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ABSTRACT

The purpose of this thesis is to study notions of
homotopy and fibrations in arbitrary categories. The basic
approach taken is that of homotopy systems first defined by
Kan. For topological like categories homotopy systems have
been studied by Kamps via semi-cubical complexes. Other
standard approaches taken to homotopy include those of Bauer
and Dugundji via classes of morphisms, which we compare with
homotopy systems and those of Ringel via diagonalizable pairs

of morphisms.

Most of chapter I consists of a brief introduction
to category theory including definitions, terminology and
some basic categorical results needed :n the remainder of
this taesis. The chapter ends with an introduction to homo-
topy and fibrations in a general categorical sense via natural

equivalence relations. Some results on these ideas are given.

Chapter II consists of an introduction to homotopy
systems and the resulting homotopy relétions, fibrations and
cofibrations following the method of Kamps. Basic properties
are given and many examples, some new, are explained to show
the generalities and potential of taking homotopy systems as

the “"proper" approach to the study of abstract homotopy.

Chapter III is devoted entirely to a systematic
development of the Eckmann-Hilton injective homotopy theoxry
for modules in terms of a homotopy system. We show that we do

regain the usual injective homotopy relation and the injective

(1iv)



fibrations from this homotopy system.

The categories of fractions, M - homotopy and M -
fibrations of Bauer and Dugundji are introduced in chapter IV.
Relationships between categories of fractions and M - homotopy
categories are developed and also betwéen M - homotopy cate-
gories and the homotopy categories determined from homotopy
systems. Similarly M - fibrations and fibrations from homotopy

systems are compared.

In chapter V cohomotopy systems are defined and
relationships between homotopy systems and cohomotopy systems
are developed. In particular when the two functors involved
are adjoint the systems are shown to be equivalént. The same
situation results in the case of cones (weak triples) and paths'
(weak cotriples) when the functors are adjoint. The relation-

ship of adjointness to M - homotopy is also investigated.

Chapter VI consists of a detailed description of
homotopy systems in additive categories. It is shown that homo-
topy systems are equivalent to pre cones while natural homotopy
systems are the same as cones. Assuming cones then the study
of homotopy systems in additive categories is similar to the
study of certain classes of objects, in particular contractible
objects defined via the cones. For example in the Eckmann-
Hilton injective homotopy theory for modules the contractible
objects are the injective modules. These homotopy categories
are also compared with quotient categories or categories of

fractions.
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CHAPTER I

BASIC CATEGORY THEORY AND TERMINOLOGY

1.1 Introduction.

This chapter contains a brief introduction to
category theory, including the definitions, terminology and
some basic results needed in this thesis. Sections two
through five contain standard material which can be found in
any introductory book on category theory, in particular Mit-
chell [14]. The sixth section is an introduction to homotopy
and fibrations in a very general sense and contains some ele-

mentary results on these two notions.

1.2 Categories - Special Morphisms and Objects.

A category A is a class of objects A,B,***,X,¥,*""

denoted by |A| together with a disjoint family of sets
Hom(A,B;A) or H(A,B) one for each pair of objects. The

elements of H(A,B) are called morphisms from A +to B and

for £ € H(A,B) we write f : A > B . Furthermore for
each A,B,C ¢ |A| and morphisms £ ¢ H(B,C) and g ¢ H(A,B)
there exists a uniquely defined product (composition) feg or

fg ¢ H(A,C) and this product has two properties:

-



(i) It is associative; if we have h : A > B ,
g : B >Cc and f : C > D , then
(fgyh = f£(gh) .

(ii) For each A ¢ |A| , there is a 1, « H(A,A) such
that for each £ e H(A,B) , lB o £ = f = £ o lA .

Certain morphisms in a category A are of special
interest. A morphism £ is said to be an epimorphism if
of = Bf implies o =8 ; f is a monomorphism if fa = £8
implies o =68 . A morphism £ 1is said to be a retraction
(coretraction) if it is right (left) invertible, i.e., there
exists a morphism £ (£") such that ff' =1 (£"€ = 1) ,
where 1 is the identity morphism. A morphism which is both
a retraction and a coretration is said to be invertible or an

isomorphism. If f ¢ H(A,B) is an isomorphism, the objects

n

A and B are said to be isomorphic, A B .

Certain objects are also of special interest. An
object 0 in a category A is said to be a null (conulk)
objeet for A 1if H(A,0) (H{0,A)) has precisely one element
for each A c¢|A|. 0 1s called a zero object for A if it
is both a null and a conull object. In this case a morphism

A > B which factors through O is called a zeho moaphism.




-

We remark that T , the category of topological
spaces and continuous maps has a null object, the one-point
space, a conull object, the empty space;but no zero object.
Thus we usually restrict ourselves to T, , the category of
topological spaces with base point and base point preserving
continuous maps, for there the one-point space is a zero

object.

1.3 Some Constructions in Categories.

Let £ : A > B and g : A > C be morphisms

in a category A . An object Q together with morphisms
£': C > Q@ and g' : B > Q .
g

is called a pushout for £ and g 1if f'g = g'f and if

£"  C

> Q' and g" : B

> Q' 1is another pair of

morphisms to an object Q' with £"g = g"f then there exists

a unigue morphism vy : Q > Q' with yf' = £" and



Let £ : B > A be morphisms

>A and g : C
in a category A . An object P together with morphisms

£f' : P

>C and g' : P

is called a pullback for £ and g if fg' = gf' and if

£ : P > B is another pair of

> Cc and g" : P!

morphisms from an object P' with fg" = gf" then there is

a unique morphism Y : P!’ > P with g'vy = g" and

f'Y = f"

Pushouts and pullbacks are unigue up to isomorphism
if they exist. We say that a category has pushouts if the
pushout of every pair of morphisms with the same domain exists.

This applies similarly for pullbacks.

Let £ : A > B be a morphism in a category
with null object and pushouts. Then the cokernel of £ ,

B/f(A) , is defined by the following pushout diagram:



0 > B/f(A) .

Similarly if A has a conull object and pullbacks we define

the kernel of a morphism as a pullback.

Let {Ai}iEI be a family of objects in an arbitrary

category A . A product for this family is an object A

together with a family of morphisms {pi : A > Ai}iEI with

> Ajlier

the property that for any other family {fi : A

there is a unique morphism £ : A' > A such that

P.

i° f = fi for all i € I . We call Py the projection and

denote the product, A , by I Ai and the unique £ into
ieI
the product by {fi}i€I . If I is a finite set we denote £

by {fl’fZ”"'fn} .

}

of objects in a category A is an object A together with a

Similarly the coproduct (sum) of a family {Ai ieT

> A} with the property that for any

family {ji 2 Ay eI

other family {fi 2 Ay

> A' such that £ o ji = fi for all i e I . We

> A'}iEI there is a unique morphism

f : A

call ji the injection and denote the coproduct, A , by

® A. and the unique f out of the coproduct by <f.>. .
jer % i iel



If I is a finite set we denote f Dby <fl,f2,...,fn> .

1.4 Additive Categories - Injectivity.

An arbitrary category A 1is said to be additive 1if

(i) H(A,B) is an abelian group, for all A,B ¢ |A|
(ii) The composition of morphisms is bilinear.

(iii) There exists a zero object.

(iv) Finite products and coproducts exist in A

In an additive category every finite product (copro-

duct) is a coproduct (product).

An additive category is said to be abelian if every
morphism has a kernel and a cokernel, every monomorphism is

the kernel of some morphism and every epimorphism is the coker-

nel of some morphism

An object Q in a category A is called injective

if for any diagram




where A > B is a monomorphism, there is a morphism

B

> Q making the diagram commutative.

We say that a category A has injectives if for

every object A in A there is an injective object Q in A

and a monomorphism A > Q .

1.5 Functors - Naturality, Equivalence.

Let A,B be two categories. A covariant functor

T : A > B is an assignment of an object T(A) in B to
each object A in A , and a morphism T(£) : T(A) > T(B)
in B to each morphism £ : A > B in A , subject to the

following conditions:
(1) T(1) = lpay - for each A ¢ |A| ,

(ii) T(feg) = T(f) - T(g) , whenever the morphism feog

is defined in A .

If in the above to each morphism f : A > B in

A there is assigned a morphism T(£) : T(B) > T(A) in B8
and (ii) is replaced by (ii)'; T(feg) = T(g) ° T(£) , whenever
the morphism £feg is defined in A, then T 1is termed a

contravariant functor.



where A > B is a monomorphism, there is a morphism

B

> Q making the diagram commutative.

We say that a category A has injectives if for

every object A in A there is an injective object Q in A

and a monomorphism A > Q .

