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Abstract

We review some of the basic properties of the nematic liquid crystals and re-derive
the findamental quantities zecessary for the development of a macroscopic continuum
theory. Tlsing this macroscopic theory as a basis, we carry out two scparate investi-
yations into the primary transitions of a nematic liquid crystal thin film subjected to
an a.c. electrie field. We first attempt to establish theoretically the crivical behavior
of the normal rolls observed slightly above the threshold voltage. A phenomenolog-
ical free energy description is nsed and a set of bifurcation diagrams is constructed
to illustrate the critical behavior. In our second investigation, we use the method of
mmnlti-scale analysis to illustrate the formation of oblique rolls at low frequencies when
the director field is given only one rotational degree of freedom. The transformation
from the normal to the oblique 10lls is shown through the minimization of the neutral
surface, thereby establishing the presence of a triple point. We furthermore examine
the impact of the use of a restrictive director field on the small scale dynamics by

deriving an amplitude equation.
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Chapter 1

Introduction to Liquid Crystals

It was first discovered and reported by an Austrian botanist named Friedrich Reinitzer
that cholesterol and its derivatives possess two melting points [1]. The substance at
one temperature Ty turns into a cloudy liquid, then at a higher temperature T5 it
transforms into a clear liquid. It has the most unusual properties at temperatures
intermediate between Ty and T5. It has the ability to scatter light in a way similar
to solid; nevertheless, just as any liquid, it can be easily deformed and takes the
shape of the container that contains it. The molecular structures of cholesterol and
its derivatives were not known at the time; scientists were therefore unable to relate
their peculiar properties to the fundamental interactions between molecules. But one
thing was very certain. An unusual state of matter exists between these two melting
temperatures, If a substance first melts at 77, then what is melting at 75?7 Could
that be a new form of matter other than solid and liquid? These questions were one
of the biggest mysterics in the scientific community at that time. This new form of
matter was first referred to as the soft crystal, then the floating crystal. The name
“liquid crystal” eventually came about and still remains in use today.

Of course, we now know that substances exhibiting liquid crystal phases share
common molecular properties. They can be fourd in biological systems, or can be

manufactured through chemical processes and synthesized in the laboratory. The
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evolution from a pursnit of fundamental understanding of a basic form of matter into
everyday applications is truly fascinating. In the last twenty years, liquid crystals have
rapidly found their way into the information display industry. Liquid crystal displays
(LCD’s) have become the most dominant type of passive display devices available
and can be found in use at every corner of our socicty. They are commonly used in

digital watches, laptop computers, pocket televisions and other portable equipment.

1.1 Mesophases

We often distinguish the liquid from the solid phase by their densities and specific
licats, but we can also characterize the individual phases in terms of the degree of
orderliness. In the low temperature phase (the solid phase), the intermolecular forces
are so strong that they overcome the molecules’ thermal vibrations and restrictively
confine the molecules to specific positions. The molecules are arranged in such a way
that they form a regular repeating (lattice) pattern. This ordering is referred to as
the positional order. In addition, there is also orientational order in solid. That is,
all molecules in a solid are orientated in the same direction. There is a constant
battle between the intermolecular forces and the thermal vibrations. The net result
determines the amount of order a phase can possess. When the temperature becomes
sufficiently high, the thermal excitation is eventually large enough to outweigh the
intermolecular forces that hold the molecules rigidly in place. Thus, melting takes
place. It becomes energetically more favorable for the molecules not to be confined
to these specific positions but to wander frecly throughout the volume. The mean
intermolecular distance is therefore relatively greater than that of the solid phase.
Most substances behave this way; they lose both the positional and the orientational
orders all at once and transform spontancously to isotropic liquids at the transition
temperature. But there are some materials which go through an intermediate phase

called mesophase before they transform to isotropic liquids. In principle, this can
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be accomplished in two ways, depending on the sequence of which the orders are
Jost. If the orientationa! order is lost first but the positional order is retained, then
this mesophase is called “plastic crystal.” It maintains the lattice structure, but
the molecules are randomly orientated. Alternatively, if the positional order is lost
first but the orientational order is retained, the resultant mesophase is named “liquid
crystal” A liguid crystal does not have a rigid lattice structure; its molccules can
move abont freely but they tend to orient in the same direction.

Ordinary substances, water for example, transform directly from solid to liquid as
temperature rises. As is well known, this is a first order transition and is character-
ized by sudden changes in both density and specific heat. But for those substances
whose molecules have elongated shapes with rigid centers and soft ends, there ex-
ists a mesophase between the solid and the liquid phases, namely, the liquid crystal
phase. For instance, cholesteryl myristate, a substance which can be found in our
coll membrances and has the molecular properties described above, possesses a lig-
nid erystal phase between 71°C and 85°C. As we have just mentioned, this phase
of matter possesses partial properties from both the solid and the liquid phases. It
retains some of the orientationai order from the solid phase while, like liquid, it loses
most of its positional order. On one hand, the lack of positional ordering allows the
molecules to move about freely. The positional order, however, is not entirely lost;
some liquid crystals do possess a small amount of positional order. The amount of
positional order left in this mesophase gives rise to different kinds of liquid crystal
phases. We shall explore these possibilities in the subsequent paragraphs. On the
other hand, because of the presence of orientational order, it has the most unusual
optical properties which are what most of our liquid crystal applications are based
upon. These “finger-like” molecules tend to align themselves along the same direc-
tion. This preferred direction is represented by a vector field called the director. Note
that the director can take either the “up” or the “down” direction. Mostly due to

thermal fluctuations, the alignment of these molecules is not perfect. If we denote
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the angle that the long molecular axis makes with the director by 8, there is a certain
amount of spreading in the value of 8, depending on how much orientational order is
present in the liquid crystal phase. To measure the orientational order, we average
0 over the molecules in the sample. The average value 8 is zero if there is a perfect
alignment or 100% orientational order, but increases as this order becomes weaker
and weaker. The orientational order in fact disappears at 6 = 57°.

The parameter § serves an additional purpose. For those liquid crystal phases
which have no positional order at all, the value of f# indicates how far the lignid
crystal is away from transforming to isotropic liquid. Since the spreading in the valne
of 0 is subjected to thermal fluctuations, it’s average f is a function of temperature.
This implics that the transition of liquid crystal to isotropic liquid takes place at
the temperature T, such that 6(T.) = 57°. In order words, # serves as an order
parameter as in Landau’s theory of phase transition, except that it varies from 0° to
572 instead of from 1 to 0 as the system transforms from a symmetrical phase to a
lcss symmetrical one. To make it a convenient measure of the order or the symmetry

of the liquid crystal phase, it has been found that the quantity
1
5(3(:0529—1) (1.1)

should be average over the molecules in the sample instead [2]. We shall denote it’s
average value by p. As a result, perfect orientational order corresponds to cos =1
and therefore p = 1. In the liquid phase, there is no orientational order. The molecules
are equally likely to lie in any given direction. The average value of cos? 8 in this case
is 1/3 and hence p = 0.

The above procedures work well in determining the orientational order present in
a liquid crystal phase only if the director is fixed in space. A liquid crystal whose
dircctor is constant in space i named nematic liquid crystal. There are, however,
liquid crystals whose directors rotate helically in space. Such liquid crystals are
called chiral nematic liquid crystals. The above averaging process cannot he used in

measuring the orientational order in this type of liquid crystals. Since the director
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itself varies in space, not only does the order parameter change with temperature
but it must also change in space. Therefore, averaging expression (1.1) over all
molecules in the sample does not yield any physically meaningful measurement on
the orientational order. However, if we define a spatial point 7 as a macroscopically
small but microscopically big region of space centered at 7 and we average (1.1) vver

all molecules within this region, the result

- 3cos?f —1
o7 7) = (220, (12)

where the subscript 7 on the right indicates that the average is local, is an accurate
representation of the orientational order within the sample. Now, the order parame-
ter p(7, T) varies both with temperature and in space. The above method is actually
very similar to how we define the magnetization M(7) of a magnetic material. Mag-
netization M(7), by definition, is obtained by dividing the vector sum of the magnetic
moments over all atoms in a small region of space centered at 7 by its own volume.
Whether we are concerned with the order parameter in a chiral nematic liquid crystal
or the magnetization in a ferromagnet, we take this volume of space to be sufficiently
big so that it contains a statistically large number of molecules (or atoms).

We have mentioned previously that some liquid crystals do retain a small amount
of positional order. Molecules in these liquid crystal phases arrange themselves in
layers. They spend most of their time in the layers and very little time in between
the layers. These liquid crystals are called smectic liquid crystals. There may or may
not be any positional order within each layer. If there is no positional order within
the layers at all, the molecules are free to move about in the layers or migrate from
laver to layer. Because of the presence of orientational order, the molecules in each
laver tend to align themselves along the director. The liquid crystal is called smectic
A if the director is constant in space and is perpendicular to the planes. It is called
smectic C if the spatially constant director makes an angle other than 90° with the
planes. Positional order can cxist within the layers. In this case, the molecules tend

to arrange themselves to appear at specific locations in the layer and form various
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regular two-dimensional lattice patterns. If the director is perpendicular to the planes
and the molecules appear in a hexagonal lattice pattern within cach layer, the liquid
erystal is called smectic B. It is named smectic E if the director is perpeadicular to
the planes but the molecules are organized in a rectangular lattice pattern in cach
plane.

What we have presented here is only a partial list of all the liquid crystals dis-
covered so far and those that we have included are of the most fundamental types.
Combining the properties of two of the above liquid erystals results in a new species.
For example, chiral smectic liquid crystals can be derived from the chiral nematic
and the smectic types. Molecules in these liquid crystais are arranged in layers, but
the director rotates helically in space. In this thesis, we concern ourselves exclusively
with the nematic liquid crystals. Through subsequent chapters, we explore the stan-
dard theories widely used to describe the nematic states at or out of equilibrium and
focus on perhaps one of the most fascinating aspects of nematic lignid crystals -

clectrohydrodynamic instabilities.



Chapter 2

Introduction to Nematodynamics

Instabilities in nematic liquid crystals have attracted considerable interest in recent
years [3, 4, 5, 6], mainly due to these systems’ intrinsically large aspect ratios which
make them ideal for the studying of pattern formation. It has been found that a thin
(compared to the lateral dimensions) layer of nematic liquid crystal confined between
two parallel plates can be excited either thermally (7, 8, 9, 10, 11, 12] or electrically [13,
14, 15, 16, 17] to produce a series of convective patterns. Most of what we know about
these various patterns and the sequence of transformation is rather experimental
[13, 14, 15, 16, 17, 18, 19]; theoretical treatments of these pattern formations have
grown relatively slowly, largely due to the complexity of the underlying equations
of motion and the inherent nonlinearities. Thus far, theoretical investigations have
heen limited to the low lying transition line: formation of normal rolls (straight
convective rolls) and that of oblique rolls (zigzag rolls) from the rest state have been
studied most extensively [3, 4, 5, 6. Because the transition appears to be continuous,
the convective state can be taken as a perturbation to the rest-state near criticality;ﬂ
therefore, the equations of motion can be linearized immediately, eliminating the need
to deal with nonlinear couplings. The first theoretical investigation of the rest-state
to normal-roll transition was initiated by Helfrich [3] and, today, the instability bears

his name. His investigation concerned the formation of normal rolls from the rest
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state in a nematic thin film placed in a uniform d.c. electric field and the question
was essentially simplified to a one-dimensional problem. Dubois-Violette et al. [4]
later expanded the calenlation to the a.c. regime; Penz and Ford [5] extended it to
a two-dimensional geometry. Recently, Bodenschatz et al. [6] took one step further,
extending the calculation to a three-dimensional geometry and using it to describe
the rest-state to oblique-roll transition at a frequency sliglitly below the triple point.
Although these linear theories produce results which agree with the experimental
obscrvations very well at the transition points, they lack the ability to predict how
patterns evolve. In this thesis, we address the issuc of pattern evolution by examining
the first transition from the rest state with a weakly nonlinear technique. We will
carry out two theoretical investigations. The first one concerns the evolution of the
stationary pattern beyond the transition threshold, while the second deals with small
scale variations near the onset. But before we get to the heart of the matter, some
preliminaries are useful. In this chapter, we introduce such important quantities as
the deformation free energy, the diclectric free energy, the molecular field and the
viscous stress tensor, because of the vital role they play in the development of the
continuum theory. We then look at a possible explanation for the rest state going
unstable and present the fundamental equation governing nematic liguid crystals. Let

us now begin with a quick overview of the deformation energy.

2.1 Franck’s Deformation Energy

In an ordinary crystal, stress causes atoms to become displaced; one part of the
crystal could be displaced differently from the others. Deformation, in this case, is
manifested by spatial variations in the displacement field. Nematic liquid crystals
are systems of elongated molecules. In a suitable temperature range, these systems
cxhibit an unusual phase (the nematic phase) intermediate between the solid and the

liquid phase. In this new phase, the molecules do not possess positional order, so
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nematic liguid crystals can flow like fluids; however, the molecules maintain their ori-
entational order, so these liquid crystals can demonstrate unusual optical properties.
Since the molecules do not have a fixed center of mass, external stresses do not affect
the way the centers of mass are distributed. Their alignment, however, is extremely
sensitive to external stresses [20]; therefore, deformation in this case is characterized
Ly the spatial variations in a vector field 7 called the director. The magnitude of
the director is unity; its direction represents the locally preferred orientation of the
moleenlar alignment in the same sense that 17 represents the local magnetization
of a magnetic material. In addition, the variations of 7 are assumed small on the
moleenlar scale. Sinee the nematic state 7 and —@ correspond to the same physical
state, the deformation energy Fy must be even wiih respect to 7. Furthermore, the
nndistorted state of a nematic liquid crystal corresponds to a uniform molecular alig-
ment; therefore, Fy must be invariant under the transformation £ — —z, y — —y
and z — —z. Using these symmetry arguments and neglecting the surface contri-
butions, one can demonstrate that Fy is a linear combination of three indepenclent
terms, namely,

]. = = —
F= 5A:”(v i) 4 %kgg[’fl‘-' (V x )] + %k:;s[ﬁ x (V x @)]? (2.1)

This free energy is commonly referred to as the Frank deformation energy and the
constants kyj, kog and k33 the Frank elastic constants [21]. It is not difficult to see
that, in general, the Frank elastic constants are non-zero and non-equivalent. This
generality poses a great challenge to purely analytical approaches. In a few cases,
the analyses can be considerably simplified by assuming these constants to be of the
same value,

Each of the three independent terms in (2.1) corresponds to an elementary de-
formation in the nematic Jiquid crystals. These deformations are splay, twist and
bend and are demonstrated in Fig. 2.1. They can be obtained by various surface
arrangements. The first term on the right of (2.1) can be identified with the splay

deformation since the presence of splay causes the director field to diverge. In the case
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Figure 2.1: Three types of clementary deformation found in liquid crystals.

of the bend or the twist deformation, the director field is also rotational and therefore
the vorticity & = V x ii is non-zero. If twist is present alor.., then the vorticity is
orthogonal to the dircctor field; the amount of twist is reflected by the cross product
of the director and the vorticity. On the other hand, if bend is present alone, then the
vorticity is parallel to the director; the amount of bend is characterized by the scalar
product of the director and the vorticity. The second and the third terms in (2.1)
correspond to the twist and the bend deformations, respectively. For this reason, the
constants kyq, kop and ka3 (on the order of 107'2N for a typical nematic liquid crystal)

are also referred to as the splay, the twist aud the bend elastic constants, respectively.

2.2 Effects of External Fields

Besides the boundary (wall) effect, alignment and deformation in nematic liquid crys-
tals can be also induced by exteruai electric and magnetic fields. Since the dielectric
tensor is anisotropic, application of an clectric field to a nematic liquid crystal induces
a polarization along the long axis of the molecules. Typical nematic liquid crystal

molecules are diamagnetic. For the nematic liquid crystal MBBA and PAA com-
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monly used in experiments, their molecules have two aromatic rings which prefer to
have the magnetic field in the plane of the rings. Depending on the magnetic and the
clectrie anisotropies, these molecules can be made to align parallel or orthogonal to
the ficlds. Therefore, in the presence of fields, not only is the director coupled to the
intermolecular forces, it is also coupled to the external fields. It is the competition be-
tween these two kinds of couplings that determines the equilibrium state of the liquid
crystal. The internal coupling is well characterized by the Frank deformation energy
introduced in the last section. Similarly, the couplings with the external electric and
magnetic fields are described by two additional free energies. It is our intention in
this section to explore the explicit forms of these electromagnetic contributions. We
shall now proceed to derive the electric and the magnetic free energies separately.

a) We first examine the magnetic contribution to the total free energy. We wish to
derive an expression for the amount of work done on a magnetic sample placed tightly
in a solenoid when the magnetic field is increased by an infinitesimal amount. The
magnetization of the sample is assumed to bz parallel to the external field. If the
solenoid consists of N loops of wire and is connected to a battery, then, at any time,

the applied (V) and the induced (£) v:ltages are related to the current (i) by
V+E€=iR (2.2)

where R is the resistance of the solenoid. To increase the magnetic field by an
infinitesimal amount, the battery must do work against the back emf. Using the

above expression, this amount of work can be written as
dW =V dq = ~&idt + i*Rdt. (2.3)

Quite clearly, the second term on the extreme right represents the irreversible chmic
loss while the first term is the amount of work responsible for raising the field and
magnetizing the magnetic sample. The first term is what we are interested in. If

we make use of Faraday’s law of induction and the well known expression for the
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magnetic induction H generated inside the solenoid, we can separate the first term

on the extreme right of (2.3) into two parts in MIKSA or SI units as

2
—l—vH(IB =d (Eg—-) + vHdA (2.4)

Ho

wiicre v is the volume of the sample and A is the magnetization. The first term on the
right can be immediately identified with the energy required to establish the magnetic
ficld. Then, the second term can be thought of as the amount of work required to
magnetize the sample. Hence, the infinitesimal work done on the sample per unit
volume is given by HdM. For a liquid crystal, regardless whether the molecules tend
to align parallel or orthogonal to the ficld, this magnetic work increases the degree of
alignment of the molecules and thereby lowers the free energy by the same amount
i.e. reduces the maximum available encrgy for work at a later time. Consequently,

the magnetic contribution to the change in the total free energy density is
dfM = —HdM. (25)

This infinitesimal change in the magnetic free energy density can be appropriately
applied to isotropic materials in which case the magnetization is along the direction of
the external ficld. In a more general case, particularly for anisotropic materials, when
the magnetization does not coincide with the external field, the above equation must
be replaced by dfy = —H - dM or dfyy = —H;dM; where summation over repeated
indices is implied. This expression can be further written in terms of the director

ficld 77 and the magnetic intensity H if we make use of the magnetic susceptibility
Xij = X16ij + Dxnn; (2.6)

for a liquid crystal. Since nematic liquid crystals are anisotropic, their macroscopic
response functions such as the magnetic susceptibility are 3 x 3 matrices. If the
director is taken to be the principal axis, then x can be written as a diagonal matrix
xt 0 0
xX=10 x. 0 (2.7)
0 0 x
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where xj and x are the magnetic susceptibilities measured along and orthogonal to
the nematic axis respectively. After applying two consecutive rotations to the above
expression, for a general director 7, the magnetic susceptibility takes on the form as
shown in Eqn. (2.6). Since x is a symmetric tensor, the infinitesimal change in the

magnetic free energy density can also be written as

= —x. H dH -~ Ax(7- B)# - dH). (2.8)

Finally, the magnetic contril,ution to the total free energy density is obtained by

integrating the above expression. This gives

H  Ax,. =
fu = -2 - 2@ A (2.9)

The first term on the right is independent of the director field and is a constant for a
given H. This term simply shifts the energy scale, so it can be discarded without loss
of generality. The second term on the right however describes the coupling between
the director and the magnetic field. If the magnetic anisotropy Ay is positive, then
the alignment with the magnetic field is energetically favorable. On the other hand,
if the magnetic anisotropy is negative, then alignments orthogonal to the magnetic
ficld are perferred.

1) We now turn our attention to the electric contribution to the total free energy
density.  We shall derive the electric free encrgy density in a way similar to that
presented above. The magnitude of this encrgy must be equal to the amount of work
required to polarize a dielectric material as an electric field is established in it. To
calenlate this amount of work, we consider a parallel-plate capacitor filled with a
diclectric. The distance between the two plates is I. The capacitor has a capacitance
C and is connected to an electrical power source. Similar to the magnetic case, we
assunie the polarization is parallel to the applied electric field. Having outlined the

setup, we can immediately write down the infinitesimal work done d that is required
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to move an infinitesimal amount of charge dq from the negative plate to the positive

once:

d\WV =Vdq = CIPEIE (2.10)

where the relations ¢ = CV and E = V/I have been used in writing the above
cquation. For a parallel-plate capacitor filled with a diclectric, the capacitance is
given in gaussian units by C = ¢A/(4nl) where € is the relative diclectric constant
and A is the arca of the parallel plates. Substituting this expression into equation
(2.10), we can write the infinitesimal work done per unit volume in MKSA (SI) units
as

2
DdE = (6,E + P)IE = €,d (%—) + PdE (2.11)

where P is the polarization. Of course, this amount of work is not only used to polarize
the diclectric but is also used to establish the field. So it is not at all surprising that
the first term on the right of (2.11) can be identified with the energy density of
the ficld in free space; whereas, the second term reflects the amount of work that
goces in to polarize the dielectric. Since, for nematic liquid crystals, an increment of
the clectric field induces further alignment of the molecules and thereby raises the
polarization, the maximum available encrgy for doing work is reduced by the same
amount that the power source puts in to produce the polarization. In other words,
the infinitesimal change in the clectric free energy density is given by dfp = —PdE.
In the general case where the orientation of the polarization deviates from that of the

applied electric ficld, the equation is written as
dfp = =P - dE = —PdE;. (2.12)

We can proceed to express this infinitesimal change in the electric free energy density
in terms of the director and the electric ficld by using the explicit form of the dielectric

tensor

€ij = E_Lé,']‘ + AETI,,"I?,J' (213)
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for a liquid crystal. Thus, we write (2.12) further as

dfy, = —xjE;dE;
1
= — (e — 8 EdE:
= —Lie, ~1)B . dB - 2507 By - dE) (2.14)
T T4nt ' 4r ’

where x* is the electric susceptibility tensor. Upon integration, we see that the electric

contribution to the total free energy density is given in MKSA units by
fe= —(-221-123’2 - %5-(77- E)?. (2.15)

Similar to the magnetic free energy, the first term on the right in the above expression
is independent of the director field and is also a constant at constant E. Without loss
of generality, we simply disregard this term. The second term, on the other hand,
characterizes the coupling between the director and the electric field. This term favors
the molecular alighment parallel to the applied field if the dielectric anisotropy Ac is

positive; otherwise, alignments orthogonal to the external field are more favorable.

2.3 Molecular Field

On a very superficial level, liquid crystals respond to external stresses and stimuli
in very much the same way ferromagnets respond to an external magnetic field. For
example, for a liquid crystal with positive magnetic anisotropy, the molecules are made
to conform with the applied magnetic ficld just as the magnetic spins in a ferromagnet
arc. Although these phenomena occur on different scales, this correspondence gives
ns certain advantages. As in the Weiss molecular-field approximation in the theory of
ferromagnetism, instead of considering explicitly the interaction between each atomic
pair, cach atom is coupled to an internal field due io its surrounding neighbors in
addition to the coupling with the external magnetic field. Analogously, in liquid

ervstals, we can avoid dealing with individual molecules by adopting a continuous
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model and representing the internal forces by a continuous mean field. Then, the
equilibrium configuration of the system is determined by the competition between this
internal field and the external ones (such as electric and/or magnetic fields). Such a
mean field approximation will continue to hold, so long as the physical phenomena of
interest take place on a scale much greater than the inter-molecular distance. Below,
we shall demonstrate how this internal field can be derived. The following derivation
is in parallel with that presented by de Gennes [20].

