University of Alberta

PALMIRA: INFORMATION RETRIEVAL IN THE PALM OF YOUR HAND

©

Jeff Antoniuk

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2002

University of Alberta

PALMIRA: INFORMATION RETRIEVAL IN THE PALM OF YOUR HAND

©

Jeff Antoniuk

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2002

L |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothégue nationale
du Canada

Acquisitions et .
sefvices bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your fle Volre référence

Our file Notre référence
The author has granted a non- L’anteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette these sous -
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Bel

Canadi

0-612-81357-6

University of Alberta

Library Release Form

Name of Author: Jeff Antoniuk
Title of Thesis: PalmIRA: Information Retrieval in the Palm of your Hand
Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

mﬁt niuk

Apt. 912 10811 47 Ave.
Edmonton, AB
Canada, T6H 5J2

Date: Q% 5%/&7 ;ZO/);\

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled PalmIRA: Infor-
mation Retrieval in the Palm of your Hand submitted by Jeff Antoniuk in

partial fulfillment of the requirements for the degree of Master of Science

Coorif.

Dr. Dennis B. Ward
External Exam;perf

wih

[

Dr. Dekang Lin

. N
Dr. Mario A. Nascimento Z/ .
Supervisor

'xmz,..,,g"k\

e, £ .
e
S

b

Date: Lﬂ&g&@@&

“A good friend of mine used to say,
“This is a very simple game.
You throw the ball, you catch the ball, you hit the ball.
Sometimes you win, sometimes you lose, sometimes it rains.”
Think about that for a while.”

— Nuke Laloosh - Bull Durham

Abstract

Personal Digital Assistants (PDAs) are becoming increasingly popular and with this
increase in popularity comes the increased number of applications that store textual
data within the PDA. The research area of information retrieval has developed a
number of effective and efficient techniques for more powerful desktop computers
which can not be directly applied to PDAs due to storage and CPU constraints.
This thesis introduces PalmIRA, an information retrieval system containing a PDA
based portion and a PC based portion specifically designed for the characteristics
of a PDA, more specifically a PalmOS based PDA. The design attempts to create
an efficient and effective information retrieval system. This thesis also introduces a
new collection fusion technique and a few measures to evaluate the effectiveness of

the proposed collection fusion procedure.

Acknowledgements

I would like to acknowledge my appreciation of the following:

e my dad, mom, sister, grandparents, family and friends for raising me to be
the person that I have become.

e my M. Sc. supervisor, Dr. Mario A. Nascimento for help, guidance, advice,
mentoring, constructive criticism and for being a good supervisor.

¢ the rest of my committee for their time

e thanks to the other influential and helpful professors along the way and thank
you for your interesting and challenging courses and talks: Dr. Zaiane, Dr.
Davood, Dr. MacGregor, and Dr. Gburzynski at University of Alberta and
Dr. Dueck, Dr. Rice, and Dr. Richards at Brandon University.

e the DB lab regulars: Veena, Stanley, Haseeb, Chi Hoon
e the TIC list, past and present
e the MasterWorks Software Systems employees and alumni

e the Pirates and other sports teams that I have been involved with other friends
along the way: Jeff, Joel, Chad

e CSGSA and GSA for all the great events, distractions and organized activities.

¢ my sources of funding:

— Dr. A. Nascimento’s NSERC grant
— Province of Alberta via a Province of Alberta Graduate Scholarship

— Dept. of Computing Science via Teaching Assistantships and a Research
Award

To family, friends and pet

Contents

1

Introduction
1.1 Thesis Qutline e e e

Single Collection Information Retrieval in a PDA
2.1 Introduction. i e

2.2 Related Work e
2.3 PalmIRA System Overview

2.3.1 PalmOS Memory Model
2.4 Information Retrieval Model
2.5 Inverted Index Construction

2.5.1 Acquisition of PalmOS Based PDA Data
2.5.2 Document Preprocessing
2.5.3 Sparse Matrix Data Structure

2.5.4 Weight Calculation
2.6 Inverted Index for a PalmOS based PDA
2.6.1 dirTerms Database,
2.6.2 irWeight Database
2.7 PDA Information Retrieval Engine

2.71 Query Preprocessing o oo
2.7.2 Find Query Term Ordinal Value
2.7.3 Query Term Posting List Locator

2.74 Degree of Similarity Calculation
275 Example. e
2.7.6 Graphical User Interface (GUI)
2.8 Efficiency Experiments

Collection Fusion
3.1 Imtroduction @ . e e e e e e
3.1.1 Similarities and Differences with Meta-Search

3.1.2 Example Introduction,
3.1.3 Challenges in Collection Fusion
3.2 Related Work
3.21 CollectionFusion
3.2.2 Effectiveness Measures
3.3 Reference Collection Fusion Techniques
3.3.1 Round Robin (RR) Fusion

3.3.2 Round Robin Random (RRR) Fusion

[N

W o0 00 ~I O U o Lo W

B DD DD B NN DN BN e e
CO DWW = O =3O Ot

3.4

3.5
3.6

3.7

3.3.3 Original Weights (Raw Score) Fusion

3.3.4 Co-occurrence Collection Fusion - OQur Contribution

Proposed Effectiveness Measures
3.4.1 Rank Difference (dR)
3.4.2 Rank Difference of only relevant documents (dRR)
3.4.3 Weighted Rank Difference (dWR)

3.44 Weighted Rank Difference of only relevant documents

(dWRR) . . . e
Experimental Setup e .
Experiments and Analysis: CACM, CISI, CRAN, and MED Data .

3.6.1 Data Description and Preprocessing
3.6.2 Precision and Recall Measure Analysis
3.6.3 Rank Difference Measures Analysis
Experiments and Analysis: TREC/TIPSTER Data-set
3.7.1 Data Description and Preprocessing
3.7.2 Precision and Recall Measures Graph Analysis
3.7.3 Rank Difference Measures Graph Analysis

4 Conclusions and Future Work

4.1
4.2

Conclusions e
Future Work

Bibliography

46
49
50
51
52

53
55
55
35
57
63
67
67
67
70

72
72
73

75

List of Tables

3.1 Data-sets e e e e e e e
3.2 Collection weight of the collection in which query originated

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9
3.10

3.11
3.12
3.13
3.14

3.15

PalmIRA System Overview 4
Sparse Matrix Overview L o e 9
Sparse Matrix Example 1 oL 13
Sparse Matrix Example 2 oo o oL 13
Sparse Matrix Example 3 L o oL 14
Sparse Matrix Example 4 o L 0oL 14
Sparse Matrix Final 0 . i5
irTermsExample PalmOS Database 18
irWeightPalmOS Database Format 19
PalmOS Screen Size L. 20
Example Degree of Similarity Calculation - Begin 25
Example Degree of Similarity Calculation - After First Document . . 26
Example Degree of Similarity Calculation - After Last Document . . 27
PalmIRA: (a) Query; (b) Query Result 27
Reference collection query results example 33
Multiple Collection Results Merging (Collection Fusion) 33
Collection Fusion - Round Robin 43
Collection Fusion - Round Robin Random 45
Collection Fusion - Original Weights (Raw scores) 46
Collection Fusion - Co-occurrence Fusion. 49
Rank Difference Measure (dR) (a) Co-occurrence (b) RRR. 51
Rank Difference Measure - Relevant Documents Only (dRR) (a) Co-

occurrence (b) RRR Lo o 52
Weighted Rank Difference Measure (dW R) (a) Co-occurrence (b) RRR 54

Weighted Rank Difference Measure - Relevant Documents Only (dW RR)

(a) Co-occurrence (b) RRR 55
Average Precision at 11 Standard Levels of Recall - All Queries . . . 58
Average Precision at Document Cut-offs - All Queries 58
Average Recall at Document Cut-offs - All Queries 58
Average Precision at 11 Standard Levels of Recall 60
(a) CACM Queries i 60
(b) CISIQueries 60
(c) CRANQueries ittt it 60
(d) MEDQueries 60
Average Precision at Document Cut-offs, 61
() CACM Queries v i i it e 61

(b) CISIQueries it 61

3.16

3.17

3.18
3.19

3.20
3.21
3.22
3.23

(¢) CRANQueries v v v i it ittt 61

(d) MEDQueries it 61
Average Recall at Document Cut-offs. 62
(a) CACM Queries o it 62
(b) CISIQueries 62
(¢) CRANQuerieso o i i ittt it e et 62
(d) MEDQueriesot 62
Rank Difference Measures 64
(a) Average Rank Difference (dR) at Document Cut-offs (smaller
isbetter) L 64
(b) Average Rank Difference - Rel (dRR) at Document Cut-offs
(larger is better) 64
(¢) Average Weighted Rank Difference (dW R) at Document Cut-
offs (smalleris better) 64
(d) Average Weighted Rank Difference - Rel (dW RR) at Document
Cut-offs (larger isbetter) 64
Average Rank Difference - Rel (dRR) at Document Cut-offs 66
Average Weighted Rank Difference - Rel (dW RR) at Document Cut-
offs ... 66
Average Precision at 11 Standard Levels of Recall - All TREC Queries 69
Average Precision at Document Cut-offs - All TREC Queries 69
Average Recall at Document Cut-offs - All TREC Queries 69
Rank Difference Measures- TREC 71
(a) Average Rank Difference (dR) at Document Cut-offs (smaller
isbetter) 71
(b) Average Rank Difference - Rel (dRR) at Document Cut-offs
(larger isbetter) 71
(c) Average Weighted Rank Difference (dW R) at Document Cut-
offs (smaller isbetter) 71

(d) Average Weighted Rank Difference - Rel (dW RR) at Document
Cut-offs (larger isbetter) 71

Chapter 1

Introduction

Nowadays, Personal Digital Assistants (PDAs) are becoming increasingly popular.
A PDA offers “carry anywhere” portability while retaining, although at much lower
levels, storage and functional capability of Personal Computers (PCs) and laptops.
The data storage capacity, dynamic memory, and processor speed of a PalmOS based
PDA is very low when compared to a modern PC or laptop. On the positive side
of the trade-off are the PDA characteristics of being lightweight (e.g., Handspring
Visor Deluxe weighs 5.4 oz. including batteries) and having the very low power
requirement necessary for extending battery life. These two features allow a PDA
to extend the availability of computational device use beyond the reach of PCs or
laptops. The portable extension is also exhibited by the symbiotic relationship that
the PalmOS based PDA maintains with the PC via the HotSync synchronization
of data between the PalmOS based PDA and the PC [34]. The PalmOS HotSync
Manager acts as a communication layer between the PC and the PDA such that the
data can be exchanged, updated, and synchronized between the PC and the PDA.
If the PDA were to suffer a data loss event, the HotSync process stores on the PC
the data required to restore the PDA data to the data present at the time of the
last HotSync operation.

Given the fact that a PalmOS based PDA can store large amounts of textual data
(e.g., Handspring Visor Deluxe’s 8 MB), users require efficient and effective means to
retrieve information from the stored textual data. The book by Baeza-Yates et al. [1]
describes techniques (e.g., vector model, inverted index) to accomplish information
retrieval. These techniques as described in the book have a resource demand that
exceeds the constraints of PDAs. In order to implement an information retrieval
system that uses the vector model and an inverted index within the constrained
environment of a PalmOS based PDA, the information retrieval techniques must be
engineered to provide efficient and effective retrieval. The PDA’s relationship with
a PC via the HotSync process can be exploited such that the PC completes the
computationally intensive task of building the inverted file that is written onto the
PDA and used by the PDA information retrieval application.

The textual data contained within the PDA resides in multiple collections or
databases of documents since each PalmOS application (e.g., MemoPad, Mail, Data-
Book) maintains its own database. If a user wants to retrieve a set of documents
regarding a specific topic, those documents may be spread throughout the multi-
ple databases of documents. One approach is for the user to search each collection

individually, evaluate which documents from which result lists are interesting and
merge the documents into a global result list by hand. Result merging or in other
words collection fusion [48] attempts to automate the process.

The goal of the thesis can be split into the following two parts. The first part
is to engineer a proven information retrieval approach to efficiently execute in the
constrained environment of a PDA. The second part is to efficiently fuse the result
lists of multiple collections taking advantage of the PDA information retrieval engine
and to propose new measures to evaluate the effectiveness of a result merging scheme.

1.1 Thesis Outline

This thesis starts out by describing the engineering required to efficiently implement
an inverted index and vector model information retrieval scheme while attempting
to maintain the retrieval effectiveness of this approach in the PDA (Chapter 2).
The next chapter describes a new collection fusion technique and compares this
technique to existing techniques using existing and newly proposed effectiveness
measures using a simulation of the PDA information retrieval system (Chapter 3).
The collection fusion techniques are chosen because they can be implemented effi-
ciently within the PDA information retrieval system. Finally, conclusions are drawn
and opportunities for future work are presented (Chapter 4).

Chapter 2

Single Collection Information
Retrieval in a PDA

2.1 Introduction

Single collection information retrieval focuses on a search engine finding and ranking
interesting documents from one database of documents. The setup typically consists
of an index (e.g., inverted index, signature files, suffix trees) used by the retrieval
model {(e.g., vector model, boolean model, probabilistic model) to retrieve and rank
documents from a database or collection of documents [1].

This chapter focuses on how to efficiently engineer an information retrieval sys-
tem for a PalmOS based PDA environment while maintaining retrieval effectiveness.
This chapter begins with an introduction to the related work (Section 2.2) and con-
tinues with an overview of the PalmOS based PalmIRA information retrieval system
(Section 2.3). Next described is the model used to predict which documents are rel-
evant to the query (Section 2.4). The chapter then goes on to describe how the PC
is utilized to build the inverted index during PC - PDA synchronization (Sections
2.5 and 2.6), and how the PalmOS based PDA information retrieval application
functions (Section 2.7).

2.2 Related Work

The main components of an information retrieval system [1][16] involve an indexing
structure containing key terms along with the documents the term appears within,
an information retrieval model to determine the relevance between the query and
the documents and a query language. Research produced a number of variations on
the above for indexing (e.g., signature files, suffix files, inverted files etc.) and for
retrieval models. (e.g., vector model, probabilistic model, boolean model, etc.) The
research papers evaluate these information retrieval techniques on large computing
systems. Since the goal of this chapter is to describe an efficient way to engineer a
vector model, inverted index retrieval system for a PDA, the details of this approach
are described in Section 2.4 and Section 2.5 respectively. Further information about
other approaches can be found elsewhere (e.g., [1]).

At the time of writing this thesis, there are no known research oriented ap-
proaches for information retrieval of textual data residing on a PDA. However there

are two closed source industry solutions not part of published research papers. In-
telligentfind is a PDA application that uses a sequential search method to search
through a PDA database. It does not use an indexing structure [33]. It suffers a
high retrieval time from the low speed CPU of a PDA versus the amount of textual
data that can be stored on the PDA and the number of terms in the query. IBM
has created an information retrieval tool that off-loads the index creation from the
PDA to the PC during the PDA-PC synchronization (similar to our approach). The
tool was known as IBM Palm Pirate ' and has changed its name to Pirate Search
[41]. The results are displayed in order of relevance by some secret ranking algo-
rithm. This application creates a copy of the database being indexed and inserts an
index into the copy. Hence, there is a (critical) space overhead associated with the
technique.

2.3 PalmIRA System Overview

Query submitted to PDA pDA
based application : ! Index uploaded to PDA PC
_ Query """‘"-~~—~§>Index : via Conduit :—-—_—————"—'—:
- B . N i
| ' Indexing '
T~a R 1 1
~J Answer |g------- 5 Text . TextdownloadtoPC L ___________.

Index and text used ooo...1 viaConduit

to formulate answer

Figure 2.1: PalmIRA System Overview

There are two parts to the PalmIRA information retrieval system: a PalmOS
based application for the PDA and a PalmOS Conduit (i.e., a plug-in module for
the PC portion of the HotSync process).

The PalmOS application residing on the PDA behaves much like a normal search
engine in that a user enters a query and a ranked list of resulting documents is
displayed. In order to allow fast, efficient, and effective retrieval, an inverted index
stores information required to calculate the degree of similarity based rank using
the vector model [1] between the query and each indexed document.

A conduit is a plug-in module (dynamic link library) for the PC based Palm
HotSync Manager. A conduit, once registered with the PalmOS HotSync manager,
is executed during PDA synchronization time. An example of a conduit synchro-
nization could involve the synchronization of a PalmOS address book with a PC
address book application. If a new address is entered in to the PalmOS based PDA,
a conduit is executed during the HotSync synchronization between the PC and the
PalmOS based PDA that copies the entry from the PDA and places the entry into
the PC based address book. If the conduit specifically designed for this task does
not exist then the PC address book and PalmOS address book are not synchronized.
The PalmOS Conduit API is capable of creating conduits with more sophisticated
logic than described in the example and PalmIRA takes advantage of these features.

The ability to build conduits allows the inverted index to be built during the

Palm Pirate authors: M. Herscovice, D. Cohen and Y. Maarek

HotSync synchronization process by the PC. Once the inverted index is built, the
inverted index is written back to the PDA.

2.3.1 PalmOS Memory Model

PalmOS uses a 32-bit architecture with basic data-types of 8, 16, 32 bits [51]. Pal-
mOS uses one or more memory modules known as “cards” (all devices at the time of
writing this thesis contain only one card) [27]. A card contains storage and dynamic
memory.

Memory is allocated in chunks where a chunk is at least 1 byte to slightly less
than 64 KB of contiguous memory (due to system overhead requirements). Chunks
can be movable or non-movable. Non-movable chunks are referenced by pointers
i.e., referenced by the fixed address of the memory location. Movable chunks are
referenced by memory handles [34]. Memory handles store a reference to an entry
in the “Master Pointer Table”. This table in turn stores the address of the mov-
able chunk and the table is updated during the compaction process of the PalmOS
memory manager with the new address of each chunk after the movable chunk is
relocated in the storage or dynamic RAM to defragment the memory. To read the
chunk when using a memory handle, the chunk is locked, becomes temporarily non-
movable and a temporary (until unlocked) pointer (as described previously) is used
to access the chunk. This is slightly slower than the pointer access method but
allows defragmentation to occur which is important when considering the amount
of available memory.

The memory model designed for PalmOS 3.5-4.0 differs from that used for PCs.
PalmOS PDAs at the time of writing this thesis do not have hardware similar to
that of a PC hard-disk and not do use a file system similar to that of a PC. A
PDA contains dynamic RAM with similar functions to PC RAM (e.g., stack space,
dynamic memory allocations) and storage RAM with a similar function to that of
a hard-disk or other storage device for a PC [13].

Dynamic RAM is divided into areas for:

e system globals (approx. 2.5KB),

e TCP/IP stack (32 KB),

e system dynamic allocation (variable),

e application stack (4 KB default),

e dynamic allocation, application globals, application static variable (;=36 KB)

Each is item in the list is dedicated a certain amount of physical memory and
the amount is dependent on the version of PalmQOS. The amounts described are
for PalmOS 3.0-3.3, the version of PalmOS on the PDA used for experimentation
described in Section 2.8. This version has a total of 96 KB of dynamic memory [51].

Storage RAM is where PalmOS stores data. Data is stored in databases as
opposed to the notion of files on PCs. A database consists of a list of records and
database header information. Each record is stored in a chunk. The chunks that
make up a database do not have to be contiguous in memory and are rearranged
when needed to defragment memory which merges free space fragments. Records

are edited in place instead of reading records into dynamic memory [26]. Finding a
record in a database can occur in three ways:

e Unique Record ID,

e “Index” value between 1 and the number of ordered records in the database
and this access method is analogous to an array data structure access,

e Search of a list of records using the internal data of record (key) e.g. binary
search

To combat the constraints of a PDA, small memory software design patterns
described by Noble and Weir were used [34]. These include:

e Packed Data - data is not aligned on word boundaries in the PalmOS databases.

e Compaction - defragmentation of dynamic or storage RAM to reduce the frag-
mented free space by rearranging movable chunks. This compaction normally
executes when a memory allocation does not find a large enough chunk of
contiguous memory.

2.4 Information Retrieval Model

Information retrieval attempts to predict what documents are relevant to a given
query. A specific model attempts to accomplish this prediction. The type of imple-
mented model for this project is the vector model. The following description of the
vector model is based largely on Baeza-Yates et al. [1].

The vector model is based on the idea that certain terms are more meaningful
than others. If a term occurs a relatively high number of times in a document then
the term is likely more important than other terms. The exception is stop-words{1][8]
(articles, prepositions, and conjunctions) which occur very frequency and express
little to no meaning. This idea of intra-document similarity is known as the term
frequency (tf) described by Equation 2.1 where freg; ; is the frequency of term k; in
document d; and the maz; freq ; is maximum term frequency in document d;.

o [reqiy
tfig = maz; freqy; (2.1)
Also, if a term occurs within a low number of documents, this term is likely
more important than other terms. This type of term tends to show a larger inter-
document dissimilarity. This idea is known as the inverse document frequency (idf)
described by Equation 2.2 where N is the number of documents in the collection
and n; is the number of documents that term k; appears in.

N
idf; = log - (2.2)

7
How meaningful a document term is depends on the intra-document similarity
and the inter-document dissimilarity measure known as the weight of term k; in
document d;. The document term weight (w; ;) is determined by Equation 2.3.

wi; = tf;j X idf; (2.3)

How meaningful a query term is depends on the weight of term k;. The query
term weight (w;) is determined by Equation 2.4.

0.5 fregiq N
i, = (0.5 4+ ——2 228) x log — 2.4
wig = (05+ maz freqiq x Ogni (2:4)
S'im ; ,q Z’L"‘l wl] X wzyq (2.5)

\/Zz lwzjx\/zz 1w

The vector model represents the query and the document as a vector. Each
dimension of the vector represents one term in the set of terms defined by union of
the terms within the collection of documents and the query terms. Each dimension
contains a weight. The cosine of the angle between the document vector and the
query vector determines the degree of similarity between the two and is given by
Equation 2.5. In other words, the lower the angle between the two vectors, the
higher the degree of similarity. The above are the information retrieval equations
as per Baeza-Yates et al. [1].

If w; ; and w; 4 are calculated at query time on the PDA, then predictably large
execution times result from the constrained PDA to determine mazfreq; ; and to do
the floating point arithmetic. To increase efficiency in the PDA environment, it is
possible to only calculate the query dependent portion involving w; 4 on the PDA.
The document dependent portion w;; can be calculated for all terms on the PC to
increase efficiency. Towards this goal, instead of storing the frequency of term k; in
document d; in the inverted list [1], another value § (Equation 2.6) may be stored.
Equations 2.6 and 2.7 are rearrangements of Equation 2.5 such that Equation 2.6
describes the portion calculated on the PC and Equation 2.7 describes the portion
calculated on the PDA.

@ from Equation 2.6 is converted from a floating point number into a byte sized
number by multiplying by 100 and rounding. Storing a byte representation reduces
the inverted index storage required and is necessary given the constrained storage
of a PDA.

0, =100 x ___Q;ﬂ (2.6)
P v}
simi(d; q) = =Ll X Ui (2.7)

Vi1 Wl

2.5 Inverted Index Construction

The goal of an inverted index is to index a text collection such that searching the
inverted index is cheaper than searching the entire text collection. A inverted index
consists of a vocabulary and a posting list for each term. The posting list identifies
what documents that term occurs within [1]. All documents that contain a given
term are easily determined by locating that term’s posting list.

The PC - PDA synchronization feature of the PalmOS based PDA provides
the opportunity to build a conduit as part of the PalmIRA information retrieval
system. The purpose of this conduit is to off-load part of the processing required

for the information retrieval process from the PDA to the PC. The processing off-
loaded onto the PC involves: downloading database (Section 2.5.1), preprocessing
steps (Section 2.5.2), building an efficient data structure (Section 2.5.3), calculating
the weight w; ; of term k; in document d; (Section 2.5.4) and building the inverted
index database that is stored on the PDA (Section 2.6).

2.5.1 Acquisition of PalmOS Based PDA Data

In the PalmOS environment, each application stores data items in a database. The
PalmOS database is similar to a PC data file. The PalmOS database is composed
of a number of records. For example the PalmOS MemoPad application stores each
MemoPad memo in one record. Each record within a PalmOS database is identified
using a unique record id.

The first step in building the inverted index is to download each record from the
PDA to the PC during the synchronization. The PalmIRA conduit reads each record
directly from the PDA database. Because another conduit may also download the
same records from the PDA to the PC, this may cause extra downloading. PalmIRA
cannot take advantage of the other conduits because the other (if present) conduit
that accesses the same PalmOS records as PalmIRA may be any possible third
party conduit that stores the data on the PC in any conceivable format. Not all of
the possible third party formats can ever be interpreted by PalmIRA. Hence, the
trade-off is the guarantee in reading the text for the extra downloading.

2.5.2 Document Preprocessing

Each record or textual item that is read from the PDA is parsed into individual
lower-case terms. Using regular expressions [24], a term is defined as consecutive
alpha numerical characters (a-z, 0-9) or (-, %, $) where each term is delimited by
any character not “valid={a-z, 0-9, -, %, $}”, “[~valid]+{a-z,0-9]+[-valid]+”,
and the term containing a - character must have a alphabetical character follow-
ing and preceding the - character, “[-valid]+[a-z,0-9]4+[-][a-2,0-9]+[- valid]+”,
and the term containing a % or $ must have a digit character following or preced-
ing the % or § character “[- valid]+[0-9]+[%,8][- valid]+” or “[-valid]+[%,$][0-
9]+[~valid]+”. For example “brother-in-law no.7 %100 $110” would contain five
terms: brother-in-law, no, 7, %100, $100. The period between no and 7 is considered
a delimiter because period is not in the set valid.

Stop-words are eliminated using a binary search against a static list of stop-words
available from [8]. Stop-words are terms in language that carry little or no meaning
such that they do not make good document discriminators {1] (e.g., “t0”,“the”).
Prepositions, articles, and conjunctions comprise a large portion of the stop-word
list. Besides eliminating words that are poor document discriminators, the stop-
word elimination helps to decrease the size of the inverted index. Case sensitivity is
ignored, i.e., all terms are converted to lower case.

A preference in the application allows for the choice of stemming the terms within
the collection using Porter’s stemming algorithm [35]. The stemming algorithm
replaces the suffix of the term based on a number of rules. The idea is that the
rules remove plurals, past tense suffixes and the like (e.g., zooms, zooming, zoomed)
from the root of the word. Porter’s stemming algorithm is simple and fast given

the constraints of a PDA unlike other more complicated stemming algorithms (e.g.,
N-grams, table lookup, successor variety [1]). The resulting root of the terms (e.g.,
zoom) may increase precision and recall (query’s effectiveness [1]) while decreasing
the index size, synchronization time, and not increasing the time to execute a query.

Each term is then added to the sparse matrix data structure described in Section
2.5.3.

2.5.3 Sparse Matrix Data Structure

In-order to calculate the weight of term %; in document d;, Equation 2.3 must be
calculated. Equation 2.3 requires the freq ; ; of term k; in document d; be stored
in order to calculate the weight w; ;. The frequency information is best stored in a
matrix such that accessing row ¢, column j returns the freg ; ;.

A sparse matrix data structure was chosen since the structure can store the
frequency count of term k; in document d; (and later a information retrieval weight)
and since many terms k; do not exist in document dj; (i.e., sparse data). In addition,
the information retrieval process (more specifically Equation 2.5) does not require
the term k; in document d; frequency if the frequency is 0. Since documents do
not contain an instance of each of the terms, this produces a matrix with entries
with 0 frequencies if a non-sparse matrix is used. The result of using a non-sparse
matrix is inefficiencies in traversing unneeded 0 frequency items and in memory
requirements to store the 0 frequencies. The larger amount of memory required to
store the non-sparse matrix produces larger amounts of swapping and a significant
increase in execution time over the sparse matrix data structure.

Next, the sparse matrix data structure is defined. The sparse matrix is made up
of 3 data structures: Term Header, Document Header, and Nodes as displayed in
Figure 2.2.

Document Header
Term Header

Poel | =———DocID .
! e Max Freq of Node List

q
i
i
i
i

Docl | | == Node: Document node belongs to and

1 frequencg of term in document,
or later the weight of this term in this document

L]

Term

Doc Term appears in .
Pointer to Last Doc

— Pointer to list of nodes

Figure 2.2: Sparse Matrix Overview

The nodes are the entities that make up the cells within the matrix. A node
in column j in row ¢ represents document d; contains term k; 2. The Node item

2Each node is represented by a 16 bytes long structure.

(Node; ;) maintains the following elements:
- Node™RoU. pointer to the next node in a row-wise direction
- NodeC?: pointer to the next node in a column-wise direction

- NodeV®e. a floating point value (4 bytes). The value is used both for a
frequency count (freg; ;) as the documents to parse are parsed and as a weight
calculated by Equation 2.6 to save space.

- Node ;. unique id (4 bytes) of the document represented by the column the
node exists in.

Each item of the Term Header (TH) represents a row in the sparse matrix. The
TH is an array of TH items 3. The array data type allows for fast binary searches.
Each TH item maintains the following elements:

- TH¥- the term represented by the TH item k;
- THMPEPI 5 pointer to a linked list of nodes
- THEestPIr_ 5 pointer to the last node in the linked list

- TH™i- the number of documents that the term appears in (n; which is used in
Equation 2.2).

- TH¥i- the float value of inverse document frequency (idf) of term k; (Equation
2.2)

Each item of the Document Header (DH) represents a column in the sparse matrix.
The DH is made up of a linked list of items 4. Each DH item maintains the following
elements:

_ DHDiddj

- document id value by the DH item

- DH"e#tPr_ 5 pointer to the next DH Item in the linked list of DH Items
- DHLEPI. 5 pointer to a linked list of nodes

- DHLastPI_ 5 pointer to the last node in the linked list

- DH™%ifTedi. the max frequency (maz freqi ;) of any single node within the
column representing document d; (i.e max frequency of any term in document

d;)

- DHPenom_ the float value of the denominator of Equation 2.6 °.

3Each item is of size 20 bytes plus the memory required to represent the string value of the term.

“FEach item in the DH is represented by a 24 bytes long structure.

*PalmIRA uses a float instead of double data type in the MS Visual C++ environment because
floats are 4 bytes whereas doubles are 8 bytes. This reduces the amount of dynamic memory
required by the sparse matrix structure. The float data type retains 7 digits of precision as opposed
to 15 digits for a double data type. The extra precision is not required because of the technique
to reduce storage costs described in Section 2.6 to create the PalmOS database representation of
the inverted file. The 4 byte float data type values range from approximately 1.17549 x 10738 to
3.40282 x 10%® which is large enough for the purposes described above in the Document Header,
Term Header, and the Nodes.

10

The reasoning behind the usage of each of the structure members for the the
Document Header (DH), Term Header (TH), and Node structure will become clear
as the following example progresses. The construction and efficient utilization of
the sparse matrix given a very simplified example collection of documents is worked
through to help explain the purpose of each structure member for the following four
(very simplified) documents °:

Docl: Contents: BCACAA
Doc4: Contents: F

Doc3: Contents: F

Doc2: Contents: F A C

First the PC based conduit reads the first record by index from the PalmOS
based PDA database. Using the example, the first record is Docl. Docl is first added
as a column representative (i.e., DH) within the sparse matrix. Docl is preprocessed
by the process described in 2.5.2. Each term, defined by the preprocessing step, is
dealt with in the following manner depending whether or not it exists in the sparse
matrix structure.

A binary search of the TH for the term in question determines if the term exists
resulting in:

1. If the term is not found during the binary search of the TH items, then add
the term to the TH array maintaining the sorted order via an insertion sort.
Next, add a new Node item to the structure with frequency (Node"®u€) «1”.
In addition, update TH" and update THX®S!PH for term k;. Also updated is the
max frequency in the corresponding DH item for document d; (DH™azLfTeq;),

Since a binary search precedes the insertion sort, the insertion sort can be
optimized. The position to insert the term into the array can be approxi-
mated from position references obtained within the binary search algorithm
when the term is not found. The technique involves using the mid-point infor-
mation produced by the binary search algorithm to act as an approximation
of the position where the new distinct term should be added. From the ap-
proximation, the exact position can be found quickly by moving backward or
forward in the array from the approximated position extracted from the binary
search. Once found, room is made for the term in the array 7 8.

2. If the term k; is found by the binary search to be in the array of TH items
then:

SNotice the document order is based on the alphabetical contents of the documents. The textual
documents are read from the PDA by PalmOS index order which has been specified in the PalmQOS
application (e.g., MemoPad) as alphabetical.

7Once the position within the array is located for where the term is to be placed, moving one
chunk of memory should be more efficient than copying each individual TH item one array position.

8 Although adding an item to a linked list would be easier, a linked list approach instead of the
array approach to represent the set of TH items suffers from the inability to as efficiently search for
an item within the linked list.

11

(a) if term k; previously occurs in document d; and the THL2SHPT of term k;

points to a node that exists in the column represented by Doc d; then
increment the frequency count of the node pointed to by the THLestPir
(Node" ¢} and update the max frequency of the DH item for d; (DH™@#1/7eq.5)

(b) else this is the first occurrence of term k; in document d; then add a new
node, update THX49P! of term k; and DHF4*F¥ of document d; pointers
to point to the new node and update DH™a1/Ted; for d;

The motivation for THL®StP? ig to reduce the time to traverse the linked list of
nodes each time the last node is accessed (when a new node for that term has to
be added to the end of the linked list or if that term occurs in the record multiple
occurrences and the last node is updated by increasing the frequency count of the
node). Nodes are never added to the beginning or middle of the linked list because
a new column (DH item) is added to the end of DH list each time a record is read
from the PDA data file. For example, nodes are always being added to the current
DH item that represents the current record (document) being parsed.

The idea of DHL#5EPHT is to reduce the time to find the last node in the linked list
of nodes. This is used when a new node is added to find the last node and link the
new node to the end of the linked list. '

The document id element of the Node item (NodeDdeJ') is used to speed up the
determination of what column (i.e., document id) the THL®tPH represents. Given
a reference to a node, the Node™"%; prevents a significant number of traversals
required to determine what column the node is contained within. This information
becomes useful to determine if the node referenced by THX*S*F™r is to be updated (if
the document id of the current term equals the NodeDdeJ‘)

new node (if not equal). Also, the Node”™4s is useful during the PalmOS database
inverted index file creation (Section 2.6).

The linked list of nodes is linked in a column-wise manner in order of first
occurrence within the document because there is no need to be able to traverse
the column in sorted by term order. The order of occurrence saves the time of
the sorting and still provides all the necessary access required by the information
retrieval calculations.

TH™ is updated each time a new node is added to the row to save having to
traverse the linked list of items that make up the row to determine the value which
is required to calculate inverse document frequency (idf) (Equation 2.2).

DH™@21/7¢4Li may be updated each time a node is updated (or added). This saves
the time of having to traverse the linked list for each column to determine the “max
frequency” of each column at a later time. Storing the DHP®™™ is useful in reducing
the time to traverse the linked list similar to DH™a%i1/7edr;

The next portion describes how the example documents introduced in section
2.5.3 are placed into the sparse matrix. The goal of the example is to help illus-
trate the motivation behind the sparse matrix data structure definition introduced
previously in this section.

First Docl is read from the PalmOS based PDA database by the PC based
conduit. This causes a new itern to be appended to the DH list. The TH is searched
for the first term within Docl (“B”) which is not found. A new TH item is added
to the array. A new Node; ; is added with frequency (NodeV*¢) = 1 and document

or otherwise linked to a

12

id (NodeDiddf) of Docl. The TH item for “B” is updated with TH" = 1, last node
(THLeStPI™Y and first node (THXFPMT) pointers pointing to the new node. The DH
item for Docl is updated with max frequency (DH™®%:fredqi) = 1 DHPestPir apd
DHLEPH pointers pointing to the new Node "% (see Figure 2.3).

Document Header

Doci

A

Term Header

Figure 2.3: Sparse Matrix Example 1

The next term in Docl is “C”. The term is searched for in the TH and not found.
A new TH item is added to the array in sorted order. As a result, a new Node; ; is
added to the internal portion of the sparse matrix by accessing a node via DHLestPtr
item for Docl (in this case) and updating Node™“® pointer of DHL*5*P¥ node to point
to the new Node; ;. This saves having to traverse the linked list of nodes starting
from DH or TH. The DHI®5tP¥ jtem for Docl is updated (see Figure 2.4).

Document Header
Docl
1
— L
g7 =21 Docl
1
—__
!)
Term Header
Pl 1= Docl
’ 1
bzl
1 A

Figure 2.4: Sparse Matrix Example 2

The next term in Docl is “A” and the process is equivalent to the process for
the prior instance of term “C”.

The next term in Docl is the second instance of term “C”. The term is searched
for and found in the TH. Since the THL9StP* points to a node with the Node?%4
of the current document then just update the frequency of that node (Node®u¢)
and DH™e®freq; (if applicable). The repeating instances of the “A” term follow a
similar process. See Figure 2.5.

13

Document Header

Docl
3
Docl
A =3
Term Header 3
------------------- = Docl
B Leml |
¢)
Docl
[bl 9
by pec?
1)

Figure 2.5: Sparse Matrix Example 3

After parsing all the terms in Docl, the next document is Doc4 since the doc-
uments are sorted in alphabetical order of document contents, not in document id
order. The new document (Doc4) results in a new item being added to the end
of the DH list. The first and only term is term “F” that is processed like the first
instance of term “B” in Docl.

Document Header
Docl Doc4 Doc3
3 1 1
=11 Docl
A =3
i
=111 Docl
B Sl |
VA
Term Header eossscs
I Docl
C 2
L <
L O
[S ——— Docd [-i- Doc3
B 1 e 1 |
= o
P 3

Figure 2.6: Sparse Matrix Example 4

14

After parsing all the terms in Doc4, the next document is Doc3. The new
document (Doc3) results in a new item being added to the end of the DH list. The
first and only term is term “F” which is searched for and found in the TH array. The
Node ™" pointed THL?S*PH (Docl) is not equal to the current document id (Doc3)
therefore add a new Node; ;. See Figure 2.6.

This continues until all terms in all document have been read and the final result

of the sparse matrix structure is displayed in Figure 2.7.

Document Header

Deocl Docd Doc3 Doc2
3 1 1 1
1 172 I 1 0.016 r—10.016 0.197
Docl bl Doc2
A =3 =1
0.727 0678
2 [
> Docl
B U1
r10.476
i)
Term Header —
| Docl Doc2
C) 1
~— 0.486 < =1 0.678 [<
2 3
Doc4 Doc3 Doc2
F L— 1 |- 1 e 1
0.988 - 0.988 —= 0.282
3)

Figure 2.7: Sparse Matrix Final

2.5.4 Weight Calculation

Once all of the documents have been read from the PalmOS database, the document
weight (Equation 2.3) for each term k; is calculated for each document d; (i.e., for
each Node;; in the sparse matrix). The same sparse matrix structure is used for
both the frequency counts and the weight calculation because by storing the number
of documents (N), the max term frequency (DH™®®1/7¢4.i) in the DH items (maz
fregq ;) and the number of documents that a term appears (TH™) in the TH items,
the frequency value stored in each Node; ; can be replaced without creating a second
copy of the data structure.

The term weight calculations of Equation 2.6 are broken into two steps each
employing one traversal of the sparse matrix. The first step calculates w; ; = tf; j ¥
idf; for each matrix Node; ; and keeps track of E$=1 wz-z’ ;- The second step calculates
the square root and division calculation for each matrix Node; ;.

The weight calculation is accomplished for each Node; ; by traversing each Node; ;
in a row-wise manner. Because of the row-wise traversal, the idf (Equation 2.2) is
consistent for each document and can be calculated once for the entire row using
the information stored in that TH item before the weight calculation loop traverses
the entire row. Storing TH'¥ saves the calculation of the idf (Equation 2.2) for each

15

column (Node; ;) in the row. Also required to calculate the term weight is the term
frequency (#f) (Equation 2.1) portion of the term weight calculation (Equation 2.3).
The max term frequency for document d; is stored as part of the DH for document
d;. This saves time since only the DH item needs to be found to acquire the max
term frequency for the current document instead of traversing the entire column of
the sparse matrix to determine the value.

The DH item search is optimized by starting the search at the previously found DH
item pointer from the previous iteration. The algorithm starts from this point and
iterates through the DH items until the DH item associated with the current Node; ;
is found (i.e., the DH”™4 equals the Node 4). For example, after the weight for
node; ; (Node'?¢) is calculated, the weight for the next Node; ., is calculated
by finding the corresponding DH for document d;., starting from the DH item d;
and iterating through the DH items until the DH item for document d;, is found.

Without the Node™'®; stored as an element of a node, each node in each column
of nodes would have to be iterated through to locate the column that contains the
reference to the current node. Each time the weight w; ; for Node; ; is calculated,
pHPeno™ is updated in the corresponding DH item d;.

Since the result of Equation 2.6 is stored in the inverted index, the document
weight value resulting from Equation 2.3 for each node (Node'%"€) needs to be
divided by the DHPe"*™ vyalue stored in the DH item for document d;. This process
iterates through the sparse matrix in a column-wise fashion. Using the calculated
DHDeno™ yalue stored in the current DH item, all Node; ; in the column j are traversed
and divided by DHDenom yalye. After each column is re-calculated, each Node; ; then
contains the calculated resulting term weight of Equation 2.6. The column-wise
traversal does not require that the current column (DH item) be looked up to obtain
the DHP®"°™ value as a row-wise traversal would.

The sparse matrix used is based on the sparse matrix data structure described
within Horowitz and Sahni [25] with some previously described modifications in
order to increase its efficiency. The structure is then used to create the packed
inverted index stored on the PDA.

Other data structures could be used in place of a sparse matrix. One option
could be to store the data as it is being processed directly into inverted index [12]
[1] for the posting lists, a trie [1] [25] [12] for the vocabulary and use a lookup table
to keep track of the data stored in the head nodes of the current sparse matrix data
structure.