1.5 Functors - Naturality, Equivalence.

Let A,B be two categories. A covariant functor

T : A > B is an assignment of an object T(A) in B to
each object A in A , and a morphism T(£f) : T (A) > T(B)
in B to each morphism £ : A > B 1in A , subject to the

following conditions:
(1) T(1,) = 1oy - for each A e |A]| ,

(ii) T(L£eg) = T(£f) - T(9) , whenever the morphism feog

is defined in A .

If in the above to each morphism £ : A > B in

A there is assigned a morphism T(£f) : T(B) > T(A) in B
and (ii) is replaced by (ii)'; T(£fog) = T(g) ° T(f) , whenever
the morphism fog 1is defined in A , then T is termed a

contravariant functor.



et S,T : A > B be covariant functors from a

category A to a category B . Suppose that for each object

A in A we have a morphism n(a) : S(3a) > T7(A) in B

> B in A , the

such that for every morphism £f : A

diagram
n(A)
S (A) > T(A)
S(£f) T(£)
S (B) > T(B)
n(B)
is commutative. Then we call n a natural transformation from

> T . If n(Aa) is an isomor-

S to T and we write n @ S
phism in B for each A € IAl then n is called a natural

equivalence. In this case we nave a natural equivalence

n-l = 7T > S defined by (n—l)(A) = (n(A))—l

I£f n : S > T and p : T > U are natural
transformations of functors for s,T,U : A > B8 covariant
functors, then we have a composition pn : S > U defined
by (pn)(A) = p(A) o n(A) . For any functor T we have the

identity transformation 1lq : T > T given by lT(A)

lra)

for all A ¢ JA| . If S,T : A >B , U: B > C and
n : S > T , then we have a natural transformation
Un : US > uT defined by (Un) (A) = U(n(a)) for all

> TV

A e |A] . similarly if V : D > A, then nvV : SV



is given by (nV) (D) = n(v(p)) , for all D « o] .

A

A functor S > B is called an isomorphism

between the categories A and B if there exists a functor

T : B > A with ST 1 and TS = lA . In this case

B

the categories A and B are said to be isomorphic.

A functor S : A > B is called an equivalence

between the categories A and B if there exists a functor

T : B > TS

> A and natural transformations n : lA

and p : lB > ST . 1In this case the categories A and

B are said teo be equivalent.

1.6 Homotopy and Fibrations.

In this section we give an approach to homotopy and
fibrations based solely on "natural" eguivalence relations.
Although this is much too general to take as the "proper"
approach to the study of homotopy and fibrations in arbitrary
categories, it does have some interesting properties and gives

a good introduction to the subject.

If A is any category, a homotopy on A is a
natural equivalence relation, ~ , on each of the sets, H(A,B) ,
of morphisms between the objects of A . This means that ~
is an equivalence relation which is compatible with composition,

that is f ~ g implies fh ~ gh and kf ~ kg whenever fh



and kf are defined. For £ ~ g we say that f is homotopic

to g with respect to ~ .

If a category A has a homotopy, <~ , the homotopy
category of A with respect to ~ , A/~ , is the category

whose objects are those of A and whose morphisms are the

equivalence classes of morphisms of A under ~ . If f 1is
a morphism of A , the corresponding morphism in A/~ is
denoted by [f] . There is a natural projection functor

™ o: A > A/~ which is the identity on objects and sends a

morphism to the equivalence class of that morphism, n(f£) = [£],

for f a morphism in A . ®m 1is a covariant functor.

Two objects A,B in A are said to be homotopically
equivalent if they are isomorphic in the homotopy category.

> A

This means there are morphisms £ : A > B and g : B
in A such that gf ~ 1, and fg ~ lg or m(gf) = 1, and
m(fg) = lB . We write A ~ B .

Proposition 1.1 (Universal Property of the Homotopy Functor) :

Let A be a category with homotopy ~ and natural projection

functor T : A > A/~ . Then if T is any other covariant
functor to a category B8 with the property that £f~g
implies T(£f) = T(g9) for morphisms £ and g in A , there

> B with A" =T .

is a unique covariant functor A : A/~



> B will determine

Any covariant functor F : A
a homotopy on A by defining £ ~ g whenever F(f) = F(g)
and f and g have the same domain and range. In this case
we write £ ~ g(F) . If F is a one-one correspondence on

objects and onto on morphisms then clearly B = A/~ .

Homotopy Lifting Property. Let A be a category
with homotopy, <~ , and natural projection functor
T o: A > A/~ . A morphism p : E >B in A is

called a ~ - fibration if for all objects X in A and all

> E in A with

morphisms £,f' : X

> B , g : X

pg = £ and £ ~ f£' ,

X >
f~£f!

there exists a morphism g' : X > B in with pg' = f!
and g' ~ g . Concerning these ~ - fibrations we have the
following two propositions:
Proposition 1.2:

(1) Every isomorphism is a fibration.

(ii) The composition of fibrations is a fibration.

> % are fibrations.

(iii) All trivial morphisms p : E



> B be a fibration. Then

Proposition 1.3: Let p : E

(1) If there exists s : B > E with ps ~ 1 .,

> E with ps' =1

then there exists s' : B

and s' ~ S .

(ii) If pg ~ fp' in the following diagram

g

E' > E
p'l lp
£
B' > B
then there exists a g' : E' > E with
pg' = fp' and g¢g' Z 9 -

(iii) If there exists a commutative diagram

cx )

E' > B b > B!
lpl lp l pi
u Vv

B' > B > B!

with Ba ~ 1 and Vi = 1, then p' 1is a fibra-

The proof of these two propositions follows by an

application of the definition.



CHAPTER II

HOMOTOPY SYSTEMS IN CATEGORIES

2.1 Introduction.

The method of considering homotopy and fibrations
as being determined by a natural equivalence relation in a
category is obviously very general and does not yield many
interesting results. Thus we investigate specific methods
of obtaining natural equivalence relations which will be of
value and which will have as examples the usual homotopy

notions that we are familiar with besides giving more examples

J

/hich will show the generalities and potential of these appro-
aches. We first introduce homotopy systems as defined by Kan
[13] and studied with relation to "topological categories" by
Kamps [10], [11] and, [12]. We conclude this chapter by

introducing cones and contractibility into these systems.

2.2 Homotopy Systems.

The definition and some of the examples given here

may be found in Kan [13] and Kamps [10].
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pDefinition 2.1: Let A be a category. & homotopy system in
A is a guadruple, 2z = (Z,io,il,q) , Wwhere 2 : A > A
is a covariant functor and io’il : lA > 2 and

q : 2 > lA are natural transformations of functors with

qolo=l=qo]_l .

2 is called a cylinder functor.

Example 2.2: There is the trivial homotopy system in any

category, e = (lA,l,l,l) .

Example 2.3: In an additive category A , there is the Oppo-~

site trivial homotopy system, & = (1, © L {1,0},{1,1},<1,0>)

Examples 2.4: Let T Dbe the category of topological spaces
and continuous maps. Let Z : T > T be the covariant
functor given by Z(X) = XXI , where I 1is the closed unit
interval [0,1] , and Z(£) = f><lI for a continuous map £ .
1f X e |T] , let i (X) . ij (%) : X > XxI and

g(X) : XxI > X be given by io(X)(x) = (x,0)

il(X)(x) = (x,1) and g(X)(x,t) = X ., for x € X , t el
Then g ° io =1=4qg ° il and we have the usual homotopy

system in T, t (Z,io,il,q) .

Example 2.5: Let C(A) be the category of chain complexes

of an abelian category A . We define a homotopy system,
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(Z’io’il’q) , in C(A) . This construction differs from that
given by Kamps [10] but the resulting homotopy relations, see
§2.8, are the same and this construction coincides with the
general approach taken to homotopy systems in additive cate-~

gories given in chapter VI. For (X,3) ¢ [cAyt o

3 : X
n

> X let 2(X)_. = X_ ® X o X and
n n n n n-1

-1 '
> Z(X)n_l be given by

n

Gn : Z(X)n

9 0 0
n
§ = 0 9 1 .
n n Xn—l
0 0 -3
Then (Z(X),8) € IC(A)| . If £ : X > Y is a chain map

in C(A) , let 2Z(f) be the chain map given by

z(£), = £, @ £, 0@ £ 1 - Let i_(X) , i,(x) X > 72(X)

and g(X) : Z(X) > X be given by iO(X)n = {lx ,0,0}
n

11\X)n = {1Xn,1xn,o} and q(X) = <1Xn,o,o> . It follows

that iO(X) ‘ il(X) and g(X) are chain maps, that io p

il and g are natural transformations of functors with
g ° iO =1 =g ° il . Therefore (Z,io,il,q) is a homotopy

system in C(A) .

