
Enhancing Backscatter Communication Networks: Optimization and
Integration with Emerging Technologies

by

Azar Hakimi Najafabadi

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Communications

Department of Electrical and Computer Engineering
University of Alberta

© Azar Hakimi Najafabadi, 2024



Abstract

Future wireless networks require low cost, high spectral efficiency, and high energy efficiency.

To achieve these goals, backscatter communication (BackComm) networks rely on passive

reflective backscatter devices (tags). However, passive transmission causes low data rates and

ranges. To address these, this thesis aims to address (1) BackComm optimization algorithms

and (2) integration of BackComm with other wireless technologies.

The thesis starts with examining a monostatic backscatter Communication (Monostatic

BackComm) network consisting of multiple tags with a full-duplex (FD) multiple-input

multiple-output (MIMO) reader (backscatter receiver) that is subject to self-interference

(SI), which reduces the achievable data rate, throughput, and coverage. Practical SI can-

cellation methods cannot fully remove it but rather leave residual self-interference (RSI).

Thus, to remedy this problem, an algorithm is designed to optimize the reader’s precoder

and combiner filters and the tag reflection coefficients. The constraints limit the effects of

the RSI and allow the energy harvested by the tags to exceed a minimum.

To enhance spectral efficiency, this thesis integrates BackComm as a secondary network

with a downlink non-orthogonal multiple access (NOMA) system as the primary network in

a spectrum-sharing environment. In the secondary network, backscatter device (BD) reflects

the primary signal while modulating its data onto it. An intelligent reflecting surface (IRS)

with backscattering is integrated as a BD to leverage its transmit diversity. The downlink

NOMA users are the cooperative receivers who decode both primary and secondary signals.

However, a power-splitting (PS) technique is proposed to prevent interference where the

downlink signal can be split into modulated and unmodulated parts. Then, the IRS uses
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the latter to transfer its data. It is shown that the interference from the secondary system

(IRS-backscattering) on the primary system can be controlled without any performance

degradation.

Cooperative symbiotic radio (SR) backscattering is introduced within a spectrum-sharing

system. The primary motivation is to address the Backcomm limitations by exploiting an

active node, such as the User Equipment (UE). An innovative system model comprising

two transmission phases is proposed to achieve this objective. The initial phase involves a

traditional SR phase, where the assigned BD utilizes the UE’s uplink signal to modulate its

data towards a common base station (BS). In the subsequent phase, the UE decodes and

embeds the associate BD’s signal within its data, employing power splitting techniques to

allocate distinct power levels to each stream. The analysis of this system encompasses the

throughput optimization for both UE and BD.

Also, integrated sensing and communication (ISAC) has emerged to improve spectrum

utilization. The thesis proposes an integrated sensing and SR network to study the coexis-

tence and spectrum-sharing among systems. The downlink system leverages SR assisted by

an IRS-empowered BackComm system, while the uplink BS performs target sensing. System

parameters are optimized to maximize the communication rate while ensuring that sensing

and backscatter signals meet their required quality of service (QoS).
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Chapter 1

Introduction

This chapter outlines the motivation for this thesis, emphasizing the need for advanced com-

munication techniques to improve backscatter communication (BackComm) performance,

which is crucial for Internet of things (IoT) applications. It identifies research challenges

and gaps where existing techniques fail to handle weak, backscattered signals and interfer-

ence. The chapter also details the thesis’s contributions and provides an overview of its

organization.

1.1 Motivation

The explosive growth of networked sensors and devices is leading to the IoT networks. Passive

IoT, according to 3GPP (3rd Generation Partnership Project), refers to a specific category

of IoT devices that do not actively transmit signals but instead rely on external sources for

their functionality [1]. These devices typically operate in a mode where they do not initiate

communications but respond to incoming signals or commands from the network or other

active devices.

Passive IoT addresses the demand for low-cost, low-power devices, making batteryless

solutions highly desirable due to their cost-effectiveness and minimal power consumption.

Additionally, they reduce logistical challenges related to battery recharging and replacement,

as well as associated environmental costs. While wireless energy harvesting (EH) can power

IoT devices, conventional power-hungry components like mixers, oscillators, and analog-to-
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digital converters make exclusive reliance on EH inefficient [2–5].

Key characteristics of passive IoT devices, according to 3GPP, include [1, 6]:

1. No Active Transmission: These devices do not actively send signals or data packets

on their own initiative. They remain dormant until triggered by external stimuli.

2. Activation by External Signals: Passive IoT devices are designed to wake up or

respond when they receive signals or commands from active devices or the network.

This helps conserve energy and resources.

3. Energy Efficiency: By minimizing active transmissions, passive IoT devices can

conserve battery power and extend operational lifetimes without frequent recharging

or battery replacement.

4. Use Cases: Typical applications of passive IoT devices include sensors that activate

in response to proximity, environmental changes, or specific triggers. They are often

used when intermittent monitoring or event-driven data collection is sufficient. For

instance, the logistics sector is one of the IoT’s most demanding markets. Based on

the forecast, global parcel volume is expected to reach 220–262 billion by 2026 [1, 6].

In summary, the 3GPP defines passive IoT devices as characterized by their energy-

efficient behavior, reliance on external triggers for activation, and minimal or no active

transmission capabilities on their own accord. These features make them suitable for appli-

cations where energy consumption and network lifetime are critical factors.

In response to these needs, BackComm has emerged as a critical enabler of passive

IoT [2,7–10]. The key principle is that the backscatter device (BD), also referred to as a tag1,

utilizes passive reflection rather than active transmission for data communication. Unlike

traditional devices, the BD lacks an active radio frequency (RF) chain to generate RF signals

for data conveyance. Instead, it relies solely on passive components, such as antennas and

switches, to modulate its data onto incident RF signals from an external source and reflect

the modulated signal. As a result, the power consumption of BD is reduced dramatically,

1Throughout this thesis, BD and tag are used interchangeably to refer to the passive reflector.
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and EH may be sufficient to achieve the BD’s functions even without an onboard battery.

More details on the Backcomm functionalities and architecture can be found in Chapter 2.

However, like many technological innovations, BackComm has advantages and disad-

vantages. While it is energy efficient, where BDs operate without power-hungry active RF

components, it significantly compromises data rate and coverage. Additionally, it is an

interference-limited system.

1.2 BackComm Research Challenges

Here are the key research challenges:

1. Poor performance: BackComm systems exhibit notable poor performance, includ-

ing limited transmission range (< 1m) and a constrained data rate (∼ 1Kbps) [4, 7].

However, according to 3GPP requirements, these networks must support data rates of

10−100 Kbps to accommodate a variety of applications, providing coverage of 100−200
meters for industrial applications and 10− 20 meters for smart home applications [11].

While prior works have attempted to enhance range through bistatic BackComm con-

figurations, focusing on factors such as antenna design, tag’s modulation [12] and

proposing long-range (LoRa) BackComm [13], this thesis primarily aims to address

this bottleneck by optimizing system parameters.

2. Signal detection at the reader: The backscatter link is inherently weak, given the

passive nature of the tag, which lacks signal amplification. Additionally, the backscat-

ter link is susceptible to a dyadic channel effect, as it depends on external sources

power and carrier signal (more details in Section 2.4). Consequently, the tag signals

may quickly become attenuated or buried by stronger interference sources, such as an

ambient RF source signal, which hinder tag signal detection by the reader [14].

Subsequently, prior research efforts have focused on addressing these BackComm chal-

lenges. For instance, [15,16] delves into detecting tag signals amidst RF carrier source

interference. In [15], the authors propose interference cancellation techniques lever-

aging the structure of RF carrier emitters and coding during tag signal transmission.
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They introduce optimal and energy detectors, characterizing the performance of an-

alytical bit error rate (BER). Meanwhile, [16] explores the simultaneous operation of

a commercial Bluetooth chipset alongside a carrier source, emphasizing carrier signal

suppression achieved up to 50 dB.

This thesis contributes to addressing this challenge. While the aforementioned works

have focused on interference removal for tag signal detection, this thesis concentrates

on system parameter design for the reader and interference management. These topics

are discussed in Chapter 3 and Chapter 5.

3. Poor spectral efficiency: The total number of global passive IoT devices is projected

to reach 29.7 billion by 2027 [3]. A study indicates that supporting IoT applications

in healthcare, utilities, and motorways alone would require 76 GHz of spectrum if each

service were allocated a dedicated frequency band [17]. Therefore, spectrum-efficient

BackComm solutions are needed.

Subsequently, spectrum-sharing networks significantly influence BackComm and ne-

cessitate further exploration [18, 19]. For example, [18] examines underlay cognitive

backscatter systems where primary access points simultaneously transmit primary sig-

nals and receive backscatter signals in a full-Duplex manner. Conversely, [19] proposes

ambient backscatter-based spectrum-sharing networks coexisting with cellular primary

networks, introducing attenuation factors to manage transmit power and interference

thresholds.

This thesis addresses this challenge by incorporating symbiotic radio (SR) as a spectrum-

friendly technique into BackComm. Despite cognitive spectrum sharing, SR is capable

of managing RF source signal interference, as explored in Chapters 4, 5, and 6.

4. Self-interference and mutual interference: BackComm systems are interference-

limited. The primary sources of interference are self-interference (SI) in Monostatic

BackComm (manifesting as RF source interference in ambient backscatter communica-

tion (Ambient BackComm)) and mutual interference among tags in multi-tag scenarios.

Both significantly impact BackComm system performance.
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A previous study [20] introduces Reflective Intelligent Surface (RIS)-assisted ambient

backscatter communication, focusing on RIS phase-shift designs to minimize RF source

and RIS cascaded link interference at the receiver. Similarly, [21] optimizes system pa-

rameters to mitigate RF source interference. To address mutual interference, [21–23]

propose orthogonal-based resource allocation among tags to prevent mutual interfer-

ence.

This thesis also contributes to addressing the interference limitations in BackComm

through signal and system parameter design. Specifically, it focuses on suppressing

and controlling SI and mutual interference in Chapter 3 while managing RF source

interference in Chapters 4, 5, and 6.

More literature reviews on these challenges are available in individual chapters and Chap-

ter 2. However, many open research challenges in BackComm still need to be addressed.

These aspects require further exploration beyond what has been studied in [20–23] and the

references therein. This thesis aims to explore several BackComm setups to bridge existing

research gaps and advance the field. Robust system setups are designed for practical scenar-

ios like multi-tag environments with interference. Spectrum-sharing systems are developed

to improve spectral efficiency while controlling and canceling interference. The research

integrates wireless technologies into BackComm, enhances system performance through ad-

vanced design, and develops optimization algorithms. By incorporating these advanced

designs, this research seeks to significantly improve the performance and efficiency of Back-

Comm systems, ensuring they meet the demands of passive IoT applications.

The specific contributions of this thesis are discussed next.

1.3 Thesis Contributions

This thesis aims to improve the BackComm performance by creating optimization algorithms

and incorporating them with other cutting-edge technologies summarized as follows:

• Developing optimization algorithms: The primary goal is to maximize the sum

rate of various BackComm configurations by optimizing system parameters, ensuring
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the minimum required power for tags while meeting minimum QoS and interference

thresholds. Convex and non-convex algorithmic solutions will be developed.

• Integration with emerging technologies: As they comprise passive tags, Back-

Comm networks exhibit limited communication range, poor data rates, spectrum

scarcity, and interference issues. This suggests addressing these challenges by using

emerging wireless technologies such as IRS, MIMO, spectrum sharing, cooperative

communications, and ISAC.

The following describes the contributions of this thesis:

1. When a single reader is employed to serve multiple tags, interference issues degrade

the system performance. To tackle this challenge, Chapter 3 proposes MIMO and FD

for the reader [24–26]. Leveraging spatial diversity with the MIMO reader, spatial

domain multiple access (SDMA) is proposed to effectively separate signals from each

tag, thus reducing inter-tag signal collision. However, for Monostatic BackComm, the

reader must operate in the FD mode and employ precise beamforming techniques. This

necessity arises due to two reasons. Firstly, the received power at the tag must exceed

a threshold for reliable activation. Secondly, significant propagation delays can occur

due to the round-trip communication from the reader to the tag and back to the reader.

However, the main challenge of FD is SI. Although SI cancellation is possible, the FD

reader remains susceptible to residual self-interference (RSI), which impacts the rate.

In the thesis, innovative methods are devised to control this destructive interference.

System parameters such as precoders, combiners, and tag reflection coefficients in a

MIMO-FD Monostatic BackComm network with multiple tags are optimized. The

optimization criterion is to maximize the system’s sum rate while minimizing the im-

pact of RSI, and considering energy constraints for tags as an additional optimization

constraint.

2. In keeping with the second theme, spectrum-sharing systems offer a solution where

BackComm acts as a secondary system, utilizing spectrum from a licensed primary

network. An innovative spectrum-sharing solution is proposed in Chapter 4. In this
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setup, a downlink NOMA system serves as the primary network, while the Back-

Comm network utilizes this downlink signal for its data transmission. An IRS-enabled

backscatter design with dual functions is introduced to enhance the BackComm link.

The IRS assists the primary system in relaying its data and also reflects its own data

by modulating over the downlink signal. To mitigate interference from IRS data, the

primary transmitter adopts power splitting to transmit two spectrally distinct signals,

enhancing signal detection at the receivers. The investigation focuses on rate maxi-

mization for this proposed system design.

3. Chapter 5 proposes SR BackComm with cooperative communication for the following

reasons. In BackComm, the main problem is the weakened backscatter link due to the

tag’s dyadic channel and passive characteristics. Our insight suggests that coexistence

for spectrum-sharing and collaboration with other cellular nodes, such as user equip-

ment (UE), could effectively address this challenge. Thus, Chapter 5 delves deeply into

the design of Backcomm systems involving spectrum sharing with cooperative cellular

nodes, like UEs. This system design utilizes two phases of uplink transmission. The

initial phase involves a conventional SR phase where the assigned BD uses the uplink

UE signal to backscatter its data. The cooperative aspect is introduced in the second

phase, wherein the UE decodes the particular BD’s signal, allocates a portion of its

power to embed it into its message, and transmits it to a common receiver (e.g., BS).

The sum throughput maximization problem is the main focus.

4. Chapter 6, to further explore the BackComm network coexistence and spectrum shar-

ing, merges an ISAC system and SR. The system features multiple users, a BS, a

target, a sensor, and a IRS. The full duplex BS transmits data in the downlink and

performs target sensing in the uplink. The IRS is optimized to enhance the downlink

sum rate and modulates and reflects the sensor data by backscattering alongside the

joint communication and sensing signals. The primary objective is to maximize the

sum rate while ensuring a minimum signal-to-noise ratio (SNR) requirement for both

the IRS data and target sensing.

Overall, this thesis contributes to the field of BackComm by developing optimization algo-
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rithms and integrating them with emerging wireless technologies. The thesis proposes convex

and non-convex optimization algorithms to maximize the BackComm data rates while con-

sidering the power requirement of the tags and meeting QoS and interference thresholds. It

develops algorithms integrating BackComm with IRS, MIMO, spectrum sharing, cooperative

communications, and ISAC. These algorithms address limitations like limited communication

range, poor data rates, and interference issues. Specific solutions include using MIMO and

FD technologies to mitigate inter-tag interference, employing IRS for spectrum sharing and

backscatter link enhancement, and implementing cooperative communication to maximize

throughput. These innovations aim to improve BackComm network performance, efficiency,

and integration, advancing the capabilities and applications of passive IoT devices in various

network scenarios.

1.4 Organization of Thesis

The remainder of the thesis is structured as follows. Chapter 2 surveys backscatter commu-

nication principles and conducts a literature review on integrating BackComm with other

technologies, including MIMO, FD, IRS, and SR. Following that, Chapter 3 investigates the

MIMO monostatic BackComm with FD reader considering the RSI at the FD reader. Then,

Chapter 4 proposes IRS-enabled backscattering in a downlink NOMA system. Subsequently,

to manage interference in the BackComm, a cooperative symbiotic radio backscatter system

is proposed in Chapter 5. In Chapter 6, IRS-empowered backscatter in ISAC system is stud-

ied. In conclusion, Chapter 7 summarizes the research presented in this thesis and suggests

potential avenues for further research.
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Chapter 2

BackComm Integration With MIMO,

FD, IRS, And ISAC

This chapter reviews the fundamentals of BackComm and its integration with MIMO, FD,

SR, IRS, and ISAC. The chapter is divided into two sections. The first explores the core

concepts of BackComm, covering basic configurations, tag details, channel modeling, and the

reader. The second focuses on how BackComm can be integrated with other technologies.

2.1 Background of BackComm

A fundamental BackComm setup comprises three key components: a BD (tag), an RF

emitter, and a backscatter receiver (reader), see Figure 2.1. The subsequent sections will

discuss each component in detail.

2.1.1 Tag’s general features

Traditionally, tags have been used in radio frequency identification (RFID) technology, which

utilizes RF waves for automatic object identification and tracking. RFID tags are simple

devices composed of a microchip and an antenna. They operate passively, relying on EH

instead of a battery. As a result, they do not require power-intensive components like

oscillators, analog-to-digital converters, or amplifiers. Consequently, they cannot generate
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Figure 2.1: Ambient BackComm system.

Table 2.1: Comparison of Conventional and Next BackComm Systems

Name: Coverage Rate Energy source
conventional RFID <1 m <640 Kbps Dedicated
New BackComm <3km <10 Mbps Dedicated and ambient

an RF signal to initiate data transmission. When tags come into the range of an RFID

reader, the reader emits radio waves that power up the tag and read its data. Typically, the

minimum RF energy level required to activate a commercial passive RFID tag and enable it to

transmit its stored data to the reader is around -20 dBm. However, commercial RFID readers

have limited coverage, usually less than 1 meter, necessitating dense deployment of readers

[27]. The emerging passive BackComm technology addresses this limitation by leveraging

dedicated and ambient energy sources. Table 2.1 provides a summary and comparison of key

properties between conventional RFID and the next-generation BackComm [27]. Modulation

and EH units are crucial in every tag, as described below.

2.1.2 Tag modulation unit

Modulation is the process of mapping digital data to RF signals for data communication.

As previously mentioned, a tag cannot generate RF signals independently. Instead, it relies

on passive backscatter modulation, also known as load modulation. This is accomplished

by the tag adjusting the load impedance presented to the RF antenna based on the data.

For example, Fig. 2.2 illustrates the modulation block of a tag, where the load impedance

presented to the antenna is selected. The mismatch between the load and antenna impedance

values generates a reflection coefficient, whose phase and/or amplitude can represent data
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points. This forms the basis of load modulation.

If the tag uses an M -ary modulation format, its reflection coefficients can be expressed

as

Γi =







Zi−Z⋆
a

Zi+Z⋆
a
=
√
αie

jϕi , i = 1, . . .M

0, i = 0

(2.1)

where 0 < αi ≤ 1 is the tag fraction power reflection and ejϕi = qi is the tag’s normalized

reflected symbol (e.i. |qi|2 ≤ 1) selected from M -ary modulation. Also, Za denotes antenna

impedance, and Zi denotes the load impedance of state i. When the antenna impedance

matches the load impedance (e.g., Z⋆
a = Z0), the tag absorbs the signal completely, so the

reflection coefficient is zero. Otherwise, the tag operates in the reflection mode with varying

reflected power levels. The tag can harvest and reflect simultaneously by utilizing a portion

of the received power for EH and the remaining power for modulation which is pertinent to

power-splitting EH mode. This process is further discussed in Sections 2.1.3 and 3.2.

Generally, the tag may perform three basic modulation schemes, including amplitude-

shift keying (ASK), phase-shift keying (PSK), and frequency-shift keying (FSK) pertinent

to changing the amplitude, phase, and frequency of the received RF signal, respectively

[10, 14, 28, 29].

• ASK is an amplitude modulation that conveys the binary data by changing the am-

plitude level of the RF signal. The on-off keying (OOK) is the simplest form of ASK.

However, it is more prone to be affected by noise. The reader can detect the ASK

signal employing both coherent and noncoherent detectors [28].

• PSK is a type of modulation that transfers binary bits by varying the phase of the

incident RF signal [10]. For example, Figure. 3.2 shows the QPSK backscatter mod-

ulator for a tag. The power reflection coefficient (e.g., αi = α) is 0.8 for all four

modulation symbols, while the phase can be selected based on the tag’s information

bits. Although the PSK modulation is less vulnerable to error than ASK, it requires a

coherent demodulator, making the detection process more complicated [10].
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Figure 2.2: Tag circuit diagram [27].

• FSK is a type of frequency modulation in which the RF signal’s frequency is shifted

between two frequencies f1 and f2 in response to changes in the digital signal, or bits

1 and 0. As a result of its resistance to noise and changes in signal intensity, FSK

modulation is frequently utilized in BackComm systems. However, it requires more

spectrum compared to other modulation schemes. Coherent and noncoherent detectors

can both be used to recover FSK signals [29].

2.1.3 Energy harvesting operation of the tag

Tags, acting as low-power nodes, are equipped with EH capabilities, enabling continuous

sensing, data transfer, and energy-efficient communication. For instance, in a smart home

scenario, numerous backscatter sensors with EH devices and rechargeable batteries are strate-

gically placed throughout the house [30]. These self-sufficient nodes eliminate the need for

external battery charging or replacement. They perform various tasks, such as gas leak

detection, power management, motion detection, surveillance, and more [31,32].

As a result, there are several benefits of using EH in BackComm networks.

• Renewable energy harvesting, like solar or wind power and ambient RF sources, en-

hances the sustainability of IoT networks, reducing their environmental footprint [31].

• EH ensures a continuous power supply for tags, enhancing their reliability and mini-

mizing downtime [13].

• EH eliminates the expenses associated with battery replacements and grid connections,

resulting in long-term cost savings [13].
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RF energy harvesting offers numerous advantages in various areas and applications, pro-

viding simultaneous energy delivery to multiple nodes while ensuring dependability, pre-

dictability, and controllability. For instance, a cellular global system for mobile communica-

tions (GSM) base station generates 0.1 µW/cm2 of RF energy. In turn, the EH unit of a tag

should output power within the range of 1µW-100µW to meet its power requirements [33,34].

The EH unit functions in two modes: (i) Time-splitting (TS) and (ii) Power-splitting

(PS).

• Time-splitting: In this mode, the EH and reflection processes occur in separate time

slots. During the time slots allocated for EH, the tag adjusts its antenna impedance to

match the load impedance, allowing the EH module to absorb the incident RF signal

completely. Consequently, the tag utilizes an energy storage or battery to store the

harvested power for subsequent reflection. During the time slots allocated for data

communications, the tag will reflect the incident RF signal according to Section 2.1.2.

• Power-splitting: with this, the EH and reflection occur simultaneously [35]. Suppose

the reflection coefficients of all tag load impedance values have a constant magnitude,

i.e., |Γi|2 = αi = α. Therefore, the received power at the tag antenna, Pr, is split, and

αPr is used for reflection, and the remaining (1− α)Pr for EH [35].

In addition, to model an EH circuit and quantify the amount of harvested power, the

linear model is often assumed due to its tractability. For the linear model, the harvested DC

power is a linear function of the input power, defined as

Ph = ηαPr, (2.2)

where η ∈ (0, 1] is the power conversion efficiency and Pr is the received power at the

node. In particular, η varies according to the different EH technologies. For instance,

photovoltaic and piezoelectric circuits can achieve up to 40% and 30% efficiency, respectively

[36]. However, in practice, the EH circuit has components with non-linear characteristics

(e.g., rectifier or capacitor). Thus, the output power is a nonlinear function of the input

power, including a saturation plateau for large input powers and zero output for input power
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Figure 2.3: BackComm systems: (a) monostatic, (b) bistatic, (c) ambient .

less than the sensitivity threshold (e.g., −20 dBm for commercially available passive RFID

tags [37]) [38]. The nonlinear models, such as sigmoid [39], piecewise functions [40], and a

nonlinear model based on error function [38], are thus developed to quantify the harvested

DC power. For example, the piecewise nonlinear EH can be modeled as

Ph =







0, Pr ≤ Psen,

η (Pr − Psen) , Pr ∈ [Psen, Psat] ,

η (Psat − Psen) , Pr ≥ Psat

(2.3)

where Psen and Psat denote sensitivity and saturation power, respectively. This model

captures the sensitivity and saturation effect of practical EH circuits. Also, it assumes a

linear response up to the saturation level.

