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Abstract

This work proposes a two-level hierarchical constrained control structure for reinforcement
learning (RL) with application in a Primary Separation Vessel (PSV). The lower level is
concerned with servo tracking and regulation of the interface level against variances in ore
quality by manipulating middlings flow rate. At the higher level, with the objective to op-
timize bitumen recovery rate, a supervisory interface level setpoint control is implemented.
To prevent sanding, tailings density regulation using tailings withdrawal flow rate is pro-
posed. For each case, an asynchronous advantage actor-critic (A3C) based agent is chosen to
interact with a high-fidelity PSV model to learn the near optimal control strategy through
episodic interactions. Each of the three control loops is sequentially learnt. In the interface
level control loop, a behavioral cloning based two-phase learning scheme to promote stable
state space exploration is proposed. The proposed hierarchical structure successfully demon-
strates improved bitumen recovery rate by manipulating the interface level while preventing
sanding.

Keywords: Primary Separation Vessel, Oil Sands, Machine Learning, Reinforcement
Learning, Process Control.

1. Introduction

Canada has the third-largest proven oil reserves in the world. These oil reserves exist
primarily in the form of oil sands; a loose formation of sand grains or solid sandstone with
clay, interspersed with bitumen, a heavy and viscous form of crude oil. Bitumen can be
extracted and processed to produce crude oil [1]. The Canadian oil sands industry has a
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Figure 1: Block Diagram of the Ore Handling Process

capacity of producing 166.3 billion barrels of crude oil products [2]. Sales from oil sands
producers alone added up to CAD$40 billion in 2016 [3]. The revenue and employment
opportunities generated contribute significantly to the national economy.

One-fifth of the total oil sands production is based on open-pit ore extraction. It starts
with the mining phase where oil sands ore is shoveled out of the ground. The mined ore is
then crushed and transported for the extraction phase. For extraction, heat and chemicals
are added to the crushed ore to form a slurry mixture. This mixture is then sent to a gravity
separation vessel known as the Primary Separation Vessel (PSV). Once the slurry is fed into
the PSV through a feed stream, it forms three distinct layers due to the difference in their
densities. These layers are known as the froth layer, the middlings layer, and the tailings
layer. The process described is illustrated by means of a block diagram in figure 1.

The froth layer that contains mostly bitumen (around 60% bitumen, 10% solids, and 30%
water), floats to form the top layer and overflows to upgrading for further treatment. The
heaviest particles precipitate at the bottom forming the tailings layer which is withdrawn for
further processing before being disposed into a tailings pond. The remaining composition
contains mostly water (59% water, 24% bitumen, and 17% solids) and forms the middlings
layer in between the froth and the tailings layer. A middlings side stream is pumped from
the middle of the vessel to a secondary separation phase for further treatment to recover the
leftover bitumen that does not float to the top froth layer.

A highly efficient PSV achieves maximum recovery of bitumen relative to water and solid
particles. It reduces the additional processing load on the downstream separation processes.
This is owing to the fact that high-quality froth obtained from primary separation requires
less processing and energy to remove the remaining solids and water. Hence, the PSV plays
a major role in gravity-based separation of bitumen from oil sands. Optimal recovery of
bitumen through froth, and overall efficiency of the extraction process, plays a crucial role
in the economic and environmental impact that the oil sands industry creates [4]. Hence,
optimal operation of PSV can help achieve environmental and financial targets.

Hence, with the objective of improving the bitumen recovery rate, the first process vari-
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able to be considered is the froth-middlings interface level which directly affects the bitumen
recovery rate and has to be regulated within an operational range. Otherwise, it can result in
either reducing the quality of the froth being recovered [5], or losing bitumen to the tailings
layer causing further contamination of the tailings pond [6]. Besides improving the bitumen
recovery, it is crucial to control the density of the tailings layer which is to be maintained
below a certain operational value to avoid excess sand bed build-up in the vessel bottom [7].
This can lead to complete pipeline plugging, also referred to as the ’sanding’ phenomenon,
particularly if it is associated with a lower tailings withdrawal flow rate.

The theoretical and experimental work reported in [6] provides the foundation for mod-
eling the PSV. This forms the basis for evaluation of the separation performance of PSV in
general. More specifically, control oriented as well as operating range oriented studies have
also been reported. A typical control problem was developed in [7] with classical multi-
loop Proportional Integral (PI) controllers for interface level, and tailings density. However,
improving the bitumen recovery was not considered in the control objective.

In [8], an improved economic model predictive controller (MPC) scheme was applied
on a PSV model. The objective was to maximize the overall recovery rate of bitumen
without, however, considering the sanding problem.In [4], optimal input trajectories were
calculated off-line for different known ore grade transitions. The actual implementation of
these optimal trajectories requires the PSV operators to have prior knowledge of the ore
quality which limits the applicability of such open-loop control only to known ore grades.

Based on the existing literature, it is concluded that factors such as ore grade, feed
flow rate, assumed particle size distribution, and other uncertainties related to modeling
assumptions are uncontrollable. They constitute sources of uncertainties and disturbances.
Consequently, it impacts the density of the tailings and the middlings layer, resulting in
reduced bitumen recovery, and affects separation performance of the PSV in general. None
of the existing works actually have taken into consideration the impact of unpredicted nature
of all different disturbances on the separation performance. Therefore, we cope, with such
challenges by using a model free approach like RL in order to provide a generalized solution to
such a complex problem. Morever, the recovery rate has direct implication on the economies
of this extraction scheme. The secondary extraction via middlings adds up to the cost. To
minimize this impact, the control scheme is formulated as a hierarchical structure to optimize
the bitumen recovery. This is done through the manipulation of the froth-middlings interface
level. Also, the density of the tailings layer is regulated to prevent sanding in the tailings
layer.