Example 2.6 (See Brown [2]): Let A Dbe the category of group-

oids, i.e. every object of A is a small category in which every
morphism has an inverse. Let I be the groupoid having two ob-

jects 0,1 , and two non-identity morphisms i : O > 1 and




i_l : 1 > 0 . Let 2 : A > A Dbe the covariant

functor assigning GxI to the groupoid G in A and

assigning £x1; to a morphism £ in A . Then io(G) ’

il(G) : G > GxI and g(G) : GXI > G given by

i (G (9) = (g,0) , i,(G)(g) = (g,1) and 4q(G)(g,&) = g
for ge G, € € I, give natural transformations functors
io ’ il , and with g - io =1 =4g e il . Thus

z = (Z,io,il,q) is a homotopy system in A .

Example 2.7: Let MR be the category of right-modules over

the commutative ring R . In this category there is the class-—
ical Eckmann-Hilton injective homotopy theory developed in
detail in Hilton [7]. We shall show that this homotopy actually
comes from a homotopy system in MR . This fact is very signif-
icant since it lends validity to the development of homotopy
systems in categories and the algebraic ideas give insight into
the structure of topological homotopy. This homotopy system

does not appear elsewhere in the literature and so we devote

all of chapter III to its development.

2.3 Homotopy Relations.

Definition 2.8: Let A be a category and 2z = (Z’io’il'q)

> Y be morphisms

a homotopy system in A . Let £,9 : X

in A . We say f 1is homotopic to g, £~ g(z) or simply
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f ~g , if there exists a morphism ¢ : Z(X) > Y
r---TTT o s R Y
< 1o (0 £ >
Z (X) X 4
i,(X) g
such that ¢ o io(X) =f and ¢ o il(X) =g .

Such a morphism ¢ is called a homotopy from £ +to g ,

d):f_~_g.

Example 2.9: In example 2.2, f ~ g if and only if f =g

while in 2.3, f ~ g for all g,f with the same domain and
range. In example 2.4, f ~ g 1if and only if £ 1is homotopic
to g- in the usual topological sense. In 2.5, f ~ g if and
only if £ is chain homotopic to g . If in example 2.6 we

take the category of groups as a subcategory of the category

of groupoids, for £,9 : G >H , £ ~g 1if and only if
there is a y in H with £(x) =y + g(x) - y for all x
in G . We shall see that for the Eckmann-Hilton injective

homotopy £ ~ g if and only if £f-g factors through an injec-

tive object.

Remark 2.10: The relation, "~" , is in general not an

equivalence relation. However it is reflexive and has the

property that if f ~ g and fk is defined, then fk ~ gk ,



and also if kf is defined, then kf ~ kg . 1In the examples
given it is an equivalence relation. Moreover, since it gener-
ates an equivalence relation, we shall henceforth assume that
the homotopy relation determined by a homotopy system is a

natural equivalence relation.

We can make some statements about the symmetric

property of this relation as follows:

Lemma 2.11 (Eckmann-Hilton [4]): The homotopy relation given

by a homotopy system z = (Z,io,il,q) in a category A is

symmetric if and only if there is a natural transformation of

functors r : 2 > Z such that = o iO il and r o il = i

Lemma 2.12: In a category with pushouts, the pushout of a

homotopy system is a homotopy system.

Proof: Let 2z = (Z,io,il,q) be a homotopy system and consider

the following pushout diagram

iO(X)
X > Z (X)
1,(X) a (X) q(x)
2 (X) Bz

~g’ (X\
x\‘ ~ <

\X



- 19 -

Then 2z' = (Z',Boil,aoil,q') is a homotopy system.

Corcllary 2.12 A: If 2z' 1is the pushout of a homotopy system

z' as given in the lemma, then for morphisms f and g ,
f ~ g(z) implies £ ~ g(z') .
Proof: Assume £f,g : X > ¥ and that ¢ is a homotopy

between £ and g with respect to =z . Consider the pushout

diagram
i (X)
X o > Z(X)
i (x) 1 a (X) l
7(Xx) —BX) o g1 (x) ¢

doi (X)oq(X)

We have ¢ o iO(X) o g(X) o io(X) = ¢oio(x) . Hence there is

a o' : 2'(X) > Y with ¢'oa(X) = ¢ and o¢'eB(X) = ¢°io(x)
°q(X) . Clearly ¢'eB(X) o i (X) = ¢oi (X) ° q(X) o i (X) =
¢oio(X) = f and ¢'e a(X) o il(X) = ¢ Oil(X) = g . Thus

¢' : Z'(X) > Y is a homotopy between £ and g with respect

to the homotopy system z' .

It also follows that ~ (z') is symmetric, thus

allowing us to introduce symmetry into our homotopy relation.

This comes from the existence of r : Z'(x) > Z'(X) satisfy-
ing r °c o =8 and re°B = o , which follows from the commuta-

tivity of
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Z (X)

z'(X)

2.4 Fibrations.

Throughout this section we let A be an arbitrary

category and z = (z,io,il,q) be a homotopy system in A .

Definition 2.13 (Kamps [10]). A morphism P : E > B in

A is called a =z - fibration if any commutative diagram of

the form

X J > B
— - a
io(x) J' ’CP/ -7 l P
Z(Xf’ ¢ > B

can be filled in with a homotopy ¢ : Z(X) > E such that

(i) Pé¢=¢ , and

(i1) 9 ° i (X)) =g .
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If (ii) is replaced by the following; (ii)' there

> E such that

exists a homotopy % : Z(X)

$ :g~% o i (X) and pod=peoge q(X) , then p is

called an h - fibration.

Example 2.14: In example 2.2 every morphism is a 2z - fibra-
tion while in 2.3 the retractions are the 2z - fibrations. 1In
the topological case, example 2.4, the z - fibrations are the

Hurewicz fibrations while the h - fibrations are the Dold or
weak fibrations. In example 2.6, the category of groupoids,
the =z - fibrations are the star surjective maps while if we
take only the subcategory of groups the =z - fibrations are

the surjective maps.

From remark 2.10, we may assume that the homotopy
relation, ~ (2) , determined by the homotopy system =z is a

natural equivalence relation and so by 1.6 we may consider

the ~ (z) - fibrations or simply =~ = fibrations, if no
confusion arrises. All of the properties of ~ - fibrations
given in propositions 1.2 and 1.3 hold for =z - fibrations

(the requirement in 1.3 (c) that Bo ~ 1 has to be strenthened

to Ba =1 ). In addition we have

Proposition 2.15:

(a) Projection maps are 2z = fibrations.

(b) the pullback of a 2z - fibration is a =z - fibration.
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Lemma 2.16 (Kamps [10]): Every =z - fibration is an h -
fibration and every h - fibration is a ~ (2) - fibration.
Proof: Clearly from the definition every 2z - fibration is

> B be an h - fibra-

an h - fibration. Thus let p : E

tion and assume we have

E
-
g
P
I
4
X > B
£
$ : pg ~ £, ¢ o i (X) = pg and ¢ o i, (X) = f . This gives
a commutation diagram
g
X > B
7
. //
i,(X) ¢ _ -~ Jp
//
~
Z (X) ¢ > B

> E with

and p an h - fibration gives a ¢ : Z(X)

p$=¢ anda o : Z(X) >E with ¢ : § o i (X) T g

and p ° ? =p o g e° g(X) . Let g' : X > E be given by
g' =% o iy(X) . Then pg' =p °§ ° 1;(X) =¢ ° 1;(X) =%
and gl = a o ll(x) :a o IO(X) ~ g .

Definition 2.17: A morphism Jj : A > X in A is
called a =z - cofibration if for any commutation diagram of

the form



£f and

there exists a ¢ : Z(X)

F oz(i) =¢ .

A\
r<
£
'_J.
d.
B
<
]
}_l.
0
=
u

The inner square is called a weak ceocartesian square

or a weak pushout because % is not required to be unigque.

2.5 Cones and Contractibility.

We end this chapter with a version of cones and
contractibility which generalizes the topological notion and
which pertains to the other examples given in 82.2. Some of

these ideas may be found in Seebach [(171.

Definition 2.18: A pre cone in a category A is a pair

(C,i) where C : A > A is a covariant functor and

i 1 > C is a natural transformation of functors.

Every homotopy system 2z = (Z,io,il,q) in a cate-
gory A with a null object and pushouts gives a pre cone in

A via the following pushout diagram
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i (X)
o
X > Z(X)
g (X)
* > C(X)
with 1i(X) = g(X) o il(X) . Then a morphism £ : X —> ¥

in A is said to be null homotopic if and only if there is

a morphism F : C(X) > Y with £ =F o i(X) .

Definition 2.19: An object X is contractible if the identity

map of X is homotopic to a null morphism.

Thus for an object X in A , the cone of X, C(X),
is contractible if and only if there is a morphism

P : CZ(X) With the

> C(X) with p o i(C(X)) = lC(X) .

usual homotopy systems given in §2.2 and their resulting pre-cones,

the cone of every object is contractible.