2.6 Inverted Index for a PalmOS based PDA

The inverted index used by the PalmIRA information retrieval system consists of two
separate databases: irTerms and irWeight. The properties of a PalmOS database
influence this decision. The limiting properties are: the usable data size of each
record (64 KB), the number of records per database (64 K), and size of the overhead
(i.e., non-data) segment of each record (8 Bytes) .

PalmIRA packs multiple term posting lists in one record saving space and al-
lowing expandability beyond the PalmOS limit of 64 K terms (where one record

“One option other than the one used could be to have one term posting list per record which
would allow only 64 K terms to be indexed.

16

stores one term). The record packing allows for the number of terms indexed to
grow beyond 64 K 10,

The result is an irTerms file that contains all terms that are indexed by the
inverted index. The count of the number of terms from the first term to the term
k; signifies the ordinal of term k;. This ordinal 7 is used to determine the position
of term k; posting list within the second file, irWeight. The ordinal 7 signifies that
the it* posting list in the irWeight database belongs to term k;

2.6.1 irTerms Database

The purpose of the file is to determine whether or not a distinct term has been
indexed (e.g., stop-words do not occur in this file) within the information retrieval
index. The irTerms database contains all the terms within the inverted index and
the terms appear in the same sorted order as the TH. The second purpose is to allow
the determination of the ordinal value of the term. For example, given a list of terms
“ab”, “ac”, ..., the term “ac” maintains the position of 1. In other words “ac” has a
ordinal value of 1 (i.e., second term when starting to count from from 0). This term
count is used to determine the position of the term’s posting list in the irWeight
file (Section 2.6.2). The third purpose is to store the value of Equation 2.2 (Inverse
Document Frequency, idf) to avoid having to calculate the idf on the PDA at search
time. The query weight calculation (Equation 2.4) requires the idf.

The first portion of the irTerms record exists to act as an index into the list of
terms contained within the data segment of each irTerms record. The string value
of the last term and the ordinal value of the last term along with a separator for each
are stored at the beginning of each irTerms record. This allows the query algorithm
(Section 2.7.2) to determine whether or not the query term may be in the current
record since the terms in the irTerms database are in sorted order !. Figure 2.8
displays the file format of the irTerms database when the option of stemming in
not used (Section 2.7.1).

Following the index portion of the each record, the internal portion consists of
the term string and the float value of Equation 2.2 (idf) from each the sequentially
read, sorted alphabetically TH items. Multiple terms are appended to a irTerms
record until the PalmOS 64KB record size limit is reached then a new record is
created.

17

Term Database Format

Record Index
into data segment Data Contained within the Term Database
Ordinal #0
Ordinal # 1 Ordinal # 7709 Separator
[exptored[\[7710 [\|[abb [\fia] aad [\o[iae] [explore |\0]iat] explored| o] iaf First Record
[plate [\Ol 15163 I \OH explorers I \(){ idf} """"""""""" { plastics [\0] idfl plate ‘ \0[idflé*-.Second Record
[curicn |\ 22521 || plateau |\[iat}-++ [rat o] ia] rate] o[iat] - [zurich | \0] idf}=——~Third Record

Terms

Ordinal # 22521

Ordinal # of the last term in the current record
Last term in the current record

Figure 2.8: irTermsExample PalmOS Database

2.6.2 irWeight Database

The goal of the file is to store a posting list for each term that appears in the irTerms
database. The first term in the irTerms database corresponds to the first posting
list that occurs in the first record of the irWeight database. The first 4 Bytes of each
record specifies the ordinal (Term Count) from the start of the irWeight database
to the last posting list in that record. This is used to prevent sequentially searching
each record by acting as an index to determine if the record contains the ordinal
that is being searched for. This index acts in a equivalent manner to the index (first
part) of the irTerms record structure described previously in Section 2.6.1. The
next byte acts as a separator and is followed by the internal data segment of the
record (i.e., posting lists). The posting list for term k; consists of a number of items
where each item consists of the document id d; (4 bytes) and the weight w; ; (1 byte)
of term k; in document d; where j is the set of all document ids that contain term
k;. The weight is converted from a 4 byte floating point value to a 1 byte value by
multiplying the float point value by 100 (Equation 2.6), rounding the value into an
integer and storing the value as a byte. Storing document weight as a byte discards
some of the significant figures of the floating point representation but hopefully the

0 Als0, every PalmOS PDA record contains a header. Each PalmOS record contributes an addi-
tional 8 bytes to the size of the data being stored within the record. The header for each record
includes a 4-byte local ID of the record, 8 attribute bits, and a 3-byte unique ID. To decrease the
number of records and thus the total size of the database, multiple term posting lists are combined
into one record and each posting list is separated by 5 hexadecimal 0x00 bytes (5 bytes is used to
store each term posting list item). This saves ((“sizeof header”— “sizeof separator in irWeight and
irTexrms record formats”) x # distinct terms) bytes (i.e., (8 — 5 — 1) % 21,289 = 42, 578 bytes).

by knowing that the previous records last term is less than the query term and the query term
is less than the last term of the current record then the current record is the record that is the
candidate to contain the query term. The correct record to search is determined by comparing
only the first few index bytes (index of size: length of the last term in the record + 5 bytes) of
the record. Once the candidate record is determined, then the algorithm sequentially searches the
internal portion of the record.

18

Weight Database Records

dinal number of last posting list in the current record
Separator
Unigne Record ID of MemoPad document that this term appears is
y— Weight of Oth term (abb) in Docl0

1964_| 0x00| [Docio [9] 0x00000000 [0 Jroroosi 0300000000 | 0|
L]
First Record End of posting list for first term End of posting list for the 1964th term
econd Record
L——ﬁ 4419 ’ 0x00] [posting lists and Separators For Terms 1965 to 4419 |
[6308 [0x00] | posting lists and Separators _For Terms 4420 to 6808 |
l 9100 l 0x00| I posting lists and Separators I
Other [11605 [0x00] [posting lists and Separators |
I 13700 I OXOOI I posting lists and Separators |
l 15875 I OxOO] I posting lists and Separators J
| 18287 ‘ OXOOI [posting lists and Separators l
[20604 l OXOOJ l posting lists and Separators |
I 22521 | 0x00! [posting lists and Separators I

Figure 2.9: irWeightPalmOS Database Format

slight loss of accuracy does not outweigh the trade-off of the reduced storage space
required to store the byte representation. In terms of accuracy, PalmIRA produces
similar single collection retrieval accuracy to the results published in a paper by Viles
and French [45]. They use the same retrieval model, a possibly different stemming
algorithm and a possibly different rule for defining terms. Figure 2.9 displays the
file format of the irWeight database that is stored on the PDA.

Each row in the sparse matrix contains the data required to create that term’s
posting list. To create the posting list for term £;, each Node; ; in the linked list of
nodes pointed to by the TH item representing term k; is sequentially traversed. The
document id (NodeDdeJ') and the weight (Node"?%¢) stored in each Node; ; traversed
is added as an item to the term posting list 2.

The items added to term k; posting list are sorted in document id order. The
motivation for the sort becomes evident during the degree of similarity calculation
(Section 2.7.4) 13,

Because more than one term posting list is stored in each irWeight record, each

Y Document id and unique record id are equivalent values in the implementation.

"®The items within each term posting list are sorted by unique document ID assigned by the
PalmOS instead of record index (which is the easiest order to read the records from the PDA by
the conduit). Note: PalmOS stores records in a list. This list can be sorted which physically
changes the position of records in the list. Records in PalmOS can be accessed by a unique record
ID or by an index into the sorted list. The index is the record’s position in the list. Deleting a
record changes the position and hence the index for records following the deleted record in the list.
Therefore, deleting record with index 2 causes the record with index 3 to have index 2. Tt is unwise
to store the index value because reading the record by index may yield a different record for that
index (e.g., index 2 represents a different record before and after deletion).

19

posting list is separated by a separator. If term k;;; posting list is small enough to
append to the k; and prior term posting lists already stored in the record, then the
posting list is append along with the separator. Else, the current record is written
to the PDA and a new record is created. In Figure 2.9, the first record contains the
posting lists of 1965 terms where as other records contain a variable number of term
posting lists. The first term (ordinal 0) has a posting list that contains only one item
(weight 9, document id Docl0) (i.e., that term was found in only one document).

2.7 PDA Information Retrieval Engine

This section describes the portion of the PalmIRA information retrieval system that
executes within the PalmOS based PDA environment and utilizes the inverted index
created by the PC resident conduit portion described in Section 2.5. The application
has a simple graphical user interface due to the 160x160 screen resolution of the
PalmOS based PDA (Figure 2.10).

Palm OS” Emulator

Palm

Figure 2.10: PalmOS Screen Size

The GUI allows the user to enter a natural language query. Once the query
has been entered, the first step of the query execution is to preprocess the query
(Section 2.7.1). For each query term identified by the preprocessing step, it attempts
to locate the query term within the irTerms PalmOS database and, if located, store
the ordinal value of the term (section 2.7.2). Using the ordinal of each query term, it
locates the posting list within the irWeight database. Also, it stores the record ID
and offset from the start of the record to the posting list of each term (Section 2.7.3).

20

Next, it calculates the degree of similarity between the query and the documents.
The degree of similarity is used to rank the query results (Section 2.7.4). The last
step of the PalmIRA information retrieval application is to display the ranked by
degree of similarity results by writing to the screen the numeric value of the degree
of similarity and a snippet of the first twenty characters of the document (Section
2.7.6). A user is able to browse the list of documents that are considered similar
to the query. Another feature allows the user to select the query result and a new
window opens to display the contents of the selected item.

2.7.1 Query Preprocessing

After the query is entered, the application parses the query string into a list of terms
as in Section 2.5.2 4.

In order to increase efficiency, some information is stored for each query term.
The information stored is called a terminfo structure and includes:

- k; - a string representing the query term

- freq;q - frequency of term k; within the query string (Equation 2.4)
- 0rdy, - ordinal value of term k; in the irTerms database

- RWid; - irWeight record id that contains term k;’s posting list

- Off; - offset of the posting list for term k; from the beginning of the RWid;
irWeight record

- Didy; - document id value of the posting list item referenced by the RWid, of
the record and the 0ff; offset from the beginning of that record

- Wigq - query term weight calculated by Equation 2.4

The array of terminfo structures as described above is sorted by ascending
alphabetical order with respect to the query term represented.

2.7.2 Find Query Term Ordinal Value

After preprocessing the query, each query term is compared against the list of terms
in the inverted index to determine if it has been indexed. All terms of the inverted
index are stored in the irTerms database file. A query term may not be a member
of the inverted index if that term does not exist in any of the documents of the
indexed collection or if that term exists in the list of stop-words.

The first step in finding the query term is to determine a candidate irTerms
record for containing the query term from the possibly many irTerms records within
the irTerms database. A binary search using the index values at the start of each
irTerms record finds the smallest index value that is greater than the query term
that is being searched for. The index at the start of the irTerms records contains

Y All characters that are not in the set {a-z, A-Z, 0-9, %, $, -, NULL} are converted to a blank
character. Then the blank character is used to delimit individual terms. The motivation is to
delimit queries for example “Canada\cr” (Canada ended with a carriage return) such that the
query is interpreted properly.

21

the string of the last term of the irTerms record. All terms within the data segment
of the current record are less than or equal to the index at the start of the current
record and greater then the index value (last term) of the previous record. The
result of finding the smallest index that is greater than the query term is that this
record is the only record that may contain the query term if the query term is part
of the inverted index.

For each query term that exists in the inverted index, the Ordy, of that query term
within the irTerms file is stored as part of the terminfo structure (section 2.7.1).
The Ordy, is the number of terms (starting from the first term in the database)
that precedes the term in the inverted index 15 The purpose of 0rdy, is to find the
location of the query term’s posting list inside the irWeight database. Following
each term in the irTerms database is a 4 bytes float value representing the idf value
(Equation 2.2) for that term. The extracted idf and stored freq;, are used to
calculate the query weight (Equation 2.4) for query term k;. The query term weight
wj q value is stored within the terminfo structure for the query term k;.

If the query contains more than one term then the process can be optimized.
For the second and subsequent query terms, the process of determining Ordy, from
the irTerms database can start the search where the search (either successful or
unsuccessful) for the previous term left off. The effect is to narrow the search space
for subsequent query terms.

Given that the query terms are in sorted order and the terms within the irTerms
database are also in sorted order, the current record (from the search for the previ-
ous term) can be passed into the binary search as a lower bound for the search. If
the index portion of a irTerms record is less than the current query term then that
record is known not to be relevant for any query term with a higher alphabetical or-
der than the current query term. This narrows the search space for each subsequent
query term. This is in contrast to the search for each query term always executing
the binary search over all irTerms records.

Another opportunity exists to help decrease the search space and thus the search
time. At the time the query term k; is found within the irTerms record, the ID of
the record and a pointer to the term within that record are known. If the query term
ki1 is less than the index value of record R, but greater than the query term k&; then
the query term k;,1; must be between the position of query term k; in the record
and the end of the record. In this case the binary search is not required to find the
candidate record because the current record is the candidate record. The search for
the query term k;4; begins at the pointer to the position within the irTerms record
that contains the string equivalent to the query term k;. Because the current record
is being used, time is not wasted on a binary search that accesses records 6 17,

150rdy, is determined using the index value of the previous record, R,-; (if r is not the first
record) and then counting the number of terms from the start of the internal data portion (not
index portion) of record R; to the position of the query term to locate. The index portion contains
the string representation of the last term of each irTerms record along with the last term’s ordinal
value.

16Because the current record is being used, the result is that the memory handle used to access
the queried record does not have to be queried, locked, read, and unlocked. The PalmOS memory
managers allows for the use of memory handles such that when a memory handle is unlocked, the
PalmOS memory manager can automatically defragment the memory to increase storage [34], [13].

1"The irTerms records separate the terms and the idf float values by a NULL character. Using
the NULL character for a separator allows for an easy string comparison implementation.

22

2.7.3 Query Term Posting List Locator

After finding the Ordy, for each query term, Ordy, is used to locate the posting list of
each term within the irWeight database. The irWeight may contain one to many
records depending on the number of terms and the size of each term’s posting list.
As displayed in Figure 2.9, and described in Section 2.6.2 each irWeight record
begins with an index describing the Ordy, of the term whose posting list is the last
posting list in that record.

The goal of this step is for each query term, locate the query term’s posting list
in the irWeight database and store the RWid; and 0ff; in the terminfo structure
for that query term. The first step is to locate the record that contains, in the
data portion of the record, the query term’s posting list. A binary search to find
the smallest index value (index value is the first value of each record, Section 2.6.2)
that is larger than or equal to Ord; for the current query term locates the irWeight
record. Because the index value is the ordinal of the term whose posting list is the
last posting list in the record, and the query terms and posting list are in sorted by
term order, the posting list for query term k; must be in the located record. The
record ID of the located record RWid; is stored in the terminfo structure for that
term. The next step is to find the offset within the located record of the query term
k; posting list 0f£; 18.

For queries with more than one term, the two optimizations (described in Section
2.7.2) that help to decrease the search space are also used.

2.7.4 Degree of Similarity Calculation

Once the start of each query term’s posting list is located, the next step is to
calculate the degree of similarity of each document to the query. Documents that
do not contain at least one of the non-stop-word query terms are considered to have
a degree of similarity of 0. These irrelevant documents are indicated by the fact
that none of the query terms contain that document in their posting list.

The challenge is to efficiently determine for each query term if document d; is
in query term k; posting list. The idea of the algorithm is to sequentially traverse
the documents starting with the smallest document id and ending with the largest
document id in the set of documents defined by the union of the posting lists of the
query terms.

Remember from Section 2.6.2 that all items that compose one term posting list
are sorted by the unique record id (used interchangeably with document id) of the
record that contains the corresponding document. Recapitulating, at the beginning
of the degree of similarity calculation, the terminfo structure for each query term
points (via RWid; and 0ff;) to each query term’s posting list item with the smallest
document id in that posting list. Each terminfo structure item also contains the
document id (Didg,) value of the posting list item pointed to by RWid; and Off;.

First the algorithm finds the smallest document id in the terminfo structure
of all the query terms. Once the smallest document id is identified, for each query

18T find the position of the posting list for query term k; within the data portion of the irWeight
record (RWid;), the algorithm starts by finding the index value (0rd) of the previous record RWid;_;.
Then it iterates through the posting list items counting the posting list separators until this iterative
value (number of separators + index value of the previous records) equals Ordg,; of term k;.

23

term that contains that document id:

e contribute the term’s stored document weight (6;;) within the irWeightfile
posting list item to the degree of similarity equation (Equation 2.7).

e increment Off; to point to the next posting list item

¢ update the current Didg; stored in the terminfo structure item for that term
to the value pointed to by the 0ff;

After all query terms are compared against the current smallest document id and
thus the running totals of Y_,_ow; j and 32, w?’ ; from Equation 2.7 are completely
summed, then the degree of similarity calculation is completed as in Equation 2.7.
The similarity and the document id are stored in an array of sorted by degree of
similarity results.

The algorithm is setup to query and read the irWeight database only if the w;
value is required. The number of queries and database reads are reduced because
the document id of the posting list item pointed to by the offset is stored in the
terminfo structure for each term. Caching the document id in terminfo increases
efficiency by not have to lookup the document id from the index to determine if the
smallest document id is pointed to by RWid; and 0ff;.

2.7.5 Example

This next part introduces an example query using the index contained within the
irTerms and irWeight PalmOS databases stored on the PDA and illustrated in Fig-
ure 2.8 and Figure 2.9 to help explain how the PalmOS based information retrieval
application satisfies a query.

For a query “rat rate explorers” given the irTerms database file displayed in
Figure 2.8, the following would occur. First the query terms are sorted yielding
“explorers rat rate” in the preprocessing step (Section 2.5.2). Next, the Ordg, of
each of the terms is determined (Section 2.6.1). Using the query term “explorers”
and the index segment of the irTerms database records, a binary search is used to
find the candidate record with the smallest index value that is greater than the query
term “explorers”. In this case, the second record with index “plate” is the candidate
record. So at this point the query term “explorers” is either in the data segment
of the second record or “explorers” is not in the inverted index. Next the internal
data segment portion of the second record is searched. In this case “explores” is
the found and the idf value following the term is used to calculate the query weight
(wi,q) (Equation 2.4) for query term k; is stored in the terminfo structure item.
The ordinal number (7711) for “explorers” is determined by the addition of the
ordinal value of the last term of the previous record for the index portion of the
first record (7710) plus the position of the term with in the data segment of the
second record (1). For the second query term “rat” we know that it is not within
the second record because the index of the last term within the second record is
“plate” therefore a binary search is executed. Passed into the binary search as the
lower bound is record 2 since record 2 is the record where the previous term (query
term “explorers”) was located so the binary search only searches records 2 and 3.
The third record becomes the candidate record after the binary search and the term

24

“rat” is found by the internal data segment search. After an internal data segment
search, the terminfo structure is updated. For the third query term “rate”, it is
known that the query term may only be within the third record because the index of
the last term within the third record is “zurich” which is greater than the query term
“rate”, therefore a binary search search is not required. Using the pointer pointing
to the second query term, the third query term internal data segment search begins
at that point. The third query term is easily found since it directly follows the
second query term in the irTerms record. The terminfo structure is updated.

This next part of the example illustrates Section 2.7.3, i.e., how the PalmOS
based portion of the system locates the posting lists of each of the query terms.
Figure 2.9 displays an example of the irWeight database. For the first query term
“explorers”, the stored ordinal number of 7711 is searched for using a binary search.
The binary search returns record number 4 because it is the record with the small-
est index value (9100) that is greater than the ordinal number of the query term
“explorers” (7711). The next step is to search the internal data segment of the
irWeight record to find the offset of the posting list. Since each posting list is
delimited by separators of 5 bytes of all zeros, the separators are counted. The
posting list is located when the index value of the previous record (6808) plus the
number of posting lists traversed is equivalent to the ordinal value of the query term
(7711). This is the same idea as described in the irTerms traversal (Section 2.7.2).
The binary search optimizations, described in Section 2.7.2, are used to decrease
the search space for query terms “rat”, “rate”.

This next part of the example illustrates how the PalmOS based portion of the
system computes the degree of similarity calculation for each of the query terms
(Section 2.7.4). Figure 2.11 displays an example of the algorithm to calculate the
degree of similarity. The example consists of 2 documents: Docl with terms “rat”,
“rate” and Doc2 with terms “explorers” and “rat”.

Posting Lists for Each Term
Posting list separator

explorers [poc) [o | [oxooo00000[0 |
rat [Doct [s | [poc2 [21] | oxoo000000[0]

Current posting list item
rate [Doc [15 | [oxo0000000[0] for each term

Document id — Weight

Figure 2.11: Example Degree of Similarity Calculation - Begin

At the start of the similarity calculation, pointers (RWid; and 0ff;) point to the
first item of each of the query term posting lists. Using the Didy; stored in the
terminfo structure (Doc2 “explorers”, Docl “rat”, Docl “rate”), the smallest of
these values (Docl) is chosen as the first document to have the degree of similarity
calculated for it. Next considering only the query terms that currently point to
document id Docl (“rate”, “rat”), the degree of similarity of document id Docl is

25

calculated. The RWid; and 0ff; for “explores” does not point to document id Docl
and therefore considering the stored order of the posting list, this posting list does
not contain document id Docl and “explores” does not contribute to the degree of
similarity measure for document id Docl. The first query term considered in the
similarity calculation is “rat”. The weight w; ; for term “rat” in document Docl is
read by querying for the irWeight record id (obtained from the terminfo structure
item), locking the record, traversing to the offset (obtained from the terminfo
structure item) and reading the weight value from the irWeight database record.
This weight value w; ; of “9” is entered into the summation P w;j X wi g along
with the query weight stored in the terminfo structure item w; 4. In addition, the
summation of the 22:1 wf,q is maintained locally. After the weight is read, 0ff; for
the term “rat” is incremented and the new Didg, referencing the new Off; is stored
in the terminfo structure. In this case, Doc2 for “rat” and the separator for “rate”
are stored, e.g., Figure 2.12. After all terms are considered, the two summations, one
for each query term “rat”, “rate” are passed into the final calculation for Equation
2.7. The document id Docl and the degree of similarity are stored in a sorted array.

Posting Lists for Each Term
W_ Posting list separator
explorers | poy [o | [oxo0000000]0 |
rat [Doc1 [] [poc2 [21 || oxoo000000[0 |
'{\ Current posting list item
rate | Docl [15]| OxOO(;‘OOOOOLO | for each term

Document id — Weight

Figure 2.12: Example Degree of Similarity Calculation - After First Document

The same process is used for document id Doc2 for terms “explorers” and “rat”.
When 0ff; within the irWeight record references a zero document id and a zero
weight, then all posting list items for that query term have been processed. When
this occurs for all query terms then the results are displayed, Figure 2.13.

2.7.6 Graphical User Interface (GUI)

A list-box component displays the results on the PalmOS device. The results consist
of the degree of similarity, document id and a snippet of the text of the document '°.

*9As the degree of similarity is calculated with respect to the query for each document in the
collection, the document record id and similarity measure for that document are stored in a de-
scending by similarity ordered array. This array stores the top 200 entries pushing out of the array
the item with lowest degree of similarity each time a new document with a degree of similarity
greater than the 200** member of the array is added. A hard limit of 200 items is imposed. The
storage of only the 200 most relevant (i.e., highest similarity measure) documents acts as a hard
limit placed on the number of items the array can handle and thus an upper limit on the amount of
memory dynamically allocated for the array. A query that returns the 200 most relevant documents
usually provides more results than are browsed or utilized by the user.

26

Posting Lists for Each Term
Posting list separator

explorers | poc) [o || oxo0000000]0 |

rat | Doct 9 | |Doc2 [21 || oxo0000000]0 |
Current posting list itern
for each term

rate [Doc [15]| oxo0000000]0 |

Document id — Weight
Figure 2.13: Example Degree of Similarity Calculation - After Last Document

The document id of each result array item provides the means to query the original
document from the collection and to extract a snippet of the document to display
as part of the query result (Figure 2.14).

(a) (b)
Figure 2.14: PalmIRA: (a) Query; (b) Query Result

Graphical User Interface (GUI) Enhancements

The list-box GUI component that displays the results was changed from loading all
query result items to loading only 10 query result items at one time into the list-box
component to display. Scrolling allows access to any remaining items (in groups of
10) that do not fit within the 10 items currently display within the list-box.

27

The consequences are faster query execution times and lower dynamic memory
cost since only enough memory for 10 items must be allocated for display purposes.
The decrease in time is also a result of the fact that only the snippets of 10 of the
results must be queried from the collection database at one time instead of each
of the possibly 200 query result documents. Since records must still be queried for
each new screen, the query time savings is offset by a negligible increase in time to
update the display as the user browses the query results.

2.8 Efficiency Experiments

The test database is the TIME database from Cornell University’s [7] website. The
data set includes world news articles from 1963. The collection contains 425 docu-
ments for a total size of 1513KB with 83 queries. The data set also contains a list
of queries and their relevance document list.

This experiment converted the database into a format such that it could be
loaded into the Palm platform. This involved modifying the data set so that each
document would fit in a PalmOS record such that documents greater than the
PalmOS record length limit of 64KB were split into multiple records.

The evaluations were completed using a Handspring Visor Deluxe PalmOS v3.1
PDA with a 600 MHZ Intel Pentium ITI Win98SE laptop with 64 MB of RAM and
USB to synchronize with the PDA. Version 4.0 of the conduit development kit was
used along with Metrowerks CodeWarrior for PalmOS 4.0.

Without stemming, the number of distinct terms is 22521. The total time to
synchronize is 71 sec and can be broken down into:

e to download and parse textual data and create sparse matrix: 45 sec
e to calculate weight (w;; = idf; * tf;;): < 1 sec

e to build and transfer to PDA 5 packed term records: 8 sec

e to build and transfer to PDA 10 packed posting list records: 17 sec

A naive approach which did not use a sparse matrix required approximately 635 sec
possibly due to large amounts of swapping required to access the non-sparse matrix.
The total size of the inverted index is 928,293 bytes and can be broken into:

e 285,693 byes for the irTerms index
e 642,600 bytes for the irWeight index

The non-stemmed inverted index is not compressed and the opportunity for reducing
the size with compression is discussed in future work (Section 4.2). Stemming and
increasing the size of the stop-word list such that some of the more popular terms
are not indexed will reduce the index size but analysis of viability of these are left
to future work. The idf; for each term in the irTerms database comprises a total of
90,084 of the 285,693 bytes.

TIME Database query #55 is “suggestion made by president Kennedy for a
NATO nuclear missile fleet manned by international crews”. The above query #55

28

returns 379 documents where each of the 379 documents contains at least one of the
query’s non-stop-word terms.

The total time to retrieve the documents is 7 sec for query #55. The naive
approach required over double the time to complete the query. This is the time
breakdown for query #55:

e find the term location in irTerms database: 1 sec (2 sec before binary search
enhancements Section 2.7.2)

e find the posting lists location in the irWeight file: 2 sec (3 sec before binary
search enhancements Section 2.7.3)

e calculate the similarity and order based on similarity: 4 sec (9 sec before
caching of document id Section 2.7.4)

e display results (first 20 char of Doc): <1 sec (2 sec before GUI enhancements
Section 2.7.6)

This (simplistic) experiment served to show that the approach we chose to imple-
ment the information retrieval framework was a vast improvement over the straight
forward approach, specifically in terms of index building time and storage overhead.
Unfortunately, we were not able to perform an objective comparison with similar
tools (e.g., Intelligentfind [33}, Palm Pirate [41]) since their code is not open and no
further details about their implementation is available. Nevertheless, we believe we
have build a solid framework upon which we can improve by tackling the information
fusion problem (next chapter).

29

Chapter 3

Collection Fusion

3.1 Introduction

Large amounts of research have addressed the issue of attempting to retrieve relevant
documents from a single text collection efficiently and effectively [1]. The previous
chapter describes an implementation for a PDA. An extension to this research area
is how to efficiently and effectively retrieve information from multiple, autonomous
collections.

The basic multiple collection retrieval problem/task involves the following pro-
gression. Given a query, distribute the query to some of the multiple, autonomous
collections and their associated search engine. Independent of the other collections,
each of the multiple collections constructs a list of results for that query. The mul-
tiple results lists are merged using some technique into one combined, global result
list.

The collection selection and collection fusion problems originate from this sit-
uation where there exists multiple, autonomous collections. On the one hand, the
collection selection problem deals with issues involving how to choose which col-
lections will best satisfy the information retrieval query. On the other hand, the
collection fusion problem deals with issues involving how to merge or fuse the re-
sult list retrieved from each collection into one meaningful result list. The latter
approach is explored in this chapter.

Collection selection evaluates the degree of relevance of each collection to the
query. Collections that have a high degree of relevance to the query should contain
documents that are highly relevant to the query. The value of the relevance of the
collection can be utilized to help in the fusion of the result lists or to help to reduce
the number of collections that need to be queried. This is an attempt to prune
the search space and is based on the idea that searching a very large number of
collections is not feasible in terms of resources, user time, and computation time.

Collection fusion (otherwise known as results merging) merges the results from
multiple independent collections and their associated search engine. The goal is
to create one ranked result list from multiple result lists such that the merged
result maximizes the precision/recall ! of documents relevant to the query. That is,
relevant documents should be ranked highly and the non-relevant documents should

!Precision is the percentage of retrieved documents that are relevant and recall is the percentage
of all relevant documents that have been retrieved.

30

be ranked lowly regardless of the document’s originating collection. Each collection
is autonomous in that each collection is associated with a set of documents and
an information retrieval ranking engine. Given a query and a result list from each
of the multiple collections, the “ideal” result is to merge the result lists into one
global result list such that most highly relevant documents rank highly in the global
(merged) result list. It is desirable to favor “good” collections while still allowing
a “good” document from a “bad” collection the opportunity to achieve a high rank
within a merged global result list [5].

Data fusion differs from collection fusion in that data fusion utilizes multiple
search engines with differing retrieval techniques on the same set of data whereas
collection fusion may have multiple different sets of data [38] [31]. One approach
is Democratic Data Fusion [44], where the number of search engines that find the
same document helps to determine the merged rank of that document.

The situation where a document in one collection contains a counterpart that
exists in another collection is not considered in the scope of this research. Duplicate
detection and handling at result list merge time is left to the area of data fusion.

In the next section, similarities and differences between PalmIRA collection fu-
sion and Meta-Search are discussed (Section 3.1.1). After that is a survey of related
work (Section 3.2) including collection fusion approaches and a discussion about why
certain types of approaches could be inappropriate for use in a PDA (Section 3.2.1)
and a survey of some proposed effectiveness measures (Section 3.2.2). Following
that is a description of the collection fusion techniques experimented with includ-
ing the proposed technique (Section 3.3) along with a description of effectiveness
measures including the proposed techniques (Section 3.4). Lastly, the experimental
setup (Section 3.5), the experimental results using Cornell data (Section 3.6) and
the TREC data (Section 3.7) are described.

3.1.1 Similarities and Differences with Meta-Search

Given a query, a Meta-Search engine distributes the query to multiple World Wide
Web (WWW) search engines in an attempt to increase the search space since each
WWW search engine does not have a complete view of the WWW [31]. The meta-
search engine does not itself contain an index or view of the web but may contain
statistics about the various search engines for search engine selection purposes. The
main parts include:

e selection of a set of search engines (also known as databases or collections) to
distribute the query to,

e collection or gathering of certain specific retrieved documents from the search
engines (e.g., first 20 retrieved documents),

e the merging or fusion of results,

e presentation of results.

The PalmIRA retrieval system differs from meta-search in a number of ways.
e Retrieval model (e.g., vector model) between collections:

— PalmIRA - consistent

31

— Meta-Search - cannot guarantee consistency
e Data:
~ PalmIRA - internally stored on a PDA
— Meta-Search - usually WWW data at multiple autonomous locations

e Platform characteristics:

— PalmIRA - constrained (e.g., low memory, limited CPU)
— Meta-Search - high scalability (e.g., distributed systems)

e Communication between collection and result merging algorithms:

— PalmIRA - search engines and associated database accessed directly by
the result merging algorithm without communication since both exist on
the PDA

— Meta-Search - collections accessed over the internet

Search engine statistics (e.g., term frequency) availability to result merging
algorithm:

— PalmIRA - easily accessible since both exist on same PDA

—~ Meta-Search - not easily accessible since they may exist on different com-
puters and requires some level of cooperation (e.g., STARTS [20])

3.1.2 Example Introduction

In the running example used henceforth within this chapter, two independent col-
lections of documents exist: X and Y. Each collection is composed of 10 documents:
X1...X10 for collection X and Y1...Y10 for collection Y.

Given a query, the collections use a vector model based search engine to retrieve
documents. The example uses the query containing terms A, B, C, D. For the
query, the following documents have been judged to be relevant Y3, Y4, Y9. As can
be seen from Fig. 3.1, Document X9 contains the same query terms as Y9 but is
not considered relevant. Document X9 is used as an example of a document that
contains query terms but the query terms are used in a context that does not relate
to the meaning of the query (i.e., randomly mentioned terms). For example, given
a query such as “mouse for an Apple computer”, a document containing “I saw a
mouse on my computer while eating an apple” would be retrieved by the vector
model but should not be counsidered relevant to the query. That is, the query terms
“mouse”, “apple”, “computer” are randomly mentioned in the document such that
the context of their use in the document differs from the context of their intended use
in the query. Similar reasoning should be applied to the other irrelevant documents
that contain query terms.

In order to create a reference or baseline for measuring the effectiveness of col-
lection fusion strategies, a reference collection was created by concatenating the
two independent collections together. A reference result list is created by retrieving
documents from the reference collection (Fig. 3.1).

32

Reference Collection

X1 (X2 |X3 |X4 {X5 [X6 |[X7 [X8 X9 |XIO|Y! |Y2 |Y3 [Y4 [Y5S |Y6 |Y7 |Y8 [Y9 |YIO
A A A B A B,C A,BlAB B.D B,C Collection Documents
D C,DiC D
Y3 1.00/
Yx9 091

Y9 091

Y4 0.82

Y6 0.71

X4 0.60 Ranked Result List

X1 042

X3 042

X6 042

Figure 3.1: Reference collection query results example

The running example uses the vector model for document retrieval. For each
independent collection, the collections are independently queried. The retrieval
model uses no knowledge or parameters from other collections. This yields one
result list for each collection (Fig. 3.2).

Collection X Collection Y
X1 I1X2 [X3 (X4 [X5 |X6 |X7 |X8 [X9 [X10 Y1 |Y2 [Y3 (Y4 |Y5 [Y6 |Y7 |Y8 |Y9 |Y10
A A |AB A B,C A,B|A,B B.D B,C Collection Documents
D C.D|C D

Rewieval Retrieval
Model Query {4, B, C, D} Model

Xl |X3 |X4 [X6 Y6 | Y9 Result List -

A |A JAB[A B,D|B,C Documents retrieved for
D Query {A,B,C, D)

02410241049(024 0.601077

Collection
Fusion

Merged
Result
List

Figure 3.2: Multiple Collection Results Merging (Collection Fusion)

The vector model uses collection dependent features to compute the degree of
similarity between the query and each document. An example of this are documents
X9 and Y9 which both contain the same terms B, C, D. Notice in Fig 3.1, the
reference collection, that documents X9 and Y9 have equivalent degrees of similarity.
But when document X9 and Y9 reside in independent collections, X9 and Y9 do
not have equivalent degrees of similarity (Fig. 3.2). The difference is due to the

33

collection dependent feature known as the inverse document frequency (idf). The
idf may differ for a given term between each collection and helps to produce the
differing degree of similarity.

After each of the independent collections are queried, the next step is to produce
one merged result list out of the two result lists. Collection fusion produces the
merged result list. Section 3.3 describes examples of the round robin (RR), round
robin random (RRR), original weights (raw scores), and Co-occurrence collection
fusion approaches.

3.1.3 Challenges in Collection Fusion

If the query is submitted to search collections X and Y then 2 result lists are cre-
ated. How can the two results lists be merged into one global result list maximizing
effectiveness (i.e., maximizing precision and recall)? To answer these questions, a
number of issues should be considered.

Each collection may be heterogeneous or homogeneous in reference to the topic(s)
covered by the documents within the collection. A set of collections containing a
mixture of the two types of collections is also possible. A set of heterogeneous
collections occurs where each collection represents many topics. Each collection in
the set may contain the same broad range of topics as the other collections. A
set of heterogeneous collections (e.g., where each collection contains stories from a
single different newspaper), may have relevant documents to a given query spread
throughout the set of collections. A set of homogeneous collections occurs where
each collection represents a more focused topic. Each collection in the set may
contain a different focused topic when compared to the other collections (e.g., each
collection contains papers from one specific conference such a SIGIR, SIGKDD,
SIGMOD, etc.). In a set of homogeneous collections, the relevant documents may
appear in only one collection. It is unlikely that all or most of the collections contain
documents relevant to a given query.

Random mentions of query terms within a collection still contribute to the result
when using vector model retrieval. These random mentions of query terms may or
may not produce documents with large degrees of similarity depending on the term
frequency (tf) and inverse document frequency (idf) of the query terms.

Each collection may utilize a different ranking model. Collections may tend
to have terms with inverse document frequency ¢df or other collection dependent
parameter values that vary widely from collection to collection. Even if the same
ranking algorithm is used for each collection, the varying content of each collection
may produce incomparable raw (i.e., unchanged from the retrieval model algorithm)
document scores.

Collections may contain highly dynamic content and any collection fusion tech-
nique must be able to adapt.

How to order/rank the documents as they are merged from various collections?
Round robin and raw scores fusion techniques have drawbacks which will be shown
in Section 3.3. Another type of technique attempts to take the raw document score
and modify the score by a value reflecting the collection the document is from.
Section 3.2 explores the answer to this question by introducing various techniques.

34

3.2 Related Work

This section describes literature published related to the area known as collection
fusion or in other words, result merging. This includes collection fusion methods
(Section 3.2.1) and effectiveness measures that evaluate the collection fusion tech-
niques (Section 3.2.2).

3.2.1 Collection Fusion

According to Voorhees et al. [47], there are two types of merging strategies: inte-
grated and isolated.

Integrated merging strategies allow distributed collection search engines access
to some amount of information from other collections or allow transfer of information
between the search engine and merging engine. The goal of the information is to
help maximize the merged result list effectiveness. This requires dissemination of
some amount of information such as [45], involving a communications protocol such
as STARTS [20].

Isolated merging strategies assume that the the merging strategy can not assume
any more information from the collection than a result list [47]. Search engines for
each collection have no communication with or knowledge of others. There is no
communication between the multiple retrieval engines or use of global algorithm
parameters by the search engines. The collection fusion algorithm must merge the
result lists using only information returned by the collection or information that can
be inferred or gathered based on that information.

Craswell et al. [10] and Meng et al. [31] describe four types of merging strategies
that may be either isolated or integrated. These include:

e rank based - assumes no document scores are available,

e score based - where documents are assigned new scores based on the score
assigned by the collection search engine. The new score may be based on a
collection weighting.

e document content based - where the document’s contents are parsed and anal-
ysed during result merging,

e knowledge discovery of search engine properties - e.g., stemming, retrieval
model, etc.

In the paper by Steidinger [42], the author compared six collection fusion models.
The author chose the six models based on the models requiring no more input
(and sometimes less) then the following: ranked results list of documents with each
document assigned a score, the length of each result list, the number of collections
containing each query term (CF) and number of documents within each collection
containing each query term (DF). Some of the models require only the result lists
as inputs.

¢ Round Robin (RR): uses no prerequisite information and merges the result
lists as the name suggests in an interleaving fashion [14].

35

e Round Robin Random (RRR): requires only the length of the result list.
The merging randomly (biased toward longer result lists) chooses a collection
result list to remove the head of the list and merge [48].

e Round Robin Block (RRB): requires only the length of the result lists.
A block length for each result list is determined by dividing each result list
by the smallest list length. Then in a round robin fashion, the block length
number of result list items from each result list are merged into the global
result list.

e Raw Scores (RS): requires similarity scores for each document. In order
for document scores to be comparable between possibly different collection
retrieval algorithms, the scores have to be normalized [11] [39] to be compara-
ble. For example, one retrieval algorithm returns results between 0-1, another
between 0-100. The model performs a merge-sort to produce the global result
list. Powell et al. [36] use the minimum and maximum scores to normalize
the raw score.

e Normalized Inverse Document Frequency (NIDF): requires document
similarity scores and document frequencies (DF). For a given query term,
the model determines the number of documents from each collection that
contain the query term (DF). This collection fusion model uses the inverse
of the document frequency to determine a normalization factor that attempts
to approximate the effect of the collection dependent parameters used in the
document retrieval model (e.g., vector model’s inverse document frequency
parameter idf). The technique modifies the original document scores with the
normalization factor of the collection the document exists within.

e Collection Weight (CW) or Weighted Scores [5]: requires document
similarity scores, document frequencies and collection frequencies. Based on
a technique described in Callan et al. [5], the technique determines the con-
ditional probability of term r; in collection c; and based on this, the weight
(wf) of term j of collection k is computed. The Zw;-“ over all query terms
produces a collection weight that is multiplied against the original document
score to re-weight each document.

Steidinger concluded, in order of decreasing effectiveness, the the six models
ranked: RRR, RRB, RS, CW, RR, NIDF. The document retrieval involved the MG
system [53] and an Oracle system.

In the paper by Callan et al. [5], the collection fusion algorithm first assigns a
weight to each of the collections and then re-weights the scores of the documents
depending on the collection weight. The idea is to give the new document score
the value the document would have received if each of the separate collections were
merged into one collection.

To rank the collections, the authors use the idea of a “collection retrieval infer-
ence network” or CORI net. The algorithm produces probabilities for the CORI
net based on the INQUERY [4] document retrieval model but with small changes
to some parameters to reflect its use as a collection weighting scheme instead of
a document weighting scheme. The scheme contains two constants: default term
frequency and default belief.