Reinforcement learning (RL) has gained popularity as a control scheme in recent time due
to its ability to learn through trial and error. RL algorithms learn by interacting directly with
the environment to sample the optimal actions in order to achieve a specified goal [9]. In the
RL context, the action selection is carried out by the agent, and the process with which the
agent interacts is the environment. The framework of their interaction is a Markov decision
process (MDP). In a MDP, there are states that the environment can assume, actions that
the agent can take, and the reward that is obtained by virtue of taking a particular action
in the current observed states. The agent’s state to action mapping vector is known as the
policy while the cumulative long-term rewards are called the value/action-value function.
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RL borrows its formal structure from optimal control where the objective is to design a
controller to minimize an objective function of a dynamical system’s behavior over time [10].
The approach towards solving this problem considers the state to generate actions and then
the value function is used to improve the choice of actions for the dynamical system. This is
considered to satisfy Bellman optimality. It is from here that the discrete stochastic version
of the optimal control structure, MDP, hails from. Employing temporal-difference (TD)
learning to find the optimal policy for a MDP in the 1980’s resulted in the reinforcement
learning structure that is now widely utilized [9].

Q-learning, which considers the action-value function (Q-function) in learning the policy
was instrumental in the initial popularity of RL [11]. It was, however, limited by the curse
of dimensionality. A solution to this problem was proposed in the form of neural network
based function approximators to estimate the Q-function (DQN) for higher dimensional state
spaces in RL problems [12]. This enabled control of continuous state space environments
with discrete, finite action spaces. Continuous action space optimization was made possible
with the introduction of deterministic policy gradient (DPG) algorithm, which employed a
neural network approximator for the policy, enabling continuous state to action mapping [13].
DPG had the ability to control continuous states through continuous actions. However, not
only was it computationally expensive, it also suffered from large variance in its gradients.
This is attributed to the Monte-Carlo type learning leading to uncorrelated samples. The
sample efficiency was further improved in deep deterministic policy gradient (DDPG) which
combined DPG and DQN in an actor-critic type model-free architecture for solving more
than 20 simulated physics tasks [14].

Actor-critic algorithms constitute of an actor which represents the policy and a critic
that represents the action-value function. They employ a Monte-Carlo kind of scheme where
learning occurs over experience. Experience is gained from multiple repeated episodes to
regress an approximation for returns in the form of the action-value function in actor-critic
methods [15]. This allows the actor-critic algorithms to be model-free [9]. In such off-
policy scheme, the local policy interacts with the environment, from which the rewards and
consequently the returns are calculated. Based on the returns, the local policy pulls the
global policy to optimize the returns. Every update to the actor is preceded by an update
to the critic. The update to the critic is based on minimizing a mean square error (MSE)
criterion in predicting the returns, meant to improve the estimate from the action-value
function. Using this sequential approach to learning in actor-critic, convergence to a near
optimal policy can be guaranteed [9].

Continuous space control was demonstrated using DDPG on a variety of 3D tasks [16],
a combination of DQN and DDPG for mobile robot control [17], stochastic value gradients
(SVG) on several physics tasks [18], and an asynchronous variant of actor-critic on Atari
domain [19]. Due to these successful RL implementations in various domains, it makes sense
to extend it to process control applications. Drawing analogy between the two, the goal of
the RL agent in the process control domain would be to keep a multivariable process within
safe operational limits while maintaining it at the setpoint despite process disturbances and
measurement noise [20].

The ability of RL algorithms to self-learn from direct interaction with the process data
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make them suitable for use with nonlinear processes where deriving the process model might
not be possible or accurate [21]. Due to their self-learning nature, they also have the ability
to adapt to process disturbances and shifts in operating conditions. Previously, a successful
control of thermostat scheduling for office space in a discrete action space setting has been
reported [22]. Also, continuous space optimization using a policy gradient based approach
has also been reported [23]. These schemes were based on on-policy proximal actor-critic
setup.

A model-based RL method is used with deep neural network (DNN) approximators to
address the finite horizon optimal control problem in [24]. The control problem is formulated
in Hamiltonian-Jacobi-Bellman (HJB) format with illustration on a nonlinear batch reactor
and 1-dimensional diffusion-convection-reaction process. The authors in [25] propose and
contrast two approximate dynamic programming approaches using function approximation,
a model-based approach and model-free Q-learning for data-driven control of nonlinear pro-
cesses implemented on a CSTR. While these two papers address continuous tracking control
using DNNs and a nearest neighbour local averager, they are not concerned with production
or economic optimization. A factorial policy based RL solution for production optimization
of large-scale chemical plant was presented in [26]. The optimization was carried out using
model-free RL and implemented on a vinyl acetate monomer (VAM) plant to maximize
the VAM yield and quality while maintaining plant stability. Actor-critic was employed in
[27] to find the optimal Alkali-Surfactant-Polymer injection control strategy to enhance oil
recovery taking the net present value (NPV) as the initial performance index. The work in
[26] and [27] uses RL for optimal control, but does not take into account tracking control
and relies on conventional controllers for that.

Nian et al. employed contextual bandit for fault detection and DQN for fault tolerant
control of a Wood Berry distillation column [28]. These works concentrate on tracking
control, optimal control or fault tolerant control individually. This work aims to provide a
comprehensive solution that tackles a both tracking control and optimal control. It proposes
an asynchronous advantage actor-critic (A3C) based solution for the optimal control and
tracking of the PSV as motivated previously. The contribution of this paper comes from
the proposed hierarchical control scheme that tackles the multiple objectives of the PSV.
The hierarchical, cascade type structure is proposed for improving the bitumen recovery
rate through froth-middlings interface level tracking while regulating the tailings density to
prevent sanding. As a novel approach for interface tracking, a semi-supervised scheme based
on behavioural cloning is employed during training for safe exploration of the action space.

The rest of the paper is arranged as follows: Section 2 details the high fidelity PSV
model used, Section 3 discusses the multi-loop RL control architecture and the experimental
setup, Section 4 shares the results and discussions, and finally Section 5 highlights the main
conclusions and sets directions for future work.
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2. PSV Process Model

2.1. Process Description

Mass balance with gravity separation principles used in the PSV model in this work are
all based on the work in [4] and its references. The gravity separation principles employed
and the models presented in this section are taken from [6]. The following main assumptions
are considered in the model development. The materials’ species present in the PSV are
bitumen, solids, and water (labelled by the subscript j that takes b, s, w respectively). They
are considered to be present in three constant sizes: small, medium, and large. The bitumen
and coarse solid particles are assumed to be spherical; whereas, the fine solids follow platelets’
shape. The density of species (bitumen, water, and solids particles) are all assumed to be
constant and the viscosity of the middlings layer is assumed to be that of water.