Definition 2.20: A pre cone (C,i) is a cone (C,i,p) if
there is a natural transformation of functors p : C2 > C
with p o 1(C) = lc

All the usual pre cones are cones and we shall see
in chapter IV that every pair of adjoint functors and every

triple yields a cone.



-~
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Lemma 2.21: If (c,i) = (C,i,p) , then a morphism is null

homotopic if and only if it factors through the cone of some

object.

Proof: If a morphism £ : X > Y is null homotopic then
it factors through i(X) : X > C(X) . Conversely assume

a morphism £ : X > Yy factors as £ = a°f for

B : X > c(A) and a : C(A) > ¥ for some object A .

We may form tne following diagram:

i(Cc(a)) 2
C(A) - 7 C (B)
. p(A) -
/ C(B)
. _C(x) o
N
N
F N 3
A Ny
X > Y
£
Define F : C(X) >Y by F =a o p(A) o C(B) . Then

F o i(X) = a o p(A) o C(B) o i(X) = a o p(a) - i(c(a)) » B =



CHAPTER IIT

ECKMANN-HILTON INJECTIVE HOMOTOPY

3.1 Introduction.

The aim of this chapter is to develop in detail
the classical Eckmann-Hilton injective homotopy theory for
modules in terms of a homotopy system. The main idea in the
construction is to embed an arbitrary module "functorially"
into an injective module. The approach in based on that of
Huber ([8] and [9] in which he studies this and other homotop-
ies in terms of the homotopy of semi-simplical complexes and

Kan complexes.

3.2 1Injective Homotopy System.

et A be an abelian category with infinite direct
products and let M be the category of sets. We define a

> A as follows: For a

contravariant functor P : M

fixed object U in A , set




> p(M) be given coordinatewise by

p(v) : P(M")
P(V)m - lU ° Pv(m)

where Pv(m) is the projection map-.

> M

We define another contravariant functor G : A

as follows: For X an object in A , set G(X) = Hom (X,U;A)

> Y a morphism in A , define

and for £ : X
> G(X) by

c(f) : G(Y)

G(f) (a) = Q@ ©° £ , o€ Hom (X, U;iA) .

on the basis of the above construction we obtain

T.emma 3.1: p and G are adjoint on the right.

proof: For X e |Al , M« |M|] we define a set function

> Hom (M,Hom(X,U;A)iM)

n : Hom(X, n U_;A)
m
meM

by n(a)(m) = &, - The inverse of n n—l , is given by

e = 8@ .

> A

Then C =P o G is a covariant functor A

The adjoint situation gives a natural transformation of

functors k : lA > C by



K(X) = nH(lg ) ¢ X< lAl .

The following definition and some of the ideas may

be found in Mitchell [14], pages 73-74.

pefinition 3.2: An object U in a category A is called

a cogenerator for the category if whenever we have morphisms

f,9 ¢+ X

>Y , £f#g , there is a morphism a : X > U

with of # ag .

Using the above definition and previous construction

we obtain the following.

Proposition 3.3: If A has infinite products, then U 1is a

cogenerator for A if and only if k(X) is a monomorphism

for all objects X in A .

Proof: Suppose that U is a cogenerative and consider
£
k(Y
X iY—S—)—->C(Y)= i U
g meHom (Y ,U;A)

with k(YY) o £ = k(¥) o g . Then K(Y)m o g = k(Y)m o f

for each m and so mo £ =m oo g , ¥m . If f # g , then
since U is a cogenerator there exists an m e Hom (Y ,U;A)
with m o £ #mo g . Thus f =g , and k(Y) is a monomor-

phism.

-



Conversely assume k(X) is a monomorphism for each

object X in A . Let £f,9 : X > Y be distinct morphisms.

Then for some projection, Pm , from the product we must have
£ P
> k(Y) m -
X S5 Y ——> HUm —_— Um = U
g
Pm o k(Y) o £ = Pm o k(Y) ° g . Thus U 1is a cogenerator.
Proposition 3.4: If U is injective, then C(X) is injec-

tive for all objects X in A .

Proof: The product of injectives is injective.

Remark 3.5: If a category has injectives and a cogenerator
then it has an injective cogenerator. In particular if

f,g : X —> Y and £ # g , there is a cogenerator U and
a morphism o : ¥ > U with of # ag . Then there is
also an injective Q and a monomorphism Jj : U > Q with
J(af) # jlag) - Thus (ja)f # (Ja)g and so Q is also a
cogenerator.

Remark 3.6: The category of right R - modules, MR , has

an injective cogenerator, namely Hom(R,Q/Z;G) , where G 1is
the category of groups and Q/Z2 1is the group of rationals

modulo the integers.



We summarize the above results in

Theorem 3.7: Let A be an abelian category with infinite

direct products and an injective cogenerator. Then there

exists a covariant fuctor C : A > A and a natural trans-
formation of functors k : 1 > C
(a) X ¢ |A| implies C(X) 4is injective

(b) k(X) : X

> C(X) 1is a monomorphism for each

object X in A .

3.3 Homotopy and Fibrations.

We proceed to use the results of the previous section
to show that we have produced a homotopy system and that the
resulting homotopy relation, in the category of modules, coin-
cides with the classical Eckmann-Hilton injective homotopy rela-
tion and that the same holds for fibrations. For this section
let A be an abelian category with infinite direct products

and injective cogenerator.

We define a homotopy system, 2z = (Z,io,il,q) in A

as follows: Define Z : A > A by z(X) =X e C(X) and

Zz(f) = £ ¢ C(f) , for X an abject in A and f a morphism

in A . Define i 1 1

o'l

> 7 and g : 2 > 1 Dby
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ij(x) = {lx.o} r i3 (X) = {1X,k(><)} and q(X) = <1,,0> .

It follows that io,il,q are natural transformations of
functors and that g - i = 1l =qg o il . Thus 2z = (Z,1O,ll,q)

is a homotopy system in A .

> Y morphisms in A ,

Theorem 3.8: For £,9 : X

f ~ g(z) it and only if f-g factors through some injective

object.

Proof: Assume f-g factors through some injective object.

Then f-g factors through every injective object containing

X . Thus there is a morphism 1w : C(X) > Y with
f-g = m o k(X) .
C(X)
1
k (X) L
~d
X > Y
f-g
Define a homotopy F : Z(X) >Y by F = <f,-m> . Then
F o io(x) = <f,-m> o {lX,O} =f and F o il(x) = <f,-m> o

{lX,f(X)} f - 7T o k(X) = £ - (f-g) =g . Thus F : £ ~ g .

Conversely assume £ ~ g . Thus there is a homotopy

F = <F1,F2> : X o C(X) > Y , with P o io(x) = £ and
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F o il(X) =g . Then f-g =TF o io(x) - F o il(X) = <F,.,F,>

° {lX,O} ~ <Fy,F,> ° {1X,k(x)} =Fy - (Fq + Fy o k(X)) =

- F, o k(X) . Thus f-g factors through k(X) : X > C(X)
and so f-g factors through an injective object.
Definition 3.9 (Hilton [7]): A morphism P : E > B in A

is an injective fibration if and only if for all injective

> B can be lifted

objects Q in A every morphism £ : Q

to E .
/7
7
s
a/ s P
7
7
7
Q > B
B

Remark 3.10: The injective homotopy relation or ~ (z) 1is,

without extension a natural equivalence relation. 1In §1.6 we
introduced the homotopy lifting property and the ~ (z) - fibra-
tions. In the present situation we now have:

Lemma 3.11: A morphism p : E > B in A is an injective

fibration if and only if it is a =~ (z) - fibration.

The proof of this lemma is contained in the proof of

a more general theorem for additive categories, theorem 6.10.



Theorem 3.12: A morphism p : E > B in A is an iajec-
tive fibration if and only if it is a 2z - fibratior.
Proof: Let p be an injective fibration and consider the

following commutative diagram.

E
X,O} J P
B

X & C(X) >

{1

Since p is an injective fibration, there exists a morphism

Y : C(X)

> E with py = 82 . Define F : X @ C(X) > B
by F = <a,Y> . Then p o F = <81,82> and F o {lx,O} = o .

So p 1is a =z - fibration.

The converse follows from lemma 3.1l and lemma 2.16.



CHAPTER IV

CATEGORIES OF FRACTIONS AND HOMOTOPY THEORY

4.1 Introduction.

Gabriel-Zisman [6] and Bauer-Dugundji [1] defined
for each class of morphisms M in a category A , a category

of fractions of A by M or a guotient category, A/M .

The natural projection functor n : A > A/M determines a
natural equivalence relation, or a homotopy by §1.6, among the
morphisms in A . Bauer-bDugundji [1l] also defined for each
class of morphisms M a fibration notion, M - fibration. We
study in this chapter some of the properties of M - homotopy

and M - fibrations and show how they are related to the homo-

topy systems of chapter II.