2.2 RF emitter

Depending on the type of RF emitter, the three configurations are Monostatic BackComm,

bistatic backscatter communication (Bistatic BackComm), and Ambient BackComm, as

shown in Figure 2.3.
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• Monostatic BackComm: It is characterized by the reader, who is also the source of

the RF signal to excite tags to modulate their data [41] (Fig. 2.3. (a)). Basically,

the reader acts both the external RF source and the data sink for the tags. Thus, it

transmits an RF signal for tags to reflect and/or absorb for EH purposes. Thus, the

signal must travel from the reader to the tag and back. So, the deeper fading arises

because of the colocated RF and a reader device. This doubly near-far dilemma may

also have a significant impact on Monostatic BackComm performance. Subsequently,

signal loss at the tag and the reader results in a lower modulated backscatter signal

strength and a larger energy-outage probability when the reader and the backscatter

transmitter, or tag, are placed far apart. Consequently, this mode is appropriate for

short-range RFID applications.

• Bistatic BackComm: A dedicated baseband RF emitter sends an RF signal to the tags

to backscatter their data [42] (Figure 2.3. (b)). In contrast to Monostatic BackComm,

the round-trip path-loss can be eliminated in this configuration. Besides, multiple

carrier emitters can be placed around the tags. Therefore, the communication range

can be expanded. The tag can also draw power from multiple RF signals, reducing the

energy outage probability. As a result, this configuration has been studied before [12].

Consequently, signal waveforms can be optimized to achieve a tradeoff between the

amount of energy harvested at the tags and the reliability of the communication [43].

• Ambient BackComm: This is similar to Bistatic BackComm with the difference that

instead of a dedicated RF emitter, tags leverage ambient signals such as TV, WiFi,

cellular RF, and others (Figure 2.3. (c)) [44]. Using nearby ambient RF sources

eliminates the need to deploy and manage dedicated RF sources. As a result, Ambient

BackComm costs and energy usage can be decreased. On the other hand, although tags

can use ambient signals opportunistically, such RF sources are unpredictable and un-

controllable. In addition, since the BackComm uses unlicensed signals, the interference

from the BackComm network on legacy receivers should not degrade the performance

of the licensed network.

More specifically, many of the properties of the RF signal emitter, as determined by
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either the reader, power beacon, or ambient source as an RF emitter, are in accordance with

local regulations. For example, RFID systems use carriers around 860 − 960 MHz, and the

equivalent isotropic radiated power (EIRP) at the reader is compliant with local regulations.

In another example, in Ambient BackComm setup, the tags can use signals in very high

frequency (VHF) (30 MHz to 300 MHz) band such as FM base station signal and ultra

high frequency (UHF) (300 MHz to 3 GHz) band like TV tower signal. In particular, These

RF sources can transmit up to 1MW for the TV tower and up to 100KW for the FM base

station [45]. As a result, the distance between the tag and the RF source can range several

kilometers. Furthermore, ambient Wi-Fi 2.4 GHz signal works with a radiated power of 100

mW, and Wi-Fi 5 GHz allows a maximum of 1000 mW EIRP. Subsequently, the RF source

signal can reach and support those tags located within several meters of Wi-Fi.

2.3 Backscatter receiver (Reader)

The reader is a standalone node (apart from the RF emitter) in all configurations except

Monostatic BackComm, paired with an RF emitter. In fact, reader characteristics such as

receiver sensitivity, reader antenna gain, and the number of antennas directly impact the

reliability of BackComm communication. For example, at a sensitivity of −60 dBm, an

incoming signal of −65 dBm cannot be detected [7].

Many detection schemes for the reader have been proposed to extract data from tag

signals. Noncoherent detection is one of the most popular schemes [46]. The complexity

of the backscatter receiver circuit is particularly reduced because the noncoherent detection

does not require estimating the carrier phase. However, coherent detection can be used to

increase the bitrate compared to noncoherent detection. Coherent detection differs from

noncoherent detection because it necessitates understanding the carrier phase, making the

backscatter receiver circuit more challenging. Many existing works assume that ambient

RF signals in Ambient BackComm systems follow zero-mean circularly symmetric complex

Gaussian distributions because the ambient RF signals are uncertain or even unknown at

the backscatter receiver. Therefore, maximum-likelihood (ML) detectors can then be used

to find the modulated signals at the reader [47]. Nevertheless, other factors, such as multi-
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antenna at the reader, can affect the detection performance of backscattered links at the

reader.

Also, the multi-antenna readers can benefit from multiplexing gain and a higher spatial

degree of freedom. Hence, studies show the gain of the multi-antenna readers over single

antenna ones [41, 48].

2.3.1 Data Detection at the Reader

In BackComm systems, the reader must detect signals to decode the tag’s data. However,

signal detection in BackComm is more challenging than in conventional communication

systems. There are two reasons. Firstly, the tag’s signal is weak because the dyadic channel

increases fading. This weak signal can be overshadowed by strong interference from ambient

sources in Ambient BackComm or carrier emitters in batteryless BackComm systems. As a

result, traditional signal detection methods may not be applicable in BackComm. Depending

on the reader’s capabilities, detection techniques can be classified into coherent and non-

coherent detection [14].

Coherent detection

This method necessitates precise knowledge of the receiver’s channel state information (CSI)

and the carrier phase. When it comes to error probability, coherent detectors are optimal.

Among coherent methods, the ML detector is an optimal algorithm [49]. However, other

techniques like the asymptotically optimal generalized likelihood ratio test (GLRT) can be

used as it maximizes the rate of decay of the probability [50].

Non-Coherent detection

Non-coherent detection does not necessitate knowledge of the carrier phase and CSI. While

this requirement reduction leads to decreased receiver complexity, it comes at the cost of

lower spectral efficiency or a potential performance penalty.

When it comes to BackComm, the envelope detector, which is a non-coherent detection

based on the average energy of the received signal, is simple with a low complexity method
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Figure 2.4: The (M,1,N) dyadic backscatter channel.

[51], [52].

2.4 BackComm Channel

Backscatter channels (Figure 2.4) exhibit atypical fading characteristics. To illustrate them,

consider a simple example. Let htx ∈ CM×1 and hrx ∈ CN×1 represent the channels between

the RF source and the tag, and between the tag and the reader, respectively, where M is the

number of transmit antennas at the RF emitter, and N is the number of receive antennas

at the reader. The channel coefficient the reader observes is the fundamental quantity

determining the capacity and communication range.

In this scenario, the tag antenna acts as a ”pinhole” during the forward link (i.e., RF

source to tag) [53], consolidating all multipath components at a single physical point. The

tag then rescatters the combined signal to the receive antennas. As a result, the backscatter

channel can be described by the tuple (M, 1, N), and the effective channel is the product of

the forward and backward (i.e., tag-to-reader) channels, represented as hrx(htx)
H

, known

as a dyadic channel.

This dyadic effect reduces the channel capacity. Moreover, the dyadic backscatter channel

results in deeper fades, i.e., a higher probability of severe fades than conventional links. This

occurs because the dyadic channel is the product of two fading variables.

To gain better insight, Figure 2.5 illustrates the envelope probability density function

(PDF) of the single-antenna BackComm with Rayleigh channel compared to the PDF of

a conventional channel. Clearly, the dyadic channel suffers from deeper fading, leading to
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Figure 2.5: A comparison of dyadic PDF and conventional channel PDF for Rayleigh channel.

more frequent outages. Furthermore, path loss (i.e., large-scale fading) is additive in these

channels. Consequently, these impairments fundamentally affect the tags’ data rate and

communication range.

2.5 BackComm Integrated with Other Technologies

The following section explores the benefits and potential synergies of integrating BackComm

with other advanced technologies, highlighting how these combinations can enhance overall

system performance, improve efficiency, and enable new applications.

2.5.1 Integration of BackComm with MIMO

MIMO technology offers numerous advantages compared to its single-input single-output

(SISO) counterpart. Multiple antennas enhance diversity, particularly in slow-fading con-

ditions, while providing advantages of power and degrees of freedom in fast-fading scenar-

ios [54]. Hence, the integration of MIMO with BackComm can be employed to harness its

potential. Consider, for instance, the MIMO RFID system, whose fading characteristics di-
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Figure 2.6: Capacity comparison of MIMO(4×4), MISO (4×1) and SISO (1×1) BackComm with
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verge from traditional MIMO links relying on far-field propagating modes. The distinctive

feature of the BackComm channel, in contrast to the conventional M transmit N receive

antenna Rayleigh MIMO channel, lies in the dyadic backscatter channel (see Section 2.4 ).

Figure 2.4 depicts the dyadic channel between M -transmit antennas and N -receive an-

tenna in a single-tag scenario. Figure 2.6 illustrates the achieved capacity for three different

antenna configurations of tag-reader pair. For instance, 4×4, 4×1, and 1×1 are for MIMO,

multiple-input single-output (MISO), and SISO, respectively. The performance gap between

MIMO and the other two widens in high SNR conditions. This highlights the superiority of

MIMO in achieving capacity within the BackComm framework.

Furthermore, to address the reliability and security of RFID systems, [55] propose noise-

injection precoding in a MIMO Monostatic BackComm network. The objective is to max-

imize the secrecy rate by optimizing the energy power and the precoding matrix of the

injected artificial noise at the reader. Besides, resource allocation in a MIMO backscatter-

assisted wireless-powered Communication Network is proposed in [56]. Users are assumed

to work in either a wireless-powered communication network or backscatter mode. The aim

is to maximize the sum throughput of this system over time allocation, mode selection, and
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precoder matrix while considering finite alphabet inputs. Considering multi-tag in MIMO

reader Monostatic BackComm in [57], the authors first propose the least-squares-based chan-

nel estimation and then use the estimated channel to optimize the transceiver design to

maximize the minimum backscatter throughput of among all tags. Similarly, [26] considers

multi-tag Monostatic BackComm; however, the reader is a massive MIMO reader. Four

different transceiver configurations are proposed. The study demonstrates that the overall

transmit power can be proportionally reduced by the square of the transmit antennas, with

no compromise in performance.

Thus, integrating MIMO with BackComm yields performance gains. These include im-

proving communication link reliability, bit-error-rate reduction, and capacity gains [25, 26],

[55–57]. Although many Backcomm studies exploit the diversity and multiplexing gain in-

troduced by MIMO, more research questions remain. For instance, Ambient BackComm

or Bistatic BackComm can be analyzed with multiple-antenna tags. The tag’s design must

be simple to fulfill the low-power and low-cost requirements, often constrained to a single

antenna. Nevertheless, tags with more than one antenna can significantly enhance data

rates.

2.5.2 Integration of BackComm with FD

In contrast to its half-duplex (HD) counterpart, FD communication enables simultaneous

transmission and reception on a single channel [58]. This capability has the potential to

enhance spectral efficiency twofold, distinguishing it from HD alternatives that can only

transmit in a single direction at any given time. Several studies have introduced FD into

BackComm [18,59–62]

In [59], the FD multiple mobile users transmit data to a common access point (AP)

while simultaneously receiving the signal from their associated BD. The interference from

multi-users is avoided at the AP according to the carrier sense multiple access. The PHY-

layer outage probabilities are derived, and cross-layer outage capacities for both systems

are examined. The incorporation of FD in the information transfer BackComm system is

presented in [60] to minimize latency and enhance spectrum utilization efficiency. Neverthe-

less, this FD system leads to an exacerbation of interference links. Time-hopping full-duplex
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Table 2.2: Summary of MIMO BackComm optimization problems

# System Model Design Obj. Opt. Method Main Finding(s)

[26]

Massive MIMO-
Monostatic Back-
Comm

Precoder and
combiner design

ZF, MF, opt.
backscatter coeffi-
cient

Best performance of
MF-ZF in terms of
spectral and energy
efficiency

[55]

MIMO-
Monostatic Back-
Comm with noise
injection

Max. secrecy rate
AO, sequential
parametric CA

Better secrecy rate
among other base-
lines

[56]

MIMO-FD Mono-
static BackComm
WPCN

Max. sum
throughput

AO, gradient-
based strategy,
ADMM

Better performance
of Backscatter
WPCN compare to
WPCN

[57]
CE and fairness
MIMO monostatic
BackComm

Max. minimum
backscattered
throughput

Least-square,
eigenvalue decom-
position

Over seven-fold
increase in tag
backscatter through-
put

* ZF: Zero forcing, MF: Match filter, AO: Alternative optimization, CA: Convex approximation,
ADMM: Alternating direction method of multipliers.

multiple access is proposed based on interference suppression by spread spectrum to avoid

interference. In another example, in [61], the FD access point transmits OFMA signal to a

legacy user while receiving signal from multi-BDs in a time-division multiple access (TDMA)

manner. The numerical results demonstrate the superior throughput of the FD system com-

pared to the HD AP. Similarly, in [18], an underlay cognitive BackComm system is proposed

where FD AP transmits a primary signal to primary users while receiving a signal from BD

in the uplink via TDMA manner. The uplink transmission of BDs is structured to ensure

that any resulting interference does not compromise the quality of the primary transmission.

The aim is to maximize the throughput while satisfying network requirements.

Monostatic BackComm with FD communications has been studied in [63], [24], [64], [26],

and [41].

2.5.3 Integration of BackComm with Symbiotic Radio (SR)

The widespread deployment of IoT devices will bring about an upsurge in energy-efficient

communication and radio spectrum utilization. SR serves as a transformative solution that
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Table 2.3: Summary of SR BackComm optimization problem

# System Model Design Obj. Opt. Method Main Finding(s)

[65]
MIMO-SR
backscatter

Sum capacity
max.

Penalty-based al-
gorithm

Reaching sum capac-
ity close to capacity
upper bound

[66]
MIMO-SR mas-
sive BD

Rate analysis and
precoding opt.

MMSE, SVD
SR mutualism is
fully exploited with
massive BD

[23]

FD SR multi-BD
NOMA dynamic-
TDMA system

Minimum
throughput max.
among BD

BCD, SCO
Proposed design out-
performs dynamic-
TDMA

[67]

SR with multi-
antenna transmit-
ter

Weighted sum-rate
max. and PT min.

SDR
Primary rate is im-
proved using BD

[68]
MIMO-SR with
IRS-backscattering

PT Min. AO, SDR
Benefits of the IRS-
assisted MIMO-SR
system

* MMSE: Minimum mean square error, SVD: Singular value decomposition, BCD: Block
coordinate decent, SCO: Successive convex optimization, PT: Power transmit, SDR: Semi-definite

relaxation.

enables radio systems to share resources by establishing symbiotic relationships collabora-

tively [67, 69]. Such connections can either be mutualistic, where both parties benefit from

the interaction, or parasitic, wherein one party gains advantages at the expense of the other.

This innovative approach underscores the dynamic nature of radio broadcasting, emphasizing

the potential for interdependence and cooperation among different entities within the radio

ecosystem. Therefore, symbiotic radio refers to the coexistence of two radios with a symbi-

otic relationship to share a radio system [69]. Unlike cognitive radio (CR), which is defined

because not all of the radio spectrum is occupied all the time, and white spaces/spectrum

holes can be utilized by the secondary users, in SR, the secondary depends on the spectrum

of the primary network for its transmission. Their relation can be parasitic (e.g., when two

systems in an association share radio resources, one system profits while the other suffers)

or commensal (e.g., one system benefits by sharing the radio resources, but the other gets

no benefit or harm).

A good example of an SR system is where the secondary system is a low-power system like

BackComm, where BD cannot generate any RF signal and depends on the signal from the
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primary system’s coexistence. The main difference between the SR and Ambient BackComm

is that the primary receiver can benefit from the extra propagation link from BD reflection in

commensal SR. In the following, we review the recent works that propose system optimization

in SR backscatter.

A MIMO SR BackComm system with the cooperative receiver (e.g., the primary receiver

and BD receiver are integrated) is proposed in [65]. All nodes are multi-antenna, aiming

to maximize the sum capacity of the primary system and backscatter by optimizing the

transmit beamforming. The results demonstrate that the achieved optimal sum capacity is

close to the capacity upper bound using the penalty-based algorithm. The MIMO SR with

massive BD is studied in [66] where after deriving the achievable rate of both primary and

backscatter rate, the precoding optimization problem is studied to maximize the primary

communication rate while guaranteeing a minimum rate for the secondary system. An

FD-SR in a NOMA dynamic-TDMA with multi-BD is investigated in [23] where an FD-

AP transmit an orthogonal frequency division multiplexing signal to a legacy user while

receiving signal form BDs. The goal is to maximize the minimum throughput among BDs

while satisfying other systems’ requirements, such as legacy user throughput, EH at BDs,

and other constraints. The results emphasize the better performance of NOMA dynamic-

TDMA over dynamic-TDMA for both legacy users and BD. In a similar vein, considering

the basic SR BackComm system, authors in [67] derive the achievable rates and solve two

problems: (1): weighted sum-rate maximization and (2): transmit power minimization over

transmit beamforming. Furthermore, the utilization of IRS as a BD is presented in a MIMO-

SR system in the study by Zhang et al. [68]. In this model, the IRS functions as a secondary

transmitter. It not only improves the link of the primary system but also utilizes the signal

from the primary transmitter to modulate its data, reflecting it to the secondary receiver.

Throughout this investigation, the objective is to minimize the transmit power at the primary

receiver while ensuring a quality of service for each system.

The SR technique developed recently aims to harness the benefits of both CR and Ambi-

ent BackComm, effectively addressing the shortcomings associated with these two technolo-

gies [70]. SR can leverage the spectrum sharing between primary and secondary systems.

However, it can attain mutual spectrum-sharing benefits rather than interfere with spectrum-
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sharing in CR. The main advantage of SR over Ambient BackComm is the joint decoding of

both system messages, which makes the BackComm more reliable.

2.5.4 Integration of BackComm with IRS

To pave the way for the development of intelligent and adaptable wireless channels and radio

propagation environments in the next era of mobile communication, groundbreaking tech-

nologies such as IRS have recently emerged [71]. An IRS, a two-dimensional planar structure,

comprises many passive reflecting elements, each capable of dynamically adjusting the in-

cident signal phase and/or amplitude. This dynamic adjustment enhances communication

links, addressing channel fading and interference challenges.

The reflecting elements constituting an IRS are constructed using low-cost and low-power

printed dipoles. These dipoles have the unique ability to modify the properties of impinging

signals without the need for an elaborate RF chain [72]. In addition, the IRS works in FD

mode without introducing any SI; therefore, it can compete with its counterparts, e.g., HD

and FD relay, which has low-spectral efficiency in HD case and need sophisticated techniques

to suppress SI, in FD mode. As a result, by harnessing this innovative technology, it becomes

possible to create highly efficient and responsive wireless communication systems, ushering

in a new era of connectivity where adaptability and intelligence are key features.

As a result, the IRS can also help the BackComm network overcome its inadequacies. IRS

is used in BackComm in two separate ways in existing research: (1) IRS-assisted BackComm

and (2) IRS-backscattering itself as a tag that is described as follows.

IRS-assisted BackComm:

Within this category, the IRS is seamlessly integrated into the BackComm as an indepen-

dent node, significantly enhancing its overall performance. For example, in [73], the IRS is

proposed to a NOMA BackComm system as an auxiliary link to enhance the backscatter

link. The objective is to optimize the overall sum rate of this system by considering power

reflections at backscatter devices and the phase shift introduced by the IRS. The findings

reveal superior performance compared to a system lacking the integration of an IRS. In the
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Table 2.4: Summary of IRS BackComm optimization problem

# System Model Design Obj.
Opt.
Method

Main Findings

[73]

IR
S
-a
ss
is
te
d IRS-assisted NOMA

backscatter
Sum rate max. AO, SCA,

manifold opt.

It outperforms NOMA
BackComm without
IRS

[74]
Backscatter-assisted
WPCN using TDMA

Total throughput
max.

AO, SCA
SDR, BCD

2-bit resolution IRS is
enough to suffices near
optimal performance

[75]

IR
S
-B

ac
k
sc
at
te
ri
n
g Multi-user MISO SR

system
Weighted sum
rate max.

AO, FP IRSs transmission
benefits PR

[76]
IRS-enabled joint
backscattering and
communication

MOOP opt. to
user rate max.
goodout of
BackComm

AO,
Gradient-
Method

Number of reflecting
elements, impact system
performance

[77]

IRS-assisted MISO
multiuser downlink
SR

Primary system
sum rate max.
max. SER

SCA
Better performance
compared to different
benchmarks

[78]
Multi-cell uplink
transmission with IRS

Weighted sum rate
max. problem

AO, FP
Number of reflecting
elements impact per-
formance

* SCA: Successive convex approximation, MOOP: Multi-objective optimization, SER: Symbol error
rate, FP: Fractional programming, PR: Primary receiver

study by [74], multi-energy-constraint users operate in two transmission modes: backscatter

and active transmission. These modes are supported by both a wireless-powered communi-

cation Network (WPCN) and the IRS, facilitating the transmission of their data to an AP

in a TDMA fashion. The sum-throughput maximization problem is studied to optimize IRS

reflection coefficients, time and power allocation, transmit beamforming at the power sta-

tion, and receive beamforming at the AP. Furthermore, the application of IRS in a multi-tag

Bistatic BackComm is considered in [79], where the tags implement frequency-shift-keying

to avoid inter-tag interference at the receiver. They try to minimize the power of the carrier

emitter while optimizing the IRS phase shifts. In addition, as illustrated in [80] and [81],

the IRS acts as a transmitter of all received signals and multicast confidential information

via backscattering to users, respectively.
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IRS-enabled backscattering:

In this category, it is assumed that the IRS has its own information to reflect. In this instance,

backscattering can be considered an IRS technology use case or special case. As illustrated

in [75], the IRS acts not only as an enhancement link for the primary network but also as

a backscatter device to enable backscatter transmission in a multi-user MISO SR system.

The goal is to maximize the weighted sum rate of both the primary and BackComm sys-

tems. This optimization encompasses factors such as transmit beamforming at the primary

transmitter and passive beamforming at the IRSs, accounting for scenarios involving ideal,

continuous phase, and discrete-phase considerations. Similarly, the IRS in work [76] adjusts

its phase shifts to convey its data as a backscatter device to a base station (BS) while helping

the user’s data in the primary network. The aim is to maximize the user average transmis-

sion rate of the primary communication and the good output of the BackComm by solving

the formulated multi-objective optimization problem (MOOP). Similarly, IRS in [77] uses

the primary network signal to modulate and reflect its data toward the secondary receiver

while conveying the primary network information since the direct link between the primary

transmitter and the primary receiver cannot be established. Subsequently, they jointly op-

timize the beamformer at the AP and the phase shifts at the IRS to maximize the average

sum rate of primary networks while maximum tolerable symbol error rate constraint for the

secondary network. Moreover, in the work by Xu et al. [78], an uplink transmission scheme

is introduced for a multi-cell system. This approach involves empowering IRSs through a

dedicated power beacon, which subsequently modulates its connected users’ information to

the associated BS. The objective is to optimize the weighted sum rate by optimizing the ac-

tive beamforming at the power beacon, passive beamforming at the IRSs, and the scheduling

of uplink users.