Each layer is assumed to be perfectly mixed, contains continuous medium, and mod-
elled using mass balance principles with interactions between layers through froth-middlings
and middlings-tailings interfaces. This interaction is characterized by considering particles’
movement between layers to follow steady-state settling relationships (Stokes law). It will
be briefly revisited in the forthcoming subsections in combination with hindered settling
models for suspension of particles following the reference [29]. The froth-middlings interface
is considered to be mobile and particles can move back and forth through it. While, the
middlings-tailings interface is static and particles only move in a downward direction. The
downwards direction is considered to be the positive direction of particles movement along
with one-dimensional assumed flow.

In the mass balance equations presented hereafter, no material generation is assumed and
can be expressed as expounded in the following subsections. The notation used is presented
in table 1.

2.2. Froth Layer

The volume of the froth layer Vf is assumed to be a function of the interface velocity vI .
This is because the top of the froth layer is assumed to be fixed and matches the top of the
PSV. It is described by equation (1) where Avessel represents the vessel cross-sectional area.

dVf
dt

= AvesselvI (1)

As shown in figure 2, a species j’s transport occurs as 1) a flux φj through the interface
with the middlings (equation (3)) and 2) leaves the top of the PSV with a flow rate of Ff .
Applying mass balance principles, the volumetric fraction of a species j in the froth layer
(αfj ) is described in equation (2).

dαfj
dt

=
1

Vf
(φj − αfjFf − α

f
jAvesselvI) (2)

φj =

{
αmj Avessel(vI − vmj ), vI > vmj
αfjAvessel(vI − vmj ), vI ≤ vmj

(3)
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Figure 2: PSV Schematic

where j ∈ b, s. αmj is the volumetric fraction of a species j in the middlings layer entering the
froth layer. This occurs when the interface velocity vI is greater than the settling velocity
vmj of species j in the middlings layer.

As indicated by [4] and the reference within, the settling velocity vmj is calculated by

equation (4). This equation corrects the free settling velocity vfreej by Concha’s correlation
[29]. This correction is considered in order to account for the suspension resulting from the
presence of other particles in a layer, so the settling of a particle is hindered as indicated in
equation (4):

vmj = vfreej

(1− 1.45
∑
αparticles)1.83

1 + 0.75
1
3

(4)

The free settling velocity itself vfreej was developed by Swanson [30], [31] and is based on
Stokes’s equations for free-settling as shown in equation (5):

vfreej =
4
3
gd2(ρj − ρi)

θj(2d
3
2 (

gρjρi
3

)
1
2 +
√

48εjη)
(5)

where the shape factors of a species j ∈ b, s, is represented by the parameters θj and εj.
g is the gravitational constant and η is the viscosity of water, and d refer to the particle
diameter of a species. Three particles’ sizes are considered for bitumen and three for sand
particles as indicated previously. The shape factor is assumed to be spherical for bitumen
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Table 1: Primary Separation Vessel Model Notation

Parameter Description [unit]

i ∈ f,m, t froth, middlings, and tailings

j ∈ b, s, w bitumen, sand, and water

k ∈ 1, 2, 3 small, medium, and large particle size

IF−M froth-middlings interface level [m]

Ffd feed flow rate [m3s−1]

Ffl flood water flow rate [m3s−1]

Ff froth overflow [m3s−1]

Fm middlings withdrawal flow rate [m3s−1]

Fm nominal middlings withdrawal flow rate [m3s−1]

Ft tailings withdrawal flow rate [m3s−1]

Ft nominal tailings withdrawal flow rate [m3s−1]

Vi volume of ith layer [m3]

ViSP
volume setpoint of ith layer [m3]

αij volume fraction of species j in layer i

φj flux of species j [m3s−1]

Avessel vessel cross sectional area [m2]

vI froth-middlings interface velocity [ms−1]

vij settling velocity of species j in layer i [ms−1]

ρj density of species j [kgm−3]

ρi density of layer i [kgm−3]

dkj particle diameter size k of species j [m]

g gravitational constant [m2s−1]

et error term [m]

Θ, ε settling velocity correction factors

η dynamic viscosity [kgm−1]

and for coarse solid particles and assumed to be platelets for the fine particles (clays).
The suspension in a layer is assumed to be uniform and its density is calculated as the
weighted summation of species’ densities in it as represented in equation (6):

ρi = ρwα
i
w + ρbα

i
b + ρsα

i
s (6)

where i ∈ f,m, t denotes froth, middlings, and tailings respectively. The subscripts w, b

8



and s indicate the species, namely water, bitumen, and sands respectively. ρj indicates the
density of a species j either bitumen or sand particle.

The interface velocity vI is modelled as the Wallis shockwave equation (equation (7)) for
a first order approximation as follows [32]:

vI =

∑3
k=1 α

m
bkv

m
bk −

∑3
k=1 α

f
bkv

f
bk∑3

k=1 α
m
bk −

∑3
k=1 α

f
bk

(7)

where k is the index of particle size (3 sizes were considered) and again αij is the volume
fraction of species j in layer i.

2.3. Middlings Layer
Similar to the volume of the froth layer, the middlings layer volume Vm is assumed to be

only a function of the interface velocity vI as the middlings-tailings interface is stationary
and only the froth-middlings interface is mobile. Thus, the middlings layer is represented
as in equation (8).

dVm
dt

= AvesselvI (8)

As shown in figure 2, a species j’s transport in the middlings layer occurs as a 1) flux
φj through the interface with both, the froth layer and the tailings layer as indicated in
equation (10), 2) feed injected slurry with flow rate Ffd, and 3) as a withdrawal that leaves
the middlings layer with the withdrawal flow rate Fm. Consequently, using mass balance
principles, the volumetric fraction of a species j ∈ b, s in the middlings layer (αmj ) is described
as given in equation (9).

dαmj
dt

=
1

Vm
(αfdj Ffd − αmj Fm − αmj Avesselvtj + αmj AvesselvI + φj) (9)

φj =

{
−αmj Avessel(vI − vmj ), vI > vmj
−αfjAvessel(vI − vmj ), vI ≤ vmj

(10)

where αfdj is the volumetric fraction of species j in the feed stream, and vtj is the hindered
settling velocity of a particle of species j in the tailings layer also calculated using equation
(4).

