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ABSTRACT ,
The object of this study is to investigate the flexural
behavior characteristics of continuous preétressed concrete
beams and to determine‘tﬁeleffect of inelastic be%éyior'on
the secondary moment. The analysis uses'convéntional -
momeht-curvature reiatiqhéhipshand qompatibility of geometry
in predicting the complete moment-load curve .to failure for
a givé; beam. The analysis- was combaged with experimentﬁl
resulﬁs. It was found that a variation of secondary moment
is likely once cracking occurs. Finall&, from this
investigation a design proposal involving the magnitude of
the secondary moment at the ultimate limif’state is

recommended.

\( ’
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1. INTRODUCTION

1.1 General Remarks

TMe subject of momgnt‘redistrfbution in continﬁous
prestressed concrete beams; and its_effect on the secondary
moment produced by prestressing, has becohe a matﬁer of much
discussion.. o ’ S o
7 A ;ariety of approaghes haslbeen_used to demonstrate
that the ‘secondary‘moment Should-be considered.wheé
éalculatihg the ultimate load ;apacity of the beam, and can
be neglgcted if aHd only 1f full redistribution of ‘'moment 1is
échieveé.;Complete redistribution of moment is not likely in
most practiea} cases. There is;no expérimental evidence th;t

the full inclusion of the secondary moment in such instances

yields a safe/dééigh.

1.2 Object and Scope

The purpdsg of this research is to study the flexural
behavior characteristics of continuous prestreésed concrete
beams from the post—cfacking stage up to ultimaté in order
to establish the,;elationship existing.between the inelastic
behavior and the secondary moment. | |

The ﬁrocedure used 1is to sef.a théoretical.médel‘that
’ié_capable of tracing the post-cracking beha?ior Qf/suchr
beams}ﬂbased‘on fundamental concepgs outlined by preGious

investigators. The analysis described in Chapter 4 involves

the use of moment-average curvature relationships and

v
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pr1nc1ples of geometry to determine the distribution of

moment at any location in the beams at various st:ges of

load1ng A check on the accuracy of the theory 1is performed
“in Chapter 5 by comparison with available test duta. Design
-recdmmeﬁdations are suggested as a Eesult of the above '

analysis. : o S
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2. DEFINITIONS AND PROBLEM‘STATEMENT

2.1 Stat1cally 1ndeteq?ypate construct1on .
Although mosg presfressed concrete construstion at the
present t ime con51sts of statically determinate beams and

L\girders, there are important advantages associated with

indeterminate structures of prestressed concrete:
—. Design moments are smaller for given spans and
loads than for determinate structures;

- Stiffness is increased and deflection is
reduced;

- By continuing pcst—tensioning tendons over
several spans, fewer anchorages are required;

- Joint rlgldlty available in continuous frames is
an important mechanlsm‘to resist horizontal
_loads such as are induced by wind, or seismic

forces;

- Many ingenious arrangements have been developed
to avoid the high fricti »a. loeses of
prestress.

As a result of these advantéges, the ppl_:aticns of

continuous preetressed construction are expending, and this

‘trend may be expected to continue gRefT 1; 16, -17). Two-way,

continuous flat plate slabs are widely used, and have proven

both functional and economical. For medium and long span |
bridges, the economic and esthetic advantages of continuity

are dominant considerations.
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2.2 Secondary Moments

When an eccentric prestressing force isxapplied to a

staticglly determinate-beaﬁ as shown in Fig. 2.1, bending
moments P.e are induced; e is the eccentricity of the
resultant tendon force P with respect to the centroid of the
cross-sectionl The beam Qill deflect when prestressed,
usually cambering upward, but no‘external reactions are
produced by the prestressing force.

For a statically indeterminéte beam as shown in
Fig. 2.2, the action is;more.compléx; The moment just
described, which will be referred to as the primary moment,
induces a deflection as before, but the beam is restrained
by the redundant system of éupports. Reactions are produced
at those supports, giving rise to secondéry moments in the
beam. In this case, the total moments produced alt any
section by prestressing is the sum of the primary and the
secondary momen}s.-

The magniéude of the secondary moments in any given

~
Ve
case A&.pends on the particular tendon profile selected. For

’

special cases such as the concordant tendon' case, the

secondary moments may be zero. They are usually comparable

’

to the primary moments and in many cases may be larger, even

though they are called secondary.

' When the tendon profile selected produces no reactions due
to prestressing, no secondary moments are developed. The
thrust line produced by prestressing coincides with the
steel centroid line, as would be the case for a single span,
statically determinate beam. Such a tendon is called a
concordant tendon. - ‘ N

. ~ :

bk Y
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2.3 Treatment of Secondary Moments due to prestressing in

the ACI Building Code

The proper treatment of secondary moments in the
ultimate load analféis has been the subject of much debate
(Ref. 18, 21, 22). ' v

In the 1971 edition of the ACI Building Code, it was
stated that the effects of moments due to prestressing,
including secondary moments, shall be neglected when
calculating. the moments corresponding to factored Ioads.‘lp
was also stated that the behavior shall be determifled by an
2lastic aﬁalysis, with only a modest amount of '
redistributiqn of1mdments due to plastic behavior permitted.
The accompanyiné ACI Code Commentary'étated that the
secondary moments produced by the prestressed force in a
non-concordant tendon disappear at the capacity at which,
becaﬁse of plastic hinge formation, the structure becomes
statically determinate.

The 1977/Code, however, requires the consideration of
secondary moments, using a }oad factor of‘1}0, up to and

including the ultimate load.

2.4 Problem statement
!
The contradiction arising from the Code consideration

¥

of secondary moments in ultimate state calculations may be
misleading to the designer. Secondafy moments need
definitely be included in the elastic analysis. However, the

load carrying capacity of a continuous member, is not

RN

ey



affected by the secondary momeng if complete moment

redistribution c®n take place at ultimate. If plastic hinges

do not fglly develop, then ultimate load capacity will lie
between the load resulting from an elastic analysis and the
load at full redistribution (Lin”and Thornton, ref. 18): |

As required by the present Code, secondary moﬁents are
to be considered up to and including the ultimate load.

Since certain circumstances exist when some redistribution

of moments ddes occur and is, in fact, allowed in design, do

the secondary moments vary under these conditions? The
question arises due to the fact that, depéndigg;qp the
system of supports ané the tendon pfofile, thé!iﬁil

inclusion of secondar? moments at ultima%e may lead to:

- \uneconomical-deéfgn in sgptions where the
»secondéry.moment is unfavorable to the nominal
capacity;

- unsafe design because' the Contributiop\of
secondary momeaps to the beam capacit% may have
been improperli'équmed to exist. /

It is worth noting that, from a design standpoint, the

ultimate stage does not neces?ariiy correspond to the

formation of a mechanism, but rather to the loading at which

ultimate capacity has been reached at a critical section.

~



3. LITERATURE REVIEW

3.1 Nonlinear analysis of continuous -beams :

The 1971 ACI Building Code provisions concerning moment
redistribution in cont{nuous_prestqg§$ed beams are
definitely inconsistent (Lin 7hd Thorﬁ%on, 1972, ref. 18).

According to the Code, full moment redistribution at
\ :
ultimate is not permitted, while secondary moments must be

neglected at the same time. By means of iexamples, it is

demonstrated that neglecting secondary ﬁqments may yield a

w4
3

non-conservative result. A method for determining the
ultimate load capacity of a continuous beam is proposed. The.

méthod takes into account the secondary moments without

[ o

calculating for them and the final moment configuration is
an intermediate stage between the elastic case and the full
redistribution case. The ‘method is conservative due to lack

of analytical and experimental research concerning the

plastic behavior of prestressed concrete beams with &

—~

non-concordant cables. R

©
—

It is believed that an exact solution can only be
.. ( !
obtained when the moment-curvature.relation for the entire

beam is analyzed beyond the . astic range and dp~to failure.

A series of tests of seven »le-span beams and three
beams continuous over two spa~s . ft each has been
conducted (Mattock, 1971, ref. 21, ‘hough the primary
variable of the study w¥s the effc-: ~° L_ond o>n the behavior

" of post-tensioned concrete beaﬁs, a c. =~ ~-r »ble amount of
.9
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redistribution of‘aUpport.moment;has been observed at
ultimate. A large portion of redistribution (up to 85i
percent) has ;een attributed to the actlon of the |

non- concordant tendon, because the test beams had a net
relnforcement 1ndex (@0 + wp - w') that did not allow any
adjustment of support design moments\according to any
edition of the ACI‘Code. Therefore the aecondary moments
have been assumed to have a direct effect on the amount of
redistribntion available. It was concluded that for a
do@nwards transformed tendon profile, "rediatribution of
"design support ultimate moments by an amount equal to the
positive secondary prestress moment should be allowed in
design, without a special limitation on the amount of
reinforcement;. This reduction in support moment does not
require any 1nelast1c deformatlon at the support sectlon.

These findings led to subseguent changes to the 1977
ACI Code, which required the inclusion of secondary moments,
.psing a load'factor of 1.0, up to and including the ultimate”
state.’

Many theoretical approaches were developed to enable
the distribution;of moments at ultimate to be related to the
physical properties of the beams and the pattern of loading.
These ranged from Guyon's general analysis which takes into
account the actual distribution of curvature along the
length of the .beam (1960, ref. 14), to Baker's simplified
‘approach in which the inelastic deformation is conaidered

concentrated at the critical sections, i.e. the concept of a



!

/

"plastic hinge" theory with the "hinges” haying limited

[

rotational capacity. /

{
{

It is shown that yield of reinforcemezt can provide

advantageous moment redistribution. However, the small

amount of steel yield available-in prestressed concrete

beams may reduce the moment redistribution possible as

compared with ordinary reinforééd concrete (Baker, 1949,

ref. 2).

/
/

In general, the theories require a/kﬁowledge og the
moment-curvatufé reiationships for the/beam sections. The
> /
theory developed by Priestley e;wal. VH971' ref. 24) takes
into consideration the variation of curvature between cracks?®

caused by concrete tension.. It also Shpwed close agreement

with experimental data. The relationships between moment anc

”

average curvature have been used to determine the

. e

moment-load cyrves for continuous beams up to the onset of

concrete crushing (Priestley and Park, 1972» ref. 25).

)

13

N
.

3.2 Rotational capacity of hinging regions in reinforced

concrete beams |

InStances‘can occur in which the strain capacity of a

reinforced concrete ﬁinging section is exhausted before full
redistribution of bending moﬁeﬁts is achieved in the
structure as a whole. It is therefore necessary to consider
the deformation of the hinging regiohs in\any theory of
limit design for structuralvconcrete, and more specifically’

to limit their rotatjon to known safe values (Mattock, 1964,
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ref. 20).

The main factors relating to rotations are: moment
gradient, concrete  strength, ‘reinforcement yield étress,
beam effective depth, amount of tension reinfor;emént and
confinement of the concrefe in compression (Corley, 1966,
ref. 12; Roy, 1964, ref. 26).

| It is demonstrated that similar approaches could be
‘used for both reinforced concrete and partially prestressed
concrete in evaluating moments and curvatures (Bisharé and
Brar, 1974,€ref. 3).

Computer-simulated flexufél testé carried out to
identify all major variables that affect the behavior of
'partlally prestressed concrete sectlons, conflrmed earlier
findings‘concerning'the ductility of ordinary relnforced
concrete sections. For prestressedlsections, ductility
showed considerable sensitivity to the effective
h prestreSS1ng However, ‘variables such as cross- section shape ,
and high- grade steel stress- straln r@latlonshlp have a

relatively minor effect on the inelastic behavior (Cohn,

1982, ref. 11).

3.3 Experimental programmes

Only few experimental data were avaiiable in the
literature. Major'extensive test programmes on prestressed
concrete beams were conduCtéd by‘Warva:;k on simply
supported beams (1962, ref. 28) and by Hawkins on two-span
continuous beams (1964, ref. 15). In general, flexural

n
o
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crackfng and bond were major factors in the behavior of test
beams. It was observed that moment redistribution in
continuous beams is initiated by flexural cracking and
relative reduction of stiffness over the interior support.
Pronounced redlstrlbutlon occurs only after the moment over’
the interior support reaches the nearly flat portion of its
moment-curvature rélationship. The development of inclined
tension gracks reduced both the load carryiﬁg capacity and
the ductility of test beams failing in shear. The basic
mechanisms of failure in shear or in flexure were similar to

those in simply—supportéd beams.
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4., DESCRIPTION OF THEORY

4.1 General remarks

In order to obtain a better understanding "of the
behavior characteristics of continuous orestressed concrete
beamslsubjected to.bending, a theoretical model has been
developed to study the phenomena occurring in the beame nhen
loaded up to failure. |

The theory requires a knowledge of the moment- curvature
relationships for the sections to determ1ne the distribution
of monents throughout the structure at 5 specified load. The
moment-curvature relationehip formulated by Priestley has .
been adopted. The theory takes into consideratlon the
variation of curvature between crack$ caused by concrete
ten51on and makes possible the pred1ct10n of both the
curvature at a crack and the average curvature along the
length of the member.

A computer program uslng Fortran statements and based
on the above theory hae been written. Further details of the
computer program are enclosed in the Appendix. Comparison
.with experimental data‘is_presented in the following

-

Chapter.

14
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4.2  Analytical model

1
3

4.2.1 Assumptions
1) " Quasi-static loading;
2) Bonded beams;
3) Negligible shear.effects;
o 4) Plané sections remain plane (linear strain
distribution);-
5) Any known material stress-str..n relationships;
.6) Effective (after losses) prestressing;
7) Linear-elastic behaviorigp to decompression of
coﬁc:ete; t \T |
8) Partially/bfestfesseé beams in which limited
cracking is permitted by the deéigner at service
loads. | |

2%

4.3 Moment-curvature relationships
o »
4.3.1 Prestressing steel strain and stresses
In prestressed concrete beams, the prestressing steel
strain is not zero even though no'external load has been

applied. It is therefore necessary to include the initial

~

N : & o
strain in the analysis. / o

~" Strains in the concrétg'and steaﬁ at loading stages of
intere#t are shown .in Fig. &.1. Strain distribution (1) of
Fig. 4.1 results from the'application of prestress force P,

acting alone. At this stage the stress in the steel and.the



o

t —V//"
Neutral axis
C T
at stage 3
' . - Zero strain
/ 10
h . _]L in steel
’ D
®. Zero strain /
in concrete (@) Prestressing alone
’ R ' " @ Decompression at level of steel

©F Additional load

.

«Figurme 4.1 Strains in concrete and, steel

-

<

——

16



associated strain are,

=

A,

L
E:P

respectively,

17

(4.2)

The steel strain is shown with respect to its own separate

origin. Stage (2) corresponds to the decompression of

concrete at the level of the steel centroid. Assuming that

bond remains intact between the concrete and steel, the

2
7

increase in steel strain produced as loads pass from stage

(1) -to stage (2) is the same as the\ébcrease in concrete
A

strain at that level of the beam. It is given by thg

expression:

W-~n the

€2 =

o

Ak,

<1+

in.whi~» g is the radius of gyration of the cross-section. |

2

e

2

9

(4.3)

ad is increased further to the stage (3), the

neu: ! axis is at a distance C below the top of the beam.

The increment of

L ey
~

‘The total strain

-

strain 1is:

€3 =

. ep.=

is the sum of the three components

€3

+

d-c

C

€2

)

+

€3

(4.4)



and the corresponding steel stress is given by the

18

-
H

stress-strain relationship of the particular steel grade.’

.

4.3.2 Cracking point

-

LOne loading stage that is of interest in a section

analyéis is the one at'which cracking moment is reached. A

significant change in slope can be observed at that

particular loading stage in a typical moment-curvature curve

as shown in Fig. 4.2. The model will therefore consider the

cracking moment as a benchmark between elastic and inelastic -

behavior.

4.3.3 Conditions just before cracking

Assuming that the concrete has a tensile strength, the

conditions just before cracking can be defined as the stage

o

at which the extreme concrete fibre in tension reaches the

flexural tensile strength f,', so that cracking would

certainly occur should the load be increased by a slight

amount .
For a rectangular section as shown

1

Concrete compressive force
C
C=5» £ dy
0

Concrete tensile force

in Fig. 4.3,

(4.6)

(4.7)

—
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102 mm

D 203 mm

55

e

102 . 55 mm

1829 mm

4267 mm

/\
K,:\

< Spacing of 6.35 mm dia.
stirrups

o

_—

-t —

)

theor

8 1.0 <l>
T.

theoretical curve

experimental values

Figure 4.2 Moment-curvature relationships at a section 1in a

constant-moment zone (Ref. 24)
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Figure 4.3 Conditions just before crackincj

[}

Strain

t

Stress

Forces

20



21.

_ Steel tensile force

The concrete stress-strain relationship is given by the

expression of f. in terms of e. The equilibrium équation is:
cC =T + TP . . - (4.9)

After each component of tpe equation is substituted
with an expression i%volving only the neutral axis ¢, and
the steel sﬁrain €p s the equilibrium eguation is solved
simultaneous?y along with the steel stiain equation 4.5.

The curvature is derived from the strain distribution

- - <1F> - §t1+€c o (4.10)

cr 1

and the corresponding moment

C . )

M_=b|f ydy+b f",.%(h,—c)’ + Apfp (d-c) (4.11)

cr

v

4.3.4 Conditions after cracking
When the stress in concrete extreme fibre in tension
has exceeded the tensile strength, cracking occurs in the

section. As a result, the component T,

. no longer exists.
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The location ¢ of the neutral axis can be determined
from the general cracked section analysis developed by
K. Shushkewich (Ref. 27). The equation of neutral axis is:
o 1 1 . ‘
'_ébNCJ +§ch= + (BN+aM)c - (yN+gM) = 0 (4.12)

&
in which the different coefficients can be calculated from

the general transformed section shown in Fig. 4.4:

a = (b-b,)h, * npAp s (4.13)
_1 . | .

ﬁ —_(b—bw)hF + npAPd (4,14)
--L(b—b Yh?® + npApd? (4.15)

LY w e p&p .

where b, = b for a rectangular section.

N =F = ApEp (e, + €2) ’ (4.16)
M= M - F4 (4.17) '_
The stresses are:‘
Mc . S
Concrete £, = I _ (4.18)
‘Y—'/SC —-6—bC .
d-c
Sf_eel fP'=nP — .+ NG (4.19)
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Cracked section External moment Resultant
and ‘actions
Prestressing

Figure 4.4 General

force

cracked section analysis
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4,3.5 Average curvature

4.3.5.1 Bond stress
It is generally agreed that the concrete-steel bond
stress is a maximum very close to the crack and
decreases in some fashion further away from the crack.
For ;his analysiéf it will be assu&ed that, at
first cracking, the bond stress decreases linearly from -
~a maximum Um at the crack to zero at a distance away

from the crack as shown in Fig. 4.5.

4.3.5.2 Bond length

Immediately after the first crack forms, when

M=M in a region of constant moment, a stress

cr !
condition that varies between two limits exists.

Let A be the section at a crack, and B be a section
some aistanceqaway from ihe crack where the stresses
have not been affected by the formation of the crack.
The stresses and the stress resultants at section B are
as described by eqdations 4.67to 4.11. At section A the
stresses are found from equations 4.12 to 4.19 with
M=M_ .