The IRS can be utilized to facilitate passive communication technologies, such as Back-

Comm. The integration can be leveraged in two different ways. First, the IRS can be

deployed in BackComm as an FD-relay to amplify the tag’s reflected signals. In this sce-

nario, the transmit-diversity capabilities of the IRS improve Backcom performance. Even if

the IRS is moderately small, it can significantly decrease the transmit power at the carrier
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emitter in Bistatic BackComm [82]. The integration takes another form with IRS-enabling

backscattering, where each element of the IRS functions as a backscatter device, reflecting

its sensed data. Likewise, in this configuration, BackComm can harness transmit diversity

through IRS-enabling backscattering [77].

2.5.5 Integration of ISAC and BackComm

In addition to communicating with BDs, the future BS will need to sense the environment

for high-resolution applications and protect the system from attacks [83]. ISAC has been

developed to perform sensing and communication simultaneously using a common waveform,

the same frequency band, and hardware [84]. ISAC offers low cost, low power consumption,

and compact size, making it ideal for applications requiring both communication and sensing

services. Consequently, ISAC and BackComm systems are being explored.

Reference [83] proposes an integrated sensing and IRS BackComm system. The BS

simultaneously detects signals from multiple IRS backscatter data and the echo signal from

a target. The sum rate of all devices is maximized under the Cramér–Rao bound constraint

for the target’s direction of arrival estimation. Reference [85] considers ISAC for SR, where

the shared receiver can locate the moving IRS-backscattering by estimating the direction of

arrival. Reference [86] analyzes the achieved communication rate in integrated sensing and

BackComm where a tag uses the BS downlink signal to backscatter the signal toward its

recipient. Simultaneously, the BS can also use this signal to sense targets.

2.6 Conclusion

This chapter provides a concise introduction to the background necessary for the rest of the

thesis. It covers the fundamentals of BackComm and reviews the integration of MIMO, FD,

IRS, and ISAC technologies. Each of these technologies offers significant advantages: MIMO

enhances communication link reliability and capacity; FD improves tag activation and data

reception efficiency in multi-backscatter scenarios; IRS technology enables better signal ma-

nipulation and transmission diversity, enhancing backscattering capabilities in BackComm

networks; and SR techniques optimize spectrum utilization and mutual sharing between
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primary and secondary systems, boosting reliability through joint decoding. Additionally,

integrating ISAC introduces precise sensing and communication capabilities, promising ad-

vancements in tracking and positioning within BackComm applications. Collectively, these

integrations propel BackComm networks towards higher performance, efficiency, and broader

applicability across various wireless communication scenarios.
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Chapter 3

Sum Rate Maximization of MIMO

Monostatic BackComm by

Suppressing RSI

This chapter examines the multi-tag Monostatic BackComm system with a multi-antenna

FD reader. However, the reader experiences SI levels much higher (e.g., 160 dB) than the

desired signal. However, since SI cancellation is imperfect, residual SI (RSI) dramatically

degrades system performance. This chapter thus optimizes the precoder and combiner at the

reader and tag reflection coefficients to maximize the sum rate and suppress the RSI subject

to the tag EH constraints. Because this problem is non-convex, alternating optimization

(AO) along with successive convex approximation (SCA), semi-definite relaxation (SDR),

and geometric programming (GP) are utilized to solve this problem.

3.1 Introduction

As outlined in Section 2.2, there are BackComm configurations: Monostatic BackComm,

Bistatic BackComm, and Ambient BackComm. Of the three, Monostatic BackComms enable

many IoT applications such as smart homes/cities, healthcare, wearables, and more [31],

[27, 87]. This is primarily attributed to their cost efficiencies [48]. This Chapter focuses on

the Monostatic BackComm networks.
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Table 3.1: Summary of Related Works

Ref. EH Const. RSI Const.
Opt. Precoder
and Combiner

Opt. Ref.
Coeffi.

Obj. Function Solution Approaches

[48] X X ✓ ✓ Sum Rate Fractional Programming, SDR

[91] X X ✓ ✓ Max–Min Rate
SCA, LPF, AO
Bisection Search,

[26] X X - ✓ Sum Rate Analytical Solution

[34] ✓ - - X Max–Min Rate SQP

Our work ✓ ✓ ✓ ✓ Sum Rate SDR, SCA, GP, AO

Specifically, tags can be categorized into the following different groups:

• Passive: These have no RF components, do not generate RF signals, and communicate

by passive reflections. These are thus pure batteryless devices entirely powered by EH

from an external source.

• Semi-passive: These have the same characteristics as above except for limited battery

and energy storage capability. Consequently, these tags have increased weight and cost

compared to the passive ones.

• Active: These are battery-powered devices with RF components and communicate by

active transmissions. Consequently, they communicate over 300 − 700 feet compared

to that of semi-passive tags with about 100 feet range [88].

As passive and semi-passive tags have the most applications because of their low cost, low

power consumption, and non-generation of radio noise [87], such tags are the focus of this

research. Furthermore, EH can power passive tags and reduce recharging/replacement costs

in semi-passive tags, improving energy efficiency [8, 89, 90].

The reader in the Monostatic BackComm network is both transmitting and receiving

simultaneously. Such FD operation can double the spectral efficiency, reduce the latency,

and enhance the communication range [92,93]. However, the cost of these benefits is SI. The

SI in conventional wireless networks can be as high as 110 dB above the received signal [94].

However, this gap can be even more significant for the Monostatic BackComm networks for

the following reasons. First, since the RF signal travels from the reader to the tag and back to

the reader, it experiences double path loss. Second, passive backscatter modulation of the tag
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results in further losses. Due to these factors, it is estimated that the reader sees a received

RF signal with about 160 dB loss for a tag at 100 feet. This loss depends on transmit/receive

antenna gain, polarization mismatch, and other parameters [95, Table 3]. Although analog

and digital SI cancellation techniques can achieve 70 dB suppression [92,93], factors such as

the transceiver impairments [96], propagation channel impairments, and estimation errors

negate the possibility of perfect cancellation.

Even if the reader adopts some of these SI cancellation techniques, there will be RSI,

which must be considered in the complete system design. Hence, by considering the RSI,

this work aims to develop the transceiver design for the reader of a multi-tag Monostatic

BackComm network. The reader utilizes spatial degrees of freedom (e.g., multiple antennas)

to suppress the effect of RSI while the tags perform EH.

3.1.1 Motivation and Contribution

Optimal transceiver designs to limit RSI power level while providing the required power of

tags have not been studied before. The reason for this gap is that previous works assume

that the SI is completely eliminated by the reader’s analog/digital SI cancellation tech-

niques [48, 91]. This Chapter of the thesis fills out this research gap by investigating the

design of transceivers for a MIMO reader, which is subject to non-zero RSI. The network

supports uplink transmissions of multiple tags randomly scattered in a square region, and

the tags reflect the RF carrier to send their data to the reader. These transmissions occur

simultaneously. The reader separates the data signals of different tags via spatial filtering.

Our contributions are summarized as follows:

• Unlike previous works, this study considers a more realistic model where the reader’s

analog/digital SI cancellation processes are imperfect, resulting in non-negligible RSI.

The level of RSI is represented by the coefficient β > 0. All previous works implicitly

assume β = 0. An algorithmic approach is developed to limit the effect of RSI for the

regime β > 0.

• The sum rate of the network is maximized by jointly optimizing the transmit (precoder)

and receive (combiner) beamformers at the reader, as well as the reflection coefficients
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of the tags, subject to the RSI constraint at the reader and the EH constraint at

the tags. Existing works [26, 48, 91] do not consider these constraints. This study

concurrently considers both the energy and RSI constraints, a novel aspect that has

not been previously studied.

• The resulting optimization problem is non-convex due to variable entanglement. To

address this, the AO paradigm (also known as block coordinate descent) is exploited.

This approach splits the main problem into several easy-to-solve subproblems and iter-

ates among them sequentially until convergence. The formulation divides the variables

into three blocks: the precoder vector (f), the combiner vectors (gk, k = 1, . . . , K), and

the tag reflection coefficients (αk, k = 1, . . . , K), where K is the number of tags. First,

f is optimized by applying the SCA and SDR techniques. Unlike [48], which applies

Gaussian randomization to compute f , it is proven that the SDR solution is indeed

tight.

• In the second subproblem, the combiner vector for the k-th tag signal, gk, k = 1, . . . , K,

is designed based on the minimum mean-squared error (MMSE) filter and the gen-

eralized Rayleigh quotient form of the received signal-to-interference-plus-noise ratio

(SINR).

• The third subproblem optimizes αk, k = 1, . . . , K for f and gk from the previous

steps. Previously, such problems have been attacked with linear programming feasibil-

ity (LPF) [91], which is based on a bisection search and has a slow rate of convergence.

This work instead develops an algorithm based on the GP paradigm to find αk.

• Extensive numerical and simulation results are provided to assess the proposed al-

gorithm. Specifically, three comparative benchmarks are studied: (i) tags without

EH requirement, (ii) no RSI suppression at the reader, and (iii) randomly selected αk.

These comparative benchmarks help evaluate the efficacy of the proposed designs. The

numerical results demonstrate the performance gains of the proposed design compared

to these benchmarks.

Although [26,48,91] investigate Monostatic BackComm network models, our contribution
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differs in two fundamental ways. These papers omit the RSI presence at the reader and the

possibility of EH at the tags. Our work incorporates both of these critical factors. Even

though [91] considers the tags that perform EH, there are no minimum energy constraints.

Table 3.1 compares and contrasts our work in several recent papers.

3.1.2 Related Works

A key problem of Monostatic BackComm is the dyadic path-loss, making reliable detection

a serious challenge. Thus, symbol error rate (SER) and bit error rate have been analyzed in

[24,97]. In [24], the authors study the achievable diversity gains with unitary and orthogonal

designs. Furthermore, the authors in [97] develop block-level unitary query and modified

orthogonal-like space-time codes. Their simulations validate the proposed coding designs

compared to other baselines regarding BER and SER. The optimal transceiver design at the

Monostatic BackComm reader and the optimal tag reflection coefficients have been studied

in [26, 48, 91]. Specifically, [48] jointly optimizes the downlink energy beamforming, receive

combining at the reader, and tag reflection coefficients. This work reduces the reflection

coefficient optimization to a binary power control problem. In addition, it also analyzes the

sub-optimal joint design for two extreme cases, i.e., high and low SNR regimes. Reference [91]

maximizes the minimum rate of the tags to collect data with fairness while considering EH

at tags. SDMA allows all tags to reflect simultaneously. The reader’s performance can be

optimized by exploiting the available spatial degrees of freedom (DoF). This can be done

with well-known precoders and combiners, namely matched filter (MF) and zero-forcing (ZF).

Accordingly, [26] derives the capacity lower bound for four different combinations of these

transceiver configurations for a massive MIMO reader and discusses the impact of imperfect

CSI. However, all these works assume that the reader achieves perfect SI cancellation.

EH in the BackComm networks is considered in [5,34,90,98]. For example, [34] uses en-

ergy beamforming to improve energy transfer efficiency. The energy beamforming is designed

to maximize the minimum rate of tags subject to the energy constraint. The reader uses

maximum-ratio combining (MRC) and ZF receivers while using the estimated backscatter

CSI. Authors in [5] propose an EH relay-assisted network and maximize the system through-

put by jointly optimizing the beamforming, power splitting (PS) ratio, and other parameters.
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3.2 System Model

Figure 3.1 shows an Monostatic BackComm network consisting of K ≥ 1 single antenna tags

indexed by k ∈ K = {1, . . . , K}, randomly distributed in a r × r square region [100]. The

multiple antenna reader located at the center transmits an RF carrier in the downlink while

receiving the backscattered signals via the uplink. Let us denote the k-th tag and the reader

as Tk and R, respectively. The reader is equipped with Nt ≥ 1 and Nr ≥ 1 transmit and

receive antennas, respectively. Practically, current BackComm networks can only achieve

low data rates and communication range in the order of 10 Kbps and a few meters, respec-

tively [101]. However, this system leverages a multi-antenna reader to enhance the capacity,

data rate, and communication range by exploiting spatial diversity gains. Consequently, this

network may be applicable in various applications involving warehouses, wearables, biomed-

icals, and smart homes.

The following key/standard assumptions are made:

A1: Each tag uses load modulation, which depends on the complex reflection coefficient of

the k-th tag, ∀k ∈ K [10]:

Γi,k =
Zi − Z⋆

a,k

Zi + Za,k

(3.1)

where Za,k denotes the antenna impedance of the k-th tag, and Zi is the i-th load

impedance i ∈ {1, 2, . . . ,M}. Although binary backscatter modulators have been

widely investigated, they limit the data rate and are spectrally inefficient. Thus, higher-

order modulation (M > 2) is considered by using more than two impedance values.

Denote Γi,k = |Γk|ejθi where θi ∈ [0, 2π]. All the tags use the same set of phases

{θ1, θ2, . . . , θM} to convey their data, which amounts to a M -ary phase-shift keying

(PSK) constellation. That is why ∠Γi,k does not depend on a particular tag but reduces

to θi. This is a reasonable assumption, as practical systems will employ identical tags.

The load impedances required to generate it can be computed via the Smith chart

techniques [102].

The index i in the power reflection coefficient |Γi,k|2 is dropped because a set of load
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Figure 3.2: QPSK backscatter modulator design.

impedance values can be designed to keep |Γi,k|2 constant while varying the phase of

Γi,k. Therefore, let αk = |Γi,k|2, representing the power reflection coefficient of the k-th

tag. It is assumed that the tag design will achieve 0 < αk < 1 [90, 91,98,99].

For example, Figure 3.2 shows the QPSK backscatter modulator for a tag. The power

reflection coefficient (e.g., α) is 0.8 for all four modulation symbols, while the phase

(e.g., θi) can be selected based on the tag’s information bits.

A2: The SI cancellation process at the reader is imperfect. The reader’s hardware cir-

cuits will not ideally suppress the SI signal. Parameter β is introduced as the hard

SI suppression threshold to quantify the RSI level. This factor models the effect of

passive/active SI cancellation techniques such as antenna isolation and filtering cir-

cuits. The case of β = 0 denotes the perfect SI cancellation case. The smaller β is,

the better cancellation is reached. For instance, previous works [26, 48, 91] implicitly

assume β = 0 (e.g., perfect cancellation). For practical systems, RF/analog circuits

provide up to 90 dB SI suppression [94]. However, because of RF impairments and

other imperfections, the β = 0 assumption may not be realistic.

A3: The EH process of each tag follows a linear model. Although practical EH circuits

have non-linear characteristics and a rather limited linear region [38, 103], these may

be linearized by concatenating multiple EH circuits, which extend the linear region.

A4: The reader has full CSI. This assumption is standard for all most studies. The reader
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can perform channel estimation (CE) based on standard pilot transmission techniques.

However, the ability of passive tags to transmit pilots is limited [104]. However, tags

can reflect the pilots transmitted by the reader, enabling a least square estimator

(LSE) [105]. Although CSI estimation is complicated in Ambient BackComm, some

results are emerging (see [106] and reference therein). An alternative is blind CE (e.g.,

without pilots). Moreover, based on the RFID protocol, the overhead of the system

for tag-reader frame synchronization signaling is at least 34µs [107].

A5: The channels R-to-Tk, Tk-to-R are Rayleigh fading with hf
Tk
∈ CN

(

0Nt×1, ξ
f
Tk
INt

)

,

hb
Tk
∈ CN

(
0Nr×1, ξ

b
Tk
INr

)
, where ξfTk

and ξbTk
indicate the downlink and uplink chan-

nels path-loss. The Rayleigh model is appropriate for environments that are highly

scattered, where the line-of-sight (LoS) component is negligible or absent. Examples

of such environments include dense urban areas and indoor settings.

A6: The SI channel HSI = [hSI
ij ] ∈ CNr×Nt is modeled as a Rician fading channel [93].

Denote hSI
ij the (i, j)-th element of HSI. The SI channel comprises the LOS and the

non-line-of-sight (NLOS) parts. Therefore, the SI channel model is given by

hSI
ij =

√

1

K̄ + 1
hSI
LOS +

√

K̄

K̄ + 1
hSI
NLOS, (3.2)

where K̄ denotes the Rician factor, hSI
LOS represent the deterministic part subject to

∥hSI
LOS∥2 = 1, and hSI

NLOS ∼ CN (0, 1). Consequently, higher K̄ indicates a strong SI

channel at the R.

A7: A block fading model is assumed for all the channels with a given coherence time,

which depends on several factors, including the carrier frequency and the velocity of

the reader. For instance, at 2.45 GHz and a speed of 2 km/h, it is roughly 83 ms [53],

indicating that this coherence time is large enough for CE.
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3.2.1 Transmission Scheme

Reader R transmits signal x =
√
PT fs, where PT is the transmit power, s ∼ CN (0, 1) is

the R transmit symbol, and f ∈ CNt×1 denotes the precoding vector. It is assumed that the

precoder vector is identical for all tags, which is optimal since the transmit signal is only

used to power the tag circuits [48]. Consequently, the receives signal at Tk, k ∈ K can be

expressed as yTk
= (hf

Tk
)Tx, k ∈ K. Note that since the tag lacks RF components, it does

not introduce any noise to the signal. Accordingly, the received signal at the R is given by

yR =
K∑

k=1

√
αkh

b
Tk
(hf

Tk
)Txbk + ĤSIx+nR, (3.3)

where the first term in (3.3) is the reflected signals from all tags. The backscatter modulation

symbol of the k-th tag is bk, k ∈ K, which is selected from the M -ary PSK constellation,

and it satisfies the energy constraint E{|bk|2} = 1, and αk ∈ [0, 1] is the reflection coefficient

of Tk, k ∈ K.
Note that increasing the value of αk increases the amount of power reflected back to the

R. The second term in (3.3) is the RSI at R, where ĤSI =
√
βHSI and 0 ≤ β ≪ 1 is a

constant denoting the SI cancellation ability of R. Furthermore, nR ∼ CN (0Nr×1, σ
2
RINr

) is

the additive white Gaussian noise (AWGN) at the R.

Since the tags transmit simultaneously (i.e., SDMA), the reader must separate their signal

signals. For this purpose, it applies the linear detection matrix, i.e.,G = [g1, . . .gk, . . . ,gK ] ∈
CNr×K , where gk ∈ CNr×1 indicates the combiner vector to spatially separate data of Tk

embedded in yR. Thus, by separating the desired signal, interference terms, and additive

noise of (3.3), the received SINR at the R for the k-th data stream from Tk, k ∈ K, can be

written as

γk =
αk|gH

k h
b
Tk
|2|(hf

Tk
)T f |2

∑K

j ̸=k αj|gH
k h

b
Tj
|2|(hf

Tj
)T f |2 + β|gH

k HSIf |2 + σ2
R

PT
∥gk∥2

, (3.4)

where the nominator term in (3.4) is the desired received signal power from Tk, and the

denominator comprises the powers of the interference signals, RSI, and noise, respectively.

More specifically, the first term of the denominator is the total interference signal power
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received from other tags, the second term represents the RSI at the R, and the last term

is the additive Gaussian noise power. Unlike previous works [26, 48, 91], which ignore the

RSI term (β = 0), this analysis fully considers the effect of RSI. Indeed, assuming perfect SI

removal (β = 0), (3.4) reduces to

γSICP

k =
αk|gH

k h
b
Tk
|2|(hf

Tk
)T f |2

∑K

j ̸=k αj|gH
k h

b
Tj
|2|(hf

Tj
)T f |2 + σ2

R

PT
∥gk∥2

, k ∈ K. (3.5)

That is the case study of the previous works [48, Eq. (5)], [26, Eq. (5)], [91, Eq. (9)].

The backscattered sum rate for Tk, k ∈ K, at the R is given by

Rk = log2(1 + γk) [bps/Hz]. (3.6)

Note that this rate is a function of cascaded channels, RSI, and AWGN. At the system level,

what matters is the sum throughput achieved by the R in the uplink. Thus, the total sum

rate of interest can be expressed as

RS =
K∑

k=1

log2(1 + γk) [bps/Hz]. (3.7)

The system metric RS will form the basis for the subsequent optimization problems.

3.3 Problem Formulation

The basic passive tag architecture is shown in Figure 2.2. The tag has EH and modulation

blocks. These blocks are described under assumptions A1 and A3. The fraction αk of the

incident RF signal is reflected to enable data communication [34]. The remaining (1 − αk)

propagates to the EH circuit consisting of a rectifier and a capacitor. As a result, the

adjustable power reflection coefficient of the tag can also be interpreted as a power splitter

[34]. Thus, the amount of harvested energy at Tk , k ∈ K can be stated as PEHk
=

(1− αk)ηPT |(hf
Tk
)T f |2, where η ∈ (0, 1] is the efficiency of RF signal to direct current (DC)

energy conversion [90]. In particular, η varies according to the different EH technologies. For
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instance, photovoltaic and piezoelectric circuits can achieve up to 40% and 30% efficiency,

respectively [36].

Our goal is to maximize the sum rate by jointly optimizing the precoder {f}, combiners

vectors {gk}Kk=1, and reflection coefficients {αk}Kk=1 while maintaining minimum harvested

power at each tag and maximum RSI level at the R. Indeed, the minimum EH constraint

ensures that the passive tag is activated successfully. However, it can also help semi-passive

tags reduce battery replacement or recharging cycles. As a result, the following problem

formulation and the resulting algorithms can benefit both passive and semi-passive tags.

Remark 1. In cellular networks, maximizing fairness among users plays a vital role in

guaranteeing the minimum required rate for every user. However, the Monostatic BackComm

tags employ passive backscatter modulation to transmit their data. Thus, fairness is not a

critical issue here. Accordingly, the sum rate must be maximized [26,48].

As a result, the corresponding optimization problem can be formulated as follows:

(P3.1) : max
αk,gk,f

RS, (3.8a)

s.t. β|gH
k HSIf |2 ≤ λ, ∀k, (3.8b)

PEHk
≥ Pth, ∀k, (3.8c)

0 < αk < 1, ∀k, (3.8d)

∥f∥2 = 1, ∥gk∥2 = 1, ∀k, (3.8e)

where λ and Pth denote the software threshold of the RSI and power threshold, respectively.

The software threshold refers to the fact that this suppression is done at the signal processing

level, which is distinct from the hardware-aided RSI suppression at the R characterized by

β. Constraint (3.8b) indicates the maximum RSI power level at the R. Constraint (3.8c)

denotes the minimum EH at each tag. Finally, constraints (3.8d) and (3.8e) are inherent

limits for the reflection coefficients and unit norm of precoding as well as combining vectors,

respectively. Note that the energy threshold is positive (Pth > 0). Therefore, αk requires

to meet strict inequality 0 < αk < 1, denoted by constraint (3.8d). Evidently, (3.8c) and

(3.8b) are intertwined from f , and (3.8c) as well as (3.8d) are connected via αk. This joint
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optimization problem is non-convex as optimization variables are coupled, also constraint

(3.8c) is non-convex.

Remark 2. The proposed sum rate maximization problem (P3.1) is novel since the EH

constraint (3.8c) and the RSI constraint at the R (3.8b) have not been studied previously

(Table 3.1).

3.4 Proposed Solution

Problem (P3.1) is non-convex as the objective function contains entangled terms involving

the product of optimization variables. To handle this issue, the AO algorithm [108] is

employed. The key idea of the AO algorithm is as follows. To solve, say, minx f(x), where

x ∈ R
s is partitioned into m > 1 blocks as x = (x1, x2, . . . , xm)

T , where xk ∈ R
sk and

∑m

k=1 sk = s. The minimization is then performed over x1 while {xk|k ̸= 1} are kept constant
at their previous values; next, the minimization is performed over x2 while {xk|k ̸= 2} are
kept constant at their previous values. This cyclic process thus continues until convergence.

