.04%
NLLoss 8 0.001 32 95.04%
NLLoss 128 0.0001 1 95.04%
NLLoss 256 0.0001 1 95.04%
BCEwithLL 16 0.001 8 95.03%
BCEwithLL 16 0.0001 8 95.03%
NLLoss 128 0.0001 8 95.03%
NLLoss 8 0.001 1 95.03%
NLLoss 16 0.001 32 95.03%
BCEwithLL 128 0.0001 8 95.03%
NLLoss 64 1e-05 1 95.03%
NLLoss 32 0.0001 2 95.03%
BCEwithLL 256 0.0001 4 95.03%
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Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

NLLoss 128 1e-05 1 95.03%
NLLoss 8 0.001 2 95.03%
NLLoss 16 0.0001 32 95.03%
NLLoss 32 1e-05 1 95.03%
NLLoss 8 0.0001 16 95.03%
BCEwithLL 128 0.0001 1 95.02%
NLLoss 64 1e-05 2 95.02%
BCEwithLL 8 0.0001 8 95.02%
BCEwithLL 256 1e-05 2 95.02%
BCEwithLL 32 0.0001 4 95.02%
BCEwithLL 64 0.0001 16 95.02%
NLLoss 32 1e-05 2 95.02%
NLLoss 512 0.0001 2 95.02%
BCEwithLL 128 0.0001 16 95.02%
BCEwithLL 128 1e-05 2 95.02%
BCEwithLL 512 1e-05 1 95.02%
BCEwithLL 8 0.0001 2 95.01%
BCEwithLL 8 0.001 4 95.01%
NLLoss 16 0.001 8 95.01%
BCEwithLL 128 1e-05 4 95.01%
NLLoss 16 0.001 4 95.01%
BCEwithLL 32 0.001 4 95.01%
BCEwithLL 16 0.0001 32 95.01%
NLLoss 32 0.001 4 95.01%
BCEwithLL 32 1e-05 1 95.01%
BCEwithLL 512 0.0001 32 95.01%
BCEwithLL 64 0.0001 32 95.01%
BCEwithLL 16 0.001 32 95.0%
BCEwithLL 128 0.0001 2 95.0%
NLLoss 128 1e-05 2 95.0%
BCEwithLL 256 1e-05 8 95.0%
BCEwithLL 32 0.001 1 95.0%
NLLoss 128 1e-05 16 95.0%
NLLoss 256 0.0001 16 95.0%
NLLoss 256 0.0001 32 95.0%
NLLoss 256 0.0001 2 95.0%
NLLoss 8 1e-05 1 95.0%
BCEwithLL 64 1e-05 4 94.99%
NLLoss 256 0.0001 4 94.99%
BCEwithLL 512 1e-05 2 94.99%
BCEwithLL 8 0.001 16 94.99%
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Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

NLLoss 8 0.001 4 94.99%
BCEwithLL 32 0.0001 8 94.99%
BCEwithLL 32 0.0001 32 94.99%
BCEwithLL 128 0.0001 4 94.99%
BCEwithLL 64 1e-05 1 94.99%
NLLoss 512 1e-05 1 94.99%
BCEwithLL 128 1e-05 1 94.99%
BCEwithLL 16 0.0001 16 94.98%
NLLoss 16 1e-05 1 94.98%
NLLoss 256 1e-05 2 94.98%
BCEwithLL 8 0.001 1 94.98%
NLLoss 32 0.001 2 94.98%
NLLoss 16 1e-05 2 94.98%
NLLoss 8 0.0001 32 94.98%
BCEwithLL 16 1e-05 1 94.98%
NLLoss 256 0.0001 8 94.98%
NLLoss 512 1e-05 2 94.98%
NLLoss 32 0.001 32 94.98%
BCEwithLL 16 0.0001 2 94.98%
BCEwithLL 128 1e-05 8 94.98%
BCEwithLL 256 1e-05 16 94.98%
NLLoss 256 1e-05 1 94.97%
NLLoss 512 1e-05 16 94.97%
BCEwithLL 64 1e-05 2 94.97%
NLLoss 128 1e-05 4 94.97%
BCEwithLL 512 1e-05 8 94.97%
BCEwithLL 128 1e-05 16 94.97%
NLLoss 256 1e-05 32 94.97%
NLLoss 512 1e-05 32 94.97%
BCEwithLL 128 0.0001 32 94.97%
NLLoss 512 1e-05 8 94.97%
NLLoss 64 1e-05 8 94.96%
NLLoss 512 1e-06 1 94.96%
NLLoss 32 0.0001 1 94.96%
BCEwithLL 64 0.0001 8 94.96%
NLLoss 256 1e-05 16 94.95%
BCEwithLL 512 0.0001 1 94.95%
BCEwithLL 8 0.0001 32 94.95%
BCEwithLL 8 0.0001 16 94.95%
NLLoss 16 0.001 2 94.95%
NLLoss 64 1e-05 4 94.95%
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Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