At section A, all the tensile stress is carried by
.the steel; between sections A and B, tension is
transferred from the steel to the concrete by bond. }f

f.a and f,p are respectiveiy the steel stréssesvét

sections A and B, then the minimum distance £p from the

crack "over which sufficient tension can be transferred

-
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Concrete
Cracks ‘
Prestressing steel
a
-
ug .
Um
4

Figure 4.5 Bond stress distriljution between adjacent cracks
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from the steel to the concrete by bond, to cause the
modulus of rupture f,' to be just reached at B is:

Ly = A G““‘_{‘E’) | (4.20)

Ugy 20

t

" |
in which Ugqy is the average bond stress between the
steel and the concrete, ZO is the total surface
available for bonding of the prestressing steel per unit

length, Ap is the total area of prestressing steel. The
P ' .

maximum bond stress is:

27 (ﬂ;ﬂQ (4.21)
4, 2.9

Up = 2 Ugv =

4.3.5.3 Crack Spaciné

A new crack cannot develop between two existing
cracks which fofmed when M = M, if the spacing between
these cracks are smaller than 2{yp. Sufficient length is
required each side of the potential crack position to
build up enough concrete tension and 1nduce a new crack.
It 1is ev1dent that, with initially random cracking, the
individual crack spacing soon after the formation of the
first crack will vary between two limits, 4p and 24p.
The.average crack spacing Qill be approximately equal to

1,54y . {
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4.3.5.4 Stress distribution at a distance £ from a crack
(£ < 4y)

At a distance £ from the cfack, the steel stress
will be reduced by bond and the concrete tension will
build up. The reduction of steel tension force over the

length ¢ from the crack is: -

£
AF = ;/—U ZO d¢ ' (4.22)

O

Therefore, if f,.r 1is the tensile steel stress.at the
crack for the particular moment M acting, the tensile

stress in the steel at distance £ from the crack is:

, £o- £, - DO (4.23)
_ A? |
{
or ' £, = f.r L fuzo ar (4.24)
o AP.
0

From Fig. 4.5, the bond stress distribution can be

expressed as:

Uu = Um <1 —-ll> - (4.25)
Z \

Substituting u from eg. 4.25 into eqg. 4.24 and

integrating:




'

28

Substituting U, from eg. 4.21 ifto eq. 4.26 yields:

L _ _ N ‘
£, = ‘f.cr 2(f.0 f.b)<£b ”:> (a.%7)

'
T

.Note that f, from eqg. 4.27 is independent of the
maximum bond stress Us and thus the magnitude of the
maximum bond stress does not affect the momenf—curvature,

curves.

4.3;5.5 Average curvature

Thé assumption is made that, at a section some
distance from a créck,_the steel strain is still
linearly related to the concrete compressive strain.

The known steel stress f, allows the determination
of the conditions in a section at a distance £ < Ib.from
a crack.

The action of the decompression force, along with'
the,extefnal moment , éan-be represented by é resultént
force R appliéa with eccentricity e‘w'abqve the top of
the section as shown in Fig. 4.6 (Nilson,\géf§ 23,

p. 97). The portion of beam can then be_analyzed~és an

ordinary reinforced concrete member subjected to an

eccentric compression force.

quilibrium equation: &

(4.28)

i
(@]
i
e
'
3

d R

|

The concrete tensilé/E;;:; T. can be expressed as:

- -
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T =C-T, - R (4.29)

in which
C = ! £ [b +<—2—C—“—}1f>h (b-b )] (4.30)
L=t wC c £ 107 Pw A
T‘ = APf, (4.31)
R = ApEp (e +oe,) o (4.32)
. o

The neutral axié a distance ¢ from the top sufface, for
the‘equivalent homogeneous transformed section, can be ////f
found from the equ111br1um condition tnat the moment of 7 | '
’, all internal forces about the line of action of R must - - \\

be zero:

.o

K B | | (d;e‘cr) APf"' + T, <e‘°P + c + }\:;C>
ol (E sew) (boo)
= c3 213 top w C .

e~ h\ . ' o
h, <-"C—'f> (b-b,,) <%f+ emQ .

+
J ) R 'a
" 1 h he. o
~h _f_
A +2 (b- bw )<3\+ etoQ | (4-3‘3)
with-b, = b for a rectangular section. -

| Solv1ng Equatlon 4 33 with f, obtained from

““"“n*'*""“Equatlon 4, 27 the p051t10n of the neutral ax1s can be -

'determlned, and hence the concrete stress at the top
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)

surface using Equétion 4.18. The curvature at this

section is given by:

1\ €+ €, )
<‘_—_5= T—d—‘- (4.'34)

2 ¢

e, and e, are the strain corresponding respectively to
the concrete stress at the top surface, and f;.
Integration of the curvature over half the distance

between the cracks gives the average curvature:

075 Ay
| €. + & ‘
=) = ——— d¢ (4.35)
7~ 075 A, d _

0
4.4 Deformation compafibility requirements
“ In ﬁhe analysis of cont;nuous beams, the distribution
of moments must meet theJdeformation compatibility;
‘reguirements.

Tge model.beam that. has béen adopted considers the
availaSility of tést data. This allows a check on the
accuracy of tﬁe theoryﬂ A se£ Bf experiments béing referred.
to i; from Hawkins' wo;i (ref. 15), which‘consistsgof»a-
series of tests on two-span symmetrically loaded cbntiduous
beams. The investigation will thus be limited to a two—spaﬁ

symmetrically loaded continuous beam.

4.4.1 Elastic conditions
In elastic analyses of indeterminate beams, it 1is

necessary that the slope at any interior support be
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r

continuous. gpnsider a continuous beam as shown in Fig. 4.7.
L

Neglecting any differential settlemrnt of any support, the

rotation 6 occurring at j‘in span |j can be expresééd as:
Xj
\ 91‘ = - - (x-x;)dx (4.36)
! L’ii 'y
.

1

where the curvatures (1/r),. are evaluated at each beam

seﬁtion,from the corrésponding values of bending moment,
usiné the moment—curvaﬁure relationships defined in the
uncracked section analysis. Similarly, the'rotation 6«

occurring at Jj in span jk is:
' ! Xk

, - |
i = T = (x,-x)dx , (4.37)
¢ ‘ Lgk * ) _
. i
Taking all rotations positive counterclockwise, the

-«

coméatibility condition for the interior support J in
L

Fig. 4.8 is:
B0 - 65k =0 (4.38)

In the particular case of a two-span symmétrical beam loaded

&

symmetrically, the compatibility equation reduces to:

x;
* H

i%i <%>(x-xp)dx

IJ . x

1l
o

(4.39)

Iy
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Figure 4.8 Rotation of beam at internal subport
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4.4.2 Non-linear cohditions

Another way of formulating the compatibility equafion
is to ensure that the deformations occuring within a span
(between two supports) are geometrically compatiblé. These
equations are described by Guyon. Consider a symmetricai
two-span continuous beam with the load applied symmetrically
as shown‘in Fig. 4.9. The beam can be assumed to take on a
polygonal shape at an advanced stage of loading. The
rotation at support B remains zero due to symmetry, but a
‘slope 6' occurs at some small distance m from B; The final
ybending'momént diagram, afte? the iterative process
described in Section 4.5, is such thaﬁ the deformations
’resulting from it are éeometrically compatible. .A set of
bending moments can be considered correct when it satisfies

the equation
$p(NL) = 6'(£-m) ' (4.40)

The quantity (£-m) will be apbroximated to £ because of the
difficulty to evaluate exactly the distance m, which varies
with the width of the support, among‘other factors. Eguation

(4.40) is then modified to

6 X =6 _ o (4.41)
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>
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Figure 4.9 Compatibility of geometry
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Prae

This compatibility equation provides a simple means of
establishing an acceptable distribution of moments at a load
higher than the load at first cracking. An error margin of

+ 0.05 radians will be adopted as a result of the

approximation described above.

2
J
4.5 Procedure of analysis
The successive steps of analysis are:
1. Compute the cracking moments and the ultimate moments at

all the critical sections, based on the section

properties;

2. 'From an élastic anaiysis, detérmine at which criticq;//
secﬁion cracking occurs first, and check the |
comﬁatfbility at that\particular loading stage using ~
equation 4.39, that is:

a. From the resulting bending moment diagram, thé

’ Al .
corresponding curvature at the centre of each
segment iIs found by referring to the
moment-curvature relationships defined in
Section 4.3.3;

b. These curvature values are then used to determine
the left-hand side of equation 4.39, which will
equal zero if the assumed moment configuration is
correct. Usually this will not be the cése and

~adjustments are then made to the bending moment

diagram by reducing either the maximum hogging

moment value or the maximum sagging moment value
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until the left-hand side of equation 4759 does equal
zero as required;

3. The ultimate limit state is established as the load
corresponding fo the final distribution of moments tﬁatb
satisfies equation (4.41). The first iteration is
performed using the ultimate moments calculated in P
Step 1, one of these mements being reduced in subsequent ™
iterations. In addition, the moment-average curvature
re&aﬁionsh@ps defined in Section 4.3.5 are used in
crackea regions;

4. Stageé between cracking and ultimate can be identified
‘using intermediaﬁg values of moments. By modifying one
of the moments and holding the other constant,
.compatibility»éan beosatisfied, and the resulting
distribution of bending moments can‘be calculated.

‘“'

One can then obtain a‘'series of points om thgy
[ 2o

. 3;:{!' i
moment-load relationships of the critical section§.

e



. 5. RESULTS OF ANALYSIS

5.1 General remarks

The moment-load curve has been established for a series
of beams, based on the theory described in the previous
chapter. | “

In ordef to evaluate the accuracy of the analysis, some
_beam data have been taken from experimental work on
continuous prestressed concrete beams, so that cohparison of -

"the results can be made.

5.2 Experimental results

Most of the jexperimental results available héve been
done on simpl& sgpported beams, due to the early research
interests which focused mainly on the flexural strength and
deformation characteristics, or the effects of bond.

An extensive literature search provided only one
detailed testing programme (Hawkins, 1964, ref. 15) on
continuous prestressed concreﬁe beams. Tests were carried
out on 22 two—span conti%uous Beams loaded at the midspan§.
Because the purpose of the investigation was to study the
acfioh of both bending and shear, with the emphasis on the
effects of shear, the test beams were designed with varying
amounts of shear ‘reinforcement along with flexural
reinforcement. In classifying the modes of failure for the
test beams, the criterion used was the crack pattern

observed. The six beams which failed in flexure were

39
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>

selected for the present comparison. Further details ord
these beams are listed in Tebles 5.1 through 5.3 and shown
in Fig;\S.%.

| Tables 5.4 and 5.5 give a summary of results from both
analysis and experiment. The only known values from the

experiment are.the cracking moment and the ultimate moment.

5.3 Behavior of the test beams |

The position of the concentrated loads implies that the
positive moment was five- 51xths of the negative moment as
determlned by an elastic analysis. _‘\\

The first flexural crack was observed over the interior
support where the elastic bending moment was the largest.
The appearance of this crack was accompanied by an
adjustment in the relative magnitudes of the exterior and
interior reactions. Beyond this stage, the moments at'
midspan and interior support deviated from the elastic
distribution. Since the intefior support section cracked
first, its moment was gradually redistributed to the ﬁidspan
eection. When the midspan also. started to crack, moments
were redistributed back to the 1nter10r support section. As
the load was increased the moment ratio remalned essentially
unchanged up to the theoretlcal ultlmate load The
. moment-load curves shown in Figs. 5.2 through 5.7 include

the effects of seeondary moment as explained later in

Section 5.4.
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Figure 5.5 Moment-load curve for Beam 4
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Figure 5.7 Moment-load curve for Beam 6
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Beams 1 and 2: No redistribution of moment occurred

because the moment capacity provided‘at the critical section

was in accordance with the
tendon arrangement used in
different from the profile

analysis due to economical

elastic distribution. However the
practice is likely to be
obtained by elastic moment

reasons. An example of practical

design is shown in Fig. 5.8;

Beams 3, 5 ahd 6: The

moment capacity provided in these

beams was équal at both midspan and support sections.‘Beyodd

cracking at the interior sdpport section, the positive

moment to negative moment ratio rapidly reached the value of

. unity. The correct distribution of moment was obtained using

the compatibility eguation

4,40, As the load was increased

\

up to ultimate, the variation of moment indicated an

‘inelastic behavior which was in reasonable agreement with

 the experimental values at

the ultimate stage. Test values

B 1
of moment and load at intermediate loads, however, were not

available for comparison;

)

Beam 4: A similar type of behavior was observed in beam

4, in which the largest amount of redistribution occurred

due to the tendon'profile selected which differred

substahtiallﬁ from the elastic case: the positive moment

capacity to negative moment capacity ratio was 1.3, compared

to the ratio of elastic moments of 0.83.

In all six beams full

redistribution of moments could

be achieved as expected due to the low value of the

reigforcement indgx ranging from 0.063 to 0.253, indicating
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underreinforced sections. However the efﬁecté of shear have
to. be consideréd bécause the development of inclined tension
cracking may reduce both the load carrying capacity and the
ductility of the test beams; as was observed.in remaining
beams of the test programme. The span-to-depth ratio of 9
indicates the dominance of shear force which may result in

deep beam action. Nevertheless, flexural failure is still

~

reinforcement, full fedfgffi?; w;\'f_be achieved even 1if
the'crific;l Section éf Sﬁétf
capacity beyond yield;ﬁgﬂf :
The higher:yq}ueéio% mbmén_,%gg iodé%obéerved at
ultimate in the experiment may.be.atinibuted to the
criterion adopted for failure:‘the ultimate moment
calculated in the analysis used the concept of average
Sstress of the concrete acting ovér the entire compressed

concrete area above the neutral axis (Equation 36, ref. 28).

&

The difference in tendon profile at the end portion of the
beams between the analysis and the‘test might be one of the
reasons for obtaining a higher load. However, this did not
have much effect on the peak moment which always occufréd at

midspan and at the interior support due to the type of

- loading.

Observations on test beams described in Ref. 15 show,
that the significant amount of redistribution can only be
achieved through extensive cracking at the critical

sections. Furthermore, the use of compatibility



56

equation 4.40 in the analysis has been made necessary in
lieu of equation 4.39, due to the larger degree of

deformation in the post-cracking range.

5.4 Secondary moments.

‘ As indicated in the moment-load .diagrams, the amount of
secondary momentiexisting.in each of the beams was not large
enough to be significant in the the over-all behavior and
Lhe'load carrying ?fpacity of the test beams.

xSecondary moménts are.calculated in Table 5.3 on the
basis of’tﬁe effective prestress force F, . While the force
in the tendon does increase significantly as loads on the
structure are increased as a result of bénding of the
member, this does ndt represent a change-in the prestressing
force that produced the secondary moments. The force
resulting from prestreésing is unchénged, and the secondary
moménts are unchanged as the load increases up to the ﬁirst
cracking load.

An intuitive approach can be established concerning the
consideration of secondarysmoments: since they arise due to
the restraint opposed gy the»redundant system of support, it”
is reasonable to expect a variation in the intensity of
. these homents as the structure exceeds the.poét-elastic
range. There are several exblanétion%‘for this:

1) ‘As cracking occurs at .the critical sections,
where peak moments are o?ser&ed, the structure

adjusts itself to the variation of stiffnesses.

/
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This in turn produces a new arrangement of
|
support reactions. The portion of the reactions

B
due to prestressing 1is likely to be differenk
from the initial one because of the decrease in
stiffness induced %y‘extensive crackiné in
regions surrounding the critical sections. The
secondary moments should there;ore’vary h
accordingly; ‘

|
As the loadlng proceeds further, one might l

expect the critical sections to form plastlc
hinges and reach the extreme stage of collap%e
mechanism. Secoﬁdary moments may thn disapp\ar.
It is well established that they may be e\\
neglected at this‘particular stage (refs. 10,
18, 22); |

In practical cases, full_redistribution is not
always possible because the combined.aé%ion of
bending and shear may cause one of the critical"
sections to fail by crushing of. the concrete.

flexural failure, as usually defined, is not

likely unleﬁﬁ\the shear-to-moment ratio. is

Gjextremely small.
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¢

For these reasons, the secondary moments may be assumed
to decrease from the initial value,'accordlng to the

following, equation:

[P T P
/ cracking:

M = M ; 1 = .
( SK)F“t_chk ( T nitial \P - P

Y

(5.1)
fall redist. ' cracking '
-‘PAis the load, usually the ultimate load, at which .the
secondary moment is evaluated Pau&chorresponds to the load
at first cracking through an elast1c ‘analysis, and P

full r'edlst ,‘z’
the load calculated with ultimate moments at both cr1t1cal
sections. Also, the cub1c var1at10n is set to reflect the

gradual reduction in member stlffnesst Equatlon 5.1 is Valld

under the assumpt1ons made when establlshlng the analy51s.

.
,',",.,
v

. Thus the limitations are“

'Q

. 1) (net relnforcement index) < 0.30 to ensure that
_duct111ty 1s ava1lable'
2) bonded ‘partially prestressed concrete SO that

cracklng 1s allowed

2

" Equation 5.1 'is graphlcélly represented in F1g 5.9; ard is

used in Figs. 5.4 throughu5.7 to indicate the possible

inelastic behavior when the secondary moment is taken into
¢ b -
c0n51deratlon.
! K o 0 9 ' “
Caut1on has to be exerc1sed when considering the

yielding stage although measurements of concrete strain: at“

fajlure in beam tests indicate that values of €., between

q

0.003 and 0 004 are attalned a limiting straép of 0. 003 for

——
H N
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the concrete will be assumed.‘Also, prestressing steeis do
not show a definite yieldyplateau. The spread between the |
nominal yield strength and the ultimate tensile strenéth is »
muoh’SMaller for prestressing steels than is the spread
between the corresponding values for reinforcing steel

”herefore tWe small amount of. steel y1eld ‘available in
'A' - . 4

i

prq&treSSéd concrete beams may qeduce theimoment e
1 EEERAT N
. A

redxstribut1on p0551ble as companed to conventlonal
."J.vj ‘ oo ) )
iy R S - SN
relnforced concrete S ,~k>“'_,‘Q

TIf the ultlmatr Ioad\does not correspond to full

redlstributlon ‘i.e. 1f’hny of- the cr1t1ca1 sections has not
!

attained its ult1mate capac1ty, then a portlon of the

v

< . §

N 1n1tlal amount of secondary moment must be taken into

L

account Thls differs from the curreht Code prov151ons which
requ1re the inclusion of the total secondary moment.