The AO algorithm yields a locally optimum solution [108].

To apply the AO algorithm, (P3.1) is decomposed into three suboptimal problems. In

each subproblem, the sum rate is maximized over each individual block variable f ,G, and

α = [α1, . . . , αk], while the other two block variables are fixed. The result is then used in the

next subproblem. Therefore, each block variable is optimized iteratively until the objective

function converges.

In the first subproblem, the combining vectors and reflection coefficients are fixed, and the

precoding vector f is optimized. However, the objective in (P3.1) is a non-concave function

over f due to the incorporation of interference and RSI. To address this, the SDR technique

is applied, involving a new matrix definition that satisfies the rank-one constraint. The rate

function is then rewritten in terms of the difference of convex functions, and the first-order

Taylor approximation is applied to obtain a locally optimal solution, which is the essence of

the SCA technique.

In the second subproblem, the precoding vector and power reflection coefficients are fixed,

and the combiner is optimized. The specific structure of the obtained SINR of each tag is
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exploited. The objective is cast as a generalized Rayleigh quotient, yielding the optimal

combiner vector in a closed-form solution.

The third subproblem involves optimizing the reflection coefficients. Although the rate

of each tag is a pseudo-linear function of αk, the sum rate maximization problem is not a

convex problem [48]. Therefore, no global optimal solution can be guaranteed. However,

it can be interpreted as a wireless power control problem. To find a solution, GP, a power

control technique, can be applied [109]. More specifically, the GP objective is a posynomial

function of the form f(x) = cxa1
1 . . . xan

n and equality constraints are monomial functions of

type f(x) =
∑K

k=1 ckx
a1k
1 . . . xank

n [110].

The new optimization algorithms are developed next.

3.4.1 Optimization Over f

For given gk and αk, ∀k ∈ K, the sum rate problem turns into a precoder optimization

problem represented as follows:

(P3.2) : max
f

RS, (3.9a)

s.t. β|gH
k HSIf |2 ≤ λ, ∀k, (3.9b)

(1− αk)PTη|(hf
Tk
)T f |2 ≥ Pth, ∀k, (3.9c)

∥f∥2 = 1, ∀k. (3.9d)

Generally, the objective function of (P3.2) is not concave over f . To address this, the SDR

technique is applied [111]. Let us define a new optimization variable F = ffH , where matrix

F is semidefinite and satisfies rank-one constraint, i.e., Rank(F) = 1 [112]. By doing this,

the quadratic ratio function inside the log(·) in the objective function can be turned into its

equivalent linear ratio over F, ending with a concave objective function. Since |gH
k HSIf |2

is a scalar variable, it can be written as Tr(gH
k HSIff

HHH
SIgk). With the new optimization
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variable, this becomes Tr(gH
k HSIFH

H
SIgk). Thus, problem (P3.2) can be reformulated as

(P3.2.1) : max
F

Γ, (3.10a)

s.t. βTr
(
gH
k HSIFH

H
SIgk

)
≤ λ, ∀k, (3.10b)

Tr
(

(hf
Tk
)TFhf

Tk

)

≥ P ′
th, ∀k, (3.10c)

Tr(F) = 1, (3.10d)

Rank(F) = 1, (3.10e)

where P ′
th = Pth

(1−αk)ηPT
and

Γ ≜

K∑

k=1

log



1 +
αk|gH

k h
b
Tk
|2Tr

(

(hf
Tk
)TFhf

Tk

)

∑K

j ̸=k αj|gH
k h

b
Tj
|2Tr

(

(hf
Tj
)TFhf

Tj

)

+ β|gH
k HSIf |2 + σ2

R

PT
∥gk∥2



 . (3.11)

Problem (P3.2.1) is still not a convex problem due to constraint (3.10e). To tackle it,

we drop (3.10e) and resort to the SCA technique using the first-order Taylor series approx-

imation near a feasible point Fo. Indeed, the first-order Taylor approximation is a linear

approximation of a function f(x) near a feasible point x = a (if it is differentiable at this

point) such that f(x) = f(a) + f ′(a)(x − a), where f ′(·) indicates the derivative of f(·).
Subsequently, (P3.2.1) is relaxed into

(P3.2.2) : max
F

K∑

k=1

log (Ak)− Bk(F,F
o), (3.12a)

s.t. (3.10b)–(3.10d), (3.12b)

where the definition of Ak and Bk(F,F
o) respectiely are:
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Ak =
K∑

i=1

αi|gH
k h

b
Ti
|2Tr

(

(hf
Ti
)TFhf

Ti

)

+ β|gH
k HSIf |2 +

σ2
R

PT

∥gk∥2, (3.13)

Bk (F,F
o) = log

(
∑

j ̸=k

αj|gH
k h

b
Tj
|2Tr

(

(hf
Tj
)TFohf

Tj

)

+ βTr
(
gH
k HSIF

oHH
SIgk

)
+

σ2
R

PT

∥gk∥2
)

+Tr (F−Fo)×
∑

j ̸=k αj|gH
k h

b
Tj
|2Tr

(

(hf
Tj
)Thf

Tj

)

+βTr
(
gH
k HSIH

H
SIgk

)

∑

j ̸=k αj|gH
k h

b
Tj
|2Tr

(

(hf
Tj
)TFohf

Tj

)

+βTr (gH
k HSIFoHH

SIgk)+
σ2
R

PT
∥gk∥2

.

(3.14)

The solution of (P3.2.2) provides an upper bound for (P3.2) due to the SCA technique

and relaxing the rank-one constraint. To tighten the obtained upper bound, the feasible

solution F in (P3.2.2) is updated iteratively by using convex optimization tools such as

CVX [113] to find a suboptimal solution.

Algorithm 1 details the proposed SCA-based Algorithm, and the convergence proof can

be found in [114]. Specifically, if F∗ which is the optimal solution to (P3.2.2) satisfies

the rank-one constraint, the optimal beamforming vector, f , can be obtained by performing

eigenvalue decomposition (EVD) over F∗. Unlike [48], which applies Gaussian randomization

to recover f∗ as a suboptimal solution, the following Proposition reveals that the SDR solution

of (P3.2.2) is tight and yields an optimal solution.

Proposition 1. Let the optimal solution of problem (P3.2.2) be F∗. If all channel links are

statistically independent, F∗ satisfies Rank(F) = 1.

Proof. Problem (P3.2.2) is a convex optimization problem and satisfies Slater’s condition,

indicating that the duality gap between the primal and dual problems is zero. Thus, the

Lagrangian function of the associated problem is expressed as follows:

L(F,Z, ϕi, µi) =
K∑

k=1

[log(Tr(VkF) + Ck)− f (Fo)

− Tr (F− Fo) g (Fo)] + Tr(PkF)−Tr(EF)− Tr(ZF) + d− c, (3.15)

45



where

Vk =
K∑

i=1

αi|gH
k h

b
Ti
|2
(

hf
Ti
(hf

Ti
)T
)

+ βHH
SIgkg

H
k HSI,

Pk =
K∑

i=1

µiβH
H
SIgkg

H
k HSI, E =

K∑

i=1

ϕih
f
Ti
(hf

Ti
)T ,

c =
K∑

i=1

µiλ, d =
K∑

i=1

ϕiP
′
th, Ck =

σ2
R

PT

∥gk∥2. (3.16)

In particular, Z ⪰ 0, µi ≥ 0, and ϕi ≥ 0 indicate the no-negative Lagrangian multipliers

associated with the constraints of (P3.2.2). In addition, f (Fo) and g (Fo) are two functions

depending on the initial value of the SDR problem, Fo. The Taylor expansion log(1+x) ≈ x

can be used in the low SNR region since the high powers of x are negligible. By further

applying the Karush-Kuhn-Tucker (KKT) criteria, the following conditions arise:

Z∗ ⪰ 0, µ∗
i ≥ 0 ϕ∗

i ≥ 0, (3.17)

Z∗F∗ = 0, (3.18)

Z∗ =
K∑

k=1

V∗
k − g(Fo)INt

︸ ︷︷ ︸

W⪰0

+(P∗
k − E∗) . (3.19)

Subsequently, by using the fact that Rank(A + B) ≤ Rank(A) + Rank(B), (3.19) can be

written as Rank(Z∗)+Rank (E∗ −P∗
k) ≥ Rank(W) = Nt. As can be observed, one can reach

the following inequality: Rank(Z∗) ≥ Nt − 1. On the other hand, according to (3.18), it can

be deduced that Rank(Z∗) = Nt − 1. Otherwise, one has Rank(F∗) = 0, which is not the

optimal case. Consequently, it is clear that Rank(F∗) = 1, and the proof is completed.

Based on Proposition 1, the optimal solution to (P3.2.2) can be obtained by performing

EVD over F∗. The solution steps are summarized in Algorithm 1. It starts with an initial

precoder (Fo)(it) = ffH at iteration it = 1. Indeed, as this precoder should satisfy the RSI

constraint, one possible choice is to select the eigenvector of the SI channel corresponding to

its minimum eigenvalue. It continues to update Fo iteratively by solving (P3.2.2) until the

objective function in (P3.2.2) converges. The optimal precoder f∗ is recovered by computing
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Algorithm 1 :Iterative Precoder Optimization

1: Input: Set it = 1, initial f , and (Fo)(it) = ffH .
2: while (3.12a) does not converge do
3: Solve (3.12a) to derive F(it).
4: Update (Fo)(it) ← F(it).
5: it = it+ 1;
6: end while
7: Return F∗(it) where f⋆ is simply the eigenvector corresponding to the non-zero eigenvalue

of F∗(it).

the eigenvector corresponding to the non-zero eigenvalue of F∗(it) at iteration it.

3.4.2 Optimization Over Combiner gk

Since the corresponding SINR of each tag observed at the R depends on its associate com-

biner vector, the sum rate is maximized by optimizing the SINR of each tag individually.

Accordingly, one has

(P3.3) : max
gk

αk|gH
k h

b
Tk
|2|(hf

Tk
)T f |2

∑

j ̸=k αj|gH
k h

b
Tj
|2|(hf

Tj
)T f |2 + β|gH

k hSIf |2 + σ2
R

PT
∥gk∥2

, (3.20a)

s.t. ∥gk∥2 = 1, ∀k. (3.20b)

By rewriting the objective function in (3.20a), the following optimization problem arises:

(P3.3.1) : max
gk

gH
k h

b
Tk
(hb

Tk
)Hgk

gH
k Qgk

, (3.21a)

s.t. ∥gk∥2 = 1, ∀k, (3.21b)

where

Q = INr
+

PT

σ2
R

(
∑

j ̸=k

αjh
b
Tj
(hb

Tj
)H |(hf

Tj
)T f |2 + βHSIFH

H
SI

)

. (3.22)

For a given precoder and set of reflection coefficients, the optimal combiner vector is
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Algorithm 2 Iterative αk optimization

1: Input: Set it = 1, tolerance ϵ > 0, initial α
(it)
k , given f and gk, initial guess of SINR,

γ̂
(it)
m .

2: while maxm∈K |γ∗
m − γ̂

(it)
m | ≥ ϵ do

3: Solve (3.25a) to obtain α
(it)
k and γ∗

m.

4: Update γ̂
(it)
m ← γ∗

m.
5: it← it+ 1;
6: end while
7: Return α

∗(it)
k .

given by

g∗
k =

Q−1hb
Tk

∥Q−1hb
Tk
∥ , k ∈ K, (3.23)

which is an MMSE filter [48].

Once both precoder f and combiners gk, k ∈ K, are determined, the next step is to

optimize the reflection coefficients of the tags.

3.4.3 Optimization Over αk

As the objective function (3.8a) is a linear-fractional function of α, it is a pseudolinear (both

pseudoconvex and pseudoconcave) for αk [48]. However, the sum rate problem in (3.8a)

does not preserve the pseudolinearity property. Thus, the globally optimal values cannot be

achieved. Nevertheless, it can be represented as a conventional power allocation problem.

Then, the problem can be recast as below:

(P3.4) : max
γm,αk

K∑

m=1

log(1 + γm), (3.24a)

s.t. γk > γm, ∀k (3.24b)

0 < αk < 1, ∀k, (3.24c)

(3.8c), (3.24d)
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where γm is a slack variable. By considering that the objective of (3.24) is an increasing func-

tion over γm, and also log(·) is a monotonically increasing function, it can be reformulated

equivalently as minγm,αk

∏K

m=1 (1 + γm)
−1. Note that the constraints of (P3.4) are posyn-

omial functions. Therefore, if the objective is a monomial or posynomial function, (P3.4)

becomes a GP, which is a convex problem. Since the objective is neither monomial nor

posynomial, we must approximate
∏K

m=1 (1 + γm)
−1 ≈ ∏K

m=1 bγ
a
m near an arbitrary point

γ̂ > 0, where a = γ̂m (1 + γ̂m)
−1, b = γ̂−a

m (1 + γ̂m). The proof of this result is provided

in [115, Lemma 1]. Since coefficient b is a scalar, ignoring it does not change the optimized

value of the reflection coefficient. As a result, (P3.4) is reformulated as follows:

(P3.4.1) : min
γm,αk

K∏

m=1

γ
− γ̂m

1+γ̂m
m , (3.25a)

s.t. γk > γm, ∀k, (3.25b)

ν−1γ̂m < γm ≤ νγ̂m, (3.25c)

0 < αk < 1, ∀k, (3.25d)

(3.8c), (3.25e)

where γ̂m denotes the initial guess for the required SINR of each user, which can be obtained

by substituting an initial precoder, combiners, and reflection coefficients into (4.4). Besides,

ν > 1 controls the desired approximation accuracy and the convergence speed as in each

entry. In particular, γ̂m can be increased or decreased by factor ν. Thus, ν near 1 provides

an accurate approximation with the cost of slower convergence. On the other hand, ν larger

than 1 converges faster with the cost of low accuracy. Reference [116] shows that ν = 1.1

obtains a nice trade-off between accuracy and convergence speed in most practical cases.

Problem (P3.4.1) is a GP problem [109] that can be solved efficiently by using CVX [113].

Algorithm 2 represents the detailed steps to return optimal αk. It starts with initial random

value for αk via given f and gk, k ∈ K. Given these parameters, it calculates the initial guess

of SINR, γ̂
(it)
m , at iteration it = 1 based on (4.4). It then solves (P3.4.1) and updates γ̂

(it)
m for a

optimized α∗
k. It continues until the SINR improvement is below a predetermined threshold.

Ultimately, the overall AO algorithm is represented in Algorithm 3. It selects initial f and α

49



randomly and obtains optimal choices for f , α, and G. The outline is as follows. In the first

step, initial values are set. Then for given f and α, it derives the combiners vector based on

(3.23). It then uses g
∗(it)
k and α

(it)
k to derive f∗(it) based on Algorithm 1. Afterward, it uses

f∗(it) and g
∗(it)
k to obtain reflection coefficients based on Algorithm 2. It continues to repeat

until the improvement of the sum rate is below a certain threshold.

It is important to note that the reader can address and solve this optimization problem.

Once the optimization is complete, the reader can communicate this optimized reflection

coefficient to each tag using commands defined in the EPC Gen 2 standard [107]. The EPC

Gen 2 standard provides a framework for command and control in RFID systems, specifying

how readers and tags should interact. This includes a range of commands for tasks such as

reading data, writing data, and configuring tag settings. Through this command and control

sequence, the reader can instruct each tag to adjust its reflection coefficient, which is crucial

for fine-tuning the tag’s performance and improving overall system functionality.

Proposition 2. Algorithm 3 converges to a suboptimal point since (P3.2) is non-increasing

as the objective function value increases over each iteration in Algorithm 1. Specifically,

after each iteration in Algorithm 1, the value of the objective function in (P3.2) improves.

Proof. The convergence of Algorithm 3 is proven next. However, we do not consider the

combiner vector since it has a closed-form solution, and as discussed previously, using (3.23)

can maximize the received SINR of each tag at R. Let us consider {α(it+1)
k ,F(it),g(it)} as

the feasible solution set to (P3.4.1); then it is also a feasible solution to (P3.2.2). Conse-

quently, {α(it)
k ,F(it)} and {α(it+1)

k ,F(it+1)} are feasible to (P3.2.2) in the it-th and (it+ 1)-th

iterations, respectively. By denoting the objective value of (P3.2.2) as f(αk,F), one achieves

f(α
(it+1)
k ,F(it+1)) ≥ f(α

(it+1)
k ,F(it)). Consequently, for given reflection coefficients, α

(it+1)
k ,

solution F(it+1) is suboptimal. Moreover, one has f(α
(it+1)
k ,F(it)) ≥ f(α

(it)
k ,F(it)) which even-

tually leads to f(α
(it+1)
k ,F(it+1)) ≥ f(α

(it)
k ,F(it)). Based on the initial point of each iteration

being the starting point of the previous one, the algorithm continues running to achieve

a better solution in each iteration, i.e., increasing the sum rate. On the other hand, the

objective function increases in each iteration or remains unchanged until the convergence is

satisfied. Thus, the proof is completed.
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Algorithm 3 Iterative AO for Sum Rate Maximization

1: Input: it = 1, tolerance ϵ > 0, initial α
(it)
k , f (it), and R

(it)
S = 0.

2: Do ▷ Iteration
3: Derive g

∗(it)
k by (3.23).

4: Run Algorithm 1 to derive f∗(it).
5: Run Algorithm 2 to obtain α∗(it).
6: Set R

(it)
s =

∑K

k=1 Rk.
7: it← it+ 1;
8: While |R(it)

s −R
(it−1)
s | ≥ ϵ ▷ Termination

9: Return g
∗(it)
k , f∗(it) and α

∗(it)
k .

3.4.4 Low-complexity combiners

Algorithm 3 uses the AO approach with three subproblems described in the previous sec-

tions. Specifically, it optimizes the receive combiner at the reader by maximizing the SINR

(subproblem (P3.3)), which leads to the MMSE filter (3.23). This is an iterative process

where the MMSE filter depends on the outputs of the two other subproblems. The complex-

ity of this process can be reduced if one of the subproblems can be eliminated. One option

is to use less than sub-optimal solutions for gk, ∀k ∈ K. To this end, note that various

practical receivers widely use sub-optimal MF and ZF combiners. While these two offer

low-complexity advantages, MF cannot remove the multiple-tag interference. Moreover, the

ZF is vulnerable to noise and works well in only the high SNR regime. Nevertheless, they

have sometimes been used for backscatter networks [26]. Accordingly, MF and ZF combiners

can be expressed as

GMF = Hb, (3.26)

GZF = Hb

(
HH

b Hb

)−1
,

where Hb ∈ CNr×Kdenotes the channel backward matrix with the k-th column vector being

hb
Tk
. Note that these combiners depend only on CSI. In contrast, the MMSE filter (3.23)

depends on the tag reflection coefficients and the precoder. Thus, using these combiners

(3.26) will achieve lower sum rates than otherwise. However, that reduces the three-stage

AO algorithm (Algorithm 3) into two stages, resulting in a roughly 4 times faster algorithm

(based on our numerical experiments) .
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3.4.5 Complexity Analysis

The complexity of the proposed algorithm can be assessed as follows. To compute f (it)

which is a standard SDP problem, the complexity is C1 = O(I1(2K(N2
t ) + Nt + Nr)

4.5)

where I1 is the number of iterations for converge. Considering the matrix inversion and

multiplication computational complexity, the complexity to compute the combiner vectors

is C2 = O (N3
r +N2

r + (K − 1) (N2
t Nr +NtN

2
r )). Also, the complexity of Algorithm 2 is

C3 = O(I2K3.5) [110] in which I2 is the number of its iteration to converge to its optimal

value. Finally, the overall computational complexity of Algorithm 3 is O (Iit(C1 + C2 + C3))

where Iit is the required number of iterations for the outer algorithm to converge.

3.5 Numerical Results and Discussion

This section evaluates the performance of the proposed beamforming and reflection coeffi-

cients design. Comparisons are thus made between the sum rate of Algorithm 3 and that of

the three following baselines.

B1) It is essential to observe the system performance if the EH constraint (3.8c) is relaxed.

In this case, the resources allocated to ensure each tag’s EH targets can be repurposed

for sum-rate improvements. Thus, this baseline omits the EH constraint (3.8c) but

otherwise runs Algorithm 3. With removing the EH constraints, each tag can reflect

more, i.e., a higher reflection coefficient. This process will improve the total sum rate.

This can be observed in Figure 3.9 and is discussed there. In summary, this baseline

helps us to understand the trade-off between sum rate maximization and satisfying the

EH constraint.

B2) The cost, complexity, and hardware limitations determine the maximum level of RSI

suppression at the R via physical means. Algorithm 3, which was developed in this

work, enables further suppression of the RSI via software-based signal processing tech-

niques. However, algorithmic suppression of the RSI does not come without cost. The

idea of this baseline is to get a sense of this cost. Thus, baseline 2 solves Algorithm 3,

excluding the RSI constraint (3.8b). As (3.8c) and (3.8b) are strict constraints to be

52



1 2 3 4 5 6 7 8

Number of Iterations

2

3

4

5

6

7

8

9

10

S
u
m

 R
at

e 
(b

p
s/

H
z)

N
t
 =N

r
= 9

N
t
 =N

r
= 7

Figure 3.3: Convergence of Algorithm 3 for two antenna setups.

satisfied concurrently, removing (3.8b) reduces the complexity. This baseline reveals

the sum rate penalty as a consequence of omitting the RSI suppression constraint.

B3) The tag’s power reflection coefficient depends on the load impedance - see (1). Hence,

optimizing the reflection coefficients helps choose proper impedances that result in a

higher rate and range. However, to do so, R will require more computational resources.

However, this may not be cost-effective for some low-cost applications. Therefore, this

baseline aims to understand the impact of not optimizing the tag reflection coefficients.

Thus, this baseline solves Algorithm 3 without EH constraint (3.8c) and uses random

tag reflection coefficients. Although it reduces the complexity by not computing αk

(e.g., Algorithm 2), using non-optimized αk penalizes the total sum rate.

Unless otherwise specified, the simulation parameters are set as follows: K = 5, NT =

NR = 7, PT = 30 dBm [48], σ2
n = −120 dBm, ρ = 0, ϵ = 10−3, η = 0.4 [90], β = 10−9,

Pth = 1 µw, λ = −90 dB, 100 m2, and K̄ = 0 dB. The path-loss between the R and Tk,

k ∈ K, is defined as ξjTk
=
(

3×108

4fπ

)2

d−ϱ
k , where j ∈ {f, b}, f = 915 MHz [48] is the carrier

frequency, ϱ = 2 is the path-loss exponent, and dk is the distance from the R to Tk, k ∈ K.
Each simulation point is averaged over 103 Monte Carlo iterations.
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3.5.1 Convergence Rates

The convergence behavior of Algorithm 3 is studied first. After several iterations, it

outputs the precoder, combiner vectors, and the reflection coefficients for different antenna

configurations at the R. The stable sum rate at the end of several iterations illustrates the

convergence behavior. Figure 3.3 is plotted for the achieved sum rate versus the number

of iterations. The sum rate increases each iteration and converges to a fixed value after

approximately three iterations. This fact suggests a fast convergence and validates the

effectiveness of the proposed algorithm. Three iterations are approximately sufficient for both

antenna configurations to reach good performance. Therefore, more than three iterations

lead to minor performance enhancements.

3.5.2 Sum Rate versus Number of Tags

The impact of the number of tags, K, on the sum rate is depicted in Figure 3.4. To separate

tag data spatially using the linear decoding vectors gk, the number of antennas should exceed

the number of tags. We thus set Nt = Nr = K+2 to provide more spatial DoF for parameter

design and satisfy the EH and RSI constraints. The increased number of tags is expected to

increase the sum rate for all schemes. The figure clearly shows this trend. However, as the

MMSE filter can only partially remove the inter-tag interference, more tags may increase

interference. Thus, the sum rate versus the number of tags does not increase monotonically.