BCEwithLL 8 0.001 2 94.95%
BCEwithLL 64 1e-05 8 94.95%
BCEwithLL 256 1e-05 1 94.95%
BCEwithLL 64 0.001 8 94.95%
NLLoss 64 0.0001 16 94.95%
BCEwithLL 256 1e-05 4 94.95%
NLLoss 256 1e-05 4 94.95%
NLLoss 8 0.01 32 94.95%
NLLoss 512 0.0001 1 94.94%
BCEwithLL 32 1e-05 2 94.94%
BCEwithLL 512 1e-05 32 94.94%
BCEwithLL 16 1e-05 2 94.94%
NLLoss 32 1e-05 4 94.94%
BCEwithLL 512 0.0001 2 94.94%
NLLoss 512 0.0001 16 94.94%
NLLoss 64 0.001 32 94.93%
BCEwithLL 8 1e-05 1 94.93%
NLLoss 512 1e-05 4 94.93%
NLLoss 64 0.001 2 94.93%
NLLoss 256 1e-06 1 94.93%
NLLoss 128 1e-05 32 94.92%
BCEwithLL 256 0.0001 32 94.92%
BCEwithLL 512 1e-05 4 94.92%
BCEwithLL 32 1e-05 4 94.91%
BCEwithLL 32 0.001 2 94.91%
NLLoss 64 0.0001 32 94.91%
BCEwithLL 256 1e-05 32 94.9%
NLLoss 32 1e-05 8 94.9%
BCEwithLL 512 1e-05 16 94.9%
BCEwithLL 256 0.0001 8 94.9%
NLLoss 8 1e-05 2 94.9%
NLLoss 64 1e-05 16 94.89%
BCEwithLL 256 0.0001 1 94.89%
NLLoss 512 1e-06 2 94.89%
BCEwithLL 32 1e-05 8 94.88%
NLLoss 16 0.001 1 94.88%
BCEwithLL 32 0.001 8 94.87%
BCEwithLL 8 0.01 32 94.86%
NLLoss 32 1e-05 16 94.86%
BCEwithLL 512 0.0001 4 94.85%
NLLoss 16 1e-05 8 94.85%
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Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

NLLoss 16 1e-05 4 94.84%
BCEwithLL 128 1e-05 32 94.82%
BCEwithLL 64 1e-05 16 94.81%
NLLoss 512 1e-06 4 94.78%
BCEwithLL 256 1e-06 1 94.77%
BCEwithLL 512 1e-06 2 94.77%
NLLoss 64 1e-05 32 94.75%
NLLoss 128 1e-06 1 94.75%
BCEwithLL 16 1e-05 4 94.74%
BCEwithLL 16 1e-05 8 94.72%
BCEwithLL 8 0.01 16 94.7%
BCEwithLL 8 1e-05 2 94.69%
NLLoss 8 0.01 16 94.69%
NLLoss 8 1e-05 4 94.69%
BCEwithLL 512 1e-06 1 94.65%
NLLoss 16 1e-05 16 94.65%
NLLoss 32 1e-05 32 94.65%
NLLoss 256 1e-06 2 94.62%
BCEwithLL 128 1e-06 1 94.59%
NLLoss 512 1e-06 8 94.57%
BCEwithLL 8 1e-05 4 94.57%
BCEwithLL 32 1e-05 16 94.57%
BCEwithLL 64 1e-05 32 94.56%
NLLoss 16 1e-05 32 94.56%
NLLoss 128 1e-06 2 94.56%
NLLoss 8 1e-05 8 94.56%
NLLoss 64 1e-06 1 94.55%
BCEwithLL 256 1e-06 2 94.55%
BCEwithLL 16 1e-05 16 94.54%
NLLoss 256 1e-06 4 94.54%
BCEwithLL 512 1e-06 4 94.5%
NLLoss 32 1e-06 1 94.5%
BCEwithLL 512 0.0001 8 94.5%
BCEwithLL 32 1e-05 32 94.49%
NLLoss 32 0.001 1 94.48%
BCEwithLL 64 1e-06 1 94.44%
NLLoss 64 1e-06 2 94.43%
BCEwithLL 128 1e-06 2 94.42%
NLLoss 128 1e-06 4 94.4%
NLLoss 256 1e-06 8 94.36%
BCEwithLL 256 1e-06 4 94.34%
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Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