In the absence of external fields, the bulk free energy of a nematic liquid erystal

is given by the following functional:
Flna, 0ang] = / fad*r (2.16)

where f; is the Frank deformation energy density. The state of equilibrium then cor-
responds to the global minimum in the total free energy with respect to the variations
of the director ficld. However, the variations cannot be arbitrary. Since the director
ficld has a constant magnitude of unity, the variations have to be constructed in such
a way that the norm of the director field remains constant i.c. 12 = 1. In other words,
we wish to consider arbitrary rotations of the director field at cach point in space.
Furthermore, to obtain the conditions for equilibrium in the bulk, we must minimize
the free energy in (2.16) with respect to 7 subjected to the constraint 6(it?) = 0. This

constraint equation can be further translated to 2 - 6(i7) = 0 and finally
/ A(F)i - 8(71) dPr =0 (2.17)

where A(7) is an arbitrary scalar function of 7. The total variation in F is given by

) Ofa_ Aéng)\|
oF = /{anﬂénﬂ-*_a(aaﬂﬂ) (?.1:,, “r

_ afd_ 0 afd 3
= /{anp 8%0(00“/’)}57;,,,(“. (2.18)

where integration by parts has been performed and the surface term has been ignored

in writing the last equation. We now demand the total variation in F to vanish and
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impose the above constraint on the variations in 7. This results in the following

equation:

df4 J Afq o3
- d°r = 0. 2.

This is exactly equivalent to the method of Lagrange undetermined multipliers. Here,
the arbitrary function A(7) plays the role of an undetermined multiplier. The coeffi-
cients of the variations éng in the above equation do not vanish identically since the
variations themselves are not all independent. Although we can choose two of the
én,, independently, the third én, is connected to the first two through the constraint
equation 2 - 6(i7) = 0. However, we can choose our A(7) at will. If we choose it in

such a way that the cocfficient of the third én, always vanishes, then equation (2.19)

immediately implies

7] Ofa 0f4 -
- = 4. 2.
0zq {zxagnﬂ)} ang = )T (2:20)
If we define a molecular field 7 [20] as follows
_ 9 0fa 0f4
hg = OTn {D(BQng)} ang’ (2.21)

then, at equilibrium, the director must be at each point in space parallel tc it:
i = \(7)ii. Since the Frank deformation energy density consists of three independent
terms, by substitution, the molecular field can also be separated into three indepen-
dent contributions due to the splay, the twist and the bend elementary deformations.
Henee, B ean be further written as & = l_isp,ay + i_{,wis, + ﬁ;,cnd with the thrce inden-

pendent components given respectively as:

-

Raplay = kn'V(V - 7),
hewist = —kpol A(V x /) + V x (AR)],
Phend = kga[B x (V x 7)) + V x (@ x B)] (2.22)
where A = 7 (V x @) and B = 7 x (V x 7).
In the presence of external fields, the molecular field in (2.21) picks up two ad-

ditional contributions. Consider that the liquid crystal is placed in uniform elec-

tric and magnetic fields. Including gravity, the total free energy density is given by
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f = fa+ fu+ fe+ f, where the last term on the right is the gravitational free energy
density. The gravitational contribution to the total free energy density is perhaps the
lcast significant. In fact, the nematic molecules respond strongly towards the internal
molccular field and the electric field. Although alignments can be induced by a mag-
netic ficld, it has relatively low efficiency in comparison with an electric field [20]. To
obtain the equilibrium condition, we must minimize the total free energy [ f dr with
respect to variations in the director consistent with the constraint equation (2.17),
as opposed to minimizing only the total deformation energy. The same reasoning as
we used in equations from (2.18) to (2.20) leads us to the same conclusion. That
is, at cquilibrium, the director ficld is everywhere parallel to the molecular field i.c.

= A(7)7. However, in the presence of external fields, the molecular field takes on a

) af of
ho = B {a(a,,nﬂ)} " Ong (2:23)

where the deformation energy density in (2.21) has been replaced by the above total

different form:

free energy density. The gravitational free energy density f, = pd(7) (mass density
X gravitational potential) is independent of the director; therefore, its contribution
to the molecular field vanishes identically. If we use the expressions for the magnetic
and the electric free energy densities as derived in Section 2.2 in the above expression,

we arrive at

. a afd _ afd - = i -
he = GER {a(aanﬂ)} ong + Ax(it- H)Hp + Ae(ii - E)Ep. (2.24)

Tt is therefore clear that the molecular ficld is an effective field which in general repre-

sents the net cffects of the competition between the internal (molecular interactions)

and various other external fields.

2.4 Hydrostatics

We have just looked at the equilibrium condition for systems whose director ficld is

subjected to infinitesimal rotations. In this section, we shall examine the application
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of a different kind of transformation to a nematic liquid crystal. In particular, we shall
consider the displacements of the centers of mass of the molecules while retaining their
orientations and we wish to compute the total change in the deformation free energy
dne to such a transformation. That this change in the deformation energy is non-zero
is evident if we consider a nematic liquid erystal with only a bend deformation about
the z-axis. If we rotate the centers of mass of all molecules by 90° about the z-axis,
the bend is transformed to a splay deformation. Hence, if the bend and the splay
clastic constants are not the same, the deformation free energy Fy = [ fa d®r will be
different.,

Consider the centers of mass of the molecules at each spatial point 7 to be displaced

infinitesimally by () while keeping the director frozen:
7P — 7 =7+ (7). (2.25)

Although the orientation of the director is conserved in this transformation, its spatial
derivatives undergo non-negligible changes. These changes denoted by 6(9sn,) can

he put into a more compact form as follows:

Ing _ Ona
07"ﬁ Jarg
Ong 0ry,  0Ong,

ar, Orb drg

_ Ong (Or,
= o, (0r’ﬂ —67ﬂ). (2.26)

6(01377n) =

The transformation matrix dr, /0r); can be written recursively as

or 0
'_7 = ! [7':1 - ua(ﬂ]
Brﬂ 81'[,

Ju, 01,
e or,

Oln
6—7‘0—(6,[; ) (2.27)

= up—
= 60[3—

Since the displacement # is infinitesimal, in the first order approximation, 9r, /0r} =~
L] a B

dad — Oatta. Inserting this expression into equation (2.26), the infinitesimal changes
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in the derivatives of 7 can be simply written as

Onn Ou.,

6(0ang) = T or ary’
b

(2.28)

Let us consider a volume element d®r of a nematic liguid crystal. For an incom-
pressible nematic, this volume element is preserved under the above transformation
i.e. d* = d*'. Then, the infinitesimal change in the deformation energy of this

volume element due to the above transformation is given by

d{(6Fy) = {gfdé' i + (gj;d 3 (0;711-)}(1:‘1‘. (2.29)

However, since the dircctor is unaltered by the transformation, the first term on
the right vanishes identically. We can use the expression (2.28) for the infinitesimal
change in the director’s derivatives in the second term. Then, the total change in the

deformation energy is obtained by integration:

6ﬂ=/dguﬂ (2.30)
where
d afd an]

We can see what o8 corresponds to if we examine the generic expression for the
clastic energy. The elastic energy for a deformable body is generally written as F =
Nijir Uij Uy with the components of the strain tensor denoted by Uy; and those
of the elastic modulus tensor by Ajj. According to thermodynamics, at a constant
temperature, the components of the stress tensor o5 can be obtained by differentiating
the clastic energy with respect to the corresponding strain components [22] i.c. 0y =
OF/0U;;. Hence, in general, the components of the stress tensor are oy; = Aijkt Uni

and the elastic energy simply becomes

1 ou; 0
F=o0;; U= 37 (au + 0?‘?) (2.32)

We can now compare this energy expression with equation (2.30). We see immediately

that the factor du/dr; in (2.30) is associated with the components of the strain
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tensor. Then, a,f’j must correspond to a deformation stress tensor. For this reason,
aft is commonly referred to as the distortion stress tensor.

To be as complete as possible, we should also take into account the magnetic,
the electric and the gravitational contributions to the change in the total free energy
under the transformation. As demonstrated in Section 2.2, the magnetic and the
clectric free energy densities are written respectively as fyy = —Ax(7 - }7)2/2 and
S = —De(it- E)2/2. Quite clearly, in view of the above transformation in which
the director is unchanged, the electric and the magnetic fields do not contribute. On
the other hand, the contribution from the gravitational field is non-vanishing. If the
gravitational potential and the mass density are denoted by ¢(7) and p respectively,
then the corresponding free energy is f, = pé(7). Then the change in this free energy

per unit volnme due to the above transformation can be written as

6f, = p2L6r, = p22u, = 0, f,ua. (2.33)

= N—0r, = p——
”ar,, @ p@ra
Putting together what we have obtained thus far, the total change in the free energy

is given by
OF = 6Fq+6F,
= /a,‘-lkaiukdar + /Bo,fguadsr. (2.34)

So far in our derivation, we have assumed that the liquid crystal is incompressible
i.e. Vi = (0. However, this condition has not been imposed explicitly anywhere
in our equations. This change in free energy is not yet applicable to incompressible
nematics beeause the displacement # can still be chosen arbitrarily. In order to make
sure that the minimum of F corresponds to an extremum with respect to variations
i, that leave the mass density unchanged, we add to the total change in the free
energy an additional term, namely, — f p(f')ﬁ - #d3r. Since the divergence of # is
zero anyway, this additional term will not have any effect on the total change in
the free energy except that it limits the ways @ is chosen. We shall call the scalar

[unction p(¥) pressure, which plays the rolr of a Lagrange multiplier and can be
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determined from a set of hydrodynamic equations to be derived later in the chapter.
With this incompressibility condition in place, the change in free energy finally takes

the following form:

§F = / o5 Dodr + f Onf, tadr (2.35)

where

0% = o — p(M)bi (2.36)

is called the Ericksen stress tensor.

In addition to displacing the centers of mass of the molecules, we shall extend our
transformation to include infinitesimal variations in the director field. Furthermore,
we shall caleulate the total change in the free energy for such a general transformation.
In previous cases, we were mainly interested in energies due to the bulk of the sample
and, therefore, all surface terms were ingored. These surface terms appearced in the
deformation energy and also in the molecular field derived earlier. Here, we are
interested in the total change in the free energy; thus, we must be carcful not to
drop the surface terms. The surface terms once omitted should also be reinstated.
Particularly, in what follows, the deformation free energy density fq will no longer
refer to only the Frank deformation energy density; it will also contain the additional
surface terms. Now, in the presence of the magnetic, the electric as well as the
gravitational fields, the total free energy density is written as f=fa+tfu+fe+fg
and the change in the total free energy due to infinitesimal variations in the director

is given by

_ of of éng) | ..
oF = /{Bnﬂénﬂ+0(0,,nﬂ) 0T, &

_ dfa Ofa A o
- /{_——a(aanﬂ)a"(é"f’”[an,, Ax(@ - HYHyg

— Ae(it - E)Eg) éng} d’r. (2.37)

The first term on the right can be converted to a surface integral plus a volume
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integral through an integration by parts:

TG (Of;l’ﬁ)('),,(én ) d*r = / 5 a nﬂ 5nﬁ dS, / D [ a(g,,f;,,)] bng d®r.  (2.38)
Here, to write down the surface integral, we have assumed that the sample is a slab
(layer) of nematic liquid crystal. The differential dS is a vectorial surface element
on the boundary of the sample with an outward-drawn normal. The surface integral
above is to be evaluated on the closed boundary of the liquid crystal and therefore
represents a surface contribution to the change in the free energy. Clearly, this surface
term is equivalent to the amount of work required to change the director on the bound-
ary by an infinitesimal amount. As mentioned previously, this surface term is not to
be dropped. Combining equations (2.35) and (2.37), we have, for the total change in

free energy as the molecules are displaced and the director varies infinitesimally,
_ af.
oF = /-——ll——énﬂ dS, + /(ofka,-uk + 0o fq Ua) d*r
A(0nnp)

d a .
+ / {07{; 8,, [O(szﬁ):l - A\(n H)Hﬂ - AE( E)Eﬁ} 5"[5 dar

= / (0% Dittg, + Dn fy 0 — hpbng) dr + / 516,ayo"e 45 (2.39)

a2 ﬂ)
where we have used the definition of the bulk molecular field (2.24). We see that
the first volume term represents the amount of work associated with a typical elastic
deformation: the second volume term corresponds to the amount of work needed to
deform the director in the presence of the gravitational field and, finally, the last
volume term expresses the work required to rotate the director against the inter-
molecnlar forees, the electric and the magnetic ficlds. We gain another surface term

by integrating the first term on the right in the last equation by parts:

6F = /—(un.],, + hgéng) dr +/ [of,nuo, + _a—Z%—f:I—)éna dSs (2.40)
Bla

where

Jo = 0305, — Oafy- (2.41)
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We can think of this change in the total free energy as the work that is required to
cause the infinitesimal variations. Then, in the volume integral on the right, the first
term can be regarded as the amount of work per unit volume needed to displace the
molecules in the bulk; whereas, the second term corresponds to the amount of work
that is necessary to change the director against the molecular field. Similarly, for the
surface integral which is to be evalulated on a fixed boundary, the first term can be
interpreted as the work put in to move the molecules infinitesimally on the boundary
surface and the second term can be looked upon as the work that is needed to change
the director on the surface of the sample. Now, returning to the first term in the
volume integral, we sce that this term must represent an energy (or work). Since u,
is a displacement, J, must be the force per unit volume in the bulk of the sample. It
is then logical to conclude that, at hydrostatic equilibrinun in which the flunid particles
arc not in motion, the bulk force must vanish i.c. J =0.

Before closing this section, we must emphasize that the expression for the change
in the total free energy (2.40) is valid for incompressible nematics whose director is
allowed to vary arbitrarily. This is because the condition for the conservation of the
magnitude of the director 2 = 1 has not been imposed anywhere in this part of
the derivation. However, we must bear in mind that, at equilibrium, the director is
everywhere parallel to the bulk molecular field (2.24) only for variations that leave the
magnitude of the director at unity. This equilibrium condition can be used wherever

possible to reinforce that the magnitude of the director remains invariant.

2.5 Balance of Torques

The deformation energy of a liquid crystal is doubtlessly invariant with respect to a
uniform rotation of the sample. After all, simply rotating the observer’s point of view
could not have altered the equilibrium state of the system in any way. Furthermore,

this invariance property leads to a rotational identity which displays the balance
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hetween the body torques and the surface torques at equilibrium. Below, we shall
derive this rotational identity and identify various body and surface torques.

A uniform rotation of the liquid crystal sample by an angle w corresponds exactly
to rotations of the centers of mass of the molecules and the director by the same
amonnt. If J is the angular displacement vector whose direction is along the axis of

rotation, then the variations « and 67 are respectively written as
I = GXT=> Uy = EqupuTs, (2.42)
6 = XA =>6ng = €ppWunp (2.43)
where €4, is the Lewi-Civita symbol. The changes in the deformation energy have

already been worked out previousiy in Section 2.4. There, we found that the change

due to displacements of the centers of mass of the molecules was given by (See Eqn.

(2.30))
/ agnagua d3r, (2.44)
while the change due to variations of the director, according to Eqn. (2.18) was
0fa Ofa 3
—————0,(6 ——ébng ¢ d’r. .
/{3(6anﬂ)a (bng) + 8%671,; T (2.45)

Then, the total change in the deformation energy must vanish identically when the
centers of mass of the molecules and the director are rotated by the same amount.

Substituting the expressions (2.42) and (2.43) into (2.44) and (2.45) respectively, we

are led to the following:

f
0=06F; = /{Ugaa;i”n + —0-'-‘1—530(5715) + %6715} d*r
8

0(0,n dng
afd de
= “’/t/{"gnfa;tﬂ + meﬂupaanp'*' é;geﬁ#pnp} d’r. (2.46)

Clearly, the integral in the last equation must correspond to the net torque on the
system. Since the components of the angular displacement vector can be chosen

arbitrarily, this net torque must vanish identically. So,

af. af.
/ {Ugot‘ouﬁ + 5(—6(’—;;—)613,,,,60% + a_nd‘;sﬂup"p} d’r =0. (2.47)
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Although still in its early form, this is the rotational identity we sought. If the
nematic sample is placed in uniform magnetic and electric ficlds, the electromagnetic
contributions to the above identity can be brought in through the molecular field as

defined in (2.24) as follows

Ofa _ 8 | Ofa L7 .
=-~hsg+ B {a(annﬂ) + Ax(it- H)H; + Ac(ii - EYE,. (2.48)

This turns the identity (2.47) into

. Ofa
d -
/{Uﬂagﬂllﬂ - (TI X h’)ll + Oa [a(aﬂnﬂ)tﬁllﬂnl’]
+ Ax(it - H)# x H), + (it - B)it x E),}d*r =0, (2.19)

Recall that xi; = x16i; + Axniny; therefore, the magnetization M = x H + Ax(ii-
ﬁ)ﬁ and the torque that the magnetic ficld cxerts on the bulk of the sample is
Mx H= Ax(7 - ﬁ)(fi X ﬁ) Similarly, the bulk torque due to the electric field is
given by Px E = DX E = Ae(fi-E)(fix E). Since the left hand side of equation (2.49)
is the sum of torques that act on the system, the term —(7 x i;) can be regarded as the
torque per unit volume that the molecular field exerts on the director. However, it
vanishes identically at equilibrium because the director would be everywhere parailel

to the molecular field. Thus, at equilibrium, the rotational identity becomes

7 7 > al X of(l r
/ [Ugafmzﬂ +(M x H), + (P x E)u] d’r + / meﬁllﬂnﬂ dSe =0 (2.50)

where we have applied Gauss’s law to convert the volume integral of the totai differ-
cential to a surface integral.

Two of the body (bulk) torques have already become apparent in the rotational
identity. What remains to be done is to transform the term involving the distortion
stress tensor and the surface integral into a more physically interpretable form. To
do this, we make use of the condition for hydrostatic equilibrinm; namely, the bulk

force density J must vanish. If this is so, the bulk torque also vanishes

0= /FX jdgr = /EW,.,T,,JQ (137‘ = / (6,,,,,,7‘,,(?/,0’;;0 — 5;1;:07,:00[,,) (131. (251)
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where we have used the definition (2.41) for the bulk force density Jin writing the last
equation. The last termn on the right can be immediately identified with the torque
dne to the gravitational force, since —egparp0a fg = —(7 X ﬁfg)“ = (7 % F;,),‘ = Gy,
where F, is the gravitational force density. Then, if we integrate the first term on the

right of (2.51) by parts and re-arrange, we get
/5;1/7002,, d*r = /e,,,,ar,,aga dSs + /G,, d3r. (2.52)

After we insert the definition (2.36) for Ericksen stress tensor into the left hand side

of the above equation, we see that the pressure term vanishes identically and we are
left with
[t dr= [epmtas, dSp + [ G, . (2.53)

Combining this equation with the rotational identity (2.50), we finally arrive at

.0 BB
/ Epper ,:7‘/,(7/}“ + man (]Sﬂ+/ [(AI X H)Il -+ (P X E)# + Gﬂ] d37‘ =0. (254)

Or, if we denote the sum 05,dSg by (d§:ae),, and similarly for the other term above,

the above identity can be simply written as:
/F’x (d5:0%) + /ﬁ x (d5:0) + / (37 x B + (P x B),+G,] d*r=0. (255)

where Q.3 = 0fa/0(0ang). Hence, from this rotational identity, we see that, at
hydrostatic equilibrium, the body torques due to the external fields are balanced by
the surface torques. Evidently, there are two surface torques: a torque derivable from
the second rank tensor € is exerted on the director at the boundary surface and

another torque due to Ericksen stress tensor is exerted on the centers of mass of the

molecules.

2.6 Nematodynamics

Thus far, we have been considering the hydrostatic equilibrium of the nematic liquid

crystais. Now, we turn our attention to the nonequilibrium situation. Once the fluid
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particles are in motion, the director is no longer coupled internally only to the molecu-
lar ficld, but also to the velocity field of the moving fluid particles. In a more complex
situation in which a magnetic or an electric field exists, the director also interacts with
this external field. Then, it is not a trivial matter to minimize the corresponding free
energy to obtain the equilibrinm configuration, when dissipations and so many types
of conplings co-exist. It is well known that fluid dynamical systems obey an equation,
analogous to the Newton’s second law, known as the Navier-Stokes equation [23]. But
heeanse of the couplings between the director and the electromagnetie fields, this hy-
drodynamic equation alone does not suffice. Maxwell’s equations must also be added
to the system of equations to describe the electromagnetic interactions. The resultant,
set of equations adequately expresses the interplay among the director field, the in-
ternal field (the molecnlar field) and the external ones (the magnetic and the electric
ficlds). The study of these electro-hydrodynamic phenomena in nematie liquid erys-
tals is commonly known as nematodynamics. In this section, we will examine some of
the fundamentals in nematodynamics and derive a very important tensor - - the total
stress tensor — which is a main ingredient in the hydrodynamic equation. Again, our

presentation in this section follows elosely the approach given by de Gennes [20].

2.6.1 Entropy Production

Non-uniform flows give rise to internal friction which in turn leads to irreversible
dissipative losses. As pointed out by de Gennes [20], there are two types of dissipative
losses in nematic liquid erystals: losses due to the conventional viscosity effects and
losses caused by the rotation of the director with respect to the backgronnd finid.
These kinds of losses are represented by a quantity called the entropy production,
which amounts to the heat dissipated at the expense of the system’s internal energy.
Let’s consider a system which consists of a nematic liquid crystal maintained at a

constant temperature. From the first law of thermodynamics, an increase in the
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internal energy is expressed by
dE =dQ' —p dV. (2.56)

Since the volume of the system is unchanged, the increase in the internal energy is
exactly the amount of heat absorbed i.e. dE = dQ'. In other words, the amount of
heat released by the system dQ is equivalent to the decrease in energy: dQ = —dE =
T dS = —dFE where dS represents the decrease in entropy (assuming the process to

e reversible). Then, for isothermal processes, the amount of heat produced per unit

time is given by

aQ .dS .. dE
—==T—=T§=-—. (2.57)

This is the entropy production we mentioned carlier. We shall assume that all grav-
itational effects are small enough to be ignored and that a uniform magnetic field is
present. Then, the total energy of the system is given by [(p2/2+ fo+ fa+ fm) dV,
where the first term represents the kinetic energy of the system, p is the mass density
and f, is the internal energy not available for doing work at a constant temperature.
Then, the entropy production is simply the negative of the sum of the rates of change
of the respective energies.