36

Callan et al. compared 4 collection fusion methods using precision and recall.
These include interleaving (i.e., RR), raw scores, normalized scores, and weighted
scores. The normalized scores method used statistics to normalize collection de-
pendent parameters across all collections to create comparable document scores
across all collections. Thus the retrieval engines are not autonomous. The weighed
scores approach is the technique that Steidinger based the CW fusion technique [42]
upon. The document retrieval was done using the INQUERY system. Callan et
al. find that the weighted scores fusion technique produces the top results of the
four techniques (slightly better than the raw score approach). This is in contrast
to Steidinger [42] who found that the raw score approach slightly outperformed the
weighted scores approach. This contradiction is possibly due to the default param-
eters not producing the same results since each author ([42] and [5]) uses differing
portions of the TREC/TIPSTER data.

The Larkey et al. paper [28] investigates the effect of topically organized U.S.
Patents data while using INQUERY’s CORI algorithm [5]. The authors investigate
normalizing the raw scores and a global idf [5] approach using topically organized
data. The authors find that the global idf (as opposed to collection idf) better
approaches the precision of the baseline, centralized collection.

The paper by Yager et al. [54] introduces a modification to the previously
described round robin merging method by Voorhees et al. [48] to produce a deter-
ministic result by removing the randomness. The two approaches are as follows.
First, the collection to contribute its highest ranking un-merged document is the
collection with the highest V; value as calculated by V; = an; — (1 — a)g; where
n; is the number of un-merged documents in collection ¢ and g; is the number of
merged documents from collection ¢. Collection V; score ties are resolved by a round
robin collection fusion approach. The « parameter in techniques described in the
paper is set to 0, 1, 0.5, or learned. The value of o describes what the importance
of the number of un-merged documents is to the final ranking of a document. The
second approach is a proportional approach. This approach calculates the V; value
asV; = %:l-l- where N; is the number of documents originally in that collection. The
collection to contribute its highest ranking un-merged document is the collection
with the highest V; value.

Yuwono et al. [56] measure the “goodness” of each collection and based on the
“goodness”, merge the result lists from multiple collections in their D-Wise search
engine. This approach does not require document scores to be assigned by each
collection. The “goodness” measure is based on the Cue-Validity Variance that
indicates in which of the collections the query terms are concentrated. The Cue-
Validity measures the inter-collection dissimilarity or by how much a query term
distinguishes one collection from another using a document frequency statistic from
each collection. The result merging algorithm uses the relative ranks of documents
and assigns a score to each document based the ordinal of the rank and a distance
measure between consecutively ranked documents in a collection result list. The
distance between two consecutively ranked documents is inversely proportional to
the “goodness” of the collection. Documents from “good” collections have a smaller
distance between each consecutively ranked document than a “bad” collection and
thus tend to be ranked higher in the merged ranking. The result merging assigns
a score to each document in a deterministic manner and then combines result list

37

documents by order of their new score.

In the paper by Calve et al. [6], the authors introduce a method using the ranks
of the documents and the idea of logistical regression to merge the documents.
Logistical regression is used to predict the probability of a document being relevant
to a query based on an independent variable, the ordinal of the rank of a document.
The documents are then sorted and merged based on the level of probability. The
higher ranks (i.e., closer to 1) are given more importance than lower ranks based
on a logarithmic scale. Higher ranking documents are considered to have a higher
difference between them than the low ranking documents.

Voorhees’s research group [48], [47], [49], [43], [50] introduces an idea to learn
the distribution of retrieved documents from the results of past queries and uses
this to determine the number of documents to select from each collection for un-
seen queries. Training queries initialize the approaches. Unseen queries are matched
against the training queries. Three approaches include: Modeling Relevant Docu-
ment Distributions (MRDD), Query Clustering (QC) and Neural Networks.

The techniques presented by Voorhees et al. attempt to retrieve documents from
multiple collections and then merge the result lists independent of each collection’s:
contents, retrieval model, document weighing scheme, and similarity measure.

In MRDD, the model predicts how many top ranked documents to select from
each collection using the K nearest training queries. Training queries are represented
as term frequency weighted vectors (queries may contain multiple instances of a
term). The distribution of the judged relevant documents for each query in each
collection is also stored. Given a query, the K-most similar queries (i.e., nearest
neighbors) based on the cosine vector model similarity measure are found. Next, the
average document distribution is found by calculating the average number of relevant
documents returned from each collection for the K-most similar queries. Then,
the number of documents to select from each collection is calculated based on the
document distribution such that the number of relevant documents existing in the
results selected from each collection is maximized. Finally, documents are merged
based on the round robin random approach using a C-faced (C = # collections) die
biased by the number of documents not yet merged.

In QC, training queries are represented as term frequency weighted vectors
(queries may contain multiple instances of a term). The queries are clustered into
topic areas for each collection via the Ward clustering method. The similarity mea-
sure is the number of documents retrieved in common between the two queries. This
assumes that if two queries retrieve a high number of documents in common then
the two queries are about the same topic. A centroid vector of the cluster represents
the topic area of the cluster and is determined by averaging the query vectors of all
queries in the cluster. Each cluster is also assigned a weight reflecting the average
number of documents retrieved by the members of the cluster for each collection.
For each collection, the weight of the cluster with the closest centroid vector to
the given query is used to determine the number of documents to select from that
collection. The documents are then merged using the round robin technique.

The MRDD and QC techniques approach the precision of the single collection
baseline to within about 10% at low numbers of retrieved documents. The drawback
to these 2 approaches is that the training data may not be sufficient to predict the
number of documents that are relevant in each collection for queries about topics

38

un-related to the training data.

In Towell’s et al. paper [43], a neural network approach is compared to the QC
and MRDD approaches above. A significant decrease in performance is found. The
neural network uses the term frequency weighted vectors as input.

Baumgarten [2] introduces a model based on the extension of the probability
ranking principle for non-multiple collection information retrieval. This extension
includes the collection selection and collection fusion steps of multiple collection
information retrieval. The approach is a non-heuristic framework. The idea is to
probabilistically rank the documents from multiple collections. The documents are
ranked in decreasing order of probability of being relevant to the query. The density
of the probability distribution selects the collections. Separated from each collection
search engine, a broker site ranks each collection and merges the result lists from the
selected collections. The broker uses statistics from the query and each collection
to rank the documents.

In [14], [15], [40], Fox et al. used document re-scoring schemes based on the
“goodness” of the collection where the “goodness” is measured by an aggregation
of the result list document scores from each collection and then merging the docu-
ments based on the new document scores. The aggregation represents the result list
documents scores as a single value such that the value measures the “goodness” of
the collection. The result list aggregations include:

e CombMAX - maximum document score in each result list
e CombMIN - minimum document score in each result list

CombSUM - summation of document scores in each result list

CombANZ - average of document scores in each result list

CombMED - median document score in each result list

The CombSUM approach shows the best results.

In the paper by Rasolofo et al. [37], the authors introduce a merging strategy
that is a product of the collection score and the document score. The collection
score is based on the length of the result list from each collection.

Yu et al. [55] introduce a collection fusion approach that uses the collection
assigned document score of the highest ranking un-merged document from each
collection result list to determine the next document to merge. The collection to
contribute the next document to merge is determined by estimating the similar-
ity between the highest ranking document of each collection and the query. The
similarity is based on the document frequency of each query term.

In the Profusion multiple collection retrieval engine [19], a query is submitted
only to collections that have demonstrated the ability to produce good results from
past queries of the same topic. This is accomplished using training data to create a
taxonomy of topics, create a dictionary associating words with topic(s) and calculate
a confidence factor for each search engine given a topic. Given a query, the query
is broken into topic(s) via a dictionary and then the query is passed on to the
best search engines based on the confidence factor or “goodness” with respect to
the query topic(s). The result merging is based on a re-weighting scheme involving

39

multiplying the document score with the confidence factor of the collection and then
merging based on the new document scores.

The paper by Zhu et al. [57], involves re-scoring the retrieved HTML documents
based on their current score and the quality of the document. The quality metrics
experimented with individually or in combination include:

e currency - modification date
e availability - ratio of broken to total number of links

e information-to-noise ratio - ratio of the number of tokens to the size of the
document

e authority - from Yahoo Internet Life reviews
e popularity - number of incoming links
e cohesiveness - internal document similarity

The conclusion of the paper stated that document scoring based on the document
score and the popularity produced the highest precision.

Gravano and Garcia-Molina [22] introduce a method to compute new scores
based on meta-data about the documents returned by the search engines. The merg-
ing algorithm does not use the document scores. The meta-data describes features
or attributes of each document. Using the meta-data, the algorithm attempts to
extract the best matches from the result lists instead of returning the entire contents
from each result list to the user. The scoring algorithms are considered manageable
if the original score and the new score based on the meta-data are reasonably close,
then not all documents need to be presented to the user.

In Inquirus [29], the result merging is based on the content of the documents
contained within the result lists of each collection. The broker in charge of the
result merging downloads each document and analyses them based on the query
terms. The downloading allows the context of the query terms to be discovered,
analysed and displayed. This technique merges the multiple result lists by creating
a new score for the documents. The new document score is based on: the number of
query terms, the number of instances of each query term, and the minimum distance
between the i** and j** query terms. The distance is measured in characters.

In the work by Craswell et al. [10] [9], the authors introduce the idea of using
a sum of the feature distances to calculate a new document score. The features are
terms. The calculation for each is based on: the distance from the beginning of the
document to the term, the distance between current and previous terms and the
document frequency of a term. Also, the authors experiment with the idea of using
reference statistics or a sample of 10% of the documents in a collection instead of
using statistics from the entire collection (e.g., document frequency of a term).

In the paper by Meng et al. [32], the authors develop a set of rules to detect
properties of the underlying collection’s search engine. The knowledge gained is
then used to increase the effectiveness of collection selection, document selection
and result merging steps. The technique [30] works by submitting strategically
developed probe queries to each collection and analysing the returned documents. A
knowledge-base is developed consisting of characteristics of various, documented in

40

the literature, approaches involving: indexing methods (e.g., stemming), document
term weighting functions, query term weighting functions, and similarity functions.
The team developed strategies for determining what if any stemming is used, what
if any stop-words are used, strategically designed queries to attempt to discover the
functions utilized for query and document term weighting and degree of similarity
calculation. With respect to result merging, any knowledge discovered may help
to adjust local or compute new document scores to make document scores more
comparable between collections.

The paper by Viles et al. [45] involves a distributed collection information re-
trieval system where each site knows some portion of all other sites’ information
(i.e., there does not exist a centralized meta-data repository as in [48]). Information
is disseminated to other sites to improve retrieval effectiveness relative to the situa-
tion where no information is shared. The shared information is known as collection
wide information (CWI). The purpose is to create a consistent, collection wide 7df.
The authors introduce two issues:

e How to circulate CWI? (e.g., STARTS [20])

e At what intensity should CWI be circulated? (main issue of this paper). E.g.,
A site knows about its own documents and 25% of the documents at other
sites (i.e., “lazy dissemination”)

With “lazy dissemination”, the authors argue that the insertion of a document
or group of documents may not change the CWI enough to influence overall effec-
tiveness. An increased level of dissemination is required when the documents are
allocated to sites based on content as opposed to random allocation. Almost no dif-
ference in precision vs. recall as dissemination levels change when using a random
document allocation (i.e., heterogeneous collections) is displayed.

3.2.2 Effectiveness Measures

The most common effectiveness measures used to evaluate collection fusion are based
on precision and recall. Precision is the percentage of the retrieved documents judged
relevant to a query. Recall is the percentage of the judged relevant documents that
have been retrieved.

The three main approaches as described in [1] are:

e average precision at the 11 standard levels of recall (i.e., 0%, 10%, ... 100%
levels of recall).

e average precision at document cut-offs (i.e., after n non-relevant or relevant
documents have been seen).

e average recall at document cut-offs.

In the paper by Yuwono et al. [56], the effectiveness is evaluated by comparing
the the ¢f x idf scores of the documents in the merged result list with the scores of
the documents in the single collection run.

Callan et al. [5] assumed that given a query, the collection with the most docu-
ments judged relevant is “ideally” ranked the highest. The measure used the mean

41

square error between the collection rankings of their collection weighting algorithm
and a ranking based on the number of judged relevant documents from each collec-
tion of the TREC data-set (i.e., “ideal” ranking).

Gravano et al. [23] compare their estimated database ranks with the “ideal
ranks” (baseline). The 4 measures are:

e sum similarity measures of a given collection result set members above a given
threshold

e number of documents of a given collection result set above a given threshold

e sum similarity measures of a given collection result set members that appear in
the set of the top K highest similarity measure documents from all collections.

e number of documents of a given collection result set members that appear in
the set of the top K highest similarity measure documents from all collections.

Methods of effectiveness measuring for collection selection are described in {18]
and [17].

3.3 Reference Collection Fusion Techniques

This section describes in more detail the four collection fusion techniques used in the
experiments of Section 3.6 and 3.7. Considering the retrieval algorithm described in
Chapter 2, the characteristics of each collection fusion technique are described using
input parameters/data, complexity, memory required, weaknesses, and strengths.

For a collection fusion technique to be appropriate for use in a PDA, it must
be efficient given the PDA constraints. Techniques that examine the contents of
the documents in the result list (e.g., [29] and [10]) incur a high processing cost.
Techniques that utilize a learning approach using training data (e.g., [48], [47], [49],
[43], [50], and [19]) suffer an increased storage requirement for the learned informa-
tion and a more calculation intensive fusion process using the learned information.
Other techniques require statistics to be gathered or stored (e.g., [6], [56] and [5])
which incur a processing cost and/or a storage cost on the PDA. And still other
techniques require extra data about the documents that is not gathered by PalmIRA
(e.g., HTML links [57], document meta-data other than the inverted index [22] and
non-vector retrieval models [2]). The collection fusion approach must minimize the
storage and processing cost. This leaves some of the simpler score and ranked based
approaches (e.g., [42], [55], [37], [14] and [54]) of which some are experimented with
in following sections.

3.3.1 Round Robin (RR) Fusion

This approach merges one result list document from each collection in one round
and then merges the next un-merged documents in additional rounds ([14]). This
interleaves the documents from each collection.

The algorithm characteristics include:

¢ Input: required input into the algorithm is a ranked result list from each
collection.

42

e Complexity: linear O(N) where N is the sum of the size of result list from each
of the |C| collections. The |C] is the number of collections.

e Memory: constant.

e Weaknesses: assumes relevant documents are spread approximately uniformly
(i.e., set of heterogeneous collections) between the collections and thus the
result lists. Although the technique is simple, each collection is modeled as
contributing equal number and quality of results to the global result list. RR
might boost the document ranking of a document from a irrelevant collection
in a collection set.

e Strength: independent of the retrieval model since no parameters are required.

Example: In the round robin approach, the highest ranking but yet un-merged
document is removed from one collection’s result list (X9) and then from another
collection (Y3) in a round robin fashion until all documents in the result lists are
merged. Figure 3.3 displays the final ranked result list. Notice that this will produce
a low precision if relevant documents are not spread evenly between each collection.

Collection X Collection Y
X1l |X2 (X3 [X4 [X5 1X6 (X7 |X8 |X9 |X10 Y1 (Y2 Y3 {Y4 |Y5 |Y6 [YT |Y8 {Y9 |[YIO
A A |AB A B.C A,BIAB B.D B,C Collection Documents
D C,D|C D
X9 0.97 Y3 100
X4 049 Y4 088 Documents retrieved for
X1 0.24 Y8 077 Query {A. B, C. D}
X3 0.24 Y6 .60
X6 0.24
X9 0.97
¥3 140
X4 0.49
¥4.088 Ranked Result List
X1 024
Y8 077
X3 0.24
Y6 0.60
X6 0.24

Figure 3.3: Collection Fusion - Round Robin

3.3.2 Round Robin Random (RRR) Fusion

The RRR technique proceeds very much like the RR technique in that the fusion
operates by each round choosing a document to merge. The document to merge
is chosen by rolling a |C| faced die biased by the number of un-merged documents
remaining in each result list ([42], [48]). |C]| is the number of collections. A random
number is chosen between 1 and the total number of un-merged documents. If the
documents are numbered between 1 and the number of un-merged documents, the
collection which contains that un-merged document is chosen as the next collection

43

to contribute its highest ranking document to the global result list. E.g., documents
numbered 1 to z are the 1% to z!* un-merged documents existing in collection 1
and documents numbered z + 1 to z + y are the (z + 1) to (z + y)** un-merged
documents existing in collection 2 , and so on. If random number =+ 3 is generated,
the highest ranking un-merged document from collection 2 is the next to be merged.
For the following experiments, the random seed is set to the number of documents
retrieved.
The algorithm characteristics include:

e Input: required input into the algorithm is a result list from each collection
and the size of each result list.

e Complexity: linear O(N) where N is the sum of the size of result list from each
of the |C| collections. The |C] is the number of collections.

e Memory: integer data types to store number of un-merged documents in each
result list.

e Weakness: assumes a random distribution of relevant documents between the
collections and thus the result lists. Relevant documents assumed to have a
high probability of being in a larger result list.

e Strength: independent of the retrieval model since only the length of the result
lists are required.

Example: In the round robin random approach, the probability of a given collec-

tion being chosen to contribute its currently highest ranking, un-merged document
is biased toward the number of un-merged documents in each collection. In the first
round (Fig 3.4), X9 is chosen to be merged since collection X contains the largest
list of un-merged documents and thus has the highest probability of being merged.
In the second round, each collection has the same number of un-merged documents
(e.g., 4) and therefore the equivalent probability. In this round by chance collection
X is chosen and the highest ranking un-merged document in collection X (X4) is
merged. In the third round, document Y3 is merged. There are other orderings pos-
sible do to randomness and the changing probability as the number of un-merged
documents in each result list changes. There is bias toward randomly choosing the
the larger list of un-merged documents and this example illustrates the bias. This
does not always lead to the optimum merging since in this case only documents from
collection Y are considered relevant to the query.

3.3.3 Original Weights (Raw Score) Fusion

This approach merges the collection result lists into one global result list sorted
based on the score of the documents ([42], [11]). The merging works like a merge-
sort based on the score of the document.

The algorithm characteristics include:

e Input: required input into the algorithm is a result list from each collection
where the result list contains a score for each document.

44

Collection X Collection Y

X1 |X2 (X3 |X4 |X5 |X6 | X7 | X8 |X9 |X10 Y (Y2 Y3 |Y4 {YS [Y6 |Y7 |YB Y9 |YIO
A A AB A B, C A BIAB B,D B,C Collection Documents
D CDiC D
X9 0.97 ¥3 146
X4 049 ¥4 08| gx“rym(":“sB"“geg"f for
X1 0.24 Y9 071
X3 024 Y6 0.60
X6 0.24
X9 0.97
X4 0.49
¥3 Lon
Y4 .88 Ranked Result List
X1 024
Y9 477
X3 024
Y& 0.60
X6 0.24

Figure 3.4: Collection Fusion - Round Robin Random

Complexity: to merge result lists already sorted by score: O(N x |C|) where
|C| is the number of collections. This is required to find the largest score
not yet merged into the global result list from the sorted result list of each
collection.

Memory: Constant.

Weakness: requires comparability of document scores between each collection
result list. Some retrieval models do not assign scores to documents, others
assign scores over different ranges (e.g., 0.0 - 1.0 or 0 - 100%) or assign scores
that need to be normalized to be comparable. The retrieval models may
differ for each collection and may use collection dependent parameters causing
different documents to receive differing rankings based on the contents of the
collection (e.g., inverse document frequency).

Strength: simple as in requires a score for each document in the result list
from each collection.

Example: In the original weights (raw score) approach, the documents are

merged using a merge-sort like approach based on the score (i.e., degree of similarity)
of the document (Fig 3.5). As a result, document Y3 is merged first since it has the
highest score, followed by X9, Y4, and so on. A random mention of terms C and D
in collection X cause document X9 to have a high degree of similarity even though
X9 is not in the list of relevant documents. i.e., the fused rankings become skewed
by collection dependent features in the retrieval model and the skew causes X9 to
be ranked higher than the other relevant documents (Y4, Y9, and Y6). Since X9
and Y9 contain the same terms (B, C, and D) then they should be ranked next to

each other in the context of this approach. In this case, X9 is ranked second while
Y9 is ranked fourth.

45

Cotllection X Coliection Y

X1 [X2 |X3 [X4 |X5 X6 |XT7 [X8 {X9 {X10 Y1 |Y2 (Y3 |Y4 |¥Y5 |Y6 |Y7 {Y8 [Y9 [YIO
A A AB A B,C A,BjA B B,D B,.C Collection Documents
D C.DiC D
X9 0.97 ¥3 100 R
X4 049 Yd:(iE& gsce:ym{exfsﬂr’egeg(;d for
X1 D.24 Ye 0.7
X3 0.24 Y6 060
X6 0.24
¥3 100
X9 097
¥4 .88
¥4 077 Ranked Result List
Y6 060
X4 049
X1 024
X3 024
X6 0.24

Figure 3.5: Collection Fusion - Original Weights (Raw scores)

3.3.4 Co-occurrence Collection Fusion - Our Contribution

Co-occurrence fusion attempts to accomplish collection fusion by re-weighting the
score of each result list document based on the “goodness” of the collection and
then merge and sort them by the new scores to create a merged result list. This
“goodness” of the collection may be useful in a collection selection approach but
this is not the focus of this research.

The heuristic that governs the “goodness” of a collection is based on the level of
co-occurrence of query terms within documents d; of collection Cy. A collection that
contains a large number of documents containing a large portion of the query terms
is considered better than a collection that contains a small number of documents
with a small portion of the query terms.

The vector model represents document d; and query ¢ as vectors cl_; and ¢. Each
dimension in the vector represents one of ¢ indexed terms. Each dimension 7 is non-
zero in the document/query vector if term i is contained within the document/query.
The number of terms from query g that co-occur in document d; within collection
Cl, is the number of times that term ¢ represented by dimension ¢ in both a@ and ¢
is non-zero for ¢ € {1...t}.

More formally, given ¢ terms and N document vectors from collection Cy, ¢ is
represented as a matrix [g];x+ and all N documents in collection Cj, are represented
as a matrix [w; j]nx¢. Each row represents the weight w;,j of term k; in document
dj for i = {1...t}. The co-occurrence degree of Cj with respect to query q is:

lg" x b(Ci)l11

where

fl

1if wy) #0
H(Clizy) { i W) 7

0 otherwise

46

For example if C}, is collection Y from Figure 3.6:

0.70 0.40 0.52 0.52
0.70 0.40 0.52 0.00

Ce=1000 040 000 052
0.00 0.40 0.52 0.52
111 1
1110
bC =19 1 0 1
011 1
g=(1 11 1)
1 111 1 4
1 1110 3
t — —
¢xbC)=111%lo 10 1|72
1 01 1 1 3

l¢* x b(Ci)|11 = 12

Equation 3.1 calculates the “goodness” (W(c, 4)) of collection C given query g
and the result list of N documents produced by the query. The value is normalized
by the summation of the degree of co-occurrence over all the collections such that

%1 w, Ce.q) €quals 1 (where W, oy is the weight of collection Cy).
k=1 (kyq) (k;q)

Wicy. = lg* x b(Cr)|11
PO Sl gt x b(Ch)a

If the query contains a single term, then the “goodness” is based on the number
of documents in the result list. If only one collection is being queried, then the weight
of the collection is considered to be 1 and the document scores remain unchanged.

After the collection weight (“goodness”) is calculated for each collection, the
result lists for each collection are re-weighted. The re-weighting of the degree of
similarity of document d; in collection C} to query g is a product of the original
document score (simg; c,) and the collection weight (W(c, o)

(3.1)

SimajackaQ) = $UM(d;,Cp,0) X W(Choa) (3.2)

The new degree of similarity (sz’m&j Ch, q)) of each document reflects the “good-
ness” of the collection that the document was from. The degree of similarity can
also be considered the score or weight of the document. The documents from each
collection result list are then merge-sorted into one merged/fused result list based
on the new degree of similarity.

The algorithm characteristics include:

e Input: required input into the algorithm is a result list from each collection
where the result list contains a score for each document and the level of co-
occurrence of the query terms within each collection.

e Complexity:

47

— to calculate the sum of degree of the query term co-occurrence, the calcu-
lation uses elements as they are accessed by the vector model calculation.
In the algorithm described in Section 2.7, a small addition is made to keep
track of the sum of the level of co-occurrence of query terms as the vector
model is being calculated for each document. This step is a simple sum-
mation that occurs during the calculation of the vector model for each
document, therefore no additional complexity.

— to re-weight documents: O(N).

— to merge results lists sorted by weight: O(N x |C|) where |C| is the
number of collections. This is required to find the largest weight not
yet merged into the global result list from the sorted result lists of each
collection.

e Memory: One double data type for each collection to hold the sum of the
degree of query term co-occurrence.

e Weakness: requires access to some form of information to determine the query
term co-occurrence in each document or a single value of query term co-
occurrence for the entire collection from the retrieval model. However, in
the case of PalmIRA the inverted index for each collection is stored locally on
the PDA. The number of query terms present in a document is determined
during the inverted list access by the vector model calculation. The sum of
query term co-occurrence for each collection is easily transferred as input into
the collection fusion model.

e Strength: more importance is given to collections consisting of documents con-
taining many of the query terms. The paper by Gravano [21] shows that using
phrase information as part of a collection selection index using inference net-
works increases effectiveness of result merging. The difference between these
techniques is that in this technique the term must co-occur in the document
while Gravano suggested consecutive co-occurrence of terms in the format of
a phrase.

Example: In the Co-occurrence fusion approach (Fig. 3.6), the document scores
are re-weighted based on a weight assigned to the collection in which the document
exists. After the query (“A B C D”) operation on a collection, a result list and
sum of the level of co-occurrence is passed on to the collection fusion algorithm. For
collection X, the level of co-occurrence is 8 based on 3 documents containing 1 query
term, 1 document containing 2 query terms and 1 document containing 3 query terms
(3x1+4+1x2+1x3=_8). For collection Y, the level of co-occurrence is 12 based
on 1 documents containing 2 query term, 2 document containing 3 query terms and
1 document containing 4 query terms (1 x 2+2 x 3+ 1 x 4 = 12). So collection X
passes a result list and the value 8 while collection Y passes a result list and the value
12 to the collection fusion algorithm. The Co-occurrence fusion algorithm produces
the denominator or normalization factor as the sum of the numerators (84+12=20).
The collection weight of collection X is 0.4 (iﬁ—l"'—l;o?;“é = %). For collection Y,
the weight is 0.6 or (1x2+2x3+1x4 — 12} The documents from the result lists are
then re-weighted depending on the “goodness” of the collection. The document

48

score of Y9 is originally 0.77 and after re-weighting becomes 0.46 (0.6 x 0.77). The
two result lists are then merged, sorted by the new document score.

This approach gives a higher weight to documents from collection Y and thus
the documents from collection Y are ranked higher than documents from collection
X. For X9, the document is ranked fourth as opposed to the previous approach
that ranked the document second (Figure 3.5). The previous technique ranked X9
higher (second) and since X9 is not considered relevant, Co-occurrence fusion shows
an improvement by ranking the document fourth. Co-occurrence fusion shows an
improvement over previous techniques since it ranks the relevant documents higher
in the result list.

Collection X Collection Y
Xl {X2 {X3 |X4 [X5 |X6 [X7 [X8 |X9 [X10 Y1 (Y2 §Y3 |Y4 [YS Yo [Y?7 (Y8 |Y9 |YIO
A A |AB A B,C AB|AB B,D B,C Collection Documents
D C,D|C D
X9 097 ¥3 100
X4 049 4 088 Documents retrieved for
S £ Query {A, B, C, D}
X1 6.24 Y9 0,77
X3 024 Y6 50
X6 0.24
04 Goodness Factor 0.6 —
X9 039 ¥3 060 Result List Documents
X4 0.20 ¥4 w(‘}&i Degree of Similarity
X1 0.10 ¥4 046 After Re~weigthed
X3 0.10 ¥6 1136
X6 0.10
Y3040
¥4 053
¥9 Gdo
X9 0.39
Y6 0.30 Ranked Result List
X4 020
X1 0.10
X3 0.10
X6 0.10

Figure 3.6: Collection Fusion - Co-occurrence Fusion

3.4 Proposed Effectiveness Measures

Section 3.2.2 describes attempts to measure the effectiveness of merging techniques
in the surveyed literature. The difference in the proposed effectiveness measures is
that they attempt to show how on average the rank of the documents differs between
the baseline reference and the collection fusion method. The effectiveness measures
based on precision show only the tendency of relevant documents to rank above
irrelevant documents. These measures lack the ability to show whether or not a high
ranking document in the reference result list is handicapped by the collection fusion
technique and as a result receives a low rank. The following proposed measures
attempt to provide insight into how the ranks of documents after collection fusion

49

compare to a baseline.

This section proposes 4 new measures that attempt to determine effectiveness
of a collection fusion technique. Given a query, the measures are based on the
difference in document rank between the result list of a collection fusion technique
and that of the reference collection. The difference measures are calculated relative
to the reference collection. The reference collection consists of all of the individual
collections concatenated together to form one collection and then indexed (Section
3.1.2). The assumption is that the result list produced from the reference collection
is the best answer to that query. The following measures attempt to show how much
each collection fusion technique differs from the reference collection.

None of the difference based measures include an ordering penalty. Intra-ordering
does not penalize for the various possible orderings of a subset of consecutively
ranked documents with equal weights in the reference collection result list. Le.,
documents are moved around in a block of documents with the same weight to
minimize the difference of various orderings.

3.4.1 Rank Difference (dR)

The rank difference (dR) measure describes by how much a given collection fusion
result list document differs in rank compared to that document in the reference col-
lection result list. For a given query, this calculates the difference in rank position
between the result list of a collection fusion technique and the result list of the ref-
erence collection of a given document. Equation 3.3 is calculated over N documents
in the result list of the fusion technique and an un-normalized average is produced
for each query ¢. No normalization occurs thus allowing analysis of how far out the
rank ordinals are on average for the retrieved documents. A value of dR(q) = 0.0
indicates that on average the documents are ranked at equivalent ordinals when
comparing the reference and the fusion result lists, i.e., the smaller dR(q), the bet-
ter. The dR(q) is averaged over all @ queries (Equation 3.4) to produce a single
value for the fusion technique. Formally we have:

o iy ~ Flag)

dR(q) = ——2 3.3
W) =3 =" (3.3)
< dR(q)
dR:Z——a—— (3.4)
=]

where given a query g, P(”d, ?) is the position of document d in the result list of the
reference collection r, P(cd’q) is the position of document d in the result list of the
collection fusion technique ¢ and N, is the size of the result list.

Example: In the dR measure, for each document in the collection fusion result
list (Fig. 3.7(a)), calculate the absolute value of the difference in position of the
corresponding document in the reference collection result list. Document Y3 is first
in both result lists yielding a difference of 0. Document Y4 is second compared to
fourth yielding a difference of 2. Continuing to document X9, documents X9 and Y9
have the same score in the reference result list. The measure assumes that the order
of X9 and Y9 could be reversed and therefore the measure yields a difference of 1

50

(instead of the absolute value of -2). This ordering independence holds for the other
three measures presented next as well. Averaging of the resulting 9 values yields
(3/9) 0.33 for the collection given the query. Therefore, on average documents are
0.33 of an ordinal out of position. In the case of Fig 3.7(b), a larger value shows
that the RRR fusion is not as effective.

Co~occurrence RRR
Reference Collection Collection Fusion Reference Collection Collection Fusion
Result List Result List Result List Result List
Y3 1.00 01vy3 0.60 Y3 1.00 X9 0.97
X9 0.91 \/ Y4 0.53 X9 091 44 X4 0.49
1]
Y9 0.91 Y9 0.46 Y9 091 Y3 1.00
Y4 0.82 — X9 0.39 Y4 0.82 \ 0fvs 0.88
Y6 0.71 0 ye 0.36 Y6 0.71 21%1 024
X4 0.60 04 x4 020 X4 0.60 3Y9 0.77
X1 0.42 01 %1 0.10 X1 0.42 X3 0.24
X3 0.42 04 x3 0.10 X3 0.42 3~ Y6 0.60
X6 0.42 04 x6 0.10 X6 0.42 - 04 %6 0.24
dR(q) =0.33 dR(q) = 1.67
(a) (b)

Figure 3.7: Rank Difference Measure (dR) (a) Co-occurrence (b) RRR

3.4.2 Rank Difference of only relevant documents (dRR)

Equation 3.5 is a slight modification of Equation 3.3. Only the relevant documents
contribute to the value for a query and the absolute value of the difference is not used.
The measure expresses how the relevant documents in the collection fusion technique
result list are ranked with respect to the reference result list. This measure captures
how the collection fusion technique treats the relevant documents by tracking the
rank of relevant documents with respect to the baseline. In Equation 3.5 a positive
value indicates that the relevant document (d) is ranked higher (i.e., closer to first)
in the collection fusion result list than that document in the reference collection
result list. A negative value indicates the opposite. Hence the larger (positive) the
dRR(q) value, the better the answer.

Equation 3.5 is averaged over all N rel relevant documents d, in the collection
fusion result list. No normalization occurs thus allowing analysis of how far out the
rank ordinals are on average for the retrieved relevant documents. The dRR(q) is
averaged over all Q) queries (Equation 3.6) to produce a single value for the fusion
technique. That is:

= (Pla,.0) ~ Pla,.0)
dRR(q) = Y i (3.5)
d=1

ol

Q
dRR = @g__@_} (3.6)
g=1

where pfdr g is the position of a relevant document d, in the result list of the reference
collection and pfdr a0 is the position of that relevant document d, in the result list
of the collection fusion technique.

Example: In the dRR measure, only the relevant documents in the collection
fusion result list are considered. In the case of Fig 3.8(a), these documents are
Y3, Y4, and Y9 (as specified earlier). For each of the relevant documents, the
difference in position is calculated. For Y3 and Y9 this is 0. For Y4, this is +2. The
measure retains the sign of the value (i.e., no absolute value). Averaging over the 3
values yields +0.67 for the collection given the query. The positive value shows that
the relevant documents are ranked 0.67 ordinals higher on average in the collection
fusion result list than in the reference result list. In the case of Fig 3.8(b), a negative
value shows that on average relevant documents are ranked lower. Therefore, the
RRR fusion is not as effective.

Co~occurrence RRR
Reference Collection Collection Fusion Reference Collection Collection Fusion
Result List Result List Result List Result List
Y3 1.00 01v3 0.60 Y3 1.00 X9 0.97
X9 091 2-1v4 0.53 X9 091 \ X4 049
0 -
Y9 0.91 Y9 0.46 Y9 091 Y3 1.00
Y4 0.82 / X9 0.39 Y4 0.82 \ 01v4 0.88
Y6 0.71 Y6 0.36 Y6 0.71 3] X1 0.24
X4 0.60 X4 0.20 X4 0.60 Y9 0.77
X1 0.42 X1 0.10 X1 0.42 X3 0.24
X3 0.42 X3 0.10 X3 0.42 Y6 0.60
X6 0.42 X6 0.10 X6 0.42 X6 0.24
dRR(q) =0.67 dRR(q) =-1.67
(a) (b)

Figure 3.8: Rank Difference Measure - Relevant Documents Only (dRR) (a) Co-
occurrence (b) RRR

3.4.3 Weighted Rank Difference (dWR)

Another measure is the weighted rank difference (dW R) measure which shows by
how much a given collection fusion result list document differs in rank compared to
that document in the reference collection result list. This measure also considers
that if the document has a large weight in the reference collection result list then it
is more important for the collection fusion technique to rank the document in the
same position since the absolute value is used. Equation 3.7 is calculated over N

52

documents in the result list of the fusion technique for a given query and an average
is produced, dW R(q) (Equation 3.8). A value of 0.0 indicates that on average the
documents are ranked at equivalent ordinals when comparing the reference and the
fusion result lists. Hence the larger the dW R(q) value, the better the answer. The
dW R(q) is averaged over all queries (Equation 3.9) to produce a single value for the
fusion technique. More formally:

1Plag) — Flag! X Wiag

AW R(d, q) =) 3.7
(9 maX‘I(IP{d,q) (dq}l X WdtI)) (-0

N
dWR = Z de 2 (3.9)

where W[, .y is the degree of similarity of a document d in the reference collection
result list and max, is the maximum value over the result list for query ¢q. The result
is normalized to be between 0.0 and 1.0.

Example: In the dW R measure (Fig. 3.9(a)), the difference in rank and the
weight of that document in the reference result list are considered. The measure
assigns a value of 0 to Y3 since there is no positional difference in rank (e.g., (1 —
1) x 1.00). For Y4, the positional difference is 2 and a weight of 0.82 producing 1.64.
For X9, the positional difference is 1 (no order penalty, absolute value) and a weight
of 0.91 producing 0.91. Each value is then normalized by the maximum value in the
set of documents (1.64 in this case) producing 1.0 for Y4 and 0.55 for X9. After
averaging over the 9 values, 0.17 is the value for the collection given the query. In
the case of Fig 3.9(b), a larger value shows that the reference documents with high
scores tend to be more out of position than in Co-occurrence fusion. Therefore,
RRR fusion is not as effective.

3.4.4 Weighted Rank Difference of only relevant documents
(d(WRR)

Equation 3.10 is a slight modification of Equation 3.7. Only the relevant documents
contribute to the value for a query and the absolute value of the difference is not
used. The measure expresses how the relevant documents are ranked with respect
to the reference result list by giving more weight to documents with a higher score
when they are out of order in a positive or negative direction. In Equation 3.10 a
positive value indicates that the relevant document (d,) is ranked higher (i.e., closer
to first) in the collection fusion result list. A negative value indicates the opposite.
Hence the larger (positive) the dW RR(q) value, the better the answer,

Equation 3.10 is averaged over all N™® of the relevant documents d, in the
collection fusion result list for a given query producing dW RR(q) (Equation 3.11).
The dW R(q) is averaged over all queries (Equation 3.12) to produce a single value
for the fusion technique. More formally:

dW RR(d,,q) = Wlarg) ~ Plarg) X “farg) (3.10)
maqu(|p€d7'aq) - pfd7‘7q)] . w,(dr ’q))

53

Co—occurrence RRR

Reference Collection Collection Fusion Reference Collection Collection Fusion
Result List Result List Result List Result List

0 033
Y3 1.00 Y3 0.60 Y3 1.00 X9 097
X9 0.91 \/L Y4 0.53 X9 0.91 0881 %4 0.49

0
Y9 0.91 Y9 0.46 Y9 0.91 Y3 1.00

/\Q
Y4 0.82 X9 0.39 Y4 0.82 Y4 0.88
Y6 0.71 0! v6 036 Y6 0.71 X1 024
X4 0.60 04x4 020 X4 0.60 Y9 0.77
X1 0.42 0 %1 0.10 X1 042 X3 0.24
X3 0.42 04 %3 0.10 X3 0.42 Y6 0.60
X6 0.42 0 x6 0.10 X6 0.42 X6 0.24
dRW(q) = 0.17 dWR(q) = 0.45
(a) (b)

Figure 3.9: Weighted Rank Difference Measure (dW R) (a) Co-occurrence (b) RRR

N aw R(d,,)

dWRR(q) = el (3.11)
dW RR = Z de() (3.12)

g=1
where wi, 2 is the degree of similarity of a relevant document d,. in the reference

collection result list and max, is the maximum value over the result list for query
g. The result is normalized to be between -1.0 and 1.0.

Example: In the dWRR, only the relevant documents in the collection fusion
result list are considered (e.x. Y3, Y4, and Y9) in Fig. 3.10(a). The value is 0 for
Y3 and Y9 since the positional difference is 0. For Y4, the position difference is
2 (no absolute value) and a weight of 0.82 yielding 1.64. This value is normalized
by the maximum of the absolute value of the value contributed by each document
(0, 1.64, 0). This produces a value of 1 (e.g }gi-—l) from Y4. After averaging
over the 3 values, 0.33 is the value for the collection given the query. This yields
a high positive average value if on average highly ranked relevant documents with
large scores are ranked higher in the merged result list as opposed to the reference
baseline. In this case the merged result list produces a higher ranking for the relevant
documents than the baseline. In the case of Fig 3.10(b), a negative value shows that
the relevant documents with large weights are ranked lower and thus RRR fusion is
not as effective.

54

Co-occurrence RRR

Reference Collection Collection Fusion Reference Collection Collection Fusion
Result List Result List Result List Result List
Y3 1.00 04v3 0.60 Y3 1.00 X9 0.97
X9 091 L1v4 053 X9 091 -0.73 | X4 0.49
0
Y9 0.91 Y9 0.46 Y9 0.91 Y3 1.00
G p—— T~ 0.00
Y4 0.82 X9 0.39 Y4 0.82 Y4 0.88
Y6 0.71 Y6 0.36 Y6 0.71 X1 0.24
X4 0.60 X4 0.20 X4 0.60 ~1.007Y9 0.77
X1 042 X1 0.10 X1 0.42 X3 0.24
X3 042 X3 0.10 X3 042 Y6 0.60
X6 0.42 X6 0.10 X6 0.42 X6 0.24
dWRR(g) = 0.33 dWRR(q) = -0.58
(a) (b)

Figure 3.10: Weighted Rank Difference Measure - Relevant Documents Only
(dW RR) (a) Co-occurrence (b) RRR

3.5 Experimental Setup

Testing the effectiveness of a collection fusion technique requires multiple collections
where each collection contains a large number of documents. Because of the limita-
tions of storage, CPU speed, etc. of a PDA, a simulation of the PalmIRA application
was created to run within a Linux environment. The simulation simulated PalmOS
Data Management by utilizing a flat file for record storage.

Two different data sources were used in the following experiments. The sources
are:

e CACM, CISI, CRAN, and MED data
¢ TREC data

3.6 Experiments and Analysis: CACM, CISI, CRAN,
and MED Data

3.6.1 Data Description and Preprocessing

For the first set of experiments, we used freely available data-sets from Cornell
University [7]. These data-sets were originally used for single collection, stand-
alone information retrieval experiments. Fach data-set (e.g., CACM) contains a
collection of documents, a collection of queries and a set of relevance judgments
for the documents within only that data-set. These relevance judgments are used
to determine the effectiveness of the retrieval method in terms of precision/recall
measures.