4.2 M - Homotopy.

Let A be any category, and let M be any family
of its morphisms. By a quotient category we mean a pair,

(A/M,n) , where A/M 1is a category with the same objects as

A and n : A > A/M 1is a covariant functor preserving

objects and having the following two propexrties:
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(i) If o ¢ M , then n(a) is an isomorphism in A/M .

(ii) Universal property. If T : A

> B is any
other covariant functor to a category B such

that T(a) is an isomorphism for each o ¢ M , then

there is a unique covariant functor A 2 A/M > B
with A e n=1T.
Theorem 4.1 (Bauer-Dugundji [1]): Let A be any category and

let M be any family of its morphisms. Then a quotient cate-

gory, (A/M,n) , exists.

Let M be any class of morphisms in an arbitrary

category A , and let n : A

> A/M be the natural projec-
tion functor as above. Then by §81.6, we have a natural eguiva-
lence relation among the morphisms in A ; if £,g9 are two
morphisms in A , we write £ =~ g(M) if n(£f) = n{(g) , and
denote the corresponding homotopy category by A/~(M) . This

M - homotopy has the further property that if for two morphisms
f,g in A , there is an @ ¢ M with of = og or fa =god ,

then £ ~ g(M) .

Remark 4.2: If o e¢ M and o has a left (right) inverse B,

then we may assume that B 1is also in M , because by the
above Ba = 1 and (oB)a =& and so n(a) o n(f) = n(ap) =
n(l) . So n(B) is also an isomorphism in A/M  with inverse

n(a) .
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(1) If o ¢ M , then n(a) is an isomorphism in A/M .

(ii) Universal property. If T : A

> B is any
other covariant functor to a category B such

that T(a) is an isomorphism for each a « M , then

there is a unique covariant functor A : A/M > B
with A o n=1T.
Theorem 4.1 (Bauer-Dugundji [1]): Let A be any category and

let M be any family of its morphisms. Then a guotient cate-

gory, (A/M,n) , exists.

Let M be any class of morphisms in an arbitrary

category A , and let n : A > A/M be the natural projec-
tion functor as above. Then by 51.6, we have a natural eguiva-
lence relation among the morphisms in A ; if £,g are two
morphisms in A , we write f ~ g(M) if n(f) = n(g) , and
denote the corresponding homotopy category by A/~(M) . This

M - homotopy has the further property that if for two morphisms

f,9 in A , there is an o ¢ M with &f =g or fo = ga

then £ ~ g(M) .

Remark 4.2: If o ¢ M and o has a left (right) inverse B ,

then we may assume that B is also in M , because by the
apove Ba = 1 and (0B)a = o and so n(a) o n(B) = n(a) =
n(1) . So n(B) is also an isomorphism in A/M  with inverse

n{a) .
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We may sometimes associate the resulting homotopy

category with the quotient category by the following lemma:

Lemma 4.3: If A is any category and M a class of its
morphisms with M a subset of the union of the retractions
and the coretractions in A , then the quotient category,

A/M , is isomorphic to the homotopy category, A/~(M) .

Proof: Assume we have n : A > A/M and 1T : A ——>
A/~ (M) with wn(f) = [£f] , the natural projection functors.
A/M

AN
A/~ (M)
if o : A ——> B is in M and has retract £ : B > A
with BRa = lA , then by the above remarks n (%) is an isomor-
phism with inverse n(f) . Thus m(a) = fal] is an isomorphism

with inverse [B] and by the universality of the gquotient

>

category, (A/M,n) , there is a unique functor A A/M
A/~(M) with A o n =7 . The same follows if & is a retract.
Similarly if £ ~ g(M) , then w(f) = m(g) and n(f) = N(g)

and by the universality of the homotopy category, proposition

1.1, there is a unique T : A/~ (M) > A/M with T o m =mn.
Then from the universality of the quotient category and the

homotopy category it follows that AT =1 and TA =1 .
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The following theorem of Bauer and Dugundji [1] tells
us that by suitable choices of M , the M - homotopy notion
will coincide with some usual homotopy notion. In particular
it tells us when the homotopy category resulting from a homotopy
system or cyclinder is a quotient category or a category of

fractions.

Theorem 4.4: Let A be a cateogry and M a class of morph-

isms in A with 1 : A > A/M the natural projection func-

tor. Let "~" be any natural equivalence relation among the

morphisms of A and let m : A > A/~ be the projection

function to the homotopy category, A/~ . Suppose that if

£, £ = X > Y there is an object Zy in A and morph-
isms jo,jl 7 X > Zy r T ZX > X and F : Zy > Y
with r o je = 1ly and F ° j€ = fe . (e=0,1) . Then
(i) if n(r) is an isomorphism in A/M , then
m(i,) = w(£y) dimplies n(f)) = n(fl) ’
(ii) if 7(a) dis an isomorphism in A/~ for each
o € M , then n(fo) = n(fl) implies n(fo) = n(fl).
Definition 4.5: If for a homotopy system =z = (Z,io,il,q) ’

q(X) : Z2(X) > X 1s a homotopy equivalence with homotopy

inverse iO(X) , we call 2z a natural homotopy system.



Corollary 4.6: Let 2z = (Z,io,il,q) be a natural homotopy

system in a category A . Let M = {i (X) : X ¢ |A]} . Then
the homotopy category, A/:(z) » determined by the homotopy
system 2z and the homotopy category, A/~(M) , determined by
the class of morphisms M are both the same and are both the

category of fractions of A by M , A/M .

This is the case for thre homotopy systems given as
examples in chapter II. In particular in the category of
topological spaces we have X and XxI homotopically equiva-
lent with io(X) and g(X) as the homotopy equivalences. It
seems that there should be some relation in arbitrary categor-
ies between a homotopy system as a natural homotopy system and
when the resulting pre cone is actually a cone. This is because
in the examples given the reason for the homotopy system being
a natural homotopy system and the resulting pre cone being a
cone are both the same. For example in the category of topol-
ogical spaces both of these follow because there is a map

r : XXIXI > XXI , with r(x,s,t) = (x,st) , and we mention

in chapter VI a theorem of Seebach [17] which compares the two

ideas for abelian categories.

Theorem 4.4 can also be used to reclaim a homotopy
from the knowledge of contractible ojects in a category as we
shall show in chapter VI in the general case for additive cate-
gories and as the following theorem of Seeback [17] shows in

the specific case for the category of C.W. complexes.



Theorem 4.7: In the category A of C.W. Complexes, let

M be the class of all coretractions with a contractible co-
kernel. Then the resulting M - homotopy is the usual homo-

topy for A .

4.3 M - Fibrations.

For each family of morphisms M in a category A,
Bauer and Dugundji [l1] also define & very general concept of

fibration as follows:

Definition 4.8: A morphism P : E > B in A is called
an M - fibration if for each diagram
BE
4
g p
W > X — > B
M £
in which pgut = fu and W ¢ M , there is a g' : X > E
in A with gp = g'n and pg' = f .
These M - fibrations have all the usual properties

required of fibrations as follows:



Theorem 4.9: Let M be any family of morphisms in a category

A . Then we have

(i) All isomorphisms are M - fibrations.
(ii) The composition of two M - fibrations is an M -
fibration.

(iii) The pullback of an M - fibration is an M - fibra-

tion.
(iv) The product of two M - fibrations is an M - fibra-
tion.
(v) All trivial morphisms, p : E > * , are M -
fibrations.
Remark 4.10: We denote the class of all M - fibrations by

{M-Fib.} , for each family of morphisms M in a category A
Clearly if M < N , then {N-Fib.} < {M-Fib.} . Also if M
is any subset of the set of all retractions in A then

{M-Fib.} is the class of all morphisms in A .

If we have a homotopy system z = (Z,io,il,q) in
a category A , then the =z - fibrations may be associated with

the above classes of fibrations by
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Theorem 4.11: Let M= {i (X) : X ¢ |A|} . Then {M-Fib.!}

is the class of all =z - fibrations.

Proof: Let p : E

> B bea 2z - fibration and consider

the diagram

E
-
g l P

- > Z(X) P > B

lO(X)
with p ° g o iO(X) = f o io(X) . Since p 1is a 2z - fibration
and p ° (gei (X)) = £ ¢ 1 (X) . there exists a homotopy
¢ : 2Z(X) > E with ¢ ° io(X) = g o° io(X) and pe° ¢ = £ .
Thus p is an M - fibration.