Since the entropy production represents the dissipative losses of the system, in
principle, it can be expressed in terms of the viscous stress tensor. This can be
achieved by making use of the hydrodynamic equation:

0 Ol
a(m,.) =~ (2.58)

where IT is the momentum flux density tensor which, for a viscous fluid, is defined
as e = =0 + prive. The total stress tensor o is further written in terms of the
viscous stress tensor o' as oy = —pby + 0’ With these definitions, it is not difficult
to see that, for an incompressible fluid (6 -7 = 0 and p = const.), the hydrodynamic

equation can be equivalently written as

d
(Tt([)v,') = Bkak,- (259)
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where the dcrivative on the left is the material derivative d/dt = 3/0t + (v - V)
which measures the time rate of change in a frame of reference that travels with the
fluid. Having said that, the rate of change of the kinetic energy for an incompressible

nematic can be written as follows:

d r1 _ 0
dt -épv2 d’r = /‘Ua-a—t(pva) d’r = /l’aakﬂkn d*r — g/vkak(v,,vn) d*r  (2.60)

where we have made use of equation (2.59). If we integrate the second term by parts,

we have

il r1 , . . o
(-;Z 5/)1}Z d*r = /'uaakoka d3r — g/vkifz dSy + -g— (V- @i d*r. (2.61)

The last term on the right vanishes identically because of the incompressibility con-
dition. If we limit ourselves to the entropy preductions associated with the bulk of
the sample only, then all surface contributions, such as the second term on the right
of the above cquation, can be dropped. Consequently, after integrating the first term
on the right by parts, the entropy production associated with the motion of the fluid

in the bulk is given by
d (1 5,5 _  f 3
o /Epv d’'r = — JI OkaOkVa d°T. (2.62)

The entropy productions associated with the deformation and the magnetic free
cnergics can be dealt with at the same time. We have already shown in Section 2.4
that, for a liquid crystal placed in a magnetic and the gravitational fields, the total
change in free energy due to infinitesimal displacements of the centers of mass of the

molccules and variations in the director field is given by Eqn. (2.39):
6F = /(af,&agua + 1140, fy — hoybn,) d°r + surface term (2.63)

where F = Fy + Fp + Fy. If we ignore the gravitational effect and drop the surface

term, we find that the total change in free energy per unit time is simply given by

oF . Ug én :
== [a,,,,aﬂ (3) - h.,—é—t"-] dr. (2.64)
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Then, the displacement per unit time u,/8t can be regarded as the velocity of the
fluid 7. In the frame of reference that travels along with the fluid, the variations in
the director per unit time én,, /6t can be interpreted as the material derivative of the
director: it = dit [dt = Iifat + (7 - 6)7’5. Therefore, the dissipative losses associated

with the deformation and the magnetic free energies are written jointly as
d e . 3
Z(Fa+ Fyy) = / (0500500 — hytiy) d°r. (2.65)

Finally, we note that the internal energy density f, depends only on the mass density

p at a constant temperature. Since, for an incompressible nematic, the mass density
is a constant, the internal energy does not contribute to the total entropy production.
Combining equations (2.62) and (2.65), we can express the total entropy production
as

TS = / [(aka — 0%y ) OkVa + h - 7'1‘] dr. (2.66)
Obviously, the terms on the right correspond to dissipative processes. From this point

of view, since Orv, is related to the components of the strain tensor, the quantity
0 ka = Oka — Ohg (2.67)

must be the viscous stress tensor.

2.6.2 The Viscous Torque

Since the Ericksen stress tensor is not necessarily symmetric, the viscous stress tensor,
in general, is not symmetric either. We shall demonstrate in this section that the
antisymmetric part of the viscous stress tensor corresponds to the viscous torque
that the director exerts on the fluid flow. In the following discussions, we will be
dealing with cases where the body of the fluid is in a non-uniform motion. In other
words, viscous forces are present and the systems are not at hydrostatic equilibrium.
A further complication may come from the dissipative losses due to the i.otion of

the fluid and of the director at the boundary surface. To simplify our analysis, we



2.6 Nematodynamics 32

avoid dealing with the latter of these surface losses by assuming a strong anchoring
boundary condition so that the director is held fixed at the boundary by the surface
cffect (by rubbing or treating the limiting walls with appropriate chemicals). To
proceced, we examine the net torque T excrted on a nematic liquid crystal in the

presence of a uniform magnetic field only (gravitational effects are ignored):

- dL d [ s
T = prialr (7' % p?) d°r
= /(E,‘jk"'jana'uk — E€ijkPTjVa0aVk) d*r (2.68)

where we have made use of the hydrodynamic equation (2.59). The second term on

the right can be integrated by parts to yield a surface term and a volume term:
/pEijijllaUk dS, — /ps,-,-k(')(,(rjvn)'uk d3r. (2.69)

It is not too difficult to show that the integrand of the volume integral can be written
as a sum of two terms: one is proportional to # x ¥ and the other is proportional to
V - 7. In view of the incompressibility condition, the contribution of this volume term
is clearly zero. The surface integral vanishes for the same reason. Since the integral
is to be cvaluated at the boundary of the sample, the factor v, in the integrand is
the velocity component on the boundary surface. If the fluid is to be confined within
a fixed volume V, then the normal component of i must vanish at the surface and,
conscquently, ¥ must be orthogonal to the surface clement dS everywhere on the
houndary surface. If the no-slip (realistic) boundary condition is applied, ¥ vanishes
on the boundary surfaces. Thus, the surface integral vanishes identically and the net

torque is nothing but

T‘ = /E,’jij('),,O',,k (i:;T. (270)
Carrying out this integration by parts, we obtain again a surface term and a volume

term:
T = /5ijkrjaak dS, — /EijkO']'k r
= / [Fx (dgzg)]i - /€ijk(0"jk + 05k) dr. (2.71)
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If we now define the antisymmetric part of the viscous stress tensor as [’ such that

I'i = €ij10'kj, the net torque can be written as
ff = / [FX (dgld)]i + /F, d31” - /E,‘ij;k dsr. (272)

We now utilize a rotational identity from Section 2.5. Since this identity was derived
by using a symmetry argument on the deformation free energy, it continues to remain
valid even when the fluid is no longer at rest. Then, according to Eqn. (2.49), the

rotational identity for a non-cequilibrium system placed in a uniform magnetic ficld is

given by
/ [epn e — (7 % B), + (M x H),] &Pr =~ / [ x (a5:0)], (2.73)

where we have used Gauss’s law to convert the volume integral associated with the
tensor £ to a surface integral. Once again, we note that the sum e,‘,g,,aga is equivalent
to £,8005, since the pressure term PE€.pabpa vanishes identically. Combining Eqn.

(2.73) with Eqn. (2.72), we can rewrite the net torque T as

T = [[x (o), + [T dr— [(i x By dr
+ / (M x H); d + / [t x (a$:9)].. (2.74)

There is another way to construct the net torque. Already seen in Section 2.5 is the
balance of the surface and the volume torques at hydrostatic equilibrium. Equation
(2.55) not only describes this state of affair very clearly, it also indicates what the net
torque is made up of — terms at the left hand side of the equation. Thus, following

Equation (2.55), we can simply write the net torque at hydrostatic equilibrium as
T = / [7 % (a$:0°)] + / [ x (d5:0)) + / [(M x H); + (P x E); + Gi] d®r. (2.75)

\With a minor modification, this expression can be used to describe the net torque even
for systems out of equilibrium. The body torques are well accounted for in the above

cquation even for non-equilibrium cases. However, once the fluid is in non-uniform
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motion, viscous forces result and so the Ericksen stress tensor which gives rise to the
torque that acts on the molecules at the boundary surface must be replaced by the
total stress tensor in order to account for the viscous torque at the boundary. Finally,
since the director is strongly anchored at the boundary surface, the expression for the
torque that acts on the director at the boundary is left unchanged. Therefore, the

net torque for non-equilibrium systems placed in a uniform magnetic field is given by
7= / [ (d5:0)] + / [it x (@5:0)] + / (N x /)i dr. (2.76)

Comparing this equation with (2.74), we sce that the antisymmetric part of the viscous
stress tensor is equivalent to the viscous torque (per unit volume) that the director

exerts on the molecular field (the flow):
F=ixh (2.77)

Therefore, in view of the equilibrium condition derived earlier, this torque is nonzero

only for systems out of equilibrium.

2.6.3 Sources of Dissipation

\We are almost in a position to write down the final form of the entropy production and
identify the sources of dissipation. To make our final expression easier to interpret,
we express the entropy production in terms of the symmetric and the antisymmetric
parts of the tensor d,vs given respectively by Aap = (Javp + 05va)/2 and wag =
(0,vg — O5v,)/2. Furthermore, we wish to incorporate the viscous torque derived
above into the final expression. Therefore, we also separate the viscous stress tensor
o' into a symmetric part S’ and an antisymmetric part Log = (045 — ' 5a) /2. We
now recall from Section 2.6.1 that the entropy production associated with the bulk

of the nematic is given in (2.66) as

TS = / (0" apOavg + - ) dPr. (2.78)
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The surface terms can be totally omitted, so long as we assume that the director is
strongly anchored and the rigid (no-slip) boundary condition (¥ = 0) applies so that
there is no dissipation at the surface. Both of these assumptions are quite realistic.
Strong anchoring can be guaranteed by proper treatments of the boundary surfaces so
that the director is held fixed by the surface effect mentioned earlier. Since the liquid
crystal is confined by rigid limiting walls, at the boundary, the normal component of
the velocity must vanish. For a viscous fluid, the layer immediately adjacent to the
snrface of a solid body is brought to rest by means of molecular attraction and “sticks”
to the surface; therefore, the tangential component of the velocity must vanish at the
houndaries as well. Having justified our assumptions, we now proceed to convert
the entropy production to a more physically suggestive form. The first term of the

integrand in equation (2.78) can be rewritten as follows:

(7’,,/30,,?1/@ = (S’og + F,,g)(A,,g + wog)
= SloﬂAaﬂ + S,aﬂwaﬁ + FoﬂAaﬂ + Faﬁwaﬂ
= S,nﬂAng + F(,ﬁwoﬂ. (279)

Note that terms such as S’ppwap vanish identically due to the antisymmetry of w.
Since the diagonal elements of the antisymmetric tensors are identically zero, the

second sum on the right in the above equation is simply reduced to

Fnﬁwaﬂ = 2(Fy:wyz + Fr:wrz + I-117_1/(*‘/':1'y)
1
= —€ijk0'kj (§€ilm3ﬂ’m)

= -T.@ (2.80)

where, as demonstrated in Section 2.6.2, I’ = i x & is the viscous torque that the
director exerts on the flow and & = (V x #)/2 is the local angular velocity of the fluid.

Using equations (2.79) and (2.80), the entropy production (2.78) can be written as

TS = /[5'1|A—f-a+ﬁ-ﬁ] &r
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g

= [[sUa-GixPy-a+F-] @
= /QWA+H{#—@xﬁﬂ}wr (2.81)

where (S’||A) denotes the direct sum S'55A444. At this point, we define a vector
N=i— (& x ). (2.82)

As we pointed out previously, i1 is the total time rate of change of the director in the
moving frame of reference that flows with the fluid. On the other hand, since & is the
local angular velocity of the fluid, & x # is the rate of change of the director due to
the local rotation of the fluid. Then, we see that the vector N represents the rate of
change of the director with respect to the background flow. The entropy production

therefore takes the final form:
T$=/(ﬂM&ﬁoﬁ)Wh (2.83)

The first term on the right involves a symmetric tensor constructed from the velocity
gradient, while the second term involves the time rate of change of the director.
Therefore, there are two types of dissipation in nematic liquid erystals. One type is
associated with the shear motion of the fluid and the other iype is due to the rotation

of the director.

2.6.4 Constitutive Equations

Having found the sources of dissipation, we follow what is usually done in irreversible
thermodynamics and rewrite the entropy production as a sum of products of the

generalized thermodynamic fluxes Y; and the conjugate forees X;:
TS =Y XY
i

This procedure can be justified gencrally. An example of such a procedure is given in

the monograph by Kreuzer [24] and so we will not repeat it here. There is a certain
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amonnt of arbitrariness in choosing the generalized forces and fluxes, but the choice is
nsually guided by the concept of cause and effect as well as by physical interpretations.
In view of the entropy production (2.83), we can think of the rotation of the director
heing caused by the fluid flow represented by the molecular field and the viscous
forces being caused by the non-uniform motion of the fluid. Therefore, we can choose
to regard the components of the molecular field h, and those of the symmetric part
of the viscous stress tensor S’',5 as generalized forces. Then, the components of N
and A become the generalized fluxes conjugate to the molecular field and the viscous
forees, respectively.

We now postulate a set of constitutive equations which describe the response of
the nematic systems to these thermodynamic forces. To do this, we make use of

Truesdell’s principle of equipresence. As quoted in the book by Jaunzemis [25],

As the last of the general rules, we record Truesdell’s principle of
equipresence, which states that if an independent variable is present in one
constitutive equation, then it should be present in all, unless its presence
contradicts other principles or known properties (e.g. material symmetry),

or is excluded by some type of linearization.

Then, for sufficiently small deviations from equilibrium, the fluxes are small; therefore,
we can assimne that the generalized forces are linear functions of the conjugate fluxes.
Due to Truesdell’s principle of equipresence, we expand the generalized forces as lincar

combinations of all conjugate fluxes:

S'(,g = Lnﬂ75A-75+A;{aﬂ7N7, (2.84)
’I..y = A1,7ngAng+P75N5. (285)

Or equivalently, if we denote the generalized forces by Y5  and the conjugate fluxes

hy X, then the constitutive equations are simply

I} _ ij ]
)nﬂ... - L(aﬂ...)(-y&...) ‘X76...‘
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According to Onsager’s reciprocal relation {20}, Léi/’m)(vﬁ-.-) = {:;/3..-)(76-‘-)' Clearly,
in Equs. (2.84) and (2.85), the coefficient Mg, corresponds to Li2s ., , whereas
the cocfficient Af'44, corresponds to L(Q(l,[,m)(,m_). Henee, from Onsager’s reciprocal

relation,

Mgy = M op,. (2.86)

In addition, the tensors L, M and P must be compatible with the symmetry require-
ments of the nematic liquid erystals. They are in fact determined by the properties
of the medium in equilibrium, i.e. they must be functions of the components of the
director it. Analogous to the theory of elasticity, due to the existing symmetry, many
of their components vanish identically. Since nematic liquid erystals have a local
cylindrical symmetry about the director, the above constitutive equations should be
invariant with respect to rotations about the nematic axis. Then, in a rotated frame

of reference, equations (2.84) and (2.85) are transformed as follows:

—,’,ﬂ = Ln{i-yéA—-yb + A’{nﬂ'yN-y’ (287)
7l.y = A/['.mﬂ/i,,ﬁ + P-,z,’N& (288)

where the barred quantities represent the transformed components. Bezause the
rotation took place about the axis of symmetry, the tensorial coefficients L, M and
P are unaffected by the transformation. Tensors with this transformation property

are named transverse isotropic tensors {25].

2.6.5 The Viscous Stress Tensor

In this section, we shall determine first the explicit forms of the tensors L, M and P,
and then a clear expression for the viscous stress tensor. As we have already pointed
out above, the tensors L, M and P are invariant with respeet to rotations about the
nematic axis; therefore, they are transverse isotropic tensors. Let us first focus on

the third-rank tensor M. Following the development outlined in Appendix A, there
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exist three independent vectors i, @ and & such that the scalar polynomial
Q = Mg, uavpw, (2.89)

is form-invariant under rotations about the nematic axis. According to a representa-
tion theorm of Cauchy [25], a scalar function of vectors #, ¥, -+, U is isotropic if
it. depends on the scalar products @; - #; only where 7 and j may take on any of the
values 1, 2, ---, m. Therefore, we sce that the basis of @ must at least consist of
the sealar products @ - #, ¥ - and @ - @. In addition, since @) is transverse isotropic
(invariant with respect to rotations about the director), it also depends on the ro-
tational invariauces i - @, 7 - © and @@ - w. Then, according to Eqn. (A.2), the most
general form of Q is a linear combination of the products (7 - @)(7 - @), (7 - T)(i - &),

(77 - a)(it - 7) and (i - @)(7A - T)(7 - @). In other words,

Q = mnauvawg + AaNgURNAWe + A3T Wy U Ve -+ AqNlaUaNFURTL Wy

= {1 Nabiy + aangbay + a36ap71, + asnangN,) U VW, (2.90)
where the a;’s are constant coefficients. From Eqn. (A.3), we sce that
Mopy = @nabpy + aangey + a3bapny, + agnangn.,. (2.91)

This third-rank tensor is to appear in the expression (2.84) for the symmetric part
of the viscous stress tensor S’qg; therefore, it must be symmetric with respect to the
exchange of its first two indices i.e. Myg, = Mgay. This symmetry requirement leads

us to the following expression for Af:
Moy, = ai(nabpy + 1gbay) + (a360p + asnang)n,. (2.92)

Similarly, for the sccond-rank transverse isotropic tensor P, the scalar form-
invariant polynomial W = P,su,vs depends on the invariances @ - @, @i - @ and 1 - 7.
Henee, we may express W as a linear combination of the products @- @ and (7-@)(7- 7).

Again, using equation (A.3), we can easily show that

P.s = 16,5 + conqyng (2.93)
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where the ¢;’s are constants. The method for determining the tensor L is essentially
the same although slightly more tedious due to a larger nmumber of basis elements

(invariances). We shall not repeat the steps here but simply present the result:

Laﬂ.75 = d; 6oﬁ575 -+ (1250,-76/35 -+ (136‘,‘56.7/3 + (146,,/{”.,115 + (’96-7;,11,“7lﬁ
+ d5baynpns + drégynans + dgbasngny + dgdggnn,

+ dmn,,nﬂn.,ng (294)

where the d;’s arc constants. This fourth-rank tensor is necessarily symmetric with
respect to interchanging the indices o and f3, since it is to be used to construct
the symmetric part of the viscous stress tensor §' according to equation (2.84). In
addition, we note that the sum Lag,sA4,4 in cquation (2.84) represents a linear combi-
nation of all distinct components of A. Since A is symmetric, terms such as Loptm Atm
and LagmiAp are not independent of cach other. Therefore, we can choose to de-
fine L such that it is also symmetric with respeet to the interchange of its last two
indices. Altogether, we require Logys = Lgaqt = Lapsy- Excrcising these symmetry
requiirements leads us to the following expression for L:
La[j-ﬂ,‘ = dléaﬂé-y& + (12(5,,.7(5/),5 + (Sng(Sﬂ.y) + dy6,, oMy + (19(5.7571,,,71,/;
+ (l5((5n7nﬂn5 + 6,3.,71,,,71,5 + 6,,;,7:,/371,7 + (7[;/,‘11,,,71.7)
+ dipnangn,ns. (2.95)
An expression for the symmetric part of the viscous stress tensor is now within
reach. Inserting equations (2.92) and (2.95) into the constitutive equation (2.84), we
get
S'as = dibapAu + donangAu + dibapnyn, Ay + ainangnn, Ay, + a4 Aag
1 1
+ 5(05 + aﬁ)(n'nApﬂ + nﬂA;ux)n;t + _7'2("0Nﬂ + "/)Nn)

2
+ (a360p + agnan)(il - N) (2.96)

where we have made use of the symmetric property of the tensor A to simplify the

cxpression and renamed some of the constants for later conveniences. Recall that,
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N is the time rate of change of the director with respect to the background flow.
Sinee the magnitude of the director is held fixed at unity, N must be orthogonal
to 47 itself and, consequently, the very last term on the right of the above equation
must vanish identically. Furthermore, if we reinforce the incompressibility condition
V -if = 0, then sums such as A, in the above equation must also vanish. Lastly, if we
consider the entropy production due to the viscosity effect: [ S',3Aag d*r, we sec that
the third term on the right makes no contributicn at all to the dissipation because
Asbopnan, Ay Any = Agnyny Ay Aaq = 0. Therefore, it can be dropped without loss

of generality. To sum up, we thus write S’ as

1
! ;
S'as = omansnn,A, + 0qAas + 3(05 + ag)(naAyus + ngAua)ny

-~

1
+ 5’}’2("01\[” + n3N,). (2.97)

An expression for the moleenlar field 7 is obtained by substitution. Inserting

equations (2.92) and (2.93) into the second constitutive equation (2.85), we find

hy = =vanaAay+n3Ay8) + azn,Aga + as(nangAag)n,

+ 7, Ny + cany (i - N). (2.98)

Again, beeause N is orthogonal to the director, the very last term on the right vanishes
identically. If we consider the entropy production due to the rotation of the director:
I Lo N d*r, we see immediately that the third term on the right does not contribute
sinee ag(nang Aoy )7 - ]\7) = {) due to the orthogonality of 7 and N. Therefore, we
can omit this term without loss of generality. Finally, the second term on the right
is removed by the incompressibility condition. Since the tensor A is symmetric with

respect. to the interchange of its two indices, the molecular field is simply reduced to
h, = yonaAay + N, (2.99)

Having derived the symmetric part of the viscous stress tensor, we must combine

it with the antisymmetrie part to form the total viscous stress tensor. Recall that
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we have previously defined this antisymmetric part in two different ways. When
deriving the viscous torque in Section 2.6.2, the antisymmetric part was defined as
I'; = €ijr0’s; and, in obtaining the final form of the entropy production in Section
2.6.3, it was defined as Toy = (0'03 — 03,)/2. The first definition was introduced to
reflect the physical significance of the antisymmetric part of the viscous stress tensor,
while the latter was introduced for computational conveniences, These definitions do
not lead to any ambiguity and, indeed, they are related to each other in a consistent
wav: Tag = —ca4i0i/2. Also, since [ is the viscous torque i X = gijeljhe, Pap can
be rewritten as Tag = —(nohyg — 13h,)/2. Then, using equation (2.97) and (2.99),

we can write the total viscous stress tensor as

' '
Tag = S o/ + Fn;i

= NN oA, + agdag + las + a6 - Yo el A

l‘)
1 1 .
+ ’2'(05 + o6 + A/'Z)”/i”;l-’xun + 5(72 - "N )”::Nﬁ
1 .
- ;(72 + 7 )n‘,“\’"‘ (2”)())
We now define
1
= (12— 1) (2.101)
2
and
1
ay = z(12+71) (2.102)

or, inversely, ¥ = ag — a9 and v = ag + «y. Furthermore, it has heen shown by

Leslie [27] that 2 = ag — 5. This leads to the relation
(g + (vg = Ty = (x5 — (v (2.103)

known as the Parodi relation [28]. As a result, the total viscous stress tensor is finally

written as

' , ,
Oop = oqnangn,n,A,, + agAug + agn, N Aug + agnpny A,

+ (YQTI,,.N/; +(Y37L(3N,, (2104)
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where the viscosity coefficients o’s are commonly referred to as the Leslie coefficients.
Not all of these coefficients are independent; four of them are conunected by the Par-
odi relation (2.103). Hence, for an incompressible nematic liquid crystal, there are
SHapether five independent viscosity coefficients.

In hiydrodynamical calculations, the equation of motion is written in terms of the
intal siress tensor g. For completeness, it is therefore important to recapitulate what

the total stress tensor is composed of. Restating equation (2.67),
Tapp = U/aﬂ + 02[} = (710/3 + O'zﬂ - 17(50,3. (2105)

We see that the total stress tensor consists of an irreversible part due to viscous forces

and a reversible part due to the elasticity of the liquid crystal.

2.7 Electro-hydrodynamic Instabilities

Under proper experimental conditions, a thin layer (typically 50 yem thick with the
Interal dimensions of 2 x 3 em) of a nematic liquid crystal can be excited by an a.c.
electrie field, at appropriate frequency values, to produce a sequence of convective
patterns similar to those observed in the Rayleigh-Bénard convection of the isotropic
fluid= [29]. This trausition sequence includes the familiar normal rolls, the oblique
rolls, the skewed varicose and the bimodal patterns [16]. In this section, we
examine these experimental conditions and present a proposed scenario which explains
why the initial configuration becomes unstable. Finally, we present the governing

equations of motion, which form the basis for ou. subsequent analysis.

2.7.1 Helfrich Instability

We consider » thin layer of nematic liguid crystal with a positive conductive anisotropy
(Ao = oy — o, > 0) but a negative diclectric anisotropy (Ae = ¢) — €, < 0). The

latter anisotropy implies that the molecules prefer to align orthogonal to the external
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clectric field. The liquid erystal is to be sandwiched between two parallel glass plates.
The upper and the lower limiting plates are specially treated so that the molecules
aji- + parallel to the plates uniformly in the undistorted configuration. We shall label
tii= w.rection = and the vertical direction z. The plates are also coated with a thin
layer of transparent but conductive material to provide visual inspection as well as a
uniform electric field in the vertical direction. To avoid dealing with charge injection
[20] (duc to complex chemical reactions at the electrodes) at the clectrodes, a low
frequency electric field E = E,cos(wt) L is used so that the switching electric field
does not allow enough time for the chemical reactions to take place. A schematic

diagram of the nematic cell is shown in Fig. 2.2.