More specifically, Algorithm 3 outperforms baselines two and three for more than five tags.

This performance arises from the following reasons. First, baseline two removes the RSI

constraint (3.8b). Thus, it runs the algorithm to maximize the sum rate without (3.8b). The

RSI term in the sum rate expression depends on the precoder, which in turn depends on the

energy constraint. As a result, the choice of precoder, which satisfies the energy constraint,

may not suppress the RSI term. Therefore, having the distinct RSI suppression constraint

along the energy constraint limits the RSI, which results in Algorithm 3 outperforming

baseline 2. Second, baseline 3 does not optimize the tag reflection coefficients.

A substantial gap is observed between baseline 1 and the other two baselines, increasing

with the number of tags. However, the gap between Algorithm 3 and baseline 1 is more
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Figure 3.4: Sum rate versus the number of tags, K, with Nt = Nr = K + 2.
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Figure 3.5: Sum rate versus the number of transmit/receive antennas.
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or less constant. Hence, the proposed optimization yields substantial gains. Baseline 1,

compared to Algorithm 3, is the price to pay for having longer lifetimes for tags (consistent

with low power machine type communication target), which can harvest energy from the

carrier itself. Also, it is possibly cheaper than achieving the same lifespan from an external

power source. This fact shows the non-negligible impact of the RSI. Recall that tags are

assumed to have enough power to perform their reflections in baseline 1 and thus do not

perform EH. Therefore, this baseline releases some of the spatial DoFs that would have been

utilized to ensure the tags meet the EH threshold for suppressing the effects of RSI. Thus,

it suppresses the RSI effect more effectively and achieves a higher sum rate. However, when

tags run on low power, replacing their batteries is not cost-effective and sometimes impossible

(e.g., in toxic industrial regions). Therefore, EH from the R keeps the tag’s operation. As a

result, the proposed design can fairly compete and gain near results to the baseline one.

3.5.3 Sum Rate versus Number of Antennas

Here, the sum rate obtained by Algorithm 3 is compared against other baselines for the di-

verse number of transmit/receive antennas (Nt/Nr) and two different λ values. Referring to

Figure 3.5, increasing the number of antennas at the R has a direct impact on the improve-

ment of the sum rate as the system exploits the array gain in the downlink transmission and

multiplexing gain in the uplink. This figure shows the superiority of our proposed design

compared to the other baselines when RSI is strictly limited, say λ = −100 dB. Explicitly, as

RSI’s power is reduced more, better performance in terms of sum rate is achievable. Thus,

Algorithm 3 with λ = −100 dB receives 96%, 21%, sum rate enhancement withNt = Nr = 15

compared to the baseline 2 and baseline 3. However, it can be seen that for λ = −90 dB, the

proposed design can only obtain better gain compared to baselines 2 and 3 for the number

of antennas greater than 15. It confirms that Algorithm 3 excels other schemes for a higher

number of antennas and lower RSI power.
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Figure 3.6: Sum rate versus region area, r × r, for different baseline schemes.

3.5.4 Sum Rate versus Coverage Area

Figure 3.6 represents the impact of region area for different schemes on the sum rate. Note

that as the coverage area increases, the sum rate decreases drastically. This decay arises

because of the increased tags to R distances that exacerbate the double path-loss (dyadic

channel). As the coverage area increases, there is a slight difference between the schemes.

However, for a small area, specifically, 4 m2 to 25 m2, the proposed scheme and baseline

2 have a bit more gain than other baselines. Since their required power is better satisfied

because of the strong forward links in short distances and they can reflect with their greater

reflection. Baseline 1 slightly outperforms in the moderate coverage area, 36 m2 to 144 m2.

Because, as the area increases, the distance of the tag from R also increases. Therefore,

providing the required tag’s power becomes more challenging while suppressing the RSI.

Consequently, baseline 1 achieves more gain since the EH constraint is relaxed.

3.5.5 Sum Rate Versus Soft RSI Power Threshold

Figure 3.7 investigates the impact of the soft RSI power threshold, λ, on the sum rate for

different schemes. Note that λ is the RSI threshold implemented in Algorithm 3. However,
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β can be interpreted as a hardware-dependent SI threshold as it depends on the loss and

impairments of the SI cancellation circuits at R. Thus, the value of β is fixed beforehand.

Whereas λ offers the on-the-fly control of the RSI as needed. As λ increases, the sum rate

drastically decreases because the algorithm suppresses RSI to a lesser degree, which kills

the sum rate. The proposed design works better than other benchmarks for smaller RSI

thresholds. As λ gets smaller, our algorithm suppresses RSI more effectively, and hence,

the impact of the RSI on the SINR becomes negligible. However, as the MMSE filter can

partially remove the inter-tag interference, the amount of the reflected power from tags (αk)

becomes significant. Consequently, as seen in Figure 3.9, in baseline 1, most tags reach

the high power reflection mode (αk > 0.9), which enhances the interference at the reader.

Therefore, the proposed design performs slightly better than baseline 1 as the reflection

power of the tags is controlled via EH. Furthermore, as the energy constraint is relaxed in

baseline 1 (which releases more DoF for system optimization), it reaches a slightly better

sum rate in higher λ. However, for a higher value of λ, all the schemes converge together

and achieve a trivial sum rate. Besides, baseline 3 behavior highlights the importance of

the optimized power reflection coefficient as it obtains a small sum rate compared to other

schemes. This figure shows the importance of sufficient RSI suppression to gain a significant

sum rate.

3.5.6 Sum Rate versus SNR

In Figure 3.8, the sum rate is depicted versus SNR defined as SNR =
P ξ̄iTk
σ2
R

, where ξ̄iTk
=

1
K

∑K

k=1(ξ
i
Tk
)2 [48]. To justify the choice of the MMSE filter for the reader, we also plot

the achieved SNR for Algorithm 3 with the ZF combiner and Algorithm 3 with the MF

combiner. Algorithm 3 and baseline 2 perform roughly the same in the low SNR region.

Because in this region, R transmits with low power, automatically reducing RSI and having

a less harmful effect. However, as the SNR grows, the performance gap between Algorithm

3 and baseline 2 increases, and the former achieves a better sum rate. Although higher

transmit power can increase the reflected power of tags, it also increases the RSI, causing a

degradation of the sum rate. Baseline 1 has a slightly better output in low SNR than the

two other schemes, and the gap increases in the high SNR region. This trend is clear since
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Figure 3.9: Tags with high reflection (%) versus the number of tags K.

satisfying power for each tag sets a more solid constraint on the system design. The ZF

combiner performs poorly in the low SNR regime but outperforms Algorithm 3 for SNR> 20

dB. The MF combiner outperforms the ZF in the low SNR regime. However, when SNR

increases, it performs poorly than other baselines since the MF combiner cannot remove the

intersymbol interference in tag data. Therefore, for a typical operating SNR regime (≤ 20

dB), the choice of MMSE filter yields better performance.

3.5.7 Number of Tags with High Reflection

The number of tags achieving high reflection coefficients (values exceeding 0.9) can be

counted to gain better insights into the proposed optimization. Figure 3.9 shows the per-

centage of tags meeting this criterion versus the total number of tags in the system. With

Algorithm 3, approximately 35%-45% of tags operate in high reflection mode. This is be-

cause a significant portion of the received power at the tag is directed to the EH circuit to

satisfy the minimum EH threshold. In baseline 1, the EH constraint is removed, allowing

all tags to be in high reflection mode to maximize the sum rate. Consequently, rather than

optimizing αk, the reflection coefficients of all the tags can be set to the highest value, re-
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Figure 3.10: The running time versus the number of tags, K.

ducing the complexity and running time of baseline 1. The same trend as Algorithm 3 is

observed in baseline 2. In baseline 3, since the reflection coefficients are selected randomly,

approximately 10% of the tags operate in high reflection mode, resulting in a lower sum rate.

3.5.8 Software Running Time versus Number of Tags

Figure 3.10 represents the software running time cost versus the number of tags, K. It is the

Matlab code runtime on a personal computer with Intel(R) Xeon(R) CPU at 3.5 GHz. The

running time of all the schemes increases with more tags. However, interestingly, baseline 3

has a roughly fixed running time. Algorithm 3 is faster than baseline 2 and 3. The probable

reason is the higher number of iterations for these baselines as K grows.

3.5.9 Imperfect CSI Knowledge

Suppose reader R has imperfect CSI, possibly due to CE errors. Let the channel estimate

of the true channel h be ĥ. Due to CE errors, the true channel and its estimate may thus

be related as [117]: ĥ = h+ n, where n ∈ C
N×1 is an N -dimensional noise vector following

CN (0, σ2
nI), where σ2

n = ρ∥h∥2. Denote ρ as a ratio of the noise power to the channel gain
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Figure 3.11: Sum rate versus CSI error parameter, ρ, for the different number of transmit/receive
antennas.

representing the level of the CSI error. To get a better insight into CSI inaccuracy, Figure

3.11 represents the sum rate of the proposed scheme versus the CSI error parameter, ρ, for

different baselines. Obviously, the performance of this system is highly impacted by the

accuracy of CE. As ρ increases, the performance gap grows compared to the perfect CSI

case (ρ = 0). For instance, the proposed scheme and baseline 1 decrease by about 46% and

40%, respectively, compared to the perfect CSI case. However, Algorithm 3 is more robust

to CSI imperfections for a small range of ρ (i.e., 0 ≤ ρ ≤ 0.2).

3.6 Conclusion

This chapter studied a multi-tag Monostatic BackComm network with a MIMO reader.

Operating in FD mode, the reader’s performance is significantly affected by RSI. This issue,

not previously investigated, considers the imperfect nature of the reader’s SI cancellation

process represented by β > 0, whereas previous works assume β = 0. For finite β > 0, an

algorithm was developed to limit the impact of RSI and enable the tags to harvest sufficient

energy. The algorithm maximizes the sum rate by jointly optimizing the precoder, combiners,
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and reflection coefficients, solving the resulting non-convex optimization problem via the

AO approach. The algorithm was compared against several benchmarks and evaluated for

robustness against imperfect CSI.

Several future extensions are possible. First, the achieved sum rate was susceptible

to CSI accuracy, indicating that developing accurate CE techniques could be beneficial.

Second, the reader used spatial DoFs to separate different tag signals, akin to SDMA. In-

vestigating NOMA could improve the tags’ overall sum rate and EH performance. Third,

exploring multiple-antenna tags could enhance the data rate and increase the communication

range. Finally, this study focused on uncoded backscatter links; the unitary query signaling

approach [24, 97] could improve space-time codes for backscatter links, and its ability to

mitigate RSI warrants investigation.
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Chapter 4

IRS-Enabled Backscattering in a

Downlink Non-Orthogonal Multiple

Access System

This chapter examines a spectrum-sharing system that integrates BackComm with an IRS

in a downlink NOMA system. The core concept is to leverage IRS transmit diversity for

enhanced backscattering. To manage interference between the two systems, the AP splits its

transmit signal into modulated and unmodulated components, transmitting two spectrally

distinct streams that support both systems while controlling interference. The system is

designed to maximize the primary system’s rate while meeting the minimum requirements

of the BackComm system. To address this non-convex problem, the AO algorithm, SDR,

and a penalty-based approach are employed.

4.1 Introduction

Spectrum-sharing backscatter communications have been suggested as a potential remedy

for the problems of spectrum scarcity and power limitation in IoT networks [118, 119]. A

secondary BackComm and primary systems can coexist and share the spectrum. Moreover,

IRS provides a large set of spatial degrees of freedom, which can be exploited to enhance the

performance of backscattering tags.
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Consequently, different primary and secondary configurations can be studied. However,

this chapter studies a spectrum-sharing system, with two downlink NOMA users as a primary

system and the IRS-enabled backscattering as a secondary system (Figure 4.1). The IRS

is not only capable of backscattering its own data (secondary data) that can come from

embedded sensors but also passively reflects the AP signals (primary data) to help the

primary network [120,121]. In this concept, the IRS is embedded with environmental sensors

and has its own data to transmit in addition to passively reflecting signals for ongoing links.

This idea is new in two ways: 1) the IRS can backscatter its data using the downlink signal,

and 2) it can simultaneously help the primary system. But how does the IRS modulate its

data onto the AP signal and ensure that the IRS-data signal does not interfere with the

decoding processes at two downlink NOMA users U1 and U2?

This chapter addresses these issues using the PS technique developed in [119,120]. Specif-

ically, if the AP simultaneously transmits an unmodulated carrier and modulated carrier,

then the IRS can backscatter its own data using the unmodulated part and reflect the AP

signals too [120]. Thus, the AP splits its transmit power between these two carriers accord-

ing to the PS ratio α (where 0 ≤ α ≤ 1). The modulated carrier transports the AP data

for U1 and U2, and the unmodulated carrier is modulated by the IRS to send its own data,

which is broadcast to both users. Since the rate of IRS data is much lower than that of

the primary system, simple filtering can help U1 and U2 to decode the IRS data first and

subtract it to avoid interference in decoding data. Then, when U1 is decoding its data, the

data of U2 acts as interference. Thus, NOMA is leveraged to differentiate between U1 and

U2. Specifically, NOMA can do that by exploiting the channel gain disparities (see [122] and

references therein) and successive interference cancellation (SIC) decoding methods. IRS and

NOMA together can boost the capacity, coverage, spectral efficiency, and other QoS met-

rics [123]. The process also supports data transmissions without requiring perfect symbol

synchronization [119], which is important for low-complexity and low-cost IoT devices.

Previously, [119] was the first work that proposed splitting the AP signal into unmod-

ulated and modulated carrier signals. Using this modified AP signal, [120] developed the

concept of the IRS-enabled backscattering. However, these works [119, 120] differ from our

study in several ways. The focus of [119] is to develop a cognitive BackComm system and an
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associated cooperative receiver. Thus, the user can decode both the AP data and backscat-

tered data successfully. Neither an IRS nor NOMA is considered in this work. It is limited

to a single backscatter device. The focus of [120] is to enlist an IRS to send additional sec-

ondary data. The conceptual novelty of our study compared to [119, 120] is the integration

of downlink NOMA with IRS-enabled backscattering.

Our study in this Chapter also differs from existing works [42,124], where the IRS assists

in backscattering the AP signals. Further, our work differs from [125], where two NOMA

users can receive a version of the BS signal reflected from a backscatter device. Also, in [122],

authors use the IRS to assist the downlink NOMA users. However, the problem is non-

convex, and widely available convex optimization techniques do not help.

In this chapter, the system depicted in Figure 4.1 is fully optimized. To achieve this, the

PS factor, NOMA power coefficients, and IRS phase shifts are jointly optimized to maxi-

mize the rate of the stronger user. The problem is formulated by considering the decoding

order of the users and guaranteeing QoS for both primary and secondary systems. The AO

method is utilized as the optimization problem is non-convex. This method is an iterative

procedure for maximizing a function jointly over all variables by alternatively maximizing

over individual subsets of them. Therefore, the variables are split into three subsets: the

PS factor, NOMA power coefficients, and IRS phase shifts. Closed-form solutions for the

PS factor and NOMA power coefficients are derived for the first and second subproblems.

SDR and penalty techniques are used to optimize phase shifts, subject to their unit-modulus

constraints. These three tasks are combined into an overall algorithm (Algorithm 4) and

compared to several baseline schemes, including one with orthogonal multiple access (OMA).

4.2 System Model

Figure 4.1 depicts the considered IRS-aided NOMA Ambient BackComm consists of a single-

antenna AP operating based on the NOMA scheme, an M -passive reflecting elements IRS

indexed by m ∈ M = {1, . . . ,M}, and two single-antenna users in the set of K = {1, 2}.
There is no direct link between the AP and users due to high attenuation and signal block-

ages, a typical scenario [124, 126, 127]. This assumption holds for urban environments and
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Figure 4.1: IRS-aided NOMA BackComm system model.

above-6 GHz frequency bands, such as millimeter waves, where signal blockages are frequent.

In Figure 4.1, the IRS is also backscattering its sensed data. As mentioned, the AP simulta-

neously transmits modulated and unmodulated carriers and divides its power between these

two parts. Therefore, the AP baseband transmit signal at time instant n can be represented

as

x(n) =
√

(1− α)PT +
√

αPT

2∑

k=1

aksk(n), (4.1)

where α is the PS factor for the AP, PT denotes the AP transmit power, sk is the k-th user

data that satisfies E [|sk(n)|2] = 1, k ∈ K, and ak is the NOMA power allocation coefficient

of the k-th user. To ensure fairness, the user with a lower channel gain gets assigned a

higher ak. The spectrum of the AP RF signal consists of a wideband message signal and

an unmodulated carrier signal [120]. Upon receiving the RF signal, the IRS can modulate

the unmodulated part, e.g.,
√

(1− α)PT e
jwct, to send its own data usingbinary phase-shift

keying (BPSK) modulation [120].

Denote channels from the AP-to-IRS and IRS-to-user k as h ∈ C1×M and fk ∈ CM×1,

∀k ∈ K, respectively. All the channels undergo quasi-static flat Rician fading and remain

unchanged for several symbols [128] CSI availability is assumed. The Rician model applies

to environments where the direct LoS component dominates over scattered paths, such as in

open areas or with well-aligned antenna systems. It encompasses the Rayleigh model as a

special case when the LoS component is absent or negligible. However, the primary difficulty

is that, in practice, the required pilot/training overhead for channel estimation becomes

unreasonably expensive due to the fact that the IRS often consists of a significant number of
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reflecting elements. Grouping nearby IRS components into a subsurface—a process known as

IRS element grouping—reduces the overhead associated with channel estimation by requiring

the estimation of only the effective cascaded AP-IRS-Users channel for each subsurface [129].

These are standard assumptions in the literature. This system setup has the added advantage

of easy synchronization because the time delay can be compensated through the passive

reflecting elements at the IRS [120, 121]. Let Θ = diag
(
β1e

jθ1 , . . . , βme
jθm , . . . , βMejθM

)

represents the reflection coefficient matrix at the IRS, where βm ∈ [0, 1] and θm ∈ [0, 2π),

∀m ∈M, are the reflection amplitude and phase shift of the m-th passive reflecting element

at the IRS, respectively. To maximize the reflected signal power at the IRS and mitigate

hardware costs, let βm = 1, ∀m ∈M. Consequently, the received signal at each user can be

written as

yk(n) = hΘfkx(n) + zk(n), ∀k ∈ K, (4.2)

where zk ∼ CM(0, σ2), ∀k ∈ K, is the received noise with variance σ2, and it is assumed to

be the same for all users.

4.3 Transmission Scheme

This works as follows. First, the AP transmits x(n) with the symbol period Ts. Second, the

IRS manipulates the unmodulated part of x(n) to transmit its data, b(n), by applying BPSK

modulation with bit period Tb ≫ Ts. For b(n) = 1 or 0, the IRS adds the following phase

shifts: 0 or π. As a result, each user sees the original signal when b(n) = 1 and a negative

of it when b(n) = 0. Since the primary system rate is much higher than the IRS data rate

(Tb = LTs, where L ≫ 1), each user can decode the IRS data with a simple band-pass

filter as each IRS data bit remains constant over LTs duration. Accordingly, each user first

decodes the IRS data, cancels the effect of the IRS data, and decodes its own data. The IRS

data symbol is L times longer than the nominal user data symbol. Because each user must

decode the IRS data symbol first before decoding its own data, this process will introduce a
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delay of L bits. Thus, the received SNR of the secondary signal at each user is given by

Γck =
L(1− α)PT|hΘfk|2

σ2
, ∀k ∈ K. (4.3)

Consider Φ(k) ∈ {0, 1} as the decoding order of user k, where Φ(k) = 1 and Φ(k̄) = 0,

∀k, k̄ ∈ K indicate that the signal of user k̄ is first decoded by treating user k’s signal as

interference. Then, by removing user k̄’s signal via SIC, user k decodes its signal without

the co-channel interference. Explicitly, it means that |hΘfk|2 ≥ |hΘfk̄|2. On the other hand,

for Φ(k) = 0 and Φ(k̄) = 1, one has |hΘfk̄|2 ≥ |hΘfk|2. Accordingly, the required SINR of

user k can then be represented as

Γk =
αPTak|hΘfk|2

Φ(k̄)αPTak̄|hΘfk|2 + σ2
, ∀k, k̄ ∈ K. (4.4)

Subsequently, the rate achieved at user k ∈ K based on the Shannon capacity can be ex-

pressed as Rk = log(1 + Γk).

4.4 Problem formulation

The objective is to maximize the rate of the strong user while providing the QoS required for

the weak user to decode its data. To achieve this, Θ, α, and ak, k ∈ K, are jointly designed,

considering the decoding order. Let Φ(k) be an indicator function of the stronger user (i.e.,

the one with a larger channel gain). Specifically, if Φ(k) = 1 and Φ(k̄) = 0, then user k is
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the stronger user. The optimization problem is formulated as follows:

(P4.1) : max
Θ,ak,α

Rk = log2(1 + Γk), (4.5a)

s.t. |hΘfk|2 ≥ |hΘfk̄|2, for Φ(k) = 1,Φ(k̄) = 0, (4.5b)

Γk̄ ≥ γth for Φ(k) = 1, (4.5c)

Γck ≥ γth, ∀k ∈ K, (4.5d)

|ejθm | ≤ 1, ∀m ∈M, (4.5e)

0 ≤ α ≤ 1, (4.5f)

a1 + a2 = 1, (4.5g)

where (4.5b) indicates the decoding order at the NOMA users, and (4.5c) as well as (4.5d)

are the QoS constraints that indicate the minimum SINR requirement of the weak user of

the primary system and secondary system, respectively. (4.5e) denotes the unit-modulus

constraints of the phase shifts at the IRS. Finally, (4.5f) and (4.5g) are the natural limits for

α and ak. The objective of this problem is non-concave, and constraints (4.5c) and (4.5d)

are not convex. As a result, due to these factors and the coupling of optimization variables,

P4.1 is non-convex.

4.4.1 Proposed Solution

The AO method is employed to solve (P4.1) efficiently. The AO paradigm is a widely used

approach for tackling non-convex problems [123, 127, 128, 130]. An AO algorithm optimizes

one block of variables at a time while keeping other blocks fixed. Following this paradigm,

the problem is broken into three simpler sub-problems. Closed-form expressions for α and

ak, ∀k ∈ K are derived in the first and second subproblems, respectively. For Θ, SDR and

penalty techniques are used by invoking SCA to optimize them.