2.4. Tailings Layer
The volume of the tailings layer is constant as the middlings-tailings interface is consid-

ered stationary and this simplifies the model equations. As shown in figure 2, a species j
transport occurs as a 1) flux φj through the middlings-tailings interface and 2) as a with-
drawal that leaves with the withdrawal flow rate Ft from the bottom of the PSV. The
volumetric fraction of species j ∈ b, s in the tailings layer (αtj) is then described as given in
equation (11).

dαtj
dt

=
1

Vt
(αmj Avesselv

t
j − Ftαtj) (11)
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2.5. Feed Equation

As shown in figure 2, with a flow rate of Fore, ore is fed to a mixer of volume Vmix to
be first mixed with flood water of flow rate Ffl before being fed into the PSV. Thus, the

volumetric fraction of species j in the feed stream (αfdj ) is described in equation (12).

dαfdj
dt

=
1

Vmix
(αorej Fore − αfdj (Fore + Ffl)) (12)

The following flow rate balance is considered to calculate and constrain the overflow stream:

Ffd = Ffl + Fore

Ff = Ffd − Fm − Ft
such that:

Ff ≥ 0

2.6. Recovery Rate

The efficacy of the PSV in extracting a bitumen rich froth directly affects the economic
impact of the oil sands industry by determining the load on the downstream processes. This
effectiveness is represented by the bitumen recovery rate RR. It depends on the bitumen
content in the froth αfb and ore αfdb and the corresponding froth overflow rate Ff and ore
flow rate Fore as represented in equation (13).

RR =

∑
αfbFf∑
αoreb Fore

(13)

3. RL based Control

3.1. Markov Decision Process

As previously motivated, the RL framework comprises of: a RL agent that is the learner
in the process (analogous to the controller) and the environment (analogous to the plant
including the rewarding mechanism). The agent interacts with the environment to optimize
a certain facet of its behavior skewed by the designer’s choice of reward. This framework is
represented by a MDP that follows the Markov property [33]. It assumes that the present
state of the environment is sufficient to make the optimal decision, i.e. it contains the
relevant historical information. The MDP encapsulates the agent-environment interaction
in discrete time steps within the finite time learning episode t ∈ N . The terminal state of
an infinite horizon optimization RL setup is based on an episodic approach. In the following
subsections, the projection of PSV’s state space into the action space (middlings flow rate
Fm, froth-middlings interface level setpoint IF−MSP

, tailings flow rate Ft) based on the
rewarding mechanism is described using this MDP structure.

The specific case of lower level froth-middlings interface level control is used as an ex-
ample to understand MDP in this subsection. It is assumed that at each time instant
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t, there is a set of observable states st ∈ S that the environment can assume, such as
st = [IF−M , IF−MSP

, Fm]. There is also a set of actions at ∈ A the agent can choose from,
given the state observation st, to manipulate the Fm to track the interface level. This is
done in accordance with its current policy π(at | st). By virtue of the action at, the PSV
transitions to a new state st+1 and emits a scalar reward rt associated with being in the new
state and the action that had been taken, such as in equation (14). The rewards are accu-
mulated over time by following the policy π. They are then corrected by a discount factor γ
which helps to keep the returns bounded. This determines the relative importance of future
rewards and is represented in the form of returns Rt as given in equation (15). Returns in
this context are a direct feedback on the agent’s performance at each state with reference
to the terminal goal. They are calculated by considering the deviation from the setpoint
over time. Their estimation, given only the states, is also known as the value function V (s)
as shown in equation (16). If the action taken (the flow rates chosen) is also considered in
obtaining the expectation of returns, they constitute the action-value function Q(s, a) given
in equation (17). MDP setup for the lower loop corresponding to interface level control in
the hierarchical architecture is illustrated in figure 3.

Figure 3: Markov Decision Process Representation for Lower Level Interface Tracking

rt = − | IF−M(t)− IF−MSP
(t) |2 − | ∆Fm |2 (14)

Rt =
n∑
k=0

γk(− | IF−M(t+ k)− IF−MSP
(t+ k) |2 − | ∆Fm |2) (15)

V (s) = Eπ[Rt | s] (16)

Q(s, a) = Rt + γ ∗ V (s) (17)

3.2. Actor-Critic

Actor-Critic combines the benefits of DQN and DPG [20] to allow the state and action
sets in the MDP context to transcend from discrete to continuous state and action spaces.
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Neural networks are employed as function approximators to implement the policy πθA(at | st)
represented by the actor, and the value function VθC (st) represented by the critic (which is
monotonic), where θA, θC represent the neural network parameters for the actor and critic
respectively. The objective of actor-critic is to improve the accuracy in estimating the
returns using critic, followed by optimizing the estimated returns by updating the actor
(equation (18)). The learning gradient of the policy is considered an approximate solution
to the Bellman optimality equation (equation (19)). A baseline term limits the variance
in the gradients of the neural network approximators aiding in convergence (equation (20))
[14].

maxθAJ(θA) = E(Rt | πθA) (18)

∇θAJ(θA) = Eπ[
N∑
t=0

∇θA log πθA(at | st)[Rt]] (19)

A(st) = Rt − V (st) (20)

A set of λ tuples containing the state, action, action-value and the reward are recorded in
the experience replay buffer for each sample time t until the buffer is full. The experience
replay buffer holds the information required to calculate the gradient from losses. Since
the objective of the critic is accurate estimation of the returns, the critic parameters are
updated by means of the critic loss function as shown in equation (21). The returns Rt

are calculated from the rewards stored in the experience replay buffer, while the returns
estimate (the action-value function) is obtained by passing the state/action information to
the critic network.

min
θC

J(θC) =
N∑
t=0

|| Rt − VθC (st) ||2 (21)

After the network parameters’ update in the critic network, the actor is updated by means
of the actor network gradient derived from its loss. The actor loss is adjusted by the advan-
tage function to reduce variance such as in Advantage Actor-Critic (A2C) where the critic
action-value replaces x(st, at) with A(st, at) calculation as presented in equation (22).