55

CACM | CISI | CRAN | MED | TOTAL

queries with
relevance judgments 52 76 225 30 383
documents 3204 | 1460 1400 | 1033 7097

Table 3.1: Data-sets

In a multi-collection retrieval, each data source is considered to be a separate
collection. A given query is submitted to each collection producing a result list for
each collection. The result lists are then merged to produce one single result list. An
assumption is made for the Cornell data that only the documents within the data-
set that the query originated are relevant to the query. This is due to the lack of
relevance judgments for the documents within the other 3 collections of documents.

In order for the CACM, CISI, CRAN, and MED data-sets to become usable for
the multiple collection information retrieval experiments some data cleaning steps
were required. To fix the problem of duplicate document ids occurring within the
concatenated reference collection or merged result lists, document ids for three of
the four collections were changed to include a prefix. For the CACM and CISI data-
sets, not all of the queries have relevance judgments. There are 431 queries when all
four (CACM, CISI, CRAN, MED) data-sets are combined. There are 381 queries
that have relevance judgments. All queries that did not have a relevance judgment
associated with the query were removed. For documents in CACM and CISI, the .X
section (key to citation information) was removed. For queries in CACM and CISI,
the .N section (describing the origin of the query) was removed.

For a baseline, a reference collection is built by concatenating the documents
from the CACM, CISI, CRAN, and MED data-sets. The reference collection is
indexed and queried as a single collection (See Section 3.1.2). The resulting result
lists act as a baseline for the collection fusion strategies.

After data cleaning, Table 3.1 represents the number of documents and num-
ber of queries with relevance judgments. These values are used in the following
experiments.

All tests were completed without using stemming (described in Section 2.5.2)
unless otherwise stated. Stemming reduces terms to their grammatical root. By
doing this, the meaning of the term may be lost. For example, the term “fishing”.
Porter’s stemming algorithm [35] reduces “fishing” to the root “fish”. In essence,
by querying for the verb “fishing”, the results now contain documents for the verb
“fishing” and the noun “fish” which is not ideal. Witten et al. [52] argue that
extraneous material may be retrieved as a result of the stemmed version of the
query such that:

“..., a search for the work by “Cleary and Witten” turns into a quest
for “clear and wit”.”

Conducting an experiment using stemming increased precision by less than 3% at
each of the 11 levels of recall for both the reference collection and Co-occurrence
fusion. Indeed, some web search engines do not use stemming (e.g., Google 2).

2www.google.com

56

For non-stemming experiments, the average number of relevant documents re-
trieved was 14.5, maximum 133, minimum 0, median 9, and standard deviation
18.207.

Table 3.2 tracks the number of times that Co-occurrence fusion assigns the collec-
tion that the query originated from, the highest, second highest, and so on, collection
weight. That is, the collection with the highest weight tends to have its documents
increased in rank relative to the other collections.

For the 383 queries in 4 collections, the results in order from highest to lowest
collection weights are: 317, 56, 9, and 1 respectively (Table 3.2). Le., 83% of the
time, the collection that the query originated from is assigned the highest collection
weight. Table 3.2 describes how often the collection the query originated from was
assigned the largest weight (e.g., queries from the CACM collection caused Co-
occurrence fusion to assign the CACM collection the highest weight 43 out of 52
occasions).

CACM CISI| CRAN MED | TOTAL
Highest | 43 (33%) | 47 (62%) | 208 (92%) | 19 (63%) | 317 (33%)
8 (15%) | 28 (37%) | 14 (6%) | 6 (20%) | 56 (15%)
102%) | 1 (1%) 3(1%) | 4 (13%) 9 (2%)
Lowest | 0 (0%) | 0 (0%) 0 (0%) | 1 (3%) 1 (0%)

Table 3.2: Collection weight of the collection in which query originated

If this is considered before the data cleaning in Section 3.6.1 then for the 431
queries, the results are: 330, 84, 16, and 1 respectively.

3.6.2 Precision and Recall Measure Analysis

Precision is one approach to measure effectiveness (Section 3.2.2). Precision is the
percentage of the retrieved documents judged relevant to a query. Recall is the per-
centage of the judged relevant documents that have been retrieved. Three precision
based techniques are:

e average precision at the 11 standard levels of recall (0%, 10%, ... 100% recall).

e average precision at document cut-offs (i.e., after n non-relevant or relevant
documents have been seen).

e average recall at document cut-offs.

The precision at each level of recall is averaged over all queries (e.g., 383 queries
for the CACM, CISI, CRAN, MED combination data-set). The curves represent
results lists created by queries posed to the reference collection along with result
lists created by collection fusion techniques: Round Robin, Round Robin Random,
Original Weights (Raw Scores) and Co-occurrence collection fusion. The reference
collection is considered to be the baseline ranking. Another possibility which is
used is to use only the queries from one collection (e.g., CACM) and compute the
precision measures. The CACM, CISI, CRAN, MED collections each have relevance

57

Average Precision at 11 Standard Levels of Recall
1 T T T T

Reference —+——
Co-Oceur
e}

0.8 | RRR -

Precision

Recall (%)

Figure 3.11: Average Precision at 11 Standard Levels of Recall - All Queries

Average Precision at Document Cut-offs

0.4 T T T v
Ref ——+—
Co-Qcgur e
0.35 ¢ Orignal Weigths k
ound Robin
Round Robin Random -~
03
0.25
=
2 .
% 02}
o
[
0.15 |
b
0.1 +
0.05 4
0 . L L L
5 10 15 20 25 30

Documents

Figure 3.12: Average Precision at Document Cut-offs - All Queries

Average Recall at Decument Cut-offs

0.5 s T T
CoO Ref —+—
L 0-Occur 4=
0.45 Orignal Weigths
04 F ound Robin
d Round Robin Random --
0.35
0.3
8 o025
o 2
0.2
0.15
0.1
0.06 4
0 . L " .
5 10 15 20 25 30

Documents

Figure 3.13: Average Recall at Document Cut-offs - All Queries

58

judgments for the queries and documents in its own collection (i.e., no relevance
judgments for queries from one collection for another collection’s documents).

A second possible baseline involves comparing the precision curves already men-
tioned to the curve created when querying a single, independent, stand-alone col-
lection (i.e., no collection fusion). E.g., run the set of CACM queries against only
the CACM documents and compute the measures. This is as opposed to querying
the reference collection or each independent collection (e.g., CACM, CISI, CRAN,
MED) and merging the results. This is the baseline precision if we assume that
only documents from the collection that the query originated (e.g., CACM) are rel-
evant to that query (i.e., the only relevance judgments available for CACM, CISI,
CRAN, MED data-sets are for documents internal to only that data-set). Based on
this assumption, querying multiple collections and fusing the results should “ide-
ally” approach the effectiveness of the stand-alone data-set. This assumption may
be false since it is possible for documents from other collections to be relevant but
un-judged. The difference between the stand-alone approach and the reference col-
lection precision is considered noise. There are two possible sources of noise. First,
some documents documents belonging to data-sets (e.g., MED) other than the col-
lection that the query originated (e.g., CACM) are actually relevant to the query.
Second, the reference collection producing concatenation dilutes/concentrates the
inter-document dissimilarity of the collection dependent parameters. The “Only C
Data-set” is the curve of the precision/recall measure for the stand-alone data-set
where collection C' is searched independent of the other collections. l.e., in “Only
C Data-set” there is no collection fusion or collection concatenation as in the ref-
erence collection, just the search of the stand-alone collection C. The motivation
is to see how searching one collection independently of other collections compares
to searching multiple collections concatenated (as in the reference collection) or
multiple collections with fused result lists.

59

Pragision

Precision

Average Precision at 11 Standard Levels of Recall - CACM

0.8 F

T r T -
CAGM queries, Reference Collec!ion —

CACM queries, Co-Occur -

CACM queries, Ongmaj Welghls

CACM quaries, Round Robin

CACM queries, Round Robin Random

CACM collection independent, No Fusion

Recall (%)

(a) CACM Queries

Average Precision at 11 Standard Levels of Recall - CRAN

038 |

"CRAN quenes Reference Collection ——
RAN queries, Co-Occur

CRAN queries, Origlnal Welghts -

CRAN queries, Round Robin

N queries, Round Robin Random

CHAN coliection independent, No Fusion

Recall (%)

(c) CRAN Queries

Precision

Pracision

Average Precision at 11 Standard Levels of Recall - CISI

clIst quenes Relerence Collacluon o
-Qocur

cIst quenes On mal Welghts

CISI queries, Round Robin

Ci$t queries, Round Fobin Random

C181 collestion independent, No Fusion --

Recall (%)

(b) CISI Queries

Average Precision at 11 Standard Levels of Recall - MED

0.8

"MED quenes Reference Coltection —+—
D queries, Co-Ocour -+
MED querles. On%nal Weights -
ound Robin -

MED quenes Hound Robin Random - -
IED cofléction Independent, No Fusion -----

Recall (%)

(d) MED Queries

Figure 3.14: Average Precision at 11 Standard Levels of Recall

60

Precision

Precision

Average Preciston at Document Cut-offs - CACM

T v
Referznce

Co-Ogeur &

Orignal Weigths -

ound Robin -

Aound Robin Random -~-a--
Only CACM Data-set -

01 F B
Q.05 P
0 " " "
5 10 15 20 25 30
Documents
(a) CACM Queries
Average Precision at Docurnent Cut-offs - CRAN
0.45 * T d 7
Reference —+—
04 Co-Oceur a
g Orignal Weigths

0.36

005 |

ound Robin
Round Robin Random
Only CRAN Data-set -

Documents

(c) CRAN Queries

Precision
=3
&

Precision

Average Pracision at Document Cut-offs - CISI

Reference ——
‘ Origa Welgihs

g rignal Weigths

0.25 | T gound Rglbln -

o

o
=
&

5 10 15 20 25 30
Documents

(b} CISI Queries

Average Precision at Document Cut-offs - MED

v —
Reference —+—

ur

Orignal Weigths

ound Robin

Round Robin Random

Only MED Data-set -

e

0.1 o

5 10 15 20 25 30
Documents

(d) MED Queries

Figure 3.15: Average Precision at Document Cut-offs

61

Average Recall at Document Cut-offs - CACM
0.5

"Reference ——
UE e

0.45

04

e

30

035
K|
§ o0z
4
0.15
0.05 4
0 L L L .
5 10 15 20 25
Daocuments
(a) CACM Queries
Average Recall at Document Cut-offs - CRAN
08 T T T T
Reference ——
Co-Occur -4
Orignal Welgths -
05 r ound Robin -

Round Robin Random --e-—
Only CRAN Data-se]

Recall

R S

0 . . L 1

5 10 15 20 25
Documents

(c) CRAN Queries

30

Recall

0.25

0.6

Average Recall at Document Cut-offs - CISI

Relerence

0-Occur

Orignal Weigths

ound Robin

Round Robin Random
Only C1SI Data-set -

15
Documents

20 25 30

(b) CISI Queries

Average Recall at Document Cut-offs - MED

0.5

04

03

0.2

0.1

Round Robin Random
Only MED Data-set -

'Reference —_—

Co-Oceur
Orignal Weigths
lound Robin

10 15

20
Documents

25 30

(d) MED Queries

Figure 3.16: Average Recall at Document Cut-offs

62

In all precision/recall based effectiveness measures, the Co-occurrence fusion ap-
proach produces better results than the other collection fusion approaches. In the
precision at 11 standard levels of recall graph (Figure 3.11), there is an approxi-
mately 7% difference between the baseline reference collection and Co-occurrence
fusion at low levels of recall and the difference narrows as the level of recall increases.
The baseline is better than Co-occurrence fusion. To determine if this trend would
continue when using queries from only one data-set (e.g., CACM), graphs were cre-
ated using queries from each data-set. Using queries from the CISI, CRAN, and
MED data-sets, these query sets follow this trend (CISI Figures 3.14(b), 3.15(b),
3.16(b), CRAN Figures 3.14(c), 3.15(c), 3.16(c), MED Figures 3.14(d), 3.15(d),
3.16(d)). On the other hand, the queries from CACM produce Co-occurrence re-
sults that differ from the trend such that the results are close to or slightly higher
than the reference collection (Figures 3.14(a), 3.15(a), 3.16(a)).

With respect to second baseline, the curve for the CISI, CRAN, and MED queries
follow very closely the curve of the reference collection {(CISI Figures 3.14(b), 3.15(b),
3.16(b), CRAN Figures 3.14(c), 3.15(c), 3.16(c), MED Figures 3.14(d), 3.15(d),
3.16(d)). For the CACM queries, this changes such that reference collection is rela-
tively noticeably lower than the single collection, CACM data-set without collection
fusion results (Figures 3.14(a), 3.15(a), 3.16(a)). This suggests that the effectiveness
of CACM queries are reduced when run against the concatenated reference collec-
tion. The concatenation that created the reference collection must change the idf
value of some/all terms such that the terms used to indicate the relevant documents
are assigned a lower ¢df and thus a lower degree of similarity. The result is that the
precision and recall for the CACM queries is adversely affected when the collections
are concatenated together into the reference collection.

Based on the above graphs for this data, Co-occurrence fusion is shown to pro-
duce the best precision/recall results when compared to the other fusion techniques.
Co-occurrence also demonstrates that it can produce better results than the refer-
ence collection under certain circumstances, in this case when the queries from the
CACM collection are used.

3.6.3 Rank Difference Measures Analysis

The rank difference measures produce a value for each query based on how the result
list of a collection fusion technique differs from that of the reference collection. The
measure is calculated after considering n documents of the fusion technique’s result
list. The effect is to visualize how out of position in terms of rank the documents
are when compared to the reference collection. The results are produced after a set
of different numbers of documents have been seen in the result list (e.g., 10, 20, 30,
etc.).

A curve is created for each collection fusion technique by averaging the value
over all queries (e.g., 383 for the CACM, CISI, CRAN, MED combination data-set).

63

Average dR Average dRR

;) C\(;b()ctr:'ur
L riginal Weights
180 %iound Robin
| Round Robin Random

Difference Value
8
a
Difference Value

A0 T e * _.~‘ 12 Co-Ocour s
e Original Weights
20 |amt 1 141 "Hound Fbin e
e 4o L PowgRobRndom —x-
0] 10 20 a0 40 50 60 70 80 0 10 20 30 40 50 80 70 80
Documents Documents
(a) Average Rank Difference (dR) at Docu- (b) Average Rank Difference - Rel (dRR) at
ment Cut-offs (smaller is better) Document Cut-offs (larger is better)
Average dWR Average dWRR
0.7 - T T T T ¥ 0.1 T T T - - T
? Co-Ocour - N 5 Co-Oocur
i Original Weights Original Waights -
H ound Robin - & - lound Robin -
06} Round Robin Random or Round Robin Random -
P i g 01f
] £ ;
2 .
8 § 02t . .
g g |
a S o3f : e »
a
04t w
S .
01 N 08 X . .
0 10 20 30 40 50 80 70 80 0 10 20 30 40 50 80 70 80
Documents Documents

(¢) Average Weighted Rank Difference {d) Average Weighted Rank Difference - Rel
(dWR) at Document Cut-offs (smaller is (dWRR) at Document Cut-offs (larger is
better) better)

Figure 3.17: Rank Difference Measures

The Co-occurrence fusion techniques tends to produces result lists with docu-
ments ranked such that the difference in rank ordinal is closer to 0 than the differ-
ence rank of documents of the other fusion techniques. When considering relevant
and non-relevant documents in the dR measure, it produces results where the Co-
occurrence fusion result list on average more closely matches the reference results at
all levels after n documents are considered in the measure (Figure 3.17(a)). If only
the relevant documents are averaged over the levels of n documents as in the dRR
measure (Figure 3.17(b)), on average the relevant documents in the result list of the
fusion technique are ranked higher than in the reference collection as indicated by
the positive value.

The dW R and dW RR measures show on average that Co-occurrence fusion
tends to assign ranking ordinals to documents with higher weights closer to ordinals
of the reference collection than the other collection fusion methods (Figures 3.17(c),
3.17(d)). If ounly the relevant documents are considered, dW RR, Co-occurrence fu-
sion on average ranks the relevant documents with a high weight close to but not
quite as high as in the reference collection as shown by the slight negative value

64

in Figure 3.17(d). The queries have differing numbers of relevant documents where
the average is 14.5. This suggests that even though relevant documents on aver-
aged ranked 0 to 4 ordinals higher (Figure 3.17(b)) than in the reference collection,
relevant documents with a high weight are not necessarily ranked higher (Figure
3.17(d)). Figure 3.11 shows that the precision curves of the reference collection
start out being higher and then converge with the Co-occurrence fusion curve as
the percentage of recall increases. The converging precision suggests that the rel-
evant documents with a lower weight and thus appearing lower in the result list
and being seen later are being ranked higher by Co-occurrence fusion than in the
reference collection. If the considered relevant documents in the dW RR measure
after 8 result list documents are considered (middle ranked documents), the relevant
documents are on average lower ranked than then the reference collection. The doc-
uments with the middle ranking and weights appear to be reducing the effectiveness
of Co-occurrence fusion.

In order to determine if the queries from one data-set (e.g., CACM) are ad-
versely or positively affecting the results of the concatenated set of queries from
all data-sets, a second set of graphs use only the queries from one collection (e.g.,
CACM). The motivation is to determine if the queries from one data-set tend to
yield results dissimilar to the result of queries for each of the other data-sets or the
the concatenated set of queries from all data-sets.

For the CISI, CRAN, and MED queries separately, they tend to follow the trend
of concatenated query case for all four measures (similar to the precision/recall re-
sults above) (Figures 3.17(b), 3.17(d), 3.17(a), and 3.17(c)). For the CACM queries,
the results show that the relevant documents tend to be ranked higher than in the
reference collection (Figure 3.18, 3.19). This supports the higher precision curve for
the CACM queries in the previous (precision/recall measures) section.

Based on the above graphs for this data, Co-occurrence fusion is shown to pro-
duce the best rank measure results when compared to the other fusion techniques.
Co-occurrence also demonstrates that it can produce better results than the refer-
ence collection under certain circumstances, in this case when the queries from the
CACM collection are used.

65

Average dR - Rel - CACM

15 T T v T T T
Co-Occ

QOriginal Weights

Round Robin

Rouynd-Robin Random]

Diiference Vaiue

80

Documents

Figure 3.18: Average Rank Difference - Rel (dRR) at Document Cut-offs

Average dWR - Rel - CACM

0.3 T T v T T T T
Co-Occur -

Original Weights -
ound Robin

Round Robin Random

vl

Difference Value

Documents

Figure 3.19: Average Weighted Rank Difference - Rel (dW RR) at Document Cut-
offs

66

3.7 Experiments and Analysis: TREC/TIPSTER Data-
set

3.7.1 Data Description and Preprocessing

The TREC/TIPSTER data is a collection designed for use in information retrieval
experiments. The data originated from the Text REtrieval Conferences held an-
nually since 1992 [46]. The main goal of the conference is to foster research in
information retrieval by providing data to act as universal test-bed/benchmark and
fostering communication.

Data-sets designed for information retrieval research usually consist of a collec-
tion of documents, a set of queries and a a set of relevance judgments describing
which documents are relevant to each query. The TREC data used in the following
experiments consists of 11 collections of documents including:

e Text Research Collection Volume 1

— Wall Street Journal (WSJ) (1987, 1988, 1989)

— Associated Press (AP) (1989)

— Department of Energy abstracts (DOE)

— Computer Select disks copyrighted by Ziff-Davis (ZF).

e Text Research Collection Volume 2

— Wall Street Journal (WSJ) (1990, 1991, 1992)
— Associated Press (AP) (1988)
— Computer Select disks copyrighted by Ziff-Davis (ZF)

These collections are cleaned such that only the SGML <TEXT> segments are
used as documents and all SGML tags are removed.

The TREC data also consists of a set of topics or information requests that can
be used as queries and a sub-set of the documents that have been judged by humans
to be relevant or not relevant to a topic. The queries used in the following sections
are the SGML <TEXT> portions of topics 51-200. These topics have relevance
judgments for each of the 11 collections. The difference between TREC data and
the data used in Section 3.6 is that the TREC topics have relevance judgments for
all of the collections of documents described above.

For a baseline, a reference collection is built by concatenating the documents
from the 11 collections. The reference collection is indexed and queried as a single
collection (See Section 3.1.2). The resulting result lists act as a baseline for the
collection fusion strategies.

There are approximately 700,000 documents and 1 million unique terms. Each
query returns the number of documents that have a degree of similarity greater than
0 up to a maximum of 32767 documents.

3.7.2 Precision and Recall Measures Graph Analysis

For the TREC collections, the Original Weights fusion approach produces the results
closest to that of the reference collection (Figure 3.20). Eight of the eleven collections

67

are newspaper articles (Wall Street Journal and Associated Press) with overlapping
time periods. It is highly likely that the contents overlap in that the content is
reflective of many topics (i.e., heterogeneous). Therefore, the collection dependent
parameter (idf) value would be comparable between these collections and thus does
not affect the ranking of the documents as a non-comparable (idf) would. For topics
51-200, on average the distribution of relevant documents is mainly over the WSJ
and AP collections. The Original Weights approach is less effective than using the
previous data (Section 3.6).

One other possible reason for the difference between the two sets of data is
that the length of the result list does not correspond to the number of relevant
documents, therefore skewing Co-occurrence. E.g., the result list contains a very
large number documents with few query terms. This might also be shown by the
RRR approach when considering precision since it is also based on the length of
the result list. This may be fixed by normalizing Co-occurrence by the result list
length to reduce the skew caused by large differences in result list length. But some
collection fusion techniques do take into consideration the length of the result as
part of the “goodness” of the collection [37] so this is left to future work.

For RR fusion at less than 5% recall, it approaches the precision of the Original
Weights fusion. This seems the show that the relevant documents are distributed
throughout most of 11 collections (unlike in Section 3.6) and highly ranked in those
collections.

The Average Precision at Document cut-offs (Figure 3.23(b)) show that when
considering 5-30 retrieved documents, the Original Weights approach is closest to the
baseline and Co-occurrence closely follows. When considering the first 5 documents
of the result list, RR approached the precision of Co-occurrence fusion leading to
the belief that on average 2 out of the first 5 documents are relevant from the top
ranked document of each of the first 5 collections (AP88, AP89, DOE, WSJ87, and
WSJ89) is relevant.

68

Average Precision at 11 Standard Levels of Recall

0.6 v - T T v v
Reference —+—
Co-Oceur
Original Weights
0.5 &1 ound Robin
. Round Robin Random

Precision

0 5 10 15 20 25 30 35 40
Recall (%)

Figure 3.20: Average Precision at 11 Standard Levels of Recall - All TREC Queries

Average Precision at Document Gut-offs
0.35 T T T

Ref

Co-Occur -+
Orignal Weigths
ound Robin

03 |

0.25

Precision

0.15 4

0.05 E

0 L . L .
5 10 15 20 25 30

Documents

Figure 3.21: Average Precision at Document Cut-offs - All TREC Queries

Average Recall at Document Cut-offs
0.06

Ref —— j j

Orignal Welqi —n
rignal Weigths -
0.056 ound Robin
Round Robin Random -~ -a-—

0.04

0.03

Recalt

0.02

0.01

Documents

Figure 3.22: Average Recall at Document Cut-offs - All TREC Queries

69

3.7.3 Rank Difference Measures Graph Analysis

In Figure 3.23(a), Co-occurrence shows the least amount of positional difference of
the documents (relevant or non-relevant) in a negative or positive direction. Figure
3.23(b) shows with the positive value of the curve that the relevant documents
retrieved by Co-occurrence fusion are ranked higher than in the reference collection.
Therefore, at least part of the value of the Co-occurrence curve produced by dR
(Figure 3.23(a)) is due to these higher ranked relevant documents. When the weight
of the document in the reference collection is considered, dW R (Figure 3.23(c))
shows that the Co-occurrence fusion tends to rank documents (relevant or non-
relevant) on average more out of position in a positive or negative direction than
the other approaches when compared to the reference collection. Part of this value is
due to the relevant documents. dW RR (Figure 3.23(d)) indicates that the relevant
documents in the Co-occurrence result list tend to be ranked higher than in the
reference result list.

On average, Co-occurrence fusion (and other methods) tend to rank the relevant
documents higher than the reference collection as indicated by the positive values
of Figure 3.23(b) and 3.23(d). This is not reflected in the precision/recall graphs for
the following two reasons. First, using the average (e.g., Equation 3.11) can some-
times produce misleading statistics so the median values must aiso be considered
since a few extreme values may influence the average. The median calculated over
all queries is less than the average calculated over all queries for each rank mea-
sure. This indicates that some (i.e., less than half) of the relevant documents are
being ranked much higher in Co-occurrence fusion. The medians are less than the
averages but they follow the same trends and this does not fully explain the appar-
ent contradiction between the precision/recall graphs and rank difference measure
graphs. Secondly, only the relevant documents in the collection fusion technique
are considered and no penalty is given if more relevant documents exist in the first
n documents of the reference collection than in the first n documents of the fu-
sion result list. Since precision is the ratio of number of relevant documents to the
number of documents retrieved, the fact that some relevant documents are ranked
much higher does not necessarily mean that most/all relevant documents are ranked
higher thus producing a higher precision.

The low dRR and dW RR scores for Original Weights fusion shows that the
relevant documents within the first n result list documents are ranked very close to
the ranks of the of the reference collection. This may help to show that on average
the collection dependent parameter for the query terms are close to those of the
reference collection.

70

Average dR
400 o " > . . —
Ori%:nal Weights o
350 [ound fobin
Round Robin Random - -
300 -
@
;: 250 i
8 200 [
§
’g 150 F
00F]
.
50 |]
o " . "
4] 5 10 15 20 25 30 35 40 45 50
Documents

(a) Average Rank Difference (dR) at Docu-
ment Cut-offs (smaller is better)

Average dWR
0.5 T T T T T + T
ongin e
[inal Weights - 4
048 Round Fogin -
04} Round Robln Random |
0.35 b
2
g 0.3
2 o025
e
£ 02
a
0.15
041
0.05 4
0 N . . N . . . " .
0 5 10 15 20 25 30 35 40 45 50
Documents

{¢) Average Weighted Rank Difference
(d{WR) at Document Cut-offs (smaller is
better) :

Average dRR

' 'CWOGT;:'ur -
b Original Weights

o ound Robin

| Round Robin Random ~-—&--—

Difference Value

25
Documents

(b) Average Rank Difference - Rel (dRR)
Document Cut-offs (larger is better)

Average dWRR
05 T T T T T T T T
Original Walghts
L riginal Weigl
045 ound Robin
0.4 Round Robin Random
0.356 4
E]
g o3f]
8 o025}
2
2 oz}
a
0.15
o1
0.05 4
° " s \ . N .
[5 10 15 20 25 30 35 40 48 50
Documents

(d) Average Weighted Rank Difference - Rel
(dWRR) at Document Cut-offs (larger is
better)

Figure 3.23: Rank Difference Measures - TREC

71

Chapter 4

Conclusions and Future Work

4.1 Conclusions

The first goal of the thesis was to engineer a proven information retrieval approach
to efficiently and effectively execute in the constrained environment of a PDA. To-
wards this goal, it was found that an efficient information retrieval system (known
as PalmIRA) could be built. This involved exploiting the symbiotic relationship
between the PDA and the PC at synchronization time to use the PC to build the
index. An optimized for speed sparse matrix was used by the PC to handle the
information required to build the inverted index. The inverted index was formatted
such that a small amount of storage space on the PDA is required and such that
the information within the inverted index could be accessed with a small CPU and
dynamic memory cost. The result is a information retrieval system executing on a
PDA that executes queries quickly enough that it does not stretch the patience of
a user.

Another goal was to efliciently fuse the result lists of multiple collections taking
advantage of the PDA information retrieval engine and existing within the PDA
constraints. Towards this goal, Co-occurrence collection fusion is proposed. Co-
occurrence fusion assigns a “goodness” to each collection based on the level of co-
existence of query terms in the result list documents. Co-occurrence fusion tends to
rank the relevant documents higher on average then the RR and RRR approaches
for both data sources experimented with. Co-occurrence fusion shows the ability
to out-perform the reference collection in at least one circumstance. Co-occurrence
fusion performs noticeably better when the set contains mainly homogeneous collec-
- tiomns. Taking into consideration the previously mentioned drawbacks of the Original
Weights (Raw Score) approach and that Co-occurrence fusion is more effective in
the first data source but less effective in the TREC experiment, it can be concluded
that Co-occurrence fusion is a better alternative than the other three fusion strate-
gies. Co-occurrence fusion obtains better results without noticeably increasing the
execution time of a query on a PDA. This is due to the simplicity of the fusion
algorithm and the ability to combine parts of the algorithm with the search engine
itself yielding a negligible (e.g., less than 1 sec.) increase in query time.

The last goal was to propose new techniques to more closely analyse how a col-
lection fusion technique merges the documents to create a result list by comparing
it to a reference collection. The measures (dR, dRR, dW R, dW RR) show by how

72

much on average documents tend to be out of position relative to a reference collec-
tion. Fusion strategies that have a better value in these measures, considering the
average and the median, tend to produce better results. The four proposed measures
used along with the Precision and Recall measures help to provide insight into the
effectiveness, strengths and weaknesses of a given collection fusion technique.

PalmIRA has been implemented with the capability to search PalmOS textual
databases including: MemoPad, Mail, ToDo, Address, and DateBook. The results
from each database can then be fused into one global result list using Co-occurrence
fusion. PalmIRA is currently freely available on the internet .

4.2 Future Work

The opportunities for future work exist in: decreasing the storage cost of the in-
verted index, decreasing the synchronization data transfer cost, decreasing the re-
trieval time, increasing the effectiveness of Co-occurrence fusion and evaluating Co-
occurrence fusion outside the context of PalmIRA.

Using a compressed inverted index may help decrease the storage cost and trans-
fer cost of the inverted index with a trade-off of some time. PalmOS databases store
the Unique ID of the last record added. When a new record is added, the previously
stored unique ID is incremented and assigned to the new record. This method of
assigning unique ids to the Palm records offers opportunities to compress the term
posting lists composed of unique record ID and weight items. The posting lists
for each term are sorted by record id. There exists the possibility to encode the
difference of the unique record ids portion of the posting list. A number of index
compression methods are introduced in [563]. The PDA domain offers a number of
trade-offs that differ from the traditional PC based compressed inverted index.

One of the major bottlenecks of the synchronization process is the time required
to transmit data via the PC - PDA link (e.g., USB). During each synchronization, the
inverted index is rebuilt from scratch on the PC by downloading all the documents
from the PDA and then transmitting the inverted index to the PDA. Research in
the area of incremental updates of inverted files ([3]) may offer the opportunity to
update the index on the PDA without completely rebuilding it.

An attempt to increase the efficiency of the retrieval algorithm may be to alter
the number of term posting lists that reside in each irWeight record. The current
inverted index implementation (Section 2.6) packs as may posting lists as possible
into each PalmOS record with a maximum size of 64KB. The number of records
increases as the number of posting lists stored in each PalmOS record decreases. A
binary search is used to find the correct record and a sequential search is used to
find the term posting list in that record. By decreasing the number of posting lists
in each record, a savings in the sequential search may occur.

The effectiveness of Co-occurrence fusion may be able to be improved. In the
work by Craswell et al. [10] [9], the authors describe a collection fusion technique
that gives more weight to documents that contain interesting query terms closer
to the beginning of the document. In Section 2.5.3, by following the linked list of
nodes, it is possible to determine the first n non-stop-words in a document. It is
possible to give the first n non-stop-words a higher weight than query terms that

'http://database.cs.ualberta.ca/PalmIRA /

73

appear closer to the end of the document. Would this help to increase effectiveness
of the single and/or multiple collection retrieval?

Co-occurrence fusion, the collection fusion approach we propose (described in
Section 3.3.4) could be used in a meta-search environment if at least one of the
following holds true:

1. if the co-occurrence information is transmitted by each search engine
2. if the entire document is parsed to extract co-occurrence information

3. if the context of the query terms is transmitted by the search engines, then
the co-occurrence information can be extracted from it

Finally, the Co-occurrence collection fusion idea may be able to be altered to
work in a multiple collection content-based image retrieval environment. Using the
idea that importance is determined by the number of features that co-occur, Co-
occurrence fusion might be able to efficiently but still effectively merge the results
from the multiple collections.

74

Bibliography

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

[2] C. Baumgarten. A probabilistic solution to the selection and fusion problem in
distributed information retrieval. In Proceedings of the 22nd Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 246-253, 1999.

[3] E. W. Brown, J. P. Callan, and W. B. Croft. Fast incremental indexing for full-
text information retrieval. In Proceedings of the 20th International Conference
on Very Large Databases (VLDB), pages 192-202, Santiago, Chille, September
1994.

[4] J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY retrieval system.
In Proceedings of DEXA-92, 3rd International Conference on Database and
Eazpert Systems Applications, pages 78-83, 1992.

[5] J. P. Callan, Z. Lu, and W. B. Croft. Searching Distributed Collections with
Inference Networks . In Proceedings of the 18th Annual International ACM SI-

GIR Conference on Research and Development in Information Retrieval, pages
21-28, Seattle, Washington, 1995. ACM Press.

[6] A. Le Calve and J. Savoy. Database merging strategy based on logistic regres-
sion. Information Processing and Management, 36(3):341-359, 2000.

[7] Data Sets at ftp.cs.cornell.edu/pub/smart/.
[8] Stop-word list available at ftp.cs.cornell.edu/pub/smart/english.stop.

[9] N. Craswell. Methods for distributed information retrieval. PhD thesis, Aus-
tralian National University, 2000.

[10] N. Craswell, D. Hawking, and P. B. Thistlewaite. Merging results from isolated

search engines. In 10th Australasian Database Conference ACD1999, pages
189-200, 1999.

[11] D. Dreilinger and A. E. Howe. Experiences with selecting search engines using
metasearch. ACM Transactions on Information Systems, 15(3):195-222, 1997.

[12] M. J. Folk and B. I. Zoellick. File Structures. Addison-Wesley, 2" edition,
1992,

[13] L. R. Foster. PalmOS Programming Bible. IDG Books Worldwide Inc., 2000.

[14] E. A. Fox, M. Koushik, J. A. Shaw, R. Modin, and D. Rao. Combinating
evidence from multiple searches. In Proceedings of the First Text REtrieval
Conference (TREC-1), pages 319-328, 1992.

[15] E. A. Fox and J. A. Shaw. Combination of multiple searches. In Proceedings
of the Second Text REtrieval Conference (TREC-2), pages 243-252, 1993.

75

[16]
[17]

[18]

[22]

[23]

[24]
[25]
[26]
[27]

[28]

[29]

[30]

W. B. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and
Algorithms. Prentice-Hall, 1992.

J. C. French and A. L. Powell. Metrics for evaluating database selection tech-
niques. Technical Report CS-99-19, University of Virginia, 1999.

J. C. French, A. L. Powell, J. P. Callan, C. L. Viles, T. Emmitt, K. J. Prey,
and Y. Mou. Comparing the performance of database selection algorithms.
In Proceedings of the 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 238-245, 1999,

S. Gauch, G. Wang, and M. Gomez. ProFusion: Intelligent fusion from multiple,
distributed search engines. J.UCS: Journal of Universal Computer Science,
2(9):637-649, 1996.

L. Gravano, C. K. Chang, H. Garcia-Molina, and A. Paepcke. Starts: Stanford
proposal for internet meta-searching. In Proceedings of the 1997 ACM SIGMOD
Conference, pages 207-218, 1997.

L. Gravano and H. Garcia-Molina. Generalizing GIOSS to vector-space
databases and broker hierarchies. In Proceedings of the 21st International Con-
ference on Very Large Databases VLDB, pages 78-89, 1995.

L. Gravano and H. Garcia-Molina. Merging ranks from heterogeneous internet
sources. In Proceedings of the 23th International Conference on Very Large
Databases (VLDB), pages 196-205, 1997.

L. Gravano, H. Garcia-Molina, and A. Tomasic. The effectiveness of gloss for
the text database discovery problem. In Proceedings of the 1994 ACM SIGMOD
Conference, pages 126-137, 1994.

J. E. Hopcraft, R. Motwani, and H. D. Ullman. Introduction to Automaita
Theory, Languages, and Computation. Addison-Wesley, 2"¢ edition, 2001.

E. Horowitz and S Sahni. Fundamentals of Data Structures in Pascal. Computer
Science Press, 4™ edition, 1994.

Palm Inc. Files and databases, 2000.
http://oasis.palm.com/dev/kb/manuals/1733.cfm.

Palm Inc. Palm OS memory architecture, 2000. available at
http://oasis.palm.com/dev/kb/manuals/1145.cfm.

L. S. Larkey, M. Connell, and J. P. Callan. Collection selection and results

merging with topically organized U.S. patents and TREC data. In Proceeding
of the Ninth International Conference on Information and Knowledge Manage-

ment CIKM’00, pages 282-289, 2000.

S. Lawrence and C. L. Giles. Inquirus, the NECI meta search engine. In Seventh
International World Wide Web Conference, pages 95-105, Brisbane, Australia,
1998. Elsevier Science.

K. Liu, W. Meng, C. T. Yu, and N. Rishe. Discovery of similarity computa-
tions of search engines. In Proceeding of the Ninth International Conference on
Information and Knowledge Management CIKM’00, pages 290-297, 2000.

W. Meng, C. Yu, and K. Liu. Building efficient and effective metasearch engines.
ACM Computing Surveys, (To Appear).

W. Meng, C. T. Yu, and King-Lup Liu. Detection of heterogeneities in a
multiple text database environment. In Fourth International Conference on
Cooperative Information System COOPIS’99, pages 22-33, 1999.

76

[33]
34]

[35]

[36]

[37]

(38]

[39]
[40]

[41]

[44]

[45]

[46]

[47]

[48]

General Microsystems. Intelligentfind. www.intelligentfind.com.

J. Noble and C. Weir. Small Memory Software: Patterns for Systems with
Limited Memory. Addison Wesley, 2001.

Porter Stemming Algorithm available at bttp://www.tartarus.org/ mar-
tin/PorterStemmer/.

A. L. Powell, J. C. French, J. P. Callan, M. Connell, and C. L. Viles. The
impact of database selection on distributed searching. In Proceedings of the 23nd
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 232-239, 2000.

Y. Rasolofo, F. Abbici, and J. Savoy. Approaches to collection selection and
results merging for distributed information retrieval. In Proceeding of the
Tenth International Conference on Information and Knowledge Management
CIKM’01, pages 191-198, 2001.

J. Savoy, A. Le Calve, and D. Vrajitoru. Report on the TREC-5 experiment:
Data fusion and collection fusion. In Proceedings of the Fifth Text REtrieval
Conference (TREC-5), pages 493-502, 1996.

E. Selberg and O. Etzioni. The MetaCrawler architecture for resource aggre-
gation on the Web. IEEE Ezpert, 12(1):11-14, 1997.

J. A. Shaw and E. A. Fox. Combination of multiple searches. In Proceedings
of the Third Text REtrieval Conference (TREC-3), pages 105-108, 1994.

A. Soffer, D. Cohen, and M. Herscovice. Pirate search.
http://www.haifa.il.ibm.com/projects/software/iro/PirateSearch/index.html.

A. Steidinger. Comparison of different collection fusion models in distributed
information retrieval. In DELOS Workshop on Information Seeking, Searching
and Querying in Digital Libraries, Zurich, Switzerland, December 2000.

G. Towell, E. M. Voorhees, N. Kumar Gupta, and B. Johnson-Laird. Learning
collection FUsion strategies for information retrieval. In Proceedings of the
Twelfth International Conference on Machine Learning ICML-1995, pages 540-
548, 1995.

Y. Tzitzikas. “Democratic Data Fusion for Information Retrieval Mediators”. In
ACS/IEEE International Conference on Computer Systems and Applications,
pages 530-536, June 2001.

C. L. Viles and J. C. French. Dissemination of collection wide information
in a distributed information retrieval system. In Proceedings of the 18nd An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 12-20, 1995.

E. Voorhees and D. Harman. Overview of the ninth text retrieval conference
(TREC-9). In Proceedings of the Ninth Text REirieval Conference (TREC-9),
pages 1-14, 2000.

E. M. Voorhees. Siemens TREC-4 report: Further experiments with database
merging. In Proceedings of the Fourth Text REtrieval Conference (TREC-4),
pages 121-130, 1995.

E. M. Voorhees, N. Kumar Gupta, and B. Johnson-Laird. The collection fusion

problem. In Proceedings of the Third Text RElrieval Conference (TREC-3),
pages 95-104, 1994.

77

[49]

[50]

[51]

E. M. Voorhees, N. Kumar Gupta, and B. Johnson-Laird. Learning collection
fusion strategies. In Proceedings of the 18th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 172-
179, 1995.

E. M. Voorhees and R. M. Tong. Multiple search engines in database merg-
ing. In Proceedings of the Second ACM International Conference on Digital
Libraries, pages 93-102, Philadelphia, Pa., 1997. ACM Press, New York.

G. Wilson and J. Ostrem. Palm oS Pro-
grammer’s Companion. PalmSource Inc., 2002.
http:/ /www.palmos.com/dev/support/docs/palmos/Companion _Front.html.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Morgan Kaufmann Publishing, 1994.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kaufmann Publishing, 2" edition,
1999.

R. R. Yager and A. Rybalov. On the fusion of documents from multiple collec-
tion information retrieval systems. Journal of the American Society for Infor-
mation Science, 49(13):1177-1184, 1998.

C. T. Yu, W. Meng, K. Liu, W. Wu, and N. Rishe. Efficient and effective
metasearch for a large number of text databases. In Proceeding of the Eighth In-
ternational Conference on Information and Knowledge Management CIKM’99,
pages 217-224, 1999.

B. Yuwono and D. L. Lee. Server ranking for distributed text retrieval sys-
tems on the internet. In Proceedings of the Fifth International Conference on
Database Systems for Advanced Applications DASFAA, pages 41-50, 1997.