Since the objective function in (P4.1) is a monotonically increasing log(·) function and

Γk for Φ(k) = 1 inside the log(·) is a linear function of α, it is concluded that the objective is

an increasing function over α. Thus, α achieves its optimum value in a corner of its feasible
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regime. Based on (4.5d), the optimal value of α can be obtained as

αopt = min

(

1− σ2γth
LPT|hΘf1|2

, 1− σ2γth
LPT|hΘf2|2

)

. (4.6)

However, to have a feasible regime for α, the following conditions also need to be satisfied:

σ2γth
a2PT|hΘf2|2−a1PTγth|hΘf2|2

≤αopt, (4.7)

σ2γth
a1PT|hΘf1|2−a2PTγth|hΘf1|2

≤αopt, (4.8)

if |hΘf1|2 ≥ |hΘf2|2 and |hΘf2|2 ≥ |hΘf1|2, respectively. Consequently, as a closed-form

solution is derived for α, one can remove it from the optimization variables in (P4.1). How-

ever, the remaining optimization problem is still non-convex due to the multiplication of

optimization variables, i.e., ak and Θ in the objective function and constraints. To overcome

this via the AO approach, the NOMA power coefficients are optimized as shown below:

(P4.2) :max
ak

log2

(

1 +
αakPT|hΘfk|2

σ2

)

, (4.9a)

s.t. (4.5c), (4.5g). (4.9b)

Upon replacing (4.5g) by (4.5c), one finds ak ≤ (1+γth)
−1
[

1− γthσ
2

αPT |hΘfk̄|

]

. For the objective

to be maximized, ak must equal its upper bound:

ak = (1 + γth)
−1

[

1− γthσ
2

αPT |hΘfk̄|

]

, ∀k ∈ K. (4.10)

This indicates the allocation of power to the strong user. As a result, for the weak user, it
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is 1− ak. Next, the optimization problem over Θ can be rewritten as follows:

(P4.3) :max
v

log2

(

1 +
αakPT|vHfk|2

σ2

)

, (4.11a)

s.t. |vHfk|2 ≥ |vHfk̄|2, for Φ(k) = 1,Φ(k̄) = 0, (4.11b)

αak̄PT|vHfk̄|2
Φ(k)αakPT|vHfk̄|2 + σ2

≥ γth, for Φ(k) = 1, (4.11c)

L(1− α)PT|vHfk|2
σ2

≥ γth, ∀k ∈ K, (4.11d)

|v| = 1, ∀m ∈M, (4.11e)

where v =
[
ejθ1 , . . . , ejθm , . . . , ejθM

]
and H = diag (h). Nevertheless, (P4.3) is non-convex as

it contains a quadratic form over v. To address it, via the SDR technique, the non-convex

problem is relaxed by defining a new variable as V = vHv that satisfies Rank(V) = 1 and

V ⪰ 0. Hence, the decoding order constraint at the users (4.5b) can be expressed as

Tr(Hfkf
H
k HHV)≥Tr(Hfk̄f

H
k̄ HHV), for Φ(k)=1,Φ(k̄)=0, (4.12)

Finally, by dropping the non-convex rank-one constraint, (P4.3) can be reformulated as

(P4.3.1) :max
V

log2

(

1 +
αakPTTr(Hfkf

H
k HHV)

σ2

)

, (4.13a)

s.t.
αak̄PTTr(Hfk̄f

H
k̄
HHV)

Φ(k)αakPTTr(Hfk̄f
H
k̄
HHV) + σ2

≥ γth, (4.13b)

L(1− α)PTTr(Hfkf
H
k HHV)

σ2
≥ γth, ∀k, (4.13c)

(4.12), diag(V) = 1M , V ⪰ 0. (4.13d)

However, (P4.3.1) usually results in a solution with a rank higher than one. A penalty term

is thus defined for the rank-one constraint [130] to obtain a suboptimal solution. For the

positive semidefinite matrix Y ∈ H
N×N , the rank-one constraint can be expressed as the

difference of two convex functions, i.e.,

Rank(Y) = 1⇐⇒ ||Y||∗ − ||Y||2 = 0, (4.14)
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where ||Y||∗ =
∑

j δj, ||Y||2 = max
j
{δj}, and δj is the j-th singular value of Y. Con-

sequently, the penalty-based approach is applied by integrating this constraint into the ob-

jective function of (P4.3.1), denoted by F (V). This leads to the following optimization

problem:

(P4.3.2) :max
V

F (V)− 1

2µ
(||V||∗ − ||V||2), (4.15a)

s.t. (4.12), (4.13b), (4.13c), (4.15b)

diag(V) = 1M , V ⪰ 0, (4.15c)

Algorithm 4 Alternating Optimization Algorithm

1: Input: Initialize the number of iterations i, acceptable tolerance, ϵ≪ 1, random phases,
Θ(i), random NOMA power coefficients, a

(i)
k , and R

(i)
k = 0.

2: repeat
3: For given Θ = Θ(i) and a

(i)
k , calculate α

(i)
opt from (4.6).

4: Solve (4.10) to obtain a
(i+1)
k .

5: Solve (P4.3.2) to obtain V(i+1) using Algorithm 1 in [128].
6: Decompose V(i+1) = v(i+1)(v(i+1))H and update
7: Θ(i+1) = diag(v(i+1)).
8: Set i = i+ 1;
9: until |R(i)

k −R
(i−1)
k | < ϵ.

where µ is a penalty factor for (4.14). Specifically, for a sufficiently small value of µ,

solving (P4.3.2) yields a rank-one solution [130]. However, (P4.3.2) is still not a convex

optimization problem yet due to the difference of concave functions form of the objective

function. To address this, a lower bound is defined for ∆ = ||V||2 from its first-order Taylor

series expansion, which is given by

∆(V) ≥ ∆(Vt) + Tr

(

∇H
V∆(Vt)(V −Vt)

)

≜ ∆̃(V). (4.16)

The transformed problem (P4.3.2) is a standard semi-definite programming (SDP) that

can be solved efficiently by using CVX [131].
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Figure 4.2: Convergence of the proposed algorithm for M = 40.

4.5 Performance evaluation

This section presents numerical results to evaluate the performance of Algorithm 4. The

IRS comprises a two-dimensional uniform rectangular array of phase shifts. All users are

randomly located in the [2 : 20, 1: 2] meters (m). The AP and IRS locations are considered

as (0, 0) m and (2, 2) m, respectively. The Rician factor is set to 3 dB, L = 10, γth = 10

dB [120], σ2 = −110 dBm, and µ = 5×10−5 [130]. The average channel attenuation at a unit

reference distance with f = 915 MHz is (3× 108/4πf)
2
d−ξ, where d is the distance between

nodes and ξ = 2.1 is the pathloss exponent [42]. For comparison, three benchmark system

designs are studied, namely, i) Benchmark 1: Algorithm 4 with random phase shifts, Θrnd;

ii) Benchmark 2: Algorithm 4 with OMA; iii) Benchmark 3: Algorithm 4 with OMA and

random phase shifts. These benchmarks allow us to discern the effect of not optimizing the

phase shifts and not using NOMA. The OMA scheme is implemented as TDMA with equal

transmission time to serve users. To maximize the SNR for each user, the optimal phase

control policy can be achieved by aligning the phase of the IRS to match with the phase of

the cascaded channels, i.e., h and fk.

Figure 4.2 illustrates the convergence of the proposed algorithm across iterations for a
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Figure 4.3: Primary system sum rate versus SNR.

constant number of reflectors at the IRS, M = 40. The graph clearly depicts the algorithm

reaching its suboptimal point after just 2 iterations, highlighting the swift convergence of

the proposed method. This observation underscores the efficiency and rapidity with which

the algorithm approaches a satisfactory solution.

Figure 4.3 shows the impact of SNR = PT

σ2 (dB) on the sum rate of the primary system

for two different numbers of phase shifts, M . The figure shows that Algorithm 4 outper-

forms other schemes. The impact of the optimal phase shifts is essential for performance.

However, Benchmark 1 also performs better than the OMA transmission scheme, indicat-

ing the effectiveness of NOMA even without optimized IRS phase shifts. Specifically, when

M = 30, Algorithm 4 improves the sum rate by 40% and 68% compared to Benchmark

2 and Benchmark 3, respectively. Furthermore, as the number of phase shifts increases, all

the schemes achieve a higher sum rate. Indeed, the greater the number of phase shifts, the

higher the number of multipath components, which improves the sum rate.

Figure 4.4 illustrates the impact of imperfect CSI and imperfect SIC on Algorithm 4.

The channel estimation model is given as ĥ = h + e, where h is the actual channel and

e is the estimation error that is Gaussian distributed and zero mean, i.e., e ∼ N (0, σ2
e).

Error variance satisfies σ2
e ≜ η|h|2, where η controls the level of CSI error. The right
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Figure 4.4: Primary sum rate versus M with PT = 10 dBm and CSI imperfection η .

figure shows the primary system sum rate versus the η. As the CSI error increases, the

sum rate of all schemes decreases. For instance, the performance loss is %7.8 with η = 0.5

compared to the ideal CSI case (i.e., η = 0). Now, let us consider the impact of imperfect

SIC. The strong user rate is then log2

(

1 + akαPT |hΘfk|
2

βak̄αPT |hΘfk|2+σ2

)

, where β ∈ [0, 1] denotes the

SIC imperfection factor. For this simulation, β = 0.1. On the other hand, to control this

destructive factor, the residual SIC term is replaced with a constant γSIC , satisfying the

new constraint βak̄αPT |hΘfk|2 ≤ γSIC . As a result, the left figure shows the achieved sum

rate versus M for different residual SIC thresholds. The rate is sacrificed as γSIC decreased

because the phase shift needs to maximize the objective and satisfy the QoS while restricting

the residual SIC.

Figure 4.5 shows the primary system sum rate versus x, where AP is at (−x, 0). While

keeping the location of the IRS and users fixed, x is increased. The resulting higher path loss

decreases the primary sum rate. It is observed that optimizing Θ in Algorithm 4 yields a

better sum rate compared to the random and the OMA cases. The gap between Algorithm

4 with optimized and random Θ is evident in both NOMA and OMA transmission. It

highlights the spectrum efficiency advantage of NOMA with optimized phase shifts.

Although the eigenvalue decomposition or Gaussian randomization (GR) can be used
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Figure 4.5: Primary sum rate versus x (M = 30 and PT = 10 dBm).

to reconstruct the rank-one solution, the drawback is it uses a rank-one solution from the

solution achieved by SDR, which may be infeasible for the original problem and may impose

the performance loss. Therefore, the penalty factor is added to the objective for the rank-

one constraint, which can be solved via SCA [132]. To validate the outperformance of the

penalty-based rank-one solution, our proposed solution is compared with the one with GR

in Figures 4.6, 4.7.

Figure 4.6 shows the primary sum rate versus the number of reflecting elements. Although

Algorithm 1 with GR has a slightly better sum rate in small M , Algorithm 1 performs better

as M increases. The reason is the GR is based on generating a large number of random

Gaussian vectors, reconstructing the phase vector using it, and selecting one that maximizes

the objective. However, this reconstructed phase shift matrix may not be feasible for the

problem.

Furthermore, to quantify our proposed Algorithm’s efficiency compared to GR, Figure

4.7 shows the running time of both approaches. As depicted, Algorithm 1 with GR has a

higher running time since it reconstructs the phase shift matrix by generating many Gaussian

random vectors and searching for the one that maximizes the objective.
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Figure 4.6: Primary sum rate versus M with PT = 10 dBm.

4.6 Conclusion

To meet spectrum scarcity challenges, this chapter investigated a spectrum-sharing network

consisting of two downlink users served by an AP as a primary system and an IRS backscat-

tering as a secondary system. The IRS serves dual functions as a conventional relay while

simultaneously backscattering its data. The AP splits its transmit power between mod-

ulated and unmodulated signal parts to enable this process and ease the detection at the

receiver’s side. The IRS uses the latter to convey its data to the NOMA users. The PS factor,

IRS phase shifts, and NOMA power coefficients are optimized to maximize the rate of the

strongest user in the primary while considering the decoding order at the users and satisfying

QoS parameters for both weak user and IRS data of the primary and secondary systems,

respectively. The simulation results demonstrate the outperformance of the proposed design

compared to several defined benchmarks.

It is important to note that using IRS as a backscatter device can enhance signal qual-

ity and network coverage, but it also involves trade-offs related to complexity, cost, energy

efficiency, and integration challenges. For instance, the system’s overhead for channel train-

ing and CSI estimation increases because an IRS with many reflecting elements requires
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Figure 4.7: Running time versus the number of IRS elements.

more channel components to be estimated. Therefore, carefully balancing these trade-offs is

essential for optimizing deployment and performance.
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Chapter 5

Efficient Resource Management in

Uplink Symbiotic and Cooperative

Backscatter Networks

To address the challenges of deep dyadic fading in BackComm, this chapter explores an uplink

transmission framework that integrates BackComm, SR, and cooperative communications.

The key innovation lies in utilizing active nodes within the network to collaborate on the

tag’s data transmission, thereby mitigating the performance degradation caused by high

attenuation in the backscatter link. The proposed transmission scheme operates in two

phases. In the first phase, the designated BD reflects its data using the FD user equipment

(UE) uplink signal to the BS. In the second phase, the UE supports the BD’s transmission

by sharing its power for the BD’s data transmission. An algorithm to is developed maximize

throughput while ensuring the QoS for the BD’s throughput.

5.1 Introduction

The Rel 18 report of the Third Generation Partnership Project (3GPP) for advancing inno-

vative cellular IoT technology has identified the need to explore passive IoT solutions and

establish new standards. These standards should tackle emerging concerns, such as coexis-

tence with UE and existing cellular technologies for spectrum-sharing [133]. Addressing these
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concerns is critical due to the increasing strain on spectrum usage caused by the proliferation

of connected devices. Thus, additional research is needed to handle network coexistence and

cooperation in IoT networks, especially for BackComm.

However, to ensure seamless integration of wireless networks within an intelligent envi-

ronment [134, 135], there is an anticipated increase in the deployment of BD equipped with

sensors. For example, in a smart city, cellphone users (i.e., UE devices) navigate through

urban landscapes. While the users walk, strategically positioned low-power sensors and in-

telligent devices (e.g., BDs) become attuned to the presence of UEs. These devices, ranging

from smart streetlights and public benches to environmental sensors and security cameras,

remain vigilant and poised to engage with their surroundings. Upon detecting a UE signal,

they capitalize on the opportunity to initiate data transmissions. This evolving landscape

necessitates the development of new techniques for effective cooperation and interaction

between cellular users and these devices.

Therefore, BDs play a crucial role in real-time environmental monitoring across various

sectors, including smart homes, smart cities, and manufacturing [136]. They transmit local

environmental data to central nodes, typically AP, which aggregate this data at application

servers for centralized processing. This facilitates comprehensive analysis and utilization

for informed decision-making and resource management. Other applications include noise

monitoring, pollution warnings, and traffic accident alert systems in smart cities to opti-

mize energy, enhance security measures, and improve conveniences in smart homes [137].

Moreover, BDs enable advanced tracing and tracking functionalities, further enriching their

utility.

However, despite being low-cost and low-power, BD’s signal encounters bottlenecks, out-

lined as follows:

• Dyadic channel fading: As discussed in Chapters 1 and 2, the backscatter link suffers

from dyadic channel effects due to its reliance on the forward link (RF source to BD) [3],

leading to increased path loss, which curtails both range and data rate. Prior solutions

include a hybrid approach combining active and passive transmission [138] or using

either passive or active relays to mitigate dyadic fading.
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• Interference-limited: Strong interference, such as an RF source signal, can easily domi-

nate the weak backscattered signal. Therefore, the reliability and the decoding process

are severely degraded. SIC, where interference is decoded and subtracted from the

received signal, along with the widespread use of multi-antenna techniques, is a poten-

tial solution [3]. However, the SIC method increases complexity and suffers from error

propagation problems. Another solution is to use multi-antenna systems to increase

the SINR, thus enhancing the tag’s signal detection [139].

To address these drawbacks, this Chapter utilizes the emerging concept of symbiotic

radio (SR) where two networks share resources for mutual benefits [67, 118, 140–143]. The

SR comprises a primary system and a secondary system, whereas the latter, in this case, is a

BackCom system. The BD efficiently uses spectrum resources by superimposing its message

onto the received signal from the primary system’s transmitter and piggybacking its data on

it. Thus, the BD envisions coexisting with an UE uplink transmission for sharing resources.

In keeping with the futuristic outlook, the UE is assumed to be a FD wireless node [144]. In

addition to SR, cooperative communication is employed, involving a cooperative receiver [67]

and relaying the BD signal by the UE. Thus, this Chapter integrates both SR and cooperative

communications.

5.1.1 Motivation and Contributions

Inspired by the above problem, but noting the need for symbiosis and cooperation from UE

in the uplink to help the multi-BD system to improve its poor range and data rate, a novel

two-phase cooperative uplink symbiotic BackComm system is presented here.

A1: Symbiotic phase - In this setup, each BD is allocated a time slot for the two-phase

transmission while the remaining BDs remain inactive. In the first phase of each slot

(i.e., symbiotic phase), the corresponding BD utilizes the uplink signal from FD UE to

send its own data. The BS decodes the signals from the UE and BD via SIC methods.

However, depending on the BD transmission rate, the BS may encounter different data

rates for these uplink transmissions. If the BD symbol period is equal to the UE, there

is no spectrum increase even when the BD transmission and primary transmission are

82



timed exactly. As this assumption is not too far from reality in the next generation

with a high data rate, it serves as the case study for this work [145]. As a result, the

backscatter link is parasitic for the primary system (uplink UE transmission).

A2: Cooperative phase - the uniqueness of this work stems from this phase. The UE

integrates the decoded BD signal from the first phase into its own data stream during

that time slot while assigning different transmit powers to each data stream to ensure

that the BS can decode separately. This allows the UE to support and cooperate with

the corresponding BD in each time slot. The BS utilizes SIC to decode the message

the UE and BD superimposed.

The contributions of this chapter can be listed as follows:

• Unlike previous studies [140, 142, 143, 146, 147], this chapter proposes a cooperation

scheme to enhance each BD performance. The FD-UE thus splits its power into two

portions to integrate the previously decoded BD message into its signal. Such coop-

eration is beneficial for the BackComm system in two folds. First, the BD can use a

more powerful active device like the UE for its transmission. Second, incorporating

another node to assist with the BD reflection can improve its communication range

and prevent the double-fading issue inherent in conventional Ambient BackComm.

• The UE throughput maximization problem is analyzed over all time slots while provid-

ing QoS for each BD’s throughput. Our optimization variables include the combiner

vector at the AP in both transmission phases, the power splitting factor at the UE in

the second phase, and the time allocation for each transmission phase.

• The proposed optimization problem exhibits non-convexity, rendering traditional con-

vex techniques ineffective. AO approach is applied to address this challenge, optimizing

one variable at a time while keeping the others fixed. This method enables effective

tackling of the problem and derivation of optimal solutions. Consequently, closed-form

solutions for time allocation and power allocation variables in each time slot are de-

rived. SDR and SCA techniques are applied during the first transmission phase to

optimize the combiner vector. For the second transmission phase, optimization of the
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combiner vector utilizes the maximum ratio combining (MRC) technique, a widely

adopted method in wireless communication systems [148].

5.1.2 Literature Review

To our knowledge, this work is the first to introduce a novel concept of utilizing two trans-

mission phases with UE cooperation in the uplink scenario. This specific scenario has not

been investigated before. Nevertheless, an overview of related research studies is given next.

In particular, [140] investigates the weighted sum rate of both the primary and the BD un-

der both commensal (e.g., the symbol period for BD transmission is much greater than that

of the primary one) and parasitic (e.g., the symbol period for BD transmission is equal to

the primary system) setups. The authors propose a joint optimization scheme for the BD’s

reflection coefficient and the primary transmit power. In a similar vein, [143] focuses on the

power minimization problem in a parasitic system by optimizing the primary transmit beam-

forming vector and the power-splitting factor at the BD. In [147], the authors investigate

a multi-BD SR scenario in which BDs apply random code-assisted multiple access for their

reflection. They first derive an asymptotic expression for the BD SINR. Then, by defining

the optimization problem that maximizes the minimum SINR among BDs, they optimize

the transmit power and reflection coefficients at the BDs. In another example, [67] consid-

ers both commensal and parasitic setups and defines two different optimization problems

over transmit beamforming: weighted sum-rate maximization and the transmit power mini-

mization problem. Furthermore, [23] proposes a FD SR system where the AP is both an RF

transmitter and a receiver of multi-BDs. AP transmits an orthogonal frequency division mul-

tiplexing (OFDM) signal, while BD receives the signal through a NOMA dynamic-TDMA

transmission scheme. The authors maximize the minimum throughput among all BDs while

optimizing subcarrier power allocation, BDs’ backscatter time allocation, and power reflec-

tion coefficients.

On the other side, performance analysis involves evaluating the quality and reliability to

ensure optimal transmission and reception of data. Therefore, [142] investigates a symbiotic

system of NOMA and Ambient BackComm. The BD leverages the NOMA signal from the

base station to transmit data to the nearby NOMA user. The study derives expressions
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Figure 5.1: Cooperative symbiotic system model with two phases: (a) symbiotic phase τ1,k, (b)
cooperative phase τ2,k.

for outage probabilities and ergodic rates and analyzes diversity orders. Similarly, [146]

studies the performance of a downlink NOMA multiplexing-based SR where the channels

are considered as Nakagami-m fading. The exact and asymptotic outage probabilities are

determined using closed-form expressions. [149] analyzes the capacity in an SR system while

keeping energy harvesting sensitivity at BD in mind.

5.2 System Model

The system model is depicted in Figure 5.1. It consists of a BS equipped with M ≥ 1

antennas, K ≥ 1 number of BDs where the k-th BD is denoted as BDk, and a UE. Each

BD and UE are equipped with two antennas, one each for receiving and transmitting (in the

case of the BD and backscattering). The channel coefficients between the UE-BS, BDk-BS,

and the UE-BDk transceiver are represented by h ∈ C
M×1, gk ∈ C

M×1, and fk,1, fk,2 ∈ C,

respectively, where k ∈ {1, . . . , K} ≜ K. All the channels are assumed to undergo quasi-

static flat-fading [63], and that CSI is available [67, 104, 140, 141, 143]. The transmission

scheme for our system model consists of two phases, described as follows.
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5.2.1 First phase (SR transmission):

The k-th time slot is assigned to the k-th BD. During the initial phase of each time slot

(τ1,k portion of T ), the UE transmits its signal denoted as s ∼ CN (0, 1) [150]. This signal

is also received by BDk, which reflects
√
PUEαksck, where PUE is the transmit power at the

UE, αk ∈ (0, 1] is the reflection power coefficient at the BDk, and ck denotes the BDk’s data.

Thus, the received uplink signal at the BS is given by

y
(1)
BS,k=

√

PUEhs+
√

PUEαkfk,1gksck+z
(1)
k , (5.1)

where z
(1)
k ∼ CN (0, σ2IM) denotes the additive white Gaussian noise (AWGN) in the SR

phase of the k-th time slot at the BS. The BS implements a receiving beamforming vector,

ws,k,wc,k ∈ C
M×1, to decode the UE and BDk signal in the SR phase, respectively. Thus, it

performs SIC and decodes s first by treating the backscattered signal as interference. Then,

the received SINR at the BS to decode s is given by

γ
(1)
UE,k=

PUE|wH
s,kh|2

αkPUE|wH
c,kfk,1gk|2+σ2

, ∀k. (5.2)

After subtracting s from the received signal, the SNR to decode ck at BS can be expressed

as

γ
(1)
BDk

=
αkPUE|wH

c,kfk,1gk|2
σ2

, ∀k. (5.3)

In this work, the UE is envisioned as an FD node1. Therefore, in the SR phase of the k-

th time slot, the UE also receives the reflected signal from BDk and tries to decode it to

cooperate in BDk transmission in the cooperative phase. The received BDk signal at the UE

can be expressed as

y
(1)
UE,k =

√

αkPUEfk,1fk,2sck + w
(1)
k , ∀k, (5.4)

1Self-interference (SI) is a fundamental impairment in FD nodes. However, various SI cancellation tech-
niques are now available [151]. It is reasonable to assume that future realization of UEs will overcome SI
bottlenecks.
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where w
(1)
k ∼ CN (0, σ2) is the AWGN at the UE. The SNR for decoding ck is given by

γ
(1)
UE→BDk

=
αkPUE|fk,1|2|fk,2|2

σ2
, ∀k. (5.5)

In the above two SNR expressions, dyadic fading terms appear.