∇θAJ(θA) = Eπ[
N∑
t=0

∇θA log πθA(at | st)[AθC (st]] (22)

3.3. Exploration

Policy π can either be deterministic (equation (23)), that is, the policy maps the state
observations st directly to the actions at, or stochastic (equation (24)), where the policy sam-
ples a probability distribution described by µt, σt from which the action is sampled (equation
(25)). Stochastic policies inherently promote exploration making it suitable for improved
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convergence for continuous space, nonlinear chemical processes. Whereas, in the case of de-
terministic policies, exploration is encouraged by means of schemes such as ε-greedy or ε-soft.

at = πθA(st) (23)

µt, σt = πθA(st) (24)

at ∼ N(µt, σt) (25)

The theme of exploration and exploitation is central to reinforcement learning. Exploitation
is when the agent chooses the action known to result in the highest returns, while exploration
is the agent taking an equal probability action to explore the action space. Furthermore,
Shannon’s entropy H(π) is introduced in the actor loss calculation to encourage exploration
in the stochashtic format (equation (26)). Higher entropy may result in delayed convergence
while preventing convergence to a local optima. The actor loss is hence represented as given
in equation (27) where β is a hyperparameter representing the tradeoff between optimizing
the advantage function and exploration [34].

H(π) = −
∑
t

P (at) logP (at) (26)

∇θAJ(θA) = Eπ[
N∑
t=0

∇θA [log πθA(at | st)[AθC (st)]]− β ∗H(π) (27)

3.4. Asynchronous Advantage Actor-Critic

The learning approach differs slightly between on-policy algorithms and off-policy al-
gorithms. On policy algorithms interact with the environment using the same policy that
they update to converge towards the optimal policy. Off-policy algorithms interact with the
environment using a behavior policy, while a separate target policy is updated to find the
optimal policy. Asynchronous advantage actor-critic (A3C) is an instance of such off-policy
scheme where a global actor-critic network is updated using the experience gained through
multiple local actor-critic behavior policies working asynchronously. Each local actor-critic
interacts with its own local copy of the environment (in this case the PSV and the rewarding
mechanism) to gain the experience. This aids exploration in the state/action space which
is essential for development of a generalized solution for nonlinear process control applica-
tions. By employing multiple local copies of actor-critic and its corresponding environment,
A3C redistributes the learning between multiple workers by making use of parallel comput-
ing. This also leads to improved and stable convergence [19]. The pseudocode of the A3C
adopted from [19] for the PSV is given in figure 4. The sequence repeats itself for each
worker for each learning episode except for the first time in which each worker interacts
with the environment, and no updates are made to the worker networks. As seen in figure 4,
the A3C scheme would have higher degree of exploration, so the global policy is generalized
owing to the asynchronous learning. Hence, the near optimal global policy is assumed to be
available at the end of the stipulated episodes.
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Figure 4: Pseudocode for A3C adapted from [19] for the PSV

3.5. Hierarchical Multiloop Control

The supervisory layer of the hierarchical agent overlooks optimization of the bitumen
recovery rate (RR). The RR is optimized through changes in the froth-middlings interface
level setpoint IF−MSP

. A lower level RL agent manipulates the interface level IF−M to track
the setpoint changes provided by this agent. In addition, to ensure safe operation of the
PSV, an RL agent regulates the tailings density ρt below a set threshold to prevent sanding
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in the tailings. This would otherwise lead to depletion of the middlings or froth layer,
leading to poor or no recovery. The control structure is illustrated in figure 5. The reward
mechanism of each RL agent, the states to the actor and the critic, and the loss functions
determine the learning of each agent and comprise the setup. The setup overlooking each
objective is explained in subsections 3.5.1 to 3.5.3.

Figure 5: Multiloop Control of PSV

3.5.1. Low Level RL - Interface Level Control

Control of the froth-middlings interface level is achieved through manipulation of mid-
dlings flow rate Fm. The interface level IF−M depends directly on the froth volume Vf
as given in equation (28), where Avessel is the area of the vessel. A finite difference type
simulation with a sample time of 1 hour (with one minute iterations in the inner loop) is
executed. A new action ∆Fm is chosen by the actor based on the state observations sILA

t

every 1 hour. The states observed by the actor and the critic, that is the input vector, are
given in equation (29). Since a stochastic policy is followed, the output of the actor is an
action probability distribution as shown in equation (30). The normalized action is sampled
from the distribution and scaled to the PSV’s practical operating range, shown in equation
(31). The action then updates the middlings flow rate Fm as shown in equation (32), where
Fms represents the steady state middlings flow rate.

IF−M(t) =
Vf (t)

Avessel
(28)

sILt = [IF−M(t), IF−MSP
(t), Fm(t)] (29)

µILt , σ
IL
t = πθIL(sILt ) (30)

∆Fm(t) ∼ N(µILt , σ
IL
t ) (31)

Fm(t) = Fms + ∆Fm(t) (32)
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The output of the critic estimates returns RIL
t in the form of the value function VθC (st)

(equation (33)).

R̂IL
t = VθIL(sILt ) (33)

The reward function, given in equation (34), is shaped to achieve the multiple control ob-
jectives. The first term included intends to minimize the deviation of the interface level
from the setpoint (handled in terms of the froth-middlings interface level deviation given in
equation (35)). The second focuses on minimizing the the controller effort. The third term
F breach
m is a soft constraint for maintaining the action within operational bounds through pe-

nalization as presented in equation (36). It ensures that through the course of RL learning,
it would learn not to breach the upper/lower bound in order to optimize the rewards.

rILt = − | ∆IF−M(t)) |2 − | ∆Fm(t) |2 −F breach
m (34)

∆IF−M(t) = IF−M(t)− IF−MSP
(t) (35)

F breach
m =


0, if(0.8Fms ≤ Fm(t) ≤ 1.2Fms)

| Fm − 1.2Fms |, if(Fm > 1.2Fms)

| Fm − 0.8Fms |, if(Fm < 0.8Fms)

(36)

The critic loss, given in equation (21), employs the value function (VθIL(sILt )). Actual returns
are calculated from the rewards obtained from equation (34). The actor loss is calculated
with the advantage function values from the updated critic as shown in equation (22). The
results obtained are shared in section 4.

