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Summary14

1. Searching allows animals to find food, mates, shelter, and other resources essential for15

survival and reproduction, and is thus among the most important activities16

performed by animals. Theory predicts that animals will use random search17

strategies in highly variable and unpredictable environments. Two prominent models18

have been suggested for animals searching in sparse and heterogeneous environments:19

(i) the Lévy walk and (ii) the composite correlated random walk (CCRW) and its20

associated area-restricted search behaviour. Until recently, it was difficult to21

differentiate between the movement patterns of these two strategies.22

2. Using a new method that assesses whether movement patterns are consistent with23

these two strategies and two other common random search strategies, we investigated24

the movement behaviour of three species inhabiting sparse northern environments:25

woodland caribou (Rangifer tarandus caribou), barren ground grizzly bear (Ursus26

arctos), and polar bear (U. maritimus). These three species vary widely in their27

diets, and thus allow us to contrast the movement patterns of animals from different28

feeding guilds.29

3. Our results showed that, although more traditional methods would have found30

evidence for the Lévy walk for some individuals, a comparison of the Lévy walk to31

CCRWs showed stronger support for the latter. While a CCRW was the best model32

for most individuals, there was a range of support for its absolute fit. A CCRW was33

sufficient to explain the movement of nearly half of herbivorous caribou and a quarter34

of omnivorous grizzly bears, but was insufficient to explain the movement of all35

carnivorous polar bears.36
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4. Strong evidence for CCRW movement patterns suggests that many individuals may37

use a multiphasic movement strategy rather than one-behaviour strategies such as the38

Lévy walk. The fact that the best model was insufficient to describe the movement39

paths of many individuals suggests that some animals living in sparse environments40

may use strategies that are more complicated than those described by the standard41

random search models. Thus, our results indicate a need to develop movement models42

that incorporate factors such as the perceptual and cognitive capacities of animals.43

Keywords44

Animal movement, Arctic, Area-concentrated search, Hidden Markov model, Lévy flight,45

Optimal foraging theory, Telemetry46

1 Introduction47

Searching is among an animal’s most important activities as it provides the means to find48

food, mates, shelter, and other resources essential for survival and reproduction (Bell,49

1991). Search efficiency will affect performance and fitness, and thus we expect animals to50

use movement strategies that minimise the costs of locating resources (Zollner & Lima,51

1999; Conradt et al., 2003). The importance of this behaviour has driven ecologists to52

focus on animals’ search strategies (e.g., Bell, 1991; Benhamou, 1994; Viswanathan et al.,53

1999), and the recent increase in the availability of movement data has allowed this field to54

flourish (e.g., Fauchald & Tveraa, 2003; Nevitt, Losekoot & Weimerskirch, 2008;55

Humphries et al., 2010). One focus has been to assess whether animals use the search56

strategies that theory predicts will be optimal in their environments (e.g.,57

Humphries et al., 2010; Sims et al., 2012). Using movement data for this assessment58

remains challenging because the efficiency of search strategies changes over environmental59
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gradients and the movement patterns they produce can be difficult to differentiate60

(Zollner & Lima, 1999; Bartumeus et al., 2002; Benhamou, 2007; Plank & Codling, 2009).61

The efficacy of movement strategies are dependent on the variability and predictability of62

resource distributions. When resources are unpredictable in space and time, random search63

strategies are expected to emerge (Mueller & Fagan, 2008). Although animals are known64

to use perceptual cues to detect nearby resources, empiricists have found support for the65

use of random search strategies (e.g., Humphries et al., 2010; Sims et al., 2012). Theorists66

have proposed a set of random search strategies that are thought to be optimal under67

different conditions. While simple Brownian motion may be sufficient in productive areas,68

the Lévy walk may be advantageous in sparse environments because its rare, extremely69

long steps enable animals to explore new areas (Bartumeus et al., 2002; Humphries et al.,70

2010, but see James, Plank & Edwards 2011; Benhamou & Collet 2015; Pyke 2015).71

Relative to Brownian motion, the Lévy walk is increasingly efficient with decreasing food72

density (Viswanathan et al., 1999; Bartumeus et al., 2002). When food density is low, the73

Lévy walk is also more efficient than a correlated random walk (Bartumeus et al., 2005).74

The correlated random walk is a search strategy characterised by nearly straight movement75

that was shown to be efficient at finding sparsely distributed patches (Zollner & Lima,76