X. Zhu and S. Gauch. Incorporating quality metrics in centralize/distributed
information retrieval on the world wide web. In Proceedings of the 23nd An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 288-295, 2000.

78

L |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothégue nationale
du Canada

Acquisitions et .
sefvices bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your fle Volre référence

Our file Notre référence
The author has granted a non- L’anteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette these sous -
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Bel

Canadi

0-612-81357-6

University of Alberta

Library Release Form

Name of Author: Jeff Antoniuk
Title of Thesis: PalmIRA: Information Retrieval in the Palm of your Hand
Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

mﬁt niuk

Apt. 912 10811 47 Ave.
Edmonton, AB
Canada, T6H 5J2

Date: Q% 5%/&7 ;ZO/);\

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled PalmIRA: Infor-
mation Retrieval in the Palm of your Hand submitted by Jeff Antoniuk in

partial fulfillment of the requirements for the degree of Master of Science

Coorif.

Dr. Dennis B. Ward
External Exam;perf

wih

[

Dr. Dekang Lin

. N
Dr. Mario A. Nascimento Z/ .
Supervisor

'xmz,..,,g"k\

e, £ .
e
S

b

Date: Lﬂ&g&@@&

“A good friend of mine used to say,
“This is a very simple game.
You throw the ball, you catch the ball, you hit the ball.
Sometimes you win, sometimes you lose, sometimes it rains.”
Think about that for a while.”

— Nuke Laloosh - Bull Durham

Abstract

Personal Digital Assistants (PDAs) are becoming increasingly popular and with this
increase in popularity comes the increased number of applications that store textual
data within the PDA. The research area of information retrieval has developed a
number of effective and efficient techniques for more powerful desktop computers
which can not be directly applied to PDAs due to storage and CPU constraints.
This thesis introduces PalmIRA, an information retrieval system containing a PDA
based portion and a PC based portion specifically designed for the characteristics
of a PDA, more specifically a PalmOS based PDA. The design attempts to create
an efficient and effective information retrieval system. This thesis also introduces a
new collection fusion technique and a few measures to evaluate the effectiveness of

the proposed collection fusion procedure.

Acknowledgements

I would like to acknowledge my appreciation of the following:

e my dad, mom, sister, grandparents, family and friends for raising me to be
the person that I have become.

e my M. Sc. supervisor, Dr. Mario A. Nascimento for help, guidance, advice,
mentoring, constructive criticism and for being a good supervisor.

¢ the rest of my committee for their time

e thanks to the other influential and helpful professors along the way and thank
you for your interesting and challenging courses and talks: Dr. Zaiane, Dr.
Davood, Dr. MacGregor, and Dr. Gburzynski at University of Alberta and
Dr. Dueck, Dr. Rice, and Dr. Richards at Brandon University.

e the DB lab regulars: Veena, Stanley, Haseeb, Chi Hoon
e the TIC list, past and present
e the MasterWorks Software Systems employees and alumni

e the Pirates and other sports teams that I have been involved with other friends
along the way: Jeff, Joel, Chad

e CSGSA and GSA for all the great events, distractions and organized activities.

¢ my sources of funding:

— Dr. A. Nascimento’s NSERC grant
— Province of Alberta via a Province of Alberta Graduate Scholarship

— Dept. of Computing Science via Teaching Assistantships and a Research
Award

To family, friends and pet

Contents

1

Introduction
1.1 Thesis Qutline e e e

Single Collection Information Retrieval in a PDA
2.1 Introduction. i e

2.2 Related Work e
2.3 PalmIRA System Overview

2.3.1 PalmOS Memory Model
2.4 Information Retrieval Model
2.5 Inverted Index Construction

2.5.1 Acquisition of PalmOS Based PDA Data
2.5.2 Document Preprocessing
2.5.3 Sparse Matrix Data Structure

2.5.4 Weight Calculation
2.6 Inverted Index for a PalmOS based PDA
2.6.1 dirTerms Database,
2.6.2 irWeight Database
2.7 PDA Information Retrieval Engine

2.71 Query Preprocessing o oo
2.7.2 Find Query Term Ordinal Value
2.7.3 Query Term Posting List Locator

2.74 Degree of Similarity Calculation
275 Example. e
2.7.6 Graphical User Interface (GUI)
2.8 Efficiency Experiments

Collection Fusion
3.1 Imtroduction @ . e e e e e e
3.1.1 Similarities and Differences with Meta-Search

3.1.2 Example Introduction,
3.1.3 Challenges in Collection Fusion
3.2 Related Work
3.21 CollectionFusion
3.2.2 Effectiveness Measures
3.3 Reference Collection Fusion Techniques
3.3.1 Round Robin (RR) Fusion

3.3.2 Round Robin Random (RRR) Fusion

[N

W o0 00 ~I O U o Lo W

B DD DD B NN DN BN e e
CO DWW = O =3O Ot

3.4

3.5
3.6

3.7

3.3.3 Original Weights (Raw Score) Fusion

3.3.4 Co-occurrence Collection Fusion - OQur Contribution

Proposed Effectiveness Measures
3.4.1 Rank Difference (dR)
3.4.2 Rank Difference of only relevant documents (dRR)
3.4.3 Weighted Rank Difference (dWR)

3.44 Weighted Rank Difference of only relevant documents

(dWRR) . . . e
Experimental Setup e .
Experiments and Analysis: CACM, CISI, CRAN, and MED Data .

3.6.1 Data Description and Preprocessing
3.6.2 Precision and Recall Measure Analysis
3.6.3 Rank Difference Measures Analysis
Experiments and Analysis: TREC/TIPSTER Data-set
3.7.1 Data Description and Preprocessing
3.7.2 Precision and Recall Measures Graph Analysis
3.7.3 Rank Difference Measures Graph Analysis

4 Conclusions and Future Work

4.1
4.2

Conclusions e
Future Work

Bibliography

46
49
50
51
52

53
55
55
35
57
63
67
67
67
70

72
72
73

75

List of Tables

3.1 Data-sets e e e e e e e
3.2 Collection weight of the collection in which query originated

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9
3.10

3.11
3.12
3.13
3.14

3.15

PalmIRA System Overview 4
Sparse Matrix Overview L o e 9
Sparse Matrix Example 1 oL 13
Sparse Matrix Example 2 oo o oL 13
Sparse Matrix Example 3 L o oL 14
Sparse Matrix Example 4 o L 0oL 14
Sparse Matrix Final 0 . i5
irTermsExample PalmOS Database 18
irWeightPalmOS Database Format 19
PalmOS Screen Size L. 20
Example Degree of Similarity Calculation - Begin 25
Example Degree of Similarity Calculation - After First Document . . 26
Example Degree of Similarity Calculation - After Last Document . . 27
PalmIRA: (a) Query; (b) Query Result 27
Reference collection query results example 33
Multiple Collection Results Merging (Collection Fusion) 33
Collection Fusion - Round Robin 43
Collection Fusion - Round Robin Random 45
Collection Fusion - Original Weights (Raw scores) 46
Collection Fusion - Co-occurrence Fusion. 49
Rank Difference Measure (dR) (a) Co-occurrence (b) RRR. 51
Rank Difference Measure - Relevant Documents Only (dRR) (a) Co-

occurrence (b) RRR Lo o 52
Weighted Rank Difference Measure (dW R) (a) Co-occurrence (b) RRR 54

Weighted Rank Difference Measure - Relevant Documents Only (dW RR)

(a) Co-occurrence (b) RRR 55
Average Precision at 11 Standard Levels of Recall - All Queries . . . 58
Average Precision at Document Cut-offs - All Queries 58
Average Recall at Document Cut-offs - All Queries 58
Average Precision at 11 Standard Levels of Recall 60
(a) CACM Queries i 60
(b) CISIQueries 60
(c) CRANQueries ittt it 60
(d) MEDQueries 60
Average Precision at Document Cut-offs, 61
() CACM Queries v i i it e 61

(b) CISIQueries it 61

3.16

3.17

3.18
3.19

3.20
3.21
3.22
3.23

(¢) CRANQueries v v v i it ittt 61

(d) MEDQueries it 61
Average Recall at Document Cut-offs. 62
(a) CACM Queries o it 62
(b) CISIQueries 62
(¢) CRANQuerieso o i i ittt it e et 62
(d) MEDQueriesot 62
Rank Difference Measures 64
(a) Average Rank Difference (dR) at Document Cut-offs (smaller
isbetter) L 64
(b) Average Rank Difference - Rel (dRR) at Document Cut-offs
(larger is better) 64
(¢) Average Weighted Rank Difference (dW R) at Document Cut-
offs (smalleris better) 64
(d) Average Weighted Rank Difference - Rel (dW RR) at Document
Cut-offs (larger isbetter) 64
Average Rank Difference - Rel (dRR) at Document Cut-offs 66
Average Weighted Rank Difference - Rel (dW RR) at Document Cut-
offs ... 66
Average Precision at 11 Standard Levels of Recall - All TREC Queries 69
Average Precision at Document Cut-offs - All TREC Queries 69
Average Recall at Document Cut-offs - All TREC Queries 69
Rank Difference Measures- TREC 71
(a) Average Rank Difference (dR) at Document Cut-offs (smaller
isbetter) 71
(b) Average Rank Difference - Rel (dRR) at Document Cut-offs
(larger isbetter) 71
(c) Average Weighted Rank Difference (dW R) at Document Cut-
offs (smaller isbetter) 71

(d) Average Weighted Rank Difference - Rel (dW RR) at Document
Cut-offs (larger isbetter) 71

Chapter 1

Introduction

Nowadays, Personal Digital Assistants (PDAs) are becoming increasingly popular.
A PDA offers “carry anywhere” portability while retaining, although at much lower
levels, storage and functional capability of Personal Computers (PCs) and laptops.
The data storage capacity, dynamic memory, and processor speed of a PalmOS based
PDA is very low when compared to a modern PC or laptop. On the positive side
of the trade-off are the PDA characteristics of being lightweight (e.g., Handspring
Visor Deluxe weighs 5.4 oz. including batteries) and having the very low power
requirement necessary for extending battery life. These two features allow a PDA
to extend the availability of computational device use beyond the reach of PCs or
laptops. The portable extension is also exhibited by the symbiotic relationship that
the PalmOS based PDA maintains with the PC via the HotSync synchronization
of data between the PalmOS based PDA and the PC [34]. The PalmOS HotSync
Manager acts as a communication layer between the PC and the PDA such that the
data can be exchanged, updated, and synchronized between the PC and the PDA.
If the PDA were to suffer a data loss event, the HotSync process stores on the PC
the data required to restore the PDA data to the data present at the time of the
last HotSync operation.

Given the fact that a PalmOS based PDA can store large amounts of textual data
(e.g., Handspring Visor Deluxe’s 8 MB), users require efficient and effective means to
retrieve information from the stored textual data. The book by Baeza-Yates et al. [1]
describes techniques (e.g., vector model, inverted index) to accomplish information
retrieval. These techniques as described in the book have a resource demand that
exceeds the constraints of PDAs. In order to implement an information retrieval
system that uses the vector model and an inverted index within the constrained
environment of a PalmOS based PDA, the information retrieval techniques must be
engineered to provide efficient and effective retrieval. The PDA’s relationship with
a PC via the HotSync process can be exploited such that the PC completes the
computationally intensive task of building the inverted file that is written onto the
PDA and used by the PDA information retrieval application.

The textual data contained within the PDA resides in multiple collections or
databases of documents since each PalmOS application (e.g., MemoPad, Mail, Data-
Book) maintains its own database. If a user wants to retrieve a set of documents
regarding a specific topic, those documents may be spread throughout the multi-
ple databases of documents. One approach is for the user to search each collection

individually, evaluate which documents from which result lists are interesting and
merge the documents into a global result list by hand. Result merging or in other
words collection fusion [48] attempts to automate the process.

The goal of the thesis can be split into the following two parts. The first part
is to engineer a proven information retrieval approach to efficiently execute in the
constrained environment of a PDA. The second part is to efficiently fuse the result
lists of multiple collections taking advantage of the PDA information retrieval engine
and to propose new measures to evaluate the effectiveness of a result merging scheme.

1.1 Thesis Outline

This thesis starts out by describing the engineering required to efficiently implement
an inverted index and vector model information retrieval scheme while attempting
to maintain the retrieval effectiveness of this approach in the PDA (Chapter 2).
The next chapter describes a new collection fusion technique and compares this
technique to existing techniques using existing and newly proposed effectiveness
measures using a simulation of the PDA information retrieval system (Chapter 3).
The collection fusion techniques are chosen because they can be implemented effi-
ciently within the PDA information retrieval system. Finally, conclusions are drawn
and opportunities for future work are presented (Chapter 4).

Chapter 2

Single Collection Information
Retrieval in a PDA

2.1 Introduction

Single collection information retrieval focuses on a search engine finding and ranking
interesting documents from one database of documents. The setup typically consists
of an index (e.g., inverted index, signature files, suffix trees) used by the retrieval
model {(e.g., vector model, boolean model, probabilistic model) to retrieve and rank
documents from a database or collection of documents [1].

This chapter focuses on how to efficiently engineer an information retrieval sys-
tem for a PalmOS based PDA environment while maintaining retrieval effectiveness.
This chapter begins with an introduction to the related work (Section 2.2) and con-
tinues with an overview of the PalmOS based PalmIRA information retrieval system
(Section 2.3). Next described is the model used to predict which documents are rel-
evant to the query (Section 2.4). The chapter then goes on to describe how the PC
is utilized to build the inverted index during PC - PDA synchronization (Sections
2.5 and 2.6), and how the PalmOS based PDA information retrieval application
functions (Section 2.7).

2.2 Related Work

The main components of an information retrieval system [1][16] involve an indexing
structure containing key terms along with the documents the term appears within,
an information retrieval model to determine the relevance between the query and
the documents and a query language. Research produced a number of variations on
the above for indexing (e.g., signature files, suffix files, inverted files etc.) and for
retrieval models. (e.g., vector model, probabilistic model, boolean model, etc.) The
research papers evaluate these information retrieval techniques on large computing
systems. Since the goal of this chapter is to describe an efficient way to engineer a
vector model, inverted index retrieval system for a PDA, the details of this approach
are described in Section 2.4 and Section 2.5 respectively. Further information about
other approaches can be found elsewhere (e.g., [1]).

At the time of writing this thesis, there are no known research oriented ap-
proaches for information retrieval of textual data residing on a PDA. However there

are two closed source industry solutions not part of published research papers. In-
telligentfind is a PDA application that uses a sequential search method to search
through a PDA database. It does not use an indexing structure [33]. It suffers a
high retrieval time from the low speed CPU of a PDA versus the amount of textual
data that can be stored on the PDA and the number of terms in the query. IBM
has created an information retrieval tool that off-loads the index creation from the
PDA to the PC during the PDA-PC synchronization (similar to our approach). The
tool was known as IBM Palm Pirate ' and has changed its name to Pirate Search
[41]. The results are displayed in order of relevance by some secret ranking algo-
rithm. This application creates a copy of the database being indexed and inserts an
index into the copy. Hence, there is a (critical) space overhead associated with the
technique.

2.3 PalmIRA System Overview

Query submitted to PDA pDA
based application : ! Index uploaded to PDA PC
_ Query """‘"-~~—~§>Index : via Conduit :—-—_—————"—'—:
- B . N i
| ' Indexing '
T~a R 1 1
~J Answer |g------- 5 Text . TextdownloadtoPC L ___________.

Index and text used ooo...1 viaConduit

to formulate answer

Figure 2.1: PalmIRA System Overview

There are two parts to the PalmIRA information retrieval system: a PalmOS
based application for the PDA and a PalmOS Conduit (i.e., a plug-in module for
the PC portion of the HotSync process).

The PalmOS application residing on the PDA behaves much like a normal search
engine in that a user enters a query and a ranked list of resulting documents is
displayed. In order to allow fast, efficient, and effective retrieval, an inverted index
stores information required to calculate the degree of similarity based rank using
the vector model [1] between the query and each indexed document.

A conduit is a plug-in module (dynamic link library) for the PC based Palm
HotSync Manager. A conduit, once registered with the PalmOS HotSync manager,
is executed during PDA synchronization time. An example of a conduit synchro-
nization could involve the synchronization of a PalmOS address book with a PC
address book application. If a new address is entered in to the PalmOS based PDA,
a conduit is executed during the HotSync synchronization between the PC and the
PalmOS based PDA that copies the entry from the PDA and places the entry into
the PC based address book. If the conduit specifically designed for this task does
not exist then the PC address book and PalmOS address book are not synchronized.
The PalmOS Conduit API is capable of creating conduits with more sophisticated
logic than described in the example and PalmIRA takes advantage of these features.

The ability to build conduits allows the inverted index to be built during the

Palm Pirate authors: M. Herscovice, D. Cohen and Y. Maarek

HotSync synchronization process by the PC. Once the inverted index is built, the
inverted index is written back to the PDA.

2.3.1 PalmOS Memory Model

PalmOS uses a 32-bit architecture with basic data-types of 8, 16, 32 bits [51]. Pal-
mOS uses one or more memory modules known as “cards” (all devices at the time of
writing this thesis contain only one card) [27]. A card contains storage and dynamic
memory.

Memory is allocated in chunks where a chunk is at least 1 byte to slightly less
than 64 KB of contiguous memory (due to system overhead requirements). Chunks
can be movable or non-movable. Non-movable chunks are referenced by pointers
i.e., referenced by the fixed address of the memory location. Movable chunks are
referenced by memory handles [34]. Memory handles store a reference to an entry
in the “Master Pointer Table”. This table in turn stores the address of the mov-
able chunk and the table is updated during the compaction process of the PalmOS
memory manager with the new address of each chunk after the movable chunk is
relocated in the storage or dynamic RAM to defragment the memory. To read the
chunk when using a memory handle, the chunk is locked, becomes temporarily non-
movable and a temporary (until unlocked) pointer (as described previously) is used
to access the chunk. This is slightly slower than the pointer access method but
allows defragmentation to occur which is important when considering the amount
of available memory.

The memory model designed for PalmOS 3.5-4.0 differs from that used for PCs.
PalmOS PDAs at the time of writing this thesis do not have hardware similar to
that of a PC hard-disk and not do use a file system similar to that of a PC. A
PDA contains dynamic RAM with similar functions to PC RAM (e.g., stack space,
dynamic memory allocations) and storage RAM with a similar function to that of
a hard-disk or other storage device for a PC [13].

Dynamic RAM is divided into areas for:

e system globals (approx. 2.5KB),

e TCP/IP stack (32 KB),

e system dynamic allocation (variable),

e application stack (4 KB default),

e dynamic allocation, application globals, application static variable (;=36 KB)

Each is item in the list is dedicated a certain amount of physical memory and
the amount is dependent on the version of PalmQOS. The amounts described are
for PalmOS 3.0-3.3, the version of PalmOS on the PDA used for experimentation
described in Section 2.8. This version has a total of 96 KB of dynamic memory [51].

Storage RAM is where PalmOS stores data. Data is stored in databases as
opposed to the notion of files on PCs. A database consists of a list of records and
database header information. Each record is stored in a chunk. The chunks that
make up a database do not have to be contiguous in memory and are rearranged
when needed to defragment memory which merges free space fragments. Records

are edited in place instead of reading records into dynamic memory [26]. Finding a
record in a database can occur in three ways:

e Unique Record ID,

e “Index” value between 1 and the number of ordered records in the database
and this access method is analogous to an array data structure access,

e Search of a list of records using the internal data of record (key) e.g. binary
search

To combat the constraints of a PDA, small memory software design patterns
described by Noble and Weir were used [34]. These include:

e Packed Data - data is not aligned on word boundaries in the PalmOS databases.

e Compaction - defragmentation of dynamic or storage RAM to reduce the frag-
mented free space by rearranging movable chunks. This compaction normally
executes when a memory allocation does not find a large enough chunk of
contiguous memory.

2.4 Information Retrieval Model

Information retrieval attempts to predict what documents are relevant to a given
query. A specific model attempts to accomplish this prediction. The type of imple-
mented model for this project is the vector model. The following description of the
vector model is based largely on Baeza-Yates et al. [1].

The vector model is based on the idea that certain terms are more meaningful
than others. If a term occurs a relatively high number of times in a document then
the term is likely more important than other terms. The exception is stop-words{1][8]
(articles, prepositions, and conjunctions) which occur very frequency and express
little to no meaning. This idea of intra-document similarity is known as the term
frequency (tf) described by Equation 2.1 where freg; ; is the frequency of term k; in
document d; and the maz; freq ; is maximum term frequency in document d;.

o [reqiy
tfig = maz; freqy; (2.1)
Also, if a term occurs within a low number of documents, this term is likely
more important than other terms. This type of term tends to show a larger inter-
document dissimilarity. This idea is known as the inverse document frequency (idf)
described by Equation 2.2 where N is the number of documents in the collection
and n; is the number of documents that term k; appears in.

N
idf; = log - (2.2)

7
How meaningful a document term is depends on the intra-document similarity
and the inter-document dissimilarity measure known as the weight of term k; in
document d;. The document term weight (w; ;) is determined by Equation 2.3.

wi; = tf;j X idf; (2.3)

How meaningful a query term is depends on the weight of term k;. The query
term weight (w;) is determined by Equation 2.4.

0.5 fregiq N
i, = (0.5 4+ ——2 228) x log — 2.4
wig = (05+ maz freqiq x Ogni (2:4)
S'im ; ,q Z’L"‘l wl] X wzyq (2.5)

\/Zz lwzjx\/zz 1w

The vector model represents the query and the document as a vector. Each
dimension of the vector represents one term in the set of terms defined by union of
the terms within the collection of documents and the query terms. Each dimension
contains a weight. The cosine of the angle between the document vector and the
query vector determines the degree of similarity between the two and is given by
Equation 2.5. In other words, the lower the angle between the two vectors, the
higher the degree of similarity. The above are the information retrieval equations
as per Baeza-Yates et al. [1].

If w; ; and w; 4 are calculated at query time on the PDA, then predictably large
execution times result from the constrained PDA to determine mazfreq; ; and to do
the floating point arithmetic. To increase efficiency in the PDA environment, it is
possible to only calculate the query dependent portion involving w; 4 on the PDA.
The document dependent portion w;; can be calculated for all terms on the PC to
increase efficiency. Towards this goal, instead of storing the frequency of term k; in
document d; in the inverted list [1], another value § (Equation 2.6) may be stored.
Equations 2.6 and 2.7 are rearrangements of Equation 2.5 such that Equation 2.6
describes the portion calculated on the PC and Equation 2.7 describes the portion
calculated on the PDA.

@ from Equation 2.6 is converted from a floating point number into a byte sized
number by multiplying by 100 and rounding. Storing a byte representation reduces
the inverted index storage required and is necessary given the constrained storage
of a PDA.

0, =100 x ___Q;ﬂ (2.6)
P v}
simi(d; q) = =Ll X Ui (2.7)

Vi1 Wl

2.5 Inverted Index Construction

The goal of an inverted index is to index a text collection such that searching the
inverted index is cheaper than searching the entire text collection. A inverted index
consists of a vocabulary and a posting list for each term. The posting list identifies
what documents that term occurs within [1]. All documents that contain a given
term are easily determined by locating that term’s posting list.

The PC - PDA synchronization feature of the PalmOS based PDA provides
the opportunity to build a conduit as part of the PalmIRA information retrieval
system. The purpose of this conduit is to off-load part of the processing required

for the information retrieval process from the PDA to the PC. The processing off-
loaded onto the PC involves: downloading database (Section 2.5.1), preprocessing
steps (Section 2.5.2), building an efficient data structure (Section 2.5.3), calculating
the weight w; ; of term k; in document d; (Section 2.5.4) and building the inverted
index database that is stored on the PDA (Section 2.6).

2.5.1 Acquisition of PalmOS Based PDA Data

In the PalmOS environment, each application stores data items in a database. The
PalmOS database is similar to a PC data file. The PalmOS database is composed
of a number of records. For example the PalmOS MemoPad application stores each
MemoPad memo in one record. Each record within a PalmOS database is identified
using a unique record id.

The first step in building the inverted index is to download each record from the
PDA to the PC during the synchronization. The PalmIRA conduit reads each record
directly from the PDA database. Because another conduit may also download the
same records from the PDA to the PC, this may cause extra downloading. PalmIRA
cannot take advantage of the other conduits because the other (if present) conduit
that accesses the same PalmOS records as PalmIRA may be any possible third
party conduit that stores the data on the PC in any conceivable format. Not all of
the possible third party formats can ever be interpreted by PalmIRA. Hence, the
trade-off is the guarantee in reading the text for the extra downloading.

2.5.2 Document Preprocessing

Each record or textual item that is read from the PDA is parsed into individual
lower-case terms. Using regular expressions [24], a term is defined as consecutive
alpha numerical characters (a-z, 0-9) or (-, %, $) where each term is delimited by
any character not “valid={a-z, 0-9, -, %, $}”, “[~valid]+{a-z,0-9]+[-valid]+”,
and the term containing a - character must have a alphabetical character follow-
ing and preceding the - character, “[-valid]+[a-z,0-9]4+[-][a-2,0-9]+[- valid]+”,
and the term containing a % or $ must have a digit character following or preced-
ing the % or § character “[- valid]+[0-9]+[%,8][- valid]+” or “[-valid]+[%,$][0-
9]+[~valid]+”. For example “brother-in-law no.7 %100 $110” would contain five
terms: brother-in-law, no, 7, %100, $100. The period between no and 7 is considered
a delimiter because period is not in the set valid.

Stop-words are eliminated using a binary search against a static list of stop-words
available from [8]. Stop-words are terms in language that carry little or no meaning
such that they do not make good document discriminators {1] (e.g., “t0”,“the”).
Prepositions, articles, and conjunctions comprise a large portion of the stop-word
list. Besides eliminating words that are poor document discriminators, the stop-
word elimination helps to decrease the size of the inverted index. Case sensitivity is
ignored, i.e., all terms are converted to lower case.

A preference in the application allows for the choice of stemming the terms within
the collection using Porter’s stemming algorithm [35]. The stemming algorithm
replaces the suffix of the term based on a number of rules. The idea is that the
rules remove plurals, past tense suffixes and the like (e.g., zooms, zooming, zoomed)
from the root of the word. Porter’s stemming algorithm is simple and fast given

the constraints of a PDA unlike other more complicated stemming algorithms (e.g.,
N-grams, table lookup, successor variety [1]). The resulting root of the terms (e.g.,
zoom) may increase precision and recall (query’s effectiveness [1]) while decreasing
the index size, synchronization time, and not increasing the time to execute a query.

Each term is then added to the sparse matrix data structure described in Section
2.5.3.

2.5.3 Sparse Matrix Data Structure

In-order to calculate the weight of term %; in document d;, Equation 2.3 must be
calculated. Equation 2.3 requires the freq ; ; of term k; in document d; be stored
in order to calculate the weight w; ;. The frequency information is best stored in a
matrix such that accessing row ¢, column j returns the freg ; ;.

A sparse matrix data structure was chosen since the structure can store the
frequency count of term k; in document d; (and later a information retrieval weight)
and since many terms k; do not exist in document dj; (i.e., sparse data). In addition,
the information retrieval process (more specifically Equation 2.5) does not require
the term k; in document d; frequency if the frequency is 0. Since documents do
not contain an instance of each of the terms, this produces a matrix with entries
with 0 frequencies if a non-sparse matrix is used. The result of using a non-sparse
matrix is inefficiencies in traversing unneeded 0 frequency items and in memory
requirements to store the 0 frequencies. The larger amount of memory required to
store the non-sparse matrix produces larger amounts of swapping and a significant
increase in execution time over the sparse matrix data structure.

Next, the sparse matrix data structure is defined. The sparse matrix is made up
of 3 data structures: Term Header, Document Header, and Nodes as displayed in
Figure 2.2.

Document Header
Term Header

Poel | =———DocID .
! e Max Freq of Node List

q
i
i
i
i

Docl | | == Node: Document node belongs to and

1 frequencg of term in document,
or later the weight of this term in this document

L]

Term

Doc Term appears in .
Pointer to Last Doc

— Pointer to list of nodes

Figure 2.2: Sparse Matrix Overview

The nodes are the entities that make up the cells within the matrix. A node
in column j in row ¢ represents document d; contains term k; 2. The Node item

2Each node is represented by a 16 bytes long structure.

(Node; ;) maintains the following elements:
- Node™RoU. pointer to the next node in a row-wise direction
- NodeC?: pointer to the next node in a column-wise direction

- NodeV®e. a floating point value (4 bytes). The value is used both for a
frequency count (freg; ;) as the documents to parse are parsed and as a weight
calculated by Equation 2.6 to save space.

- Node ;. unique id (4 bytes) of the document represented by the column the
node exists in.

Each item of the Term Header (TH) represents a row in the sparse matrix. The
TH is an array of TH items 3. The array data type allows for fast binary searches.
Each TH item maintains the following elements:

- TH¥- the term represented by the TH item k;
- THMPEPI 5 pointer to a linked list of nodes
- THEestPIr_ 5 pointer to the last node in the linked list

- TH™i- the number of documents that the term appears in (n; which is used in
Equation 2.2).

- TH¥i- the float value of inverse document frequency (idf) of term k; (Equation
2.2)

Each item of the Document Header (DH) represents a column in the sparse matrix.
The DH is made up of a linked list of items 4. Each DH item maintains the following
elements:

_ DHDiddj

- document id value by the DH item

- DH"e#tPr_ 5 pointer to the next DH Item in the linked list of DH Items
- DHLEPI. 5 pointer to a linked list of nodes

- DHLastPI_ 5 pointer to the last node in the linked list

- DH™%ifTedi. the max frequency (maz freqi ;) of any single node within the
column representing document d; (i.e max frequency of any term in document

d;)

- DHPenom_ the float value of the denominator of Equation 2.6 °.

3Each item is of size 20 bytes plus the memory required to represent the string value of the term.

“FEach item in the DH is represented by a 24 bytes long structure.

*PalmIRA uses a float instead of double data type in the MS Visual C++ environment because
floats are 4 bytes whereas doubles are 8 bytes. This reduces the amount of dynamic memory
required by the sparse matrix structure. The float data type retains 7 digits of precision as opposed
to 15 digits for a double data type. The extra precision is not required because of the technique
to reduce storage costs described in Section 2.6 to create the PalmOS database representation of
the inverted file. The 4 byte float data type values range from approximately 1.17549 x 10738 to
3.40282 x 10%® which is large enough for the purposes described above in the Document Header,
Term Header, and the Nodes.

10

The reasoning behind the usage of each of the structure members for the the
Document Header (DH), Term Header (TH), and Node structure will become clear
as the following example progresses. The construction and efficient utilization of
the sparse matrix given a very simplified example collection of documents is worked
through to help explain the purpose of each structure member for the following four
(very simplified) documents °:

Docl: Contents: BCACAA
Doc4: Contents: F

Doc3: Contents: F

Doc2: Contents: F A C

First the PC based conduit reads the first record by index from the PalmOS
based PDA database. Using the example, the first record is Docl. Docl is first added
as a column representative (i.e., DH) within the sparse matrix. Docl is preprocessed
by the process described in 2.5.2. Each term, defined by the preprocessing step, is
dealt with in the following manner depending whether or not it exists in the sparse
matrix structure.

A binary search of the TH for the term in question determines if the term exists
resulting in:

1. If the term is not found during the binary search of the TH items, then add
the term to the TH array maintaining the sorted order via an insertion sort.
Next, add a new Node item to the structure with frequency (Node"®u€) «1”.
In addition, update TH" and update THX®S!PH for term k;. Also updated is the
max frequency in the corresponding DH item for document d; (DH™azLfTeq;),

Since a binary search precedes the insertion sort, the insertion sort can be
optimized. The position to insert the term into the array can be approxi-
mated from position references obtained within the binary search algorithm
when the term is not found. The technique involves using the mid-point infor-
mation produced by the binary search algorithm to act as an approximation
of the position where the new distinct term should be added. From the ap-
proximation, the exact position can be found quickly by moving backward or
forward in the array from the approximated position extracted from the binary
search. Once found, room is made for the term in the array 7 8.

2. If the term k; is found by the binary search to be in the array of TH items
then:

SNotice the document order is based on the alphabetical contents of the documents. The textual
documents are read from the PDA by PalmOS index order which has been specified in the PalmQOS
application (e.g., MemoPad) as alphabetical.

7Once the position within the array is located for where the term is to be placed, moving one
chunk of memory should be more efficient than copying each individual TH item one array position.

8 Although adding an item to a linked list would be easier, a linked list approach instead of the
array approach to represent the set of TH items suffers from the inability to as efficiently search for
an item within the linked list.

11

(a) if term k; previously occurs in document d; and the THL2SHPT of term k;

points to a node that exists in the column represented by Doc d; then
increment the frequency count of the node pointed to by the THLestPir
(Node" ¢} and update the max frequency of the DH item for d; (DH™@#1/7eq.5)

(b) else this is the first occurrence of term k; in document d; then add a new
node, update THX49P! of term k; and DHF4*F¥ of document d; pointers
to point to the new node and update DH™a1/Ted; for d;

The motivation for THL®StP? ig to reduce the time to traverse the linked list of
nodes each time the last node is accessed (when a new node for that term has to
be added to the end of the linked list or if that term occurs in the record multiple
occurrences and the last node is updated by increasing the frequency count of the
node). Nodes are never added to the beginning or middle of the linked list because
a new column (DH item) is added to the end of DH list each time a record is read
from the PDA data file. For example, nodes are always being added to the current
DH item that represents the current record (document) being parsed.

The idea of DHL#5EPHT is to reduce the time to find the last node in the linked list
of nodes. This is used when a new node is added to find the last node and link the
new node to the end of the linked list. '

The document id element of the Node item (NodeDdeJ') is used to speed up the
determination of what column (i.e., document id) the THL®tPH represents. Given
a reference to a node, the Node™"%; prevents a significant number of traversals
required to determine what column the node is contained within. This information
becomes useful to determine if the node referenced by THX*S*F™r is to be updated (if
the document id of the current term equals the NodeDdeJ‘)

new node (if not equal). Also, the Node”™4s is useful during the PalmOS database
inverted index file creation (Section 2.6).

The linked list of nodes is linked in a column-wise manner in order of first
occurrence within the document because there is no need to be able to traverse
the column in sorted by term order. The order of occurrence saves the time of
the sorting and still provides all the necessary access required by the information
retrieval calculations.

TH™ is updated each time a new node is added to the row to save having to
traverse the linked list of items that make up the row to determine the value which
is required to calculate inverse document frequency (idf) (Equation 2.2).

DH™@21/7¢4Li may be updated each time a node is updated (or added). This saves
the time of having to traverse the linked list for each column to determine the “max
frequency” of each column at a later time. Storing the DHP®™™ is useful in reducing
the time to traverse the linked list similar to DH™a%i1/7edr;

The next portion describes how the example documents introduced in section
2.5.3 are placed into the sparse matrix. The goal of the example is to help illus-
trate the motivation behind the sparse matrix data structure definition introduced
previously in this section.

First Docl is read from the PalmOS based PDA database by the PC based
conduit. This causes a new itern to be appended to the DH list. The TH is searched
for the first term within Docl (“B”) which is not found. A new TH item is added
to the array. A new Node; ; is added with frequency (NodeV*¢) = 1 and document

or otherwise linked to a

12

id (NodeDiddf) of Docl. The TH item for “B” is updated with TH" = 1, last node
(THLeStPI™Y and first node (THXFPMT) pointers pointing to the new node. The DH
item for Docl is updated with max frequency (DH™®%:fredqi) = 1 DHPestPir apd
DHLEPH pointers pointing to the new Node "% (see Figure 2.3).

Document Header

Doci

A

Term Header

Figure 2.3: Sparse Matrix Example 1

The next term in Docl is “C”. The term is searched for in the TH and not found.
A new TH item is added to the array in sorted order. As a result, a new Node; ; is
added to the internal portion of the sparse matrix by accessing a node via DHLestPtr
item for Docl (in this case) and updating Node™“® pointer of DHL*5*P¥ node to point
to the new Node; ;. This saves having to traverse the linked list of nodes starting
from DH or TH. The DHI®5tP¥ jtem for Docl is updated (see Figure 2.4).

Document Header
Docl
1
— L
g7 =21 Docl
1
—__
!)
Term Header
Pl 1= Docl
’ 1
bzl
1 A

Figure 2.4: Sparse Matrix Example 2

The next term in Docl is “A” and the process is equivalent to the process for
the prior instance of term “C”.

The next term in Docl is the second instance of term “C”. The term is searched
for and found in the TH. Since the THL9StP* points to a node with the Node?%4
of the current document then just update the frequency of that node (Node®u¢)
and DH™e®freq; (if applicable). The repeating instances of the “A” term follow a
similar process. See Figure 2.5.

13

Document Header

Docl
3
Docl
A =3
Term Header 3
------------------- = Docl
B Leml |
¢)
Docl
[bl 9
by pec?
1)

Figure 2.5: Sparse Matrix Example 3

After parsing all the terms in Docl, the next document is Doc4 since the doc-
uments are sorted in alphabetical order of document contents, not in document id
order. The new document (Doc4) results in a new item being added to the end
of the DH list. The first and only term is term “F” that is processed like the first
instance of term “B” in Docl.

Document Header
Docl Doc4 Doc3
3 1 1
=11 Docl
A =3
i
=111 Docl
B Sl |
VA
Term Header eossscs
I Docl
C 2
L <
L O
[S ——— Docd [-i- Doc3
B 1 e 1 |
= o
P 3

Figure 2.6: Sparse Matrix Example 4

14

After parsing all the terms in Doc4, the next document is Doc3. The new
document (Doc3) results in a new item being added to the end of the DH list. The
first and only term is term “F” which is searched for and found in the TH array. The
Node ™" pointed THL?S*PH (Docl) is not equal to the current document id (Doc3)
therefore add a new Node; ;. See Figure 2.6.

This continues until all terms in all document have been read and the final result

of the sparse matrix structure is displayed in Figure 2.7.

Document Header

Deocl Docd Doc3 Doc2
3 1 1 1
1 172 I 1 0.016 r—10.016 0.197
Docl bl Doc2
A =3 =1
0.727 0678
2 [
> Docl
B U1
r10.476
i)
Term Header —
| Docl Doc2
C) 1
~— 0.486 < =1 0.678 [<
2 3
Doc4 Doc3 Doc2
F L— 1 |- 1 e 1
0.988 - 0.988 —= 0.282
3)

Figure 2.7: Sparse Matrix Final

2.5.4 Weight Calculation

Once all of the documents have been read from the PalmOS database, the document
weight (Equation 2.3) for each term k; is calculated for each document d; (i.e., for
each Node;; in the sparse matrix). The same sparse matrix structure is used for
both the frequency counts and the weight calculation because by storing the number
of documents (N), the max term frequency (DH™®®1/7¢4.i) in the DH items (maz
fregq ;) and the number of documents that a term appears (TH™) in the TH items,
the frequency value stored in each Node; ; can be replaced without creating a second
copy of the data structure.

The term weight calculations of Equation 2.6 are broken into two steps each
employing one traversal of the sparse matrix. The first step calculates w; ; = tf; j ¥
idf; for each matrix Node; ; and keeps track of E$=1 wz-z’ ;- The second step calculates
the square root and division calculation for each matrix Node; ;.

The weight calculation is accomplished for each Node; ; by traversing each Node; ;
in a row-wise manner. Because of the row-wise traversal, the idf (Equation 2.2) is
consistent for each document and can be calculated once for the entire row using
the information stored in that TH item before the weight calculation loop traverses
the entire row. Storing TH'¥ saves the calculation of the idf (Equation 2.2) for each

15

column (Node; ;) in the row. Also required to calculate the term weight is the term
frequency (#f) (Equation 2.1) portion of the term weight calculation (Equation 2.3).
The max term frequency for document d; is stored as part of the DH for document
d;. This saves time since only the DH item needs to be found to acquire the max
term frequency for the current document instead of traversing the entire column of
the sparse matrix to determine the value.

The DH item search is optimized by starting the search at the previously found DH
item pointer from the previous iteration. The algorithm starts from this point and
iterates through the DH items until the DH item associated with the current Node; ;
is found (i.e., the DH”™4 equals the Node 4). For example, after the weight for
node; ; (Node'?¢) is calculated, the weight for the next Node; ., is calculated
by finding the corresponding DH for document d;., starting from the DH item d;
and iterating through the DH items until the DH item for document d;, is found.

Without the Node™'®; stored as an element of a node, each node in each column
of nodes would have to be iterated through to locate the column that contains the
reference to the current node. Each time the weight w; ; for Node; ; is calculated,
pHPeno™ is updated in the corresponding DH item d;.

Since the result of Equation 2.6 is stored in the inverted index, the document
weight value resulting from Equation 2.3 for each node (Node'%"€) needs to be
divided by the DHPe"*™ vyalue stored in the DH item for document d;. This process
iterates through the sparse matrix in a column-wise fashion. Using the calculated
DHDeno™ yalue stored in the current DH item, all Node; ; in the column j are traversed
and divided by DHDenom yalye. After each column is re-calculated, each Node; ; then
contains the calculated resulting term weight of Equation 2.6. The column-wise
traversal does not require that the current column (DH item) be looked up to obtain
the DHP®"°™ value as a row-wise traversal would.

The sparse matrix used is based on the sparse matrix data structure described
within Horowitz and Sahni [25] with some previously described modifications in
order to increase its efficiency. The structure is then used to create the packed
inverted index stored on the PDA.

Other data structures could be used in place of a sparse matrix. One option
could be to store the data as it is being processed directly into inverted index [12]
[1] for the posting lists, a trie [1] [25] [12] for the vocabulary and use a lookup table
to keep track of the data stored in the head nodes of the current sparse matrix data
structure.

2.6 Inverted Index for a PalmOS based PDA

The inverted index used by the PalmIRA information retrieval system consists of two
separate databases: irTerms and irWeight. The properties of a PalmOS database
influence this decision. The limiting properties are: the usable data size of each
record (64 KB), the number of records per database (64 K), and size of the overhead
(i.e., non-data) segment of each record (8 Bytes) .