5.2.2 Second phase (cooperative transmission):

In this phase of τ2,kT duration, where τ2,k = 1 − τ1,k, the BDk remains silent, and the UE

cooperates by transmitting both its message and the BDk message by splitting its power into

two portions [152,153]. The UE transmits a combined signal containing the user’s and BDk

messages, given as xk =
√
βkPUEs+

√

(1− βk)PUEck, ∀k, where βk ∈ (0, 1] is the PS factor

at the UE. Then, the received signal at the BS can be represented as

y
(2)
BS,k = (

√

βkPUEs+
√

(1− βk)PUEck)h+ z
(2)
k , (5.6)

where z
(2)
k ∼ CN (0, σIM) is the AWGN at the BS in the second phase. Subsequently, the

BS decodes the UE’s and BD’s signals using SIC. The required SINR and SNR for decoding

s and ck are given by

γ
(2)
UE,k=

βkPUE|wH
2,kh|2

(1− βk)PUE|wH
2,kh|2+σ2

, ∀k, (5.7)

γ
(2)
BDk

=
(1− βk)PUE|wH

2,kh|2
σ2

, ∀k, (5.8)

respectively, wherew2,k ∈ C
M×1 is the receiving combiner vector at the BS in the cooperative

phase of the k-th time slot. The proposed cooperative system follows the orthogonal relay

channel model [154]. Thus, the sum throughput in both transmission phases can be expressed

as [155,156] :

RUE,k = R
(1)
UE,k +R

(2)
UE,k, ∀k, (5.9)

RBDk
= min

{

R
(1)
BDk

+R
(2)
BDk

, RUE→BDk

}

, ∀k, (5.10)
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where R
(1)
UE,k = τ1,k log2(1 +γ

(1)
UE,k), R

(2)
UE,k = τ2,k log2(1 +γ

(2)
UE,k), R

(1)
BDk

= τ1,k log2(1 + γ
(1)
BDk

),

R
(2)
BDk

=τ2,k log2(1 +γ
(2)
BDk

), and RUE→BDk
=τ1,k log2(1+γ

(1)
UE→BDk

) .

5.3 Optimization Problem

This section develops the framework to maximize the sum throughput of UE by jointly

optimizing the PS/TS coefficients and receiving beamforming vectors. Since each node

in this system operates within its designated time slot, the optimization problem can be

formulated as maximizing throughput within each time slot as follows:

(P5) : maximize
βk,{τ1,k,τ2,k},w

RUE,k, (5.11a)

s.t. RBDk
≥ Cth, ∀k, (5.11b)

0 ≤ βk ≤ 1, ∀k, (5.11c)

τ1,k + τ2,k = T, ∀k, (5.11d)

0 ≤ τ1,k ≤ T, ∀k, (5.11e)

0 ≤ τ2,k ≤ T, ∀k, (5.11f)

∥wl,k∥2 = ∥w2,k∥2 = 1, ∀k, l (5.11g)

where w = {wc,k,ws,k,w2,k} and l ∈ {c, s}. Constraint (5.11b) ensures the minimum rate at

each BD. In addition, (5.11c), (5.11d)–(5.11f), and (5.11g) represent the inherent limits for

the reflection coefficient, time allocation factor, and norm constraints for the beamforming

vectors, respectively. It can be shown that (P5) is equivalent to the following optimization

problem [155]:

(P5.1) : maximize
βk,{τ1,k,τ2,k},w

RUE,k, (5.12a)

s.t. R
(1)
BDk

+R
(2)
BDk
≥ Cth, ∀k, (5.12b)

RUE→BDk
≥ Cth, ∀k, (5.12c)

(5.11c)− (5.11g), (5.12d)
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in which (5.11b) is replaced by (5.12b) and (5.12c) in P5.1 [155].

This problem is non-convex because of the non-concave objective function and non-

convex constraints in (5.12b) and (5.12c), making it challenging to find an optimal solution.

To address this, we use the AO approach [63] to decompose the problem into three simpler

sub-problems. In the first subproblem, w, βk is fixed, and τ1,k, τ2,k are optimized. In the

second subproblem, βk is optimized while keeping the other variables constant. Finally, the

BS beamforming vectors are optimized in the third subproblem, with the other variables

constant. This is done by employing the SDR approach. Optimal closed-form solutions are

derived for the first and second sub-problems.

5.3.1 Optimizing over TS coefficient:

This subproblem focuses on optimizing the time allocation for each transmission phase. By

isolating the variables and constraints relevant to this subproblem, the equivalent optimiza-

tion can be rewritten as

(P5.2) : maximize
{τ1,k,τ2,k}

RUE,k, (5.13a)

s.t. (5.12b)− (5.12c), (5.11d)− (5.11f). (5.13b)

From (5.12c), one can find τ1,k ≥ Cth/log2(1 + γ
(1)
UE→BDk

). Thus, τ ∗1,k can be expressed as

τ ∗1,k = Cth/log2(1 + γ
(1)
UE→BDk

). Then, by substituting τ ∗1,k in (5.12b), τ ∗2,k can be expressed as

τ ∗2,k =
Cth − CthBK

Ak

Dk

, (5.14)

where Ak = RUE→BDk
, Bk = R

(1)
BDk

and Dk = R
(2)
BDk

. As both RBDk
and RUE,k in (5.9) and

(5.10) exhibit an increase with respect to τ ∗1,k andτ ∗1,k + τ ∗2,k. By substituting τ ∗1,k and τ ∗2,k

into (5.11d), each BD’s throughput lower-bound can be represented as

Cth =
TAkDk

Ak +Dk − Bk
. (5.15)
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This parameter is a lower bound for each BD’s throughput, considering the feasibility of the

optimal TS coefficient. Thus, the optimal time allocation is given by

τ ∗1,k = min

(

max

(

0,
TDk

Ak +Dk − Bk

)

, T

)

. (5.16)

In addition, τ ∗2,k can be obtained as τ ∗2,k = 1− τ ∗1,k.

5.3.2 Optimizing over PS factor:

This subproblem optimizes the PS factor at the UE during the second phase of each k-th

time slot. The resulting optimization problem is reformulated as below:

(P5.3) : maximize
βk

RUE,k, (5.17a)

s.t. R
(1)
BDk

+R
(2)
BDk
≥ Cth, ∀k, (5.17b)

γ
(2)
UE,k ≥ γ

(2)
BDk

, ∀k, (5.17c)

(5.11c). (5.17d)

The throughput of the cooperative phase, R
(2)
UE,k, is solely dependent on the variable βk in

the objective function. However, after simplifying the objective expression of (P5.3), one

finds

(P5.4) : max
βk

C − τ2,k log2
(
(1− βk)PUE|wH

2,kh|2 + σ2
)
, (5.18a)

s.t. τ2,k log2

(

1 +
(1− βk)PUE|wH

2,kh|2
σ2

)

≥ E , (5.18b)

(5.11c), (5.18c)

where C = R
(1)
UE,k+ τ2,k log2(σ

2) and E = Cth−R
(1)
BDk

. The objective is an increasing function

over βk. Also, it can be shown that using constraint (5.18b), an upper bound for βk becomes
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as

UBk = 1−

σ2



2

Cth−R
(1)
BDk

τ2,k − 1





PUE|wH
2,kh|2

. (5.19)

Given the increasing nature of the objective over βk, it follows that the optimal value of βk

is located in the upper corner of its feasible region, which implies β∗
k = UBk.

5.3.3 Optimizing over receiving beamformers:

This subproblem optimizes the receiving beamforming vectors of the first and second phase

given as

(P5.5) : maximize
ws,k,wc,k

RUE,k, (5.20a)

s.t. (5.11b), (5.11g). (5.20b)

Since the combiner vectors for each transmission phase are independent, they can be

optimized separately. In the second phase, since the AP receives a signal from only one

propagation channel (h), the optimal combiner w∗
2,k is given by w∗

2,k = h
∥h∥

. However, the

optimization problem over wl,k is nonconvex.

As a result, the SDR approach is applied by defining Wl,k = wl,kw
H
l,k, to swap the

quadratic form over wl,k into a linear form, where Wl,k ⪰ 0, ∀l. Accordingly, (P5.5) is
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reformulated as

(P5.5.1) : maximize
Wc,k,Ws,k

τ1,k log2

(

1+
PUETr(HWs,k)

αkPUETr(GkWc,k)+σ2

)

+R
(2)
UE,k (5.21a)

s.t. τ1,k log2

(

1+
αkPUETr(GkWc,k)

σ2

)

≥E , ∀k, (5.21b)

Tr(Wl,k) = 1, ∀k, l, (5.21c)

Wl,k ⪰ 0, ∀k, l, (5.21d)

Rank(Wl,k) = 1, ∀k, l, (5.21e)

where H = hhH and Gk = fk,1gkg
H
k f

H
k,1, ∀k. However, (P5.5.1) is not convex. To remove

the non-convexity, the first term in objective functions of (P5.5.1) is defined as follows:

f(Ws,k,Wc,k) = τ1,kρ(Ws,k)− τ1,kg(Wc,k), ∀k, (5.22)

where

ρ(Ws,k,Wc,k)=log2
(
PUETr(HWs,k)+αkPUETr(GkWc,k)+σ2

)

g(Wc,k) = log2(αkPUETr(GkWc,k)+σ2), ∀k. (5.23)

However, (5.22) is still non-concave as it is a difference of two convex functions (DC). Con-

sequently, a locally optimal solution can be obtained by employing SCA [63]. To this end,

g(Wc,k) is approximated with its first-order Taylor series expansion given as

g (Wc,k)≥ g(W
(i)
c,k)+Tr

(

∇H
Wc,k

g
(

W
(i)
c,k

)(

Wc,k−W(i)
c,k

))

︸ ︷︷ ︸

g̃(Wc,k)

, (5.24)

where

∇H
Wc,k

g
(

W
(i)
c,k

)

=
αkPUEGk

(

αkPUETr(GkW
(i−1)
c,k ) + σ2

)

ln 2
. (5.25)
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Algorithm 5 Iterative successive convex approximation Algorithm

1: Input:Set number of iterations i = 0, maximum number of iterations Imax, and initialize
W

(0)
c,k .

2: Repeat
3: Calculate g̃(Wc,k) according to (5.24).

4: Solve (P5.5.2) to obtain optimal solution as {W(i)
l,k}.

5: Set i← i+ 1;
6: Until objective in P5.5.2 converges or i = Imax

7: Decompose W
(i+1)
l,k = w

(i+1)
l,k (w

(i+1)
l,k )H by performing EVD.

8: Return: Optimal solution w∗
l,k.

Then, the optimization problem (P5.5.1) can be restated as

(P5.5.2) : maximize
Ws,k,Wc,k

τ1,kρ(Ws,k)− τ1,kg̃(Wc,k) +R
(2)
UE,k, (5.26a)

s.t. τ1,klog2

(

1+
αkPUETr(GkWc,k)

σ2

)

≥E , (5.26b)

(5.21c), (5.21d), (5.26c)

By relaxing the non-convex rank-one constraint (5.21e), (P5.5.2) can be reformulated as a

semidefinite program (SDP) that can be solved to global optimality using CVX [113]. Solving

(P5.5.2) has a complexity of O((M2+M)I +M3), where I denotes the number of iterations

needed by the interior-point algorithm.

The optimal beamforming solution meets rank-one constraints for Wl,k, ∀l, ensuring

global optimality, and is obtained through eigenvalue decomposition (EVD) [63]. The iter-

ative SCA process for (P5.5.2) is summarized in Algorithm 5. The overall AO algorithm

to solve (P5.1) is presented in Algorithm 6, which guarantees convergent solutions with

non-increasing objective values [63].

5.4 Numerical results

Numerical results are next presented to evaluate the developed optimization algorithm and

the proposed system. The BS and UE locations are (0, 10) and (10, 1.5). Distances are

measured in meters. The BDs are randomly located in a circle centered at UE with a radius of
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Algorithm 6 Alternating Optimization (AO) Algorithm

1: Input: Set the iteration counter t = 0, the convergence tolerance ϵ > 0, initial feasible
solution βk. Initialize the objective function value R

(0)
UE,k = 0.

2: while
R

(t+1)
UE,k

−R
(t)
UE,k

R
(t+1)
UE,k

≥ ϵ do

3: Obtain τ
(t+1)
1,k using (5.15) and (5.16).

4: Obtain β
(t+1)
k using (5.19).

5: Solve (P5.5.2) to obtain w
(t+1)
l,k .

6: Calculate the objective function value R
(t+1)
UE,k .

7: Set t← t+ 1;
8: end while
9: Output: Optimal solutions {τ ∗1,k, β∗

k ,w
∗
l,k}.

2 meters. Unless otherwise stated, M = 10, K = 4, PUE = 23 dBm, σ2 = −70 dBm, αk = 1,

and Imax = 20. The distance-dependent pathloss model is given by L(d) = C0

(
d
D0

)−ν

, where

C0 = −30 dB is the pathloss at the reference distance D0 = 1 m, d is the link distance, and

ν = 3 denotes the pathloss exponent.

Two additional baselines are considered to evaluate our proposed design’s performance.

In Baseline 1, the receiving beamformer vector at the BS in the SR phase is designed based

on the maximum ratio combining (MRC) criterion. This yields on receive beamformer in the

SR phase as wMRC
k =

h+αkfk,1gk

∥h+αkfk,1gk∥
. In Baseline 2, the UE does not cooperate, which implies

that τ1,k = 1, βk = 1. These two baselines allow us to gauge the benefits of our design

vis-a-vis the classical MRC design and the case of no cooperation. In addition, in each time

slot, the BDk message reflection only participates in the SR phase (i.e., the corresponding

BD in each time slot is silent in the second phase).

Figure 5.2 displays the average throughput for UE and BD in a time slot versus the UE’s

transmit power, PUE. The figure considers various values of β and both adaptive and fixed

Cth. In Figure 5.2 (a), the proposed scheme with a fixed Cth = 1 bps outperforms those with

adaptive Cth, particularly in the high SNR region. This is because an adaptive threshold

limits the resources (such as β) available to meet the BD’s constraints, thereby restricting the

maximum UE throughput. Additionally, among schemes with adaptive Cth, the proposed

scheme with fixed β = 0.9 and MRC achieves 2% and 1% better UE throughput than

the scheme with optimal β∗, respectively. However, the scheme with fixed β = 0.7 performs
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Figure 5.2: (a) UE throughput versus the UE transmit power, (b) BDs throughput versus the UE
transmit power
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Figure 5.3: (a) UE throughput versus the number of BS antenna, (b) BDs throughput versus the
number of BS antenna.
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Figure 5.4: Optimal PS factor versus the SNR.

similarly to the one with optimal β. Higher β values lead to better UE throughput, explaining

why Baseline 2 (βk = 1) has the highest UE throughput. Conversely, BD performance is

affected by β and TS coefficient, and the BD’s throughput threshold, Cth, increases with

transmit power, meaning that the BD’s throughput must meet higher QoS standards as

the UE’s power increases. Consequently, the proposed scheme with optimal β effectively

maximizes UE throughput while satisfying the BD’s Cth. Figure 5.2 (b) shows that the

proposed scheme achieves more than six times better BD throughput compared to Baseline

2. The solid lines in the figure confirm that the BD’s throughput matches the required Cth,

verifying that the QoS threshold is met.

In Figure 5.3, while there is a notable performance disparity between the proposed

design and the non-cooperative scheme (Baseline 2), the difference between Baseline 1 and

the proposed design with βk = 0.9 is marginal. This highlights the significant impact of βk

on the performance of both UE and BD. A higher βk improves UE performance at the cost

of the BD throughput as it approaches a lower threshold Cth for BD. Consequently, since our

design considers both UE and BD performance metrics, the optimal βk it achieves is lower

than that of other baselines to meet the BD QoS threshold Cth. This explains our design’s

lower UE throughput and higher BD throughput compared to other schemes.
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Figure 5.3 shows the average throughput versus the number of BS antennas. While

the proposed design significantly outperforms the non-cooperative scheme (Baseline 2), the

difference between Baseline 1 and the proposed design with β = 0.9 is marginal. This

underscores β’s impact on both UE and BD performance. Higher β enhances UE performance

but reduces BD throughput due to a lower Cth. Our design prioritizes UE performance while

ensuring BD meets its adaptive QoS threshold Cth, resulting in a lower optimal β than other

baselines (see 5.4 and 5.5). This explains the lower UE throughput and higher BD throughput

in our design. The superior performance of Baseline 1 and the proposed design with β∗ may

be due to the suboptimal solution from the SCA used in our design.

Figures 5.4 and 5.5 display the average PS factor and TS coefficient across all schemes,

respectively. For instance, referring to Figure 5.4, the averaged PS factor at the UE for each

BD is approximately 0.5 across varying PUE. In Baseline 1, this coefficient is approximately

0.7, while Baseline 2 does not contribute to BDs’ message transmission (βk = 1). On the

other hand, Figure 5.5 indicates that the achieved optimal TS coefficient for the SR phase

in the proposed scheme surpasses that of Baseline 1. This suggests that to maximize the

sum throughput of UE, a significant portion of time needs to be allocated to the SR phase.

However, to meet the QoS requirements of BDs, the algorithm assigns more power to the

cooperative phase. Baseline 1 prioritizes UE throughput, leading to reduced time allocation

for the SR phase and decreased power allocation for the cooperative phase compared to the

proposed design.

5.5 Conclusion

Deep dyadic fading in backscatter channels results in poor data rates. A cooperative uplink

backscatter configuration with a two-phase transmission scheme was introduced as a remedy.

Each BD is assigned a time slot divided into two phases in this system. During the initial

symbiotic phase, the BD sends its data by reflecting (i.e., backscatter) the uplink signal of

the UE. The BS then acts as an integrated receiver that decodes UE and BD signals. In

the cooperative phase, the UE allocates a part of its power to integrate the BD signal. The

UE transmits this composite signal subsequently to the BS. This setup aims to maximize
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Figure 5.5: Optimal TS coefficient versus the SNR.

the sum UE throughput, optimizing the TS coefficient, PS factor, and received beamforming

strategies at the BS. Simulations validate the proposed cooperative approach, demonstrating

its ability to enhance BD throughput. This work can be extended to an uplink/downlink

scenario where BDs reflect the BS signal to the UE in the downlink, and the UE transmits

the BDs signal in the uplink.
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Chapter 6

IRS Empowered BackComm Within a

Broadcasting ISAC System

This chapter integrates IRS-enabled BackComm with an ISAC system as a spectrum-efficient

solution for next-generation wireless communication. The system employs SR assisted by an

IRS to enhance primary transmission and enable data conveyance through backscattering.

Additionally, an FD-BS supports sensing performance. This chapter formulates a sum rate

maximization problem that ensures both IRS data decoding and target sensing, employing

a block coordinate descent (BCD) algorithm, along with SDR and SCA techniques.

6.1 Introduction

ISAC [157] unifies communication and sensing technologies, particularly crucial for applica-

tions demanding precise sensing capabilities, such as autonomous driving, navigation, and

traffic monitoring [158]. To efficiently accommodate the demands of these extensive commu-

nication and sensing services while ensuring spectrum efficiency, joint design of sensing and

communication systems that share the same frequency, resources, and hardware is advanta-

geous [159].

The amalgamation of IRS with other technologies is another appealing technique [153,

157,160]. IRS comprises many passive programmable reflecting elements that can adjust and

manipulate impinging signals’ phase and/or magnitude to engineer a wireless propagation

99



environment. As a result, the integration of the IRS with ISAC is fruitful. For example,

in [157], IRS creates a virtual LOS link for target sensing while assisting the downlink com-

munication links between the BS and users. In [160], IRS can simultaneously assist the

downlink communication link and track the eavesdropper target using the communication

signal. The deep reinforcement learning algorithm is adopted here to maximize the secrecy

rate. In addition, [161] proposes an IRS-assisted multi-user multi-target system simultane-

ously. The goal is to minimize the total transmit power at the BS by optimizing both active

and passive beamformers. Furthermore, [162] studies the simultaneous transmitting and

reflecting IRS-aided NOMA ISAC. The goal is to minimize the error of the desired sensing

beampattern gain.

While the IRS is primarily known for its assisting capabilities, it also finds application

in scenarios where it can transmit data via backscattering on incoming signals [153]. In

BackComm, devices eschew generating RF signals themselves and instead modulate data

over incident RF signals. In this context, each passive reflecting element of IRS can be

outfitted with environmental sensors, serving as a backscatter device to re-modulate its data

onto received RF signals for reflection [78]. Therefore, IRS-backscattering meets the merit

of both backscatter and IRS communication, allowing for low-power, cost-effective passive

antenna reflectors as transmitters [153].

Inspired by this discussion, this chapter aims to study the IRS-empowered backscatter

in an ISAC system. Here are the contributions:

• A broadcasting system is proposed wherein the BS aims to transmit a common message

to multiple recipients while simultaneously conducting target sensing. The communi-

cation links are augmented by the IRS.

• Despite the studies conducted in [157, 160, 161], IRS serves two primary functions.

Firstly, it enhances communication links by establishing additional propagation paths

alongside direct links. Secondly, it utilizes the transmit signal from the BS to modulate

and convey its own data to the users.

• The goal is to maximize the sum rate of users by jointly optimizing the active beam-

former and combiner vectors at the BS and the phase shifts at IRS. Also, Our design
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provides QoS for both sensing target and IRS data at the BS and users, respectively.

6.2 System Model

Figure 6.1 considers an IRS-enabled backscatter in the ISAC broadcasting communication

system, which comprises a multi-antenna BS with M antenna, k ∈ {1, . . . , K} ≜ K single-

antenna users denoted as Uk, and one IRS with N elements where each element is denoted

as n ∈ {1, . . . , N} ≜ N . In this practical scenario, an IRS is strategically mounted on a

surface, such as a building, offering support for indoor and outdoor applications. In this

scenario, the IRS exhibits two distinct advantages. Firstly, it significantly enhances the

broadcasting communication system by efficiently reflecting and transmitting BS signals

to the users. Secondly, the IRS leverages its unique position to utilize the BS signal and

deliver environmental information by piggybacking its data over it and directing it to users.

This capability allows users to access real-time environmental information and broadcasting

information, enhancing their situational awareness and potentially enabling various location-

based services [163]. Let T and Tb be the periods of the primary (i.e., broadcasting message)

and secondary (i.e., IRS message) signals. In this configuration, the secondary symbol period

is significantly larger than the primary symbol period, denoted as Tb = LT , where L ≫ 1

[163].

Denote hb,t = aM (θ) ∈ CM×1,hb,k ∈ CM×1, G ∈ CN×M and hr,k ∈ CM×1 as the complex

baseband equivalent channels from the BS to the target, BS to the k-th user, BS to IRS

and IRS to the k-th user, respectively. The channels follow the quasi-static fading model,

in which the CSI is invariable during one symbol period of the IRS. In the above, aD(θ) =
[
1, e−jπ∆sin(θ), . . . , e−jπ∆(D−1) sin(θ)

]T
is the array steering vector with dimension D for angle-

of-arrival (AoA)/angle-of-departure (AoD) θ with normalized inter-element distance with

respect to wavelength ∆.