1999). The composite correlated random walk (CCRW) is a two-behaviour strategy that is77

more efficient than single-behaviour models in heterogeneous landscapes78

(Knoppien & Reddingius, 1985; Benhamou, 1992; Plank & James, 2008;79

Benhamou & Collet, 2015). The ‘extensive’ phase of the CCRW uses the nearly straight80

movement that makes the correlated random walk efficient at finding patches. The81

discovery of a food item triggers the ‘intensive’ phase, which is characterised by slower,82

more tortuous movement and sometimes referred as area-restricted search. These two83
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behavioural phases allow animals to adjust their movement according to local food density84

and the intensive phase enables them to stay within patches, even when patches have no85

perceptible boundaries (Knoppien & Reddingius, 1985; Benhamou, 1992). Many86

environments are sparse, heterogeneous, and unpredictable. While Brownian motion and87

correlated random walk might be insufficient in these instances, both the Lévy and CCRW88

may be advantageous random search strategies.89

While the underlying searching behaviours of the Lévy and CCRW strategies differ, their90

movement patterns are similar and difficult to differentiate (Benhamou, 2007;91

Plank & Codling, 2009; Auger-Méthé, Plank & Codling, 2014). However, new methods92

have been developed to distinguish between the movement patterns associated with these93

strategies (Plank, Auger-Méthé & Codling, 2013; Auger-Méthé et al., 2015). Here, we94

investigated the movement of three mammals for evidence of patterns consistent with95

random search strategies. As detailed below, we chose these species because previous96

research or the nature of their environment suggests that they may use random search97

strategies. All are large and wide-ranging mammals inhabiting northern Canada. However,98

these species vary widely in their foraging behaviours, allowing us to contrast the99

movement behaviours of animals in different feeding guilds.100

Our first study species is a large herbivore, the woodland caribou (Rangifer tarandus101

caribou). We studied them in winter, when resources are scarce and they may be more102

likely to use random search strategies (Adamczewski et al., 1987;103

Parker, Barboza & Stephenson, 2005). Their movement was shown to be consistent with a104

two-behaviour model similar to the CCRW (Johnson et al., 2002b), and a different105

subspecies was suggested to use the Lévy strategy (Mårell, Ball & Hofgaard, 2002). Thus,106

applying these newly available tools may help clarify how caribou search their environment.107
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Our second study organism is a large Arctic omnivore, the barren ground grizzly bear108

(Ursus arctos). Our study population inhabits an area of low productivity, the Mackenzie109

Delta, Northwest Territories, Canada (McLoughlin et al., 1999). Unlike other grizzlies that110

rely on predictable sources of protein, such as salmon (Oncorhynchus spp.), the barren111

ground grizzlies of the Mackenzie Delta have a small body size and drifting home ranges112

(Hilderbrand et al., 1999; Edwards, Nagy & Derocher, 2009). The benefits of familiarity113

are limited in scarce, heterogeneous, and unpredictable environments (Switzer, 1993;114

Mueller & Fagan, 2008), thus site fidelity was suggested to be maladaptive for these bears115

(Edwards, Nagy & Derocher, 2009). Thus, random search strategies may be effective for116

barren ground grizzlies, making these bears good candidate for our study.117

Our third species, the polar bear (U. maritimus), is a specialised marine carnivore. Polar118

bears, like many other predators that have been the focus of search strategy studies,119

exploit the unpredictable marine environment (e.g., Humphries et al., 2010, 2012, but see120

Regular, Hedd & Montevecchi 2013). Polar bears exhibit site fidelity121

(Mauritzen, Derocher & Wiig, 2001), which could encourage the use of memory-based122

search strategies. However, other species that exhibit site fidelity are also thought to use123

random search strategies or a mixture of memory and random search strategies (e.g.,124

Humphries et al., 2012; Gautestad & Mysterud, 2013). Polar bears use the sea ice as a125

platform to hunt seals (Stirling & Derocher, 2012). Sea ice extent changes seasonally and126

local ice concentration can vary drastically over short time scales (Maslanik & Barry, 1989;127

Johannessen et al., 2004), which may make random search strategies advantageous.128

Using data collected when these three species were expected to be searching for food, we129

investigated whether their movement patterns were consistent with one of these four130

random search strategies. To do so, we compared the relative fit of a set of models, each131
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representing the movement pattern of one of the search strategies. We then assessed the132

absolute fit of the best model to verify whether it described the observed movement well.133

2 Materials and methods134

2.1 Modeling search strategies135

We used the method described in Auger-Méthé et al. (2015) to assess whether the136

movement patterns of three species were consistent with a set of search strategies. This137

method defines likelihood functions that model the movement pattern of each of the four138

search strategies (Table 1), and can be considered a generalised and statistically rigorous139

extension of earlier methods. Each likelihood function was applied to the time series of140

step lengths, lt, and turning angles, θt, of each individual. The movement pattern of Lévy141

strategy was represented by a truncated Lévy walk (TLW), which used a truncated Pareto142

distribution for the step length, ψt(l), and a circular uniform distribution for the turning143

angle, v0(θ) (Table 2). The movement pattern of the Brownian motion was represented by144

a Brownian walk (BW), which used an exponential distribution for the step length, φt(l),145

and a circular uniform distribution for the turning angle, v0(θ) (Table 2). The correlated146

random walk (CRW) also used an exponential distribution for the step length, φt(l), but in147

combination with a von Mises distribution centred at 0 for the turning angle, v(θ) (Table148