Glass Substrate Transparent Conductor

Ali t
(Indium Tin Oxide) ‘gnmen

“Layer (polyimid)

/ N ‘ 4

Voltage leads

Edge Seal

Liquid Crystal Layer Spacer

Figure 2.2: A schematic diagram of a nematic cell.

Since nematic liquid crystals are capable of transmiiting torques, it appears that
a logical starting point of our investigation would be to examine the different types
of torques that are exerted on the director when the system slightly deviates from
the undistorted configuration. Suppose that an infinitesimal periodic perturbation
along the z-direction is present in the director field. First, there is a restoring torque
. the “rector due to the increase in the deformation free cnergy. Secondly, there

is a diclectric torque due to the external electric field. Althongh this clectric field
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is oscillatory, it effectively exerts a torque on the molecules so as to align them
orthogonal to the field. So, this torque too is a restoring torque.

Now, the periodic perturbation in the director means that the director is slightly
“hent” locally away from the z-axis i.c. @ = (n;,0,n.). Due to the anisotropy of the
conduetivity tensor (J; = 0;E;), the external electric field along z drives a current
with a non-zero z-component. Because the deviation of the director away from the
a-axis is periodic in z, this current has different orientations in different regions
of the sample. Since the sample is electrically neutral to begin with, this current
implies a local charge separation and charge accumulation (periodic in z) occurs
producing a sccondary electric field. While the vertical component of this secondary
ficld is stabilizing, its horizontal component tries to align the director along the 2-
axis, resulting in a driving torque exerted on the director. At the same time, the
acennlated charges are pulled by the external clectric field and this gives rise to a
conveetive flow which exerts a viscous torque on the director driving it away from the
a-axis. Henee, this is also a driving torque. This situation is depicted in Fig. 2.3.

In summary, the director experiences three kinds of torques: the elastic, the di-
clectrie and the viscous torques denoted respectively by 74, 7 and 7,. Using the
linear approximation and the orders of magnitude of the physical parameters for a
tyvpical nematic liquid crystal, one can show that these torques are on the order of
!7% where € is the reduced voltage (V2 —V2)/V2 and V, is a transition voltage. The
svstem’s configuration is then dictated by the competition among these torques. If
the restoring torques dominate, then the parallel alignment is energetically favorable.
On the other hand, if the restoring torques are balanced by the driving torques due to
an inerease in the applied electric field, then the parallel alignment becomes unstable
and the system will bifurcate into a new configuration with a finite periodicity in the
r-direction. The above scenario was originally due to Helfrich and Carr [3, 30] . The
instability is therefore commonly referred o as the Helfrich-Carr instability.

As deseribed above, there are two easily accessible control parameters (V' and
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Figure 2.3: Helfrich-Carr effect for a nematic liquid crystal with negative diclectric

anisotropy and positive conductance anisotropy.
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w) in a typical electro-convection experiment involving nematic liquid crystals. The
stability diagram for various convective patterns is therefore constructed in the V-w
parameter plane. A cut-off (or critical) angular frequency w, divides the stability
diagram into two regimes. For all angular frequencies w < w,, the periodic pattern
corresponds to a static distortion in the director and oscillating charges. This regime
is ealled the conduction regime. Once the angular frequency exceeds the cut-off point
(w > w,), the charges can no longer follow the excitation; the charges become static

whereas the alignment pattern becomes oscillatory. This regime is called the dielectric

regime,

2.7.2 Equations of Motion

Helfrich and Carr’s interpretation of the electro-hydrodynamic instabilities has gained
wide acceptance over the years. It has been used in linear theories to calculate the
critical voltages for transitions from the rest state to the normal rolls as well as
from the rest state to the oblique rolls at low frequencies; the results obtained so far
agree with the experimental observations reasonably well. In view of these successes,
Helfrich’s seenario will form the backbone of our analysis. We list below the governing
eqnations of motion for a typical electro-convective experiment.

Let us consider the identical sctup as described in the previous subsection. In

addition, we shall assume that the nematic is incompressible i.e.
V.i=0. (2.106)

As we have pointed out ecarlier, not only is the director coupled to the velocity field,
heeanse each molecule carries an electric dipole, it also interacts with the external
clectrie field.  Furthermore, the impurity ions immersed in the liquid crystal will
also respond to the field and be ultimately responsible for sustaining the fluid flow.
Therefore, the hydrodynamic equation alone does not suffice to determine the stable

configuration of the system; it must be supplemented by Maxwell’s equations. In the
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absence of a magnetic field, the required Maxwell equations in NMKSA (SI) units are:

V.-D = q, (2.107)
- oD
J+= = 0. .

+ = (2.108)
VxE = 0O (2.109)

If we take the divergence on both sides of Ampére’s law and combine it with Gauss’s

law, we obtain the equation for the conservation of charge:

B

V.. = 0. .
T+, (2.110)

Because the impurity ions are dragged by the external field, there is now an additional

body force in the hydrodynamic equation:

v
—8 = 0,001 + 4B (2.111)

where the derivative dvg/dt on the left is the material derivative 8/0t + (v V) and o
is the stress tensor derived previously. Finally, based on Helfrich-Carr scenario, the
sum of torques should be zero for a stable stationary state such as the convective
straight rolls in which the director and the velocity are time independent. Henee, we

have the following torque-balance equation:
Ta+ T+ 70 = 0. (2.112)

Equations (2.106), (2.107), (2.109), (2.110), (2.111) and (2.112) constitute a set of

fundamental equations. Together with the rigid boundary conditions:

WHz=%xd[2) = 0 (2.113)
Epyz=%d/2) = 0 (2.114)
§ii(z = £d/2) = 0, (2.115)

where we have placed the origin of our coordinate system in the center of the ne-

matic cell and d is the thickness of the layer, they completely specify the nematic
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svstem. These equations are in principle solvable; however, the presence of nonlin-
earities makes them impossible to be handled exactly. Thus, approximation must be
employed. These equations have been linearized and the sulutions have been obtained

in the past [3, 4, 5, 6]. In the chapters that follow, we will provide two different ways

fo incorporate nenlinearities into ithe model.



Chapter 3

Direct Bifurcation in Nematic

Liquid Crystals

Under the experimental conditions we preseribed in the last chapter, at sufficiently
high ficld frequencies, the nematic layer is transformed into a set of normal rolls at the
first transition voltage. Normal rolls are convective rolls. Due to the coupling between
the molecules and various other fields as deseribed in the Helfrich-Carr scenario, the
director of the normal rolls is sinusoidally modulated ouly in the direction of the
previously preferable axis (the z-axis) and remains parallel to the vertical (zOz) plane.
Since nematic liquid crystals are birefringent, when placed between a pair of crossed
polarizers, the liquid crystal appears as a set of straight parallel rolls orthogonal to the
z-axis. In an experiment performed by Rasenat et al. [17], the normal rolls exhibited
a power-law behavior as the applied voltage continned to increase heyond the onset.
These authors showed that the modulational amplitude of the director 8, increased
as a square root of the reduced voltage € = (V2 — V2)/V? where V and V, are the
applicd rms voltage and the rms threshold voltage of the transition, respectively.
This phenomenon is reminiscent of a direct bifurcation, in whick case, the amplitude
0, could be taken as an order parameter. So far, this critical behavior has eluded all

theoretical attempts. Althongh the application of the multi-scale technique in this
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regime will certainly lead to interesting results as we will demonstrate in the next

chapter, the leading order in the e-expansion of the solutions:
w(z,y, z,t) = /2 (u,, +€%u + eug + .. ) (3.1)

is a priori chosen so as to achicve detailed balance (balance the linear growth rate
Ly a nonlinearity satisfying the symmetry requirements of the system) in the final
equation of state. The correct critical behavior is therefore not a direct consequence
of the proposed model. In this chapter, we examine this critical behavior by proposing
a phenomenological free energy fer the nematic system. We regard the amplitude 6,
as an infinitesimal order parameter and expand the unknown field variables in powers
of 0,. After solving for the linear solutions and their first nonlinear corrections, we
proceed to construct the free energy and finally obtain a set of bifurcation diagrams

for a continnous transition by means of minimization.

3.1 The Director and The Electric Fields

The geometry we adopt here is exactly the same as described in the previous chapter.
Since, according to experimental observations, the convective pattern has no apparent
variation in the y-direction and the director and the velocity remain parallel to the
+0z plane, we can legitimately consider the bifurcation as a two-dimensional problem
and regard all remaining field components independent of y. Then, the director can
he parameterized by the tilt angle § measured witl: respect to the z-axis ie. @ =
(ny 0,n;) = (cosh,0,sin ). If we are not far beyond the threshold, the perturbations
to the uniform state remain infinitesimally small, we can expand 7, and n, in powers
of . But we will have to be cantious to keep terms up to the second-order. Similarly,
the veloceity field has only two non-vanishing components: v = (v,,0,v,). For the
clectrie field, because there is an internal field due to the charge separation, we write
the total electric field as E = (E:,0,E, = E'. + E,) where E, == E,cos(wt) is the

applied eleetrie field.
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3.1 The Dircctor and The Electric Ficlds

To use the conservation of charge equation (2.110), we must first determine the
charge density ¢ and the current density J. We do this by making use of the con-
stitutive equations D; = ¢;;E; and .J; = oy; E; for anisotropic materials and Gauss’s
law. Note that we have omitted the convective term ¢ in the current density J for
simplicity. This term however has been considered in [6]. Kuowing from the previous
chapter that the dielectric tensor is € = € 6;;+ Asnyn, we can write the displacement

ficld as follows:

D, = (eL+ Aen®)E, + Aenn E.,
D, 0,

D. = Nenyn.E.+ (6L + Aen)E.. (3.2)

Becanse the conductivity tensor takes on the same form as the dielectric tensor, the

enrrent density J is expressed similarly as

J. = (oL+ Aon*)E, + Aon,n.E.,
J, = 0,
J. = Aon,n.E, + (0L + Aon?)E.. (3.3)

It is now necessary to expand each component of the director in powers of the tilt angle
0. Since we intend to incorporate the first nonlinear corrections into our calculation,
we are carcful to keep terms up to the second-order. This transforms the above

displacement ficld to

D, = E”Ex + AehE,,
D, = 0,
D, = AeOE, + (e, + Aeh?)E,. (3.4)

The same procedure transforms the components of J to the similar expressions. This

is quite straightforward and so we will not display these expressions here.  Using
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Ciauss’s Inw, the charge densit can be written as
: g

JE, (')E’z 00 , oF,
= @ die Ox B_x(E“ +E) Jz
a6 oF', a0
+Aea E,+e, 57 +2A500 E,. (3.5)

Substituting the above expression for ¢ and the expansions for the components of

J in equation (2.110), we find

OFE, OF', , OE, 06
N, o +Aa——(E + E',) 00—~ (')zE
OF', O*FE, 0°E’, (99 DE 3E’z
+o; s +2/ 5”0 0f+A€000t En )
0% 1, , 02E' 09 OFE,
+ Aeh 50 + Z. +e)—= 0z0t 0o = = 0. (3.6)

We can sce intuitively chat the hydrodynan..c equations and the torque-balance equa-
tion will itlso contain second-order nonlinear terms. The presence of these nonlinear-
ities makes it very difficult to solve this set of equations exactly, if not impossible.
Therefore, we shall not proceed exactly but resort to a technique involving perturba-
LIVe eXpansions.

Since we are only interested in the immediate neighborhood of the critical point,
the scale on which bifurcation takes place is infinitesimally small. This scale is
presumbly on the order of 4, (the modulational amplitude of the director in the lin-
ear limit). Hence, we can employ a technique similar to the method of multiple-scale
expansion commonly used in hydrodynamic calculations. We expand each observable
quantity in powers of 8,. Then, by substitution, cach fundamental equation can be
broken down into sub-equations, cach associated with a different order of 8,. Subse-
quently, by solving these sets of simultancous equations in a consecutive way, we will
he able to obtain the linear solutions and their nonlinear corrections. Therefore, we

formally expand the tilt angle, the velocity, the clectric field and the pressure as

0 = 1110,,+u203+---,
Er = E1-190+E1'20¢2;+"°-



3.1 The Director and The Electric Fields 54

E,: = E:leo + E:20¢2, +

2
Uy = vrloo + 7'120; +-ee,

v, = v,0,+ '1,'_.2{)3 4oy
P = Po+Dibo+pafs+-- (3.7)

where the cocfficients of various orders of 6, are all functions of . and =z and probably
t. Below the bifurcation point, the pressure p = p,. Hence, p, is the hydrostatic
pressure. For a thin layer of liquid crystal, we can regard p, as constant without
any loss of generality. Also, according to Faraday’s law and the incompressibility

condition, that

0E1‘i _ OE:i
9>  Ox (3.8)
and
Quri Ou.,
F i (3.9)

fori =1, 2, ---. If we now substitute the expansions for , £, and E’, as in (3.7) into
cquation (3.6) and collect like order terms, then the first- and the seeond-order terms
must vanish independently. This leads us to the first- and the second-order equations
written respectively as

01/] (?Ezl 02Ez|

Ao E, cos(w t) — Le Eyw sin(wit) —— Ir toL 0= teL 020t
OFE, 0 Er
+ 0 o 1 +é& or 0; =0 (3.10)

where w (rad/sec) is the angular frequency of the electrie field, and

Jdu duy du
No B,y 5—1— +2Ac E, cos(wt)u, —52— -2 A B w sin{wt)u, 021
+ Ac E, %Il + Ao E, cos(wt) — — Ae F,w sin(wt) (Z;;)

0’11,1 0F,-1 0111 (?Ezl OF,I (?Ezl

theT o TR T TATM T, Ty,

a Ezl 02E22 0Fz2 OEzl 02Ez~2
+heu Foor teL oo Tl gy AT G el G,

2

+Aau10E" = (3.11)

Jdrot
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Although we have not obtained the remaining first- and sccond-order equations, it
seemns appropriate that we pause to examine the boundary conditions for this nematic
system before we proceed any further with the above two equations. The upper and
the lower plates of the nematic cell are coated with a thin layer of transparent and
condnetive material to provide a uniform external field. So, we can regard these plates
as perfect conductors and hence the tangential component of the electric field at the
boundary must vanish identically. If we assume that the thickness of the cell is d and

we place the origin of our coordinate system in the center of the cell, then
E.(z = +d/2) = 0. (3.12)

Since these plates have been specially treated (coated with a polyimid rubbed in one
direction for example) to produce the desirable surface effect, for strong anchoring,

the z-compounent of the director must be zero at the boundary:
6(z = £d/2)=0. (3.13)

For the velocity field, the “no slip” conditicn and the rigid limiting walls imply that

the fluid velocity must be zero at the boundary:
#(z = xd/2) = 0. (3.14)

According to our previous discussions, if the director is strongly anchored and the fluid
is motionless at the boundaries, then there is no dissipation at the surfaces. Thus,
this set of rigid boundary conditions makes certain that the surface contributions do
not enter into our calculations. Therefore, we shall disregard all surface terms in
the rest of our analysis. Returning to the first- and the second-order equations we
have just derived, we see that the first-order equation consists of only the first-order
cocflicients introduced in equations (3.7) whereas the second-order equation consists
of cocflicients up to the second-order. This is actually very typical of the e-expansions:

the n-th order equations generally contain coefficients up to the n-order. Therefore,

these equations must be solved in a consecutive manner. It is now well known that
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analytic solutions to the set of first-order equations do not exist if the above fully
rigid boundary conditions are to be insisted upon. However, if one of the conditions
is relaxed, allowing the tangential velocity at the boundary to be small but non-zero,
then the linear solutions can indeed be written down in analytical form. For these
semi-rigid bonndary conditions, the lincar solutions have been found to be expressed

in terms of the lowest-order harmonics [5, 6, 2]:

w; = sin(pr)cos(qz), (3.15)
Eo = En(t)sin(pa)cos(qs), (3.16)
E.; = 7E;(t)cos(pr)sin(qz), (3.17)
v = Ugsin{px)sin(qz), (3.18)
v = %'17:1 cos(pr) cos(qz) (3.19)

where 7 = ¢/p, p = 2/ and q = w/d. To be consistent with the periodicity of the
normal rolls, A/2 is the width of the rolls so that r represents the normalized domain
spacing and is approximately 1 for the observed stationary straight rolls. It is casy to
check that these linecar solutions satisfy Faraday’s law (3.8) and the incompressibility
condition (3.9) antomatically.

Equation (3.10) can be used immediately to determine the time dependent am-

plitude E; (¢). Substituting equation (3.15) to (3.17) into (3.10), we get

E.(t) = —%[awsin(wt) + beos(wt)] (3.20)
where
a = Aot — Ae, (3.21)
b = Netw? + Ao, (3.22)
g = (o + o r?) (it + 1), (3.23)
T = (g +err?)/(oy+ a.r?). (3.24)

Having determined the first-order coefficients for ihe 1t angle and the components

of the clectric field, we can subsequently substitute them in the second-order equation
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(3.11) to obtain an equation only for the second-order coefficients. Although the
algebra is more tedious, it can be showr. that, after substitution, the second-order
cqnation takes on the following form:

qkE,
29

+ E,[A0 cos(wt) — Dew sin(wt)][a—aua-:g - %cos(pr) sin(2qz)]
0E:2 02E22 aE/‘:r:2 02E;r2

[Ajwsin(wt) Az cos(wt)]|<in(2¢z) — 2 cos(2pz) sin(2gz))

~:2 =0 3.25
to e T e T gz (3.25)
with
Ay = Aoca+ Delg—D), (3.26)
Ay = Ad(b—g)+ Aeac”. (3.27)

The spatially dependent parts of the coefficients must be made up of the second-
harmonies in 2 and z. Knowing that, in the conduction regime, the director is static

in tine, we can assume that
4 . s e
g = 4——sm(2p.77)suu2q;). (3.28)
p

This kills the second term on the left of Equation (3.25) and we are lel with an
eqution that conneets only the ficld components E,2 and E,,. However, this equation
can be written in terms of E,o alone, if we differentiate it with respect to x and then
use Faraday’s law (3.8). This results in the equation

2qpE, ) < e .
—(”)—[Alw sin(wt) + Ag cos(wt)] sin(2p«) sin(2qz)
g

O%Eqp P E. 0?FEy9 O3Eyo

+o —~+¢ o - € = 0. (3.29
L7022 te J9%:z0t +ai Ox? +el 9%xot (3:29)

The spatial part of E,5 is now obvious. so we write
E.y = E,o(t)sin(2px)sin(2¢z) (3.30)

ancl, by substitution, the time dependent amplitude is found w0 be

E.o(t) = Asin{wt) + B cos(wt) (3.31)
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where
qpEw [A(0Lq% + oyp?) + As(eLq® + eyp?)
A — NT 1 2o 2 e | (3.32)
29 | (6.@%+oyp?)? 4+ wHerq® +p?)
B apE, [ As(01 ¢ + oyp?) — Aw?(c L + gp?) (3.33)
29 l (01q2 + oyp?)? +w(erq® + gr?)? | )

The ficld component E.5 can be recovered by using Faraday’s law (3.8) once again.
Accordingly, by means of integration, this second-order z-component can be written
as

E.; = — 2 Epo(t) cos(2pr) cos(2q=) + h(z,1) (3.34)

= IR

where the function %/=,) ias 5, peared as a result of the .-cegration. The function
h(z,1) can be Jdctermined by using the second-order equation (3.25). Therefore, if we
subistitute the sohizione (3.28), (3.30) and (3.34) in (3.25) and simplify, we obtain an

cquation Toi n(z, )

Eo1 [41wsin(wt) + Agcos(wt)] sin(2gz) + € Dh +0 oh _ 0 (3.35)
9g V7 ST 1= L 9:0t Lo oY

The spatial part of k can only be cos(2¢z). If we write
h(z,t) = E.a(t) cos(2qz), (3.36)

we find, by substitution, that
E,(Asey + Aoy )wsin(wt) + (A7, — Ajw?ey) cos(wt)

; 3.37
4q 0% + w2’ ( )

Ez?(t) =

Henee, vze have vbtaincd, through the equation of charge conscrvation, the second-
order corcections to the director field and the electrie field. Note that uy and Epy
vanish identically at the upper and the lower plates; hence, the boundary conditions

arc satisfied automatically at this stage.

3.2 The Fluid Velocity

Since the director and the rlectric field are already known, the two hydrodynamic
cquations can be combined to eliminate tiie pressnre term and to vield a relation con-

necting the two velocity components v, and v,. With the incompressibility condition
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(V -7 = 0), one of the components can be entirely climinated from the equation.
Then, the remaining component can be determined almost immediately by inspec-
tion. But first, we must apply the perturbative expansions in (3.7) to break down the
hiydrodynamic equations into two sub-systems of the first- and the second-order.
The essential ingredient in this cquation is the total stress tensor given by o =
o' © a°. The viscous stress tensor @’ lias peen defined previously in (2.104) and )2
Inicksen stress tensor 0 in (2.36). .ough the algebra becomes very tedious, “he
total stress tensor can be obtained quite straightforwardly. Since the derivation
particularly instructive for our purposes, we will simply omit it here. Nevertheless,
for the interested reader, the non-vanishing components of the total stress tenser are
listed in Appendiy. B. Before we go on, we make another simplifying assumption. We
assume that the velocity field is sufficiently small so that convective terms such as
(7 - \7)17',-, where F; can be any field component, can be safely ignored. These terms
are present in the viscous stress tensor o' because the vector field N appearing in
the definition of ¢/ (2.i74) is the raie of rotation of the director with respect to the
hackground flow and therefore the total time derivative it in Eqn. (2.82) corresponds
to the material derivative dii/9t+(7-V)ii. In the conduction regime, where 7 and 7 are
stationary, the explicit time derivatives of these vector fields vanish. Then, according
to equations (2.111) and (B.1) to (B.5), if we expand the director in powers of the
tilt. arele @, the a- and the z-components of the hydrod. vnamic equations (accurate

to the second-order infinitesimal) are respectively

02'rr,+l(20 bt e — o — O ('0(?21),, +_&_(90'u,
g\ 57T 6 2 3’\ 0x0z Oz 0z

(a1 + g + a5 + ag)

ox?