Conversely assume p 1is an M - fibration and that

we have a commutative diagram

iO(X) P

X(2Z) >

sy
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Now p ° (geq(X)) ° i (X) = £ ° i (X) and since p is an M -

fibration there is a g' : Z(X) > E with p o g' = £ and

g' o io(X) = (g o g(X)) o iO(X) =g . Thus p is a z - fibra-
tion.
Remark 4.12: If we consider additive categories and take the

trivial homotopy system e = (1 e 1 , {1,0} , {1,1} , <1,0>)
given in example 2.3, then the M from the above theorem is a
subclass of L , the class of all coretractions. In §2.10

we said that the e - fibrations were the class of all retrac-
tions. Thus {L-Fib.} < {retractions} . Furthermore it can
easily be seen that in additive categories a retraction is an

M - fibration for every family of morphisms M . Thus in addi-
tive categories the retractions or {L-Fib.} form the smallest

class of {M-Fib.} .



CHAPTER V

HOMOTOPY, TRIPLES AND ADJOINTNESS

5.1 Introduction.

In this chapter we introduce cohomotopy systems
and the resulting homotopy and fibration notions. We see
that if the cyclinder functor in a homotopy system has an
adjoint then we may construct a cohomotopy system such that
the two homotopy notions coincide, and also so do the two
fibrations notions. We then investigate the relation of
adjointness to the‘M ~ homotopy of chapter IV. Finally we
briefly mention triples as being a strong form or a cone and

remark that triples and adjointness are very similar.

5.2 Cohomotopy Systems.

Definition 5.1l: A cohomotopy system in a category A 1is a

quadruple w = (W,po,pl,k) , where W : A > A is a covar-

> 1

iant functor and P, /Py * ) and k : 1,

A

natural transformations of functors with pg ° k=1=p,° k

Example 5.2: In every category A there is the trivial

cohomotopy system w = (lA,l,l,l) .
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Example 5.3: In T , the category of topological spaces and

continuous maps we have the usual cohomotopy system

w = (W,po,pl,k) given as follows: Let I be the closed unit

interval [0,1] . Then for X € |T| , define W(X) = xI , the

set of continuous maps I > X with the compact open topecl-

ogy, and for £ : X > Y a continuous map in T , define

W(E) : X* > vI by W(£)(w)(£) = £(w(t)) , for o ¢ X' and
t eI . For X e |T| , define Py (X) + Py (X) : xT > X and
K(X) : X > x' by p_(X)(w) = w(0) , py(X)(s) = w(l) and
k(X)) (x) = CX » the constant path at x . Then Py ° k=1=

Py ° k and so we have a cohomotopy system in T .

Example 5.4: bual to the Eckmann-Hilton injective homotopy

theory for modules, there is a projective homotopy theory for
modules. Here, two morphisms are (projectively) homotopic if
and only if their difference factors through a projective
module. In a similar way to that of chapter III this theory
can be shown to be an examéle of a cohomotopy system in the

category of modules.

Definition 5.5: Let w = (W,po,pl,k) be a cohomotopy system

> Y in A,

in a category A . Then for morphisms £f,g9 : X

we say that £ is cohomotopic to g , £ ~ g(w) , if there

exists a morphism ¢ : X > W(Y)
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= ¢ e ———
I/ ~
£ pg (W) ~
> & e
X Y W(Y)
g pl(W)

such that po(Y) o ¢ = £ and pl(Y) o ¢ =g .

Definition 5.6: Let w = (W,po,pl,k) be a cohomotopy system

in a cateogry A . A morphism p : E > B in A 1is called
a w - fibration if for any commutative diagram
X \i
\ i\\$ \
\:iW(E) E
>
¢ P, (E)
lW(p) l P
W(B) > B
o(B)

there is a morphism $ : X

> W(E) with p_(E) ° o = £

and W(p) ° & = ¢ .

5.3 Adjointness and (Co)homotopy.

Let A,B Dbe categories and Z : A

> B ,

W : B > A be covariant functors. We say that 2 is left

adjoint to W if there is a one-one onto morphism of sets

0 (X,Y) : Hom(Z(X),Y:B) > Hom (X,W(Y):A)



for each X ¢ |A|l , Y ¢ [B]| .

® gives two natural transformations of functors;

o : ZW > lB
defined by a(Y) = (:‘;(W(Y),Y)_l (lW(Y)) , for Y ¢ |B| , and
B : lA > W2

defined by B(X) e(X,Z(X))(lZ(X)) , for X e |A] .

Furthermore the functors 2 and W and natural trans-
formations o and B satisfy the following twc conditions:

5.7 (i) a(Z (X)) ° 2(B(X)) X e |A]

= 1z(x) '

5.7 (ii) W(a(¥)) o B(W(Y)) = Y e« |B] .

ey ¢
This adjoint situation is usually summarized by writ-

ing 6(c,B) : Z2 W (B,A) .

Let A be an arbitrary category and z = (Z,io,il,q)
be a homotopy system in A . Assume that 2 is left adjoint
to some functor W . Let 6,0,B be given as above. Then
following Eckmann-Hilton [4] we may construct a cohomotopy
system in A as follows: Define pg(X) = o (X) ° i (X)

e = 0,1 , and k(X) = W(a(X)) =° B(X) , for X ¢ Al . It
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follows that pg,P;y @ W > W are

> lA and k : lA
natural transformations of functors. The fact that
P, °© k=1-= Py ° k follows from the following lemma which

we will need in the remainder of this section.

> Y and

Lemma 5.8: For any morphisms £ : Z(X)

g : X > W(Y) in A we have

(1) P (Y) ° W(f)  B(X) = £ i (X) , €=0,1

(i1) a(¥Y) ° z(g) ° i_(X)

]
(]
~-
2
.

PE(Y) ° g ’ €

Proof (of (i)): p (¥) ° W(£) - B(X) = a(Y) o i (W(Y)) ° w(f) °

B(X) = a(Y) o Z(W(f)) - ie(WZ(X)) o B(X) ’ (iE is a natural

transformation) = £ o a(Z2(X)) ° Z(B(X)) ° ie(x) (cx,i€ are

natural transformations) = £ o ie(X) , (5.7(1)).

Corollay 5.9: w = (W,po,pl,k) is a cohomotopy system in A .
Assume that we have a homotopy system, 2z = (Z’io’il'q)

in a category A and that Z is left adjoint to a functor W ,
i.e., we have an adjoint situation 6 (a,B) : Z — WALA) .

This as above produces a cohomotopy system, W = (W,po,pl,k) in
A . This then gives us the following propositions concerning
the 2z - homotopy and w - cohomotopy relations and also about

the 2z - fibrations and the w - fibrations.
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> ¥ two morphisms in

Proposition 5.10: For f,g : X

A, £ ~g(z) if and only if £ ~ g(w) .

> Y and

Proof: Assume ¢ : £ ~ g(z) , i.e., ¢ : 2(X)

¢ o i (X)) =£, ¢ ¢ i,(X) = ¢ . Define P : X > W(Y) by
® = W(¢) o B(X) . Then using 5.8 (i) we have P, (Y) » P =
Po(¥) ° W($) ° B(X) = ¢ ° i (X) = £ and py(Y) o § = py(¥) o
W(¢) ° B(X) = ¢ ° i;(X) =g . So f ~ g(w) . The converse

follows by using 5.8 (ii).

> B in A is a =z

Proposition 5.11: A morphism p : E

fibration if and only if it is a w - fibration.

>B 1is a 2z - fibration and consi-

Proof: Assume p : E

der the following commutative diagram

£
W(E E
(E) PO(E) >
JW(P) J p
W(B) > B
P, (B)

Now p o £ =p (B) o ¢ = a(B) - i, (W(B)) o ¢ = a(B) o Z(¢)
io(X) ’ (io is a natural transformation), and this gives

another commutative diagram
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£
X > B
7
. v
J.O(X) q)l// J P
P
7~
~
Z (X) > B
a(B)Z(9)
Since p is a z - fibration, there exists a ¢' : Z (X) > B
with p ° ¢' = a(B) ° 2(¢) and ¢' ° io(X) = £ . Now define

% : X > W(E) by ¢ = W(¢') o B(X) . Then using 5.8 (i) we
have p_(E) ° § = p (E) ° W(¢') ° B(X) = ¢' o i (X) = £, and
using 5.7 (ii) we have W(p) ° ¢ = W(p) ° W(¢') o B(X) =
W(ped') o B(X) = W(a(B)oZ(d)) ° B(X) = W(a(B)) ° W(Z($)) °B(X) =

W(a(B)) o B(W(B)) ° ¢ = ¢ . The converse follows in a similar

way using 5.7 (i) and 5.8 (ii).

Example 5.12: Let A =T , and 2z = t as given in example

2.4. Then the 2 of 2.4 is left adjoint to the W of 5.3.
Using the homotopy system t and the fact that 2z is left
adjoint to W , we may construct a cohomotopy system w . This

w is exactly the cohomotopy system described in 5.3.