NLLoss 512 1e-06 16 94.33%
BCEwithLL 8 1e-05 8 94.31%
BCEwithLL 32 1e-06 1 94.3%
NLLoss 64 1e-06 4 94.29%
BCEwithLL 512 1e-06 8 94.28%
BCEwithLL 64 1e-06 2 94.26%
NLLoss 32 1e-06 2 94.25%
BCEwithLL 16 1e-05 32 94.25%
NLLoss 16 1e-06 1 94.24%
NLLoss 8 1e-05 16 94.23%
NLLoss 128 1e-06 8 94.12%
NLLoss 256 1e-06 16 94.11%
BCEwithLL 128 1e-06 4 94.09%
NLLoss 8 1e-05 32 94.07%
BCEwithLL 8 1e-05 16 94.04%
BCEwithLL 256 1e-06 8 94.03%
NLLoss 8 1e-06 1 94.0%
NLLoss 512 1e-06 32 93.99%
NLLoss 8 0.01 4 93.98%
BCEwithLL 16 1e-06 1 93.98%
NLLoss 64 1e-06 8 93.97%
BCEwithLL 512 1e-06 16 93.97%
BCEwithLL 32 1e-06 2 93.93%
NLLoss 16 1e-06 2 93.93%
NLLoss 32 1e-06 4 93.91%
BCEwithLL 64 1e-06 4 93.85%
NLLoss 128 1e-06 16 93.84%
BCEwithLL 128 1e-06 8 93.75%
BCEwithLL 16 1e-06 2 93.64%
BCEwithLL 8 1e-06 1 93.62%
NLLoss 256 1e-06 32 93.6%
BCEwithLL 8 1e-05 32 93.51%
BCEwithLL 512 1e-06 32 93.5%
BCEwithLL 32 1e-06 4 93.33%
BCEwithLL 256 1e-06 16 93.33%
NLLoss 8 1e-06 2 93.29%
NLLoss 32 1e-06 8 93.22%
NLLoss 16 1e-06 4 93.22%
NLLoss 64 1e-06 16 93.12%
BCEwithLL 64 1e-06 8 92.99%
NLLoss 128 1e-06 32 92.96%
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Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

NLLoss 8 1e-06 4 92.9%
BCEwithLL 8 1e-06 2 92.8%
BCEwithLL 128 1e-06 16 92.78%
NLLoss 64 0.001 8 92.51%
BCEwithLL 16 1e-06 4 92.42%
BCEwithLL 64 1e-06 16 92.3%
BCEwithLL 32 1e-06 8 92.29%
NLLoss 32 1e-06 16 92.29%
NLLoss 64 1e-06 32 92.15%
BCEwithLL 256 1e-06 32 92.11%
BCEwithLL 128 1e-06 32 91.84%
BCEwithLL 16 1e-06 8 91.78%
NLLoss 16 1e-06 8 91.62%
NLLoss 16 1e-06 16 91.4%
BCEwithLL 8 1e-06 4 91.36%
NLLoss 32 1e-06 32 91.18%
BCEwithLL 64 1e-06 32 91.07%
NLLoss 8 1e-06 8 89.84%
BCEwithLL 32 1e-06 16 89.55%
BCEwithLL 32 1e-06 32 89.38%
BCEwithLL 8 1e-06 8 89.28%
BCEwithLL 16 1e-06 16 88.99%
NLLoss 8 1e-06 16 82.77%
BCEwithLL 16 1e-06 32 81.71%
NLLoss 16 1e-06 32 81.64%
BCEwithLL 8 1e-06 16 79.66%
BCEwithLL 8 1e-06 32 67.29%
NLLoss 8 1e-06 32 63.75%
NLLoss 64 0.001 4 57.74%
BCEwithLL 8 0.01 8 51.76%
BCEwithLL 16 0.01 32 50.0%
BCEwithLL 64 0.01 32 50.0%
BCEwithLL 32 0.01 8 50.0%
BCEwithLL 32 0.01 32 50.0%
BCEwithLL 32 0.01 16 50.0%
BCEwithLL 32 0.01 4 50.0%
BCEwithLL 16 0.01 8 50.0%
BCEwithLL 16 0.01 4 50.0%
BCEwithLL 64 0.01 16 50.0%
BCEwithLL 64 0.01 8 50.0%
BCEwithLL 32 0.01 2 50.0%
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Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