The BS transmits the broadcast downlink and sensing signal for all recipients Uk as x(l) =

wcsc(l) +wsss ∈ CM×1. Denote wj ∈ CM×1, j ∈ {c, s} as a beamforming vector pertinent

to communication and sensing, and their associate symbol as sj(l), where sj(l) ∼ CN (0, 1)

∀l ∈ L, respectively. The IRS adopts binary phase shift-keying (BPSK) to modulate its
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Figure 6.1: System model: IRS-assisted ISAC system.

data over the received BS signal. Thus, the IRS data is c ∈ {1,−1}. Therefore, the received
signal at the k-th user can be expressed as

yk(l) = hH
k wcsc(l) + hH

k wsss(l)
︸ ︷︷ ︸

sensing interference

+zk, (6.1)

where hH
k = hH

b,k+hH
r,kΘGc respectively, Θ = diag(v) where v =

[
ejθ1 , . . . , ejθn , . . . , ejθN

]T
, θn ∈

(0, 2π], is phase shift matrix of IRS. Denote zk ∼ CN (0, σ2
k) as additive white Gaussian noise

(AWGN) at the k-th user. Therefore, the average rate of the received SINR for decoding s

is given by

γk =
|hH

k wc|2
|hH

b,kws|2 + |hH
r,kΘGws|2 + σ2

k

. (6.2)

Therefore, the achievable rate of the k-th user can be expressed as

Rk = Ec [log2(1 + γk)] ,

=
2∑

i=1

1

2
log2

(

1+
|hH

k,iwc|2
|hH

b,kws|2+|hH
r,kΘGws|2 + σ2

k

)

, (6.3)
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where hH
k,1 = hH

b,k+hH
r,kΘG and hH

k,2 = hH
b,k−hH

r,kΘG denotes as hH
k,i when c is {1} and {−1},

respectively. After decoding sc(l), the user performs the SIC to decode the IRS message.

Therefore, the corresponding SINR for decoding the IRS message can be expressed as [163]:

γb,k = L
|hH

r,kΘGwc|2
|hH

b,kws|2 + |hH
r,kΘGws|2 + σ2

k

. (6.4)

Alternatively, the BS utilizes the echo signal received from the target to acquire environ-

mental data. The echo signal received at the BS from the target is consequently represented

as:

yb(l) = hb,th
H
b,tx(l) + zb. (6.5)

Therefore, BS applies filter receive beamforming u ∈ CM×1 for detecting the target. Thus,

the post-processed signal for the target’s sensing information can be given as

uHyb(l) = uHhb,th
H
b,t (wcsc(l) +wsss) + uHzb, (6.6)

As a result, the sensing SNR can be given as

γr =
E
[
|uHHb,t (wcsc +wsss) |2

]

E [|uHσ2
b |2]

,

=
uHHb,t

(
wcw

H
c +wsw

H
s

)
HH

b,tu

uHσ2
b IMu

(6.7)

where Hb,t = hb,th
H
b,t.

6.3 Sum User Rate Maximization Problem

This section formulates the sum user rate maximization problem while providing the min-

imum requirements for target sensing and IRS data decoding. An iterative algorithm is

developed to solve this problem.
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6.3.1 Problem Formulation

Parameters {wc,ws,Θ,u} are jointly designed for maximizing the received sum rate of users,

subject to minimum SINR requirement for IRS data decoding and minimum SNR require-

ment for target sensing. Correspondingly, the joint optimization problem can be expressed

as

(P6) : max
wc,ws,Θ,u

K∑

k=1

Rk (wc,ws,Θ)

s.t. C1 :
L|hH

r,kΘGwc|2
|hH

b,kws|2 + |hH
r,kΘGws|2 + σ2

k

≥ Γc,min,

C2 :
uHHb,t

(
wcw

H
c +wsw

H
s

)
HH

b,tu

uHσ2
b IMu

≥ Γmin,

C3 : ∥wc∥2 + ∥ws∥2 ≤ Pmax,

C4 : θn ∈ (0, 2π], ∀n ∈ N .

Given the problem is non-convex, arising from the entangled optimization variables in the

objective and non-convexity of constraints C1 and C2, a Block Coordinate Descent (BCD)

approach is adopted to tackle this challenge. Specifically, the variables are partitioned into

three distinct blocks: wc,ws, Θ, and u. Each block is then optimized iteratively, with

the remaining variables held constant during each optimization step. This iterative process

allows us to address the nonconvexity effectively, achieving a near-optimal solution.

6.3.2 Receive Beamforming Optimization

For given {wc, ws}, and Θ, the optimization problem over receive beamforming vector at

the BS can be written as a Rayleigh quotient problem [63]

(P6.1) : max
u

uH

A
︷ ︸︸ ︷

Hb,t

(
wcw

H
c +wsw

H
s

)
HH

b,t u

uH σ2
b IM
︸ ︷︷ ︸

B

u
. (6.9)

104



Therefore, the optimal u∗ lies in the eigenvector pertinent to the maximum eigenvalue of the

matrix B−1A.

6.3.3 Transmit Beamforming Optimization

By fixing other variable blocks, the sub-problem for optimizing the transmit beamforming

is given by

(P6.2) : max
wc,ws

K∑

k=1

Rk (wc,ws)

s.t. C1, C2, C3.

(P6.2) remains non-convex due to the quadratic nature of transmitting beamformers. The

SDR method is employed to address this issue. Define Wc = wcw
H
c and Ws = wsw

H
s .

Then, P2 can be rewritten as

(P6.2.1) :max
Wc,Ws

K∑

k=1

2∑

i=1

log2

(

1 +
Tr(Hk,iWc)

Tr(Hb,kWs)+Tr(EWs)+σ2
k

)

s.t. Ċ1 :
LTr(EWc)

Tr(Hb,kWs) + Tr(EWs) + σ2
k

≥ Γc,min,

Ċ2 :
uHHb,t (Ws +Wc)H

H
b,tu

uHσ2
b IMu

≥ Γmin,

Ċ3 : Tr(Ws) + Tr(Wc) ≤ Pmax

Ċ4 : Rank(Ws) = 1, Rank(Wc) = 1,

where Hb,k = hb,kh
H
b,k, and E =

(
hH
r,kΘG

)H (
hH
r,kΘG

)
. Problem (P6.2.1) is still nonconvex

due to the fractional expression of the objective. To tackle this nonconvexity, SCA is utilized

by using the first-order Taylor series approximation near a feasible point w
(x)
s [63]. Therefore,
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Rk ≥
1

2 ln 2



ln

(

1 +
|â(x)k,1|2

b̂
(x)
k

)

−
|â(x)k,1|2

b̂
(x)
k

+
2R
{

(â
(x)
k,1)

H â
(x)
k,1

}

b̂
(x)
k

−
|â(x)k,1|2(|âk,1|2 + b̂k)

b̂
(x)
k (b̂

(x)
k + |â(x)k,1|2)

+ ln

(

1 +
|â(x)k,2|2

b̂
(x)
k

)

−
|â(x)k,2|2

b̂
(x)
k

+
2R
{

(â
(x)
k,2)

H â
(x)
k,2

}

b̂
(x)
k

−
|â(x)k,2|2(|âk,2|2 + b̂k)

b̂
(x)
k (b̂

(x)
k + |â(x)k,2|2)

) ≜ R̃k

(6.13)

(P6.2.1) can be rewritten as follows:

(P6.2.2) : max
Wc,Ws

K∑

k=1

K∑

i=1

log2
(
Tr(Hk,iWc) + Tr((Hb,k +E)Ws) + σ2

k

)
,

− Tr

(

Hk,1(Ws −W
(x)
s )

(Hb,k + E)W
(x)
s + σ2

k

)

s.t. Ċ1, Ċ2, Ċ3, Ċ4.

After relaxing the rank constraint, the problem (P6.2.2) becomes a standard convex problem.

However, its solution gives an upper bound. To tighten the obtained upper bound, the

feasible solution ws in (P6.2.2) is updated iteratively by using convex optimization tools

such as CVX [113] to find a suboptimal solution.

Remark 3. The transmit beamformers obtained in (P6.2.2) result in a rank-one solution.

Thus, w∗
c can be derived by performing eigenvalue decomposition of W∗

c = w∗
cw

H∗
c . However,

since Ws cannot guarantee a rank-one solution, Gaussian randomization is utilized when it

is not rank-one.

Proof. The proof follows similar steps as in the proof of Proposition 1 in Chapter 3. For the

sake of brevity, the proof is emitted here.

6.3.4 IRS reflection coefficient Optimization

The IRS phase shift is optimized while keeping other block variables constant. Therefore,

the optimization problem over the IRS phase shift is
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γb,k ≥ L
v(x)HR̄v(x) +R

{
v(x)(R̄+ R̄H)(v − v(x))

}

b̂k
≜ γ̃b,k (6.14)

Algorithm 7 BCD Algorithm

1: Input: Set the iteration counter x = 0, the convergence tolerance ϵ > 0, initial feasible
solution w

(0)
s ,v(0). Initialize the objective function value F (0) = 0.

2: while F (t+1)−F (t)

F (t+1) ≥ ϵ do

3: Solve (P2.1) and obtain the optimal solution as v(x+1).

4: Solve (P3.2) and obtain the optimal solution as w
(x+1)
j .

5: Solve (6.9) and obtain the optimal solution as u(x+1).
6: Calculate the objective function value F (x+1).
7: Set x← x+ 1;
8: end while
9: Output: Optimal solutions {w∗

j ,v
∗,u∗}.

(P6.3) : max
Θ

K∑

k=1

Rk (Θ)

s.t. C1, C4.

Let us define âk,1 = d̂k +wH
c r

H
k v, âk,2 = d̂k −wH

c r
H
k v, b̂k = Tr(HH

b,kWs) + vHR̂Hv+ σ2,

R̄ = rHk rkWc, where rk = (diag(hr,k)
H)G, d̂k = Tr(Hb,kWc) and R̂ = rHk rkWs.

The sum users rate and IRS SNR can be rewritten as

Rk=
1

2
log2

(

1 +
|âk,1|2
b̂k

)

+
1

2
log2

(

1 +
|âk,2|2
b̂k

)

, ∀k ∈ K, (6.16)

The rate expression (6.16) and C1 are non-convex, rendering (P6.3) intractable. To

overcome this, a viable approach is to apply an approximate transformation that converts

the problem into a convex form. This can be done by utilizing the lower-bound of (6.16) as
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Figure 6.2: Sum user rate vs. maximum BS transmit power and CSI imperfection factor ρ.

(6.13) and lower bound of C1 as (6.14). Therefore, (P3) can be rewritten as

(P6.3.1) : max
v

K∑

k=1

R̃k (v)

s.t. γ̃b,k ≥ Γc,min, ∀k ∈ K,

|v[n]| ≤ 1, ∀n ∈ N .

Now, it can be seen that (P6.3.1) is convex and can be solved using CVX. Nonetheless,

the feasible solution of (P6.3.1) is iteratively updated to enhance the obtained lower bound.

Algorithm 7 outlines all the steps to solve (P6). Overall, the BCD algorithm converges given

a non-increasing objective [63] to a sub-optimal solution of (P6), albeit without guaranteeing

global or local optimality. Our approach only provides a sub-optimal solution. Moreover,

the proposed algorithm has a complexity of O(IO((M2 + M)II + 2M3)), where IO and II

represent the number of iterations required for the outer BCD algorithm and the interior-

point algorithm to converge, respectively.
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6.4 Numerical Results

Simulation results are presented to assess the effectiveness of our proposed schemes. The

setup consists of the following: the BS is positioned at the origin (0, 0), the IRS is located

at (100, 0), users are distributed in a circle centered at the origin of the IRS with a radius

of 5, and the target is situated at −40 angle from the BS. Unless specified otherwise, the

simulation parameters are as follows: K = 4, M = 10, N = 100, κ = 3dB, σ2 = −80dBm,

L = 50, Γc,min = Γmin = 10 dB, and the pathloss model is defined as PL = 10−3( d
d0
)ν , where

d0 = 1m, d denotes the distance between terminals in meters, and ν represents the pathloss

exponent, which is set to 3.5, 2.8, 2, and 3, for BS-user, IRS-user, BS-IRS, and BS-target

links, respectively [161,163]. The small-scale fading of the link related to BS to IRS and IRS

to the k-th user is modeled as Rician fading given as X =
√

κ
κ+1

XLoS +
√

1
κ+1

XNLoS, where

X ∈ {G,hr,k}. Subscripts LoS, NLoS, and κ denote the line-of-sight (LoS) component,

non-LoS component, and Rician factor, respectively. The NLoS component is modeled as

the Rayleigh fading, where the element satisfies CN (0, 1), and GLoS = aN(θAoA)aM(θAoD)
H ,

hrk,LoS = aN(θAoD). We assume a LoS channel between the BS and target to enhance

accuracy and reliability, as required in applications like traffic management. This assumption

is valid in urban environments with elevated BS placement and short-range scenarios, where

the direct path dominates.

To validate our design, four baseline scenarios are tested. Baseline 1 includes a commu-

nication signal only without a dedicated sensing signal. Thus, the sensing is also performed

with the same communication signal. Baseline 2 does not optimize the IRS but utilizes

random phase shifts. Baseline 3 indicates a case where the IRS panel is replaced with a

backscatter device with a single antenna. Baseline 4 does not include an IRS; thus, the IRS

does not improve the downlink. Consequently, no messages are transmitted from the IRS to

the receivers.

Figure 6.2 shows the sum of user rates as a function of the maximum BS transmit power

(bottom x-axis) and the CSI imperfection factor, ρ (top x-axis), due to imperfect channel

estimation (CE). Let ĥ be the estimate of the true channel h. Generally, ĥ = h+ n, where

n is a noise vector following CN (0, σ2
nI), and σ2

n = ρ∥h∥2 [63], with ρ being the ratio of
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Figure 6.3: Sum user rate vs. number of BS antenna.

noise power to channel gain. For sum rate versus Pmax, the proposed scheme outperforms

Baselines 2-4, showing 53%, 120%, and 138% gains over Baseline 2, Baseline 3, and Baseline

4, respectively. This highlights the significant impact of the IRS and its phase optimization on

communications. Baseline 3 slightly outperforms Baseline 4 due to the additional multipath

provided by a single reflector in Baseline 3. However, Baseline 1 has a slightly higher sum

rate due to the removal of the dedicated sensing signal, which reduces sensing interference

in communications. This results in the proposed scheme having a 2% performance loss

compared to Baseline 1. As the CE error ρ increases, rates decrease. Specifically, when

perfect CSI is unavailable (ρ = 1), we see losses of 26% in the proposed scheme and 28%,

19%, 11%, and 10% in Baselines 1-4, respectively.

Fig. 6.3 illustrates the sum user rate versus the number of BS transmit antennas, in which

a higher number correlates with an improved sum user rate. This trend is consistent in Fig.

6.2 as well. Specifically, Baseline 1 exhibits slightly better performance, e.g., 4% gain than

the proposed scheme. This is because Baseline 1 does not have a dedicated sensing signal,

which otherwise causes interference on the users. However, the proposed scheme outperforms

Baselines 2, 3, and 4 by approximately 45%, 103% and 107%, respectively. This underscores

the significance of optimized IRS phase shift design and the presence of IRS.
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Figure 6.4: Beamgain vs. angles: The red circle marks the target angle, the blue circles represent
the angles of the users, and the green circle denotes the angle of the IRS, which is set at zero
degrees.

Fig. 6.4 illustrates the beam pattern gain. It demonstrates the alignment of beams

toward users and the target. In both the proposed scheme and Baseline 1, the highest beam

gain is directed towards the IRS due to the increased pathloss exponent experienced by the

direct link. However, in the proposed scheme, the beam gain towards the target surpasses

that of Baseline 1, attributed to the dedicated sensing beamformer employed. Conversely,

in Baseline 4, the absence of the IRS redirects the majority of beam focus toward users,

contrary to the other two schemes.

6.5 Conclusion

This study explores using IRS-empowered BackComm and ISAC. The BS transmit signal

is engineered to serve both SR and sensing functions, with the latter augmented by IRS.

In addition, IRS can modulate and backscatter data towards the downlink system. The

analysis focuses on the sum user rate while ensuring QoS for sensing and IRS data decoding,

considering BS transmitting and receiving beamforming and IRS phase-shifts. As this opti-

mization problem is non-convex, the BCD algorithm is developed, utilizing SDR techniques
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for transmit beamformer optimization. A lower bound is derived for designing IRS phase

shifts, and a closed-form solution is provided for the receiving beamformer. The results

demonstrate a significant improvement, exceeding 50% over other baseline approaches.
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Chapter 7

Conclusion of Completed Works and

Future Work

Completed works are reviewed, and conclusions are drawn. Extensions of the thesis research

are outlined.

7.1 Conclusion of Completed Works

The completed research has resulted in three published papers (see Preface) [100,153]. Chap-

ter 3 addressed challenges for Monostatic BackComm networks. The proposed MIMO reader

provided a pivotal solution to avoid signal collisions among tags in multi-tag scenarios by

employing spatial domain multiple access. Operating in a FD manner, the MIMO reader re-

quired effective control over RSI, validated through software-based optimization constraints.

Energy constraints for batteryless tags were also integrated, ensuring robust sum rates while

meeting network requirements.

Chapter 4, focusing on spectrum-sharing within BackComm, explored the use of IRS

for BackComm, leveraging downlink NOMA signals. This work contributed by enabling

IRS-enabled backscatter to modulate data over environmental sources and act as a relay

for the primary network’s messages. Power splitting at the source facilitated the transmis-

sion of distinct, frequency-separated signals to manage signal interference between networks,

effectively mitigating interference from secondary systems on primary networks.
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Chapter 5 investigated a cooperative spectrum-sharing SR system. This chapter centered

on an uplink SR system where each BD is assigned to a time slot to perform two transmis-

sion phases. In the first phase (SR phase) of each time slot, scheduled BD utilized signals

from UE to transmit its data by piggybacking and scattering to a BS. In the subsequent

phase, the BD remained silent. At the same time, the UE collaborated to transmit BD’s

data by decoding and integrating it into its message, with different power levels allocated for

each stream. Performance assessments focused on the sum throughput maximization prob-

lem. Sum throughput optimization highlighted enhanced BD throughput in the cooperative

system compared to non-cooperative schemes.

Chapter 6 explored integrating IRS-backscattering within the SR communication and

sensing network. Specifically, the BS has two primary functions: broadcasting information

to downlink users and detecting targets in the uplink. Meanwhile, the IRS in this model

can enhance the downlink communication link and convey supplementary data to users by

modulating its data over the downlink signal. This proposed system model is advantageous

in sensor-rich environments for data exchange. The performance analysis maximizes the

sum user rate while ensuring QoS for target and IRS data decoding. Results highlight the

superior performance of this design in serving both sensing and communication systems.

7.2 Future Research Directions

This section discusses diverse possibilities for expanding upon the thesis research and ex-

ploring avenues for further investigation and development.

7.2.1 FD-MIMO Monostatic BackComm with Suppressing RSI

Some potential avenues for future research on the FD-MIMO Monostatic BackComm with

the suppression of RSI as discussed in Chapter 3 include:

• The suggested multiple access approach in this chapter relies on SDMA, where multiple

antennas at the reader distinguish signals from various tags spatially. However, a

constraint of SDMA is that the number of antennas at the receiver must exceed the
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number of tags, posing a challenge for deploying such a system in dense IoT networks.

Therefore, setting up NOMA as a multiple-access system is a viable extension of this

chapter. Simultaneous reflections at the tags are permitted by NOMA transmission

without any restriction on several tags. Tags can either reflect with a different codebook

denoting code-domain-NOMA or backscatter with a different reflection power denoting

power-domain-NOMA, which allows the reader to decipher each tag’s signal.

• Another viable extension is to expand this system to multi-MIMO Monostatic Back-

Comm pairs. This would be a practical system model as, in practice, there might be

more than one reader-tag pair. In a manufacturing factory, for instance, the simulta-

neous operation of two or more handheld readers is feasible for tracking and reading

sensor data. Consequently, a new problem formulation should account for managing

interference between each reader-tag pair.

• Although linear EH models are often assumed when integrating various energy harvest-

ing techniques, nonlinear models more accurately represent actual EH circuits. While

linear models provide useful insights, they may oversimplify the complexities of real-

world systems. Therefore, exploring nonlinear EH is crucial for capturing the intricacies

of real energy harvesting systems, leading to a more comprehensive understanding of

the associated challenges and opportunities.

7.2.2 IRS-Enabled Backscattering in a Downlink Non-Orthogonal

Multiple Access System

Some potential avenues for future research on the IRS-backscattering in the NOMA system

as discussed in Chapter 4, include:

• While investigating a two-user downlink NOMA scenario is practical, there is significant

value in expanding this study to include scenarios with multiple NOMA users, involving

more than just two users. Extending the scope of the study to encompass a greater

number of users reflects real-world scenarios more accurately. However, handling the

increased complexity associated with successive interference cancellation in scenarios

115



with multiple users poses a challenge. To address this challenge, employing a clustering

algorithm becomes a worthwhile approach. By utilizing a clustering algorithm, such as

K-means, Hierarchical Clustering, or other suitable methods, users can be organized

into manageable groups of two NOMA users each.

• An intriguing avenue for research involves substituting IRS with STAR-IRS to enable

backscatter. The STAR-IRS element splits the incident signal into two components:

one is directed to the opposite side, referred to as the transmission space, and the

other is reflected into the same space as the incident signal, denoted as the reflection

space [164]. This characteristic allows STAR-IRS to offer complete coverage of the

entire space. Consequently, replacing IRS with STAR-IRS facilitates relaying primary

information to downlink NOMA users. Simultaneously, STAR-IRS can modulate its

data and reflect it to the reader in the reflection space.

• While the IRS primarily functions by passively reflecting incident signals, it is essential

to acknowledge the non-negligible power consumption associated with its operation,

as highlighted in previous studies [165, 166]. The power consumption of the IRS is

inherently tied to the quantity of reflective elements it incorporates. In the pursuit of

addressing this energy-related concern, an intriguing extension to this research involves

exploring the integration of a self-sustainable IRS powered by wireless power transfer.

By incorporating wireless power transfer technology, the proposed extension aims to

offset or compensate for the power consumption of the IRS while pursuing other system

requirements. This addition not only contributes to the energy efficiency of the IRS

but also introduces a dimension of sustainability.

7.2.3 Symbiotic Backscatter Networks Through Cooperative Com-

munication

Some potential avenues for future research from Chapter 5 include:

• Chapter 5 research can be extended to uplink and downlink scenarios. In the downlink,

the BS transmits its signal to the UE, while a BD leverages this signal to convey its
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own data. The UE, after decoding both the BS’s and BD’s data, can integrate BD’s

data into its own transmission stream. This combined stream can then be assigned

to different power levels and transmitted back to the BS in the uplink. Another ex-

tension is to examine the power requirements of the BD, particularly by exploring EH

techniques.

• To further optimize the system’s performance, integrating a massive MIMO BS holds

considerable promise for several reasons. The spatial focusing capabilities inherent

in massive MIMO facilitate more efficient signal delivery and reception to and from

devices. This enhances overall coverage and mitigates dead zones [167]. Exploiting

spatial diversity, massive MIMO effectively addresses fading effects induced by signal

reflections and multipath propagation, leading to heightened signal reliability. Incor-

porating a massive MIMO BS introduces a new dimension to the system, impacting

the analysis and the resolution of the sum throughput maximization problem. The

unique capabilities of massive MIMO necessitate reevaluating the strategies discussed

in Chapter 5.

7.2.4 IRS Empowered Backscatter in broadcasting ISAC system

Some potential avenues for future research on the IRS Empowered Backscatter in broadcast-

ing ISAC as discussed in Chapter 6 include:

• The system model in this chapter is based on a single target. However, this work can

be extended to multiple target detection in the uplink, which is particularly useful for

scenarios like asset tracking or logistics. Additionally, the scenario can be generalized

to include both uplink and downlink transmission. In the downlink, the BS transmits

a communication signal to the user, and the IRS can also modulate its data onto it.

In the uplink, the BS receives signals from users and the target echo. In this case,

the design of the receive beamformer at the BS should also account for inter-user and

target interference.

• In this chapter, the IRS backscatters its data and relays primary system information.

It is assumed that there is no direct link between the IRS and the target, enhancing the
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sensing link between the BS and the target. To further improve the sensory network,

this work could focus on a scenario where the phase shift design at the IRS also

considers enhancing the link toward the target. Another compelling scenario would

involve using a separate IRS to support the sensing network.
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