Example 5.13: Let C(A) be the category of chain complexes

of an abelian category A . Then we have the homotopy system
z = (Z,io,il,q) in C(A) defined in example 2.5. The functor

% has an adjoint W defined as follows: For (X,3) ¢ |[C(A)],
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an : xn > Xn--l !

W(X)n

e X & X and
n

let W(X)n = X n+1

n

o)
5.

> W(X)n_l be given by

9 0 0]
n
t —3
8 0 Bn 0
0 1 -9
Xn n+l

Then (W(X),8') € |C(AY|] . If £ : X > Y is a chain map

> W(Y) be the chain map given

in C(A) , let W(£f) : W(X)

by W(f)n = fn ® fn ® fn It is easily seen that 2 1is

+1 °
left adjoint to W and thus by the above we may define a co-
homotopy system, w = (W,po,pl,k} , in C(A) such that the

z - homotopy relation coincides with the w - cohomotopy rela-

tion.

We make one further application of adjointness to
that of M - homotopy, as described in chapter 1IV. Assume we
have an adjoint situation 6(a,B) : 2 — W(B,A) . Let Ma

be the class of all a(Y) : ZW(Y) >Y , for Y ¢ |B] , and

Mg be the class of all B(X) : X > WZ(X) , for X e |A| .

Let ng A > A/MB r Ny ¢ B > B/Ma ’ ﬂB : A > A/:(MB)
and T ¢ B > B/:(Ma) be the natural projections.
Theorem 5.14: The quotient categories A/MB and B/M, are

isomorphic.
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Proof: Let B(X) e MB . We claim that (na°Z)(B(X)) is
an isomorphism in B/Ma .

n
A 8 > A/Mg

A
Ny°2
A
B/Ma

7Z(B(X)) is a morphism in B and by 5.7 (i) a(z2(X)) is a

left inverse for Z(B(X)) and 0(Z2(X)) is in Ma . Thus by

remark 4.2 we may assume that Z(B(X)) 4is also in Ma .

Thus na(Z(B(X))) is an isomorphism in B/Mu and by the defin-

ition of the quotient category there exists a unique

A e A/MB > B/M, with A »° ng = Ng o 7 . Similarly there
exists a unique T : B/Ma > A/MB with T ° n, = ng ° Z .
Then using the uniqueness of A and T we obtain A o I' =1
and T o A =1 .
Corollary 5.15: The resulting homotopy categories A/::(MB)
and B/:(Mu) are isomorphic.
5.4 Adjointness and Cones.

Let z = (Z,i,,i;,9) be a homotopy system in a

category A and assume that 2 is left adjoint to a functor

W, i.e., we have an adjoint situation, 6(a,B) : Z — W(A,A) .



By the previous section we can construct a cohomotopy system
w = (W,po,pl,k) - The homotopy system 2z gives a pre cone
(C,i) in A by §2.5, while the cohomotopy system gives a pre

path (P,m) , (a pre path is a pair (P,m) , where P : A > A

is a covariant functor and 1w : P

> lA is a natural
transformation of functors). Then the results of the previous

section give:

Corollary 5.16:

(i) C is left adjoint to P

~

(i1) w(X) = a(X) o i(P(X)) , X e |A| .

Corollary 5.17: A morphism £ : X >Y in A is null

homotopic with respect to the pre cone (C,i) if and only if

it is null homotopic with respect to the pre path (P,m) .

Remark 5.18: A cone (C,i,p) in a category A was defined

in 2.20. We say that a cone (C,i,p) is a triple if

(1)  p e C(i) = 1

(ii) p ° C(p) p e p(C) .

Dually we have the notions of path and cotriple.

If we have an adjoint situation 6 (a,B) : Z — W(B,A) ,

then (WeZ,B,Wenez) is a triple in A , induced by the adjoint



situation. Also there is a cotriple (ZeW,0,Z2°8°W) induced
in B . Furthermore, every triple and cotriple is induced in
this way from some adjoint situation, as follows: Let (C,i,p)

be a triple in A and let c(A) be the full subcategory of

> C(A)

A with objects C(A) for A ¢ |[A| . Then C : A

is left adjoint to the inclusion functor I : C(A) > A .

Then the induced triple (IC,B,IcaeC) is simply (C,i1,pP) -

For the homotopy system given in chapter II the result-
ing pre cones are actually not just cones but triples. The
method used in constructing the Eckmann-Hilton injective homotopy
system for modules was to obtain a triple and this in additive

categories will be seen to be more than sufficient toO detexrmine

a homotopy system.



CHAPTER VI

HOMOTOPY SYSTEMS IN ADDITIVE CATEGORIES

6.1 Introduction:

This chapter contains a detailed description of
homotopy systems in additive categories. We first obs=arve that
homotopy systems are equivalent to pre cones in additive cate-

gories. This is actually a very weak condition since for any

category A , any covariant functor C : A > A with

i 1

> C given by i(X) : X > C(X) the zero map for
all X ¢ |A] determines a pre cone (C,i) . Thus we make the
added requirement that the pre cone be a cone. This is not a
very stringent requirement because all of the usual examples
satisfy this. Also for additive categories this is equivalent
to the condition that a nomotopy system be a natural homotopy
system. Because of this condition, it follows that the homotopy
theory in additive categories is primarily concerned with the
study of certain classes of objects, in particular the contracti-

ble objects, as determined by a cone. All our categories are

assumed to be additive in this chapter.

6.2 Homotopy Systems.

Let 2z = (Z,io,il,q) be a homotopy system in an addi-

tive category A . Then since g 1is a retraction with coretracts
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io’il’ we may write 2 as 1 ® C , iO as {l,jo} , i; as

{l,jl} and q as <l,r> for a covariant functor C : A >A

and natural transformations of functors jo,jl : 1 > C

and r : C > 1 with «r ° jO = () =1xr o jl . Also =z may

be rewritten as
z = (lAeC,{l’jo}l{lljl}l<llr>) .

Also,given this homotopy system 2z , we may form a new homotopy

system from it, z' Dby

. o
z' = (lAQC,{l,O}ﬂl,jl 30},<1,0>) .

Theorem 6.1: For morphisms £,g9 : A >B in A , £ ~ g(z)

if and only if £ ~ g(z'")

Proof: Assume <F,G> : f ~ g(z) , i.e., <F,G> : A @ C(A) > B

with f = <F,G> o {1 (A)} = F + G o (A) and g = <F,G> o

A'jo jo

{1 (B)} = F + G e j;(A) . Then g = £+ G(i,(a) - ig(A)) -

ard1
So <£,G> : £ ~ g(z")

Conversely if <F,G> : £ ~ g(z') , it follows that

<f - G o 3 (B),G> ¢ £~ g(z) .

Thus any homotopy system 2z in an additive category

A may be written as

z = (lAec,{l,O},{l,i},<l,0>)



> A is a covariant functor and

A > C is a natural transformation of functors. (Cc,1i)
is exactly a pre cone in A and therefore for additive cate-
gories the study of homotopy systems is equivalent to the study

of pre cones.

Theorem 6.2: Let z = (1ec,{1,0},{1,i},<1,0>) be a homotopy
system in an additive category A . For morphisms f,9 : A >B
in A, £ ~ g(z) if and only if £-g is null homotopic with

respect to the pre cone (c,i) .

Proof: if <Fr,G> : £ ~ g(z) , i.e., <F,G> : A ©® C(A) > B,

then £ =F and g =7F + G o i(A) . Thus g-f = G ° i(a) and

so g-f factors through 1i(a) : A > c(a) . By §2.5 g-£f

is null homotopic with respect to the pre cone (c,i) -
Cconversely if g-f = T ° i(a) , for some morphism

T : C(A) > B, then <£,m> : £ =~ g(z) -

Corollary 6.3: "o~ (z) " is without extension a natural equiva-

lence relation among the morphisms in A .

We defined in definition 4.5 a natural homotopy system
and then commented on the relation between a homotopy system
being natural and the resulting pre cone being a cone. For addi-
tive categories this problem is completely solved by the follow-—
ing proposition of Seeback [17]. The proof is computational and

is omitted here.
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Proposition 6.4: Let 2z = (lAec,{l,O},{l,i},<l,0>) be a

homotopy system in an additive category A . Then 2z 1is a
natural homotopy system if and only if the pre cone (C,i) is

actually a cone (C,i,p) .

Theorem 6.5: Let (C,i,p) be a cone in an additive category

A . Let C={c@) : A e |A|}. Then the set of contractible
objects in A is the set of all direct sums of direct factors

of objects in C .

Proof: If an object K in A 1is contactible, then
lK = T o i(K) for some morphism 7 : C(K) > K . Thus
C(K) is isomorphic to K & K' for some object K' in A .

Thus K is a direct factor of C(K) , an object in C .