1. ‘ 0*v, 00 6v. 00 8% ap
g ras b gtz ) (9?9.? * 52%) T 502 ar
+l(a +a _*_a)(')zvx_*_l(0 +a a)a%z +a 0320z+303vz

— " (/‘ 5 ———‘— — .‘ — 0 —— —

VAT g T oM T RO T G0 T e\ 022 " 9z 8z

T (or 4 ) 0%, 4 06 dv, toE. 96 9% 4 0%6 00
( z — -l sat 553
: Y\ 0:0x 0z Ox 5= = M A 5z0z 22 0z
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%0 321, I5[/] 9% Ov. 00
e <'a_0"+ 9z oz T 92T 0z a~> =0 (3.38)
and
1 0%, 1 0%v, 0%v, 80 Jv,
5(&2 + a4 + 0’5)6 oz + ((Y4 + a5 — (]’2)5-3 + ((}'] + (N(;) 9—0—,—2' -+ Eﬁ
4o [ %0 av,, a6 4 _(?2_0 4 9 dv. 00 e 0%, + 98 a6 Ov,
2\"0:0z ' 0z or /"07:2 ox 0z “\"ozro: " ar 0=
0 00 COIY Loy o) (420 4 22
9z 020z | 0120z sT AT a2 T ®@INTo2 T 9: 0z
1 ' 9 Do, 660 Ov, 0w, ol 00 5*0
EEN A =i vy Il Y
_op L +qE. =0. (3.39)

The y-component equation vanishes identically since the y-component of the ¢iec-
tric ficld is zero, the pressure is independent of 3 and all other related components of
the total stress tensor vanish identically. If we now substitute the expansions (3.7) “t:
the z-component equation and collect like order terms, we obtain the first- and the

sccond-order equations respectively as

1 v, 1 0%v,, Oy
g (autastas) =g (=m0 5~ o
+ (a1 + s + @ +(V)02v’l 0 (3.40)
« ) Ty = .
1 4t a5+ a6) —5-
and
0111 31)31 1 0%v, 021121 _Opy
07 gn T3 (Mt entan) ZEbam - o0
+1 % s+ (5 -+ xg) Ov,y Ou, 0%uy Ouy
-~ (201 —ap — ag + o5 + ag —_— =k = =
g VTR T AT T "oy 0 " 922 0z
T 1 (9 0 z
+ (o) + as) 00211 0(;) Ly 3 (2 + g + g + s + ) 7;;1 (;].r]
, 9%,
—kll %l— g_(r%l; + = (4 ) = (vp — 7x3 + 3(1/5 + (.l’(;) Uy 5‘;1')5';?
( ) 02 +( + + + ) 027)1.2
-= — 0y — o) + g + a5 + ag) ——
5 Q3 — Qy 0202 1 4 6 9%r
0%v,, Auy 0%y

1
+2(2a1 +ag + a3 + as + ag) u) —— T — 2kay e T
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oF, JF,
+£5, [AFE %”—14— EL 02.] + (De+ey) 0:1:1] =0. (3.41)

Similarly, the z-component equation can also be broken down into the first-order

cqnation

—'aﬂ + vy 0,2.1)21 + l((Yz + ay + as) 00 . (+02 — g — as) 62%1
0z 9%z 2 dxdz 2 o’z
+E, [A.-; E. %"z‘ +eL OOE;‘ +(De+eL) 65:] =0 (3.42)
and the second-order equation
Ips 1 duy dvx ou; 0%uy

~—5:—“+§(n2+u3+n‘5+(y6) E -2k — 5,

1 . 0% 0%v.9 v, Jduy
+3 (eva + ag + a5 + ag) wy gr. T T 5o 5

(0 ) ?ﬂ dugg 1 (g + a3 — a5 — 6u1 3v1
Tt dr or 2 2T 9z 0r
Ouy 02111 1 0211,2 Ou, 0%y
o aras T g (2t et as) 5ol =k 5 ey
1 O%v, 0%v,
-3 (vp + a3 — 3 ag — ag) 2y a—ja—; + (a1 + ag) uy 021:1
Ez'
+ B, [ACE Ou 9B neqe)) @ ‘]
ox 0z
. duy du, u,y Jug
+ Eq {AEE,-] 9- LA E Uy — Oz +A [E] or Ea or
_ 0FE, OF.s OF - OF,
+ Asuy p +<y 57 + (DAe+e)) 9z + Aceu ax}
1 O%v,
—5 (v — a4 — as) "0‘27—2 =0. (3.43)

Juist as before, the two first-order equations involve only the first-order coefficients of
the velocity field and the pressure while the second-order equations involve coefficients
up te the second-order. Therefore, we must again solve these equations consecutively.
Sitice tressure is not a major concern in our calculation, we simply eliminate it by
combining the two first-order equations. It we differentiate this combined equation

with resnect to z and apply the incompressibility condition and Faraday’s law, we
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find
m 0;::1 + (=12 = 15) 0(11;5;2 + 74 0(;:':1
= AEEEEQ,_ZI:—')I:' + E, (Cl%f‘:—l + :“g:i‘;) (3.44)
where
m = o)+ a4+ a5+ ag, (3.45)
b= (ot g a), (3.46)
mo= glost ot ag) (3.47)
m = %((M + a5 — ma), (3.48)
M5 = %(“‘5 — g+ @), (3.49)

Inserting the linear solutions (3.15), (3.16) and (3.18) into the above equation, we get

for the amplitude of v,

_ E?r2d(Ae — Qo)

U,y = : 3.50
Ot 2r(T2w? + 1)¢ (3.50)
where

€=t + (=12 — ) + s (3.51)

Hence, the first-order coefficients have been complets v determined. Not surprisingly,
we can readily sce that these expressions are exactly tie solutions obtained in ihe
lincar thoery. This is encouraging becanse it indicates that our present. technigue is
at least consistent with the analyses done in the past.

Next, we solve for the second-order coefficients v, and v,9. If we substitute the
first-order cocfficients in the second-order z-component equation and differentiate it

with respect to z, we obtain, after applying the condition of incompressibility,

} 03":2 021)2 037’:2 . .
WEF "~ D22 + (g — "/Z)m + A, sin(2px) sin(2qz) = 0 (3.52)

with

aE*Ao

Yelf P
A, = (25 + b+ Ony — 4my)Aq — kng? — >
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v o

A
+2(m — 12 — 774)‘;2 — pX(knr® + 2k33)] . (3.53)

If the same is done to the second-order z-component equation except that we carry

ont. the differentiation with respect to x instead, we get

03,{’,:2 021)2 03
M s T Drds + 75 o 0 + A.sin(2px)sin(2qz) = 0 (3.54)
v h
A, = MF" {[oab — (4bg + 3a*w?)T)(oy + o17°) + 4g2A5}
- [’1(‘ a+ kur?) + (m —m — 3m — 2n5)A] — pg*A(n3 + ). (3.55)

Since the smne pressure term appears in both of the ahove equations, it can be
removed by subtracting the two equations. If we then differentiate the resultant
equation with respect to z, we can use the incompressibility condition once more to
transform it to an equation involving only the second-order coefficient vo:

7’152 DMy 0, .
0y, T )y 20( 4 AL)sin(2pe) cos(2g:) = 0. (3.56)

Since the derivatives in the above equadion are of even order, the spatial part of v,

must. be made up of the second-order harmonics sin(2pzx) cos(2¢z). Hence, if we put
1,9 = Bsin(2pz) cos(2¢z), (3.57)

we find, by substitution, that
_ —q(A; — A.)
8[ptm + ¢'n3 + PPg*(m — 12 — 15))]

Then, the second-order coefficient v.5 can be found through the incompressibility

(3.58)

condition. It is not difficult to see that v.o must have the following form:
vy = —-dB('os(2par) sin{2qz) + I/ (z). (3.59)
q

An equation for 2'(xr) can be found if we simply combine Eqns. (3.52) and (3.54) to
get rid of the pressure term and substitute (3.59) into the resultant equation. This

leads us to the equation

9 . (3.60)
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Since 74 is in general non-vanishing, we assume A'(x) to be zero and omit it in the

rest of thie calceulation.
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Figure 3.1: Typical plots of the solutions to the electro-hydrodynamic problem: (a)
the director field, (b) the velocity field, (¢) the induced current density at ¢ = 0 and

(d) the induced current density at t = T'/2.

Thercfore, we have finally obtained the second-order corrections to the lincar
solntions. For illustration purpose, typical plots of the director, the veiocity and
the current density are displayed in Fig. 2.1. Note that the nonlinear effects are
much too subtle to be detectable on these plots. However, these nonlinear terms
will play an invaluable 1ole later in the chapter, when we use these solutions to
construct a phenomenological free energy for the nematic system. Although this is
only the first step beyond the lincar approximation, the equations and the algebra
involved are already very complex. Going beyond this order of approximation becomes
exceedingly cumbersome. For this reason, we shall restrict ourselves to expansions

up to the sccond-order in 6, only. Doing so will, no doubt, affect the accuracy of our
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final results. One foreseen disadvantage is that the high order coefficients in the final
expansion of the free energy would be inexact and this could compromise the validity

of the expansion over an extended range in the parameter (the r-0,) plane.

3.3 The Rest State to Normal Rolls Transition
Line

The transition from the rest state to the normal rolls takes place at a well defined
(hreshold voltage and this voltage increases with the electric field angular frequency.
The points at which the bifurcation takes place in the voltage-angular frequency plane
form the trausition line. In this subsection, we demonstrate how the frequency depen-
denee of the threshold voltage can be caleulated from the torque-balance equation, as
a consequence of Helfrich-Carr scenario. Since we arc only concerned with the transi-
tion voltage, the perturbation and, in particular, the amplitude 6, can be taken to be
arhitrarily sinall. Under these circumstances, the non-linear terms and the sc ond-
order corrections to the solutions are unimportant to the calculation and thercfore
can be dropped. As a result, what we are about to demonstrate is equivalent to the
linear version of the theory established rigorously by many authors. The steps and
the discussions we present here can also be found in [4, 5, 6].

Since this is a two-dimensional problem, the z- and the z-components of the
torques vanish identically. Then, in our frame of reference, the y-component of the
torque is defined as

of
= — 3.61
50 (3.61)
where f is a free energy density and the derivative on the right is the functional

derivative:
é 0 d 0
gb-~b—0-—za-;:[———a(aio)]. (3.62)

Let us first consider the torque exerted by the total electric field on the director.
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From Scction 2.2, we know that the diclectric free energy density is given by
R JANS . 2 P
fe=——(-E) = —-—2—(EI cosf + E.sinf)*. (3.63)

Then, in the linear approximation, once the linear solutions have been inserted, the

diclectric torque is given by

_ (DoT = Ac)wsin(wt) + (Aetw? + Ad) cos(wt)
(o) + 0.72)(72w? + 1) cos(wt)

Tp=—0cE? [1 ] 8,  (3.64)

and its time average is simply

2 2 A g2
r, = _ DL [T WAog+or)+o,(1?+1) - AcTw ] w16, (3.65)

: 2 (og + 0.72)(T2w2 + 1)
To derive the deformation torque, we use Frank’s deformation energy (2.1). Since the
distortion of the dircector in the normal rolls consists of the splay and the bend only,
the twist terin drops out completely. Thus, the deformation energy density is written

as

l.“ o0 00 ., ks a0 a0 .
fa= 002 —8111001’) + (s 1()0~ +(()s()0r) (3.66)

Then, according to the definition (3.61), the elastic torque is written, in the lincar

approximation, as

Ty = (k3p® + k114° )18, (3.67)

Finally, for the viscous torque, we recall from Section 2.6.2 that the antisymmetric
part of the viscous stress tensor is the torque that the director exerts on the flow:
(it x l_;), = €10 ;. In the linear approximation, the tensor components o', and o',
are respectively given by

v, dv,
52 =+ = (014+(Y(, (ry)

1
o' = 5(013 + g + )5 (3.68)

and

0',1- = 1(04 + a5 + ().2)00 + ((1’4 + (x5 — (Yz) o . (3.69)
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Then, clearly, the viscous torgue th-t the flow exerts on the director can be written

S

Fv = - (U’rz - olzr)

_ Ov, )01),
= Ty M2

_(Ae - Aar)Ef(ag — a3r?)
2(T%w? +1)¢

‘U100 (370)

where the Parodi relation (2.103) has been used in the numerator in the last equation
to climinate the viscosity coefficients ag and «g and £ = €(r) is given in (3.51). Now,
the sum of the above three torques should be zero for stationary patterns. However,
the torques derived above are all proportional to the first order cocfficient u; and
the amplitude 0,. For nontrivial solutions, these factors drop out of the torque-
halane. equation, leaving behind an equation which describes the dependence of the

magnitude of the external field E, on the field angular freqnency w and the normalized

domain spacing 7:

Der2@ [720 (o) + oy r?) + o (P +1) — ETUJQ] _

2 (o +oLr?)(T2w2 + 1)
(AaT — Ae)EZd(ngr? — ag) 2rd\? . _
A+ e e x ) TR (3.71)

But once we recognize that the root-mean-square voltage Vi, is given by E,d/ V2,

the above equation can be converted to a mor» useful form:

o mkur® 4 k) (rW? 4+ 1) {(0’37"2 —~ )(9)EL — €91)

V2L =
rms 7'2(7 24 1) (UH + O'_LT2)€(T)

2 2 -1
+Ae A 2 El,z . (3.72)
l_()’“ +o,r- &y +eyr

We see that 172

rms

is even with respect to r. This means that for a given angular
frequency, there are two degenerate states denoted by ri as the applied voltage is
increased beyond the threshold and that this threshold voltage must correspond to
the minimum of the two-dimensiona! curve V2 (r). Before we proceed to compute

the threshold voltages, there is an additional experimental condition we must be
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k1 6.10 x 107'* N
K3z T.25x 10712 N
oy 6.5 x 1073 Kg/m/s
¥y —77.5 x 107 Kg/m/s
a3 -1.2x 1073 Kg/m/s
vy 83 x 107% Kg/m/s
as 46 x 1073 Kg/m/s
g -35x 1073 Kg/m/s
&l 4.72x £,
€. 5.25 X £,
/oL ~ 1.5

Table 3.1: Physical parameters for the room temperature nematie liquid crysial

MBBA |5, 6).

aware of. Although the above expression is made up of physical parameters, all but
two paramcters are known experimentally. Due to technical difficulties, so far, the
conductivities oy and o) have not been measured independently. Ouly the ratio of
7| to o1 has been established approximately for the most popular room temperature
nematic liquid crystals [30, 31]. MBBA, a room temperature nematie liquid crystal
on which the rest of our analysis is based, is among them and the ratio oy /o has
heen found to be roughly 1.5 [31]. The rest of the physical parameters for MBBA is
listed in Table 3.1 for reference.

Without a precise value for either o or o, it appears that we are unable to
proceed with our comparison with experimental observations. However, we can avoid
dealing with the precise values of o and o temporarily if we introduce the (dimen-
sionless) reduced field angular frequency o' = wey/ay. Then, expression (3.72) can bhe
rewritten so that the conductivities o and o always appear in the ratio oy/o1. Now,

we have sufficient information to plot (3.72) and obtain the threshold voltage for cach
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Vims (V)

FFigure 3.2: The root-mean square voltage plotted as a function of the normalized

domain spacing for various values of the reduced angular frequency.

given &' by iinimizing the root-mean-square voltage with respect to r. Later, either
a or o will e chosen so that it yields the best possible fit to the experimental data.
Therefore, we do have an adjustable parameter in our model. However, we should
not regard this as a deficiency of the theory since this is merely duc to the lack of
experimental information (currently at our disposal).

The root-mean-square voltage is plotted as a function of the normalized domain
spacing r for various values of o’ in Figure 3.2. The figure shows that the threshold
voltage increases with the field angular frequency and that there appears to be a cut-
off angular frequency at which the threshold voltage becomes infinitely large. Ber-nd

this cut off point, formation of normal rolls become impossible. Figure 3.3 displays
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the transition line, as a result of mininuzing the root-mean-square voltage numerically

900 7 ; . ‘ , _ l
800 | - . | ‘ . ‘ |
700 R o ' . . .
600 + . . , ' |
500 |- : 4 ; |

Threshold Voltage (V)

300 -

200

100 -

0 § o t T 1 1 L

0 0.2 0.4 0.6 c.8 1 1.2 1.4 1.6
Reduced Angular Frequzncy

Figure 3.3: The normal-roll trausition line. The solid line is the theoreticai result,

derived from (3.72). The diamonds are the experimental measurements.

with respect to r, and the experimental measurements for MBI\ Herforined by the
Orsay group {13]. First, we uote that the rednced ent-off angular frequency at roughly
w' = 1.43 has become more apparent on this plot. Secondly, we have ci:osen the
conductivity oy to be 1.87 x 107%Q ' m~1 5o that the experimental e asurenment
on the extreme right of the graph lics exactly oua our transiion line. We see that
the agreement. with the experimental observations is not bad at all. The transition
line is slightly lower at low frequencies, but this is probably due to the semi-rigid

houndary conditions that we have assumed. Thus, we see that, althoug': the boundary

conditions are less realistic, they do not lead to an unacceptable diserepancy after all,
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Ly

Finally, we plot the normalized domain spacing as a function of th~ threshold voltage

in Fignre 3.4, thereby eliminating the reduced angular frequency o' and the need to

08 - e -
07 - PP PP
0.6 -
0.5 +
0.4 -
g ; — ,
8 12 1o

Threshold Voltage (V)

Figur+ 3.4: The normalized domain spacing plotted as a function of the threshold
voltage. The solid line is caleulated from the linear thoery; the dots :epresent the

experimental measuremeits,

adjust the conductivity . Thus, the result is independent of wmy parametrization.
The experitiental data due to Meyerhofer and Sussman [14] are superimposed in
the figure to demonstrate the good agreement between the linear theory and the

observations.
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3.4 The Energy Method

In the above section, we have scen that the linear version of the continuum theory
doces produce threshold voltages chat agree with experimental observations very well.
Nevertheless, the theory was unable to provide information as te how the modula-

tianal amplitude 8 of the director varies across the transition point (since 8, dropped

out irom the toryg ce equation completely). Since, according to experimental
cleervation 9, inen - from zero and follows a power-iaw relation as the system

tratsiorm. frone its low-voltage to its high-voltage state, 8, can be taken as an ordey
parameter as he Landau theory of phase transitisn. Taking this idea one step
further, in this section, we propose using an energy method to deseribe the eritical
hehavior of the sormal rolls. Jo the following, we postulate a phenomenological free
energy for the nematic system driven slightly out of equilicrinm. Then, making nse of
the linear and the nonlinear solutions found in the previous seetions and minimizing
the free energy with respeet to the appropriate parameters, tae entical behavior of
tue normal rolis is displayed through a series oi nifurcation diagrams.

The use of the energy method in dissipative systems is still controvorsial, Never-
theless, in a recent review by Cross and Hohenberg [32], it has been poiated out that
altliongh in general no free energy or Lyapunov potertial can be defined for nonequi-
librium systems, there remain nctable exeeptions iv which the evolntion equations
can be written in a grad.ent form

N oG
ot T b=

(3.73)

with T being a positive kinctic coefficient and G a generalized free energy functional
of the complex order parameter ¢ and ”. Morcover, the functional GG can be shown
te be equivalent to a Lyapunov function. In fact, tae above evolution equation has
heen found to be applicable to many physical plienomena involving non-equilibrinm
processes [33], such as second-order phase transition of a junction laser [31] and

propagation of a two-phase interface [35]. For the non-equilibrinm systens, Eqn.
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(3.73) describes the time relaxation of the (non-conserved) order parameter towards
its stationary state. {u the case where the stationary state is of primary interest, the
time-independent equation is used instead and a mini: aization principle is applied to
the generalized frec energy to determine the stationary solution. Common examples of
such are Rayleigh-Benard conveetion [36] and supereanductivity [37, 38, 39]. The use
of minimization principle in non-equiiibrinm phase transitions has also been rigorously

justified by Graham {40].

2.4.1 A Phenomenologicul Free energy

To account for the elasticity, the interaction with the clectric field and the coupling
Lotweors the director and the flow, we post ate ti-2% ~he iree energy density is made

p of three separate contributions:
f = f)-,‘ + fd + fv (374)

wher. [ represents the dielectric fice energy density, fq the deformation free energy
density and f, the free energy density due to the coupling with the viscous flow.
We have already encountered the first two contributions on the right previeously, so
ihiey can be written down quite straightforwardly although the algebra beconies very
involved at this stage. The dicleetric free energy density has already been given in
i2qu. (3.63). We shall expand it in powers of 7 Lrector tilt angle . But we must
he caveful to keeo a sufficient number of high-order terms because, as in any one-
dimcnsional pr - m, the lowest-order terms determine where the biturcation takes
place; however, it is the high-order terms that determine the order of the transition.
For this purpose, we decide to retain terms up to the fourth-order in 8 consisteatly
throughout the rest of the calculation. However, from previous sections, our solutions
to the eleetro-hydrodynamic problem are expanded only up to the second-order in 6,.
This means, not all of the third- and the fourth-order terms (in 6,) will be present in

the final expression of the free encrgy. Returning to the dielectric free energy density,
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we expand (3.63) in powers of 8 as

A . 4 ,
eo= -5 (32 ~ EX? 4 2E.E'.0 + 25, B0 — SEE6"

4 E6% + 2E' . E.0% + E20* — -};L‘fﬂ") . (3.75)

Note that the - st term on the right is inds peneic: - of @ and does not deseribe

an interactic i w.ih the director. Ther fore, it car: be dropped without any loss of
generality. I view of the solutions we sbtzined in the last section, we see that this free
cnergy density is spatially as well as time dependent. Therefore, the mean free energy
is obtained by taking average over space aud time. Once the perturbative expausions
(3.7) arc used and the solutions (3.15) to (3.17) are inserted into the ahove expression,
the integrations can be carried out in a straightforward manner. It can be shown that
all third-order terms vanish identically as a resuit of the integrations and that the
resultant dicleciric mean free energy F can be written in even powers of the order-
parameter 8, with the coefficients dependent voon » 2w ¥ w. Since these operations
tend to produce rather lengthy and tedious expressions which do not illustrate awy

interesting physies, we shall ~mit the intermediate steps and simply present the final

result:
Fp=CFe*+Cfo}+... (3.76)
where
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The deformation free energy density, given in (3.66), can be treated in a similar

way. Expanding it in powers of the tilt angle 6, we obtain

Ja *< 2 )[2601‘02 0((% +6 oz

ki (00N Ky (00)° .
L= =) . 3.7
+ 2 (0:) + 2 (01) (3.79)

Using the - rturbative expansion for the tilt angie as in (3.7) and inserting the so-
Intions (3.15) and (3.28), we average this free energy over space and turn it into a
quartic polynomial of 8,. Again, the third-order term vanishes identically after the

integrations. Thus, we find

=Cy 2 e+ (3.80)
v here
P 7?2 / 1\733
= — 3.81)
cf = 2 (b ) (3.81)
1
C'.';l 17 [ (k11— gy (— - 3) + 4(knr? + '7533)] . (3.82)

The free energy density due to the viscous flow is something we have not considered
explicitly before. The only information available to us is that the viscous torque that
the iow exerts on the director is given by the antisymmetric part of the viscous stress
tensor. Although we propose this free energy density as a phenomenological model,
it is still desirable to writ~ down f, 2 such a way that the viscous torque is derivable
from it. Henee, to obtain an expression for the free energy f,, it seems logical to
look for an energy function that is dependent on ¥ and 7 only, even with respect to 72
and produces the correet viscous torque. So, our first step is to examine this viscous

torgie taere closely,



3.4 The Encrgy Method 76

As we have pointed out earlier, the only non-zero component of the torque that the
flow cxerts on the director is the y-component given by I'. = — (o', — a’,;). We have
already worked out this y-component in Section 3.3 and the expression in the linear
approximation is given in (3.70). However, because of the presence of nonlinearities
in onur model, it is importaut that we obtain a more exact expression for it. Beginning
with the molecular field A g.ven in | 2.99) where the field is expressed in terms of the

conjugate thermodynamic fluxes, we can write it in the conduction regime as

he = —%((1‘3 — ay)n, (%I: - %%)
4 (g +ag) | du, + n, (v, N du, ]
R R du 2 \ 0z or )}’
hy =0, (3.83)
1 v,  Ju,
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ez —ay) . gz F 2 \ 0z F or ( )

v hlere all conveetive terms have " cen omitted, in accordance with the electro-hydro-
dynamic ealenlation presented . the last section.  Since the y-component of the
viscous torque is the only non-vanishing comp uont, the viscous torque is simply
given by I', = — (7 x i_;)l, = —(n.h, — n.h.). Inserting the above expressions for the

components of i, we can simplify it to

1 fOv,  On. 1 du, dv.\ .
Iv = Slog—0o)| 5= = 5}“) = laa ) ({7 = 5= | sin(20)
- %’i + %l; cos(20)] . (3.85)

Since the viscous torque is given by the cross product —(ii x k), naively, we can
express the corresponding free energy density in terms of the dot product (i - l:)/?,
analogous to the dielectric torque an electric dipole exp riences in an electrie field. It
is not difficult to see that, this trial free energy density can be further written as

1 -
£ —(*-l
2_n 1)
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) . , O . . 1y . d 'z 0 z
- et [(:osz 9%3; + sin? 9%1-:— + sinf cosf ( 82 + f;.;' )] (3.86)

and the corresponding viscous torque is

of
T = =
o
_ o+ oy [(Ov, Ov.\ . dv, inz_
= - [((’)r ~ 7, ) sin(260) — (02 + 0:v) cos(20)] . (3.87)

This torque corresponds to only the last two terms on the right of Eqn. (3.85). Thus,

[ alone does not, suffice. However, the tetal viscous torque cau he enitrely accounted

for if we add to f an extra term

j=~(f%ﬁ‘é)z7.[(\?-ﬁ)mﬁx(ﬁxﬁ)]. (3.88)

Althougl it looks very complex. it can be shown to be ieduced to

. a3—m Rl 06
j=-" (“(’): L:BIE) . (3.89)

Then, taking the functional derivative of 7 with respect to 6, we find that the coire-

sponding torque is given by

SUEL Sl $LC0E ?i) . (3.90)

This is exactly the first term on the right of Eqn. (3.85). Theorefore, the er..gy

furiction that produces the correct viscous torque is given by

o=~ Ty - %(03 — ) [19 i)+ 7 x (V x )] (3.91)

B! =

Rearranging this expression, we can put it in a more compact form:

1 -~ a7 [
fo= —-5(71 -H) (3.92)

where

H= (g = ) [(V - i1)F + (V x 1) X 7| - h. (3.93)
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We shuil call the field H the generalized molecuwar field thereafter, in contrast to
the molecular field & due to de Gennes [20]. Thus, this free energy density favors a
parallel alignment with the ge: ~ralized molecular field.