The behavior characterlstlcs descrlbed in the present
study have been demonstrated to be 0 reasonable agreement
with the’observed dhes for a particularftype.oﬁybeam. The
crosshsection.shape and the high-grade steel stress—strain

‘relatlonshlp have a relatlvely minor effect on the 1nelast1c
behavior. (Cohn 1982, ref» 11). However, extensave
experlmental work.'is reqU1red in the future for a better

_evaluatlon of secondary moments in beams WIth a

Pt

non-concordant tendon. - o L 9

A
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5.5 Design method

A method for determining the ultimate load capacity of
a conﬁinuous beam is ‘proposed, which takes into account the
seconaary moment describéd by equation ..i. Only a two-span
symmetrical bea: s considered, a sim:'~r ~proach being
possibly applied to more complex‘structuLus. |

Tﬁis method first evaluates the value of the‘net
reinforéemeﬁt.index (w + wp -w') at both critical sections.
The limiting value of 0.20 will be used as'feQQifgd by
section 18.10.4 of the ACI 1977 Code to allow a variatioa of
design moments from the elastic analysis. The limitation of
0.30 is the dividing line between underreinforced and
overreinforced meubers and th%? is confirmed by a pa{amgtriq
study (Cohn, 1982,\ref..11). Ff&e different situations may
arise as shown in Table’5.6. In cases 1; 2 and 3 the o
negative méments calculated.by elastic anaifsis for any
loadiﬁg;é;fangemgnt, may be increased or decreased by nét

. - F
more than ‘ : SN

2R
i’

o v ,
3 w0 .
20 =2 |1- ———— percent
B 030 - ‘
In cases 4 and 5, no modification to the negatiyé~moment
obtained from an elastic analysis'is permitted.
‘Cases 1 and 2: Since both critical sections are

_underreinforced, full redistribution is likely and hence no
secondary moment remains at ultimate. The ultimate moments

are those due to gravify_loads only;

N

N
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S o N

SEges

Moment used

Case (w+ W= w') (w+ wy- w') in
at support at max. positive| design
-
r
1 < 0.20
Modified
2 < 0.20 0.20< <0.30| moments
according to
Section 18.10.4
of ACI 1977
3 0.30<
4 -0.20< <0.30
o Elastic moments
5 0.30<

‘Table 5.6 Desig‘n cases
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Case_3:§The section at maximum positive moment is
overreinforced, which determines the ultimate load due to
reduced ductillty at that sectipn. This‘ultimate load is
calculated using the ratio of moment capacity provided, and

then substituted into equation 5.1 to calculate the

‘magnitude of secondary moment remaining at ultimate;

vCase'4: Although the beam is designed according to the
elastic analysis, the low value of the reinforcement index

at the support section allows the ultlmateﬁﬁ%meﬁts to be

reached at all critical sections as in cases 1 and 2 This
is achxeved by y1eld1ng of the relnforcement and extensive

cracking. The secondary moment is reduced to zero at

ultimate;

Case 5: The support section is overreinforced, .and as a

' result the ultimate load corresponds to the load at whlch

the support ultimate Moment is attained through an elastlc

'analysiai The procedure is similar to the one used in

case 3. a _

. The approach adopted. in this design method satisfies at
first the equillbrium condition by calculating the load from
equations of#Statics, secondly the safety condition by

4

ensuring that‘no premature failure occurs at any section of

the - beam, and thlrdly the dUCtlllty cond1t1on to allow

redlstrlbutlon of’forces from the élastic distribution to

the assumed dlstr1butlon. hesé“three conditions of member

Tory

vproport10n1ng cbrrespond to the}so called lower bound

4

solution, i.e. the structure is certa}nly capable to carry

v
-
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the calculated load.

As the membef strength is approached the inelastic
behavior at some sections results in a redistribution of
momenﬁs. Recognition of this behavior can be advaﬁtageous,
but a rigorous design method for moment redistribution is
quite complex. The.recommended design procedure is an
attehpt to give an account of the dependence of the
sebondary moment on the degree of cracking and moment
redistribution. The amount of adjustment is kept within safe

limits defined by current Code provisions.

Tl



6..SUMMARY, CONCLUSION AND RECOMMEﬁDATIONS
6.1 Smmmary

The overall objective of this study was to}inveStigate
‘the flexural behavior characteristice of continuous
prestressed concrete beams and determine the eftects7of
inelastic behavior on the secondary moment .

The analysis con51dered the equilibrium and strain
compatibility of each beam section to evaluate the
conditions at a particular cross-section of the‘beam. In
addition, a t@poretical stress-strain,corve‘was used for,
both concrete and prestressing'steel.to establish the

moment-— average curVatUre relationships. ConVentlonal

fpr1nc1ples of - geometry were applled‘EO‘determlne the

o
dlstrlbutlon of moment at any locatlon in the beams. The
complete moment-load curves to failure for several beams’

“were obtained from the analysis and compared with available

test results.

6.2 Conqusion

The relnforcement index value of 0.30 set by the ACI
Bu1ld1ng Code to deflne underrelnforced sectlons can be used
.as a{crlter}on to evaluate the dUCtlllty of continuous -
beams. For ductile beams, fuLlwredistribution of moment is
bossiole due to yielding of the reinforcement and e#tensive
cracking, withothe,understadoihg that minimum bonded | \

reinforcement is provided to prevent the early failure of

65
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the reinforcement. For non-ductile members, the ultimate
l%m;ﬁ.statevfs defined by the loé@ at which the moment
c;bacity of a brittle section is attained. In such cases
only partial moment pedistfibution is achieved.

The secondary moment varies due to the readjustment of

reactions caused by~cracking,’and this variation is
1 _ R
dependent upon the redistribution of moment carried out at

»

ultimate. A.cubic variation is assumed in the present study,

"but a different type of variation may be seﬁ in the light, of

)

further investigation.
K

6.3 Recommendatlon for future work
- More experlmental programmes on contlnuous prestressed:
concrete beams are ‘needed ‘to study the phenomenon of
secondary moment. A fealistic,evaluation.of the secondary
_momént is-necessary becaﬁse'its_efféct on the load carrying
capacity of a given beam may be favorabié»br unfavorable,
depending on the locatlon of a partlcular Cross- sectlon. 7 ?~
The ana1y51s descrlbed in thlS 1nvest1gat10n can be

-

extended to more general staticatly indeterminate systems.
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Genera} Remarks

This Appendix glves detailed explanatlon on the
2
»Cr‘

computer program der1ved from the theory descrlbed in

Chapter 4.
7 functions coordinated”b

execg§1on is ?ammar1zed in t

& ‘\
The program com§1sts of su%gout1nes and

Favy

qyé"' ain Routine. The sequence of

h}diagram shoWn*in~the o )

v
-

S v

followlng page. The procedure of each subprogram is -,
. ) ) ’. lm . ' . - ’ A'
and the proaﬂé} output for 6 beams'£5ﬂllsted at

., ¥

explained,

“the end of the Appendix.
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Cow . AL - A
" Two-span symmetrlcal'uontlnuOUSwprestreSSed beam..

xrotat1ons allowed at all support5° /';

1L1near varlatlon of tendon profile;

3

The limitatidns,are: - Lo i

-

Two symmetrlcal concentrated loads be1ng ap lled
‘ I TN S . L. . . . :‘)

p051t§o B ﬁv- - ' , - w Y
o S  _1 £

i, ‘Rectangular or doublyqsymmetrlc I- shaped cr‘"
' o ER o v
5% 'No reﬁnfdrcipent other than prestre551ngﬁbe&d§h strands,
R
g.\*The stress- stra1n relatlonshlps are: to be modellzed for .
both concggte and steel' only Grade . 250 or 270 strand
—are considered; R ff‘. ‘
. o * ’ a ’
7. SeCondary«momentsvare neither evaluated nor’ included- 1n$
. the calculations; ' o
. . - : : . - &
8. Imperial units. ' e L - I
’ : B
c.l . o -
- . ) R
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Ol -total-axial force
: ‘ ‘Definition of ‘ . /
. z L e Gaussian
{9 - functions to be ST
‘ - o elimination
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Sequence of
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MAIN ROUTINE

2
oot .

‘o ~ The MAIN routine defintes all loadlng stages startlng4
N . TR . Hu\‘h ) 2

o from the’ load at which £¢ st cracking occurs, up_to - .

£
»

ultlmate. The cross-se on properties; thej'fﬁ;'“
capacit& and&%he crac g.moment are'edalua.el‘at the-.
critical sections by tallihg.particular.fun
the. necessary 1nformat10ns are read.
The\elastlc moment dlstrlbutlon along the beam can be
calculated knowing the pos1t1on of appllcatlon of the
concentrated load. If the moment capac1ty ratlo prov1ded at ©

the crltacal sectlons lS different from the elastlc rat1o,

[ I A
A .

-z  then red1str1but10n of moment is llkely G:’fa;&% .
-&‘ The MAIN. routlne assumes an 1n1t1al ‘set of moments and-
R \'--' .
&ﬁ; -'ﬁﬁ'_ Btoutlne NEWTN so that thlS set of: moments 'is Varledr
R -xxcfuntll the COmpatgb111ty«equatlon is satlsfled The correct
. - e \ :
oL dlstrlbut1on of moments 1s then prlnted and another
(,. & ) 4 \
calculatlon 1s done for a hlgher load stage. . #3e o
, ’ At first cracklng at a cr1t1cal Sectlon6 the beam is -7
T still fn the Llnear range and the: compatlblllty
" .
- equatlon 4 39 is - “used. All subsequent ldbd stages are tested
) " using compat1b1&1ty equatlon 4.40. . .
4 . i
-~ ’ rS 1Y
“ 4 - 2
s oy \
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QNo
redistri-

bution

’ Calculate
I - s ultimate . -
& cracking '
, moments l

I
el :
e ,,:F“"‘, ;
s R ‘

w ‘4

v
s, SRS VTS
Ty
” ~

Assume mom.
¥ after crack |

| (non=1inear)
R EE

e Assume mom,. .

'; G, . . rfirst cfaékw
— R T (elastic)
_ _+ {Calculate. ‘| { _
oo ' moment ratio| - - -

o ' . Elastic——E |' .
) Provided=P

-
-,

Comp,
satisfied?

, |y vt

moments
reached?

. S
e CLL e -.‘.":(;:’.A:i'\'b"e T o Dr"a-Y :
N LT S . L W mar L e P N PR3 Rt PP S S L4 v
: : »MomengﬂLoaaﬂ
N - curve ’

Main routine
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The load is calculated with the ec&uation
. . (AR . . '
“ 3 .
" ’;‘/
- “ "
- P
P = 2 - MZ' a ¥,
; a b
A
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e . .
5
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. NEWTN o
Newton Raphson 1terat1ve procedure to evaluate a
4
dlstrlbutlon of moments at cr1t1cal sectlons that satisfies
' i
_ the compatlbxlrty condltlons; The error marglns adopted are:
: . ,_;
om0 44 a. Elastlc caSe, equatlon 4 39: i 0.0001 radians;
: b. Non- lxnear case,*equatlon 4 40: £.0.05 radians.
If x represents the dlstrlbutlon Qf moments and f(x)
R the deformat1on& resultlng from that dlstrlbutlon of
o n‘ ¢ “
moments;, expressed 1n the compatlbrllty equatlon then the -,
& A K ‘x ;
iterations are performed as shown'in thé fol&owlng Klgureﬂ .
v 2
- ‘ he 1n1t1a1 guess must be close enough to the solUtlon 1n A
“' -J L5 . 7 . ) M
‘;; ‘l‘" ) e 3 s
S oy 0 % E
‘ CE) b ‘
y . ( T
» Slanlitgay . &%
% - e, »&
Ao d{ e ’ T’ / / !
L Ax = x; - x,
4 ’ f(x
% _ 1) ®
. ] ‘slope = Ax
_, b R 1¢ 30}
o~ 2 = %107 bx = x - slope .
’&; - - ~ N hd .
. v . : ) %
"o
N v



'defines the portions of b%?m as shown in the following

page.,Beam segment lengths are ®hosen.shorter in regions

where the curvature reaches peak values. The dlstance td the

“i -

end support the eccentricity of steel and the moment at the
‘ﬁm

( p center of each beam segment are evaluated

.
-~

EACH = .

I . ’ -
evaluates the curvature and the” contrlbutlon of each

segment to the total deformatlons expressed 1n
equatlons 4.39 and 4.40. If the moment at a segment 1s
fsmaller than the cracking moment %gﬁ}ned in equation 4.11,

linear eXtrapolations are made 't

w,

and curvature. Otherwise. the genera féracked section
analys1s of - Sect1oQ 4.3, 4 is carrled»out to evaluate the
steel stress at a crackT'The average curvature in the

'segment'in then calculated as indicated in Section 4.3.5.

N "
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Compute
curvature

).

Compute

average‘
-curvatwwe

n S
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’

Compu;e'value
of compatibi-
lity equation
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Subroutine FACH

Store
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Subroutines SEGM and EACH
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CRITIM N . E
g ‘»4“ ' e
éhfﬁi
evaluates’ ﬂe cracking moment at a particular
. ) . . . ‘ "
_cross-section as described in Section 4.3.3. ,
[ . . R ) - )
\
UMOM

cal&lates the ultimate moment at a particular

cross-section. If the net reinforcement index exceeds 0.30,

y .
a different equation is used as pointed out in
© Section 18.8.2 of the 1977 ACI Code. » . -
s N
7 NLSYST

. solve 2 non- 11near simultaneous equatlons. The der1w§gﬁﬁf§ W
3 K ! v;‘:
- (I b -

ﬁof the equations con51dered have a contrlbutlon from each

1

,,& arameter.-The;simﬁlﬁaneOUS’e uations are defined .in
’%’ﬁ?*.- T oY N

_“% Subroutine FCN.

~ s

. el
g SN

. e

ELIM : A
. o ‘ . . s > <
Gaugsiag eliminatian ﬁp calculate the corrections to be

¥
!

(yincluded in each iteration in SuBfoutine NLSYST.,

~
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o N ~
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S
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‘FCN
defines the equations of equilibrfﬁm and strain
compatibility 4.5. '
AFCRAK
N General cracked sect1on analy51s deflned in
5} Section 4.3.4. The steel stress ¥ calculated from
"‘"‘.f‘? , . ‘
v equation 4.19.
g |
'»’i,i. o
. ‘
&5 AXNT o : I
7 defines the equations of position of‘tpe neutral
axis 4.12 and 4.33. . & R fgk.: T
.a S _“‘_.‘:‘.:“ S
e \ o

PREL

Y deflnes the stréss- straln relat10nsh1p for ste%li The
X \‘ “\(})o'
strain is expressed in terms of steel stress.
V. Grade 250: eq= =& + 25-E—=— ¢ > 195 ksi =
| , PTOE, TR0 S

F . \ : A": B | r s i ‘ "

: ‘ ‘ o _ 3 »ﬁ »
."‘r‘.b ,' -’ .’ S G d 270 . —v Ip - 2»-'0 (FP - 210) . ‘ . . .

-~ e o L raae H EP'—: EP :l: . ——-—'——'—'f - 107 B ff > 210k51 )

£,< 195 ksi

,i;?s = B . . ) » ' A .
” ep= %;— , § A fPS 210 ksi
waen P T
) 5l . v
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el Romberg

'integrétion;gperfogms.the Simbson's_ru}e for’

s

known values of a function. Intervals are

Ay

A

‘then.halved and’

“ -results are-extrapolated, ‘The integration has been-done on
, o R . . R
. the curvatures obtained at 60 locations away from a crack to
_ s R R PO -
calculate the average curvatur®& defined in equation 4.35.
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CMOM

!

computes the contribution to the total moment

of the

concrete area stressed in compre551dn. The calculatlon takes
S 1

into account the stresszs straln relatlonshlp of concrete.

i
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Typical uniaxial compressive stress-strain curve for

-
L2

N concrete
. £ (psi) €o €y 5

3000 © 0.0020 | 0.0040 | 0.37

"l 4000 , 0.0019 | 0.0039 | 0.60
5000 | 0.0019 |-0.0034 | 0.56

. £000 ) 0.0019 | 0.0031 | ,0.65
| | 7000 | _,),0.001‘8‘ 0.0025 | 0.27
8000 | 0.0017 .\Ko.oozz 0.19

-

A



CMOM (cont'd). \

-
Numerical ‘integration (Gaussian integration)

The calculations in Functions CMOM and COMP are based

on this method. The integration using.2 sample points

located at t=- L !

»

exagﬁiy a cubic polynomial.

b 1
F(x) dx = b—;a £(t) dt
a . -1
= b-a _ 1 1l
2 (A - (A
~—
\

(b-a).t + (b+a)
2

88

7 and-t=+7§ , ,both weigp;éd 1, can integrate

¢



CMOM (cont'd)

Pectangular section

for 0 <e, <

‘89



CMOM (cont'd)

I section”

. ) A(width).fc.x dx =
' 4

| AE Z g
(b=by) f&| 25~ -(§—0> x dx
0 ' 0
1 . ‘

I
—
s
i
C.
E 9
N
h
Ny
| o
w
'L».:lool
]
»|w
| IS

' : . ; ) ‘ A ' -;2—11—<(C+B)3 + (c+B)h§>

«



"91

CMOM (cont'd) —
,.'13-
I section (cont'd)
€. 7 Eo
for C@_g_ < ¢-h
EC f /
c - C\;_o
' ¢ o l.eT ey
(width).fo.x dx = (b-by) £&12 = (g )| * dx
X 0 0
0 . - 0 ‘
o | S
, £ ~E
+ (b-by) 41 —Gt-:‘_—l—e x dx
. . €, u~Ey
c 2
EC I s
. c
. K € -E
* ~ b fé{l ~8- _€°]x dx
~ EuTfg) .
» C—hf
5 ) .
= 5 fe (b-by) A? |
’ 7

b=bw £1 (-a) (B+A T 2C<(B3A)+(B+A) >—eo(B+Aj

2 L

8 . TC_G h% + '(C+B)2>"'€.0 (c+B)
0

c+B ——mm
€4-€ 3

« b L

»
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CMOM (cont'd)

I section (cont'd)

€c 7 Eg (contfd)
2
for ¢ — > c-h
. Ec £
c ’ ‘ c-hg

(width).fc.x dx = (b=by) f!

0 0
, + b f¢
c~hg
+b f¢
_0
€c

B
A cA |37 &
- . s
b .4 1 (A-B)
. =L (A—B)n7I (A+B) + =3 J

Ee
AR

!
I
mim
0
!

Wl

- 2]
€ =
[2 &) | o

2‘1
£ /€
2——<T-> X dx
!: €y \&y

EA+B)3+($+B)(A—B51

(1-p)?% + (1+P)ﬂ—eo(l+P1

-~
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cony .
#

computes the contribution to the total fo

area stressed in compression. The procedure of integration

is similar to CMOM's.

Rectangular sectlion

for .0 <e  <E,|

< <
for €9 < E¢ < €y

ole
n

rce, of the

\
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_COM-P (cont.'d)

hi
3

|

I section A=Cc fo B = c-hf
€c
EC < €,
c ’ ) C-'hf ) ’ .
fo d (b=b 3 25—-(5—5 d
0 0 '
c .
2
vl €[
. i b[ 'fc{z €—0-<—€—o>} dx
C—hf , :
= (b-by) B® £ [, B
A 3A
4 b hg £ Eig _(Eij{(c+B)2+
Ec > &y
for Lo ¢ c-h¢
T Eg -
. _ _ ‘« Eo
(width) .f. dx = (b-by) ©fe ‘g‘(g—
o \Eo
0 0
) c=h¢
+ (b-byw)
€o
C —
Ec
c
£ -£
' _§—=—"=1
+ b £& {1 S % ]
u o
c~hf

w
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'COMP (cont'd)

I section Ec ” €
4‘5 for c %9- < c-h¢ (cont'd)
' c

\ §
=26 by A o (b-bu) (B-A) £ [1 -eu_eo(%(sm)-e()]

e

T 8 €
! ! - e o} -
b be £ {1 %T—E()(c (c+B) e.(,)jl

a.
E -
for c =2 > c-hf
Ec
[4
C ) C—hf a C-‘Q
, €c 3
' € €
0 0 c-hg - '
c
e b e {1 s E_ic{] i
: Eu—€,
€q
c-0
€c

= ~(b—bw)Bf;{% - %@)j + bfL(A-B) (_i+g>— %[1 N %J,(X)z]

- -

8 1
+b fe %(1 - %)[2».‘ TaE, 2 (€c-3 EO{L
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PROGRAM TO
TWO-SPAN SY

PARTIALLY PRESTRESSED CONCRETE BEAMS.

CONCENTRATE
STEFE

MAIN PROGRAM

D1MENST
COMMON
+FCU,
+  CTEN,
+ FRACL.
+ RDF A
+ ANGL

INPUT OF BE
PARAMETERS
NUMBER

B
H
EXL
EXS
PRESF
AREAP
S1GPU
ELMOD
ACSTR
EPSO
EPSU
RDFACT
SPAN
FRACL

" ISECT

BW
HF

READ(S.

TENDON PROFILE.