BCEwithLL 16 0.01 2 50.0%
BCEwithLL 64 0.01 4 50.0%
BCEwithLL 64 0.01 2 50.0%
NLLoss 32 0.01 8 50.0%
BCEwithLL 64 0.001 16 50.0%
NLLoss 32 0.01 32 50.0%
NLLoss 16 0.01 16 50.0%
NLLoss 16 0.01 8 50.0%
BCEwithLL 128 0.01 16 50.0%
BCEwithLL 128 0.01 32 50.0%
BCEwithLL 128 0.01 8 50.0%
NLLoss 32 0.01 16 50.0%
NLLoss 32 0.01 4 50.0%
NLLoss 16 0.01 32 50.0%
NLLoss 64 0.01 32 50.0%
BCEwithLL 128 0.01 4 50.0%
NLLoss 32 0.01 2 50.0%
BCEwithLL 16 0.01 1 50.0%
BCEwithLL 128 0.01 2 50.0%
NLLoss 16 0.01 4 50.0%
NLLoss 64 0.01 8 50.0%
NLLoss 16 0.01 2 50.0%
BCEwithLL 32 0.01 1 50.0%
NLLoss 64 0.01 16 50.0%
BCEwithLL 64 0.01 1 50.0%
BCEwithLL 64 0.001 2 50.0%
BCEwithLL 128 0.001 32 50.0%
BCEwithLL 16 0.01 16 50.0%
NLLoss 64 0.01 4 50.0%
BCEwithLL 128 0.001 16 50.0%
NLLoss 128 0.01 32 50.0%
BCEwithLL 128 0.001 4 50.0%
NLLoss 64 0.01 2 50.0%
BCEwithLL 128 0.001 8 50.0%
BCEwithLL 128 0.001 2 50.0%
NLLoss 32 0.01 1 50.0%
NLLoss 128 0.01 8 50.0%
NLLoss 128 0.01 16 50.0%
NLLoss 16 0.01 1 50.0%
BCEwithLL 128 0.01 1 50.0%
BCEwithLL 256 0.01 32 50.0%
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Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

NLLoss 128 0.01 4 50.0%
NLLoss 128 0.001 8 50.0%
NLLoss 128 0.01 2 50.0%
BCEwithLL 64 0.001 1 50.0%
BCEwithLL 256 0.01 16 50.0%
NLLoss 128 0.001 4 50.0%
NLLoss 64 0.01 1 50.0%
BCEwithLL 256 0.01 8 50.0%
NLLoss 128 0.001 32 50.0%
NLLoss 128 0.001 16 50.0%
BCEwithLL 128 0.001 1 50.0%
NLLoss 64 0.001 1 50.0%
BCEwithLL 256 0.01 4 50.0%
NLLoss 128 0.001 2 50.0%
NLLoss 256 0.01 16 50.0%
BCEwithLL 256 0.001 8 50.0%
NLLoss 128 0.01 1 50.0%
BCEwithLL 256 0.001 4 50.0%
BCEwithLL 256 0.001 16 50.0%
NLLoss 256 0.01 32 50.0%
BCEwithLL 256 0.01 2 50.0%
NLLoss 256 0.01 4 50.0%
BCEwithLL 256 0.001 32 50.0%
NLLoss 256 0.01 8 50.0%
NLLoss 256 0.01 2 50.0%
NLLoss 256 0.001 32 50.0%
BCEwithLL 256 0.001 2 50.0%
NLLoss 128 0.001 1 50.0%
BCEwithLL 256 0.01 1 50.0%
NLLoss 256 0.001 16 50.0%
NLLoss 256 0.001 4 50.0%
NLLoss 256 0.001 8 50.0%
NLLoss 256 0.001 2 50.0%
NLLoss 256 0.01 1 50.0%
BCEwithLL 256 0.001 1 50.0%
NLLoss 256 0.001 1 50.0%
BCEwithLL 512 0.01 16 50.0%
BCEwithLL 512 0.01 32 50.0%
BCEwithLL 512 0.01 8 50.0%
BCEwithLL 512 0.001 16 50.0%
NLLoss 512 0.01 16 50.0%
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Loss function Number of
hidden units