Having written down the explicit expression for f£,., we make use of the expressions

(3.86) and (3.89) and expand it in powers of the infinitesimal quantities:

- aﬁﬂs)% gy Qege (O (__2_2)
fo = ( 2 [017(1 U)+0..()+ :+0.17 ! 39 f

g — QN 00 00

If we insert the expansions for  and @ & listed i (3.7) and the solutions we obtained
in Section 2.7 into the above equatic::, wwe can again write it as a quartic polynomial

of the order-parameter 6,. Then, after averaging, we get

F,=Cy02+Cy00+... (3.95)
where
_ Ela(agr® - .
C‘]Y — -_—-——___— .
2 8(w?7? 4 l
2
v 20 .
cy = - IO T 1% [(uz +a3)(3+4128r — 512 — 4BrY)
~4B(a3 — a)r{r? +1j] . (3.96)

The total mean free energy for the nomatic system can now be construeted by sumi-

ming the quartic polynomials (3.76), (3.80) and (3.95):
F=Cy0*+Cy0} 4 (3.97)

where

kas V2 Talag —agr?)  De(2b - g)
— Tms _ D 3.9
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Si = (24, — bg+ 29%) + a(24, — ag)w? + 21w (aA, — bA;),  (3.100)
Sy = !/[(lwz(A?E_L + A](f_j_) + (b - g)( 01 — A1w2€l)]
+ 140} + €5 w?)awt (A7 + A1) + (b — 9)(A2 — A7) (3.101)

The substitution V,,,, = E(,(l/\/ﬁ has been made to simplify the above expressions

Since the phenomenon involves a continuous (second-order) phase transition, we ex-
neet. I to bifureate from a single well form to a double well one as the applied voltage
exceeds its threshold value V.. Consequently, the essential physics is captured by
the first two terms in the expansion. For simplicity, we shall therefore truncate the

oxpansion at the fourth-order term as
F=Cy6%+Cy6 (3.102)

By applying the minimization principle, this mean free energ - allows us to deter-
mine the stationary state of the system at any given voltage and angular frequency.
Considering the complexity of this mean free energy, we believe that a global search
for the minimun may not be feasible cither analytically or numerically. We have thus
decided to limit the search region to a subset corsistent with experimental observa-
tions and a stability eriterion and to resort to numerical techniques for the remainder
of the analysis.

We already know that, in the neighborhood of the transition point, 6, is close
to zero ard the width of the rolls remains comparable to the thickness of the cell.
Experimental observations [16] have further indicated that r decreases slightly as the
voltage continues to increase. It is therefore reasonable to limit our search region
first to [0,1] x [0,1] in the 8,-r parameter plane. In addition to these experimental

mdications, for stability reasons, the fourth-order coefficient must always be positive
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Figure 3.5: The fourth-order coefficient p' : :d 5 a functiou o7 the normalized domain

spacing r at ' = 0.5 for different values of /.,,,.

in the region of our search. Using the standard m: " ial parameters for the room
temperature nematic liquid erystal MBBA (see Table 3.1), in Fig. 37, - - disj i+ v
typical plots of Cy at the reduced angnlar frequency of W' = wey/ay = 0.5 for three
different values of the applied rms voltage. We readily note that the coefficient
becomes negative in the ceniral region of the graph. This anomay could be caused by
the inexactness die to the truncation of the serirs selutions as pointed ont, earlier. It
could also mean the presence of a metastable state, which is allowed to ex.st when the
fourth-order cocfficient becomes negative while the sixih-order coefficient is positive
i.c. when the free encrgy des:lops local minima. To prove that a metastable state

actually exists in our system, we wonld have to calenlate the sixth-order coefficient
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Figure 3.6: The second-order cocfficient plotted as a functice. =% noii shred do-

main spacing r at ' = 0.5 for diffevent values of Vona-

oxplicitly and this is beyond the scope of our analysis. It will. therefore, be feasible to
limit our search interval of r to the range [0,8) where 6 is the critical | >int at which
', first crosses the r-axis in Fig. 3.5.

We again fix the reduced field angular frequency o' at 0.5 for the purpose ol
illustration and plot the second-ordler coefficient C, as a function of r for three different
values of the applied voltage in Fig. 3.6. Evidently, so long as the voltage is below a
critieal value, the coefficient is positive everywhere. Since Cy is also positive within
the region of our search, this indicates that a single well with its minimum located
somewhere on the r-axis is present in the potential. The corresponding stationary

state (0, = 0) can therefore be interpreted as the rest-state of the nematic cell.



3.4 The Encrgy Method 82

However, as shown in the corresponding figure, once the voltage exceeds its critical
-alue even slightly, the coefficient becomes negative over a small range of r meaning
that the single well in the potential has split into two wells and these wells have
drifted away from the r-axis. Although there are now two cquivalent minima, one
with 8, > 0 and the other with 8, < 0, physical constraints on 6, demand that the
minimum located in the positive quadrant of the parameter plane corresponds to the
true stationary state of the system. Since this state has a non-zero 6, it corresponds
very naturally to the normal rolls.

It is now clear that the bifurcation must take place at the point where the
curve in Fig. 3.6 just touches the r-axis. Setting Cy to zero, we cau re-arrange the

equation and express the rms voltage as a function of » and w as follows:

LI : 2(yr? — an)(oye L — ego r? + 1)
V2 = kit k) (7 + 1 : 2) (oL —enay)
e 7"( i k) (W 1) (o + ¢ 1i2)E
A [(u(r +2)—oy | Twe (r*+2) ~ g 3.103)

L (fi;+(7.L'/'2 ep +egr?
Except for some numerical factors (factors of 2’s), this equation is identical in form to
the compatibility condition (3.72) derived in the linear theory, The reason that these
two cquations are not identical is still unclear to us at this point. We hope to resolve
this issue in the future. To obtain the transition curve for the purpose of comparing
theory with experiment, we minimize the above rms voltage nmnnerically with respect,
to 7 over a range of angular frequency. Taking the material parameters for MBBA
directly from Table 3.1 and setting the conductivity o to 1.19 x 107*Q " 'm =1, we
compare our theoretical transition line with the experimental measurements [13] in
Fig. C.7. We sce that the result of our analysis does not agree with the experimental
data quite as well as the linear theory does. However, the discrepancy is not too
large and the transition line does fit the data qualitatively well. If we allow the ratio
oy/aL to deviate from its generally accepted value 1.5 and re-calibrate o to 1.85 >
16-8Q-1m=1, then the resultant transition carve as shown in Fig. 3.8 compares very

favorably with the experimental measurements [13]). Therefore, a stnall shift in the
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Figure 3. The transition line for the rest-state to normal-roll transition. The solid
line is calenlatad by minimizing Eqn. (3.103) with respect to r; the dots represent

the cxperimental measurements.

ratio oy /oy has resulted in a very good agreement with the experiinental observations.
This however is to be expected since lowering the ratio o) /o corresponds to reducing

thie hydrodynamic torques and the threshold voltage must increase to compensate.

3.4.2 Bifurcation Diagrams

We finally turn our attention to the bifurcation diagrams for the continuous rese-state
to norinal rolls transition. These diagrams can be constructed by minimizing F' with
respect to the state parameters r and §,. With all the physical parameters for MBBA

taken direetly from Table 8.1, we have employed a multidimensional minimization
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Figure 3.8: The transition line for the rest-state to normai-roll trausition. The solid

lineis caleulated at o /oL = 1.15; the dots represent the experimental measurements
»

algorith:m [11] to miniinize F at o’ = 0.5 for a range of V slightly above the threshold
voltage. For the conductivity oy, we have chosen the valne 1.19 x 107511 s0
that the reduced angular frequency corresponds to the actual frequeney f =227 1z
where a continuous transition has indeed been observed [13, 14, 15]. Fig. 3.9 displays
the trajectory made by the minimum of F' on the positive quadrant of the paramater
plane as the voltage increases from the threshold value. Quite elearly, the normal-roll
structure emerges with a finite periodicity (normalized domain width of r = 0.755)
regardless how minute the modulation of the director is; furthermore, 8, can be seen
to increase nonlinearly with the applied voltage. In Fig. 3.10, we plot the amplitude

0, as a function of the reduced voltage e. We can sce that 4, does inerease nonlinearly
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Figure 3.9: The trajectory made by the minimum of F in the positive quadrant of

the parameter plane.

with € near criticality. As for the question whether it has the observed power-law
hehavior, we turn to the log-log plot as shown in Fig. 3.11 where 6, is seen to increase

with € according to

0, = A" (3.104)

where the critical amplitude A and the eritical exponent /# have been found to be
3.43 and 0.50, respectively. Our critical exponent is therefore in excellent agreement,
(within a 0.6% crror) with the experimental observation [17].

Next, we present the bifurcation diagram for the normalized domain spacing 7 in
Figure 3.12. As shown in the figure, near criticality (¢ < 0.001), the domain width

increases linearly with the reduced voltage. Although an experiment performed by
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Figure 3.10: Bifurcation diagram for 6, near criticality.

Joets and Ribota [16] shows that the domain width decreases with the reduced volt-
age, since their data were collected in a region where € was much greater than 103,
their findings may not be in direct contradiction with ours. Perhaps, a cross over be-
havior exists somewhere between these two regimes. We conld in principle extend our
caleulation to the region where € would be of the order 107! so that comparisons with
experiments would be possible. Hewever, in this region, the amplitude 6, becomes
sufticiently large so that the higher order terms become significant. Since the fourth-
order coeflicient in our mean free energy expansion is not exact, we do not expect
the bifureation diagrams to truly reflect the behavior of the nematic system when
0, is sufficiently large. Knowing from experiment that the ¢'/2-dependence continues

to hold true up to at least € = 0.1 {17], we can determine the range in which our
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Figure 3.11: A log-log plot of the bifurcation diagram for 8,.

analysis applies by extending the bifurcation diagrams until a significant. departure
from the experimental observation appears. The bifurcation diagrams for » and 0,
constructed over an extended range of € arc shown in Figure 3.13 and 3.14 respec-
tively. We can clearly see that the amplitude 8, departs from its ¢'/2-dependence and
increases drastically as € becomes sufficiently greater than 107 while the normalized
domain spacing 7 deviates from its lincar dependence as € exceeds the same value.
Therefore, we must conclude that our model is valid only for € < 0.001.

So far, we have examined bifurcation diagrams for a fixed angular frequency.
Here, we allow the angular frequency to vary and examine if this has an impact

on our model. Figures 3.15 and 3.16 display, for a sclection of reduced frequencies,

the bifurcation curves for the normalized domain width r and the log-log plot of the
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bifurcation curves for the amplitude 6, respectively. These diagrams strongly suggest
that the dependence of these eurves on € is independent of angular frequency. The
angular frequency dependence of the second-order coeflicient Cy has already been
investigated previonsly: in effect, increasing the angular frequency simply leads to
higher and higher threshold voltages until a cut-off angular frequency is reached.
T'he fourth-order coefficient C4 as a function of r and V,,,, Lias once been shown
in Fig. 3.5. Varying the angular frequency does not lead to any significant chuanges
in these curves and thus no interesting observations can be made. However, if we
plot the value of Cy at the transition point as a function of the reduced angular
frequencey as shown in Fig. 3.17, we sce that the critical value of Cy is a decrcasing
finetion of W' and becomes negative for o' greater than a critical value o', =~ 1.03.
As is well known in the theory of phase transition, the sign of Cy determines the
order of the transition: the transition is of the first-order if Cy is negative but of the
sccond-order if Cy is positive. Hence, from Fig. 3.17, we predict that the transition
line for the normal rolls is of second-order for ' up to the critical value o', and
of first-order for W' > W'.. In other words, there exists a tricritical point (a point
where the order of transition changes from the sccond to the first order or vice versa)
on the transition line at o' = W'.. For the purpose of illustration, we have used
the standard material parameters for MBBA to compute the curve for the critical
(’y in Fig. 3.17. We have then found that the curve hehaves qualitatively the same
even if a non-standard valne (1.15) for the conductivity ratio oy/o, is used. If we
choose o = 1.19 x 1078Q~m =1, the above critical value w, corresponds to the actual
frequency f. = 46.8 Hz. Since our fourth-order cocfficient is only approximate, a
precise determination of the location of this tricritical point is not possible at this

time and henee the above critical value should only be taken as a rough estimate.
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3.5  Summary

3.5 Summary

The use of a generalized free energy description in nonequilibrium processes is still
open to debate, Nevertheless, we have proposed to use a phenomenological free en-
crpy to describe the voltage dependence of a nematic layer driven slightly out of
cepuilibrinm. In order to describe the evolution of the normal rolls slightly above the
transition threshold, we have gone beyond the linear approximation and obtained
the first nonlinear correetions through the use of series expansions similar to the e-
expansions. Our results compare qualitatively well with experimental observations.
A good quantitative agreement is also obtained: the critical exponent for the ampli-
tude 0, deduced from the bifureation diagram agrees with the experiment to within
0.6%. Although the results of our analysis have a rather limited range of validity
(0 < ¢ < 0.001) probably due to the carly truncation of the series expansions of the
ficld variables, the present model has an advantage over the multi-scale/amplitude
deseription in that the €!/?-behavior near the threshold is a direct consequence of the
model and is not an a priori assumption.

Finally, onr model has yielded another important prediction in regard to the
formation of normal rolls. Unlike earlicr results, the present model suggests that,
at sufliciently high angular frequencies of the electric field, the regular straight rolls
could be formed via a first-order transition. This prediction immediately points to
the presence of a trieritical point on the low-lying transition line.

While discontinuous transitions from the rest-state to the oblique rolls have been
commonly observed at low angular frequencies [15, 16, 44], a discontinuous transition
from the rest-state to the normal straight rolls at a higher frequency has only been
reported once so far. In a recent paper by Rehberg et. al [7], a subcritical (dis-
continuous) bifurcation of the uniformly aligned state to the normal straight rolls is
reported and a bifurcation diagram demonstrating hysteretic behavior is also shown.
The experiment however was performed at the fixed driving frequency of 45H z (which

comes close to our predicted trieritical point at f = 46.8 H z); therefore, the presence
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of a tricritical point on the primary transition line cannot be established based on
their experimental observations. From the theoretical point of view, the standard
model (the lincar and the weakly nonlinear analyses on the macroscopic determinis-
tic cquations of motion) predicts only a forward stationary (supereriti -al /continuons)
hifurcation and no other method has yet implied suberitical bifurcations at the first
transition thresholds. This puts our energy formalism in a very good perspective.
Although obtaining further quantitative agreements with the experiment would cer-
tainly exceed the scope of our present analysis, the present approach allows one to see
that the possibility of a suberitical bifurcation is due to the existence of local minima
(inctastable states) in the phenomenological free energy and thermal fluctuations is

associated with fluctuations between these metastable states.
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Chapter 4

Weakly Nonlinear Analysis

It was assumed for some time that a uniformly aligned nematic thin film in the pres-
ence of an a.c. electrie field always transforms first into the normal straight rolls,
as the field strength increases gradually. However, experiments later demonstrated
that such a nematic thin film can also transform into the oblique (zigzag) rolls first
provided the field angular frequencies are sufficiently low [15]. This observation imme-
diately implied the existence of an nnexpected triple point in the primary transition
line, separating the rest state, the normal rolls and the oblique rolls. This subse-
quently led to a number of investigations attempting to provide theoretical models
for the formation of oblique rolls at low angular frequencies [6, 42]. Since an addi-
tional periodicity is added to the convective structure in a new orthegonal direction,
a three-dimensional analysis is indeed necessary. Furthermore, based on the notion
that obligue rolls can be formed only if the director is given the necessary freedom,
the director field is allowed to have two rotational degrees of freedom in all available
models thus far. These include 1) a compichensive three-dimensional model based on
adirect linearization of the basic equations of motion [42] and ii) a weakly nonlinear
analysis which involves the use of multi-scale expansions [6]. The former demon-
strated successfully that formation of the oblique rolls from the rest state is feasible

helow a eritical angular frequency: however, quantitative agreement with experimen-
]
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tal observations is still lacking. In the latter case, the extra degree of freedom given to
the director combined with the use of fully rigid boundary conditions led to a system
of very elaborate equations and expressions so complex that they can be analyzed
only with the aid of a computer.

In this ~hapter, we re-examine the formation of oblique rolls from the uniformly
aligned state. Using the technique of multi-scale expansion, we hope to demonstrate
that the extra degree of freedom given to the director by the previous anthors is not
required for the oblique rolls to form and that an amplitude equation of Landau-
Ginzburg type remains a valid equation for the small seale variations near the critical
point. Semi-rigid (stress-free) boundary conditions will again be used throughout
the chapter in the hope that our solutions will be expressible in closed analytical
form and our expressions will become somewhat more manageable. Comparison with

experimental observations will be made whenever possible.

4.1 The Multi-Scale Expansions

The underlying geometry of our calculation is identical to the setup deseribed in the
previous chapters. To recapitulate, we provide a simplified view of the nematic cell in
a distorted state in Fig. 4.1 where the appropriate coordinate axes have been attached.
Again, the applied electric field is denoted by E,=E, (:()s(wt)E. We assume that the
horizontal dimensions of the cell are so large that the effects of the lateral boundaries
can he safely ignored.

In order to demonstrate that the extra rotational degree of freedom of the director
is not needed for the obligue rolls to form, we ignore the azimuthal deviation of 7
and write it as a planar vector i = (cos#,0,sin#). Then, the variation in the roll
axes is a result of a phase modulation of these two components along the y-direction.
This view is at least backed up by experimental observations: Joets et al. [16] and

Ribotta et al. [15] have both concluded, based on their experiments, that deviations
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>N

Figure 4.1: Basic setup of a nematic liquid crystal cell.

of i from the vertical (rOQz) plane is not observable. Tlis is also plausible in the
vicinity of the triple point Af. For simplicity, we express the total (sum of the applied
and the indueed fields) eleetrie field in terms of the gradient of an electric potential
b as Ly = Fy — Vi so that Ampere’s law is satisfied automatically.

The fundamental equations of motion are again the same as those listed in Sec-
tion 2.7.2. To repeat them once more, bhesides the constitutive equations, they are
Maxwell's equations, the hydrodynamic equations, the incompressibility condition
and the balanee of torques relation. The solutions to be determined are the tilt angle
0, the veloeity components v, 2y, the electric potential ¢ and the pressure P.

Sinee, as we have already mentioned in the previons chapter, it has been demon-
strated experimentally by Rasenat et al. {17] that the modulational amplitude of the
director field bifurcates as a square root of the reduced voltage ¢ = (V2 — V2)/V2
(where Voand V. are the rms applied and transition voltages respectively) slightly
above a normal-roll instability, we can assume that this critical behavior is common

to all of our solutions and we can further incorporate their nonlinear response into
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tlie model by expanding cach of them (denoted by g) in fractional powers of € as
9= € et g4 (4.1

where g;'s are functions of space and possibly time to he determined later on and, by
adopting solutions of this form, we have assmued a zero reference value for the sealar
pressure P at the transition point.

Next, we follow the method of mmlti-scale analysis [36, 43]. Not too far from the
transition threshold, nonlinearities are weak: both spatial and temporal modulations
(due to these nonlinearities) of the hasic periodic pattern are therefore slow. In order
to separate the small scale variations in the alignment and the flow patterns near an
instability, we introduce a set. of slow space-time coordinates (X, Y, T') by scaling the

regitlar coordinates according to (0]
XN=eay, Y=y and T=ct (4.2)

and demand that the coefficients g;’s he dependent upon botl sets of coordinates i.e.
gile,y, 2,6 XY, T). This causes the spatial and the time derivatives appearing in

the fundamental equations of motion to transform accordingly:

o e TN

) D a0

dy — 0y te Y

9 9

E; dz

0 0

g L, 2,2 4.3
ot 2t T oT (4.3)

Furthermore, we expand the applied rms voltage V' according to

V=V,,(1+%(-é«2+...). (4.4)

Once the expansions in (4.1) are inserted into the equations of motion and the trans-

formations of the spatial and the time derivatives are carried ont, the equations of
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motion can be immediately divided into sets of simultancouns equations, each of which
is nssociated with a different order of €. In a manner analogons to applying multi-scale
analysis to the Rayleigh-Bénard convection[36], one sces that the lowest order set of
cquations will establish the lowest order solutions (the fundamental harmonics), 6,,
alr#) g and p,; the first higher order set wil! generate the second-order harmonics
and the sccond higher order set a solvaiility condition that will quickly lead to an
amplitude equation for the anisotropic system. The cocfficient 6, is not to be confused
with the modnlational amplitude of the director described in the previous chapter.

Here, 0, o592 ¢, and p, are the lowest order cocfficients in the e-expansions of the

form (41.1).

4.2 The Linear Balance

It this section, we will examine the equations due to the lincar balance or, in other
words, the lowest order ( O (61/2) ) sct of equations. These equations are found to
he:

(conservation of charge)

d 0%, Q. (0% 0o
(@ +enp) 5,z TloLters) (

Oy? 922
V2V, . a.] 98,
+ y [AFw sin(wt) — cos(wt)(Ao + AEEZ)] e 0; (4.5)
(incompressibility)
e ovd V3
AL L (4.6)

or Oy 0=
(torque-balance)

V2V,

8(]50] ( 9%0, 9?6 620,,)
il 0

\/E‘:- )
—A¢ y cos(wt) ] 6, cos(wt) — e 922 + koo 3 + k33 502
ov? v a6,
+ a3 P + ay o + (a3 — a9) Era 0; (4.7)
(r-component of hydrodynamic equation)
ot 1 %7 0%, 0Op, 1 0%z
e = plmtest )G e~ e Tl T mlpn,
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1 0%t 2p¥
+ 5 (aq + ag + a3) + (g + g — ag) 7=

02 oxdy
0%t
+ (o) + ay +015+ﬂ'r,)——2—; (4.8)
ox
(yy-component)
vl 19 (s + 05 + a )OU; +lag+a )011;‘{
P ot 99z |\¥ T AT Ml T T A T G,
1 8 [ovwy O 0%y Ip, ,
t3%5; ((’)z + Dy) 04 oy~ Oy’ (4.9)
(z-component)
dvZ 1 9 (oY + av: ta % Op, + 0%0,
= —a4— -2 ] - = 4w
P ot 2 Yoy \ 0z ' Oy T0:2 7 02 20tdw
R ¢, , %0 V2V, 20.] V2Ve
- — ] — A€ cos(wt) — qos(wt
[e” 522 + €y ( 9, + 522 Ae y cos(w )0.1.' y cos(wt)
1 0% 1 0?0z
+ -2-(014 + ag + “2)axaz + 5(04 + ag — (\'g)w (4.10)

where Ae and Ag are respectively the diclectric anisotropy (g — €1) and the con-
duction anisotropy (oy — 01). The constitutive equation J; = 0 E; and Gauss'’s law
liave been used to replace the current J and the charge density ¢ in the conservation
of charge cquation.