E1,

96

ANALYZE THE MOMENT REDISTRIBUTION IN
MMETRICALLY LOADED CONTINUODUS

D SYMMETRICAL VERTICAL LOADS: LINEARLY VARYING

ON x(2). F(2)
X, F, B,.H, EXL,
E2L, E2S, EPSO,

ey

EXS, PRESF, AREAP,
SIGPU, AREAC, EPSU,
ETEN, E2X, CRMOM, FS(60), STRAIN(60).
SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR,

CT, RATMOD, ALPHA, BETA, GAMMA 6 AXF, EXTMOM,

EA, ANGLEB

CSTR, ELMOQ <
COMPAT, DELTAtzr
RESULT,
ETOP, ‘\\
TC1 —~’\
N

,

AM, -CROSS-SECTION, AND MATERIAL DATA
ARE o
REFERENCE NUMBER OF THE BEAM
OVERALL WIDTH 'OF CROSS-SECTION IN INCHES
OVERALL HEIGHT OF CROSS-SECTION IN INCHES
TENDON ECCENTRICITY AT LOAD POINT IN INCHES
TENDON ECCENTRICITY AT SUPPORT IN INCHES
APPLIED PRESTRESSING FORCE IN LBS
—TOTAL AREA IN SQ. INCHES, OF PRESTRESSING TENDON
GRADE OF HIGH-STRENGTH PRESTRESSING STEEL IN KSI
MODULUS OF ELASTICITY IN PSI OF HIGH STRENGTH STEEL
CONCRETE STRENGTH IN PSI
CONCRETE STRAIN AT MAXIMUM STRESS (MODEL )
CONCRETE STRAIN AT CRUSHING (MODEL)
REDUCTION FACTOR OF STRENGTH OF CONCRETE (MODEL)
SPAN LENGTH IN "INCHES BETWEEN TWO SUPPORTS
FRACTION OF SPAN FROM END SUPPORT WHERE ONE OF THE
CONCENTRATED LOADS IS APPLIED
O FOR A RECTANGULAR CROSS SECTION
1 FOR AN 1-SHAPED CROSS SECTION
WEB THICKNESS IN INCHES (I-SECTION)
FLANGE HEIGHT IN INCHES (I-SECTION)

1000) NUMBER

FORMAT (110)
READ(5,2000)
FORMAT (4F10.
READ(5,2001)
FORMAT (3F10.
READ(5,2002)
FORMAT (4F10.
READ(S,2003) SPAN,
FORMAT(2F10.5, 110)
IF(ISECT .EQ..0Q0) GO TO 10
READ(S5,2004) BW, HF
FORMAT(2F10.5)

1000
B, H,
5)
PRESF, ‘AREAP,
5, E10.5)
CSTR, EPSO,
5)

EXL, EXS
2000 ‘

SIGPU, ELMOD
2001
EPSU, RDFACT
2002 .
FRACL, ISECT

2003

2004



o .
C ECHO CHECK OF INPUT DATA s
c =
POS = SPAN*FRACL
_WRITE(6,500) NUMBER,POS » .
IF (ISECT .EQ. O) WRITE(6,501) B, H .
WRITE(6.502) B, H. BV, HF
WRITE(6.600) EXL, EXS, SPAN
WRITE (6400) CSTR, EPSO, EPSU, RDFACT
WRITE(6,800) AREAP, PRESF, SIGPU, ELMOD
500 FORMAT(50(’*’),/ 'MOMENT-LOAD CURVE FOR THE TWO-SPAN',

+ * CONTINUOUS PRESTRESSED BEAM NUMBER ’,I5, LOADED’”
+ /7 SYMMETRICALLY WITH TWO CONCENTRATED VERTICAL LOADS ',

+ F7.2,’ INCHES FROM THE END SUPPORTS. ")
501 FORMAT(/’RECTANGULAR CROSS-SECTION, WIDTH = *,F7.2,
+ ' IN., HEIGTH = ’,F7.2,' IN.') .
502 FORMAT(/‘'I-SHAPED SECTION, WIDTH = ‘,F7.2,
+ * IN., HEIGHT = ‘,F7.2,’ IN.",
+ /22X,’WEB ,E7.2,' IN., ~ FLANGE ',F7.2,’ IN.")

600 FORMAT(//'TENDON ECCENTRICITY = ' ,F10.2,’ IN. AT LOAD POINT’,

+ /22X ,F10.2,’ IN. AT SUPPORT.’,
+ /'SPAN BETWEEN SUPPORTS ’,F10.2,‘ IN.')
700 FORMAT(//'CONCRETE STRENGTH ‘,F15.2,° PSI ,',

+ /! STRAIN EPSO ' F15.5,
R /"’ EPSU ’,F15.5,
+ /! REDUCTION FACTOR ' ,F10.2)

800 FORMAT(//’'TOTAL TENDON AREA ' ,F15.4,‘ SQ. IN.’,

+ /' APPLIED PRESTRESSING’.F13.2.’ LBS”’,
+ /' GRADE JF13.2,’ KSI’,
+ /'MOD. OF ELASTICITY L,E13.3,’ PSI’,
+ /50('*"),// ' THE CRACKING MOMENTS AT SUPPORT AND AT THEA.
+ ' LOAD POINT ARE, RESPECTIVELY:’) . =
c s
C CALCULATIONS OF SECTION PROPERTIES
C
10 FCU = CSTR/(.8 + .0O0OQ1*CSTR)
RATMOD = ELMOD/(S57000.*SQRT(CSTR)) =
ALPHA = (B-BW)*HF + RATMOD*AREAP -
€1 = PRESF/(AREAP*ELMOD) C,
c
C FCU : AVERAGE CONCRETE STRESS (FROM WARWARUK, REF. 28)
C RATMOD RATIO OF STEEL MODULUS / CONCRETE MODULUS
C ALPHA COEFFICIENT TO BE USED IN FUNCTION "AXNT"
C Ef * INITIAL STEEL STRAIN (STAGE 1) !
c
IF (ISECT .EQ. O) GO TO 12
1 MOMENT OF INERTIA OF CROSS-SECTION
AREAC AREA OF CONCRETE '
R2 SQUARED RADIUS OF GYRATION

GYRL,GYRS TERMS FROM EQ. 3.3
E2L,E2S STEEL STRAIN AT STAGE 2

NDOOO0O0OO

.

Yy

87
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i (5“

h

0O0000

[sNeXeNeRe] aOO0000

aoon

1 = 2. %(B*HF**3/12.) + .S5*B*HF*(H-HF)**2
+ + BW*(H-2.*HF)=*=*3/12. .
AREAC = 2. *B*HF .+ BW*(H-2.*HF)
R2 = I/AREAC
GYRL = EXL*EXL/R2
GYRS = EXS*EXS/R2.
GO TO 13

.12 AREAC = B*H e

GYRL = 12, *(EXL/H)*(EXL/H) - . 4

GYRS = 12.*(EXS/H)*(EXS/H)
13 E2L = PRESF*{1+GYRL)/(AREAC*S7000. *SQRT(CSTR))

E2S = PRESF*{ 1+GYRS)/(AREAC*S57000.*SQRT(CSTR))

L} .

CALCULATION OF ULTIMATE MOMENTS (ITERATIVE PROCEDURE)
X(1) FIRST GUESS OF LOCATION OF "NEUTRAL ‘AXIS
X(2). FIRST GUESS OF STEEL STRESS

X(1) = (EXL+H/2.)/10,
X(2) ='SIGPU - 30.
UMOML = UMOM(1, EXL)

UCURVL = (PREL(X(2)) + EPSD)/(EXL+H/2.)

X(1) = (EXS+H/2.)/10., )

X(2) = SIGPU - 30. - -
UMOMS & UMOM(2,EXS) ‘ -

USURVS = (PREL(X(2)) + EPSU)/(EXS+H/2.)

CALCULATION OF CkACKING MOMENTS

CTEN MODULUS OF RUPTURE OF CONCRETE
ETEN CONCRETE STRAIN AT TENSILE STRENGTH.
CTEN = 7.5*SORT(CSTR)
<« ETEN = 7.5/57000. .
CSMOM. = CRITIM(EXS) N
= . AN
CLMOM = CRITIM(EXL) ~

EVALUATION OF MOMENT RATIOS
ELAS ELASTIC MOMENT RATIO -
PROVID MOMENT CAPACITY RATIO PROVIDED

ELAS = (1.~FRACL)*(2.+FRACL)/(1.+FRACL)
PROVID = UMOML/UMOMS

IF (ABS(ELAS-PROVID) .LE. O.1) GO TO 80
IF (ELAS*CSMOM - CLMOM) S0, 50, 60

EVALUATION OF THE FIRST CRACKING CONDITIONS

50 WRITE (6,6000)
CALL NEWTN (O, ELAS*CSMOM, CSMOM, 1)
° GO 70 70 '
60 ' WRITE (6,6001) ’

CALL NEWTN (O, CLMOM, CLMOM/ELAS, 1)

.

e
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70 DO 51 KS = 1.5
ADD = 0.0
DO 51 KSS = 1.5

3 SM = KS*(1.+ADD)*CSMOM
PM = PROVID*SM
IF ((SM.GT.UMOMS) .OR. (PM.GT.UMOML)) GO T0s30
WRITE (6,4000) SM, PM !
ADD = ADD + 0.2

51 CALL NEWTN (O, PM, SM, 2}

o c
C ULTIMATE STAGE
c
¢ 30 WRITE(6,3000) UMOMS, UCURVS, UMOML, UCURVL -
CALL NEWTN (O, UMOML, UMOMS, 2)
. sTOP
4000 FQRMAT(/50(’-")./’ THE NEXT ASSUMED SET OF MOMENTS IS: ',
+ /15X.’AT SUPPORT : ' ,E13.6.° _AND AT LD POINT :

+ E13.6.' LB-IN")
3000 FORMAT (/.50(/*') ./ DLTIMATE STAGE: ASSUMED'.

+ /' SUPPORT MOMENT = ’,E13.6,' LB-IN.',
+ /’ CURVATURE = ', E13.6,
+ /° LODAD POINT MOMENT = ¢,E13.6,  LB-1ii~
+ /"’ CURVATURE = /,E13.6)

6000 FORMAT(/.SO(’-’)./’CRACKING OCCURS FIRST AT SUPPORT ")
6001 FORMAT(/.SO(’-’)./’CRACKING OCCURS FIRST AT LOAD POINT)

STOP . \
c ! -
¢ IF THE MOMENT CAPACITY RATIO PROVIDED IS EQUAL TO THE ELASTIC
¢ ONE. THEN NO REDISTRIBUTION OF MOMENT OCCURS. PRINT MESSAGE.
c . }
80 WC = 2.‘(CLMOM+CSMOM*FRACL)/(FRACL'(1.—FRACL)'SPAN)
. T WU = 2.‘(UMOML+UMOMS'FRACL)/(FPACL‘(1.~FRACL)'SPAN)
v WRITE (6.8000) PROVID,ELAS. WC . CSMOM, CLMOM, WU, UMOMS , UMOML
8000 FORMAT (/’CAPACITY PROVIDED, * F7.2,’ ACCORDING TO’,
+ /" ELASTIC RATIO °,F7.2,’ :* NO REDISTRIBUTION. *’.
+ //*CRACKING : OCCURS AT LOAD = <, E13.6.’ LBS’,
+ /’ SUPPORT MOMENT = ’,E13.6.° LB-IN.7,
+ /’ LD PT MOMENT = ’,E13:6.’ LB-IN.",
+ // ULTIMATE : OCCURS AT LOAD = * E13.6,' LBS',
+ /" SUPPORT MOMENT = *,E13.6,° LB-IN.",
+ /0 " LD PT MOMENT = +,E13.6, " LB-IN.")
STOP Q
END
c !
c
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: SUBROUTINE NEWTN (I, PLMOM, SPMOM, KANG)
' C SUBROUTINE THAT PERFORMS THE NEWTON-RAPHSON ITERATIVE
\ C METHOD TO VARY EITHER THE LOAD POINT MOMENY OR THE
N C SUPPORT MOMENT UNTIL SATISFACTION OF THE COMPATIBILITY
C EQUATION. '
C PARAMETERS ARE -
c 1 = O IF EACH INTERMEDIATE ITERATION IS 7O BE PRINTED
C = {1 IF NOT :
c PLMOM INITIAL ASSUMED MOMENT AT LOAD POINT
[ SPMOM INITIAL ASSUMED MOMENT AT SUPPORT
c KANG = | INDICATES ELASTIC COMPATIBILITY rQUATION
c = 2 INDICATES NON-LINEAR COMPATIBILITY EQUATION
c
DIMENSION X{(2). F(2)
COMMON X, F. B, H., EXL, EXS, PRESF, AREAP, CSTR, ELMOD.
+FCU, E1. E2L., E2S. EPSO. SIGPU, AREAC, EPSU, COMPAT,DELTA(2),
+ CTEN, ETEN, E2X, CRMOM, FS(60), STRAIN(60). RESULT,
+ FRACL, SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR. ETOP,
. + RDFACT, RATMOD, ALPHA, BETA, GAMMA, AXF, EXTMOM, TC1,
o + ANGLEA, ANGLEB :
c
C SET TOLERANCE VALUES FOR X, F(X) TO TERMINATE ITERATIONS.
C NLIM : LIMIT TO NUMBER OF ITERATIONS
c .
XTOL = S000.
FTOL = .0001
IF (KANG, .EQ. 2) FTOL = 3.
NLIM = 10

DELTM = 10000.
LOGICAL PRINT

% PRINT = .TRUE.
IF (I .NE. Q) PRINT = _FALSE.

. CALL SEGM (PLMOM, SPMOM, KANG)
- FX = COMPAT
BB = 1 - FRACL
DO 20 J = 1, NLIM

c
g\ ITERATIONS ARE PERFORMED ON THE SUPPC . . “ENT FIRST
 CALL SEGM (PLMOM, SPMOM+DELTM, <ANG)
R FXD = COMPAT
FDER = (FXD - FX)/DELTM
DELX = FX/FDER :
IF (ABS(DELX) .GE. 10000.) DELX 100C -
SPMOM2 = SPMOM - DELX
SPMOM1 = SPMCM
CALL SEGM (PLMOM, SPMOM2, KANG)
FX = COMPAT
: KJ = O '
g IF (.NOT. PRINT) GO TO 9. 2|
S\ WRITE (6,199) J, KJ, PLMOM, SPMOM2, FX

9 IF (KJ .EQ. O) SPMOM = SPMOM2
IF (ABS(DELX) .LE. XTOL) GO TO 60
IF (ABS(FX) .LE. FTOL) GO TO 70
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IF TOLERANCE 1S NOT MEET, ITERATIONS ARE DONE ON ‘THE
LOAD POINT MOMENT.

SPMOM = SPMOM1+ 1000.
DO 20 KJ = 1, 8-
PLMOMD = PLMOM + DELTM
CALL SEGM (PLMOMD, SPMOM,  KANG)
FXD = COMPAT
FDER = (FXD - FX)/DELTM
DELX = FX/FDER
IF (ABS(DELX) .GE. 10000.) DELX =,/-10000.

PLMOM = PLMOM - DELX .
CALL SEGM (PLMOM, SPMOM, KANG)
FX = COMPAT
80 IF (.NOT. PRINT) GO TO 5
WRITE (6.199) J. KJ, PLMOM, SPMOM, FX
5 IF (ABS(DELX) .LE. XJOL) GO TO 60
IF (ABS(FX) .LE. FTOL) GO TO 70

20 CONTINUE
WHEN LOOP IS NORMALLY COMPLETED, NLIM IS EXCEEDED..

WRITE (6,200) NLIM, PLMOM, SPMOM, FX
RETURN

THfS SECTION RETURNS AFTER MEETING TOLERANCE ON XTOL
(MOMENT DISTRIBUTION IS SATISFACTORY)

60 WRITE (6,202) J. KJ, PLMOM, SPMOM, FX
GO TO 300

THIS SECTION RETURNS AFTER MEETING F(X) TOLERANCE
(COMPATIBILITY EQUATION IS SATISFIED)

70 WRITE (6,203) J., KJ, PLMOM, SPMOM, FX

CALCULATION OF LOAD CORRESPONDING TGO FINAL DISTRIBUTION
OF MOMENTS

300 w =-2.‘(PLMOM+SPMOM*FRACL)/(FRACL'BB*SPAN)
WRITE(6,205) W

205 FORMAT(//SX.’THE TOTAL APPLIED LOAD IS= ’,E13.6,' LBS')
199 FORMAT (/SX, AT ITER. /,I4,’ *,I4,’ THE MOMENTS AT ’.

+ ‘LD POINT = /,E13.6,’ AND AT SUPPORT = ’,E13.6.

+ 7 LB-IN.’./30X, *%*% COMPATIBILITY EQGUATION = ‘., E13.6)
200 FORMAT (//5X.’'TOLERANCE NOT MET. AFTER ', I4,’ ITER.'.

+ ¢ LD PT. MOM. = ’, E13.6,’ SUP = *, E13.6,

+ ¢+ LB-IN.’,/30X. **% COMPATIBILITY EQ. = '.E13.6)
202 FORMAT (//5X.’'MOM. TOLERANCE MET IN ', I4,’ ', 14, ITER.".

+ + LD PT. MOM. ="'/, E13.6,’ ,SUP = ', E13.6,
-~ &+ LB-IN.’./30X’'*** COMPATIBILITY EQ. = ’,E13.6) .
203 FORMAT (//5X.’COMPAT. TOLERANCE MET IN ', I4.’ ‘.14,

+ ¢ ITER., LD PT. MOM. = /, E13.6,’ ,SUP = *, E13.6,

+ ¢ LB-IN.’,/30X, *** COMPATIBILITY EQ. = ',E13.6)

RETURN : : o

END
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NE SEGM (PLMOM, SPMOM, KANG)

SUBROUTINE DISCRETIZING THE BEAM INTO SEGMENTS AS SHOWN IN
PAGE 82. LOCATION WITH RESPECT TO THE END SUPPORT,
NTRICITY, VALUE OF MOMENT OF EACH SEGMENT IS

TENDON ECCE
EVALUATED.
THE SUBROUT

PARAMETERS ARE IDENTICAL TO THE SUBROUTINE NEWTN'S.

INE EACH IS THEN CALLED.

DIMENSION X{(2), F(2), zZL{6&). ZR(6), ZRS(6)

COMMON X
+FCU, Et,
+ CTEN,
+ FRACL,
+ RDFAC
+ ANGLE

INITIALIZAT
COMPAT
ANGLEA

D ANGLEB

H

COMPAT
ANGLEA =
ANGLEB =

F., B, H, EXL, EXS, PRESF, AREAP, CSTR,
E2L, E2S., EPSO., SIGPU, AREAC, EPSU, COMPAT,DELTA(2).