Learning
rate

Mini
batch size

Evaluation
accuracy

BCEwithLL 512 0.001 32 50.0%
NLLoss 512 0.01 32 50.0%
BCEwithLL 512 0.001 8 50.0%
NLLoss 512 0.001 32 50.0%
NLLoss 512 0.01 8 50.0%
NLLoss 512 0.001 16 50.0%
NLLoss 512 0.01 4 50.0%
NLLoss 512 0.001 8 50.0%
BCEwithLL 512 0.001 4 50.0%
BCEwithLL 512 0.01 2 50.0%
NLLoss 512 0.001 4 50.0%
BCEwithLL 512 0.001 2 50.0%
NLLoss 512 0.01 2 50.0%
BCEwithLL 512 0.01 4 50.0%
NLLoss 512 0.001 2 50.0%
BCEwithLL 512 0.01 1 50.0%
NLLoss 512 0.01 1 50.0%
BCEwithLL 512 0.001 1 50.0%
NLLoss 512 0.001 1 50.0%
BCEwithLL 8 0.01 4 50.0%
BCEwithLL 8 0.01 2 50.0%
NLLoss 8 0.01 8 50.0%
BCEwithLL 8 0.01 1 50.0%
NLLoss 8 0.01 1 50.0%
NLLoss 8 0.01 2 45.19%

Table C.1: RNN model hyperparameter tuning results
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Appendix D

N-gram model results across all
structural error types

Error type Span Precision Recall F1-score

Replace punctuation
(n = 336)

Padded error 0.65 0.3 0.41
Error + unigram 0.69 0.43 0.53
Error + bigram 0.62 0.23 0.34

Incorrect tense of
verb
(n = 267)

Padded error 0.7 0.21 0.32
Error + unigram 0.78 0.36 0.49
Error + bigram 0.73 0.22 0.33

Missing determiner
(n = 209)

Padded error 1.0 0.43 0.6
Error + unigram 0.97 0.33 0.5
Error + bigram 1.0 0.35 0.52

Missing punctuation
(n = 152)

Padded error 0.88 0.37 0.52
Error + unigram 0.81 0.18 0.3
Error + bigram 0.85 0.24 0.37

Wrong verb form
(n = 132)

Padded error 0.41 0.28 0.33
Error + unigram 0.42 0.28 0.33
Error + bigram 0.42 0.19 0.26

Wrong noun form
(n = 93)

Padded error 0.84 0.42 0.56
Error + unigram 0.73 0.6 0.66
Error + bigram 0.78 0.44 0.56

Verb agreement error

(n = 88)

Padded error 0.81 0.24 0.37
Error + unigram 0.75 0.28 0.41
Error + bigram 0.8 0.15 0.25

Unnecessary
determiner
(n = 75)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Missing preposition
(n = 75)

Padded error 0.93 0.4 0.56
Error + unigram 0.76 0.28 0.41
Error + bigram 0.78 0.27 0.4
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Error type Span Precision Recall F1-score
Unnecessary
punctuation
(n = 65)

Padded error 0.15 0.67 0.25
Error + unigram 0.17 0.83 0.29
Error + bigram 0.05 0.17 0.08

Noun agreement
error
(n = 62)

Padded error 0.57 0.2 0.29
Error + unigram 0.58 0.34 0.43
Error + bigram 0.58 0.27 0.37

Missing anaphor
(n = 62)

Padded error 0.68 0.32 0.43
Error + unigram 0.5 0.12 0.2
Error + bigram 0.73 0.2 0.31

Unnecessary
preposition
(n = 59)

Padded error 0.22 0.29 0.25
Error + unigram 0.2 0.57 0.3
Error + bigram 0.2 0.43 0.27

Missing error
(n = 57)

Padded error 0.63 0.3 0.41
Error + unigram 0.67 0.3 0.41
Error + bigram 0.69 0.28 0.39