3.5.2. Supervisory RL - Recovery Rate Optimization

The recovery rate (RR) depends on the bitumen content in the froth (αfb ) and ore (αfdb ),
and the corresponding froth overflow rate (Ff ) and ore flow rate (Fore) as given in equation
(13). Since the bitumen content in the ore and the ore flow rate are beyond control, the
froth-middlings interface level (IF−M) is considered to address recovery rate.

The sampling time considered to update the interface level setpoint IF−M is 2 hours.
This is in adherence to industrial practice since that is the frequency at which the ore qual-
ity measurements from the lab will be available. The input state vector is provided to the
actor and the critic every 2 hours, and it is given in equation (37). These states are the
recovery rate at the given time RR, the baseline recovery rate RRnom taken from [8], and
the middlings flow rate Fm. A stochastic policy is followed again, so the output of the actor
is an action probability distribution, as shown in equation (38). The normalized control ac-
tion, change in froth-middlings interface level setpoint ∆IF−MSP

, is sampled from the given
distribution (equation (39)) and scaled to a practical operating range (equation (40)), that
is ±1.2m. The range for setpoints for froth-middlings interface level is also set between the
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Figure 6: Phase 1 of Coerced Learning

operating limits of 18.8m to 28.2m.

sRRt = [RR,RRnom, Fm(t)] (37)

µRRt , σRRt = πθRR
(sRRt ) (38)

∆IF−MSP
(t) ∼ N(µRRt , σRRt ) (39)

−1.2 ≤ ∆IF−MSP
(t) ≤ 1.2 (40)

The instantaneous rewards reflect the objective to maximize the recovery rate and main-
tain the system’s stability by minimizing the magnitude of the action taken. The reward
reflected is positive in the case when the recovery rate is above the nominal recovery rate
RRSP and negative otherwise, as given in equation (41). They are used in the actual returns
RRR
t calculation.

rRRt =| ∆RR−RRnom |2 − | ∆IF−MSP
|2 (41)

∆RR = RR−RRnom

The critic loss (equation (21)) and actor loss (equation (22)) extract information from the
supervisory RL agent in a similar manner as the previous subsection and follow the same
sequence of update. The results are shared in the next section.

3.5.3. Sanding Prevention

Accumulation of coarse solids in the tailings underflow adversely affect the pipe health
and can choke the PSV. This phenomenon is known as sanding, and it occurs when the
tailings density (ρt) increases beyond a certain threshold, causing solids to settle quicker
than they can be removed. Through control of the tailings flow rate (Ft), the tailings density
ρt can be regulated below the sanding threshold, which is the third objective this work looks
to optimize. The sanding threshold is given as 1650kgm−3 in literature [4]. However, in the
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current study a lower threshold of 1480kgm−3 is chosen as a tighter constraint. With a same
sampling time of 1 hour, the states observed sSCt are given in equation (42). The output of
the actor is a probability distribution as shown in equation (43) from which the action ∆Ft
is sampled every 1 hour (equation (44)). The action updates the tailings withdrawal flow
rate Ft as shown in equation (45), where Fts represents the steady state tailings flow rate.

sSCt = [ρt, ρtSP
, Ft(t)] (42)

µSCt , σSCt = πθSCA
(sSCA
t ) (43)

∆Ft(t) ∼ N(µSCt , σSCt ) (44)

Ft(t) = Fts + ∆Ft(t) (45)

The actual instantaneous rewards are given in equation (46) and further expanded in equa-
tions (46) and (47). They would be used to calculate the actual returns used in the critic
loss function represented in equation (21), which will then be used to calculate the actor
loss as shown in equation (22).

∆ρt = ρt − ρtSP

rSCt = − | ∆ρt |2 − | ∆Ft(t) |2 −F breach
t (46)

F breach
t =


0, 0.8Fts ≤ Ft(t) ≤ 1.2Fts
| Ft − 1.2Fts |, Ft > 1.2Fts
| Ft − 0.8Fts |, Ft < 0.8Fts

(47)

Simulation details and results are provided in section 4.

3.5.4. Coerced Learning

Another novel contribution of this paper is leveraging the existing control strategy to
initially teach the RL agent to learn and explore in the stable operational region of the
state/action space. This is especially useful when dealing with a nonlinear process such
as the PSV. This is an adaptation of the imitation learning concept into this work. The
strategy developed has been termed coerced learning and was implemented by learning from
an interactive expert demonstrator namely learn from existing control strategy.

The training is carried out in 2 phases. In Phase 1, the action taken by the actor-critic is
limited subject to a defined bound of the expert demonstrator’s action. This is achieved by
adding an additional factor in reward calculation in the first few episodes. In this phase, a
demultiplexer chooses between the RL agent’s action aRLt and the expert controller’s action
aCt as given in equation (48) and illustrated in figure 6. The RL agent’s action is evaluated
for the regular reward if it is within ±5% of the action that the expert demonstrator would
choose for the given measurements. A penalizing mechanism considering the distance of the
RL agent’s action from the bounds is utilized otherwise. Beyond these bounds, the coerced
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learning factor cc factor penalizes the actions taken by the RL agent. This is represented
in equation (49), where A represents the complete practical range of actions. The penalty
is hence proportional to the deviation between the action taken by the RL agent and the
expert demonstrator. If the RL agent’s action lies within the acceptable range, the reward
is proportional to the deviation from the setpoint in the case of setpoint tracking.

at =

{
aCt , 0.95aCt < aRLt < 1.05aCt
aRLt , otherwise

(48)

rt =

{
− | IF−MSP

− IF−M |, 0.95aCt < aRLt < 1.05aCt
cc

A−|aCt −aRL
t |
, otherwise

(49)

After a specified number of episodes, the training switches to phase 2. In this phase, the RL
agent’s learning is independent of the expert demonstrator, as shown in figure 7. Compared
to this, in behavior cloning, the learner assumes the demonstrator’s policy to be optimal
and aims to imitate it by copying the actions it takes in given states. This is, thus, a
semi-supervised learning scheme where the RL agent leverages experience from the expert
demonstrator (like a conventional controller) to define the direction for exploration to ensure
that the exploration happens within a stable region while control objectives are met. The
impact of introducing this factor on the training and on-line execution along with its wider
implications for control are discussed in section 4.