ELMOD,

ETEN, E2X, CRMOM, FS(60), STRAIN(60), RESULT,

SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR,
T, RATMOD. ALPHA, BETA., GAMMA, AXF, EXTMOM,

A, ANGLEB

ION OF CUMULATIVE VARIABLES.
VALUE OF COMPATIBILITY EQUATION
ANGLE AT END SUPPORT
ANGLE AT ONE SIDE OF CENTRE SUPPORT
-

0.
0.
O¢

ETOP,
TCH1,

PORTION OF BEAM BETWEEN END SUPPORT AND LOAD APPLICATION POINT.
ZL DISTANCE OF THE SEGMENT CENTER TO THE END SUPPORT

EZ EC
DISTM VA
SLENGF SE

ZL(1)
ZL(2)
ZL(3)
ZL(4)
ZL(5)
. ZL(6)

1l

CENTRICITY OF STEEL TENDON
LUE OF MOMENT
GMENT LENGTH

,

FRACL*SPAN/4. b N
2.2*2L(1)
2.6%20L(1)
3.0%2ZL(1)
3.4*20(1)
3.8*2L(1)

DO 200 IDIST=1,6

EZ = E
DISTM
SLENGF
IF (ID
SLENGF
200  CALL E

XL*ZL(IDIST)/(4.*2L(1))
= PLMOM=*ZL(IDIST)/{(4.+ZL( 1))
= 2.%ZL(1)
IST .EQ. 1) GO TO 200
= 0.4*2L(1) .
ACH(ZL(IDIST), EZ. DISTM, SLENGF, KANG)
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PORTION OF BEAM BETWEEN LOAD APPLICATION POINT AND THE POINT
WHERE THE TENDON ECCENTRICITY MEETS THE CROSS SECTION

CENTER OF GRAVITY.
ZR DISTANCE OF SEGMENT TO LOAD APPLICATION POINT

ER TENDON ECCENTRICITY
DISTM VALUE OF MOMENT IN SEGMENT

VAL = {1-FRACL)*SPAN

ZR(1) = VAL*EXL/(20.*(EXL+EXS))

ZR(2) =-3.*2R(1) . .
ZR(3) = 5.%2R(1) '
ZR(4) = T.*ZRY(1) i

ZR(5) = 9.*ZR(1) .

ZR(6) = 15.%*ZR(1)

DO 300 IDIST=1,6

ER = EXL - EXL*ZR(IDIST)/(20.%ZR(1))

DISTM = PLMOM - ZR(IDIST)*(PLMOM+SPMOM)/VAL

SLENGF = (2./3.)*ZR(8) L

IF (IDIST .EQ. 6) GO TO 300

SLENGF = ZR(6)/7.5 ,
300 CALL EACH(4. ‘ZL(1)+ZR(IDIST) ‘ER, DISTM, SLENGF. KANG)

REMAINING PORTION GF BEAM (UP TOD CENTRE SUPPORT)
ZRS DISTANCE OF SEGMENT TO THE LOAD APPLICATION POINT
ERS - TENDON ECCENTRICITY ’

ZRS(1) = VAL*EXS/(4.*(EXL+EXS))
ZRS(2) = 2.2*2RS(1).
ZRS(3) = 2.6*ZRS(1)
ZRS{4) = 3.0*ZRS(1)
ZRS(5) = 3.4%ZRS(1) "
ZRS(6) .= 3.8*ZRS(1)
PINF = EXL*VAL/(EXL+EXS)

DO 400 IDIST=1,6
ERS = —EXS*ZRS(IDIST)/(d *ZRS(1))
DISTM = PLMOM - (PINF + ZRS(IDIST))*(PLMOM + SPMOM) /VAL
SLENGF = 2.*ZRS(1)
IF (IDIST .EQ. 1) GO TO 400
« SLENGF = Q.4*ZRS(t)
400 CALL EACH(4.*ZL(1)+PINF+ZRS(IDIST). ERS,DISTM,SLENGF, KANG)

THIS SECTION EVALUATES THE COMPATIBILITY EQUATION AFTER
THE CONTRIBUTION OF ALL THE SEGMENTS TO THE TOTAL ANGLES

HAS BEEN ACCUMULATED.

i

. }
3o
“IF (KANG.EQ.2) COMPAT = (180./ 3.141593) * (FRACL * = '“-
+  (ABS(ANGLEA) + ABS(ANGLEB)) - ABS(ANGLEB))

 RETURN '

END
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SUBROUTINE EACH(Z, EZ, DISTM, SLENGF, KANG[

SUBROUTINE FOR CALCULATION OF CONTRIBUTION OF EACH SEGMENT
CURVATURE TO THE TOTAL ANGLES IN THE COMPATIBILITY EQUATIONS.
PARAMETERS ARE - !
Z DISTANCE OF CENTRE OF,-SEGMENT TO THE END SUPPORT
EZ ECCENTRICITY OF SEGMENT -t
DISTM VALUE OF MOMENT
SLENGF LENGTH OF SEGMENT . “
KANG ={- FOR ELASTIC COMPATIBILITY EQUATION
- =2 FOR NON-LINEAR COMPATIBILITY EQUATION

DIMENSION X(2). F(2) :
COMMON X, F, B, H. EXL, EXS, PRESF, -AREAP, CSTR, ELMOD,

+FCU. E1. E2L. E2S, EPSO, SIGPU, AREAC, EPSU, COMPAT,DELTA(2),
+ CTEN, ETEN, E2X. CRMOM, FS(60), STRAIN(60), RESULT,

+ FRACL, SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR, ETOP,

+ RDFACT, RATMOD. ALPHA, BETA, GAMMA, AXF, EXTMOM, TCt,

+  ANGLEA. ANGLEB

IF THE- MOMENT IN SEGMENT IS SMALLER THAN THE CRACKING

MOMENT CORRESPONDING TO THE ECCENTRICITY, THEN ITS

ACTUAL MOMENT IS EQUAL TO A PORTION OF THE CRACKING MOMENT.

CRMOM = (DISTM/ABS(DISTM))*CRITIM(EZ)
IF (ABS(DISTM) .LT. ABS(CRMOM)) GO TO 5000

GENERAL CRAGKED SECTION ANALYSIS AS DESCRIBED IN .
CHAPTER 3. EVALUATION OF THE COEFFICIENTS TO BE USED .
IN THE EQUATION OF NEUTRAL  AXIS.

IF THE SEGMENT SECTION IS CRACKED, THE PRESTRESSING

STEEL STRESS IS EVALUATED USING THE LINEAR BOND VARIATION

CDNCEPT. THE AVERAGE CURVATURE IS CALCULATED BY INTEGRATING

THE CURVATURES THROUGH SUBROUTINE ROMB.

BETA = (B-BW)*HF*HF/2. + RATMOD*AREAP*{ABS(EZ)+H/2.)
GAMMA = (B-BW)*HF**3/3. + RATMOD*AREAP*(ABS(EZ)+H/2.)**2
AXF = AREAP*ELMOD*(E1+E2X) ’

CONDITION AT THE CRACK, CRACKING MOMENT HAS BEEN JUST REACHED

EXTMOM = ABS(CRMOM) - AXF*(ABS(EZ)+H/2.)
Y = H/2. \
CALL AFCRAK(Y, EZ, 1, LENGTH)

FSA = X(2)/1000.

CONDITION AT THE CRACK, CRACKING MOMENT EXCEEDED 9

EXTMOM = ABS(DISTM) - AXF*(ABS(EZ)\H/2.)
Y = H/2. : Y
CALL AFCRAK(Y, EZ, 1, LENGTH)

FSCR = X(2)/1000. . 5
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ETOP IS THE DISTANCE FROM THE TOP OF THE SECTION TO THE
"FICTITIOUS" FORCE

ETO% = (EXTMOM - AXF*ABS(EZ))/AXF - H/2.

THE PRESTRESSING STEEL STRESS VARIATION IS EVALUATED
AT 60 POINTS EVENLY SPACED WITHIN 2 HYPOTHETICAL
CRACKS IN THE CONCRETE.

DLB = O.
DO 80 LENGTH=1,60
DLB = DLB + 0.0125
FS(LENGTH) = FSCR -2.*(FSA-FSB)*(DLB~.5*DLB*DLB)
Y = H/2. :
CALL AFCRAK(Y, EZ, 2, LENGTH)
STRAIN(LENGTH) = X(1) + PREL(FS(LENGTH))
80 CONTINUE
CALL ROMB(60., EZ, DISTM)
GO TO 100 \ o

5000 RESULT = (DISTM/ABS(CRMOM) ) *CURVCT A N

\

THE AVERAGE CURVATURE FROM THE CRACKED SEGMENT%g
OR THE CURVATURE FROM THE UNCRACKED SEGMENTS )
IS ASSIGNED TO THE VARIABLE "RESULT" .
L)
100 IF. (KANG .NE.2) COMPAT = COMPAT + RESULT*Z/SPAN
ANGLEA ANGLEA + RéﬁULT*(SPAN-z)/SPAN
ANGLEB ANGLEB + RESULT*Z/SP N {i -
RETURN .
END

"on

N

"~
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FUNCTION CRITIM (EZ) 4
FUNCTION FOR THE EVALUATION DF THE CRACKING MOMENT OF
EACH SEGMENT'. THE SINGLE PARAMETER IS THE TENDON
ECCENTRICITY IN THE SECTION. \
‘DIMENSION X(2), F(2) ‘ .
. COMMON X, F, By H, EXL, EXS, PRESF, .AREAP, CSTR, ELMOD,
+FCU, E1, E2L. E2S. EPSO. SIGPU, AREAC, EPSU, COMPAT.DELTA(2).
+ CTEN, ETEN, E2X., CRMOM, F5(60). STRAIN(E0). RESULT,
+ FRACL, SPAN, ISECT. BW, HF \R2, FSB, CURVCT, ASR, ETOP,
+ ROFACT., RATMOD. ALPHA, BETA, GAMMA, AXF, EXTMOM, TC1,
+  ANGLEA. ANGLEB . f :
SET THE X INITIAL GUESSES
x(1) = 0.0005
x(2) = 100.
SECTION PROPERTIES ’
GYRZ : TERM OF EQUATION 3.3
E2X : STEEL STRAIN AT STAGE 2
IF (ISECT .EQ. O) GO TO 21 .
GYRZ = ABS(EZ)**2/R2 i
GO TO 23
21 GYRZ = 12.*(ABS(EZ)/H)*(ABS(EZ)/H)
23 E2X = EPSO*( 1-SQRT(1-PRESF/(AREAC*CSTR)) )} *(1+GYRZ) N
SIMULTANEOUS EQUATIONS OF EQUILIBRIUM AND STRAIN
COMPATIBILITY ARE SOLVED THROUGH SUBROUTINE "NLSYST".
CASE OF THE CRACKING CONDITIONS.
CALL NLSYST (2. 1. 3, EZ, LENGTH)
RESULTING STEEL STRESS AND NEUTRAL AXIS
FSB = Xx(2)
C = H*X(1)/(ETEN+X(1))
IF(ISECT .EQ. O) GO TO 24.
IF(H-C .LE. HF) GO TO 24
CRITIM = ABS(CMOM(C.X(1))) + BW*CTEN%(H-C)*(H-C)/3.
+ + (B-BW)*CTEN*(H-C-HF/2.)*HF 6\1
+ + AREAP*X(2Z,*1000.*(ABS(EZ)+H/2.-C)
GO TO 25
24 CRITIM = ABS{CMOM(C.X(1))) + B*CTEN*(H-C)*(H-C)/3. +
+ Lo "P*X(2)*1000.*(ABS(EZ)+H/2.-C)
25 CURVCT = (X(1)+ETEN)/H .
IF ((ABS(EZ) :EQ. EXL) .0O® T5i{ZZ) .EQ. EXS)) GO TO 500
RETURN
500 WRITE(6,3000) CRITIM, CURVCT
3000 FORMAT (/’ MOMENT = o LB-IN. ‘.
+ \ /’ CURVATURE -
RETURN
END
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FUNCTION UMOM(MCASE, ECC)
FUNCTION FOR CALCULATING THE ULTIMATE MOMENT. -
PARAMETERS ARE -
MCASE =1 FOR THE EVALUATION OF LOAD PQINT MOMENT
= 2 FOR THE EVALUATION OF SUPPORT MOMENT
. EcC ECCENTRICITY OF PRESTRESSING STEEL TENDON

DIMENSION X(2), F(2)

COMMON X, F, B, H, EXL, EXS, PRESF, AREAP, CSTR, ELMOD, .
+FCU, EY, E2L, E2S, EPSO, SIGPU, AREAC, EPSU, COMPAT,DELTA(2),
+ CTEN, ETEN, E2X, CRMOM, FS(60), STRAIN(60), RESULT,
FRACL, SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR, ETOP,.

ROFACT, RATMOD, ALPHA, BETA, GAMMA, AXF, EXTMOM, TCH{,
ANGLEA, ANGLEB

+ + +

VALUES SET FOR USE IN SUBROUTINE "NLSYST"

N = 2 -
DELTA(1) = 0.001
DELTA(2) = 2.

EZ = 1.

LENGTH = 1

CALL NLSYST (N, 1, MCASE, EZ, LENGTH)
CHECK THE VALUE OF NET REINFORCEMENT INDEX

OMEGA = AREAP*X(2)*1000./(B*(ECC+H/2.)*CSTR)
1F ‘(x(1) .LT. 0.) GO TO 70

IF (ISECT .EQ. 0) GO TO 40
IF (X(2)*1000.*AREAP/(FCU*B) .LE. HF) GO TO 40

DIFFERENT FORMULAS ARE TO BE USED WHEN THE REINFORCEMEN]
INDEX EXCEEDS Q0.3

" IF (OMEGA - 0.30) 301,301,300
300 WRITE (6,4000) OMEGA ‘
UMOM = (CSTR*BW*(ECC+H/2)*%2)/4.
+ + O0.B5%*CSTR*(B-BW)*HF*(ECC#+H/2.-HF/2.)
RETURN ,
301 ASR = AREAP - FCU*(B-BW)*HF/(X(2)*1000.)
UMOM = (AREAP-ASR)*X(2)*1000.*(ECC+H/2.-.42*X (1))
+ + ASR*X(2)*1000.*(ECC+H/2.-HF/2.)
RETURN .
40 1F (QOMEGA - 0.30) 201,201,200
200 WRITE (6,4000) OMEGA
UMOM .=(CSTR*B*(ECC+H/2.)**2)/4.
RETURN
201 UMOM = AREAP*X(2)*1000.*(ECC+H/27-.42*X(1))
RETURN :
70. WRITE (6,7000) X{1)

4000 FORMAT (/’OVERREINFORCED SECTION *=**’,

+ /***=OMEGA = ‘,E13.5,’ GT. 0.30')

7000 FORMAT (/' NEGATIVE N.A. = ‘,E12.5,' (ULTIM. STAGE)')

STOP
END
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SUBROUTINE NLSYST (N, -I, MCASE, EZ, LENGTH)

THIS SUBROUTINE SOLVES A SYSTEM OF N NON-LINEAR EQUATIONS BY
NEWTON’S METHOD. THE PARTIAL DERIVATIVES OF THE FUNCTIONS ARE
ESTIMATED BY DIFFERENCE QUOTIENTS WHEN A VARIABLE IS PERTUBED
BY AN AMOUNT EQUAL TO DELTA (DELTA IS ADDED).

THIS IS DONE FOR EACH VARIABLE IN EACH FUNCTION. INCREMENTS
TO IMRROVE THE ESTIMATES FOR THE X-VALUES ARE COMPUTED FROM

A SYSTEM OF EQUATIONS USING SUBROUTINE ELIM.

PARAMETERS ARE -~

FCN SUBROUTINE THAT COMPUTES VALUES OF THE FUNCTIONS.

N " THE NUMBER OF EQUATIONS

MAXIT LIMIT TO THE NUMBER OF ITERATIONS THAT WILL BE USED

X © ARRAY TO HOLD THE X VALUES. INITIALLY THIS ARRAY
‘HOLDS THE INITIAL GUESSES. IT RETURNS THE FINAL
.VALUES.

F ‘AN ARRAY THAT ‘HOLDS VALUES OF THE FUNCTIONS

DELTA A SMALL VALUE USED TO PERTURB THE X VALUES SO
PARTIAL DERIVATIVES CAN BE COMPUTED BY DIFFERENCE
QUOTIENT

XTOL TOLERANCE VALUE FOR CHANGE  IN X VALUES TO STOP

ITERATIONS. WHEN THE LATEST CHANGE IN ANY X
MEETS XTOL, THE SUBROUTINE TERMINATES.

FTOL TOLERANCE VALUE ON F TO TERMINATE. WHEN THE
LATEST F VALUE IS LESS THAN FTOL, SUBROUTINE
N TERMINATES.

DIMENSION X(2)., F(2), A(2.3). XSAVE(2),FSAVE(2) ¥
COMMON X, F, B, H, EXL, EXS, PRESF, AREAP, CSTR, ELMOD,

+FCU, E1, E2L, E2S, EPSO, SIGPU, AREAC., EPSU, COMPAT ,DELTA(2),

+ CTEN, ETEN, E2X, CRMOM, FS(60), STRAIN(&O), RESULT,
+ FRACL, SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR, ETOP,
Co+ RDFACT., RATMOD, ALPHA, BETA, GAMMA, AXF, EXTMOM, TCt,
+ ANGLEA, ANGLEB .
MAXIT = 20
XTOL = 0.0001
FTOL = 0.0005
LOGICAL PRINT

CHECK VALIDITY OF VALUE OF N

IF (N.LT.2 .OR. N.GT.3) GO TD 999
PRINT = .TRUE.

1 INDICATES IF INTERMEDIATE RESULTS ARE TO BE PRINTED

IF (I.NE.O) PRINT = .FALSE
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BEGIN ITERATIONS
SAVE X VALUES, THEN GET F VALUES
NP= N + 1
DO 100 IT= 1,MAXIT
DO 10 IvBL= 1,N
XSAVE(IVBL)= X(IVBL)
10  CONTINUE
. CALL FCN{(MCASE, EZ, LENGTH)
TEST F VALUES AND SAVE THEM
ITEST= O
DO 20 IFCN= 1,N
IF (ABS(F(IFCN)).GT.FTOL) ITEST= ITEST + ¢
FSAVE(IFCN)= F(IFCN}
20  CONTINUE
PRINT CURRENT VALUES IF PRINT IS .TRUE.
IF(.NOT.PRINT) GO TO 30
WRITE(6,1000)IT, X
1000 FORMAT(/’ AFTER ITER. ’,13,
+ © X AND F VALUES ARE’,/,10€13.6)
WRITE(6,1001)F -
1001 FORMAT(/, 10E13.6)
SEE IF FTOL IS MET. IF NOT, CONTINUE. IF SO, RETURN.
30 - IF(ITEST.NE.O) GO TO 35 .
RETURN ‘
THIS DOUBLE LOOP COMPUTES THE PARTIAL DERIVATIVES OF EACH
FUNCTION FOR EACH VARIABLE AND STORES THEM IN A COEFFICIENT
ARRAY ) "
35 DO 50 JCOL=1.N
X(JCOL)= XSAVE(JCOL) + DELTA(JCOL)
CALL FCN(MCASE, EZ, "LENGTH) —
DO 40 IROW=1,N Y
A(IROW,UCOL)= (F(IROW) - FSAVE(IROW))/DELTA(JCOL)
40 CONT INUE
RESET X VALUES FOR NEXT COLUMN OF PARTIALS
X(JCOL)= XSAVE(JCOL) : ,
50  CONTINUE
PUT NEGATIVE VALUES OF F AS R.H.S. AND CALL "ELIM"

DO 60 I1ROW= 1,N
A(IROW,NP)= -FSAVE(IROW)
60  CONTINUE
CALL ELIM(A, N, NP, 2)



c
C CHECK IF COEFFICIENT MATRIX IS NOT TOO ILL-CONDITION
¢ .
DO 70 IROW= 1 .N
1F(ABS{A(IROW,IROW)) .LE.1.E-5) GO TO 998
70 CONTINUE SR
c
C APPLY THE CORRECTIONS TO THE X VALUES, ALSO SEE IF X
C IS MET.
c
ITEST= O
DO 80 IVBL=1,N
X(IVBL)= XSAVE(IVBL) + A(IVBL,NP)
IF(ABS(A(IVBL,NP)).GT.XTOL) ITEST= ITEST +t
‘80 CONTINUE
c
¢ IF XTOL IS MET, PRINT LAST VALUES AND RETURN, ELSE D
C ANOTHER ITERATION
c
IF(ITEST.EQ.O) GO TO 997
100 CONTINUE
(o
C MAXIT.ITERATIONS HAVE BEEN DONE.
c & .
RETURN . : b ;
c . .
C XTOL IS MET. PRINT LAST VALUES.
c

997 IF( .NOT.PRINT) GO TO 110
- WRITE (6,1002)IT, X
1002 FORMAT(/,’ AFTER ITER. ',I13,
+ * X VALUES (MEETING XTOL) ARE’,/,10F13.5)
110 RETURN ; ‘
C 1
C PARTIALS FORM A NEARLY SINGULAR MATRIX. PRINT MESSAG
c . N
998 WRITE(6, 1003) ‘ .
1003 FORMAT(/’ CANNOT SOLVE SYSTEM. MATRIX NEARLY SING
STOP ,
Cc - £
C NUMBER OF EQUATIONS IS INVALID. PRINT MESSAGE.
C ' . .
999 WRITE(6, 1004)N . .
1004 FORMAT(//NUMBER OF EONS PASSED TO NLSYST IS INVAL
+’ MUST BE 2<N<3., VALUE WAS ’,I3)
STOP '
END

ED

TOL

(o]

E.