Missing verb
(n = 54)

Padded error 0.73 0.23 0.35
Error + unigram 0.71 0.21 0.33
Error + bigram 0.89 0.17 0.29

Derivation of
adjective error
(n = 47)

Padded error 1.0 0.51 0.68
Error + unigram 0.89 0.59 0.71
Error + bigram 0.81 0.41 0.55

Word order error
(n = 44)

Padded error 0.67 0.17 0.27
Error + unigram 0.7 0.29 0.41
Error + bigram 0.83 0.21 0.33

Unnecessary verb
(n = 44)

Padded error 0.62 0.31 0.42
Error + unigram 0.79 0.69 0.73
Error + bigram 0.62 0.31 0.42

Replace determiner
(n = 42)

Padded error 0.75 0.17 0.27
Error + unigram 0.0 0.0 0.0
Error + bigram 0.67 0.22 0.33

Replace anaphor
(n = 33)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Derivation of noun
error
(n = 29)

Padded error 0.5 0.1 0.17
Error + unigram 0.6 0.3 0.4
Error + bigram 0.75 0.3 0.43

Unnecessary error
(n = 25)

Padded error 1.0 0.12 0.22
Error + unigram 0.25 0.25 0.25
Error + bigram 0.33 0.25 0.29

Derivation of
anaphor error
(n = 21)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.5 1.0 0.67
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Error type Span Precision Recall F1-score
Unnecessary anaphor

(n = 20)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Missing link word
(n = 20)

Padded error 1.0 0.53 0.69
Error + unigram 1.0 0.47 0.64
Error + bigram 1.0 0.41 0.58

Derivation of adverb
error
(n = 19)

Padded error 0.29 0.25 0.27
Error + unigram 0.36 0.5 0.42
Error + bigram 0.4 0.25 0.31

Anaphor agreement
error
(n = 19)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Unnecessary adverb
(n = 18)

Padded error 0.33 0.5 0.4
Error + unigram 0.22 0.5 0.31
Error + bigram 0.2 0.25 0.22

Argument structure
error
(n = 17)

Padded error 0.5 0.17 0.25
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Unnecessary link
word
(n = 14)

Padded error 0.2 1.0 0.33
Error + unigram 0.33 1.0 0.5
Error + bigram 0.25 1.0 0.4

Replace quantifier
(n = 14)

Padded error 1.0 0.29 0.44
Error + unigram 0.0 0.0 0.0
Error + bigram 0.5 0.14 0.22

Missing noun
(n = 14)

Padded error 0.5 0.17 0.25
Error + unigram 0.67 0.33 0.44
Error + bigram 0.4 0.33 0.36

Missing adverb
(n = 13)

Padded error 1.0 0.25 0.4
Error + unigram 0.83 0.42 0.56
Error + bigram 1.0 0.08 0.15

Incorrect verb
inflection
(n = 13)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Incorrect determiner
form
(n = 13)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Derivation of
determiner error
(n = 12)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Countability of noun
error
(n = 12)

Padded error 0.67 0.4 0.5
Error + unigram 0.83 0.5 0.62
Error + bigram 1.0 0.6 0.75
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Error type Span Precision Recall F1-score

Unnecessary noun
(n = 9)

Padded error 0.83 0.62 0.71
Error + unigram 0.88 0.88 0.88
Error + bigram 1.0 0.5 0.67

Incorrect noun
inflection
(n = 9)

Padded error 1.0 0.6 0.75
Error + unigram 0.62 1.0 0.77
Error + bigram 0.67 0.8 0.73

Inappropriate
register
(n = 9)

Padded error 1.0 0.4 0.57
Error + unigram 1.0 0.2 0.33
Error + bigram 0.5 0.2 0.29

Incorrect negative
formation
(n = 8)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 1.0 0.25 0.4

Quantifier agreement
error
(n = 7)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 1.0 0.14 0.25

Unnecessary
adjective
(n = 6)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Derivation of verb
error
(n = 5)

Padded error 1.0 0.4 0.57
Error + unigram 1.0 0.6 0.75
Error + bigram 1.0 0.4 0.57

Wrong quantifier
because of noun
countability (n = 4)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Wrong adjective
form
(n = 4)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 1.0 0.33 0.5

Missing adjective
(n = 4)