PalmIRA packs multiple term posting lists in one record saving space and al-
lowing expandability beyond the PalmOS limit of 64 K terms (where one record

“One option other than the one used could be to have one term posting list per record which
would allow only 64 K terms to be indexed.

16

stores one term). The record packing allows for the number of terms indexed to
grow beyond 64 K 10,

The result is an irTerms file that contains all terms that are indexed by the
inverted index. The count of the number of terms from the first term to the term
k; signifies the ordinal of term k;. This ordinal 7 is used to determine the position
of term k; posting list within the second file, irWeight. The ordinal 7 signifies that
the it* posting list in the irWeight database belongs to term k;

2.6.1 irTerms Database

The purpose of the file is to determine whether or not a distinct term has been
indexed (e.g., stop-words do not occur in this file) within the information retrieval
index. The irTerms database contains all the terms within the inverted index and
the terms appear in the same sorted order as the TH. The second purpose is to allow
the determination of the ordinal value of the term. For example, given a list of terms
“ab”, “ac”, ..., the term “ac” maintains the position of 1. In other words “ac” has a
ordinal value of 1 (i.e., second term when starting to count from from 0). This term
count is used to determine the position of the term’s posting list in the irWeight
file (Section 2.6.2). The third purpose is to store the value of Equation 2.2 (Inverse
Document Frequency, idf) to avoid having to calculate the idf on the PDA at search
time. The query weight calculation (Equation 2.4) requires the idf.

The first portion of the irTerms record exists to act as an index into the list of
terms contained within the data segment of each irTerms record. The string value
of the last term and the ordinal value of the last term along with a separator for each
are stored at the beginning of each irTerms record. This allows the query algorithm
(Section 2.7.2) to determine whether or not the query term may be in the current
record since the terms in the irTerms database are in sorted order !. Figure 2.8
displays the file format of the irTerms database when the option of stemming in
not used (Section 2.7.1).

Following the index portion of the each record, the internal portion consists of
the term string and the float value of Equation 2.2 (idf) from each the sequentially
read, sorted alphabetically TH items. Multiple terms are appended to a irTerms
record until the PalmOS 64KB record size limit is reached then a new record is
created.

17

Term Database Format

Record Index
into data segment Data Contained within the Term Database
Ordinal #0
Ordinal # 1 Ordinal # 7709 Separator
[exptored[\[7710 [\|[abb [\fia] aad [\o[iae] [explore |\0]iat] explored| o] iaf First Record
[plate [\Ol 15163 I \OH explorers I \(){ idf} """"""""""" { plastics [\0] idfl plate ‘ \0[idflé*-.Second Record
[curicn |\ 22521 || plateau |\[iat}-++ [rat o] ia] rate] o[iat] - [zurich | \0] idf}=——~Third Record

Terms

Ordinal # 22521

Ordinal # of the last term in the current record
Last term in the current record

Figure 2.8: irTermsExample PalmOS Database

2.6.2 irWeight Database

The goal of the file is to store a posting list for each term that appears in the irTerms
database. The first term in the irTerms database corresponds to the first posting
list that occurs in the first record of the irWeight database. The first 4 Bytes of each
record specifies the ordinal (Term Count) from the start of the irWeight database
to the last posting list in that record. This is used to prevent sequentially searching
each record by acting as an index to determine if the record contains the ordinal
that is being searched for. This index acts in a equivalent manner to the index (first
part) of the irTerms record structure described previously in Section 2.6.1. The
next byte acts as a separator and is followed by the internal data segment of the
record (i.e., posting lists). The posting list for term k; consists of a number of items
where each item consists of the document id d; (4 bytes) and the weight w; ; (1 byte)
of term k; in document d; where j is the set of all document ids that contain term
k;. The weight is converted from a 4 byte floating point value to a 1 byte value by
multiplying the float point value by 100 (Equation 2.6), rounding the value into an
integer and storing the value as a byte. Storing document weight as a byte discards
some of the significant figures of the floating point representation but hopefully the

0 Als0, every PalmOS PDA record contains a header. Each PalmOS record contributes an addi-
tional 8 bytes to the size of the data being stored within the record. The header for each record
includes a 4-byte local ID of the record, 8 attribute bits, and a 3-byte unique ID. To decrease the
number of records and thus the total size of the database, multiple term posting lists are combined
into one record and each posting list is separated by 5 hexadecimal 0x00 bytes (5 bytes is used to
store each term posting list item). This saves ((“sizeof header”— “sizeof separator in irWeight and
irTexrms record formats”) x # distinct terms) bytes (i.e., (8 — 5 — 1) % 21,289 = 42, 578 bytes).

by knowing that the previous records last term is less than the query term and the query term
is less than the last term of the current record then the current record is the record that is the
candidate to contain the query term. The correct record to search is determined by comparing
only the first few index bytes (index of size: length of the last term in the record + 5 bytes) of
the record. Once the candidate record is determined, then the algorithm sequentially searches the
internal portion of the record.

18

Weight Database Records

dinal number of last posting list in the current record
Separator
Unigne Record ID of MemoPad document that this term appears is
y— Weight of Oth term (abb) in Docl0

1964_| 0x00| [Docio [9] 0x00000000 [0 Jroroosi 0300000000 | 0|
L]
First Record End of posting list for first term End of posting list for the 1964th term
econd Record
L——ﬁ 4419 ’ 0x00] [posting lists and Separators For Terms 1965 to 4419 |
[6308 [0x00] | posting lists and Separators _For Terms 4420 to 6808 |
l 9100 l 0x00| I posting lists and Separators I
Other [11605 [0x00] [posting lists and Separators |
I 13700 I OXOOI I posting lists and Separators |
l 15875 I OxOO] I posting lists and Separators J
| 18287 ‘ OXOOI [posting lists and Separators l
[20604 l OXOOJ l posting lists and Separators |
I 22521 | 0x00! [posting lists and Separators I

Figure 2.9: irWeightPalmOS Database Format

slight loss of accuracy does not outweigh the trade-off of the reduced storage space
required to store the byte representation. In terms of accuracy, PalmIRA produces
similar single collection retrieval accuracy to the results published in a paper by Viles
and French [45]. They use the same retrieval model, a possibly different stemming
algorithm and a possibly different rule for defining terms. Figure 2.9 displays the
file format of the irWeight database that is stored on the PDA.

Each row in the sparse matrix contains the data required to create that term’s
posting list. To create the posting list for term £;, each Node; ; in the linked list of
nodes pointed to by the TH item representing term k; is sequentially traversed. The
document id (NodeDdeJ') and the weight (Node"?%¢) stored in each Node; ; traversed
is added as an item to the term posting list 2.

The items added to term k; posting list are sorted in document id order. The
motivation for the sort becomes evident during the degree of similarity calculation
(Section 2.7.4) 13,

Because more than one term posting list is stored in each irWeight record, each

Y Document id and unique record id are equivalent values in the implementation.

"®The items within each term posting list are sorted by unique document ID assigned by the
PalmOS instead of record index (which is the easiest order to read the records from the PDA by
the conduit). Note: PalmOS stores records in a list. This list can be sorted which physically
changes the position of records in the list. Records in PalmOS can be accessed by a unique record
ID or by an index into the sorted list. The index is the record’s position in the list. Deleting a
record changes the position and hence the index for records following the deleted record in the list.
Therefore, deleting record with index 2 causes the record with index 3 to have index 2. Tt is unwise
to store the index value because reading the record by index may yield a different record for that
index (e.g., index 2 represents a different record before and after deletion).

19

posting list is separated by a separator. If term k;;; posting list is small enough to
append to the k; and prior term posting lists already stored in the record, then the
posting list is append along with the separator. Else, the current record is written
to the PDA and a new record is created. In Figure 2.9, the first record contains the
posting lists of 1965 terms where as other records contain a variable number of term
posting lists. The first term (ordinal 0) has a posting list that contains only one item
(weight 9, document id Docl0) (i.e., that term was found in only one document).

2.7 PDA Information Retrieval Engine

This section describes the portion of the PalmIRA information retrieval system that
executes within the PalmOS based PDA environment and utilizes the inverted index
created by the PC resident conduit portion described in Section 2.5. The application
has a simple graphical user interface due to the 160x160 screen resolution of the
PalmOS based PDA (Figure 2.10).

Palm OS” Emulator

Palm

Figure 2.10: PalmOS Screen Size

The GUI allows the user to enter a natural language query. Once the query
has been entered, the first step of the query execution is to preprocess the query
(Section 2.7.1). For each query term identified by the preprocessing step, it attempts
to locate the query term within the irTerms PalmOS database and, if located, store
the ordinal value of the term (section 2.7.2). Using the ordinal of each query term, it
locates the posting list within the irWeight database. Also, it stores the record ID
and offset from the start of the record to the posting list of each term (Section 2.7.3).

20

Next, it calculates the degree of similarity between the query and the documents.
The degree of similarity is used to rank the query results (Section 2.7.4). The last
step of the PalmIRA information retrieval application is to display the ranked by
degree of similarity results by writing to the screen the numeric value of the degree
of similarity and a snippet of the first twenty characters of the document (Section
2.7.6). A user is able to browse the list of documents that are considered similar
to the query. Another feature allows the user to select the query result and a new
window opens to display the contents of the selected item.

2.7.1 Query Preprocessing

After the query is entered, the application parses the query string into a list of terms
as in Section 2.5.2 4.

In order to increase efficiency, some information is stored for each query term.
The information stored is called a terminfo structure and includes:

- k; - a string representing the query term

- freq;q - frequency of term k; within the query string (Equation 2.4)
- 0rdy, - ordinal value of term k; in the irTerms database

- RWid; - irWeight record id that contains term k;’s posting list

- Off; - offset of the posting list for term k; from the beginning of the RWid;
irWeight record

- Didy; - document id value of the posting list item referenced by the RWid, of
the record and the 0ff; offset from the beginning of that record

- Wigq - query term weight calculated by Equation 2.4

The array of terminfo structures as described above is sorted by ascending
alphabetical order with respect to the query term represented.

2.7.2 Find Query Term Ordinal Value

After preprocessing the query, each query term is compared against the list of terms
in the inverted index to determine if it has been indexed. All terms of the inverted
index are stored in the irTerms database file. A query term may not be a member
of the inverted index if that term does not exist in any of the documents of the
indexed collection or if that term exists in the list of stop-words.

The first step in finding the query term is to determine a candidate irTerms
record for containing the query term from the possibly many irTerms records within
the irTerms database. A binary search using the index values at the start of each
irTerms record finds the smallest index value that is greater than the query term
that is being searched for. The index at the start of the irTerms records contains

Y All characters that are not in the set {a-z, A-Z, 0-9, %, $, -, NULL} are converted to a blank
character. Then the blank character is used to delimit individual terms. The motivation is to
delimit queries for example “Canada\cr” (Canada ended with a carriage return) such that the
query is interpreted properly.

21

the string of the last term of the irTerms record. All terms within the data segment
of the current record are less than or equal to the index at the start of the current
record and greater then the index value (last term) of the previous record. The
result of finding the smallest index that is greater than the query term is that this
record is the only record that may contain the query term if the query term is part
of the inverted index.

For each query term that exists in the inverted index, the Ordy, of that query term
within the irTerms file is stored as part of the terminfo structure (section 2.7.1).
The Ordy, is the number of terms (starting from the first term in the database)
that precedes the term in the inverted index 15 The purpose of 0rdy, is to find the
location of the query term’s posting list inside the irWeight database. Following
each term in the irTerms database is a 4 bytes float value representing the idf value
(Equation 2.2) for that term. The extracted idf and stored freq;, are used to
calculate the query weight (Equation 2.4) for query term k;. The query term weight
wj q value is stored within the terminfo structure for the query term k;.

If the query contains more than one term then the process can be optimized.
For the second and subsequent query terms, the process of determining Ordy, from
the irTerms database can start the search where the search (either successful or
unsuccessful) for the previous term left off. The effect is to narrow the search space
for subsequent query terms.

Given that the query terms are in sorted order and the terms within the irTerms
database are also in sorted order, the current record (from the search for the previ-
ous term) can be passed into the binary search as a lower bound for the search. If
the index portion of a irTerms record is less than the current query term then that
record is known not to be relevant for any query term with a higher alphabetical or-
der than the current query term. This narrows the search space for each subsequent
query term. This is in contrast to the search for each query term always executing
the binary search over all irTerms records.

Another opportunity exists to help decrease the search space and thus the search
time. At the time the query term k; is found within the irTerms record, the ID of
the record and a pointer to the term within that record are known. If the query term
ki1 is less than the index value of record R, but greater than the query term k&; then
the query term k;,1; must be between the position of query term k; in the record
and the end of the record. In this case the binary search is not required to find the
candidate record because the current record is the candidate record. The search for
the query term k;4; begins at the pointer to the position within the irTerms record
that contains the string equivalent to the query term k;. Because the current record
is being used, time is not wasted on a binary search that accesses records 6 17,

150rdy, is determined using the index value of the previous record, R,-; (if r is not the first
record) and then counting the number of terms from the start of the internal data portion (not
index portion) of record R; to the position of the query term to locate. The index portion contains
the string representation of the last term of each irTerms record along with the last term’s ordinal
value.

16Because the current record is being used, the result is that the memory handle used to access
the queried record does not have to be queried, locked, read, and unlocked. The PalmOS memory
managers allows for the use of memory handles such that when a memory handle is unlocked, the
PalmOS memory manager can automatically defragment the memory to increase storage [34], [13].

1"The irTerms records separate the terms and the idf float values by a NULL character. Using
the NULL character for a separator allows for an easy string comparison implementation.

22

2.7.3 Query Term Posting List Locator

After finding the Ordy, for each query term, Ordy, is used to locate the posting list of
each term within the irWeight database. The irWeight may contain one to many
records depending on the number of terms and the size of each term’s posting list.
As displayed in Figure 2.9, and described in Section 2.6.2 each irWeight record
begins with an index describing the Ordy, of the term whose posting list is the last
posting list in that record.

The goal of this step is for each query term, locate the query term’s posting list
in the irWeight database and store the RWid; and 0ff; in the terminfo structure
for that query term. The first step is to locate the record that contains, in the
data portion of the record, the query term’s posting list. A binary search to find
the smallest index value (index value is the first value of each record, Section 2.6.2)
that is larger than or equal to Ord; for the current query term locates the irWeight
record. Because the index value is the ordinal of the term whose posting list is the
last posting list in the record, and the query terms and posting list are in sorted by
term order, the posting list for query term k; must be in the located record. The
record ID of the located record RWid; is stored in the terminfo structure for that
term. The next step is to find the offset within the located record of the query term
k; posting list 0f£; 18.

For queries with more than one term, the two optimizations (described in Section
2.7.2) that help to decrease the search space are also used.

2.7.4 Degree of Similarity Calculation

Once the start of each query term’s posting list is located, the next step is to
calculate the degree of similarity of each document to the query. Documents that
do not contain at least one of the non-stop-word query terms are considered to have
a degree of similarity of 0. These irrelevant documents are indicated by the fact
that none of the query terms contain that document in their posting list.

The challenge is to efficiently determine for each query term if document d; is
in query term k; posting list. The idea of the algorithm is to sequentially traverse
the documents starting with the smallest document id and ending with the largest
document id in the set of documents defined by the union of the posting lists of the
query terms.

Remember from Section 2.6.2 that all items that compose one term posting list
are sorted by the unique record id (used interchangeably with document id) of the
record that contains the corresponding document. Recapitulating, at the beginning
of the degree of similarity calculation, the terminfo structure for each query term
points (via RWid; and 0ff;) to each query term’s posting list item with the smallest
document id in that posting list. Each terminfo structure item also contains the
document id (Didg,) value of the posting list item pointed to by RWid; and Off;.

First the algorithm finds the smallest document id in the terminfo structure
of all the query terms. Once the smallest document id is identified, for each query

18T find the position of the posting list for query term k; within the data portion of the irWeight
record (RWid;), the algorithm starts by finding the index value (0rd) of the previous record RWid;_;.
Then it iterates through the posting list items counting the posting list separators until this iterative
value (number of separators + index value of the previous records) equals Ordg,; of term k;.

23

term that contains that document id:

e contribute the term’s stored document weight (6;;) within the irWeightfile
posting list item to the degree of similarity equation (Equation 2.7).

e increment Off; to point to the next posting list item

¢ update the current Didg; stored in the terminfo structure item for that term
to the value pointed to by the 0ff;

After all query terms are compared against the current smallest document id and
thus the running totals of Y_,_ow; j and 32, w?’ ; from Equation 2.7 are completely
summed, then the degree of similarity calculation is completed as in Equation 2.7.
The similarity and the document id are stored in an array of sorted by degree of
similarity results.

The algorithm is setup to query and read the irWeight database only if the w;
value is required. The number of queries and database reads are reduced because
the document id of the posting list item pointed to by the offset is stored in the
terminfo structure for each term. Caching the document id in terminfo increases
efficiency by not have to lookup the document id from the index to determine if the
smallest document id is pointed to by RWid; and 0ff;.

2.7.5 Example

This next part introduces an example query using the index contained within the
irTerms and irWeight PalmOS databases stored on the PDA and illustrated in Fig-
ure 2.8 and Figure 2.9 to help explain how the PalmOS based information retrieval
application satisfies a query.

For a query “rat rate explorers” given the irTerms database file displayed in
Figure 2.8, the following would occur. First the query terms are sorted yielding
“explorers rat rate” in the preprocessing step (Section 2.5.2). Next, the Ordg, of
each of the terms is determined (Section 2.6.1). Using the query term “explorers”
and the index segment of the irTerms database records, a binary search is used to
find the candidate record with the smallest index value that is greater than the query
term “explorers”. In this case, the second record with index “plate” is the candidate
record. So at this point the query term “explorers” is either in the data segment
of the second record or “explorers” is not in the inverted index. Next the internal
data segment portion of the second record is searched. In this case “explores” is
the found and the idf value following the term is used to calculate the query weight
(wi,q) (Equation 2.4) for query term k; is stored in the terminfo structure item.
The ordinal number (7711) for “explorers” is determined by the addition of the
ordinal value of the last term of the previous record for the index portion of the
first record (7710) plus the position of the term with in the data segment of the
second record (1). For the second query term “rat” we know that it is not within
the second record because the index of the last term within the second record is
“plate” therefore a binary search is executed. Passed into the binary search as the
lower bound is record 2 since record 2 is the record where the previous term (query
term “explorers”) was located so the binary search only searches records 2 and 3.
The third record becomes the candidate record after the binary search and the term

24

“rat” is found by the internal data segment search. After an internal data segment
search, the terminfo structure is updated. For the third query term “rate”, it is
known that the query term may only be within the third record because the index of
the last term within the third record is “zurich” which is greater than the query term
“rate”, therefore a binary search search is not required. Using the pointer pointing
to the second query term, the third query term internal data segment search begins
at that point. The third query term is easily found since it directly follows the
second query term in the irTerms record. The terminfo structure is updated.

This next part of the example illustrates Section 2.7.3, i.e., how the PalmOS
based portion of the system locates the posting lists of each of the query terms.
Figure 2.9 displays an example of the irWeight database. For the first query term
“explorers”, the stored ordinal number of 7711 is searched for using a binary search.
The binary search returns record number 4 because it is the record with the small-
est index value (9100) that is greater than the ordinal number of the query term
“explorers” (7711). The next step is to search the internal data segment of the
irWeight record to find the offset of the posting list. Since each posting list is
delimited by separators of 5 bytes of all zeros, the separators are counted. The
posting list is located when the index value of the previous record (6808) plus the
number of posting lists traversed is equivalent to the ordinal value of the query term
(7711). This is the same idea as described in the irTerms traversal (Section 2.7.2).
The binary search optimizations, described in Section 2.7.2, are used to decrease
the search space for query terms “rat”, “rate”.

This next part of the example illustrates how the PalmOS based portion of the
system computes the degree of similarity calculation for each of the query terms
(Section 2.7.4). Figure 2.11 displays an example of the algorithm to calculate the
degree of similarity. The example consists of 2 documents: Docl with terms “rat”,
“rate” and Doc2 with terms “explorers” and “rat”.

Posting Lists for Each Term
Posting list separator

explorers [poc) [o | [oxooo00000[0 |
rat [Doct [s | [poc2 [21] | oxoo000000[0]

Current posting list item
rate [Doc [15 | [oxo0000000[0] for each term

Document id — Weight

Figure 2.11: Example Degree of Similarity Calculation - Begin

At the start of the similarity calculation, pointers (RWid; and 0ff;) point to the
first item of each of the query term posting lists. Using the Didy; stored in the
terminfo structure (Doc2 “explorers”, Docl “rat”, Docl “rate”), the smallest of
these values (Docl) is chosen as the first document to have the degree of similarity
calculated for it. Next considering only the query terms that currently point to
document id Docl (“rate”, “rat”), the degree of similarity of document id Docl is

25

calculated. The RWid; and 0ff; for “explores” does not point to document id Docl
and therefore considering the stored order of the posting list, this posting list does
not contain document id Docl and “explores” does not contribute to the degree of
similarity measure for document id Docl. The first query term considered in the
similarity calculation is “rat”. The weight w; ; for term “rat” in document Docl is
read by querying for the irWeight record id (obtained from the terminfo structure
item), locking the record, traversing to the offset (obtained from the terminfo
structure item) and reading the weight value from the irWeight database record.
This weight value w; ; of “9” is entered into the summation P w;j X wi g along
with the query weight stored in the terminfo structure item w; 4. In addition, the
summation of the 22:1 wf,q is maintained locally. After the weight is read, 0ff; for
the term “rat” is incremented and the new Didg, referencing the new Off; is stored
in the terminfo structure. In this case, Doc2 for “rat” and the separator for “rate”
are stored, e.g., Figure 2.12. After all terms are considered, the two summations, one
for each query term “rat”, “rate” are passed into the final calculation for Equation
2.7. The document id Docl and the degree of similarity are stored in a sorted array.

Posting Lists for Each Term
W_ Posting list separator
explorers | poy [o | [oxo0000000]0 |
rat [Doc1 [] [poc2 [21 || oxoo000000[0 |
'{\ Current posting list item
rate | Docl [15]| OxOO(;‘OOOOOLO | for each term

Document id — Weight

Figure 2.12: Example Degree of Similarity Calculation - After First Document

The same process is used for document id Doc2 for terms “explorers” and “rat”.
When 0ff; within the irWeight record references a zero document id and a zero
weight, then all posting list items for that query term have been processed. When
this occurs for all query terms then the results are displayed, Figure 2.13.

2.7.6 Graphical User Interface (GUI)

A list-box component displays the results on the PalmOS device. The results consist
of the degree of similarity, document id and a snippet of the text of the document '°.

*9As the degree of similarity is calculated with respect to the query for each document in the
collection, the document record id and similarity measure for that document are stored in a de-
scending by similarity ordered array. This array stores the top 200 entries pushing out of the array
the item with lowest degree of similarity each time a new document with a degree of similarity
greater than the 200** member of the array is added. A hard limit of 200 items is imposed. The
storage of only the 200 most relevant (i.e., highest similarity measure) documents acts as a hard
limit placed on the number of items the array can handle and thus an upper limit on the amount of
memory dynamically allocated for the array. A query that returns the 200 most relevant documents
usually provides more results than are browsed or utilized by the user.

26

Posting Lists for Each Term
Posting list separator

explorers | poc) [o || oxo0000000]0 |

rat | Doct 9 | |Doc2 [21 || oxo0000000]0 |
Current posting list itern
for each term

rate [Doc [15]| oxo0000000]0 |

Document id — Weight
Figure 2.13: Example Degree of Similarity Calculation - After Last Document

The document id of each result array item provides the means to query the original
document from the collection and to extract a snippet of the document to display
as part of the query result (Figure 2.14).

(a) (b)
Figure 2.14: PalmIRA: (a) Query; (b) Query Result

Graphical User Interface (GUI) Enhancements

The list-box GUI component that displays the results was changed from loading all
query result items to loading only 10 query result items at one time into the list-box
component to display. Scrolling allows access to any remaining items (in groups of
10) that do not fit within the 10 items currently display within the list-box.

27

The consequences are faster query execution times and lower dynamic memory
cost since only enough memory for 10 items must be allocated for display purposes.
The decrease in time is also a result of the fact that only the snippets of 10 of the
results must be queried from the collection database at one time instead of each
of the possibly 200 query result documents. Since records must still be queried for
each new screen, the query time savings is offset by a negligible increase in time to
update the display as the user browses the query results.

2.8 Efficiency Experiments

The test database is the TIME database from Cornell University’s [7] website. The
data set includes world news articles from 1963. The collection contains 425 docu-
ments for a total size of 1513KB with 83 queries. The data set also contains a list
of queries and their relevance document list.

This experiment converted the database into a format such that it could be
loaded into the Palm platform. This involved modifying the data set so that each
document would fit in a PalmOS record such that documents greater than the
PalmOS record length limit of 64KB were split into multiple records.

The evaluations were completed using a Handspring Visor Deluxe PalmOS v3.1
PDA with a 600 MHZ Intel Pentium ITI Win98SE laptop with 64 MB of RAM and
USB to synchronize with the PDA. Version 4.0 of the conduit development kit was
used along with Metrowerks CodeWarrior for PalmOS 4.0.

Without stemming, the number of distinct terms is 22521. The total time to
synchronize is 71 sec and can be broken down into:

e to download and parse textual data and create sparse matrix: 45 sec
e to calculate weight (w;; = idf; * tf;;): < 1 sec

e to build and transfer to PDA 5 packed term records: 8 sec

e to build and transfer to PDA 10 packed posting list records: 17 sec

A naive approach which did not use a sparse matrix required approximately 635 sec
possibly due to large amounts of swapping required to access the non-sparse matrix.
The total size of the inverted index is 928,293 bytes and can be broken into:

e 285,693 byes for the irTerms index
e 642,600 bytes for the irWeight index

The non-stemmed inverted index is not compressed and the opportunity for reducing
the size with compression is discussed in future work (Section 4.2). Stemming and
increasing the size of the stop-word list such that some of the more popular terms
are not indexed will reduce the index size but analysis of viability of these are left
to future work. The idf; for each term in the irTerms database comprises a total of
90,084 of the 285,693 bytes.

TIME Database query #55 is “suggestion made by president Kennedy for a
NATO nuclear missile fleet manned by international crews”. The above query #55

28

returns 379 documents where each of the 379 documents contains at least one of the
query’s non-stop-word terms.

The total time to retrieve the documents is 7 sec for query #55. The naive
approach required over double the time to complete the query. This is the time
breakdown for query #55:

e find the term location in irTerms database: 1 sec (2 sec before binary search
enhancements Section 2.7.2)

e find the posting lists location in the irWeight file: 2 sec (3 sec before binary
search enhancements Section 2.7.3)

e calculate the similarity and order based on similarity: 4 sec (9 sec before
caching of document id Section 2.7.4)

e display results (first 20 char of Doc): <1 sec (2 sec before GUI enhancements
Section 2.7.6)

This (simplistic) experiment served to show that the approach we chose to imple-
ment the information retrieval framework was a vast improvement over the straight
forward approach, specifically in terms of index building time and storage overhead.
Unfortunately, we were not able to perform an objective comparison with similar
tools (e.g., Intelligentfind [33}, Palm Pirate [41]) since their code is not open and no
further details about their implementation is available. Nevertheless, we believe we
have build a solid framework upon which we can improve by tackling the information
fusion problem (next chapter).

29

Chapter 3

Collection Fusion

3.1 Introduction

Large amounts of research have addressed the issue of attempting to retrieve relevant
documents from a single text collection efficiently and effectively [1]. The previous
chapter describes an implementation for a PDA. An extension to this research area
is how to efficiently and effectively retrieve information from multiple, autonomous
collections.

The basic multiple collection retrieval problem/task involves the following pro-
gression. Given a query, distribute the query to some of the multiple, autonomous
collections and their associated search engine. Independent of the other collections,
each of the multiple collections constructs a list of results for that query. The mul-
tiple results lists are merged using some technique into one combined, global result
list.

The collection selection and collection fusion problems originate from this sit-
uation where there exists multiple, autonomous collections. On the one hand, the
collection selection problem deals with issues involving how to choose which col-
lections will best satisfy the information retrieval query. On the other hand, the
collection fusion problem deals with issues involving how to merge or fuse the re-
sult list retrieved from each collection into one meaningful result list. The latter
approach is explored in this chapter.

Collection selection evaluates the degree of relevance of each collection to the
query. Collections that have a high degree of relevance to the query should contain
documents that are highly relevant to the query. The value of the relevance of the
collection can be utilized to help in the fusion of the result lists or to help to reduce
the number of collections that need to be queried. This is an attempt to prune
the search space and is based on the idea that searching a very large number of
collections is not feasible in terms of resources, user time, and computation time.

Collection fusion (otherwise known as results merging) merges the results from
multiple independent collections and their associated search engine. The goal is
to create one ranked result list from multiple result lists such that the merged
result maximizes the precision/recall ! of documents relevant to the query. That is,
relevant documents should be ranked highly and the non-relevant documents should

!Precision is the percentage of retrieved documents that are relevant and recall is the percentage
of all relevant documents that have been retrieved.

30

be ranked lowly regardless of the document’s originating collection. Each collection
is autonomous in that each collection is associated with a set of documents and
an information retrieval ranking engine. Given a query and a result list from each
of the multiple collections, the “ideal” result is to merge the result lists into one
global result list such that most highly relevant documents rank highly in the global
(merged) result list. It is desirable to favor “good” collections while still allowing
a “good” document from a “bad” collection the opportunity to achieve a high rank
within a merged global result list [5].

Data fusion differs from collection fusion in that data fusion utilizes multiple
search engines with differing retrieval techniques on the same set of data whereas
collection fusion may have multiple different sets of data [38] [31]. One approach
is Democratic Data Fusion [44], where the number of search engines that find the
same document helps to determine the merged rank of that document.

The situation where a document in one collection contains a counterpart that
exists in another collection is not considered in the scope of this research. Duplicate
detection and handling at result list merge time is left to the area of data fusion.

In the next section, similarities and differences between PalmIRA collection fu-
sion and Meta-Search are discussed (Section 3.1.1). After that is a survey of related
work (Section 3.2) including collection fusion approaches and a discussion about why
certain types of approaches could be inappropriate for use in a PDA (Section 3.2.1)
and a survey of some proposed effectiveness measures (Section 3.2.2). Following
that is a description of the collection fusion techniques experimented with includ-
ing the proposed technique (Section 3.3) along with a description of effectiveness
measures including the proposed techniques (Section 3.4). Lastly, the experimental
setup (Section 3.5), the experimental results using Cornell data (Section 3.6) and
the TREC data (Section 3.7) are described.

3.1.1 Similarities and Differences with Meta-Search

Given a query, a Meta-Search engine distributes the query to multiple World Wide
Web (WWW) search engines in an attempt to increase the search space since each
WWW search engine does not have a complete view of the WWW [31]. The meta-
search engine does not itself contain an index or view of the web but may contain
statistics about the various search engines for search engine selection purposes. The
main parts include:

e selection of a set of search engines (also known as databases or collections) to
distribute the query to,

e collection or gathering of certain specific retrieved documents from the search
engines (e.g., first 20 retrieved documents),

e the merging or fusion of results,

e presentation of results.

The PalmIRA retrieval system differs from meta-search in a number of ways.
e Retrieval model (e.g., vector model) between collections:

— PalmIRA - consistent

31

— Meta-Search - cannot guarantee consistency
e Data:
~ PalmIRA - internally stored on a PDA
— Meta-Search - usually WWW data at multiple autonomous locations

e Platform characteristics:

— PalmIRA - constrained (e.g., low memory, limited CPU)
— Meta-Search - high scalability (e.g., distributed systems)

e Communication between collection and result merging algorithms:

— PalmIRA - search engines and associated database accessed directly by
the result merging algorithm without communication since both exist on
the PDA

— Meta-Search - collections accessed over the internet

Search engine statistics (e.g., term frequency) availability to result merging
algorithm:

— PalmIRA - easily accessible since both exist on same PDA

—~ Meta-Search - not easily accessible since they may exist on different com-
puters and requires some level of cooperation (e.g., STARTS [20])

3.1.2 Example Introduction

In the running example used henceforth within this chapter, two independent col-
lections of documents exist: X and Y. Each collection is composed of 10 documents:
X1...X10 for collection X and Y1...Y10 for collection Y.

Given a query, the collections use a vector model based search engine to retrieve
documents. The example uses the query containing terms A, B, C, D. For the
query, the following documents have been judged to be relevant Y3, Y4, Y9. As can
be seen from Fig. 3.1, Document X9 contains the same query terms as Y9 but is
not considered relevant. Document X9 is used as an example of a document that
contains query terms but the query terms are used in a context that does not relate
to the meaning of the query (i.e., randomly mentioned terms). For example, given
a query such as “mouse for an Apple computer”, a document containing “I saw a
mouse on my computer while eating an apple” would be retrieved by the vector
model but should not be counsidered relevant to the query. That is, the query terms
“mouse”, “apple”, “computer” are randomly mentioned in the document such that
the context of their use in the document differs from the context of their intended use
in the query. Similar reasoning should be applied to the other irrelevant documents
that contain query terms.

In order to create a reference or baseline for measuring the effectiveness of col-
lection fusion strategies, a reference collection was created by concatenating the
two independent collections together. A reference result list is created by retrieving
documents from the reference collection (Fig. 3.1).

32

Reference Collection

X1 (X2 |X3 |X4 {X5 [X6 |[X7 [X8 X9 |XIO|Y! |Y2 |Y3 [Y4 [Y5S |Y6 |Y7 |Y8 [Y9 |YIO
A A A B A B,C A,BlAB B.D B,C Collection Documents
D C,DiC D
Y3 1.00/
Yx9 091

Y9 091

Y4 0.82

Y6 0.71

X4 0.60 Ranked Result List

X1 042

X3 042

X6 042

Figure 3.1: Reference collection query results example

The running example uses the vector model for document retrieval. For each
independent collection, the collections are independently queried. The retrieval
model uses no knowledge or parameters from other collections. This yields one
result list for each collection (Fig. 3.2).

Collection X Collection Y
X1 I1X2 [X3 (X4 [X5 |X6 |X7 |X8 [X9 [X10 Y1 |Y2 [Y3 (Y4 |Y5 [Y6 |Y7 |Y8 |Y9 |Y10
A A |AB A B,C A,B|A,B B.D B,C Collection Documents
D C.D|C D

Rewieval Retrieval
Model Query {4, B, C, D} Model

Xl |X3 |X4 [X6 Y6 | Y9 Result List -

A |A JAB[A B,D|B,C Documents retrieved for
D Query {A,B,C, D)

02410241049(024 0.601077

Collection
Fusion

Merged
Result
List

Figure 3.2: Multiple Collection Results Merging (Collection Fusion)

The vector model uses collection dependent features to compute the degree of
similarity between the query and each document. An example of this are documents
X9 and Y9 which both contain the same terms B, C, D. Notice in Fig 3.1, the
reference collection, that documents X9 and Y9 have equivalent degrees of similarity.
But when document X9 and Y9 reside in independent collections, X9 and Y9 do
not have equivalent degrees of similarity (Fig. 3.2). The difference is due to the

33

collection dependent feature known as the inverse document frequency (idf). The
idf may differ for a given term between each collection and helps to produce the
differing degree of similarity.

After each of the independent collections are queried, the next step is to produce
one merged result list out of the two result lists. Collection fusion produces the
merged result list. Section 3.3 describes examples of the round robin (RR), round
robin random (RRR), original weights (raw scores), and Co-occurrence collection
fusion approaches.

3.1.3 Challenges in Collection Fusion

If the query is submitted to search collections X and Y then 2 result lists are cre-
ated. How can the two results lists be merged into one global result list maximizing
effectiveness (i.e., maximizing precision and recall)? To answer these questions, a
number of issues should be considered.

Each collection may be heterogeneous or homogeneous in reference to the topic(s)
covered by the documents within the collection. A set of collections containing a
mixture of the two types of collections is also possible. A set of heterogeneous
collections occurs where each collection represents many topics. Each collection in
the set may contain the same broad range of topics as the other collections. A
set of heterogeneous collections (e.g., where each collection contains stories from a
single different newspaper), may have relevant documents to a given query spread
throughout the set of collections. A set of homogeneous collections occurs where
each collection represents a more focused topic. Each collection in the set may
contain a different focused topic when compared to the other collections (e.g., each
collection contains papers from one specific conference such a SIGIR, SIGKDD,
SIGMOD, etc.). In a set of homogeneous collections, the relevant documents may
appear in only one collection. It is unlikely that all or most of the collections contain
documents relevant to a given query.

Random mentions of query terms within a collection still contribute to the result
when using vector model retrieval. These random mentions of query terms may or
may not produce documents with large degrees of similarity depending on the term
frequency (tf) and inverse document frequency (idf) of the query terms.

Each collection may utilize a different ranking model. Collections may tend
to have terms with inverse document frequency ¢df or other collection dependent
parameter values that vary widely from collection to collection. Even if the same
ranking algorithm is used for each collection, the varying content of each collection
may produce incomparable raw (i.e., unchanged from the retrieval model algorithm)
document scores.

Collections may contain highly dynamic content and any collection fusion tech-
nique must be able to adapt.

How to order/rank the documents as they are merged from various collections?
Round robin and raw scores fusion techniques have drawbacks which will be shown
in Section 3.3. Another type of technique attempts to take the raw document score
and modify the score by a value reflecting the collection the document is from.
Section 3.2 explores the answer to this question by introducing various techniques.

34

3.2 Related Work

This section describes literature published related to the area known as collection
fusion or in other words, result merging. This includes collection fusion methods
(Section 3.2.1) and effectiveness measures that evaluate the collection fusion tech-
niques (Section 3.2.2).

3.2.1 Collection Fusion

According to Voorhees et al. [47], there are two types of merging strategies: inte-
grated and isolated.

Integrated merging strategies allow distributed collection search engines access
to some amount of information from other collections or allow transfer of information
between the search engine and merging engine. The goal of the information is to
help maximize the merged result list effectiveness. This requires dissemination of
some amount of information such as [45], involving a communications protocol such
as STARTS [20].

Isolated merging strategies assume that the the merging strategy can not assume
any more information from the collection than a result list [47]. Search engines for
each collection have no communication with or knowledge of others. There is no
communication between the multiple retrieval engines or use of global algorithm
parameters by the search engines. The collection fusion algorithm must merge the
result lists using only information returned by the collection or information that can
be inferred or gathered based on that information.

Craswell et al. [10] and Meng et al. [31] describe four types of merging strategies
that may be either isolated or integrated. These include:

e rank based - assumes no document scores are available,

e score based - where documents are assigned new scores based on the score
assigned by the collection search engine. The new score may be based on a
collection weighting.

e document content based - where the document’s contents are parsed and anal-
ysed during result merging,

e knowledge discovery of search engine properties - e.g., stemming, retrieval
model, etc.

In the paper by Steidinger [42], the author compared six collection fusion models.
The author chose the six models based on the models requiring no more input
(and sometimes less) then the following: ranked results list of documents with each
document assigned a score, the length of each result list, the number of collections
containing each query term (CF) and number of documents within each collection
containing each query term (DF). Some of the models require only the result lists
as inputs.

¢ Round Robin (RR): uses no prerequisite information and merges the result
lists as the name suggests in an interleaving fashion [14].

35

e Round Robin Random (RRR): requires only the length of the result list.
The merging randomly (biased toward longer result lists) chooses a collection
result list to remove the head of the list and merge [48].

e Round Robin Block (RRB): requires only the length of the result lists.
A block length for each result list is determined by dividing each result list
by the smallest list length. Then in a round robin fashion, the block length
number of result list items from each result list are merged into the global
result list.

e Raw Scores (RS): requires similarity scores for each document. In order
for document scores to be comparable between possibly different collection
retrieval algorithms, the scores have to be normalized [11] [39] to be compara-
ble. For example, one retrieval algorithm returns results between 0-1, another
between 0-100. The model performs a merge-sort to produce the global result
list. Powell et al. [36] use the minimum and maximum scores to normalize
the raw score.

e Normalized Inverse Document Frequency (NIDF): requires document
similarity scores and document frequencies (DF). For a given query term,
the model determines the number of documents from each collection that
contain the query term (DF). This collection fusion model uses the inverse
of the document frequency to determine a normalization factor that attempts
to approximate the effect of the collection dependent parameters used in the
document retrieval model (e.g., vector model’s inverse document frequency
parameter idf). The technique modifies the original document scores with the
normalization factor of the collection the document exists within.

e Collection Weight (CW) or Weighted Scores [5]: requires document
similarity scores, document frequencies and collection frequencies. Based on
a technique described in Callan et al. [5], the technique determines the con-
ditional probability of term r; in collection c; and based on this, the weight
(wf) of term j of collection k is computed. The Zw;-“ over all query terms
produces a collection weight that is multiplied against the original document
score to re-weight each document.

Steidinger concluded, in order of decreasing effectiveness, the the six models
ranked: RRR, RRB, RS, CW, RR, NIDF. The document retrieval involved the MG
system [53] and an Oracle system.

In the paper by Callan et al. [5], the collection fusion algorithm first assigns a
weight to each of the collections and then re-weights the scores of the documents
depending on the collection weight. The idea is to give the new document score
the value the document would have received if each of the separate collections were
merged into one collection.

To rank the collections, the authors use the idea of a “collection retrieval infer-
ence network” or CORI net. The algorithm produces probabilities for the CORI
net based on the INQUERY [4] document retrieval model but with small changes
to some parameters to reflect its use as a collection weighting scheme instead of
a document weighting scheme. The scheme contains two constants: default term
frequency and default belief.