ULAR )

iD. ",

N
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SUBROUTINE ELIM(AB, N, NP, NDIM) )

THIS SUBROUTINE SOLVES A SET OF LINEAR EQUATIONS.

THE GAUSS ELIMINATION METHOD IS USED, WITH PARTIAL PIVOTING.
MULTIPLE R.H.S. ARE PERMITTED, THEY SHOULD BE SUPPLIED

AS COLUMNS THAT AUGMENT THE COEFFICIENT MATRIX.

PARAMATERS ARE - ‘
AB COEFFICIENT MATRIX AUGMENTED WITH R.H. S VECTORS

N NUMBER OF EQUATIONS
NP TOTAL NUMBER OF COLUMNS IN THE AUGMENTED MATRIX

NDIM FIRST DIMENSION OF MATRIX AB IN THE CALLING PROGRAM.
THE SOLUTION\WECTOR(S) ARE RETURNED IN THE AUGMENTATION COLUMNS

"OF AB.
DIMENSION AB{(NDIM,NP)
BEGIN THE REDUCTION

NMi= N - 1 . .
0O 35 I= 1,NM} -

FIND THE ROW NUMBER OF THE PIVOT ROW. INTERCHANGE ROWS TO PUT
THE PIVOT ELEMENT ON THE DIAGONAL
B -
IPVT= 1 o ,
IP1= I + 1 , T )
DO 10 J= IP1, N _ .
IF (ABS(AB(IPVT,I)).LT.ABS(AB(J, 1))) IPVT = U )

10 CONTINUE

CHECK IF THE PIVOT ELEMENT IS NOT TOO SMALL. IF SO PkINT
A MESSAGE AND RETURN:

IF((ABS(AB(IPVT.I)).LT..00001)) GO TO 99 ) ‘\

INTERCHANGE. EXCEPT IF THE PIVOT ELEMENT IS ALREADY 'ON THE
DIAGONAL . ‘ . ;
o
IF(IPVT.EQ.I) GO TO 25
DO 20 JCOL= I,NP
SAVE= AB(1I,JCcOL)
AB(1,JCOL)= AB{IPVT,JCOL) . .
AB(IPVT,LJUCOL)= SAVE :
20  CONTINUE
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REDUCE ALL ELEMENTS BELOW THE DIAGONAL IN THE I-TH ROW.
CHECK FIRST TO SEE IF A ZERO ALREADY PRESENT. IF SO,
CAN SKIP THE REDUCTION FOR THAT ROW
25 DO .32 JROW= 1Pt N N

IF(AB(JROW,1) .EQ.0) GO TO 32

RATIO= AB(JUROW.I)/AB(I.I)

DO 30 KCOL= IP1,NP

AB(JROW,KCOL )= AB(JROW,KCOL) - RATIO*AB(I,KCOL)

30 CONTINUE : :
32. CONTINUE ;
35 CONTINUE

CHECK A(N.N) FOR SIZE
1F (ABS(AB(N,N)).LT..00001) GO TO 99
BACK SUBSTITUTION

DO 50 -KCOL= NP1 NP

NP1= N + 1 ' \ '
AB(N,KCOL)= AB(N.KCOL)/AB(N.N)‘

DO 45 y=2.N . - :
NVBL= NP1 -y
L= NVBL +

VALUE= AB(NVBL,KCOL)
DO 40 K=L{N
VALUE= VALUE - AB(NVBL.K)*AB(K,KCOL)
40 CONTINUE . ot ’
- AB(NVBL ,KCOL)= VALUE/AB(NVBL ,NVBL)
45 CONTINUE
50 CONTINUE
RETURN

MESSAGE FOR A NEAR SINGULAR MATRIX

99 WRITE(6, 100) ’ : :
100 FORMAT(/’SOLUTION NOT FEASIBLE. A NEAR ZERO PIVOT WAS
i + ENCOUNTERED. ')
RETURN :
END

o

w112
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SUBROUTINE FCN (MCASE, EZ, LENGTH) L

TH1S SUBROUTINE DEFINES ALL THE FUNCTIONS OF EQUILIBRIUM
AND STRAIN COMPATIBJLITY TO BE SATISFIED.
PARAMETERS ARE - | v .
MCASE = 1 INDICATES THE ULTIMATE STAGE WHEN ANALYZING
THE LOAD POINT SECTION
= 2 INDICATES THE ULTIMATE STAGE WHEN ANALYZING
THE CENTRE SUPPORT SECTION
= 3° INDICATES THE UNCRACKED SECTION ANALYSIS

EZ STEEL TENDON ECCENTRICITY
LENGTH - INDICATES THE INDEX IN THE VECTOR OF STEEL
: STRESS "FS"™ AT A DISTANCE FROM A CRACK
-
DIMENSION X(2), F(2) o
COMMON X, F, B. H. EXL, EXS, PRESF, AREAP, .C5TR, ELMOD,
+FCU, E1, E2L, E2S. EPSO. SIGPU, AREAC, EPSU, COMPAT ,DELTA(2),
+ CTEN., ETEN. E2X. CRMOM, FS(60), STRAIN(&0), RESULT,
+ FRACL, SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR, ETOP,
+ RDFACT., RATMOD, ALPHA, BETA, GAMMA, AXF, EXTMOM, TCH,
+ ANGLEA, ANGLEB
START THE SELECTION OF CASES
IF(ISECT .EQ. O) GO TO 20
GO TO (11,22,33).MCASE
20 GO TO 7,3) ,MCASE &
FOR MCASE 1 AND 2,
X(1) : LOCATION OF NEUTRAL AXIS
X(2) : STEEL STRESS
F(1) : EQUATION OF EQUILIBRIUM
F(2) : STRAIN COMPATIBILITY EQUATION
FOR MCASE = 3,
X(1) : STRAIN OF EXTREME CONCRETE FIBRE IN COMPRESSION
X(2) : STEEL STRESS
F(1) : EQUATION OF EQUILIBRIUM:
F(2) : STR'IN COMPATIBILITY EQUATION
AN . LOCATION OF NEUTRAL-AXIS
RECTANGULAR SECTION
1 F(1) = AREAP * X(2) * 1000. /(Fcu=*B) - X(1)
F(2) = E1 + E2L + EPSU*(EXL¥H/2.-X(1))/X(1) - PREL(X(2))
RETURN N
2 F(1) = AREAP * X(2) * 1000. /(FCU*B) - X(1)
F(2) = E1 + E25 + EPSU*(EXS+H/2.-X(1))/X(1) - PREL(X(2))
RETURN -
3 AN = X{(1)*H/(ETEN+X(1)) . )
F(1) = ABS(COMP(AN,X{1))) - O.5*B*CTEN*(H-AN) + A
+ AREAP*X(2)*1000. s
F(2) = E1 +'E2X + (ETEN+X(1)) (ABS(EZ)+H/2.)/H - PREL(X(2)) ®
RETURN .
‘r‘.,—'-:ﬁ. ) L R P - -
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1-SHAPED SECTION

22

33

+

END - .

ASR : AREA OF CONCRETE WITH THE WEB WIDTH TAKEN UP TO THE
CROSS-SECTION TOP )

IF(X(2)*1000.*AREAP/(FCU*B) .LE. HF) GD 7O 1
ASR = AREAP - FCU*(B-BW)*HF/(X(2)*1000.) .
F(1) = 1.4%ASR*X(2)*1000./(BW*CSTR) - X(1)
F(2) = E1 +E2L + EPSU*(EXL+H/2.-X(1))/X(1) - PREL(X(2))
RETURN
IF(X(2)*1000. *AREAP/(FCU*B) .LE. HF) GO TO 2
"ASR = AREAP - FCU*(B-BW)*HF/(X(2)*1000.)
F(1) = 1 4*ASR*X(2)*1000./(BW*CSTR) - X(1)
F(2) = E1 + E2S + EPSU*(EXS+H/2.-X(1))/X(1) - PREL(X(2))
RETURN
AN = X(1)*H/(ETEN+X(1))
IF(AN .LE. HF) GO TO 3
F(1) = ABS(COMP(AN,X(1))) - (BW*CTEN*(H-AN)/2. +
(B-BW)*CTEN*HF) - ASEAP*X(2)*1000. ;

F(2) = E1 + E2X + (ETEN+X(1))‘(ABS(EZ)*H/2.)/Htﬁ,PREL(X(2))

RETURN
N
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SUBROUTINE AFCRAK(Y, EZ, KASE, LENGTH) 1

SUBROUTINE FOR ROOT FINDING USING NEWTON’S METHOOD.
IT IS USED SPECIFICALLY FOR THE GENERAL CRACKED SECTION
ANALYSIS. ’
PARAMETERS ARE -

START AN INITIAL VALUE AND CHECK IF EQUATION OF NEUTRAL AXIS

+
+
+
+
+

Y LOCATION OF THE NEUTRAL AXIS
EZ STEEL TENDON ECEENTRICITY .
KASE =~ = 1 INDICATES THE CONDITIONS JUST AFTER CRACKING

AND AT A CRACK

= 2 INDICATES THE CONDITIONS AT SOME DISTANCE FRO

A CRACK
LENGHT AS DEFINED IN SUBROUTINE "FCN"

DIMENSION X(2), F(2)
COMMON X, F, B, H, EXL, EXS, PRESF, AREAP, CSTR,

FCU, Et, E2L, E2S, EPSO, SIGPU, AREAC, EPSU, COMPAT,DELTA(2),
RESULT,

‘CTEN, ETEN, E2X, CRMOM, FS(60). STRAIN(60).

ELMOD,

FRACL, SPAN, ISECT, BW, HF, R2, FS5B, CURVCT, ASR,
RDFACT, RATMOD, ALPHA, BETA, GAMMA, AXF, EXTMOM,

" ANGLEA, ANGLEB .

IS SATISFIED

20

100

IF(ISECT .EQ. O) BW=B
FAXNT = AXNT(Y, EZ, KASE, LENGTH)

DO 20 JC = 1,30

DELY = FAXNT/DAXNT(Y, EZ, KASE, LENGTH)

Y = Y - DELY

FAXNT = AXNT(Y, EZ, KASE., LENGTH)
IF(ABS(DELY) .LE. .0001) GO TO 70
IF(ABS(FAXNT) .LE. .00001) GO TO 70 .

CONT INUE '

WRITE (6,100) JC

FORMAT (/’ TOL. NOT MET AFTER ’,15,’ ITERATIONS.
sTOP

70 IF(Y .LT. 0.) GO TO 30

EVALUATION OF STRESSES

FC : STRESS IN CONCRETE EXTREME FIBRE
X(1) : CORRESPONDING STRAIN IN CONCRETE
X(2) : STRESS IN PRESTRESSING STEEL

FC = EXTMOM*Y/{GAMMA-BETA*Y-BW*Y**3/6.)

X(1) = FC/(57000.*SQRT(CSTR))

X(2) = RATMOD*(ABS(EZ)+H/2.-Y)*FC/Y + AXF/AREAP
RETURN

NEGATIVE NEUTRAL AXIS. PRINT MESSAGE.

30 WRITE (6,204) Y

204 FORMAT (/’ NEGATIVE N.A. = ‘,E12.5)

STOP
END

Pyl

")

ETOP,
TCH,
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FUNCTION AXNT{Y, EZ, KASE, LENGTH)
FUNCTION fO DEFINE THE EQUATION OF NEUTRAL AXIS
IN THE GENERAL CRACKED SECTION ANALYSIS TO BE USED
IN THE SUBROUTINE "AFCRAK"
PARAMETERS ARE DEFINED IN "AFCRAK"

DIMENSION X(2): F(2)
COMMON X, F, B, H, EXL., EXS, .PRESF, AREAP, CSTR, ELMOD,

+FCU. E1, E2L, E2S, EPSO, SIGPU, AREAC, EPSU, COMPAT DELTA(2).

+ CTEN, ETEN, E2X, CRMOM, FS(60), STRAIN(60). RESULT,
+ FRACL, SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR, ETOP,
+ RDFACT, RATMOD, ALPHA, BETA, GAMMA, AXF, EXTMOM, TCt,
+ ANGLEA, ANGLEB

IF(ISECT .EQ. O) Bw=8
IF (KASE . EQ. 2) GO TO 2

CONDITIONS JUST AT A CRACK

AXNT = BW*AXF*Y**3/6. + BW*EXTMOM*Y**2/2.
+ + (BETA*AXF + ALPHA*EXTMOM)*Y

+ - (GAMMA*AXF + BETA*EXTMOM)

RETURN ’

CONDITIONS AT SOME DISTANCE FROM A CRACK
SO THAT THE STEEL STRESS AND CONCRETE STRAIN CAN BE EVALUATED
IN ORDER TO CALCULATE THE AVERAGE CURVATURE

2 DEN = ABS(EZ)+H/2.-Y
CHECK IF THE DENOMINATOR IS NEGATIVE.

IF (DEN .EQ. O.) DEN=DEN+.0S
TC1 = (BW*Y + (2%Y-HF)*HF*{B-BW)/Y)*FS(LENGTH)*Y
+ /(2.*RATMOD*DEN)
- AREAP*FS(LENGTH) - AXF/1000.
AXNT = -AREAP*FS(LENGTH)*(ABS(EZ)+H/2.+ETOP)
- TC1*(ETOP+(H+2.*Y)/3.)
+ (.5*(Y/3.+ETOP)*BW*Y
+ HF*(Y-HF)*(B-BW)*(HF/2 . +ETOP)/Y
+ .S5*HF*HF*(B-BW)*(HF/3.+ETOP)./Y)
* FS(LENGTH)*Y/(RATMOD*DEN)

+

LR SR

RETURN
END

116
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FUNCTION DAXNT(Y, EZ, KASE, LENGTH)

FUNCTION DEFINING THE DERIVATIVE OF THE EQUATION OF

"NEUTRAL AXIS FOR USE [N THE SUBROUTINE *AFCRAK",

THE DERIVATIVE OF THE EQUATION IS REQUIRED BY NEWTON'S
ITERATIVE PROCEDURE (SLOPE).

DIMENSION X(2), F(2)

COMMON X, F, B, H, EXL, EXS, PRESF, AREAP, CSTR, ELMOD,

+FCU, EY, E2L, E2S, EPSO, SIGPU, AREAC, EPSU, COMPAT,DELTA(2),.
+ CTEN, ETEN, E2X, CRMOM, FS(60), STRAIN(60), RESULT,

+ FRACL, SPAN, ISECT. BW, HF, R2, FSB, CURVCT, ASR, ETOP,

+ RDFACT, RATMOD, ALPHA, BETA, GAMMA, AXF, EXTMOM, TCH1,

+ ANGLEA, ANGLEB :

IF (ISECT .EQ. O) Bw=B

IF (KASE .EQ. 2) GO TO 2
DAXNT =BW*AXF*Y**2/2. +BW*EXTMOM*Y +(BETA*AXF +ALPHA*EXTMOM)

RETURN
2 DEN = ABS(EZ)+H/2.-Y \\
IF (DEN .EQ. O.) DEN=DEN+.05 & 7

TC = (BW*Y + (2 .*Y-HF)*HF*(B-BW)/Y)*FS(LENGTH)*(ABS(EZ)+H/2.)
+ /(2. *RATMOD*DEN**2)
+ +{BW +(B-BW)*HF*HF /Y% *2)*FS(LENGTH) *Y/ (2. *RATMOD*DEN)
DAXNT = TC1%2./3. + (ETOP+(2.*Y+H)/3.)*TC
-~ (.5%(Y/3.+ETOP) *BW*Y )
+ HF*(Y-HF)*(B-BW)*(HF/2.+ETOP)/Y
+ _S*HF*HF*(B-BW)*(HF /3. +ETOP)/Y) *
*FS(LENGTH) *(ABS(EZ)+H/2.)/(RATMOD*DEN**2)
- (.5*(BW*Y/3.+ (Y/3.+ETOP)*BW)
+HF *HF * (B~BW)*(HF /2 . +ETOP)/Y**2
- 5*HF*HF *(B-BW) * (HF /3. +ETOP)/Y*+2) m
*FS(LENGTH) *Y/(RATMOD*DEN) )
RETURN
END

L N .

[N
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FUNCTION PREL(SIG)

FUNCTION DEFINING THE PRESTRESSING STEEL STRESS-STRAIN
RELATIONSHIP FOR USE IN THE STRAIN COMPATIBILITY ANALYSIS

THE ULTIMATE AND VARIOUS LOADING STAGES.
E STRESS-STRAIN CURVE HAS BEEN EXPRESSED IN AN

EXPONENTIAL-TYPE EQUATION.

RAMETERS ARE" -
SI1G STRESS .OF STEEL
THE VALUE OF THE CORRESPONDING STRAIN IS RETURNED.

DIMENSION X(2), F(2) )
"COMMON X, .F, B, H, EXL. EXS. PRESF, AREAP, CSTR, ELMOD,

+FCU, E1, E2L, E2S., EPSO, SIGPU, AREAC, EPSU, COMPAT DELTA(2),
+ CTEN. ETEN. E2X, CRMOM, FS(60), STRAIN(60). RESULT,

+ FRACL., SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR, ETOP,

+ .RDFACT., 'RATMCD., ALPHA, BETA, GAMMA, AXF, EXTMOM, TCHi,

+ ANGLEA, éyGLEB

TWO TYPES ARE CONSIDERED:
250 AND 270-KSI HIGH GRADE STEEL

IF(SIGPU - 270.) 10,20.20

IF(SIG - 195.) 1.,1.2 . )
PREL= SIG*1000./ELMOD + 2.5*((SI1G-195.)**3)/10.**7
RETURN <

IF(SIG - 210.) 1.1.3
PREL = SIG*1000./ELMOD + 2.*((SIG-210.)**3)/10.%57

RETURN _ .

L INEAR 'RANGE

PREL= SIG * 1000./ELMQD ' )
RETURN
END
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FUNCTION cMOM(C EPS)
L)

FUNCTION CALCULATI&G THE CONTRIBUTION, TO THE TOTAL
MOMENT, OF THE COMPRESSED CONCRETE AREA IN A SECTION.
PARAMETERS ARE -

C LOCATION OF THE NEUTRAL AXIS ’

EPS STRAIN OF EXTREME CONCRETE FIBRE IN COMPRESSION
THE FUNCTION TAKES INTO CONSIDERATION THE STRESS-STRAIN
RELATIONSHIPS OF THE CONCRETE.

DIMENSION X(2), F(2) ,
COMMON X. F, B. H, EXL, EXS, PRESF . AREAP, CSTR. ELMOD,
+FCU, E1, E2L, E2S, EPSO, SIGPU. AREAC. EPSU, COMPAT,DELTA(2).