Figure 7: Phase 2 of Coerced Control Training

4. Results & Discussion

4.1. Infrastructure

For this study, a high fidelity model of the PSV was considered. The PSV simulation as
well as the RL code was implemented using Tensorflow v. 1.9.0 in Python 3.7.1. Windows
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10 64-bit OS running on a Lambda computer with Intel i9-9820x processor with 20 threads
was utilized for the A3C based learning.

Details of the input and output vectors to the actor as well as the critic have been
elaborated in Section 3.5 for the hierarchical architecture based agents as well as sanding
prevention scheme. Fully connected feedforward neural networks are used as function ap-
proximators for both the actor and the critic. There is 1 hidden layer for the actor, in all
cases, which contains 200 nodes, and it is fully connected to the output layer, with a non-
linear activation function applied to its output. The output layer of the actor consists of a
mean and standard deviation as shown in figure 4, from which the actions are sampled. The
nodes corresponding to the mean (µt) have a tanh activation function applied in the output
layer. The nodes corresponding to the standard deviation (σt) have a softplus activation
function applied in the output layer. Similarly the critic is structured with an input layer
fully connected to 1 hidden layer with 100 nodes using a tanh activation function, which is
in turn fully connected to the output layer. The sample time for each policy is mentioned
in the corresponding sections.

4.2. Low Level RL - Interface Level Control

4.2.1. Setup

To comprehensively illustrate the performance of the RL agent in tracking the froth-
middlings interface level setpoint, it is compared to the conventional auxiliary controller
taken from [8]. It is a proportional controller with gain p = −10−7 given in equation (51),
where Fms represents the steady state middlings flow rate. In a similar fashion to the RL
agent, its control output takes into account the deviation of the interface level from its set-
point to determine the error term (et) as given in equation (50).

et = ∆IF−M(t) = IF−M(t)− IF−MSP
(t) (50)

Fm = Fms + p.et (51)

As mentioned in section 3.5.4, training occurred over two distinct phases, termed coerced
learning. In phase 1 of coerced learning the RL agent’s action was limited to a defined bound
from the expert demonstrator’s (conventional controller) action. In phase 2, it was allowed
to explore the action space freely. The sampling time for the control action taken by both
the RL agent and the conventional controller is 1 hour. The RL agent is trained for a total
of 20,000 episodes (constituting 4000 hours each), out of which, the first 1500 episodes are
spent in phase 1 and the remaining are spent in phase 2.

4.2.2. Results

Servo tracking based on versatile direction and magnitude changes to interface level
setpoint IF−MSP

is carried out. The setpoint change is instigated once every 400 hours. All
process and manipulated variables are recorded for quantitative assessment.
Without coerced learning, the actions taken by the RL agent in the initial episodes led
the PSV to the unstable region from which it could not recover. This hindered learning
and eventually the convergence to the optimal policy. Coerced learning enabled the RL

20



agent to learn from the conventional controller to find a stable operating region within an
empirically determined number of episodes, as shown in figure 8. Subplots (a-d) of figure 8
depict a stage wise improvement in the policy gradients towards the conventional strategy.
As evident from the subplots, the action selection improves as more training episodes elapse.
This corresponds to the RL agent learning to take actions within the stable operating region,
denoted by the upper and lower bounds on subplots (a-d) of figure 8. Here, simulation 1 had
resulted in a policy with action selection within limits well within 500 episodes of learning.
Simulation 2 took a long time to converge to satisfy the boundary criteria. Based on this,
in order to cater to the worst case scenarios, phase 1 was run for 1500 episodes.

Figure 8: Phase 1 of Coerced Learning: control action taken by 4 different RL agents relative to expert
demonstrator at (a) 0 episodes, (b) 500 episodes, (c) 1000 episodes, and (d) 1500 episodes of training
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In phase 2, the rewarding structure is based only on the control objective for interface
level. Uncertainty of ±10% is introduced to the middlings flow rate Fm to correspond to the
actuator disturbances in real scenarios. Best policy is based on the best cumulative rewards
obtained in any episode in phase 2. As illustrated in figure 9, the RL agent has obtained
the best projection of the state space into the action space. As evident from the figure and
metrics such as mean squared error (MSE) and intergral of absolute error (IAE), the RL
agent tracks the setpoint better in comparison to the conventional controller. Furthermore,
the ability of the RL agent to track the setpoint in the presence of disturbances relative
to the conventional controller is tested. White noise of magnitude ±30% of the nominal
bitumen content in the ore (αoreb ) is included. The results obtained are displayed in figure
10. Hence, the RL agent displays successful servotracking abilities in the presence of varied
bitumen content in ore. The RL agent generalizes well over varying operating conditions,
controlling the interface level to track the setpoint. The control performance is assessed by
MSE, IAE, and variance of control (VC), which are provided in table 2.

Table 2: Froth-middlings interface setpoint tracking with uncertainty results

Control Scheme Mean Squared Integral Absolute Variance of

Error Error Control

Constant RL Controller 0.24 1100.32 3.10e-08

ore quality Conventional Controller 0.64 2154.20 2.54e-08

Varying RL Controller 0.31 1408.59 3.23e-08

ore quality Conventional Controller 0.84 2594.64 2.63e-08

As is also visible in figure 9 and figure 10, the RL agent significantly outperforms the
conventional controller in terms of MSE and IAE as presented in table 2 The lower MSE
conveys the RL agent’s ability to maintain lower variance of the interface level IF−M from
the setpoint IF−MSP

overall while the lower IAE shows that less error is accumulated over
time. This is true for both the cases: with constant ore quality and with varying ore quality.
This shows the effectiveness of coerced learning in leveraging imitation learning to learn
from the conventional controller in the phase 1 of training and eventually outperforming it
without the need for model information. The RL agent, however, has a greater variance of
control (VC) in both cases. Although the VC is within the acceptable range, this hints that
the conventional controller is smoother.