In order to write down their solutions in closed analytical form, we impose the
semi-rigid boundary conditions on them. This means that we allow the tangential
velocities at the vertical boundary surfaces to be small but nonzero ie. vy # 0 at
z = +d/2.

Following the usual approach in the amplitude description of pattern-forming
systems, we separate the small scale variations of the pattern near threshold by in-
troducting a complex amplitude A(X,Y,T) and then write cach solution as a basic
periodic wave with a slowly varying amplitude. If the spatial frequencices in the z-,
the y- and the z-dircctions are denoted by pz, py and ¢, respectively, the solutions

can be written as

0, = [A(X,Y,T)e?™ +c.c]eos(qz); (4.11)
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vF = [A(X,Y,T)e'"" + c.c]D sin(qz); (4.12)
v = [A(X,Y,T)eP" + c.c)Dysin(qz); (4.13)
vi = [A(X,Y,T)e"™ - c.c]Dj cos(qz); (4.14)
e = [AX,Y,T)e" ~ c.c)Gsin(qz); (4.15)

bo = [A(X,Y,T)e™ — c.c.)[B) cos(wt) + By sin(wt)] cos(gz) (4.16)

where the dot product # - 7 denotes p,x + p,y; c.c is the complex conjugate of
A(X,Y,T)e'™ and By s, Dyas and G arc constant cocfficients. Note that, under
the previously stated experimental conditions (below the cut off frequency), the di-
rector, the flow and the pressure are all time independent. The only time dependent
part comes in through the charge oscillation driven by the a.c. electric field. This is
manifested by a time dependent electric potential.

Substituting these solutions into the above lowest order equations (4.5)-(4.10)
results in a set of algebraic equations for the constant coeflicients appearing in
Iqs. (4.11)-(4.16). Due to the tediousness of the algebra involved, which does not
scem to be particularly instructive, we omit the intermediate steps and only report

hiere the expressions for these constant cocfficients found by solving these algebraic

equations:

—tap, (Lo + Wl Ae)
B = .
: w2} + 13 (4.17)
—iawp,(laAe — 11 Ao)
B, = - .
2 w2l2 + 12 (4.18)
p, =t (419)
3
_agpylsQ
D, = ol (4.20)
i
Dy = ;I'(Dlp.r‘*‘Dﬂ’y) (4.21)
G - i[(2n4 — 16)p=py D1 + 14 Do) (4.22)

2py



4.2

where

The Linecar Balance

m

9

ng

V2V,
d
= ar+agt+as+ag

= §(a4+06+n3)
1
= 5(014 + ag — a3)

1
= 5(014 + a5 + @3)
= %(014 + a5 — ay)
= ay
= eps+e1(q’ +1})
= oyp:+o(d®+p)
= [(ny—ng—n4+ ne)p? + n2(q” + 1’3)](’12 + 1’;2,) + ngp?
= 2nsp% +ne(q* +p5)
= (2n; —2n3 —2n4 + ng)pt + 2na(q* + ]):i)

= (I.AE])I - il]Bl.
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(4.23)
(4.24)
(4.25)
(4.26)
(4.27)
(4.28)

(4.29)
(4.30)
(4.31)
(4.32)
(4.33)
(4.34)
(4.35)

Besides these algebraic expressions, the above equations also impose a compati-

bility condition on the cocfficients. After some re-arrangement, this condition takes

on the following form:

2 _
Ve =

with

€o

T
—';(kll + k227‘§ + k337'g) {[((1’3 - 027'2)1‘2 — (1/27:/,/61] (
i

2

€o

pr -
He—1) (m -1

—

1
P:. =€n;b=ﬂ;7_L’f_’"L o= wk
q’ €1 o1 br2+r241° oL

)+w'2r(a ]/(1+w’2 7?)

—

(b -
(v

— g + g+ ag)rE + (a4 + ag + ay)(1+ 1y /2] (1+72)

a—T10~1

)

(4.36)

(4.37)

(4.38)



4.2  The Linear Balance 102

+ ((Y4 -+ (x5 — (12)7’:/2; (439)
£l = [(2()’1 - 2(}'2 -+ 2(!(; + (1/4)7'3 + (()’4 + g + (Y(;)(]. + 7'3)]
/ [((M + a5 — 02)7‘3 + (1’4(1 + 7'3)] . (440)

This condition functions in exactly the samne way as the compatibility condition (3.72)
derived in the linear theory. Moreover, comparing these two conditions, we see that
the above condition has an extra dimension (r,), thereby allowing oblique rolls to
form.

With 7, and r, taken as the state parameters, at cach modified angular frequency
o', the transition voltage is a three-dimensional surface and the threshold voltage that
makes physical sense must correspond to its minimum. We display in Fig. 4.2 contour
plots of V2 at three different reduced angular frequencies. As shown in the figure, the
surface bifurcates from a single-well to a double-well type as o' falls below a critical
value w,/. Since having a non-zero value of r, at the threshold means the presence
of a periodic distortion in the y-direction, this bifurcation can be interpreted as the
normal-to-oblique rolls transition. Morcover, the precise location of this transition
point on the reduced angular frequency axis can be determined by plotting the value
of 7, at the threshold as a function of W’ as in Fig. 4.3 where it can be seen that
the threshold value of r, rises very sharply from zero near the transition angular
frequeney w,/. Since, for ' > w//, the rest state transforms into the normal rolls
at the threshold but, for o' < w/, the oblique rolls are formed instead, the above
bifurcation point must correspond to a triple point in the V- stability diagram.

This triple point has been observed in a number of experiments [15, 44] involving
MBBA and Merck Phase-V nematic liquid crystals. Unfortunately, only measure-
ments made on Merck Phase-V compound have been reported so far. Due to the lack
of experimental information on the physical parameters of this compound, a direct
comparison of our analysis with experiments is not possible at this time. However, an
indirect indication on the validity of our calculation can be obtained by using different

sets of commonly known physical parameters. For this purpose, we have chosen to
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Figure 4.2: Contour plots of the surface (4.36) at a) o’ > w.’; b) &' = w.” and c)

W< w.

use the parameters for MBBA [6] and PAA [45] to carry out our comparison. We
constrast, in Fig. 4.4, the material propertics of MBBA with those of Merck Phase-V
Dy superimposing their first transition thresholds on the same graph. The threshold
voltage of MBBA is scen to rise more sharply as the cut-off frequency is approached.
Clearly, the physical parameters of MBBA can be quite different from those of Merck
Phase-V. To account for these material differences, we adjust the elastic constant kg
to obtain an optimal fit to the experimental data, still using the highest experimen-
tal voltage point as a calibration for the floating parameter o,. Then, the elastic
constant koe which is mainly responsible for the elastic torque against any twist de-
formation is finely tuned so that the caleulated triple-point falls within the observed

range of angular frequency without losing the overall agreement. The experimental



4.2  The Lincar Balance 104

06 1 e .
0.4 ‘ PR
> N\ :
- \ :
[43 \ . :
3 . \ E
(] : :
> 02 1 : \ - -
‘&3 \ :
: A :
2 : :
S :
0 :
0.2 4 o g ' 1 :

o 0.5 1.0 1.5 20 25

Modified Angular Frequency

Figure 4.3: The threshold valne of the state parameter r,, as a function of the modified

angular frequency o',

data on Merck Phase-V together with the first- and the sccond-order transition lines,
calenlated from the MBBA material paraimneters by means of minimization of (4.36),
are shown in Fig. 4.5 where excellent agreement with the experiments is evident. A
similar fit is also obtained for PAA and is shown in Fig. 4.6. The physical parame-
ters for MBBA and PAA used in the theoretical calculation are listed in Table 4.2.
Comparing these two sets of parameters, we sce that the results obtained using the
PAA parameters are more favorable for two following reasons. First, PAA has a nat-
ural dielectric anisotropy of —C.16 which corresponds very closely to that (—0.2) of
Merek Phase-V used in the experiments [15, 44]; whereas, for MBBA, its dielectric
constants had to be modified in the calculation. Secondly, the changes made to the
clastic constants of PAA are within 58% of their original values while, for MBBA, the
changes made to the same constants can be as large as 141% of their original values.

It is now neeessary to combine all the low-order equations introduced in this

section into a single homogencous equation involving only one of the field variables
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Figure 4.5: Structure diagram for the low-order instabilitics using MBBA material
parameters. The solid and the dashed lines represent respectively the calculated
threshold voltages for the normal- and the oblique-roll formations. The “+” and the
dots, on the other hand, correspond to the experimentally measured threshold volt-

ages for the normal- and the oblique-roll formations in Merck Phase-V, respectively.
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rameters. The solid line is the theoretical transition line. The “+
correspond to the experimentally measured threshold voltages for the normal- and

the oblique-roll formations in Merck Phase-V, respectively.
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Parameter PAA (122°C) MDBBA
k) 6.9x 10712 N 6.10 x 1072 N
O 6.0 x 10-12 N 0.5x 1072 N
ka3 150 x 10712 N 175 x 10712 N
al 4.0 x 1073 Kg/m/s 6.5 x 1073 Kg/m/s
a2 —69x 103 Kg/m/s —77.5x 1073 Kg/m/s
a3 -02x 103 Kg/m/s —12x 1073 Kg/m/s
w4 6.8 x 1073 Kg/m/s 83 x 1073 Kg/m/s
ab 5.0 x 1073 Kg/m/s 46 x 107* Kg/m/s
ab -20x 1073 Kg/m/s —=35x 1073 Kg/m/s
i 5.61 x €, 4.937 % &,
€1 0.8 X g, 5.137 X &,
o 1.23 x 1078Q"Im ! 1.15 x 1078Q~1m~1
i ~ 1.5 ~ 1.5

Table 4.1: Physical parameters for MBBA [6] and PAA [45] nematic liquid crystals.
These values are used in the calculations of the stability diagrams in Figs. 4.5 and

1.6. The elastic constants ke and k33 have t:een adjusted to yield optimal fits.

LoGo =0 (4.41)

where £, is a linear differential operator and (, is one of the low-order field com-
ponents. This step is extremely important in the method of multi-scale expansions
heeanse it allows ns to establish a criterion of uniformity (non-singular behavior)
for the e-expansion (4.1) [36, 43]. As our analysis continues, the linear differential

operator £, will emerge once again in a higher order equation of the form
LoGi=L+... (4.42)

where ¢; is a higher order coefficient in the e-expansion, L is another linear opera-
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1

tor and “...” represents the driving terms not proportional to the eigenfunction (,.
Since a driving term proportional to the eigenfunetion of the operator £, will lead to
singular behavior in (;, if we insist that the e-expansion be aniform, then the term

L¢, (the seenlar term) must vanish identically. This condition
L, =0 (4.43)

vill eventually lead to an equation for the slowly varying amplitude A(X,Y,T).

To begin, we differentiate the a- (4.8) and the y- (4.9) components of the hy-
drodynamic equation with respect to y and x, respectively. Then, after subtracting
these two cquations to remove the pressure term and applying the incompressibility
condition (4.G), we obtain the following equation:

duvt dvY
Jdy O

Ly

) (4.44)

where the operators £; and £y are defined respectively as

2 1 02 02
Ly = (o —as + + m«)o o) 5((“ + g + «vg) (01 + b—;) (4.45)
1 (v 0* 0?
Lo = - - —_ | =— 4+ — 4.46
2 2(014+015 T3 (0,/2'*‘ 52 ) (4.46)
If, instead, we differentiate the z- and the z- (4.10) components of the hydrodynamie

equation with respect to 2 and x, respectively, and combine the equations in exactly

the same way as above, then we get

9 | ¢, ¢, | Do 90,
£ [C||37—;_—2—+5L ( 72 + 522 — Aeacos(wt)— o a cos(wt)
0”0 Ov _
12, 1oy = 0 (4.47)

where a = /2V,/d. Differentiating Eqn. (4.44) with respect to y and Eqn. (4.47)

with respect to z and adding them, we can simplify the resultant equation to

)2 2 2 2
LoE + g 5”0 q?" +e; 0o + 9 (é" Amms(wt)ao acos(wt) =0 (4.48)
z T dyr 022 o
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where
02 02 02 2 32
L= (m-mtato)ys (0/ azZ) talotastas) (0 urr
0? 0?2 1 o
(‘(7)"/—2' + 032) + 5((1’4 + vy — 02)'&7. (449)

We will now leave this equation and return to it momentarily. Next, we operate on
the torque-halance equation (4.7) with the operator L from the left and combine it

with Eqn. (4.47) to eliminate the term involving v3. This results in

—Acacos(wt)Ly [(),,a cos(wt) — %q;"] — LoAO, + (azLl2 + a2£1)%vf
[ 0% ¢ . 000 a0,
+uz,) [»” b +ey (0!/2 + 5.2 ) QDea cos(wt o
x acos(.t) =0 (4.50)
where
< 0? 0? 02
A= knarj + kgza—y—?- + k;;gm. (451)

Il we now operate on this equation from the left with the operator £, we can make
use of Eqn. (1.48) to eliminate the remaining velocity term. The resultant equation,
ofter being differentiated with respect to x and averaged over time (one cycle), can

he written as

02 . . A ’2 02 86
<n cos(wt) (DeLLy + A Ay) (')d)? > - [L:EQA + ;(l (££2 + /\10 )] o =0
(4.52)

where the angle brackets denote average over time ¢ and the operators A and A, are

defined respectively as

02
Al = ol - ((Yng + ar Ly )() (453)
0? o2 o°
Ay = €||—a +¢cy1 (alj ——322) . (4.54)

Finally, we use the conservation of charge equation (4.5) to eliminate one of the

ficld components from the above equation. This can be accomplished by multiplying
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Eqn. (4.5) by cos(wt) from the left and averaging it over f:

Noa 06,

5 Br = (cos(wt)Agoh,) (4.59)
where the operator Az is written as
a9, 0° a. (& o?
M =(o+e157)53 Nl B B ili=urdl I 4.56
3= (on+ t“(?t)().rz +lon+ l(?f) (0!/“’ * 032) (450

Then, substituting the above expression for 86, /0x into Eqn. (4.52), we arrive at the

following homogeneous equation for the spatial part of ¢,:
Lopo =10 (4.57)

where £, is given by

Aca?

-~

-

cos(wt) { [££2A + (.552 + 0—)] As = 2L (ALl + M) %}
(45

oua? 2 .

.08)
and average over time is automatically implied. Since (4.16) is a solution to the low-
order fundamental equations and we have chosen ji to satisfy Eqn. (4.36), (4.16) is

antomatically an eigenfunction of £,.

4.3 First Nonlinear Balance

We present, in this section, the set of equations due to the first nonlinear balance (i.e.
the e-order equations) and their solutions. Employing some of the linear operators
from the previous section, we can express the conservation of charge equation at order

€ as follows:

00
A3y + a | Dewsin(wt) — cos(wt) | Ao — Ag-'g i}
o)} O«

2 g _02__+ + AN b
te\antag) grox T\ T ) agav | ™

0 0 0¢o 0 0(/)0
YV [ L [g L0 Rl O
+ (A” Agat) [(’).1: (9“ 9 ) * o ( r )]

( 00() 000

+20 ——) = 0. (4.59)

: | AY
+a lAew sin{wt) — cos(wt) <Ar7 A% ) E3% "5,

)]
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This equation can be used immediately to solve for the electric potential ¢; if we

assume that

Ol = O (4.60)
With this assnmption, we substitute the neutral solutions ¢, and 6, found in the
previons section into Eqn. (4.59) and put
= {(AQ(,’Z"’T"—+ .4'%"”’”) [a1 sin{wt) + ag cos(wt)]
+|A|? [az sin(wt) + a4 ('os(wt)]} sin(2qz)

+ { <0A T 4 o4 fi’”) [a5 sin(wt) + ag cos(wt)]

oX X ¢
+ g—éei’ﬁ+ aie"i’T'F ay sin(wt) + ag cos(wt)] p cos(gz). (4.61
) Y
This leads us to the following expressions for the cocfficients a; to ag:
—q (2110 — B -9y
0 = q[(2p2 ﬂz);ﬂ,\’l -Z(zﬁl fu1)Xel (4.62)
4(x3 + w?x1)
=q[(2p12 = Ba)x2 = (b1 = 2i) 1w
y = e 4.63
i 43 +wx3) (4.63)
3 — 9 — f3:
a = _ (B /11)0%2‘*'(/122 2ﬁ2)5¢w (4.64)
2q(07 +efw?)
(B2 = p2)or + (B — ju)erw
= - 4.
“ 2(0] +efw?) (4.69)
o — 2 1(2404 —
@ = X2/ /1/32)+<?./12( fta — P2) (4.66)
X3 +woxi
X2(2p14 = B2) —wx1 (B — 2u3)
ag = 4.67
’ X3 +wixi (4.67)
WY1/ — X2/s
7 = 2| ——— 5 4.68
) ( \3 + Wi\ ) (.08
w\1/ls + \’2/16>
ag = 2| ———"— 4.69
=2 (N (459

with

1 = ip(QeBiw — Ao DBy) (4.70)
He = ‘i])_,.(A(J’B[‘*‘A&'BQU)) (471)
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py = ips(ey Brw — oy ) (4.72)
fa = ip(eyBow + oy By) (4.73)
ps = ipy(eLByw — o DBy) (-1.74)
pe = ipy(e L Bow+ 0y Dy) (4.75)
pr = alew (4.76)
B2 = alc (4.77)
xi = epi+epl+q®) (4.78)
Xe = oypi+oL(p)+q°). (4.79)

We now turn to the hydrodynamic equations at the order € for the velocities
#{™#%) 1t is typical of the multi-scale expansion that these equations are coupled
to the low order cocflicients vff'y*:), ,, ¢, and p,. In our case, the z-component of
the hydrodynamic equation is also coupled to the higher order coefficients ¢; and ;.
Therefore, time averages (over one cycle) have to be performed on these equations.
After substituting the neutral solutions found in the previous section and the next
order coefficients derived earlier in this section, we express these equations (after

averaged over time) as follows:

(x-component)

0*vF d? 0? J

0 = g 1+92< Un Ul) ogpr
)
2

dx?
+ (Azezipr A*2e -2:1.:) [_ + (2 + 'rz) cos(2qz )]

+ a_AifiF OA* -irT) 4 Qf_(,iﬁv?_f')A‘,,—iﬁ'r‘
"lax® T ox” oy’ Ty’

x sin(qz) (4.80)

(y-component)

0 = %Y L (021;, 021)]> vy Oy
- 2

I3 92 dy? 2 "o oxdy Dy

n (Ageg,-,-,-.,:-__ A2 —2:pr [ ( + 62) (()8(2(/,.)}
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0A .. OA" o 0A .. QA" -
_ — W IR ) 72 N —ifF
+ [6 (ay oy ° ) o <axc ax ¢ )]

x sin(qz) (4.81)

(z-component)

0 = . v | o (O] 02v1 021)1 ] v op
— P 01/ 0z2 Ozaz 29 y0z 0z
+ [771 (A2621pr An-2 —2ip'F ) + 7']2|A| ] 1n(2qz)
+ 1y 9A P _ A" _inr + T _ 94 oI
Blax® ~“oax” n oy ay
x cos(qz) (4.82)
where
N = +(v,1/2+(.v5+o/6/2+03/2 (4.83)
d = (g +ag+a3)/2 (4.84)
a3 = (o + a5 —ay)/2 (4.85)
g1 = (a5 +aw)/2 (4.86)
g = ((\‘4 + g5 + (YQ)/Q (487)

n = 2ip,[i(e + a6)Dspe + qD1{ey + as)] + ipy[i(ag + a3) Dapy + Do — as3)]
- %p,(B'f + B)eyp? + eL(p2 + 0] + 2ip(kasp? + kaap?)
- p.B1Aca (4.88)
7 = ikup.q® + qliDipe(c + a5) — qD3ovg) (4.89)

= [2(a) + g+ a5 + ag) — (4 + ag — a3)/2)ip, D1 = G

+ (aq + ag — a3)(ip, Dy — qD3)/2 (4.90)
my = i(ay+ a6+ az)pyDy (4.91)
b1 = =p.l(as + a2)Dapy + igDa(az — as)] + 2ip,(ksap? + k2op})

- gl’u(Bf + BY)eypl + (v} + 4*)] — p:BrAea (4.92)

: ) . !
& = iknpyq® - 5(1[021):(0'2 — a5) — Dipy(az + as)] (4.93)
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) i
83 = aqip, Dy + 5(05 + ag)p. Dy ~ G (4.94)
8y = i(aq + a5 — a2)p. D2 + %(0'5 + a2)py D) (4.95)
q . . . . .
m = [Z (B{f) + B'j’) + 2("12] [eupf +eu(p) + (12)] — q(kn g + knap + kaap?)
- ]';'—’ (ag + a3)py Dy + (ag — a3)p. Do) — q{agqDy + 2icvsp, Dy)
5
— p2(ag + a1)Dy + Aeq( iByps — a) (41.96)
ne = 2aeiq’ay — 2q(a6qD1 + za5p,D3) - 2knq?
= (B + B3) [ep? + eu (v} + )] + adeq (%p,n, - a) (4.97)
a .
™= 3 [Slli’g + 5L(P§ + q2)] ag + 1(aq + a5 — ag)p, Dy + (w4 + a5 + a2)gDy
. 1
- Z€||]71-B1 a+ 5&2A€ (4.98)
mo= 3 leup? +eL(p + ¢%)] as + 5 1D2 + i0upy Dy — ic1py e (4.99)
These equations combined with the incompressibility condition at the order €
dvy  ovf  Ov} 0A T _ 0A™ s
ox + dy 0z + ax° ax * Dy sin(qz)
0A ... O0A* _...
+ (ayc';"’ e ”’) D,sin{qz) = 0 (4.100)
completely specify the pressure and the velocity coefficients. If we put
il
p = (A2 2PT . p*2 o2 ') [er — " + cpc08(2¢z)] — |A|2ms(2q,,)
+ aA P98 OA' i dA T OA'(_,T.F
C, ’
ox tax \or© ay
X sin(qz) (4.101)
v:{: — (A262f17'7"' _ A~2€—2il7'77) [’U,ﬂ + Uy (:()5(2(12)]
A .. JA" _..-
+ U3 (—g——e"’” - E{;c"”"> sin{qz)
0A - O0A" _-
+ Uz (a——e"” - %)76—" ’) sin(qz) (4.102)
W= (Aze""’7 - A'2e'2""') [ty1 + 1y0 cos( 2¢z)]

0A™ _iz

+ ?Ly:; (___e!por — ___c—l »

) sin(qz)
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DA ip-r 0‘4' —ipT
+ Uy sin(qz)

ox¢ Toax°©

vi= _,I] (A2(32;,7.,~ + A'Ze"2i’7'F) (Pritz2 + Pyity2) sin(2qz)
1 (3;() I7F+ ?);1{ i'iF) (7])2111-'; + 7])yuy4 + Dl ('OS(qZ)
+ - (Z;} T ((??;1/ e '7;) (iprteq + ipyays + D2) cos(qz)

where

: i
I = 2i(kyyp? + kaop?) — §(B12 + B3)eyp2 + e (P2 + %))

+ %BlAep:

and ¢;, uy; and wu,; are constant cocfficients, then, providing

_ Pzl
"‘y] - = )

Py

the above coeflicients are found to bhe
&ipyer — Tieo
47‘.(1)3(’1 - P:C2)
—ipy(6) + 262)/2 — qmi + es(Ty + 27)p;

) =

& = G
g dip2eq + 2(p2 + ¢?)
o = Tipybat am — [0a(2” + P))/2 + gspz] Dy — iesTs
& espz + ¢2 + p?
o= =il ¥ ame — [aa(26° + p,)/2 + gap;] D — sy
! esp: + q% + p?
v T — 4ipyc
T 8(glp + g2p2)
v = Tt 2m—dipo
" 8[g1pZ + 92(p2 + ¢?)]
" 73 — ip;rc.'l
Uy = b
92(¢® + p2) + a1p?
- i'pxcd
“_,.,1 =

92(® + p2) + q1p?
8y + 269 — dip,cy — 8gdppyuso
4os(q? + p?) + 2932}

Uyr =

116

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)
(4.108)
(4.109)
(4.110)
(4.111)
(4.112)
(4.113)
(4.114)

(4.115)
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03 — GaprPylz4 — 1PyCy
Uyy = — 4.116
& g3p% + as(q® +p3)/2 ( )

64 — QaPrPyttss — 1PyC3
Uyy = . . 1117
Y g3p2 + (g% +p3)/2 ( )

where

1 = 2ip.i(cr + ) Dap, + gDy (v + a5)]

+ ipy[i{ag + a3) Dapy, + qDa( s — a3)] (4.118)
8 = —pzDapy(s + ) + iD2q(evy = av5)] (4.119)
e1 = 8(qip% + g202) (4.120)
e = 4[291p:p] — (ap? + 20307 (4.121)
6 = (gt + o) (4.122)

digp? — qey — dig (g — g5
04 = 9apy, 121 k 1( 42 gs) (4.123)
8[92(¢? + p2) + g1
[a(22 +p2)/2 + 93P — 950 — Qapilps

5 = : : 4.124
’ 92(q* + p2) + 911 (4.124)

Therefore, through extensive algebra, we have obtained solutions to the equations of
order € and we have shown that the first nonlincar balance leads to the generation of
second harmonics. In the next section, we will write down the equations due to the
next nonlincar balance (at the order of €¥/2). Then, by combining these equations in
exactly the same way as outlined in Section 4.2, we will obtain a condition necessary

for the uniformity of the e-expansions.