36

Callan et al. compared 4 collection fusion methods using precision and recall.
These include interleaving (i.e., RR), raw scores, normalized scores, and weighted
scores. The normalized scores method used statistics to normalize collection de-
pendent parameters across all collections to create comparable document scores
across all collections. Thus the retrieval engines are not autonomous. The weighed
scores approach is the technique that Steidinger based the CW fusion technique [42]
upon. The document retrieval was done using the INQUERY system. Callan et
al. find that the weighted scores fusion technique produces the top results of the
four techniques (slightly better than the raw score approach). This is in contrast
to Steidinger [42] who found that the raw score approach slightly outperformed the
weighted scores approach. This contradiction is possibly due to the default param-
eters not producing the same results since each author ([42] and [5]) uses differing
portions of the TREC/TIPSTER data.

The Larkey et al. paper [28] investigates the effect of topically organized U.S.
Patents data while using INQUERY’s CORI algorithm [5]. The authors investigate
normalizing the raw scores and a global idf [5] approach using topically organized
data. The authors find that the global idf (as opposed to collection idf) better
approaches the precision of the baseline, centralized collection.

The paper by Yager et al. [54] introduces a modification to the previously
described round robin merging method by Voorhees et al. [48] to produce a deter-
ministic result by removing the randomness. The two approaches are as follows.
First, the collection to contribute its highest ranking un-merged document is the
collection with the highest V; value as calculated by V; = an; — (1 — a)g; where
n; is the number of un-merged documents in collection ¢ and g; is the number of
merged documents from collection ¢. Collection V; score ties are resolved by a round
robin collection fusion approach. The « parameter in techniques described in the
paper is set to 0, 1, 0.5, or learned. The value of o describes what the importance
of the number of un-merged documents is to the final ranking of a document. The
second approach is a proportional approach. This approach calculates the V; value
asV; = %:l-l- where N; is the number of documents originally in that collection. The
collection to contribute its highest ranking un-merged document is the collection
with the highest V; value.

Yuwono et al. [56] measure the “goodness” of each collection and based on the
“goodness”, merge the result lists from multiple collections in their D-Wise search
engine. This approach does not require document scores to be assigned by each
collection. The “goodness” measure is based on the Cue-Validity Variance that
indicates in which of the collections the query terms are concentrated. The Cue-
Validity measures the inter-collection dissimilarity or by how much a query term
distinguishes one collection from another using a document frequency statistic from
each collection. The result merging algorithm uses the relative ranks of documents
and assigns a score to each document based the ordinal of the rank and a distance
measure between consecutively ranked documents in a collection result list. The
distance between two consecutively ranked documents is inversely proportional to
the “goodness” of the collection. Documents from “good” collections have a smaller
distance between each consecutively ranked document than a “bad” collection and
thus tend to be ranked higher in the merged ranking. The result merging assigns
a score to each document in a deterministic manner and then combines result list

37

documents by order of their new score.

In the paper by Calve et al. [6], the authors introduce a method using the ranks
of the documents and the idea of logistical regression to merge the documents.
Logistical regression is used to predict the probability of a document being relevant
to a query based on an independent variable, the ordinal of the rank of a document.
The documents are then sorted and merged based on the level of probability. The
higher ranks (i.e., closer to 1) are given more importance than lower ranks based
on a logarithmic scale. Higher ranking documents are considered to have a higher
difference between them than the low ranking documents.

Voorhees’s research group [48], [47], [49], [43], [50] introduces an idea to learn
the distribution of retrieved documents from the results of past queries and uses
this to determine the number of documents to select from each collection for un-
seen queries. Training queries initialize the approaches. Unseen queries are matched
against the training queries. Three approaches include: Modeling Relevant Docu-
ment Distributions (MRDD), Query Clustering (QC) and Neural Networks.

The techniques presented by Voorhees et al. attempt to retrieve documents from
multiple collections and then merge the result lists independent of each collection’s:
contents, retrieval model, document weighing scheme, and similarity measure.

In MRDD, the model predicts how many top ranked documents to select from
each collection using the K nearest training queries. Training queries are represented
as term frequency weighted vectors (queries may contain multiple instances of a
term). The distribution of the judged relevant documents for each query in each
collection is also stored. Given a query, the K-most similar queries (i.e., nearest
neighbors) based on the cosine vector model similarity measure are found. Next, the
average document distribution is found by calculating the average number of relevant
documents returned from each collection for the K-most similar queries. Then,
the number of documents to select from each collection is calculated based on the
document distribution such that the number of relevant documents existing in the
results selected from each collection is maximized. Finally, documents are merged
based on the round robin random approach using a C-faced (C = # collections) die
biased by the number of documents not yet merged.

In QC, training queries are represented as term frequency weighted vectors
(queries may contain multiple instances of a term). The queries are clustered into
topic areas for each collection via the Ward clustering method. The similarity mea-
sure is the number of documents retrieved in common between the two queries. This
assumes that if two queries retrieve a high number of documents in common then
the two queries are about the same topic. A centroid vector of the cluster represents
the topic area of the cluster and is determined by averaging the query vectors of all
queries in the cluster. Each cluster is also assigned a weight reflecting the average
number of documents retrieved by the members of the cluster for each collection.
For each collection, the weight of the cluster with the closest centroid vector to
the given query is used to determine the number of documents to select from that
collection. The documents are then merged using the round robin technique.

The MRDD and QC techniques approach the precision of the single collection
baseline to within about 10% at low numbers of retrieved documents. The drawback
to these 2 approaches is that the training data may not be sufficient to predict the
number of documents that are relevant in each collection for queries about topics

38

un-related to the training data.

In Towell’s et al. paper [43], a neural network approach is compared to the QC
and MRDD approaches above. A significant decrease in performance is found. The
neural network uses the term frequency weighted vectors as input.

Baumgarten [2] introduces a model based on the extension of the probability
ranking principle for non-multiple collection information retrieval. This extension
includes the collection selection and collection fusion steps of multiple collection
information retrieval. The approach is a non-heuristic framework. The idea is to
probabilistically rank the documents from multiple collections. The documents are
ranked in decreasing order of probability of being relevant to the query. The density
of the probability distribution selects the collections. Separated from each collection
search engine, a broker site ranks each collection and merges the result lists from the
selected collections. The broker uses statistics from the query and each collection
to rank the documents.

In [14], [15], [40], Fox et al. used document re-scoring schemes based on the
“goodness” of the collection where the “goodness” is measured by an aggregation
of the result list document scores from each collection and then merging the docu-
ments based on the new document scores. The aggregation represents the result list
documents scores as a single value such that the value measures the “goodness” of
the collection. The result list aggregations include:

e CombMAX - maximum document score in each result list
e CombMIN - minimum document score in each result list

CombSUM - summation of document scores in each result list

CombANZ - average of document scores in each result list

CombMED - median document score in each result list

The CombSUM approach shows the best results.

In the paper by Rasolofo et al. [37], the authors introduce a merging strategy
that is a product of the collection score and the document score. The collection
score is based on the length of the result list from each collection.

Yu et al. [55] introduce a collection fusion approach that uses the collection
assigned document score of the highest ranking un-merged document from each
collection result list to determine the next document to merge. The collection to
contribute the next document to merge is determined by estimating the similar-
ity between the highest ranking document of each collection and the query. The
similarity is based on the document frequency of each query term.

In the Profusion multiple collection retrieval engine [19], a query is submitted
only to collections that have demonstrated the ability to produce good results from
past queries of the same topic. This is accomplished using training data to create a
taxonomy of topics, create a dictionary associating words with topic(s) and calculate
a confidence factor for each search engine given a topic. Given a query, the query
is broken into topic(s) via a dictionary and then the query is passed on to the
best search engines based on the confidence factor or “goodness” with respect to
the query topic(s). The result merging is based on a re-weighting scheme involving

39

multiplying the document score with the confidence factor of the collection and then
merging based on the new document scores.

The paper by Zhu et al. [57], involves re-scoring the retrieved HTML documents
based on their current score and the quality of the document. The quality metrics
experimented with individually or in combination include:

e currency - modification date
e availability - ratio of broken to total number of links

e information-to-noise ratio - ratio of the number of tokens to the size of the
document

e authority - from Yahoo Internet Life reviews
e popularity - number of incoming links
e cohesiveness - internal document similarity

The conclusion of the paper stated that document scoring based on the document
score and the popularity produced the highest precision.

Gravano and Garcia-Molina [22] introduce a method to compute new scores
based on meta-data about the documents returned by the search engines. The merg-
ing algorithm does not use the document scores. The meta-data describes features
or attributes of each document. Using the meta-data, the algorithm attempts to
extract the best matches from the result lists instead of returning the entire contents
from each result list to the user. The scoring algorithms are considered manageable
if the original score and the new score based on the meta-data are reasonably close,
then not all documents need to be presented to the user.

In Inquirus [29], the result merging is based on the content of the documents
contained within the result lists of each collection. The broker in charge of the
result merging downloads each document and analyses them based on the query
terms. The downloading allows the context of the query terms to be discovered,
analysed and displayed. This technique merges the multiple result lists by creating
a new score for the documents. The new document score is based on: the number of
query terms, the number of instances of each query term, and the minimum distance
between the i** and j** query terms. The distance is measured in characters.

In the work by Craswell et al. [10] [9], the authors introduce the idea of using
a sum of the feature distances to calculate a new document score. The features are
terms. The calculation for each is based on: the distance from the beginning of the
document to the term, the distance between current and previous terms and the
document frequency of a term. Also, the authors experiment with the idea of using
reference statistics or a sample of 10% of the documents in a collection instead of
using statistics from the entire collection (e.g., document frequency of a term).

In the paper by Meng et al. [32], the authors develop a set of rules to detect
properties of the underlying collection’s search engine. The knowledge gained is
then used to increase the effectiveness of collection selection, document selection
and result merging steps. The technique [30] works by submitting strategically
developed probe queries to each collection and analysing the returned documents. A
knowledge-base is developed consisting of characteristics of various, documented in

40

the literature, approaches involving: indexing methods (e.g., stemming), document
term weighting functions, query term weighting functions, and similarity functions.
The team developed strategies for determining what if any stemming is used, what
if any stop-words are used, strategically designed queries to attempt to discover the
functions utilized for query and document term weighting and degree of similarity
calculation. With respect to result merging, any knowledge discovered may help
to adjust local or compute new document scores to make document scores more
comparable between collections.

The paper by Viles et al. [45] involves a distributed collection information re-
trieval system where each site knows some portion of all other sites’ information
(i.e., there does not exist a centralized meta-data repository as in [48]). Information
is disseminated to other sites to improve retrieval effectiveness relative to the situa-
tion where no information is shared. The shared information is known as collection
wide information (CWI). The purpose is to create a consistent, collection wide 7df.
The authors introduce two issues:

e How to circulate CWI? (e.g., STARTS [20])

e At what intensity should CWI be circulated? (main issue of this paper). E.g.,
A site knows about its own documents and 25% of the documents at other
sites (i.e., “lazy dissemination”)

With “lazy dissemination”, the authors argue that the insertion of a document
or group of documents may not change the CWI enough to influence overall effec-
tiveness. An increased level of dissemination is required when the documents are
allocated to sites based on content as opposed to random allocation. Almost no dif-
ference in precision vs. recall as dissemination levels change when using a random
document allocation (i.e., heterogeneous collections) is displayed.

3.2.2 Effectiveness Measures

The most common effectiveness measures used to evaluate collection fusion are based
on precision and recall. Precision is the percentage of the retrieved documents judged
relevant to a query. Recall is the percentage of the judged relevant documents that
have been retrieved.

The three main approaches as described in [1] are:

e average precision at the 11 standard levels of recall (i.e., 0%, 10%, ... 100%
levels of recall).

e average precision at document cut-offs (i.e., after n non-relevant or relevant
documents have been seen).

e average recall at document cut-offs.

In the paper by Yuwono et al. [56], the effectiveness is evaluated by comparing
the the ¢f x idf scores of the documents in the merged result list with the scores of
the documents in the single collection run.

Callan et al. [5] assumed that given a query, the collection with the most docu-
ments judged relevant is “ideally” ranked the highest. The measure used the mean

41

square error between the collection rankings of their collection weighting algorithm
and a ranking based on the number of judged relevant documents from each collec-
tion of the TREC data-set (i.e., “ideal” ranking).

Gravano et al. [23] compare their estimated database ranks with the “ideal
ranks” (baseline). The 4 measures are:

e sum similarity measures of a given collection result set members above a given
threshold

e number of documents of a given collection result set above a given threshold

e sum similarity measures of a given collection result set members that appear in
the set of the top K highest similarity measure documents from all collections.

e number of documents of a given collection result set members that appear in
the set of the top K highest similarity measure documents from all collections.

Methods of effectiveness measuring for collection selection are described in {18]
and [17].

3.3 Reference Collection Fusion Techniques

This section describes in more detail the four collection fusion techniques used in the
experiments of Section 3.6 and 3.7. Considering the retrieval algorithm described in
Chapter 2, the characteristics of each collection fusion technique are described using
input parameters/data, complexity, memory required, weaknesses, and strengths.

For a collection fusion technique to be appropriate for use in a PDA, it must
be efficient given the PDA constraints. Techniques that examine the contents of
the documents in the result list (e.g., [29] and [10]) incur a high processing cost.
Techniques that utilize a learning approach using training data (e.g., [48], [47], [49],
[43], [50], and [19]) suffer an increased storage requirement for the learned informa-
tion and a more calculation intensive fusion process using the learned information.
Other techniques require statistics to be gathered or stored (e.g., [6], [56] and [5])
which incur a processing cost and/or a storage cost on the PDA. And still other
techniques require extra data about the documents that is not gathered by PalmIRA
(e.g., HTML links [57], document meta-data other than the inverted index [22] and
non-vector retrieval models [2]). The collection fusion approach must minimize the
storage and processing cost. This leaves some of the simpler score and ranked based
approaches (e.g., [42], [55], [37], [14] and [54]) of which some are experimented with
in following sections.

3.3.1 Round Robin (RR) Fusion

This approach merges one result list document from each collection in one round
and then merges the next un-merged documents in additional rounds ([14]). This
interleaves the documents from each collection.

The algorithm characteristics include:

¢ Input: required input into the algorithm is a ranked result list from each
collection.

42

e Complexity: linear O(N) where N is the sum of the size of result list from each
of the |C| collections. The |C] is the number of collections.

e Memory: constant.

e Weaknesses: assumes relevant documents are spread approximately uniformly
(i.e., set of heterogeneous collections) between the collections and thus the
result lists. Although the technique is simple, each collection is modeled as
contributing equal number and quality of results to the global result list. RR
might boost the document ranking of a document from a irrelevant collection
in a collection set.

e Strength: independent of the retrieval model since no parameters are required.

Example: In the round robin approach, the highest ranking but yet un-merged
document is removed from one collection’s result list (X9) and then from another
collection (Y3) in a round robin fashion until all documents in the result lists are
merged. Figure 3.3 displays the final ranked result list. Notice that this will produce
a low precision if relevant documents are not spread evenly between each collection.

Collection X Collection Y
X1l |X2 (X3 [X4 [X5 1X6 (X7 |X8 |X9 |X10 Y1 (Y2 Y3 {Y4 |Y5 |Y6 [YT |Y8 {Y9 |[YIO
A A |AB A B.C A,BIAB B.D B,C Collection Documents
D C,D|C D
X9 0.97 Y3 100
X4 049 Y4 088 Documents retrieved for
X1 0.24 Y8 077 Query {A. B, C. D}
X3 0.24 Y6 .60
X6 0.24
X9 0.97
¥3 140
X4 0.49
¥4.088 Ranked Result List
X1 024
Y8 077
X3 0.24
Y6 0.60
X6 0.24

Figure 3.3: Collection Fusion - Round Robin

3.3.2 Round Robin Random (RRR) Fusion

The RRR technique proceeds very much like the RR technique in that the fusion
operates by each round choosing a document to merge. The document to merge
is chosen by rolling a |C| faced die biased by the number of un-merged documents
remaining in each result list ([42], [48]). |C]| is the number of collections. A random
number is chosen between 1 and the total number of un-merged documents. If the
documents are numbered between 1 and the number of un-merged documents, the
collection which contains that un-merged document is chosen as the next collection

43

to contribute its highest ranking document to the global result list. E.g., documents
numbered 1 to z are the 1% to z!* un-merged documents existing in collection 1
and documents numbered z + 1 to z + y are the (z + 1) to (z + y)** un-merged
documents existing in collection 2 , and so on. If random number =+ 3 is generated,
the highest ranking un-merged document from collection 2 is the next to be merged.
For the following experiments, the random seed is set to the number of documents
retrieved.
The algorithm characteristics include:

e Input: required input into the algorithm is a result list from each collection
and the size of each result list.

e Complexity: linear O(N) where N is the sum of the size of result list from each
of the |C| collections. The |C] is the number of collections.

e Memory: integer data types to store number of un-merged documents in each
result list.

e Weakness: assumes a random distribution of relevant documents between the
collections and thus the result lists. Relevant documents assumed to have a
high probability of being in a larger result list.

e Strength: independent of the retrieval model since only the length of the result
lists are required.

Example: In the round robin random approach, the probability of a given collec-

tion being chosen to contribute its currently highest ranking, un-merged document
is biased toward the number of un-merged documents in each collection. In the first
round (Fig 3.4), X9 is chosen to be merged since collection X contains the largest
list of un-merged documents and thus has the highest probability of being merged.
In the second round, each collection has the same number of un-merged documents
(e.g., 4) and therefore the equivalent probability. In this round by chance collection
X is chosen and the highest ranking un-merged document in collection X (X4) is
merged. In the third round, document Y3 is merged. There are other orderings pos-
sible do to randomness and the changing probability as the number of un-merged
documents in each result list changes. There is bias toward randomly choosing the
the larger list of un-merged documents and this example illustrates the bias. This
does not always lead to the optimum merging since in this case only documents from
collection Y are considered relevant to the query.

3.3.3 Original Weights (Raw Score) Fusion

This approach merges the collection result lists into one global result list sorted
based on the score of the documents ([42], [11]). The merging works like a merge-
sort based on the score of the document.

The algorithm characteristics include:

e Input: required input into the algorithm is a result list from each collection
where the result list contains a score for each document.

44

Collection X Collection Y

X1 |X2 (X3 |X4 |X5 |X6 | X7 | X8 |X9 |X10 Y (Y2 Y3 |Y4 {YS [Y6 |Y7 |YB Y9 |YIO
A A AB A B, C A BIAB B,D B,C Collection Documents
D CDiC D
X9 0.97 ¥3 146
X4 049 ¥4 08| gx“rym(":“sB"“geg"f for
X1 0.24 Y9 071
X3 024 Y6 0.60
X6 0.24
X9 0.97
X4 0.49
¥3 Lon
Y4 .88 Ranked Result List
X1 024
Y9 477
X3 024
Y& 0.60
X6 0.24

Figure 3.4: Collection Fusion - Round Robin Random

Complexity: to merge result lists already sorted by score: O(N x |C|) where
|C| is the number of collections. This is required to find the largest score
not yet merged into the global result list from the sorted result list of each
collection.

Memory: Constant.

Weakness: requires comparability of document scores between each collection
result list. Some retrieval models do not assign scores to documents, others
assign scores over different ranges (e.g., 0.0 - 1.0 or 0 - 100%) or assign scores
that need to be normalized to be comparable. The retrieval models may
differ for each collection and may use collection dependent parameters causing
different documents to receive differing rankings based on the contents of the
collection (e.g., inverse document frequency).

Strength: simple as in requires a score for each document in the result list
from each collection.

Example: In the original weights (raw score) approach, the documents are

merged using a merge-sort like approach based on the score (i.e., degree of similarity)
of the document (Fig 3.5). As a result, document Y3 is merged first since it has the
highest score, followed by X9, Y4, and so on. A random mention of terms C and D
in collection X cause document X9 to have a high degree of similarity even though
X9 is not in the list of relevant documents. i.e., the fused rankings become skewed
by collection dependent features in the retrieval model and the skew causes X9 to
be ranked higher than the other relevant documents (Y4, Y9, and Y6). Since X9
and Y9 contain the same terms (B, C, and D) then they should be ranked next to

each other in the context of this approach. In this case, X9 is ranked second while
Y9 is ranked fourth.

45

Cotllection X Coliection Y

X1 [X2 |X3 [X4 |X5 X6 |XT7 [X8 {X9 {X10 Y1 |Y2 (Y3 |Y4 |¥Y5 |Y6 |Y7 {Y8 [Y9 [YIO
A A AB A B,C A,BjA B B,D B,.C Collection Documents
D C.DiC D
X9 0.97 ¥3 100 R
X4 049 Yd:(iE& gsce:ym{exfsﬂr’egeg(;d for
X1 D.24 Ye 0.7
X3 0.24 Y6 060
X6 0.24
¥3 100
X9 097
¥4 .88
¥4 077 Ranked Result List
Y6 060
X4 049
X1 024
X3 024
X6 0.24

Figure 3.5: Collection Fusion - Original Weights (Raw scores)

3.3.4 Co-occurrence Collection Fusion - Our Contribution

Co-occurrence fusion attempts to accomplish collection fusion by re-weighting the
score of each result list document based on the “goodness” of the collection and
then merge and sort them by the new scores to create a merged result list. This
“goodness” of the collection may be useful in a collection selection approach but
this is not the focus of this research.

The heuristic that governs the “goodness” of a collection is based on the level of
co-occurrence of query terms within documents d; of collection Cy. A collection that
contains a large number of documents containing a large portion of the query terms
is considered better than a collection that contains a small number of documents
with a small portion of the query terms.

The vector model represents document d; and query ¢ as vectors cl_; and ¢. Each
dimension in the vector represents one of ¢ indexed terms. Each dimension 7 is non-
zero in the document/query vector if term i is contained within the document/query.
The number of terms from query g that co-occur in document d; within collection
Cl, is the number of times that term ¢ represented by dimension ¢ in both a@ and ¢
is non-zero for ¢ € {1...t}.

More formally, given ¢ terms and N document vectors from collection Cy, ¢ is
represented as a matrix [g];x+ and all N documents in collection Cj, are represented
as a matrix [w; j]nx¢. Each row represents the weight w;,j of term k; in document
dj for i = {1...t}. The co-occurrence degree of Cj with respect to query q is:

lg" x b(Ci)l11

where

fl

1if wy) #0
H(Clizy) { i W) 7

0 otherwise

46

For example if C}, is collection Y from Figure 3.6:

0.70 0.40 0.52 0.52
0.70 0.40 0.52 0.00

Ce=1000 040 000 052
0.00 0.40 0.52 0.52
111 1
1110
bC =19 1 0 1
011 1
g=(1 11 1)
1 111 1 4
1 1110 3
t — —
¢xbC)=111%lo 10 1|72
1 01 1 1 3

l¢* x b(Ci)|11 = 12

Equation 3.1 calculates the “goodness” (W(c, 4)) of collection C given query g
and the result list of N documents produced by the query. The value is normalized
by the summation of the degree of co-occurrence over all the collections such that

%1 w, Ce.q) €quals 1 (where W, oy is the weight of collection Cy).
k=1 (kyq) (k;q)

Wicy. = lg* x b(Cr)|11
PO Sl gt x b(Ch)a

If the query contains a single term, then the “goodness” is based on the number
of documents in the result list. If only one collection is being queried, then the weight
of the collection is considered to be 1 and the document scores remain unchanged.

After the collection weight (“goodness”) is calculated for each collection, the
result lists for each collection are re-weighted. The re-weighting of the degree of
similarity of document d; in collection C} to query g is a product of the original
document score (simg; c,) and the collection weight (W(c, o)

(3.1)

SimajackaQ) = $UM(d;,Cp,0) X W(Choa) (3.2)

The new degree of similarity (sz’m&j Ch, q)) of each document reflects the “good-
ness” of the collection that the document was from. The degree of similarity can
also be considered the score or weight of the document. The documents from each
collection result list are then merge-sorted into one merged/fused result list based
on the new degree of similarity.

The algorithm characteristics include:

e Input: required input into the algorithm is a result list from each collection
where the result list contains a score for each document and the level of co-
occurrence of the query terms within each collection.

e Complexity:

47

— to calculate the sum of degree of the query term co-occurrence, the calcu-
lation uses elements as they are accessed by the vector model calculation.
In the algorithm described in Section 2.7, a small addition is made to keep
track of the sum of the level of co-occurrence of query terms as the vector
model is being calculated for each document. This step is a simple sum-
mation that occurs during the calculation of the vector model for each
document, therefore no additional complexity.

— to re-weight documents: O(N).

— to merge results lists sorted by weight: O(N x |C|) where |C| is the
number of collections. This is required to find the largest weight not
yet merged into the global result list from the sorted result lists of each
collection.

e Memory: One double data type for each collection to hold the sum of the
degree of query term co-occurrence.

e Weakness: requires access to some form of information to determine the query
term co-occurrence in each document or a single value of query term co-
occurrence for the entire collection from the retrieval model. However, in
the case of PalmIRA the inverted index for each collection is stored locally on
the PDA. The number of query terms present in a document is determined
during the inverted list access by the vector model calculation. The sum of
query term co-occurrence for each collection is easily transferred as input into
the collection fusion model.

e Strength: more importance is given to collections consisting of documents con-
taining many of the query terms. The paper by Gravano [21] shows that using
phrase information as part of a collection selection index using inference net-
works increases effectiveness of result merging. The difference between these
techniques is that in this technique the term must co-occur in the document
while Gravano suggested consecutive co-occurrence of terms in the format of
a phrase.

Example: In the Co-occurrence fusion approach (Fig. 3.6), the document scores
are re-weighted based on a weight assigned to the collection in which the document
exists. After the query (“A B C D”) operation on a collection, a result list and
sum of the level of co-occurrence is passed on to the collection fusion algorithm. For
collection X, the level of co-occurrence is 8 based on 3 documents containing 1 query
term, 1 document containing 2 query terms and 1 document containing 3 query terms
(3x1+4+1x2+1x3=_8). For collection Y, the level of co-occurrence is 12 based
on 1 documents containing 2 query term, 2 document containing 3 query terms and
1 document containing 4 query terms (1 x 2+2 x 3+ 1 x 4 = 12). So collection X
passes a result list and the value 8 while collection Y passes a result list and the value
12 to the collection fusion algorithm. The Co-occurrence fusion algorithm produces
the denominator or normalization factor as the sum of the numerators (84+12=20).
The collection weight of collection X is 0.4 (iﬁ—l"'—l;o?;“é = %). For collection Y,
the weight is 0.6 or (1x2+2x3+1x4 — 12} The documents from the result lists are
then re-weighted depending on the “goodness” of the collection. The document

48

score of Y9 is originally 0.77 and after re-weighting becomes 0.46 (0.6 x 0.77). The
two result lists are then merged, sorted by the new document score.

This approach gives a higher weight to documents from collection Y and thus
the documents from collection Y are ranked higher than documents from collection
X. For X9, the document is ranked fourth as opposed to the previous approach
that ranked the document second (Figure 3.5). The previous technique ranked X9
higher (second) and since X9 is not considered relevant, Co-occurrence fusion shows
an improvement by ranking the document fourth. Co-occurrence fusion shows an
improvement over previous techniques since it ranks the relevant documents higher
in the result list.

Collection X Collection Y
Xl {X2 {X3 |X4 [X5 |X6 [X7 [X8 |X9 [X10 Y1 (Y2 §Y3 |Y4 [YS Yo [Y?7 (Y8 |Y9 |YIO
A A |AB A B,C AB|AB B,D B,C Collection Documents
D C,D|C D
X9 097 ¥3 100
X4 049 4 088 Documents retrieved for
S £ Query {A, B, C, D}
X1 6.24 Y9 0,77
X3 024 Y6 50
X6 0.24
04 Goodness Factor 0.6 —
X9 039 ¥3 060 Result List Documents
X4 0.20 ¥4 w(‘}&i Degree of Similarity
X1 0.10 ¥4 046 After Re~weigthed
X3 0.10 ¥6 1136
X6 0.10
Y3040
¥4 053
¥9 Gdo
X9 0.39
Y6 0.30 Ranked Result List
X4 020
X1 0.10
X3 0.10
X6 0.10

Figure 3.6: Collection Fusion - Co-occurrence Fusion

3.4 Proposed Effectiveness Measures

Section 3.2.2 describes attempts to measure the effectiveness of merging techniques
in the surveyed literature. The difference in the proposed effectiveness measures is
that they attempt to show how on average the rank of the documents differs between
the baseline reference and the collection fusion method. The effectiveness measures
based on precision show only the tendency of relevant documents to rank above
irrelevant documents. These measures lack the ability to show whether or not a high
ranking document in the reference result list is handicapped by the collection fusion
technique and as a result receives a low rank. The following proposed measures
attempt to provide insight into how the ranks of documents after collection fusion

49

compare to a baseline.

This section proposes 4 new measures that attempt to determine effectiveness
of a collection fusion technique. Given a query, the measures are based on the
difference in document rank between the result list of a collection fusion technique
and that of the reference collection. The difference measures are calculated relative
to the reference collection. The reference collection consists of all of the individual
collections concatenated together to form one collection and then indexed (Section
3.1.2). The assumption is that the result list produced from the reference collection
is the best answer to that query. The following measures attempt to show how much
each collection fusion technique differs from the reference collection.

None of the difference based measures include an ordering penalty. Intra-ordering
does not penalize for the various possible orderings of a subset of consecutively
ranked documents with equal weights in the reference collection result list. Le.,
documents are moved around in a block of documents with the same weight to
minimize the difference of various orderings.

3.4.1 Rank Difference (dR)

The rank difference (dR) measure describes by how much a given collection fusion
result list document differs in rank compared to that document in the reference col-
lection result list. For a given query, this calculates the difference in rank position
between the result list of a collection fusion technique and the result list of the ref-
erence collection of a given document. Equation 3.3 is calculated over N documents
in the result list of the fusion technique and an un-normalized average is produced
for each query ¢. No normalization occurs thus allowing analysis of how far out the
rank ordinals are on average for the retrieved documents. A value of dR(q) = 0.0
indicates that on average the documents are ranked at equivalent ordinals when
comparing the reference and the fusion result lists, i.e., the smaller dR(q), the bet-
ter. The dR(q) is averaged over all @ queries (Equation 3.4) to produce a single
value for the fusion technique. Formally we have:

o iy ~ Flag)

dR(q) = ——2 3.3
W) =3 =" (3.3)
< dR(q)
dR:Z——a—— (3.4)
=]

where given a query g, P(”d, ?) is the position of document d in the result list of the
reference collection r, P(cd’q) is the position of document d in the result list of the
collection fusion technique ¢ and N, is the size of the result list.

Example: In the dR measure, for each document in the collection fusion result
list (Fig. 3.7(a)), calculate the absolute value of the difference in position of the
corresponding document in the reference collection result list. Document Y3 is first
in both result lists yielding a difference of 0. Document Y4 is second compared to
fourth yielding a difference of 2. Continuing to document X9, documents X9 and Y9
have the same score in the reference result list. The measure assumes that the order
of X9 and Y9 could be reversed and therefore the measure yields a difference of 1

50

(instead of the absolute value of -2). This ordering independence holds for the other
three measures presented next as well. Averaging of the resulting 9 values yields
(3/9) 0.33 for the collection given the query. Therefore, on average documents are
0.33 of an ordinal out of position. In the case of Fig 3.7(b), a larger value shows
that the RRR fusion is not as effective.

Co~occurrence RRR
Reference Collection Collection Fusion Reference Collection Collection Fusion
Result List Result List Result List Result List
Y3 1.00 01vy3 0.60 Y3 1.00 X9 0.97
X9 0.91 \/ Y4 0.53 X9 091 44 X4 0.49
1]
Y9 0.91 Y9 0.46 Y9 091 Y3 1.00
Y4 0.82 — X9 0.39 Y4 0.82 \ 0fvs 0.88
Y6 0.71 0 ye 0.36 Y6 0.71 21%1 024
X4 0.60 04 x4 020 X4 0.60 3Y9 0.77
X1 0.42 01 %1 0.10 X1 0.42 X3 0.24
X3 0.42 04 x3 0.10 X3 0.42 3~ Y6 0.60
X6 0.42 04 x6 0.10 X6 0.42 - 04 %6 0.24
dR(q) =0.33 dR(q) = 1.67
(a) (b)

Figure 3.7: Rank Difference Measure (dR) (a) Co-occurrence (b) RRR

3.4.2 Rank Difference of only relevant documents (dRR)

Equation 3.5 is a slight modification of Equation 3.3. Only the relevant documents
contribute to the value for a query and the absolute value of the difference is not used.
The measure expresses how the relevant documents in the collection fusion technique
result list are ranked with respect to the reference result list. This measure captures
how the collection fusion technique treats the relevant documents by tracking the
rank of relevant documents with respect to the baseline. In Equation 3.5 a positive
value indicates that the relevant document (d) is ranked higher (i.e., closer to first)
in the collection fusion result list than that document in the reference collection
result list. A negative value indicates the opposite. Hence the larger (positive) the
dRR(q) value, the better the answer.

Equation 3.5 is averaged over all N rel relevant documents d, in the collection
fusion result list. No normalization occurs thus allowing analysis of how far out the
rank ordinals are on average for the retrieved relevant documents. The dRR(q) is
averaged over all Q) queries (Equation 3.6) to produce a single value for the fusion
technique. That is:

= (Pla,.0) ~ Pla,.0)
dRR(q) = Y i (3.5)
d=1

ol

Q
dRR = @g__@_} (3.6)
g=1

where pfdr g is the position of a relevant document d, in the result list of the reference
collection and pfdr a0 is the position of that relevant document d, in the result list
of the collection fusion technique.

Example: In the dRR measure, only the relevant documents in the collection
fusion result list are considered. In the case of Fig 3.8(a), these documents are
Y3, Y4, and Y9 (as specified earlier). For each of the relevant documents, the
difference in position is calculated. For Y3 and Y9 this is 0. For Y4, this is +2. The
measure retains the sign of the value (i.e., no absolute value). Averaging over the 3
values yields +0.67 for the collection given the query. The positive value shows that
the relevant documents are ranked 0.67 ordinals higher on average in the collection
fusion result list than in the reference result list. In the case of Fig 3.8(b), a negative
value shows that on average relevant documents are ranked lower. Therefore, the
RRR fusion is not as effective.

Co~occurrence RRR
Reference Collection Collection Fusion Reference Collection Collection Fusion
Result List Result List Result List Result List
Y3 1.00 01v3 0.60 Y3 1.00 X9 0.97
X9 091 2-1v4 0.53 X9 091 \ X4 049
0 -
Y9 0.91 Y9 0.46 Y9 091 Y3 1.00
Y4 0.82 / X9 0.39 Y4 0.82 \ 01v4 0.88
Y6 0.71 Y6 0.36 Y6 0.71 3] X1 0.24
X4 0.60 X4 0.20 X4 0.60 Y9 0.77
X1 0.42 X1 0.10 X1 0.42 X3 0.24
X3 0.42 X3 0.10 X3 0.42 Y6 0.60
X6 0.42 X6 0.10 X6 0.42 X6 0.24
dRR(q) =0.67 dRR(q) =-1.67
(a) (b)

Figure 3.8: Rank Difference Measure - Relevant Documents Only (dRR) (a) Co-
occurrence (b) RRR

3.4.3 Weighted Rank Difference (dWR)

Another measure is the weighted rank difference (dW R) measure which shows by
how much a given collection fusion result list document differs in rank compared to
that document in the reference collection result list. This measure also considers
that if the document has a large weight in the reference collection result list then it
is more important for the collection fusion technique to rank the document in the
same position since the absolute value is used. Equation 3.7 is calculated over N

52

documents in the result list of the fusion technique for a given query and an average
is produced, dW R(q) (Equation 3.8). A value of 0.0 indicates that on average the
documents are ranked at equivalent ordinals when comparing the reference and the
fusion result lists. Hence the larger the dW R(q) value, the better the answer. The
dW R(q) is averaged over all queries (Equation 3.9) to produce a single value for the
fusion technique. More formally:

1Plag) — Flag! X Wiag

AW R(d, q) =) 3.7
(9 maX‘I(IP{d,q) (dq}l X WdtI)) (-0

N
dWR = Z de 2 (3.9)

where W[, .y is the degree of similarity of a document d in the reference collection
result list and max, is the maximum value over the result list for query ¢q. The result
is normalized to be between 0.0 and 1.0.

Example: In the dW R measure (Fig. 3.9(a)), the difference in rank and the
weight of that document in the reference result list are considered. The measure
assigns a value of 0 to Y3 since there is no positional difference in rank (e.g., (1 —
1) x 1.00). For Y4, the positional difference is 2 and a weight of 0.82 producing 1.64.
For X9, the positional difference is 1 (no order penalty, absolute value) and a weight
of 0.91 producing 0.91. Each value is then normalized by the maximum value in the
set of documents (1.64 in this case) producing 1.0 for Y4 and 0.55 for X9. After
averaging over the 9 values, 0.17 is the value for the collection given the query. In
the case of Fig 3.9(b), a larger value shows that the reference documents with high
scores tend to be more out of position than in Co-occurrence fusion. Therefore,
RRR fusion is not as effective.

3.4.4 Weighted Rank Difference of only relevant documents
(d(WRR)

Equation 3.10 is a slight modification of Equation 3.7. Only the relevant documents
contribute to the value for a query and the absolute value of the difference is not
used. The measure expresses how the relevant documents are ranked with respect
to the reference result list by giving more weight to documents with a higher score
when they are out of order in a positive or negative direction. In Equation 3.10 a
positive value indicates that the relevant document (d,) is ranked higher (i.e., closer
to first) in the collection fusion result list. A negative value indicates the opposite.
Hence the larger (positive) the dW RR(q) value, the better the answer,

Equation 3.10 is averaged over all N™® of the relevant documents d, in the
collection fusion result list for a given query producing dW RR(q) (Equation 3.11).
The dW R(q) is averaged over all queries (Equation 3.12) to produce a single value
for the fusion technique. More formally:

dW RR(d,,q) = Wlarg) ~ Plarg) X “farg) (3.10)
maqu(|p€d7'aq) - pfd7‘7q)] . w,(dr ’q))

53

Co—occurrence RRR

Reference Collection Collection Fusion Reference Collection Collection Fusion
Result List Result List Result List Result List

0 033
Y3 1.00 Y3 0.60 Y3 1.00 X9 097
X9 0.91 \/L Y4 0.53 X9 0.91 0881 %4 0.49

0
Y9 0.91 Y9 0.46 Y9 0.91 Y3 1.00

/\Q
Y4 0.82 X9 0.39 Y4 0.82 Y4 0.88
Y6 0.71 0! v6 036 Y6 0.71 X1 024
X4 0.60 04x4 020 X4 0.60 Y9 0.77
X1 0.42 0 %1 0.10 X1 042 X3 0.24
X3 0.42 04 %3 0.10 X3 0.42 Y6 0.60
X6 0.42 0 x6 0.10 X6 0.42 X6 0.24
dRW(q) = 0.17 dWR(q) = 0.45
(a) (b)

Figure 3.9: Weighted Rank Difference Measure (dW R) (a) Co-occurrence (b) RRR

N aw R(d,,)

dWRR(q) = el (3.11)
dW RR = Z de() (3.12)

g=1
where wi, 2 is the degree of similarity of a relevant document d,. in the reference

collection result list and max, is the maximum value over the result list for query
g. The result is normalized to be between -1.0 and 1.0.

Example: In the dWRR, only the relevant documents in the collection fusion
result list are considered (e.x. Y3, Y4, and Y9) in Fig. 3.10(a). The value is 0 for
Y3 and Y9 since the positional difference is 0. For Y4, the position difference is
2 (no absolute value) and a weight of 0.82 yielding 1.64. This value is normalized
by the maximum of the absolute value of the value contributed by each document
(0, 1.64, 0). This produces a value of 1 (e.g }gi-—l) from Y4. After averaging
over the 3 values, 0.33 is the value for the collection given the query. This yields
a high positive average value if on average highly ranked relevant documents with
large scores are ranked higher in the merged result list as opposed to the reference
baseline. In this case the merged result list produces a higher ranking for the relevant
documents than the baseline. In the case of Fig 3.10(b), a negative value shows that
the relevant documents with large weights are ranked lower and thus RRR fusion is
not as effective.

54

Co-occurrence RRR

Reference Collection Collection Fusion Reference Collection Collection Fusion
Result List Result List Result List Result List
Y3 1.00 04v3 0.60 Y3 1.00 X9 0.97
X9 091 L1v4 053 X9 091 -0.73 | X4 0.49
0
Y9 0.91 Y9 0.46 Y9 0.91 Y3 1.00
G p—— T~ 0.00
Y4 0.82 X9 0.39 Y4 0.82 Y4 0.88
Y6 0.71 Y6 0.36 Y6 0.71 X1 0.24
X4 0.60 X4 0.20 X4 0.60 ~1.007Y9 0.77
X1 042 X1 0.10 X1 0.42 X3 0.24
X3 042 X3 0.10 X3 042 Y6 0.60
X6 0.42 X6 0.10 X6 0.42 X6 0.24
dWRR(g) = 0.33 dWRR(q) = -0.58
(a) (b)

Figure 3.10: Weighted Rank Difference Measure - Relevant Documents Only
(dW RR) (a) Co-occurrence (b) RRR

3.5 Experimental Setup

Testing the effectiveness of a collection fusion technique requires multiple collections
where each collection contains a large number of documents. Because of the limita-
tions of storage, CPU speed, etc. of a PDA, a simulation of the PalmIRA application
was created to run within a Linux environment. The simulation simulated PalmOS
Data Management by utilizing a flat file for record storage.

Two different data sources were used in the following experiments. The sources
are:

e CACM, CISI, CRAN, and MED data
¢ TREC data

3.6 Experiments and Analysis: CACM, CISI, CRAN,
and MED Data

3.6.1 Data Description and Preprocessing

For the first set of experiments, we used freely available data-sets from Cornell
University [7]. These data-sets were originally used for single collection, stand-
alone information retrieval experiments. Fach data-set (e.g., CACM) contains a
collection of documents, a collection of queries and a set of relevance judgments
for the documents within only that data-set. These relevance judgments are used
to determine the effectiveness of the retrieval method in terms of precision/recall
measures.