+ CTEN., ETEN. E2X, CRMOM, FS(60). STRAIN{(60) . RESULT.
',} FRACL. SPAN, ISECT. BW, HF, R2, FSB, CURVCT, ASR, ETOP, .
+X,. RDFACT, RATMOD, ALPHA, BETA, GAMMA, AXF, EXTMOM, TCH1, !

+ TANGLEA, ANGLEB

IF (c .LT. 0.) GO TO 50

1F(EPS .GT. EPSU) GO 70 3

FF = C*EPSO/EPS

G = C-HF L4
IF((ISECT .EQ. O) .OR. (G .LE. 0.)) GO TO 40

IF(EPS .GT. EPSO) GO T0 20

1-SHAPED SECTION. EPSO 1S fHE STRAIN AT WHICH THERE IS
A CHANGE OF STRESS-STRAIN RELATIONSHIP.
CASE WHEN THE APPLIED STRAIN IS BELOW EPSO

CMOM = (B-BW)*CSTR*G**3*(8./3. - G/FF)/ (4. *FF) + :
+ B<HF *CSTR*(HF*HF/3. + (C+G)**2 =

+ ((C+G)**3 + (C+G) *HF**2) /(2. *FF))/(2.*FF)

RETURN

CASE WHEN THE APPLIED STRAIN IS HIGHER THAN EPSO
20 1F(FF-G)21,21,23 ’ ‘
EPSO 1S IN THE WEB

21 CMOM = 5.%CSTR*(B-BW)*FF*FF/120+ :
+ o 5+CSTR* (B-BW) ™ (G-FF)*(G+FF-ROFACTY
+(EPS‘((G-FF)*'2/3.+(G+FF)**2)/(2.‘C)—EPSO*(G+FF))/(EPSU—EPSO))
+ %+ O.5*CSTR*B*HF*(C+G-RDFACT*
+ (EPS-(HF'tz/a.+(C+G)**21/(2.*c)—EPso*(c+G))/(EPSU—EPSO)),
RETURN ' o
-

119
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EPSO IS IN THE FLANGE

23 P = EPSOQ/EPS
CMOM = (B-BW)*CSTR*G**3*(8./3.-G/FF)/(4. *FF) +
+ L S*B*CSTR*(FF-G)*(((FF+G)**2+(FF-G)**2/3.)/FF
2A - ((FF+G)Y**3+(FF+G)*(FF-G)*%2) /(4 *FF**2))
‘+ . 5*B*CSTR*C**2%*(1.-P)*(1.+P- RDFACT*
+  (EPS*((1.-P)**2/3.+(1.4+P)**2)/2.-EPSO*(1.+P))/(EPSU-EPSO))
RETURN

W«

RECTANGULAR CROSS-SECTION

40 IF(EPS .GT. EPSO) GO TO 2
FF = EPS7EPSO

CMOM = B*((.5%C)**2)*CSTR*(FF*8./3. - FF**2)
RETURN
2 FF = EPSO/EPS
G = RDFACT/(EPSU-EPSO)
CMOM = CSTR*S5_*B*((C*FF)**2)/12. + B*{(.5%C)*%2)*CSTR*(1.-FF)*
& ((1.+FF)*(2.-G*(EPS-EPSO)) - ((1.-FF)**2)*EPS*G/3.)
« RETURN

NEGATIVE VALUE OF NEUTRAL AXIS LOCATION. PRéNT MESSAGE .-

50 WRITE (6,300) C
300 FORMAT (/‘ NEG. N.A. = ' ,E12.5,’ IN SECT. CMOM’)

STOP

THE ULTIMATE CONCRETE STRAIN HAS BEEN EXCEEDED.
PRINT MESSAGE.

3 WRITE(6,500) EPS

500 FORMAT(//15X,F13.5, ' ,ULT CONC STRAIN EXCEEDED,’
& /26X, END OF COMPILING IN SECT CMOM. ')
STOP . .
END

120
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FUNCTION COMP(C,EPS)

FUNCTION CALCULATING THE CONTRIBUTION, TO THE TOTAL FORCE,
OF THE CONCRETE AREA IN COMPRESSION.
PARAMETERS ARE -

C LOCATION OF THE NEUTRAL AXIS

EPS STRAIN OF EXTREME CODNCRETE FIBRE IN COMPRESSION
THE FUNCTION TAKES INTO-€ONSIDERATION THE STRESS-STRAIN
RELATIONSHIPS OF THE CONCRETE.

DIMENSION X(2), F(2)

., COMMON X, F, B, H, EXL, EXS, PRESF, AREAP, CSTR, ELMOD,
+FCU, EY, E2L, E2S, EPSO, SIGPU, AREAC, EPSU, COMPAT,DELTA(2), ////‘J
+ CTEN, ETEN, E2X, CRMOM, FS(60), STRAIN(€0), RESULT, !
+ FRACL, SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR, ETOP,
+ RDFACT, RATMOD, ALPHA, BETA, GAMMA, AXF, EXTMOM, TCH1,
+

ANGLEA, ANGLEB

IF (C .U'T. 0.)) GO TO S50
IF(EPS .GT.EPSU) GO TO 3

I1-SHAPED CROSS-SECTION.

F = C*EPSO/EPS
C-HF :
ISECT .EQ. O0) .0R. (G .LE. 0.)) GO TO 40

F
G
TF((

IF(EPS .GT. EPSO) GO TO 20

(

. (

CASE WHEN APPLIED STRAIN' IS BELOW EPSO
COMP = (B-BW)*G*CSTR*(G/FF-(G/FF)**2/3.)

+ + B*CSTR*HF*((C+G)/FF-((C+G)**2+HF**2/3.) /(4. *FF**2))

RETURN
20 IF(FF-G) 21, 21%,.23

EPSO IN THE WEB

21 COMP= 2. +(B-BW)*FF*CSTR/3. + (B-BW)*
+ (G-FF)*CSTR*(1.-RDFACT*(EPS*(G+FF)/C-EPSO)/(EPSU-EPSO))
+ + B*HF*CSTR*(1. -RDFACT*(EPS*(C+G)/C EPSO)/(EPSU-EPSO))

RETURN
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EPSO IN THE FLANGE_
23 COMP = (B-BW)*G*CSTR*(G/FF-(G/FF)**2/3.)
+ + B*CSTR*(FF-G)*(1.+G/FF-(1 +G/FF+(G/FF)**2)/3.)
+ + _5*B*CSTR*C*(1.-EPSO/EPS)*(2.-RDFACT*(EPS~-3.*EPSO)/ -
+ (2 *(EPSU - EPS0)))
RETURN
RECTANGULAR CROSS-SECTION
40 1F(EPS.GT.EPSO) GO TO 2
G= EPS/EPSO
COMP= B*C*CSTR*(G-G*G/3.)
RETURN
2 G= EPSO/EPS
COMP= B*C*CSTR*(G*2./3. ,
& + .5*(1.-G)*(2.-RDFACT*(EPS-EPSO)/(EPSU-EPSO)))
RETURN :
NEGATIVE VALUE OF. LOCATION OF NEUTRAL AXIS.
PRINT MESSAGE
50 WRITE (6,300) C
300 FORMAT (/' NEG. N.A. = ‘ E12.5,’ IN SECT. COMP’)
STOP :
ULTIMATE CONCRETE STRAIN HAS BEEN EXCEEDED.
PRINT MESSAGE.
3 WRITE(6,501)EPS )
501 FORMAT(//15X,F13.5,/ ,ULT CONC STRAIN EXCEEDED, '
& /26X, END OF COMPILING IN SECT COMP. ")
sSTOP
END
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SUBROUTINE ROMB(IBOUND, EZ, DISTM)

SUBROUTINE FOR ROMBERG INTEGRATION. PROGRAM BEGINS WITH
TRAPEZOIDAL INTEGRATION WITH 10 SUBINTERVALS. INTERVALS
ARE THEN HALVED AND RESULTS ARE EXTRAPOLATED UP TO
FOURTH ORDER.
MAXIMUM NUMBER OF SUBINTERVALS USED IN PROGRAM IS 160.
PARAMETERS ARE -

IBOUND NUMBER OF KNOWN VALUE INTEGRATION POINTS

EZ PRESTRESSING STEEL ECCENTRICITY

DISTM VALUE OF MOMENT ..

RESULT RESULT OF INTEGRATION. RETURNED.

TRAP DOUBLY SUBSCRIPTED ARRAY THAT HOLDS INTERMEDIATE
. VALUES FOR COMPARISONS AND EXTRAPOLATIONS

KFLG = O WHEN NON-CONVERGENT

=\! MEANS ALL OK.

DIMENSION X(2), F(2)
COMMON X, F, B. H, EXL, EXS, PRESF, AREAP, CSTR, ELMOD,
+FCU, E1. E20, E2S, EPSO., SIGPU, AREAC, EPSU, COMPAT,DELTA(2),
+ CTEN, ETEN, E2X, CRMOM, FS(60), STRAIN(60), RESULT, -
+ FRACL, SPAN, ISECT, BW, HF, R2, FSB, CURVCT, ASR, ETOP,
+  RDFACT, RATMOD, ALPHA, BETA, GAMMA, AXF, EXTMOM, TCH{,
o+ ANGLEA, ANGLEB

DIMENSION TRAP(5,5)
SET FLAG AT 1 INITIALLY
KFLG = 1

'

COMPUTE FIRST INTEGRAL WITH 1O SUBINTEGRALS AND USING TRAP

RULE
KINT = IBOUND/10
SUM = STRAIN(1) + STRAIN(IBOUND) v
INT =0 '
DO 10 I = 2,10
INT = INT + KINT J

10 SUM = SUM + STRAIN(INT)=*2. “
TRAP(1,1) = KINT/2%SUM
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RECOMPUTE INTEGRAL WITH KINT HALVED, EXTRAPOLATE AND TEST.
"REPEAT UP TO 4 TIMES. © .
DO 201 = 1.4
KINT = KINT/2
INT = KINT , -
K = {0*2+%+%1 ’
DO 30 U = 2.K,2
SUM = SUM + STRAIN(INT)=*2.
INT = INT + KINT + KINT
30  CONTINUE ]
TRAP(1,I+1) = KINT/2*SUM
Do 40 L = 1,1 .
TRAP(L+1,I+1) = TRAP(L,I+1) + 1./(4.%*L -~ 1 )+
& B (TRAP(L,I+1) - TRAP(L,I))
‘40 CONTINUE
IF(ABS(TRAP(I+1,I+1) - TRAP(I,I+1)) - .0t) 50,50,20
20 CONTINUE

- IF TOLERANCE NOT MET AFTER 4 EXTRAPOLATIONS, PRINT
MESSAGE. SET KFLG = O

KFLG = O

WRITE (6,200)
200 FORMAT (/'TOLERANCE NOT MET. CALCULATED VALUES WERE ')
501 = 1 + |

IF (KFLG .EQ. 0) sToOpP

CALCULATION OF FINAL RESULT

RESULT "= (DISTM/ABS(DISTM))*TRAP (I,1) /
. . (ABS(EZ)+H/2.)
RETURN .

END

124



"NI-87 90+300LbZZ°0 =  INIWOW Ld Q1
"NI-87 90+3EEEYPBT O = INIWOW LY¥0ddNS
S81 50+3€GLiLT 0 = QVOT LV SuNIO0 - ILVWILIN
"NI-81 90+3968VLL°0 =  LINIWOW ld Q7
"NI-87 90+38€690T°0 = INIWOW 1¥0ddNS
« . SE7 S0+396190Z°0 = AVO1 LV S¥NI00 : ONINDIVYD
+ "NOILNSINLISIAIY ON «: £8°0 0Iivd DILSVI3 01 SNIQH0IDV 6L°0 *Q3QIA0¥d ALIDVAVD
. A N 7
— v0-3Z6L9LT O = IANLVAYND
= ‘NI-81 90+3968vL) 0. = INIWOW
v0-399Z8L2°0 = 2dN1VAAND
. . "NI-87 90+38E690Z°0 = LINIWOW

©AT3IAILO3HS3Y '3uV INIOd Av01 3HL LV ONV 140ddS 1LV SEN3IWOW ONIMNOVYD 3HL

LR R R e L O R g S L L

. 1sd 8o+30LZ O ALIDILSVI2 40 " QAOW
. . ] IS¥ 00 0se v : aavyn
) ~ : S87 00 0SOv! ONISSIYLSI¥d Q31 1ddV
/Ak NI "0S 08t1°0 v3¥v NOON3IL V101
N\
. 0E’0 . Y0LIV4 NOTLONA3IY
: ) 09z00°0 nsd3 .
, 06400°0 0Sd3 NIVALS 2
* 1Sd 00 00LY " HISN3¥LS 3L3IAINOD
\\.
. ‘NI 00" 80} S130ddNS N33ML38 NVdS
“1¥04dNS LV - 'NI S§' v ] ) .
INIOd Qv01 Lv "NI GG'C _= ALIDIYLIN3IDO3 NOGN3L
NI 06°C 39NV ‘NI OL°T . 83M -

"NI 00'¢i = 1H9I3H " °'NI 00°9 = HIGIM "NOI1D3S Q3dVHS-1I

"S140ddNS ONI 3HL WOdd4 S3IHINI 00 ¢S  SAvOT IVDILH3A GILVHINIONOD OML HLIM ANIVOIHLIWNAS

a3qvon ¢+ dIBWNN I&wm d3SS34¥LS3Ad SNONNTLINOD NVdS-0ML JHL 304 3IAYND AvOI-ANIWOW

! LR R E R R R R R R R R R S R N S N AR R

alti 30 pu3z

raNOTINO~NO®O




128

NI-87 90+3G8G69€1C°0 =

JNI-81 90+38LE60T O

o

"NI-87 90+31681L4°0

NI-27 90+316881¢1°0 =

NI-87 90+3Z8bvL1 'O

A .

S81 G0+39ZZPEZ O =SI QVO1 a317ddv 1v10l 3HL

10-3L8Z262€°0 = 03 ALINISILVANGD »ss

dNS’ 90+38LE60Z 0O = WOW "Ld Q1 ‘"¥3il O 4 NI 13W 3DNV¥3II0L " LVAWOD
10-348ZBZE'0 = NOILVNOI ALITISILVANOD =4+
180ddNS 1v ONV 90+38LE60Z°0 = INIOd Q1 1V SINIWOW 3IHL O I "d3Ll v

INIOd 07 LV ONV' S90+3G59€£0Z 0 130d4dNS 71V

'S1 thuIOI .40 hwm Q3IWNSSV L1X3IN 3IHL

S871 S0+3G68Z61°0 =SI1 QVO1 A311ddV W1I0L 3HL

CO-3VSIGEE 'O = 03 ALITISILVAWOD +»x

NI hmz‘muZ<anOh "HWOW

= dNS' 90+3T8FPLI O = 'WOW "1d G1° "¥3L1 O '
CO-3VSI66E°0 = NOILVNO3 ALITISILVANOD »+xs e
L40ddNS 1V ANV 90+3Z8vrLl 'O = INIOd Q1 LV SLNIWOW 3IHL O } ‘Yd3ILT Lv

INIOd Q7 Lv ANV" S0+3C1 L6910 140ddNS LV

‘ST SINIWOW 40 13S QINNSSV hxmz 3H1




757

129

-

'

S87 G0+3TBSLOE’O nmﬁ avol G3ainddy w10l 3HL

o

- ~ - 00+399LV8F 0 = 03 ALITIBILVAWOD »ex

NI-87 90+369r8LZ2 0 = dNS' 90+3v109L2°0 = "WOW "id 47 '"d3L1 O 3 NI 13W 30NVd3IT0L " LVdWOD

) 00+3994b81 "0 = NOILVNOI ALITIBILIVAWOD +x» .

Ni-4g7 369V8LZ 0 = LY0ddNS 41V ANV 90+3vi09L2°0 = LINIOd @7 LV SIN3WOW 3HL O } "¥3ILD LV

) T0-3201ECEO = FANLVYAYND
"NI-87 90+3v109LC°0 = INIWOW INIQd avol
¢0-30LZPCE O = JANLVAIND ,

‘NI-97 90+369v¥892°0 = . IN3WOW 140ddNS

Q3WNSSy 3ODVIS JLVWILIN

P T L s T R R P RS A R EE A R R R A

$87 SO0+3L¥9ZLT 0O =SI QV01 Q311ddv Iv1iO0Ll 3HIL

“ 00+394FELY 0 = 03 ALITIBILVAWOD =*»x
"NI-81 90+3LBGLPT O = dNS‘ 90+3SLTYPC O = "WOW "id a7 ‘Y31l O } NI 13W 3JIONVHITOL " LVdWOO
00+39IPELL O = NOILVNDI ALITIBILVAWOD +as
"NI-g7 90+3L6GLFZ O = Ld0ddNS 1V ANV 90+3GLZprZ°0 = LINIOd Q1 1v SIN3IWOW 3HL O ' “¥3LT 1V
NI-87 90+3GLZHbZ 0 :© INIOd G1 LV ONV' 90+3L6GLET'O 140ddNS 1V

1S1 SINIWOW 40 13S A3IWNSSVY LX3N 3HL

atti

it

40 pu3



130

S81 SO+3€90rvI "0 =SI AVO1 A311ddv V10l 3HL

IS

= PO-3VLLESB O- = 03 ALITIBILIVAWOD .+ ) =
NI-87 90+36LL9P1 0 = dNS’' 90+39FEIZI 0 = WOW "Ld G1° "¥311 O b NI 13w 30NV¥3ITOL "WOW ’
vO-31LLEQB O~ = NOILVNOI ALITIBILVAWED .4

NI-87 90+36429r1 O = 1d0ddNS 1V GNY 90+39FELZH O = INIOd4 Q1 1v SIN3WOW 3HL O | "d311 1v

140ddNS k<4hma~u SdNYI0 ONINIVAD

vO-3LEGBIE O = 34N1VA¥ND

. "NI-87 90+318BL8LI O = LNIWOW
. Ve ’ vO-30LYY9E O = . 3dnLvAEND
"NI-87 90+3519Gp1'0 = LNIWOW

-AT3ATL03dS3d "3¥V INIOd QVO1 3HL 1V ONV LHOddNS LV SINIWOW ONIMIVHD JHL

R A R R O N T N N S O PO

- - N . ISd 80+30LT O ALIDILSVII 40 "AOW
ISX 00 '0Sst A0vA9
S87 00 009tv! ONISS3I¥LIS3dd GI11ddV
NI DS 0izt 0 v3dv NOON3L Tv101L
, .
85°0 d010Vvd NOIT1DNA3y
o0ov0o0 "0 nsd3
002000 O0Sd3 NIvYlLsS
. ' 1S4 00 0G8¢€ HION341S 3J133DON0OD
" N :
"NI 00 80t S140ddNS N33ML3I9 NVdS
' "140ddNS 1V NI 0§°¢C
INIOd QVvO01l Lv 'NI Ov'yp = ALIOTYIN3DD3 NOON3L
‘NI O6°¢ JONVIY "'NI s9°2 g3Im
‘NI 002t = IHO9I3IH " 'NI 00'9 = H1dlM "NOTL1D3S A3dVHS-1

51¥0ddNS ON3 3HL WOdd4 S3IHONI @O.vm .meOJ AVOI1¥3A Q3LVYIN3IONOD OML HLIM AYVIVDOIHLIWWAS
Q3gvol v JIGWNN WV3IB G3SS3ALS3dd SNONNILNOD NVdS-OML IHL 304 3JAYND OGVO1- LINIWOW
OQO..Q'&00&"'0’.6...00."Cﬁbbos.QOOC.GOOOQ»ho000»'

’
‘

TNOTITOLO~O®



131

+0-321860+ 0

ZO-3ZEETEY ‘O-

"NI-871 90+30€ECivl 0 = dNS° 90+3LZZPBY O =

"WOW “id Qa1 4311 O t

S81 S0+300L0€T°0 =SI GQV01 Q317ddv IvIO0L 3HL

= 03 >bHJHmHk<a&MU *xx

"NI-g87 90+39tL08L°0 = dNS' 90+43TL01CT°0 = "WOW "L1d Q1" "¥3ll O 3 NI L13W 30NVY¥3T0L "WOW
10-3Z18601 0 = NOILVNO3 ALITISILVAWOD s++»
"NI-87 S0+39PL08B1I 0 = 130ddNS LV OGNV 90+3ZL012¢2°0 = INIOd 07 1V SINIWOW 3IHL O 3 "d311 1v
* NI-81 90+3ZL0l2Z O INIOd Q7 LV ONV'® 90+43PESSLY O : 1d0ddNS 1v.