Padded error 1.0 1.0 1.0
Error + unigram 0.5 0.5 0.5
Error + bigram 1.0 0.5 0.67

Determiner
agreement error
(n = 4)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Unnecessary
quantifier
(n = 3)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Missing quantifier
(n = 3)

Padded error 0.5 0.5 0.5
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Wrong anaphor form

(n = 2)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0
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Error type Span Precision Recall F1-score
Incorrect adjective
inflection
(n = 2)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Wrong determiner
because of noun
countability (n = 1)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Wrong adverb form
(n = 1)

Padded error 1.0 1.0 1.0
Error + unigram 1.0 1.0 1.0
Error + bigram 1.0 1.0 1.0

Incorrect quantifier
inflection
(n = 1)

Padded error 1.0 1.0 1.0
Error + unigram 1.0 1.0 1.0
Error + bigram 0.0 0.0 0.0

Table D.1: N-gram model results across all structural
error types
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Appendix E

RNN model results across all
structural error types

Error type Span Precision Recall F1-score

Replace punctuation
(n = 336)

Padded error 0.71 0.39 0.51
Error + unigram 0.7 0.47 0.56
Error + bigram 0.71 0.38 0.5

Incorrect tense of
verb
(n = 267)

Padded error 0.78 0.39 0.52
Error + unigram 0.77 0.41 0.54
Error + bigram 0.79 0.29 0.42

Missing determiner
(n = 209)

Padded error 1.0 0.26 0.41
Error + unigram 0.98 0.45 0.61
Error + bigram 0.98 0.4 0.57

Missing punctuation
(n = 152)

Padded error 0.88 0.33 0.48
Error + unigram 0.85 0.29 0.43
Error + bigram 0.84 0.27 0.41

Wrong verb form
(n = 132)

Padded error 0.41 0.38 0.39
Error + unigram 0.3 0.28 0.29
Error + bigram 0.31 0.21 0.25

Wrong noun form
(n = 93)

Padded error 0.79 0.56 0.66
Error + unigram 0.77 0.78 0.78
Error + bigram 0.77 0.56 0.65

Verb agreement error

(n = 88)

Padded error 0.74 0.37 0.49
Error + unigram 0.77 0.31 0.45
Error + bigram 0.92 0.22 0.36

Unnecessary
determiner
(n = 75)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Missing preposition
(n = 75)

Padded error 0.9 0.27 0.41
Error + unigram 0.79 0.28 0.42
Error + bigram 0.8 0.36 0.49
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Error type Span Precision Recall F1-score
Unnecessary
punctuation
(n = 65)

Padded error 0.17 0.5 0.25
Error + unigram 0.09 0.33 0.14
Error + bigram 0.08 0.17 0.11

Noun agreement
error
(n = 62)

Padded error 0.63 0.29 0.4
Error + unigram 0.59 0.41 0.49
Error + bigram 0.63 0.41 0.5

Missing anaphor
(n = 62)

Padded error 0.71 0.41 0.52
Error + unigram 0.62 0.24 0.35
Error + bigram 0.8 0.2 0.31

Unnecessary
preposition
(n = 59)

Padded error 0.1 0.14 0.12
Error + unigram 0.0 0.0 0.0
Error + bigram 0.15 0.29 0.2

Missing error
(n = 57)

Padded error 0.68 0.32 0.44
Error + unigram 0.65 0.38 0.48
Error + bigram 0.68 0.32 0.44

Missing verb
(n = 54)

Padded error 0.77 0.21 0.33
Error + unigram 0.82 0.3 0.44
Error + bigram 0.78 0.3 0.43

Derivation of
adjective error
(n = 47)

Padded error 0.92 0.56 0.7
Error + unigram 0.91 0.76 0.83
Error + bigram 0.85 0.56 0.68

Word order error
(n = 44)

Padded error 0.56 0.21 0.3
Error + unigram 0.5 0.21 0.29
Error + bigram 0.7 0.29 0.41

Unnecessary verb
(n = 44)

Padded error 0.73 0.69 0.71
Error + unigram 0.69 0.69 0.69
Error + bigram 0.71 0.62 0.67

Replace determiner
(n = 42)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.5 0.11 0.18

Replace anaphor
(n = 33)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Derivation of noun
error
(n = 29)