55

CACM | CISI | CRAN | MED | TOTAL

queries with
relevance judgments 52 76 225 30 383
documents 3204 | 1460 1400 | 1033 7097

Table 3.1: Data-sets

In a multi-collection retrieval, each data source is considered to be a separate
collection. A given query is submitted to each collection producing a result list for
each collection. The result lists are then merged to produce one single result list. An
assumption is made for the Cornell data that only the documents within the data-
set that the query originated are relevant to the query. This is due to the lack of
relevance judgments for the documents within the other 3 collections of documents.

In order for the CACM, CISI, CRAN, and MED data-sets to become usable for
the multiple collection information retrieval experiments some data cleaning steps
were required. To fix the problem of duplicate document ids occurring within the
concatenated reference collection or merged result lists, document ids for three of
the four collections were changed to include a prefix. For the CACM and CISI data-
sets, not all of the queries have relevance judgments. There are 431 queries when all
four (CACM, CISI, CRAN, MED) data-sets are combined. There are 381 queries
that have relevance judgments. All queries that did not have a relevance judgment
associated with the query were removed. For documents in CACM and CISI, the .X
section (key to citation information) was removed. For queries in CACM and CISI,
the .N section (describing the origin of the query) was removed.

For a baseline, a reference collection is built by concatenating the documents
from the CACM, CISI, CRAN, and MED data-sets. The reference collection is
indexed and queried as a single collection (See Section 3.1.2). The resulting result
lists act as a baseline for the collection fusion strategies.

After data cleaning, Table 3.1 represents the number of documents and num-
ber of queries with relevance judgments. These values are used in the following
experiments.

All tests were completed without using stemming (described in Section 2.5.2)
unless otherwise stated. Stemming reduces terms to their grammatical root. By
doing this, the meaning of the term may be lost. For example, the term “fishing”.
Porter’s stemming algorithm [35] reduces “fishing” to the root “fish”. In essence,
by querying for the verb “fishing”, the results now contain documents for the verb
“fishing” and the noun “fish” which is not ideal. Witten et al. [52] argue that
extraneous material may be retrieved as a result of the stemmed version of the
query such that:

“..., a search for the work by “Cleary and Witten” turns into a quest
for “clear and wit”.”

Conducting an experiment using stemming increased precision by less than 3% at
each of the 11 levels of recall for both the reference collection and Co-occurrence
fusion. Indeed, some web search engines do not use stemming (e.g., Google 2).

2www.google.com

56

For non-stemming experiments, the average number of relevant documents re-
trieved was 14.5, maximum 133, minimum 0, median 9, and standard deviation
18.207.

Table 3.2 tracks the number of times that Co-occurrence fusion assigns the collec-
tion that the query originated from, the highest, second highest, and so on, collection
weight. That is, the collection with the highest weight tends to have its documents
increased in rank relative to the other collections.

For the 383 queries in 4 collections, the results in order from highest to lowest
collection weights are: 317, 56, 9, and 1 respectively (Table 3.2). Le., 83% of the
time, the collection that the query originated from is assigned the highest collection
weight. Table 3.2 describes how often the collection the query originated from was
assigned the largest weight (e.g., queries from the CACM collection caused Co-
occurrence fusion to assign the CACM collection the highest weight 43 out of 52
occasions).

CACM CISI| CRAN MED | TOTAL
Highest | 43 (33%) | 47 (62%) | 208 (92%) | 19 (63%) | 317 (33%)
8 (15%) | 28 (37%) | 14 (6%) | 6 (20%) | 56 (15%)
102%) | 1 (1%) 3(1%) | 4 (13%) 9 (2%)
Lowest | 0 (0%) | 0 (0%) 0 (0%) | 1 (3%) 1 (0%)

Table 3.2: Collection weight of the collection in which query originated

If this is considered before the data cleaning in Section 3.6.1 then for the 431
queries, the results are: 330, 84, 16, and 1 respectively.

3.6.2 Precision and Recall Measure Analysis

Precision is one approach to measure effectiveness (Section 3.2.2). Precision is the
percentage of the retrieved documents judged relevant to a query. Recall is the per-
centage of the judged relevant documents that have been retrieved. Three precision
based techniques are:

e average precision at the 11 standard levels of recall (0%, 10%, ... 100% recall).

e average precision at document cut-offs (i.e., after n non-relevant or relevant
documents have been seen).

e average recall at document cut-offs.

The precision at each level of recall is averaged over all queries (e.g., 383 queries
for the CACM, CISI, CRAN, MED combination data-set). The curves represent
results lists created by queries posed to the reference collection along with result
lists created by collection fusion techniques: Round Robin, Round Robin Random,
Original Weights (Raw Scores) and Co-occurrence collection fusion. The reference
collection is considered to be the baseline ranking. Another possibility which is
used is to use only the queries from one collection (e.g., CACM) and compute the
precision measures. The CACM, CISI, CRAN, MED collections each have relevance

57

Average Precision at 11 Standard Levels of Recall
1 T T T T

Reference —+——
Co-Oceur
e}

0.8 | RRR -

Precision

Recall (%)

Figure 3.11: Average Precision at 11 Standard Levels of Recall - All Queries

Average Precision at Document Cut-offs

0.4 T T T v
Ref ——+—
Co-Qcgur e
0.35 ¢ Orignal Weigths k
ound Robin
Round Robin Random -~
03
0.25
=
2 .
% 02}
o
[
0.15 |
b
0.1 +
0.05 4
0 . L L L
5 10 15 20 25 30

Documents

Figure 3.12: Average Precision at Document Cut-offs - All Queries

Average Recall at Decument Cut-offs

0.5 s T T
CoO Ref —+—
L 0-Occur 4=
0.45 Orignal Weigths
04 F ound Robin
d Round Robin Random --
0.35
0.3
8 o025
o 2
0.2
0.15
0.1
0.06 4
0 . L " .
5 10 15 20 25 30

Documents

Figure 3.13: Average Recall at Document Cut-offs - All Queries

58

judgments for the queries and documents in its own collection (i.e., no relevance
judgments for queries from one collection for another collection’s documents).

A second possible baseline involves comparing the precision curves already men-
tioned to the curve created when querying a single, independent, stand-alone col-
lection (i.e., no collection fusion). E.g., run the set of CACM queries against only
the CACM documents and compute the measures. This is as opposed to querying
the reference collection or each independent collection (e.g., CACM, CISI, CRAN,
MED) and merging the results. This is the baseline precision if we assume that
only documents from the collection that the query originated (e.g., CACM) are rel-
evant to that query (i.e., the only relevance judgments available for CACM, CISI,
CRAN, MED data-sets are for documents internal to only that data-set). Based on
this assumption, querying multiple collections and fusing the results should “ide-
ally” approach the effectiveness of the stand-alone data-set. This assumption may
be false since it is possible for documents from other collections to be relevant but
un-judged. The difference between the stand-alone approach and the reference col-
lection precision is considered noise. There are two possible sources of noise. First,
some documents documents belonging to data-sets (e.g., MED) other than the col-
lection that the query originated (e.g., CACM) are actually relevant to the query.
Second, the reference collection producing concatenation dilutes/concentrates the
inter-document dissimilarity of the collection dependent parameters. The “Only C
Data-set” is the curve of the precision/recall measure for the stand-alone data-set
where collection C' is searched independent of the other collections. l.e., in “Only
C Data-set” there is no collection fusion or collection concatenation as in the ref-
erence collection, just the search of the stand-alone collection C. The motivation
is to see how searching one collection independently of other collections compares
to searching multiple collections concatenated (as in the reference collection) or
multiple collections with fused result lists.

59

Pragision

Precision

Average Precision at 11 Standard Levels of Recall - CACM

0.8 F

T r T -
CAGM queries, Reference Collec!ion —

CACM queries, Co-Occur -

CACM queries, Ongmaj Welghls

CACM quaries, Round Robin

CACM queries, Round Robin Random

CACM collection independent, No Fusion

Recall (%)

(a) CACM Queries

Average Precision at 11 Standard Levels of Recall - CRAN

038 |

"CRAN quenes Reference Collection ——
RAN queries, Co-Occur

CRAN queries, Origlnal Welghts -

CRAN queries, Round Robin

N queries, Round Robin Random

CHAN coliection independent, No Fusion

Recall (%)

(c) CRAN Queries

Precision

Pracision

Average Precision at 11 Standard Levels of Recall - CISI

clIst quenes Relerence Collacluon o
-Qocur

cIst quenes On mal Welghts

CISI queries, Round Robin

Ci$t queries, Round Fobin Random

C181 collestion independent, No Fusion --

Recall (%)

(b) CISI Queries

Average Precision at 11 Standard Levels of Recall - MED

0.8

"MED quenes Reference Coltection —+—
D queries, Co-Ocour -+
MED querles. On%nal Weights -
ound Robin -

MED quenes Hound Robin Random - -
IED cofléction Independent, No Fusion -----

Recall (%)

(d) MED Queries

Figure 3.14: Average Precision at 11 Standard Levels of Recall

60

Precision

Precision

Average Preciston at Document Cut-offs - CACM

T v
Referznce

Co-Ogeur &

Orignal Weigths -

ound Robin -

Aound Robin Random -~-a--
Only CACM Data-set -

01 F B
Q.05 P
0 " " "
5 10 15 20 25 30
Documents
(a) CACM Queries
Average Precision at Docurnent Cut-offs - CRAN
0.45 * T d 7
Reference —+—
04 Co-Oceur a
g Orignal Weigths

0.36

005 |

ound Robin
Round Robin Random
Only CRAN Data-set -

Documents

(c) CRAN Queries

Precision
=3
&

Precision

Average Pracision at Document Cut-offs - CISI

Reference ——
‘ Origa Welgihs

g rignal Weigths

0.25 | T gound Rglbln -

o

o
=
&

5 10 15 20 25 30
Documents

(b} CISI Queries

Average Precision at Document Cut-offs - MED

v —
Reference —+—

ur

Orignal Weigths

ound Robin

Round Robin Random

Only MED Data-set -

e

0.1 o

5 10 15 20 25 30
Documents

(d) MED Queries

Figure 3.15: Average Precision at Document Cut-offs

61

Average Recall at Document Cut-offs - CACM
0.5

"Reference ——
UE e

0.45

04

e

30

035
K|
§ o0z
4
0.15
0.05 4
0 L L L .
5 10 15 20 25
Daocuments
(a) CACM Queries
Average Recall at Document Cut-offs - CRAN
08 T T T T
Reference ——
Co-Occur -4
Orignal Welgths -
05 r ound Robin -

Round Robin Random --e-—
Only CRAN Data-se]

Recall

R S

0 . . L 1

5 10 15 20 25
Documents

(c) CRAN Queries

30

Recall

0.25

0.6

Average Recall at Document Cut-offs - CISI

Relerence

0-Occur

Orignal Weigths

ound Robin

Round Robin Random
Only C1SI Data-set -

15
Documents

20 25 30

(b) CISI Queries

Average Recall at Document Cut-offs - MED

0.5

04

03

0.2

0.1

Round Robin Random
Only MED Data-set -

'Reference —_—

Co-Oceur
Orignal Weigths
lound Robin

10 15

20
Documents

25 30

(d) MED Queries

Figure 3.16: Average Recall at Document Cut-offs

62

In all precision/recall based effectiveness measures, the Co-occurrence fusion ap-
proach produces better results than the other collection fusion approaches. In the
precision at 11 standard levels of recall graph (Figure 3.11), there is an approxi-
mately 7% difference between the baseline reference collection and Co-occurrence
fusion at low levels of recall and the difference narrows as the level of recall increases.
The baseline is better than Co-occurrence fusion. To determine if this trend would
continue when using queries from only one data-set (e.g., CACM), graphs were cre-
ated using queries from each data-set. Using queries from the CISI, CRAN, and
MED data-sets, these query sets follow this trend (CISI Figures 3.14(b), 3.15(b),
3.16(b), CRAN Figures 3.14(c), 3.15(c), 3.16(c), MED Figures 3.14(d), 3.15(d),
3.16(d)). On the other hand, the queries from CACM produce Co-occurrence re-
sults that differ from the trend such that the results are close to or slightly higher
than the reference collection (Figures 3.14(a), 3.15(a), 3.16(a)).

With respect to second baseline, the curve for the CISI, CRAN, and MED queries
follow very closely the curve of the reference collection {(CISI Figures 3.14(b), 3.15(b),
3.16(b), CRAN Figures 3.14(c), 3.15(c), 3.16(c), MED Figures 3.14(d), 3.15(d),
3.16(d)). For the CACM queries, this changes such that reference collection is rela-
tively noticeably lower than the single collection, CACM data-set without collection
fusion results (Figures 3.14(a), 3.15(a), 3.16(a)). This suggests that the effectiveness
of CACM queries are reduced when run against the concatenated reference collec-
tion. The concatenation that created the reference collection must change the idf
value of some/all terms such that the terms used to indicate the relevant documents
are assigned a lower ¢df and thus a lower degree of similarity. The result is that the
precision and recall for the CACM queries is adversely affected when the collections
are concatenated together into the reference collection.

Based on the above graphs for this data, Co-occurrence fusion is shown to pro-
duce the best precision/recall results when compared to the other fusion techniques.
Co-occurrence also demonstrates that it can produce better results than the refer-
ence collection under certain circumstances, in this case when the queries from the
CACM collection are used.

3.6.3 Rank Difference Measures Analysis

The rank difference measures produce a value for each query based on how the result
list of a collection fusion technique differs from that of the reference collection. The
measure is calculated after considering n documents of the fusion technique’s result
list. The effect is to visualize how out of position in terms of rank the documents
are when compared to the reference collection. The results are produced after a set
of different numbers of documents have been seen in the result list (e.g., 10, 20, 30,
etc.).

A curve is created for each collection fusion technique by averaging the value
over all queries (e.g., 383 for the CACM, CISI, CRAN, MED combination data-set).

63

Average dR Average dRR

;) C\(;b()ctr:'ur
L riginal Weights
180 %iound Robin
| Round Robin Random

Difference Value
8
a
Difference Value

A0 T e * _.~‘ 12 Co-Ocour s
e Original Weights
20 |amt 1 141 "Hound Fbin e
e 4o L PowgRobRndom —x-
0] 10 20 a0 40 50 60 70 80 0 10 20 30 40 50 80 70 80
Documents Documents
(a) Average Rank Difference (dR) at Docu- (b) Average Rank Difference - Rel (dRR) at
ment Cut-offs (smaller is better) Document Cut-offs (larger is better)
Average dWR Average dWRR
0.7 - T T T T ¥ 0.1 T T T - - T
? Co-Ocour - N 5 Co-Oocur
i Original Weights Original Waights -
H ound Robin - & - lound Robin -
06} Round Robin Random or Round Robin Random -
P i g 01f
] £ ;
2 .
8 § 02t . .
g g |
a S o3f : e »
a
04t w
S .
01 N 08 X . .
0 10 20 30 40 50 80 70 80 0 10 20 30 40 50 80 70 80
Documents Documents

(¢) Average Weighted Rank Difference {d) Average Weighted Rank Difference - Rel
(dWR) at Document Cut-offs (smaller is (dWRR) at Document Cut-offs (larger is
better) better)

Figure 3.17: Rank Difference Measures

The Co-occurrence fusion techniques tends to produces result lists with docu-
ments ranked such that the difference in rank ordinal is closer to 0 than the differ-
ence rank of documents of the other fusion techniques. When considering relevant
and non-relevant documents in the dR measure, it produces results where the Co-
occurrence fusion result list on average more closely matches the reference results at
all levels after n documents are considered in the measure (Figure 3.17(a)). If only
the relevant documents are averaged over the levels of n documents as in the dRR
measure (Figure 3.17(b)), on average the relevant documents in the result list of the
fusion technique are ranked higher than in the reference collection as indicated by
the positive value.

The dW R and dW RR measures show on average that Co-occurrence fusion
tends to assign ranking ordinals to documents with higher weights closer to ordinals
of the reference collection than the other collection fusion methods (Figures 3.17(c),
3.17(d)). If ounly the relevant documents are considered, dW RR, Co-occurrence fu-
sion on average ranks the relevant documents with a high weight close to but not
quite as high as in the reference collection as shown by the slight negative value

64

in Figure 3.17(d). The queries have differing numbers of relevant documents where
the average is 14.5. This suggests that even though relevant documents on aver-
aged ranked 0 to 4 ordinals higher (Figure 3.17(b)) than in the reference collection,
relevant documents with a high weight are not necessarily ranked higher (Figure
3.17(d)). Figure 3.11 shows that the precision curves of the reference collection
start out being higher and then converge with the Co-occurrence fusion curve as
the percentage of recall increases. The converging precision suggests that the rel-
evant documents with a lower weight and thus appearing lower in the result list
and being seen later are being ranked higher by Co-occurrence fusion than in the
reference collection. If the considered relevant documents in the dW RR measure
after 8 result list documents are considered (middle ranked documents), the relevant
documents are on average lower ranked than then the reference collection. The doc-
uments with the middle ranking and weights appear to be reducing the effectiveness
of Co-occurrence fusion.

In order to determine if the queries from one data-set (e.g., CACM) are ad-
versely or positively affecting the results of the concatenated set of queries from
all data-sets, a second set of graphs use only the queries from one collection (e.g.,
CACM). The motivation is to determine if the queries from one data-set tend to
yield results dissimilar to the result of queries for each of the other data-sets or the
the concatenated set of queries from all data-sets.

For the CISI, CRAN, and MED queries separately, they tend to follow the trend
of concatenated query case for all four measures (similar to the precision/recall re-
sults above) (Figures 3.17(b), 3.17(d), 3.17(a), and 3.17(c)). For the CACM queries,
the results show that the relevant documents tend to be ranked higher than in the
reference collection (Figure 3.18, 3.19). This supports the higher precision curve for
the CACM queries in the previous (precision/recall measures) section.

Based on the above graphs for this data, Co-occurrence fusion is shown to pro-
duce the best rank measure results when compared to the other fusion techniques.
Co-occurrence also demonstrates that it can produce better results than the refer-
ence collection under certain circumstances, in this case when the queries from the
CACM collection are used.

65

Average dR - Rel - CACM

15 T T v T T T
Co-Occ

QOriginal Weights

Round Robin

Rouynd-Robin Random]

Diiference Vaiue

80

Documents

Figure 3.18: Average Rank Difference - Rel (dRR) at Document Cut-offs

Average dWR - Rel - CACM

0.3 T T v T T T T
Co-Occur -

Original Weights -
ound Robin

Round Robin Random

vl

Difference Value

Documents

Figure 3.19: Average Weighted Rank Difference - Rel (dW RR) at Document Cut-
offs

66

3.7 Experiments and Analysis: TREC/TIPSTER Data-
set

3.7.1 Data Description and Preprocessing

The TREC/TIPSTER data is a collection designed for use in information retrieval
experiments. The data originated from the Text REtrieval Conferences held an-
nually since 1992 [46]. The main goal of the conference is to foster research in
information retrieval by providing data to act as universal test-bed/benchmark and
fostering communication.

Data-sets designed for information retrieval research usually consist of a collec-
tion of documents, a set of queries and a a set of relevance judgments describing
which documents are relevant to each query. The TREC data used in the following
experiments consists of 11 collections of documents including:

e Text Research Collection Volume 1

— Wall Street Journal (WSJ) (1987, 1988, 1989)

— Associated Press (AP) (1989)

— Department of Energy abstracts (DOE)

— Computer Select disks copyrighted by Ziff-Davis (ZF).

e Text Research Collection Volume 2

— Wall Street Journal (WSJ) (1990, 1991, 1992)
— Associated Press (AP) (1988)
— Computer Select disks copyrighted by Ziff-Davis (ZF)

These collections are cleaned such that only the SGML <TEXT> segments are
used as documents and all SGML tags are removed.

The TREC data also consists of a set of topics or information requests that can
be used as queries and a sub-set of the documents that have been judged by humans
to be relevant or not relevant to a topic. The queries used in the following sections
are the SGML <TEXT> portions of topics 51-200. These topics have relevance
judgments for each of the 11 collections. The difference between TREC data and
the data used in Section 3.6 is that the TREC topics have relevance judgments for
all of the collections of documents described above.

For a baseline, a reference collection is built by concatenating the documents
from the 11 collections. The reference collection is indexed and queried as a single
collection (See Section 3.1.2). The resulting result lists act as a baseline for the
collection fusion strategies.

There are approximately 700,000 documents and 1 million unique terms. Each
query returns the number of documents that have a degree of similarity greater than
0 up to a maximum of 32767 documents.

3.7.2 Precision and Recall Measures Graph Analysis

For the TREC collections, the Original Weights fusion approach produces the results
closest to that of the reference collection (Figure 3.20). Eight of the eleven collections

67

are newspaper articles (Wall Street Journal and Associated Press) with overlapping
time periods. It is highly likely that the contents overlap in that the content is
reflective of many topics (i.e., heterogeneous). Therefore, the collection dependent
parameter (idf) value would be comparable between these collections and thus does
not affect the ranking of the documents as a non-comparable (idf) would. For topics
51-200, on average the distribution of relevant documents is mainly over the WSJ
and AP collections. The Original Weights approach is less effective than using the
previous data (Section 3.6).

One other possible reason for the difference between the two sets of data is
that the length of the result list does not correspond to the number of relevant
documents, therefore skewing Co-occurrence. E.g., the result list contains a very
large number documents with few query terms. This might also be shown by the
RRR approach when considering precision since it is also based on the length of
the result list. This may be fixed by normalizing Co-occurrence by the result list
length to reduce the skew caused by large differences in result list length. But some
collection fusion techniques do take into consideration the length of the result as
part of the “goodness” of the collection [37] so this is left to future work.

For RR fusion at less than 5% recall, it approaches the precision of the Original
Weights fusion. This seems the show that the relevant documents are distributed
throughout most of 11 collections (unlike in Section 3.6) and highly ranked in those
collections.

The Average Precision at Document cut-offs (Figure 3.23(b)) show that when
considering 5-30 retrieved documents, the Original Weights approach is closest to the
baseline and Co-occurrence closely follows. When considering the first 5 documents
of the result list, RR approached the precision of Co-occurrence fusion leading to
the belief that on average 2 out of the first 5 documents are relevant from the top
ranked document of each of the first 5 collections (AP88, AP89, DOE, WSJ87, and
WSJ89) is relevant.

68

Average Precision at 11 Standard Levels of Recall

0.6 v - T T v v
Reference —+—
Co-Oceur
Original Weights
0.5 &1 ound Robin
. Round Robin Random

Precision

0 5 10 15 20 25 30 35 40
Recall (%)

Figure 3.20: Average Precision at 11 Standard Levels of Recall - All TREC Queries

Average Precision at Document Gut-offs
0.35 T T T

Ref

Co-Occur -+
Orignal Weigths
ound Robin

03 |

0.25

Precision

0.15 4

0.05 E

0 L . L .
5 10 15 20 25 30

Documents

Figure 3.21: Average Precision at Document Cut-offs - All TREC Queries

Average Recall at Document Cut-offs
0.06

Ref —— j j

Orignal Welqi —n
rignal Weigths -
0.056 ound Robin
Round Robin Random -~ -a-—

0.04

0.03

Recalt

0.02

0.01

Documents

Figure 3.22: Average Recall at Document Cut-offs - All TREC Queries

69

3.7.3 Rank Difference Measures Graph Analysis

In Figure 3.23(a), Co-occurrence shows the least amount of positional difference of
the documents (relevant or non-relevant) in a negative or positive direction. Figure
3.23(b) shows with the positive value of the curve that the relevant documents
retrieved by Co-occurrence fusion are ranked higher than in the reference collection.
Therefore, at least part of the value of the Co-occurrence curve produced by dR
(Figure 3.23(a)) is due to these higher ranked relevant documents. When the weight
of the document in the reference collection is considered, dW R (Figure 3.23(c))
shows that the Co-occurrence fusion tends to rank documents (relevant or non-
relevant) on average more out of position in a positive or negative direction than
the other approaches when compared to the reference collection. Part of this value is
due to the relevant documents. dW RR (Figure 3.23(d)) indicates that the relevant
documents in the Co-occurrence result list tend to be ranked higher than in the
reference result list.

On average, Co-occurrence fusion (and other methods) tend to rank the relevant
documents higher than the reference collection as indicated by the positive values
of Figure 3.23(b) and 3.23(d). This is not reflected in the precision/recall graphs for
the following two reasons. First, using the average (e.g., Equation 3.11) can some-
times produce misleading statistics so the median values must aiso be considered
since a few extreme values may influence the average. The median calculated over
all queries is less than the average calculated over all queries for each rank mea-
sure. This indicates that some (i.e., less than half) of the relevant documents are
being ranked much higher in Co-occurrence fusion. The medians are less than the
averages but they follow the same trends and this does not fully explain the appar-
ent contradiction between the precision/recall graphs and rank difference measure
graphs. Secondly, only the relevant documents in the collection fusion technique
are considered and no penalty is given if more relevant documents exist in the first
n documents of the reference collection than in the first n documents of the fu-
sion result list. Since precision is the ratio of number of relevant documents to the
number of documents retrieved, the fact that some relevant documents are ranked
much higher does not necessarily mean that most/all relevant documents are ranked
higher thus producing a higher precision.

The low dRR and dW RR scores for Original Weights fusion shows that the
relevant documents within the first n result list documents are ranked very close to
the ranks of the of the reference collection. This may help to show that on average
the collection dependent parameter for the query terms are close to those of the
reference collection.

70

Average dR
400 o " > . . —
Ori%:nal Weights o
350 [ound fobin
Round Robin Random - -
300 -
@
;: 250 i
8 200 [
§
’g 150 F
00F]
.
50 |]
o " . "
4] 5 10 15 20 25 30 35 40 45 50
Documents

(a) Average Rank Difference (dR) at Docu-
ment Cut-offs (smaller is better)

Average dWR
0.5 T T T T T + T
ongin e
[inal Weights - 4
048 Round Fogin -
04} Round Robln Random |
0.35 b
2
g 0.3
2 o025
e
£ 02
a
0.15
041
0.05 4
0 N . . N . . . " .
0 5 10 15 20 25 30 35 40 45 50
Documents

{¢) Average Weighted Rank Difference
(d{WR) at Document Cut-offs (smaller is
better) :

Average dRR

' 'CWOGT;:'ur -
b Original Weights

o ound Robin

| Round Robin Random ~-—&--—

Difference Value

25
Documents

(b) Average Rank Difference - Rel (dRR)
Document Cut-offs (larger is better)

Average dWRR
05 T T T T T T T T
Original Walghts
L riginal Weigl
045 ound Robin
0.4 Round Robin Random
0.356 4
E]
g o3f]
8 o025}
2
2 oz}
a
0.15
o1
0.05 4
° " s \ . N .
[5 10 15 20 25 30 35 40 48 50
Documents

(d) Average Weighted Rank Difference - Rel
(dWRR) at Document Cut-offs (larger is
better)

Figure 3.23: Rank Difference Measures - TREC

71

Chapter 4

Conclusions and Future Work

4.1 Conclusions

The first goal of the thesis was to engineer a proven information retrieval approach
to efficiently and effectively execute in the constrained environment of a PDA. To-
wards this goal, it was found that an efficient information retrieval system (known
as PalmIRA) could be built. This involved exploiting the symbiotic relationship
between the PDA and the PC at synchronization time to use the PC to build the
index. An optimized for speed sparse matrix was used by the PC to handle the
information required to build the inverted index. The inverted index was formatted
such that a small amount of storage space on the PDA is required and such that
the information within the inverted index could be accessed with a small CPU and
dynamic memory cost. The result is a information retrieval system executing on a
PDA that executes queries quickly enough that it does not stretch the patience of
a user.

Another goal was to efliciently fuse the result lists of multiple collections taking
advantage of the PDA information retrieval engine and existing within the PDA
constraints. Towards this goal, Co-occurrence collection fusion is proposed. Co-
occurrence fusion assigns a “goodness” to each collection based on the level of co-
existence of query terms in the result list documents. Co-occurrence fusion tends to
rank the relevant documents higher on average then the RR and RRR approaches
for both data sources experimented with. Co-occurrence fusion shows the ability
to out-perform the reference collection in at least one circumstance. Co-occurrence
fusion performs noticeably better when the set contains mainly homogeneous collec-
- tiomns. Taking into consideration the previously mentioned drawbacks of the Original
Weights (Raw Score) approach and that Co-occurrence fusion is more effective in
the first data source but less effective in the TREC experiment, it can be concluded
that Co-occurrence fusion is a better alternative than the other three fusion strate-
gies. Co-occurrence fusion obtains better results without noticeably increasing the
execution time of a query on a PDA. This is due to the simplicity of the fusion
algorithm and the ability to combine parts of the algorithm with the search engine
itself yielding a negligible (e.g., less than 1 sec.) increase in query time.

The last goal was to propose new techniques to more closely analyse how a col-
lection fusion technique merges the documents to create a result list by comparing
it to a reference collection. The measures (dR, dRR, dW R, dW RR) show by how

72

much on average documents tend to be out of position relative to a reference collec-
tion. Fusion strategies that have a better value in these measures, considering the
average and the median, tend to produce better results. The four proposed measures
used along with the Precision and Recall measures help to provide insight into the
effectiveness, strengths and weaknesses of a given collection fusion technique.

PalmIRA has been implemented with the capability to search PalmOS textual
databases including: MemoPad, Mail, ToDo, Address, and DateBook. The results
from each database can then be fused into one global result list using Co-occurrence
fusion. PalmIRA is currently freely available on the internet .

4.2 Future Work

The opportunities for future work exist in: decreasing the storage cost of the in-
verted index, decreasing the synchronization data transfer cost, decreasing the re-
trieval time, increasing the effectiveness of Co-occurrence fusion and evaluating Co-
occurrence fusion outside the context of PalmIRA.

Using a compressed inverted index may help decrease the storage cost and trans-
fer cost of the inverted index with a trade-off of some time. PalmOS databases store
the Unique ID of the last record added. When a new record is added, the previously
stored unique ID is incremented and assigned to the new record. This method of
assigning unique ids to the Palm records offers opportunities to compress the term
posting lists composed of unique record ID and weight items. The posting lists
for each term are sorted by record id. There exists the possibility to encode the
difference of the unique record ids portion of the posting list. A number of index
compression methods are introduced in [563]. The PDA domain offers a number of
trade-offs that differ from the traditional PC based compressed inverted index.

One of the major bottlenecks of the synchronization process is the time required
to transmit data via the PC - PDA link (e.g., USB). During each synchronization, the
inverted index is rebuilt from scratch on the PC by downloading all the documents
from the PDA and then transmitting the inverted index to the PDA. Research in
the area of incremental updates of inverted files ([3]) may offer the opportunity to
update the index on the PDA without completely rebuilding it.

An attempt to increase the efficiency of the retrieval algorithm may be to alter
the number of term posting lists that reside in each irWeight record. The current
inverted index implementation (Section 2.6) packs as may posting lists as possible
into each PalmOS record with a maximum size of 64KB. The number of records
increases as the number of posting lists stored in each PalmOS record decreases. A
binary search is used to find the correct record and a sequential search is used to
find the term posting list in that record. By decreasing the number of posting lists
in each record, a savings in the sequential search may occur.

The effectiveness of Co-occurrence fusion may be able to be improved. In the
work by Craswell et al. [10] [9], the authors describe a collection fusion technique
that gives more weight to documents that contain interesting query terms closer
to the beginning of the document. In Section 2.5.3, by following the linked list of
nodes, it is possible to determine the first n non-stop-words in a document. It is
possible to give the first n non-stop-words a higher weight than query terms that

'http://database.cs.ualberta.ca/PalmIRA /

73

appear closer to the end of the document. Would this help to increase effectiveness
of the single and/or multiple collection retrieval?

Co-occurrence fusion, the collection fusion approach we propose (described in
Section 3.3.4) could be used in a meta-search environment if at least one of the
following holds true:

1. if the co-occurrence information is transmitted by each search engine
2. if the entire document is parsed to extract co-occurrence information

3. if the context of the query terms is transmitted by the search engines, then
the co-occurrence information can be extracted from it

Finally, the Co-occurrence collection fusion idea may be able to be altered to
work in a multiple collection content-based image retrieval environment. Using the
idea that importance is determined by the number of features that co-occur, Co-
occurrence fusion might be able to efficiently but still effectively merge the results
from the multiple collections.

74

Bibliography

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

[2] C. Baumgarten. A probabilistic solution to the selection and fusion problem in
distributed information retrieval. In Proceedings of the 22nd Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 246-253, 1999.

[3] E. W. Brown, J. P. Callan, and W. B. Croft. Fast incremental indexing for full-
text information retrieval. In Proceedings of the 20th International Conference
on Very Large Databases (VLDB), pages 192-202, Santiago, Chille, September
1994.

[4] J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY retrieval system.
In Proceedings of DEXA-92, 3rd International Conference on Database and
Eazpert Systems Applications, pages 78-83, 1992.

[5] J. P. Callan, Z. Lu, and W. B. Croft. Searching Distributed Collections with
Inference Networks . In Proceedings of the 18th Annual International ACM SI-

GIR Conference on Research and Development in Information Retrieval, pages
21-28, Seattle, Washington, 1995. ACM Press.

[6] A. Le Calve and J. Savoy. Database merging strategy based on logistic regres-
sion. Information Processing and Management, 36(3):341-359, 2000.

[7] Data Sets at ftp.cs.cornell.edu/pub/smart/.
[8] Stop-word list available at ftp.cs.cornell.edu/pub/smart/english.stop.

[9] N. Craswell. Methods for distributed information retrieval. PhD thesis, Aus-
tralian National University, 2000.

[10] N. Craswell, D. Hawking, and P. B. Thistlewaite. Merging results from isolated

search engines. In 10th Australasian Database Conference ACD1999, pages
189-200, 1999.

[11] D. Dreilinger and A. E. Howe. Experiences with selecting search engines using
metasearch. ACM Transactions on Information Systems, 15(3):195-222, 1997.

[12] M. J. Folk and B. I. Zoellick. File Structures. Addison-Wesley, 2" edition,
1992,

[13] L. R. Foster. PalmOS Programming Bible. IDG Books Worldwide Inc., 2000.

[14] E. A. Fox, M. Koushik, J. A. Shaw, R. Modin, and D. Rao. Combinating
evidence from multiple searches. In Proceedings of the First Text REtrieval
Conference (TREC-1), pages 319-328, 1992.

[15] E. A. Fox and J. A. Shaw. Combination of multiple searches. In Proceedings
of the Second Text REtrieval Conference (TREC-2), pages 243-252, 1993.

75

[16]
[17]

[18]

[22]

[23]

[24]
[25]
[26]
[27]

[28]

[29]

[30]

W. B. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and
Algorithms. Prentice-Hall, 1992.

J. C. French and A. L. Powell. Metrics for evaluating database selection tech-
niques. Technical Report CS-99-19, University of Virginia, 1999.

J. C. French, A. L. Powell, J. P. Callan, C. L. Viles, T. Emmitt, K. J. Prey,
and Y. Mou. Comparing the performance of database selection algorithms.
In Proceedings of the 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 238-245, 1999,

S. Gauch, G. Wang, and M. Gomez. ProFusion: Intelligent fusion from multiple,
distributed search engines. J.UCS: Journal of Universal Computer Science,
2(9):637-649, 1996.

L. Gravano, C. K. Chang, H. Garcia-Molina, and A. Paepcke. Starts: Stanford
proposal for internet meta-searching. In Proceedings of the 1997 ACM SIGMOD
Conference, pages 207-218, 1997.

L. Gravano and H. Garcia-Molina. Generalizing GIOSS to vector-space
databases and broker hierarchies. In Proceedings of the 21st International Con-
ference on Very Large Databases VLDB, pages 78-89, 1995.

L. Gravano and H. Garcia-Molina. Merging ranks from heterogeneous internet
sources. In Proceedings of the 23th International Conference on Very Large
Databases (VLDB), pages 196-205, 1997.

L. Gravano, H. Garcia-Molina, and A. Tomasic. The effectiveness of gloss for
the text database discovery problem. In Proceedings of the 1994 ACM SIGMOD
Conference, pages 126-137, 1994.

J. E. Hopcraft, R. Motwani, and H. D. Ullman. Introduction to Automaita
Theory, Languages, and Computation. Addison-Wesley, 2"¢ edition, 2001.

E. Horowitz and S Sahni. Fundamentals of Data Structures in Pascal. Computer
Science Press, 4™ edition, 1994.

Palm Inc. Files and databases, 2000.
http://oasis.palm.com/dev/kb/manuals/1733.cfm.

Palm Inc. Palm OS memory architecture, 2000. available at
http://oasis.palm.com/dev/kb/manuals/1145.cfm.

L. S. Larkey, M. Connell, and J. P. Callan. Collection selection and results

merging with topically organized U.S. patents and TREC data. In Proceeding
of the Ninth International Conference on Information and Knowledge Manage-

ment CIKM’00, pages 282-289, 2000.

S. Lawrence and C. L. Giles. Inquirus, the NECI meta search engine. In Seventh
International World Wide Web Conference, pages 95-105, Brisbane, Australia,
1998. Elsevier Science.

K. Liu, W. Meng, C. T. Yu, and N. Rishe. Discovery of similarity computa-
tions of search engines. In Proceeding of the Ninth International Conference on
Information and Knowledge Management CIKM’00, pages 290-297, 2000.

W. Meng, C. Yu, and K. Liu. Building efficient and effective metasearch engines.
ACM Computing Surveys, (To Appear).

W. Meng, C. T. Yu, and King-Lup Liu. Detection of heterogeneities in a
multiple text database environment. In Fourth International Conference on
Cooperative Information System COOPIS’99, pages 22-33, 1999.

76

[33]
34]

[35]

[36]

[37]

(38]

[39]
[40]

[41]

[44]

[45]

[46]

[47]

[48]

General Microsystems. Intelligentfind. www.intelligentfind.com.

J. Noble and C. Weir. Small Memory Software: Patterns for Systems with
Limited Memory. Addison Wesley, 2001.

Porter Stemming Algorithm available at bttp://www.tartarus.org/ mar-
tin/PorterStemmer/.

A. L. Powell, J. C. French, J. P. Callan, M. Connell, and C. L. Viles. The
impact of database selection on distributed searching. In Proceedings of the 23nd
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 232-239, 2000.

Y. Rasolofo, F. Abbici, and J. Savoy. Approaches to collection selection and
results merging for distributed information retrieval. In Proceeding of the
Tenth International Conference on Information and Knowledge Management
CIKM’01, pages 191-198, 2001.

J. Savoy, A. Le Calve, and D. Vrajitoru. Report on the TREC-5 experiment:
Data fusion and collection fusion. In Proceedings of the Fifth Text REtrieval
Conference (TREC-5), pages 493-502, 1996.

E. Selberg and O. Etzioni. The MetaCrawler architecture for resource aggre-
gation on the Web. IEEE Ezpert, 12(1):11-14, 1997.

J. A. Shaw and E. A. Fox. Combination of multiple searches. In Proceedings
of the Third Text REtrieval Conference (TREC-3), pages 105-108, 1994.

A. Soffer, D. Cohen, and M. Herscovice. Pirate search.
http://www.haifa.il.ibm.com/projects/software/iro/PirateSearch/index.html.

A. Steidinger. Comparison of different collection fusion models in distributed
information retrieval. In DELOS Workshop on Information Seeking, Searching
and Querying in Digital Libraries, Zurich, Switzerland, December 2000.

G. Towell, E. M. Voorhees, N. Kumar Gupta, and B. Johnson-Laird. Learning
collection FUsion strategies for information retrieval. In Proceedings of the
Twelfth International Conference on Machine Learning ICML-1995, pages 540-
548, 1995.

Y. Tzitzikas. “Democratic Data Fusion for Information Retrieval Mediators”. In
ACS/IEEE International Conference on Computer Systems and Applications,
pages 530-536, June 2001.

C. L. Viles and J. C. French. Dissemination of collection wide information
in a distributed information retrieval system. In Proceedings of the 18nd An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 12-20, 1995.

E. Voorhees and D. Harman. Overview of the ninth text retrieval conference
(TREC-9). In Proceedings of the Ninth Text REirieval Conference (TREC-9),
pages 1-14, 2000.

E. M. Voorhees. Siemens TREC-4 report: Further experiments with database
merging. In Proceedings of the Fourth Text REtrieval Conference (TREC-4),
pages 121-130, 1995.

E. M. Voorhees, N. Kumar Gupta, and B. Johnson-Laird. The collection fusion

problem. In Proceedings of the Third Text RElrieval Conference (TREC-3),
pages 95-104, 1994.

77

[49]

[50]

[51]

E. M. Voorhees, N. Kumar Gupta, and B. Johnson-Laird. Learning collection
fusion strategies. In Proceedings of the 18th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 172-
179, 1995.

E. M. Voorhees and R. M. Tong. Multiple search engines in database merg-
ing. In Proceedings of the Second ACM International Conference on Digital
Libraries, pages 93-102, Philadelphia, Pa., 1997. ACM Press, New York.

G. Wilson and J. Ostrem. Palm oS Pro-
grammer’s Companion. PalmSource Inc., 2002.
http:/ /www.palmos.com/dev/support/docs/palmos/Companion _Front.html.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Morgan Kaufmann Publishing, 1994.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kaufmann Publishing, 2" edition,
1999.

R. R. Yager and A. Rybalov. On the fusion of documents from multiple collec-
tion information retrieval systems. Journal of the American Society for Infor-
mation Science, 49(13):1177-1184, 1998.

C. T. Yu, W. Meng, K. Liu, W. Wu, and N. Rishe. Efficient and effective
metasearch for a large number of text databases. In Proceeding of the Eighth In-
ternational Conference on Information and Knowledge Management CIKM’99,
pages 217-224, 1999.

B. Yuwono and D. L. Lee. Server ranking for distributed text retrieval sys-
tems on the internet. In Proceedings of the Fifth International Conference on
Database Systems for Advanced Applications DASFAA, pages 41-50, 1997.

X. Zhu and S. Gauch. Incorporating quality metrics in centralize/distributed
information retrieval on the world wide web. In Proceedings of the 23nd An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 288-295, 2000.

78