ST SIN3WOW JO 13S G3WNSSY 1X3N

S87 Ss0+3¢LL881°0 =ST1 Qv071 A3177ddv Iviol 3HL

= 03 ALINIGILVAWOD »»+«
NI 13W 30NVY3IT0L "WOW

TO-3ITEECEY 'O- = NOILVNO3 ALINIBILVYAWOD ===
NI-81 90+30€Civt O = 1¥0ddNS 1V ANV S0+3LTCP8L 0O = LINIOA A7 1V SIN3WOW 3HL O 3 R-EFS SN )

NI-87 80+3L2CZv81 0

INIQOd Q1 LV GNV' 80+36LC9V1 0

130ddNS 1V
ST SIN3IWOW 30 13S G3WNSSY LX3N

IHL



132

— .\qw_: 30 pu3
$97 §0+369pS6Z 0. =S1 QV01 Q311ddV 1Iv10L 3IHL vOl
EOL
o]
10-31 G699 O = 03 ALITISILIVAWOD «o» 10t
NI-81 ®O4wrhmmmm O = dNS° 90+38¢r618C° 0O = "WOW "1d 41 °" 3311 O } NI, 13W 3ONVH30L 1vdWOD [e]e]}
: - : 66
. 86
10-319GG83P 'O = NOILVYNO3 ALITIBILVAWOD +»s L6
"NI-87 90+31L8EEC O = 130ddNS Lty ONV 90+38v6182 0 = INIOd Q7 1v SINIWOW 3HL O i "d3ll Ly 96
56
zO-3Ir¥ZBIE O = JANLVAIND ve
) 'NI-871 90+38v618Z O = INIWOW INIOd avon £E6
z2O-36Y0LEE" O = I¥NLVAEND Z6
"NI-87 90+31L8ETZC O = ANINOW 1340ddNsS 16
Q3IWNSSVY 13DVLS ILVWILIN 06
RN RN RSN EERER RN E NI I SN I A AN R I A AN A Y mw
_ ° 88
’ S91 S0+320904Z°0 =SI GVO1 G311ddV V101 3HL L8
98
S8
) ZO-39v06E8°0 = "03 ALITIGILVAWOD +x+ v8
NI-Z 3D+306L0v4Z O = dNS‘' 90+3LIBLEZ O = 'WOW "Ld Q1 ' ¥3L1 O ! NI 13w 3DONVY¥310L, ~ LVJIWOD €8
z8
18
T0-39Y06€8°0 = NOILVNOI ALITISILYEWOD «s . 08
"NI-81 30+306L¥iT 0 = 1d0ddNS LV ONV 90+3L16LS2 0 = INIOd G7 LV SIN3WOW 3JHL O } "¥3ILT AV 6L
- 8L
NI-87 S0+3L16LGT O : INIOd Q71 1V aNV' 90+306Lv0C 0O ¢ 1¥0ddNS Lv : LL

ST SIN3WOW 40 13S Q3IWNSSV IX3IN 3JHL 9L



133

$87 S0+39Z6C¢¢ 0 =SI Qv01 Q311ddv V10l 3IHL

PO-3696P0G 0- = "03 ALITIGILVAWOD +«+ .
xZH.meC.wm_mbNNAOnaDm.wO+wvm_hw—.On.SOZ.FQDJ..mwh~O _ thm2w02<mm40h.zoz

PO-3696V0S°"0- = NOILVNOI ALITIBILVANGD ssx

"NI-871 90+3€16L2C°0 140ddNS LV ANV S0+3v61L8L° 0 = mIHO& a7 1V SINIWOW 3HL O | ‘d311 1V

1d0ddNS LV LS¥Id4 SUNDD0 ONIMNIOVYD

vO-3€S6TIY 0 = JUNLVYAAND

"NI-87 90+3519822°0 = ~ LNIWOW

’ ) PO-3GIETIP O = 3ANLVARND
- . "NI-871 S0+3£EOPTT O = INIWOW

SAT3ALI103dS3¥ "3¥V UINIOd aVO1 3HL LV ANV 130ddNS L1V SINIWOW ONIMDOVYD 3IHL

A A R N Y S R R X

ISd 80+30LZ O ALIDIISVII 40 " QOW
1S% 00°0Le . T 3Qqvao
3 ) : $87 00 00€0C ONISS3d1S3d4d d317ddV
. NI "0S 0£8)°0 v3Idv NOGN3L VL0l

09°0 ¥0L10Vvd4 NOILDONAIY

. 00r00 0 Nnsd3

© . 06100°0 0Sd3 NIVYLS
' 1Sd 00°066E - HIDN3H1S 3134ONOD
"NI 00 801 S1d0ddNS N33IML3g NVdS

T1¥0ddNS LV NI SE' v
7o INIOd QVO01Y LV "NI OG' v = ALIDIYIN3IDO3I NOGN3IL
: ‘NI O6°¢C JONV 14 “''NI §9°C H3M

- "NI 00°C} = IH9I3H ' "NI 00°9 = HLQIM 'NOI123S Q3IdVHS-I

'S1¥0ddNS ON3 3HL WOY¥4 SIHONI OO vS  SAVOT IVOILH¥IA QILVHINIONOD OM1 HLIM ATIVOIHLIWWAS
a3iavon s Y3IBWNN WV3IE Q3SS381S38d SNONNILINOD NVAS-OML 3HLI d0d4 3A¥ND OVOI- LN3IWOW

L N N XL RS O )

TNOTHO~OO0



W34

i S87 G0+3LTGI9E°0  =SI QV01 G317ddv 10L 3H!
r/ ’ 4 o
) /
: 10-319126L°0 = 03 /ALITIGILVANOD »e+s
NI-87 90+381682C O = dNS’ 90+3ZOBEZE 'O = "WOW 1d @71 " 'd311 O b NI 13W 3ONVH¥3T0L " 1VdWOD
. 10-319126L° 0 = NOILVNO3 AJITIBILVANDD 4+
N1-87 90+381G8BCE 0 = 1d0ddNS LV OGNV 90+3TOBETE 0 = INIOd Q1 1V SINIWOW 3HL O ) 43l v
NI-81 90+3Z0BEZEO . INIOd Q1 1V ONV' 90+381GBIE'O © 1¥0ddNS 1LV

‘ST SIN3IWOW 40 13S Q3WNSsv FXuZ

587 S0+360r0LE-0  =SI AVO1 AQ317ddv 1vi0l 3HL

10-38EC0BL 'O = 03 ALITIBILVAWNOD e+»

“NI-97 90+3G10E8C O = dNS* 90+3GvSLLZ O = 'WOW "1d @1 '"¥311 O 3 Zmzhmi JONVH3ITI0L "1VdWOD
3 . 10-38E0081 "0 = NOILVNO3 ALINIGILVAWOD e
NI-87 90+3610€82°0 = 130ddNS 1V OGNV 90+3GvGLLT O = INIOd 371 Lv SIN3IWOW 3HL O | R-EPR SR

NI-€71 90+36pSLLZ O © INIOd Q1 1V ONV' 90+3S10ELZ°0 * 1d40ddNS 1V
’ 1S SINIWOW 30 135 Q3IWNSSV LX3N

ettt il

S871 s0+376265C°0 =SI Qv01 G311ddv 1v10l 3H1

rO-30€B6CY O = 03 ALINIEILVANOD »++x

NI-871 90+3L162£2 O = dNS' 90+3LBZIET O = "WOW " 1d 01 ‘Y4311 o } NI 13W 30NVA3IN0L " 1VdWOD
{
y0-30£862¢ 0 = NOILVNO3 ALITIBILVAWOD +x»
“NI-87 90+3£16262°0 = 1d0ddNS L1V OGNV 90+3L8ZIET O = LNIOd Q1 1V SIN3WOW 3HL O } - d3Ll 1V
N1-97 90+3LBZIEC 0O : INIOd Q71 LV ONV' 90+3EISLET O ° 1d¥0ddNnS LV
¥ ) ©SI SINIWOW 40 L3S AIWNSSVY LX3N

AHL



135

= - . 8114 4O pul

S87 S0+316V08FY0 =ST AVO1 G3I1ddVY VIOL 3HL zE
1EL
. , Ot}
O0+368E86C° 0 = 03 ALITISILVAWOD »xx 6C1
'NI-87 90+3rIpvtEr O = dnS' 90+39GPIEP'O = "WOW “Ld Q7 " "d¥3LI O b NI L13W 3ONVAd3ITI0L ~ 1VdWOD 8T
- LTh
: . 1A
O0+368E86T O = NOILVNO3 ALINISILVAWOD sss 1A
'NI-87 90+3%1pVEP O = 140ddNS LV ONV 90+39SPIEF O = INIOd O7 LV SINIWOW 3IHL O ) "¥3L1 1v v
£€C)
¢0-3v8L0ZT° 0 = IYNLYAYND (44!
"NI-87 90+39GViEP O = IN3WOW INIOd avol. ¥4
. Z0-39.5222°0 = IANLVAAND ozci
"NI-87 20+3vipvey O = LIN3WOW 130ddns 611
G3IWNSSY - 39V1IS JLVWILIN 8}
»-.;..*aaav«»»;n*-v;o»{&&'n«o»a«o«a*u»;vu&;}»&“.»»«w . LI}
: 9l
- . SE7 GO+319LE9Y 0 =SI GVO1 G3I1ddv V10l 3HL Sii
: pit
£
, 00+320PL9Z°0 = "03 ALITISILVAWOD x++ Thi
"NI-87 90+32CS610°0 = dNS' 90+3LIESIY 'O = "WOW "1d Q7 '-¥3LI O } NI 13W 3IDNVH3IT01 ~L1VdWOD b
‘ ot
: - ) 6014
00+320YL9T 'O = NOILVNOI ALITISILVANOD s++ . 801
'NI-87 90+3C2G66Iv'0 = 1¥0ddNS LV OGNV 90+3LIESIP O = INIOd Q7 LV SINIWOW 3HL O } “¥3L1 1V LOV
: g , 901
NI-87 90+3L1E91P°0 : INIOd Q17 LV ONV' 90+32ZS60F°0 ¢ 140ddNS Lv - SO
. ST SIN3IWOW 40 13S d3IWNSSV LX3IN 3IHL Ot
~
.................................................. EO}
{ZO}
- S87 S0+3vv¥9TIVY 0 =SI Av01 Q311ddVv 101 3IHL lvor
. 00} .
- : 66
) 00+3PTLTLI O = 03 ALITIGILIVANOD xax R 96
"NI-87 90+30T0rLE"O = dNS' 90+30900LE°O = "WOW "1d a1 '°"H¥31I O ! NI 13W 3ONVH3II0L " 1VdWOD L6
96
S6
> O0+3VTLTLY O = NOILVNOI ALIVISILIVANDD xes : v6
NI-37 90+30T0FLE O = 1¥0ddNS LV ONV 90+30900LE'O = INIOd Q7 LV SINIWOW 3IHL O | "¥3ILD AV £6
43
NI-87 90+30900LE 0 * INIOd Q17 LV QNV' 90+30CTOP9E"QC  :© 130ddNS LV . 16
‘ST SINIWOW 40 135 QIWNSSY LX3IN 3HL 06



136

S871 SO+3€ErLZLT O =SI QVO1 Q3I1TddV IVI0L 3IH!

i
.

.

: rO-3ErOL9P O- = 03 ALITNIGTILIVANDD 444 .
NI-87 90+36425LC°0 = dNS' 80+396G0€2°0 = HOW 1d Q1° 4311 O } NI L13IW 3ONVHIT01 “WOW
vO-3ELOI9Y O~ = NOTLVNDI ALIHIBILVAWOD 4

NI-H7 90+351¢SL2 O = 1304dNS, LV ANV 90+396G0€Z° 0 = INIOJd Q7 IV SLIN3WOW 3HL O ' ‘Y3l v

- . ‘ : 130ddNS Lv 1Sd14 SdNIJ0 HNINIVAD

) v0-3TOPIZS O = 3YNLVASND
"NI-87 90+3181692°0 = INIWOW

v0-3292£25°0 - 3ANLVAYND

"NI-81 90+361L9L2°0 = LN3OW

“ATIATLD3IdS3d 3dV INIOd QY01 3IHL LV ONV 130ddNS 1V SINIWOW ONINOVAD 3IHL

A R R R R I I O N N

1Sd 80+30LZ 0 ALIDILSVI3 340 "AOW
1S 00 0LT - 30vyn
S871 00 00992 YUNISSIAL5IYd QI Tddv
‘NI "0S OrpZ O VIAV NOON3L V10l
.05°0 ¥010V4 NOILONA3Y
00r00 " 0 NS ==
00Z00° 0 0Sd3 NIVYLS
* 1Sd 00 OLLE HION3®LS 31340NCD
) "NI 00 801 S1¥0ddNS NIIMLIE NVdS
TL¥6ddNS LV NI SG° b
INIOd Qv071 LV "Nl SE'® = ALIDI¥IN3DD3I NOON3IL
‘NI 062 39NV 14 ‘NI 95°¢2 93M
NI 00 4 = [HYI3H ' NI 00'9 = HLGIM "NOI1D3S Q3dVHS-1

'S140ddNS ON3 3HL WOH3d SIHONI 00 ¢S SAVO1 TVIILY3A QILVHINIONGD OME HLIM ATIVOIHL3IWWAS
aaavon 9 YIBWNN Wv3IE Q3SSIALSIAd SNONNILINOD NVJS-0ML 3IHL ¥O4 3AYND AVO1- ININOW

M R I R O

TNOTNO~NOO



137

"NI-87 90+310ES6E°O

"NI-81

90+310ESBEO

"NI-87 90+38520rE’O

S87 SO+36G0G5¢P "0 =SI QVO1 d3Iddv 1viol 3HL

/
fO|mvﬂm¢&f.O. = 03 ALITTGILVAWOD =+«

= dNS" -90+36L19LE'O

10-3vv6L8L O

= "WOW- "1d g1 " "¥3LI O 3 NI 13W 3ONVd3I101 "~ LVAWOD

= NOI1VNO3 ALINISILVAWOD s+«

= 140ddNS 1V GNV S0+36L19LE O = INIOd Q7 1V SIN3IWOW 3HL O } Y31l LY

NI-87 90+36L19LE"OQ

INIOd Q1 LV QGNV' 90+310€ESBE"O :° 1d0ddNS 1LV
ST SINIWOW 40 13S O3WNSSVY LX3IN 3JHL

S87 G0+3998¥9€ 0 =SI AVO1 (A311ddv 1v1I0L 3IHL

TO-3T1906Y°0 = "03 ALITIEBLLIVANOD »++

= dNS' 90+30vveCE O

20-321906¢v°0

= "WOW "1d g1 " ¥d341° O 3 NI 13W 3IDONVH3T0L ~1VvdWaD

= NOILVNO3 ALITIBILVANOD =*++»

©"NI-871 90+38SCOPE O = 1304dNS 1V OGNV 90+30ppTTE O = INIOd A7 1V SIN3IWOW.3HL O 3 HILT UV
NI-81 90+30vpTTE O INIOd G1 LV ONV® 90+38GCZOEE O : L1¥0ddNS 1LV
: ST SIN3IWOW 40-13S G3WNSSY LX3IN 3IHL

. S87 S0O+30GvEOE"O nmw aQvo1l Q311ddv Iviol 3HL
CO-3L1G9L9°0 = "03 ALINIBILVAWOD »x=

"NI-87 90+39161872°0 = dNS' 90+300489C°0 = "WOW "1d G1° "d311 O 3 NI 13W JONVHIN0L “WOW
2O0-3L159.49°0 = NOILVNO3 ALITI8ILIVAWOD +9»

"NI-®1 90+391618¢C 0. = LA0OddNS LV GNV 90+4300489C°0 = LINIOd G7 LV SINIWOW JHL O b "¥3Ll 1v

NI-87 90+300.892°'0

INIOd Q1 1V ONV' 90+3G1TSLC 0 ° 1d0ddNS LV
©S1 SIN3WOW 40 13S GIWNSSV LX3IN 3IHL



138

alts 40 pul

Sg1 GU+39644LG O =SI QVO1 Q31 1ddv Ivi0ol 3HL zes
. LED
ot
00+328817y O = 03 AL171811VAROD - 6T}
NI-371 90+JLEGRBZS O = dNS° 90+381330S6 O = WOW 1d Q1 ° ¥311 O ! NI 13w 3DNVHEII0L 1VdWOD 824
‘ LT
i 9T
00+3L488ICE O = NOTLVNOI 41111811VaWH0D « o : ST
MI-37 S0-366682S C = 1d04dNS 1V OGNV 80+38r990G O = INIOd 07 1V SINIWOW 3HL O ! FERR SN rZh
€Tt
. . . g0-13695164 0 = JEN1YAAND zeh
) NI-81 90+38+9906°0 = INIWOW IN10d avod Pz
z0-3L8GS0Gt O = JANLVAIND _ och
N1-87 90+3€€6BIG O = LN IWHOW 130ddNS 61
X U3WNSSY 3VVIS FLYRILIN gl
e eamaswesescetareviiatasat e nrens Li}
" ' gt
~ Sg1 SOU+39rrGES O =SI Qv0l Q311ddv 1v101 3HL St
Fhy
€1
0G+318r89Z 0 = 63 S{IVISTIVANOD .0 Zii
Pl 81 99U+ 3/8LGUS O = dNS° 90+3I6SYEBY O = WOW 1d Q1 ¥3il O ! NI L3W JONVHI 0L [VJW0D Vil
Ot
601
00+318FB9Z 0 = NOLIVAOI AL111GILVAHOD + e 8014
M1 37 SU+ILEESOS O = 140ddNS 1V ANV 90+36S9€8F O = INIOd Q7 LV SINIWOW 3HL O ) "HILD LV LO}
o 901
NI-21 90+3649€8F O INIOd Q1 Lv ONV' 90+3.8£56¢F O 1J0dUNS v 504
: (ST SINIWOW 40 135S AQIWNSSV LXIN Ml vO}
..................................... s eeeee—= T EO}
zo
S8 1 GO+IEGTS8Y O =SI Av0l A311ddv TvioL il . 10}
. . : . 00}
= ~ 66
. O0+3LESETE O = 03 +1111811VAHOD +»» 86
MI-Ei 90rdtrLoGr O = dNS’ 90+36166ZF O = WOW 1d Q) 4311 O i NI 13W 3IDNVHII0L ~ LVAWOD L6
- : 96
s : 66
’ OO+3ILEYELT O = NOLLVAOT LI 11811VAHOD v . L
NT 30 9G-3rtLuSt O = 130ddNS L1V ONV 90+36166Cr O = IN10d @1 LV SINIWOW 3HL O ; dILT LV £
i c6
NI-81 90+361662ZF O INIfid 37 1V ONV' 90+3vpeorr O 1404 dNS V6 -

.m_w»zmzoz*c»umckzzmm<_xmzm:h, om
B e I .- 68