4.3. Supervisory RL - Recovery Rate Optimization

4.3.1. Setup

The bitumen recovery rate is presented in section 2.6. The handle used to address
the recovery rate RR was chosen to be the froth-middlings interface level IF−MSP

. The
sampling interval is 2 hours corresponding to the frequency at which lab samples are available
(section 3.5.2). The action space of the supervisory RL agent is to vary the froth-middlings
interface level setpoint ∆IF−MSP

which then prompts the lower level RL agent to manipulate
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Figure 9: Froth-middlings interface setpoint tracking results

the middling flow rate ∆Fm to track the updated setpoint, completing the hierarchy. A
lower level strategy, involving continuous space state/action pair, would require exhaustive
exploration. This is evidently achieved by the A3C scheme. However, at the hierarchical
level, with a stable lower loop, the agent could possibly require less rigor while training.
To understand this, a less data efficient on-policy (policy gradient (DPG)) agent and the
off-policy (A3C) agent are deployed here.
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Figure 10: Froth-middlings interface setpoint tracking results with varying ore quality: (a) Interface level,
(b) Middlings withdrawal flow rate, and (c) Ore quality
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4.3.2. Results

Both the RL agents (DPG and A3C) were trained for 10,000 episodes. Here, an episode
constitutes of 100 hours with a sampling interval of 1 hour. The interface level setpoint
IF−M is updated every time a new ore composition data becomes available. The results are
displayed in figure 11 relative to the regulated interface level. Figure 11 subplot (a) displays
the recovery rate RR while figure 11 subplot (b) displays the control action ∆IF−MSP

taken
by the supervisory RL agents to maximize the recovery rate. Figure 11 subplot (c) indicates
the control action ∆Fm taken by their corresponding low level RL agent to track the updated
setpoint. The RR peaks above 1 and is explained through the observation that the froth
volume (Vf ) decreases in accordance with the interface level setpoint changes directed by
the supervisory RL agent in the hierarchical control scheme. It then finally settles to a value
around the open loop interface level value as the supervisory RL agents in the hierarchical
control scheme ordains a final froth-middlings interface setpoint. The overall RR relative to
the regulated interface level is presented in table 3.

From figure 11 and table 3, it is clear that the RL based hierarchical control schemes
are able to achieve a significantly higher average recovery rate RR as compared to the
regulated interface level. It is able to do this while maintaining the change in setpoint
(∆IF−MSP

), the interface level (IF−M), and the middlings flow rate (Fm) within operational
limits. Since there is stable interface tracking at the lower level, the supervisory RL is able
to take actions that maintain the PSV in a stable state, leading to a stable RR optimization
scheme. Owing to this, both the DPG and A3C agents converged to a similar policy with
near optimal performance. However, the DPG agent required more episodes initially to
converge. Another interesting observation was that the variance in A3C agent’s rewards was
15% higher than that of the DPG agent, indicating active exploration, which is a preferred
attribute in RL. This is evident from subplot (b) of figure 11. Also, it is possible to infer
that the A3C scheme is more sample efficient inherently as compared to the DPG scheme.

Table 3: Recovery rate optimization results

Control Scheme Average Recovery Rate

DPG RL Controller 0.8650

A3C RL Controller 0.8653

Open loop 0.76113

4.4. Sanding Prevention

4.4.1. Setup

Sanding prevention is implemented as a safety measure to ensure regular PSV function
during interface level tracking. The tailings density (ρt) is regulated through the tailings
flow rate (Ft). This control is activated when the tailings density exceeds a set sanding
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Figure 11: Recovery rate optimization results: (a) Recovery rate, (b) Interface level, and (c) Middlings
withdrawal flow rate, and (d) Training rewards
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threshold. The sanding prevention RL agent then manipulates the tailings density by ac-
tion (∆Ft) to bring the tailings density below the set threshold. The threshold used in this
experiment is set at 1480kgm−3. This low level sanding prevention RL agent is built to
co-exist with the low level interface level control RL agent reported in Section 4.2. A sim-
ilar sample time is followed here. The two loops are sequentially executed during simulation.

4.4.2. Results

The sanding prevention RL agent was trained for 20,000 episodes of 4000 hours each.
A control action (∆Ft) was chosen every 1 hour. While the setpoint was tracked by the
low level interface level control RL agent detailed in section 4.2 by determining a control
action (∆Fm), the tailing density is controlled through the non interacting low level sanding
prevention RL agent determining a control action (∆Ft) concurrently. The results obtained
are shown in figure 12. As the subplot (a) of figure 12 shows, the low level sanding prevention
RL agent is able to successfully bring the tailings density (ρt) below the sanding threshold
every time it goes beyond the threshold during interface level changes. These correspond to
the changes in tailings flow rate (Ft) at the times when the control is activated as shown in
subplot (b) of figure 12.

5. Conclusions

In this work, a RL based control strategy was developed to implement effective hierar-
chical control for PSV in presence of disturbances in the middlings flow rate and uncertainty
in ore composition. The Supervisory A3C based RL agent manipulated the interface level
set point to improve the bitumen recovery rate. The resulting lower level RL agent for servo
tracking and ore quality variance oriented regulation of interface level was implemented
using an A3C based middlings flow rate manipulation. A sanding prevention scheme was
also implemented using a separate A3C based RL agent. The A3C based global RL agents
learn the optimal middlings and tailings flow rates to obtain each defined objective. The
RL agents map the state space on to the action space through the experience gained by
repeated interactions with a high fidelity model of the PSV. The existing conventional con-
trol strategy was leveraged using a variant of behaviour cloning, termed as coerced learning.
This initially assisted the RL agent in discovering the stable operating region of the action
space given the nonlinear nature of the gravity-based separation process. From there, the
RL agent was able to independently learn the optimal actions to be taken in the range to
achieve its goals. The lower level RL agent for interface level control demonstrated better
performance in terms of IAE and MSE for with stable and varying ore quality relative to
the conventional controller. The supervisory RL agent also demonstrated a higher bitumen
recovery rate than reported with conventional control in keeping with the economic opti-
mization objectives. Furthermore, to evaluate the impact of the hierarchical structure, two
different supervisory RL agents, a DPG and a A3C agent were trained. While both agents
converged on a near optimal policy due to the stable lower level interface tracking, the A3C
based agent displayed faster convergence and higher exploration. The low level RL agent
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Figure 12: Sanding prevention results: (a) Interface level and tailings density, and (b) Tailings flow rate
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for sanding prevention was also able to maintain the tailings density below the set threshold
to prevent sanding amidst tracking the setpoint changes in the interface level.
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