Padded error 0.5 0.2 0.29
Error + unigram 0.67 0.5 0.57
Error + bigram 0.78 0.35 0.48

Unnecessary error
(n = 25)

Padded error 0.4 0.25 0.31
Error + unigram 0.25 0.12 0.17
Error + bigram 0.4 0.25 0.31

Derivation of
anaphor error
(n = 21)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 1.0 1.0 1.0
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Error type Span Precision Recall F1-score
Unnecessary anaphor

(n = 20)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Missing link word
(n = 20)

Padded error 1.0 0.47 0.64
Error + unigram 0.9 0.53 0.67
Error + bigram 1.0 0.47 0.64

Derivation of adverb
error
(n = 19)

Padded error 0.29 0.25 0.27
Error + unigram 0.38 0.38 0.38
Error + bigram 0.43 0.38 0.4

Anaphor agreement
error
(n = 19)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Unnecessary adverb
(n = 18)

Padded error 1.0 0.5 0.67
Error + unigram 0.4 0.5 0.44
Error + bigram 0.5 0.5 0.5

Argument structure
error
(n = 17)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.67 0.33 0.44

Unnecessary link
word
(n = 14)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.2 1.0 0.33

Replace quantifier
(n = 14)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.75 0.43 0.55

Missing noun
(n = 14)

Padded error 0.33 0.17 0.22
Error + unigram 0.33 0.17 0.22
Error + bigram 0.75 0.5 0.6

Missing adverb
(n = 13)

Padded error 1.0 0.5 0.67
Error + unigram 1.0 0.58 0.74
Error + bigram 0.83 0.42 0.56

Incorrect verb
inflection
(n = 13)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Incorrect determiner
form
(n = 13)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Derivation of
determiner error
(n = 12)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Countability of noun
error
(n = 12)

Padded error 1.0 0.6 0.75
Error + unigram 0.75 0.6 0.67
Error + bigram 0.83 0.5 0.62
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Error type Span Precision Recall F1-score

Unnecessary noun
(n = 9)

Padded error 0.86 0.75 0.8
Error + unigram 0.89 1.0 0.94
Error + bigram 1.0 0.62 0.77

Incorrect noun
inflection
(n = 9)

Padded error 1.0 0.4 0.57
Error + unigram 0.62 1.0 0.77
Error + bigram 0.8 0.8 0.8

Inappropriate
register
(n = 9)

Padded error 1.0 0.2 0.33
Error + unigram 0.67 0.4 0.5
Error + bigram 1.0 0.2 0.33

Incorrect negative
formation
(n = 8)

Padded error 0.5 0.25 0.33
Error + unigram 0.5 0.25 0.33
Error + bigram 0.5 0.25 0.33

Quantifier agreement
error
(n = 7)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 1.0 0.14 0.25

Unnecessary
adjective
(n = 6)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Derivation of verb
error
(n = 5)

Padded error 1.0 0.4 0.57
Error + unigram 1.0 0.6 0.75
Error + bigram 1.0 0.4 0.57

Wrong quantifier
because of noun
countability (n = 4)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 1.0 0.67 0.8

Wrong adjective
form
(n = 4)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 1.0 0.33 0.5

Missing adjective
(n = 4)

Padded error 0.0 0.0 0.0
Error + unigram 1.0 0.5 0.67
Error + bigram 1.0 1.0 1.0

Determiner
agreement error
(n = 4)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Unnecessary
quantifier
(n = 3)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Missing quantifier
(n = 3)

Padded error 0.0 0.0 0.0
Error + unigram 1.0 1.0 1.0
Error + bigram 1.0 0.5 0.67

Wrong anaphor form

(n = 2)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0
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Error type Span Precision Recall F1-score
Incorrect adjective
inflection
(n = 2)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Wrong determiner
because of noun
countability (n = 1)

Padded error 0.0 0.0 0.0
Error + unigram 0.0 0.0 0.0
Error + bigram 0.0 0.0 0.0

Wrong adverb form
(n = 1)

Padded error 1.0 1.0 1.0
Error + unigram 1.0 1.0 1.0
Error + bigram 0.0 0.0 0.0

Incorrect quantifier
inflection
(n = 1)

Padded error 0.0 0.0 0.0
Error + unigram 1.0 1.0 1.0
Error + bigram 0.0 0.0 0.0

Table E.1: RNN model results across all structural error
types
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