The converse has two parts. First assume that an
object K in A is a direct factor of an object in C , i.e.,
there are objects A,K' in A with CC(A) = K ® K' . Now
1y = <1g,0> © {1,,0} and thus 1, factors through C(A) . K

is then contractible. Secondly, assume that an object in A

is a direct sum of objects in € , or a direct sum of two
contractible ojects in A , i.e., K =J ® L , where J and
L. are contactible objects in A . Then lJ =7 o i(J) and
lL = m' o i(L) for morphisms 5 : C(J) > J and

7' : C(L)

> L . Now



(rem') o <c{1J,o},c{o,1L}> ° {c<1J,o>,c<o,1L>} o (i(J)ei(L)) .

C(J Q.L)
{c<1J,o>,c<0,1L>} 1 l <c{1J,o},c{0,1L}>

C(J) e C(L)

-
i(J)edi (L) \\\\\\T®ﬂ|

AN

Y

JoL, > JoL

Ik

Thus lK factors through C(JeL) and so K is contractible.

Corollary 6.6: If (C,i,p) is a cone in an additive category

A , then a morphism is null homotopic if and only if it factors

through some contractible object.

In any category with pushouts and cone (C,i) , the

mapping cone of a morphism £ : A >B , Cgz o is given by

the pushout

i(a)




Lemma 6.7: Let (C,i,p) be a cone ir an additive category

A . Then if a morphism £ : A >B 1in A 1is a homotopy

equivalence, the mapping cone of £ , Cf , is contractible.

> B is a homotopy equivalence, there

Proof: Since f : A

is a morphism g : B > A with gf ~ lA and fg ~ lB .

Thus by theorem 6.2 there is a morphism 7 : C(A) > A with
gef - 1, =T e i(A) . The mapping cone of £ , Cg » may also
be given by the following pushout
{£,i(Aa)}
A > B&C(A)
<f',—pf>
> Cf
We may form the morphism
1 - fog fom
F o= : B & C(A) > B & C(A)
-i(A)eg 1 + i(A)om
and F o {f,i(A)} = 0 . Thus since Ce is a pushout, there is
a unique morphism {61,62} 2 Cg > B ® C(A) with
{61,62} ° <f',—Pf> = F . This means that 51°f' =1 - feqg ,
§,0f' = —i(B)eg , -8,°P. = £°T and =8,°P. =1 + i(n) T



Also <f',-Pc> ° {61,62} o <E',-Pc> = <f£',-Pg> and since

<f',-Pg> is an epimorphism, we have <£',-Pg> ° {61,62} = 1. -

£
= ‘o - ° ~ 'o ~ tofoqo = o i ocfo ~
Now lCf £ 61 Pe 62 ~ £ Gl ~ frofeg 61 P i(A)eg 61 ~
0 . Thus Cg is contractible.
Corollary 6.8: Let (C,i,p) be a cone in an additive category
A . Then two objects A and B in A are homotopically equiva-

lent if and only if there exists contractible objects K and J

in A with A e K isomorphic to B & J .

Proof: if A e K> B e J for contractible objects K and J
in A , then {lA,O} : A >A e K and <l,,0> : B ® J > B
are homotopy equivalences. The composition of these three mor-

phisms will give a homotopy equivalence from A to B .

Conversely if a morphism £ : A > B is a homotopy
equivalence, then A ® Co =~ B ® c(A) . This follows from the
above theorem by considering the following morphisms
£ $ g -
A @ Cf < > B e C(A) :
i@ 8, £ —p

£

6.3 Fibrations and Examples.

We assume throughout this section that

z = (lA@C,{l,O}.{l,i},<l,0>) is a homotopy system, i.e., that



(c,i) is a pre cone, in an additive category A .

>B in A is a =z - fibra-

Lemma 6.9: A morphism p : E

tion if and only if for all objects X in A , every morphism

£ : C(X) > B can be lifted to E .

Proof: Assume p : E > B 1is a =z - fibration and that

we have a morphism £ : C(X) > B for some object X in

A . This gives the commutative diagram
0
X > E
{1,,0} J P
XoC (X) > B
<0, f>

Since p is a =z - fibration there is a homotopy <g,g9'> :
X e C(X) >E with g =0 and pg' =£f . So £ 1lifts
to E . The converse follows in a very similar manner.
Theorem 6.10: If (C,1) is a cone (C,i,p) in an additive
category A , then a morphism p : E > B 1is a =z - fibra-
tion if and only if it is a ~(z) - fibration.
Proof: We proved in lemma 2.16 that for any homotopy system
z in any category, each z - fibration is a ~(z) - fibration.
Conversely assume p : E > B 1is a ~ - fibration and assume



there is a morphism £ : C(X) > B for some object X in

A .
E
/'7
7
g 7
// p
Ve
7~
C(X) > B
f
Since (C,i) = (C,i,p) , £ ~ 0 . Then since pe°0 = 0 and Pp
is a ~ - fibration there is a morphism g : C(X) > B

with peg = f . By lemma 6.9 p is a 2z - fibration.

Thus for natural homotopy systems or cones in addi-
tive categories, two morphisms are homotopic if and only if
their difference factors through some contractible object.
And,a morphism is a fibration if and only if it has the homo-
topy lifting property if and only if it has the lifting proper-

ty with respect to all contractible objects.

Example 6.11: For the trivial homotopy system of example 2.2

with cone (0,0,lo) two morphisms are homotopic if and only if
they are equal. The only contractible object is the zero object
and every morphism is a fibration. In the opposite trivial
homotopy system of example 2.3 with cone (1,1,1) all morphisms
(with the same domain and range) are homotopic to each other.
Every object is contractible and the fibrations are the retrac-

tions.



Example 6.12: For the Eckmann--Hilton injectiwve homotopy

system described in chapter III, the contractible objects are
the injective modules. Two morphisms are homotopic if and
only if their difference factors through an injective module
and the fibrations are the morphisms with the lifting property

with respect to any injective module.

Example 6.13: In example 2.5 and 5.13 we described a homotopy

system and a cohomotopy system in the category of chain complexes
of an abelian category. In these systems the contractible objects
are the usual contractible chain complexes and two morphisms are

homotopic iff they are chain homotopic in the usual sense.

Example 6.14: Dual to the Eckmann-Hilton injective homotopy

system, there is the projective cohomotopy system or path,
actually a cotriple, mentioned in example 5.4. In this system
the contractible objects are the projective objects with two
morphisms being homotopic if and only if their difference factors

through some projective object.

6.4 Contractibility and Quotient Categories.

Let (C,i,p) be a cone in an additive category A .

> B in A

Let M be the family of all coretractions £ : A
such that the cokernel of £ , B/f(A) , is contractible. This

family M gives a quotient category, (A/M,n) , as discussed in



chapter IV. Arising from this quotient category we have the M -
homotopy relation where £ ~ g(M) means n(f) = n(g) for
morphisms f£,g in A , and the M - homotopy category

A/~(M) . For additive categories we have the following theorem.

Theorem 6.15: The homotopy relation as defined from the cone

(C,i,p) is the same as the homotopy relation as defined from

the quotient category (A/M,n) .

Proof: We use theorem 4.4 to prove this. Let the cone be
written as a natural homotopy system z = (lA@C,{l,O},{l,i},
<1,0>) . Then it is necessary to prove two things: First that

n(<lA,0>) is an isomorphism in A/M for each object A in A
and second that £ is a homotopy equivalence with respect to 2z

for all £ in M .

Now {lA,O} e M and so n({lA,O}) is an isomorphism

with inverse say J in A/M . Now {lA,0}°<lA,0>°{lA,O} =
{lA,O} and so n({lA,O})on(<lA,0>)on({lA,O}) = n({lA,O}) and
applying J to both sides gives n(<lA,O>) an isomorphism with

inverse n({lA,O}) .

Let £ : A > B be a coretraction with B/f(A) = K

a contractible object in A , and with left inverse g . Then
since we are in an additive category we may write £ = {lA,O}
A > A ® K and g = <1A’O> : Ao K > A . Now



<1ps0>0{1,,0} =1, , and {1,,0}e<1l,,0> = (1,®0) ~ (1,8l.) ,
since 0 o lK factors through the contractible object K .

So f = {lA,O} is a homotopy equivalence with respect to z .

Let N = {retractions with contractible kernel} .
Then the quotient categories A/M , A/N and A/MuN are all
the same and the resulting homotopy categories are the same as
that defined via the cone or the contractible objects. It also

follows that the M - fibrations are the usual fibrations.

We proved in lemma 4.3 that if a family of morphisms
M is a sub-family of the set of all retractions and the core-
tractions, then the quotient category of A by M , (A/M,n) ,
is the same as the resulting homotopy category determined by
M , A/~(M) . Thus the homotopy categories determined from a
cone or a natural homotopy system are quotient categories ox

categories of fractions.
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