4.4 The Amplitude Equation

\We are now entering the final stage of our analysis. Our purpose in this section is not,
to obtain solutions to the next higher order equations. Instead, onr aim is to derive
an evolution cquation for the slowly varying amplitude A(X,Y,T), as a consequence
of a uniformity condition. Let us begin with the equation of conservation of charge

at the order €¥/2. As stated above, we are to follow exactly the same procedure as
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in Section 4.2 to combine the €¥/2-order equations into a single equation for one of
the fields. We have already seen that the revelant equations include not simply the
charge conservation equation but its time average weighted with respect to cos(wt).

At the order €32, this leads to

Daa df, + MW: cos(qz) +...=0 (4.125)

—cos(wt) gy + ———-

where the operator A and the associated coefficients are defined as

9 2 2 2 \
{ = £ —_ m me (4.12
M £ml oT + £m2 X2 + £m3 Y2 + £m4 oXOY + f S’A! + £ 6 ( 6)
1 .
Eml = 5 [AE(I]])I - (s”-pf + Elpf’)Bg] (4.127)
1 .
Eny = —3 [((J'”Bl + eywly) + 22]7,,(0“(76 + 6”(.4.)(1,5)] (4.128)
1 .
fm.'l = —‘5 [(O'J_Bl + E_LUJBZ) + 2‘[[73/(0'1_03 + 6_1_(4)(1.7)] (4129)
Ema = —1 [(0”(1,3 + g waz)p: + py(oLas + E_Lw(l,r,)] (4.130)
&y = — [Qip,q(A(mg + Aeway) + %A(ria
+%(AaBl + DewDBy)(9p2 — ¢°) + %pzq(Aacu + Aewa;;)] (4.131)
b = (T2 4 eLwr D) (4132)

\We have again employed the linear operator A3 from Section 4.2 to simplify the above

equation. For convenience, we have introduced the following notation:

Wi = Ae'P™ 4+ A%e T, (4.133)

The ellipsis “...” in Eqn. (4.125) represents terms not proportional to WiE. This

notation will also be used throughout this section. Although we have not made

explicit use of the angle brackets as we did previously, we should remind ourselves
that average over ¢ is implied automatically.

We now turn to the hydrodynamic equations at the order of €3/2. Following the

same steps as in the case above, these hydrodynamic equations can he expressed in
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a similar form. They are listed as follows:

(z-component)

119

(a+——+ CLTIMEE AT S VPN (i SR A B
D 5T 2) 022 7 2 e Tt 0y? 9:2 ] Or
+ H W sin(gz) +...=0 (4.134)
(y-component)
1 0%y g (0% 0% 1 0%
2 (04 + a5 — ) 0’1722 + 34— ( 012 ) 0z ;) + (m + ”2)0'1'02:/
J
0’? + H,Wi sin(gz) + ... =0 (4.135)
(z-component)
1 0%v3 0% 9% 1 0%v3
5(04-{—0'5 as) 97 22 <012+———0~2")+2((rr+(u)0 oy
. 0.
— % — | Aoy — Aca cos(wf)% 2} acos(wt)
z &
4 H.W; cos(gz) +...=0 (4.136)

where the operators H,, H,, H. and their associated cocfficients are written as

0? 0? 0? 9

H, = &1 aT +agym g teagyay T &5l A (4.137)
0? 0? 0? 9

H, = EJl Tt ey T Yoy T €5 A (4.138)
o? 0? 0? )

f = z 4 ‘ 2z - 5 26 .

1. 51 +£"(’)Y2+£‘30Y2+£401\0Y+£“ |A]" + &4 (4.139)
£ = —le (4.140)
0 = ((11 -+ 921 + a5 + 92—6' + %) (D) + Zipruzg) — 3 (4.141)

1 .
€3 = §(a4 + ag + az)(D) + 2ipyuz4) (4.142)
&a = 2ip, (01 + ? + a5+ %ﬁ + 5 ) Urq + (4 + g + v3)ipyucy
— ¢4 (4.143)
1 1 . . 1
&s = Z(Qﬂl + as + ag)p2 Dy + E(P:":z + pyttye)(npl + o6q’ + 5’7;7',2,)
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1 L1

- 5(‘?11 — ka3)p2q + 2(5 — p:)leyp? + eL(P2 + *)|(Bray + Baay)
‘- l ! 2 l / D g - 2

—wmwm+8%mﬂ+8%mmz—4m1(m+%MD1
10 1,. . a

—zmwmd%—;@mwﬁ—wwwwﬂ+%m)—§Awﬁ
3. .

+ 5 OeaipsqBy + Aeplq( B} + D)

— ipseLq*(a3By + a4 By)

&n = —pDy
1 ) 1 .
&p = 5((»'4 + 5 — a2)( Dy + 2ip u,q) + §(a5 + (v2)ipy i,y

1 . 1 :
£y3 = 5(}'402 + g1y Uy3 + E((l/s + (}'2)][)_,.'11,1.4 — C4
. 1 . :
£ = (04 + a5 —mg)ipeuys + 5("’5 + a2)(D1 + ipruz3 + ipyttea)

—~ 3+ gD,y

1 1
£y = —5(’-711 ~ k33)pepyq — 5[6'”173 +e1(p} + ¢°)lp,(a2B) + a, Bs)
1 1
+ g(ﬂ's — a3)Da(p2 — 9¢%) + ‘2‘A5"17y (giqu - Pzaz)
1 9. . i 1
- 5((r,r, + (vy) ZzD;;q + iq(2uz + ug) — Epr(pzuﬁ + pyuy) — 1

+ qpy [Aep,,(B,2 + B3) — ey (a4By + a_ng)lq]
= (a5 — )ipquy + uy2)
&1 = —pDy
1 1 2ip, . )
£ = 5((15 + ag)qu.g + 5(04 + a5 — a2) | D3 + T(ip,u,g + ipytys +

S“(l

9 (Bl + 227’:"6)

aglip, . . « €10 .
£ = —1(1—1"(11),11,,.1 + ipyuys + Do) + ?4D3 - —;—(Bl + 2ipyag)
wayip, . . 1
a4 = ‘—lq-u('l?:‘"::z + ipyuys + Dy) + '2'(0‘5 + )iy

W, . .
+ (4 + a5 — 02)—1(1'(71):7114 + ipyuys + Dy)

— la(ep-ag + € Lpyas)

1 . 1
5 = ;(’\'n - /\‘33)'17:(12 — (un + 51112)[2’71173 + 7;773]

-~
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(4.144)
(4.145)
(4.146)

(4.147)

(4.148)

Dlpx] Py

(4.149)
(4.150)

o)
(4.151)

(4.152)

(4.153)
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- %AEiqp,(?m +ay) — %AsBl(q2 + 9p2) + ¢*(Byas + Baay)
- %[ﬂ]l’g + SL(P,Z; + P)[Bi(az + a4) + Ba{ay + ay))
- i[(a.a + ag)q? + (a1 + ay + a3)p?]Ds + %i("lqprDl
— YopPy(Uy1 + ’1%2‘) — ag sy — -Z-Am?il'r
+ %m(v&iqDa — 71pyDs)
+ 205p:(Prtiz2 + Pyity2)
£6 = % {2&5(11'])1 + By [gp? + E_L(p;‘i + (12)]}

with

M= ot
Yo =+ g
M = gty

Y2 = Qg —

Finally, we write down the torque-balance at order 3/2:

~Acacos(wt) |faa cos(wt) — %2 — Ay + vy ‘2?”3 ‘ 9v;

+ SWircos(qz) +...=0

where the operator S and its coefficients are

2 2 o2
S = 8 . s . s ] A 2 %5
Sagyz Teegys T iagygy Tl &
a9 . . «a
&1 = —q?-(‘lp:'ltrg + tpyuys + D]) — Rag + §A€(l(;
532 = —ko

a2 . . (1]
fs.'l = —(12(’1.]):?1,1.4 + IPyUy3 + DQ) + §A€(lg

3 9 .
§sa = 5(’»‘33 —kn)(4* - p3) + 75 = ao)(ip:Ds + q¢D1)

A Lo
+ 55 [30? = 9aip. By + dag(en + ag) = 557 + B3O — 4 )]
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(4.160)

(4.161)
(4.162)
(4.163)
(4.164)
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+ (5 — a¢)[2ip,(Uz1 + uz2) + Dyt yo]
~ 2 8epq[Bi(2z + ax) + Bo(20 + 03] (4.165)

b = %fausz, ~ 2a). (4.166)

It is now quite straightforward to follow cxactly the same steps described in the
Iatter half of Section 4.2 to combine these 3/2-order equations into a single equation
for ¢. Since the procedures have been well illustrated in Section 4.2, we wiil omit the

intermediate steps and proceed to write down the final equation in the form below:

oo + (o1 e + jaHy + j3H. + 25 + G5 R) + js MWy cos(qz) + ... =0 (4.167)
where the operator R is defined as
2 02 02
R= TL,.;;Z)‘:"C—,Z' + ’lly;;z)—y—Z + (7(1-4 + 1ty4)'0}(—ay' (4168)
and the coefficients j; are
. A
jo = - ; 2 (4.169)
jl = ipr(][aZVo + (1’3 + ({2)((1'3112 + as )] (4170)
jo = —ipipyq(eavy + ) (4.171)
j;; = pg[aguo + q2(0131/2 + ol )] (4172)
Ja = Welep; (4.173)
jr, = 173.(]1/2(()/3112 + 0'21/1) (4174)
jo = (kng®+ kaop? + kaspl)vers
Aca® 0 9 o
— (Vo — coplv, — piq’(asin + agvy))] (4.175)

with

vo = (ap—ap+aq+ “‘6)(1732, + @+ %(04 +ag + 03)(133, +¢%)?

+ 5+ s — ao)p (4.176)
n = —(m-a+ 921 + a6)p? — %(04 + a6 + a3)(p} + ¢°) (4.177)
vy = -—%(m + a5 — ay)p? — %4-(113 + ¢%). (4.178)
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Ve see that the operator £, reappears once again on the left haund side of the above
equation. As we have seen in Section 4.2, the cigenfunction of this operator involves
Wi cos(qz) (c.f. Eqns. (4.16) and (4.57)). Therefore, any terms in the above equation
proportional to this eigenfunction will lead to singnlar behavior in ¢y. Therefore, to
suppress non-uniformity, we demand that the second term on the left of the above
cquation (the sccular term) vanishes identically. After some re-arrangement, this
finally leads us to a Landau-Ginzburg type equation for the slowly varying amplitude
AX,Y,T):
9’A 9*A d*A

0A .
— 4 £ —_ — e Al? = 4.
ér T +&{xx E3E +&yy Y2 +&xy AT +&EAAP+EA =0 (4.179)

where the cocfficients are written as

Er = Jo(51&a1 + J2by1 + Ja€ar) + Ik (4.180)
Exx = Jo(Jibaa + Jobya + Jaea + Jaka + Jstrs) + oz (4.181)
&y = Jo(d1€zs + jobus + Ja&ea + Jabs2 + Jorya) + J6€oms (4.182)
Exy = Jolj1€ea + Jobyr + Ja€ea + Jabas + Js(ttea + ya)] + j6€ma  (4.183)

En = Jo(f1&es + Jobys + Ja€es + Jaaa) + Jo&ms (4.184)

& = Jo(Ja€e + Jaus) + JeEme- (4.185)

Although the detailed properties of the nematic system are contained within the
real cocfficients &r, Exx, ... and &, the above amplitude equation can be transformed

into a more universal (isotropic) form:

0A 9*A  0*A 2
-(,)-T——W+O—Y;+A—A|A|. (4.186)

In principle, the term involving the cross derivative 9°A/JXJY can be eliminated by
a rotation on the X-Y plane and by setting the angle of rotation properly so that the
new X and Y axes represent the principal directions [32]. The real coefficients, then,
can be removed by re-scaling the coordinates and the amplitude. However, doing so

requires a more detailed investigation of these coefficients so that their signs can be
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determined, For the available time frame, we arc unable to continue our analysis in
this direetion,

Fxact solutions to the above time dependent Landan-Ginzburg (TDLG) equation
have been found. For stationary states, this equation has i) a finite amplitude periodic
solution with a wave vector either parallel or oblique to the z-axis [36, 46] and ii)
a tanh-like saddle-point solution [47]. In the case of coupled TDLG equations, the
superposition of two small amplitude periodic solutions whose wave vectors are equal
in magnitude but different in direction gives rise to square and hexagonal patterns
[32]. For conpled TDLG equations with complex coefficients, travelling and standing
waves are found [48]. Furthermore, based on the method of symmetry reduction,
Skierski et. al [49] have transformed the isotropic TDLG equation into an ode thus
allowing a larger class of exact solutions to be classified as rolls, defects, bumps (non-
topological solitons) and kinks (topological solitons). Finally, we remark that the
isotropic form of the amplitude equation has been found applicable to many pattern
forming systems [36, 43, 47, 48, 50]. In particular, it has been found to be a model
equation for the Eckhans (side-band) instability [36, 48, 51, 52, 53] which is considered
responsible for the wavelength changing process. Beyond this, the equation has also
heen applied successfully to describe the second-order phase transition of a junction

laser [34], propagation of a two-phase interface [35] and superconductivity [37, 38, 39].

4.5 Summary

We have in this section demonstrated another possible scenario for the formation of
oblique rolls at low field angular frequencies. In the present model, the azimuthal
derivation of the director from the xOz plane remains zero. The onset of this insta-
bility is attributed to the presence of a periodic twist deformation in the y-direction
(similar to the initial periodic bend perturbation in the Helfrich-Carr scenario). Once

it is present, the deformation energy tends to “untwist” the director while the shear
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flow, also modulated periodically (in the y-direction) provides the counter-action.
Once the instability sets in, the phase variation of the tilt angle # along y gives rise
to the observed zigzag pattern.

The method of multi-scale analysis is a standard technigue in hydrodynamic cal-
culations. Kramer and his co-worker (Universitit Bayreuth) (6, 42, 47, 46] were the
first to pioneer the application of this technique to the nematic liquid erystals. Tt
is therefore necessary to compare explicitly our present approach with that of the
above authors. The fundamental differences between the two approaches lie in the
assumption on the director and the boundary conditions. In the previously anal-
yvsis, the orientation of the director was represented by two spherical angles. This
representation coupled with the fully rigid boundary cenditions led the previous au-
thors to a sct of very complicated equations and solutions which could not he written
down in analytical form. Our present approach enjoys a simplistic assumption on
the director. Here, the director is given only one rotational degree of freedom and is
assnmed to be parallel to the vertical (wOz) plane. This assumptions, together with
the (relaxed) stress-free boundary conditions, we are able to write down our results
in analytic form. Furthermore, in so far as the application of multi-scale analysis
to the nematic liquid crystals is concerned, the details of the analysis is reported
for the first time. We have also reconstructed the stability diagram for the primary
transitions and carried out explicit comparison with experimental observations. Com-
parison with experiments was not available previously. Perhaps, the only common
results shared between the Bayrenth group and us is that the same universal equation
(the time dependent Landau-Ginzberg equation) emerges as the governing equation
for the slow scale motions. Although the details of the physical system is embedded
in the cocfficients appearing in the TDLG equation, when speaking of universality, it
is the form of the model equation that is relevant. This brings us to a very impor-
tant point: The slow scale dynamics near the transition point is unaffected by our

simplistic assumptions.
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Chapter 5

Conclusions

We have concerned ourselves, in this thesis, exclusively with nematic liquid crystals.
We have reviewed some of their physical propertics and re-derived the quantities vital
to the theoretical investigations. Included in this thesis are the preservation of ori-
entational order in the nematic phases, response of the nematics to electromagnetic
fields, the hydrostatic equilibrium condition and the total stress tensor for nonequi-
librinm situations, just to name a few.

The loss of positional order and a small amount of orientational order gives the
nematic liquid erystals the right amount of freedom to respond sensitively to an
eleetrie field. The local orientational order of the molecules, on the other hand,
gives the ligquid erystals the ability to demonstrate extraordinary optical properties,
reminiscent of many pattern forming systems involving isotropic fluids (Rayleigh-
Bénard sonvection). It is the electro-hydrodynamic instabilities that the latter half
of this thesis is devoted to. We have presented two independent investigations, both
hased on, at leasi in part, a macroscopic continuum theory in which the hydrodynamic
equations, Maxwell's equations and a torque-balance equation are used. In both cases,
the nonlinear response of the system has been derived and utilized.

In our first investigation, we focus our cffort on a bifurcation problem associated

with the primary transition of a nematic liquid crystal thin film. By using an ad



Conclusions 127

hioc assumption that the concept of free energy is also applicable to systems driven
slightly out of equilibrium, we are able to correctly predict the observed power-law
behavior of the normal rolls slightly above the transition voltage. Furthermore, our
model has also suggested the formation of the normal straight rolls via a subcritical
(discontinuous) bifurcation and this prediction has been found to be consistent with
cxperimental observations.

In our sccond investigation, we re-examine the formation of the oblique (zigzag)
rolls at low clectric field angular frequencies using the technique of multi-scale anal-
ysis. The critical behavior found in our first investigation becomes the basis for our
choice of the leading order in the e-expansions. We have shown that a new mechanism
responsible for the oblique rolls formation may involve merely a pure twist deforma-
tion along the normal roll axis (in addition to the hend deformation along x) and
thercfore the director ficld can be kept aligned parallel to the vertical plane. This is
in contrast with the common belicf that the director must be given two rotational
degrees of freedom [54, 55, 56]. Through the linear balance of the equations, we have
constructed a three-dimensional surface and a stability diagram in the rms voltage-
angular frequency plane. We have found excellent agreements with experimental
observations.

We have also included significant details of the multi-scale analysis applied to the
clectro-hydrodynamic equations of the nematic liquid crystals. Although a similar
analysis has been performed by other anthors [G], their results are too complicated
to present in closed analytical form. We believe that the use of semi-rigid boundary
conditions and a planar director field has reduced our expressions to a manageable
size and given us solutions in closed form.

Finally, at order €2, a time dependent Landan-Ginzburg type equation has been
found to be the governing equation for the slowly varying amplitude {57]. Therefore,
we conclude that the underlying dynamics at small scale remain relatively unaffected

by the use of a simplified director field and a sct of somewhat unrealistic boundary
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conditions.
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Appendix A

Anisotropic Tensors

We shall examine some of the transformation properties of the anisotropic tensors
and demonstrate how an anisotropic tensor of any rank can be constructed explicitly.
Let us consider a subgroup {T'} of a group of orthogonal transformations #; = S;jx;
with S;;Si = éjr. Suppose the tensor a;j... is invariant under the subgronp {T} i.c.
Ao = G = SatSpm -« - Wm.... Then, the tensor a is referred to as an anisotropic
tensor. Or, if a cylindrical symmetry is present so that {T} corresponds to rotations
about the symmetry axis, a is also called a transverse isotropic tensor.

Let u!, w2, -+ u? be the components of 7 independent veetors and suppose that
they transform under the subgronp {T} as @] = Sjju’ where 7 =1,2,---,n. Then,

the scalar polynomial p = a,-j...,u}'u.f---u;' is form-invariant under the action of T

because

- =12 = — ! u?
iU le s 'll;! = S,',,Sjﬂ s S[{(l,,ﬂ...fS;,,IL!IS}';, U A 5“11.;'

_ 1,2 LT
= bagbpn - bettap. .ttty - 10y

= (l.,,/,...fu,',u.?, g (A.1)

This form-invariant property implies that p can be constructed from a finite basis

which consists of polynomial elements, each of which is also form-invariant under T

[31]. Since p is a function of the n independent vectors i.c. p = p(ii', @, -+ ") and
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is linear in each 7, these basis elements must be of the form (& -i7) or (7" - @) where
i # 7 and @i" is a vector along an axis of symmetry of T; any combination that leads
to a nonlinearity in any i must be disregarded. We shall denote this polynomial
basis by {Jy,Ja,-++,Jm}. Then, in view of the fact that each vector contributes a
component to cach term in p, we may express p as a lincar combination of all possible

independent products of the basis elements:
P=Anpc Jadp- - Jg (A.2)

where each product (J,.J4- -+ Jg) consists of a combination of the components of the
n distinet veetors so that the multilinearity of p is preserved. Furthermore, each
cocfficient A, 4.6 nmst be a real scalar under T'; otherwise, the above expansion will
not remain form-invariant. Then, the anisotropic tensor a is found by differentiations:

a"p 0"(Jadg-+- Je)

(i = - = - . Al
it Quldu?--- Oup of 5011,!011]2----611;‘ (A-3)
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Total Stress Tensor

Here, we list the exact expressions for all the non-zero elements of the total stress

tensor ¢ in the condunction regime (9i7/0t = 0):

v, d 0 , O,
IS

1. [ Ov, v,
+ (a2 + a3)n, [(7’ V)n’ 2. ((()l~ a—l:‘:)}

Jdv, Qv n. (Ov, Ov,
+ ox 5+ ) [71, or t3 2 (0 + 0z )}
o (G5 Seem (G- 52 B o
Oy = =P, (B.2)
00U, dv,  Ov, , OV,
Or: = QN N, [nra— + n.n, (02 + —0—,-—> + 71:5—}

rom o om -2 (B 2] 3 (50 2)
ny (Qvy  Ov; v,
+asng '5' (a + E) + "2—5,:_]
[ v, n. (Dv. | Dv,
+ agn; n;.—+_2_< + )]

oz Jz Jz

on, On.\ On, on, On,\ On,
_kl<6x+c')z)0z+k3<0z—0$) 97 (13:3)
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[2011, <0v, (?vz) 281},]
T.x = (NN, N7 +n.n, | — + +n

or Jdz  Ox 0z
[ . = n, {Jdv, Ov.
+ aon, -(U . V)Tl: - ? (az —_ EK—')]
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