2). The CCRW version from Auger-Méthé et al. (2015), which we refer to as CCRWa, used149

a hidden Markov model with two movement behaviours (Table 1). The movement pattern150

of the intensive phase was represented by a Brownian walk with exponential distribution151

for the step length, φ(l), and a circular uniform distribution for the turning angle, v0(θ)152

(Table 2). The movement pattern of the extensive phase was represented by a correlated153

random walk with an exponential distribution for the step length, φ(l), and a von Mises154

distribution centred at 0 for the turning angle, v(θ) (Table 2). As we suggested in155
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Auger-Méthé et al. (2015), we also explored an additional version of the CCRW based on156

the hidden semi-Markov model presented in Langrock et al. (2012), which we refer as157

CCRWl. For this version, we used the same step length and turning angle distributions as158

in the CCRWa. However, the CCRWl used transition probabilities that depended on159

Poisson-distributed state dwell times rather than the fixed transition probabilities used in160

the CCRWa (Table 2).161

We used maximum likelihood estimation to estimate the parameters of each model and the162

likelihood profile to estimate their confidence intervals (Bolker, 2008). To identify the163

model that best fit the movement data of each individual, the relative fit of these likelihood164

functions was assessed using the second-order Akaike information criterion (AICc) and165

Akaike weights (Burnham & Anderson, 2002). Because the CCRWa and CCRWl were two166

models representing the movement pattern of the same search strategy, we summed their167

Akaike weights (wCCRW = wCCRWa
+ wCCRWl

). We evaluated whether the best model168

adequately explained the movement data using a test of absolute fit, which consisted of a169

G-test on uniform pseudo-residuals (Sokal & Rohlf, 1981; Zucchini & MacDonald, 2009;170

Auger-Méthé et al., 2015). All analyses were completed in R (R Core Team, 2015) and the171

code used to complete the analyses is available on Github172

(https://github.com/MarieAugerMethe/CCRWvsLW/tree/v2.0). See Auger-Méthé et al.173

(2015) for more detail.174

2.2 Description of movement data175

We used the movement data of three northern mammal species (data available on the176

University of Alberta Education & Research Archive:177

https://era.library.ualberta.ca/). To capture rare events, such as the long steps178
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characteristic of the Lévy walk, we attempted to get time series representing close to a year179

of movement behaviour. However, we also tried to limit the time series to movement180

performed while searching. As detailed below, we removed all sections of the datasets181

known to be associated with reproduction and resting, as the changes in movement182

patterns associated with such behaviours could affect our analyses (e.g., DeMars et al.,183

2013). We also started each time series a minimum of two weeks after the collaring event184

because capturing procedures associated with collaring affect the movement of some species185

(e.g., Morellet et al., 2009; Thiemann et al., 2013). The time series of some individuals186

were further reduced by missing observations and collar failures.187

The first dataset included the movement paths of 22 female caribou from the boreal plains188

region of northeastern British Columbia, Canada. These females were captured during189

February and March 2011 and fitted with G2110E collars from Advanced Telemetry190

Systems Inc. (Isanti, MN, USA). The collars provided daily Global Positioning System191

(GPS) locations. We removed the calving and rut periods, as well as the two weeks post192

collaring, by limiting the time series to locations collected between November 1st 2011 to193

April 30th 2012 (Ferguson & Elkie, 2004). The second dataset included the movement194

paths of 20 grizzly bears from the Mackenzie Delta, Northwest Territories, Canada. These195

bears were collared in May and June (close to den emergence) 2003-2009. For each196

individual, we used locations collected during the first year after collaring, in the period197

between July 1st to November 30th (or den entrance). Starting July 1st excluded the peak198

of the mating season (MacHutchon, 1996) and the two weeks following the collaring events.199

The third dataset included the movement paths of 12 polar bears from the Beaufort Sea.200

These bears were collared in April and May 2008-2010. To exclude the two weeks after201

collaring, we started the time series June 1st. We used locations collected until the202
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subsequent June 1st. As some pregnant females of the Beaufort Sea give birth in dens on203

the moving sea ice (Amstrup & Gardner, 1994), it is difficult to identify den location. To204

exclude denning individuals, we included only juveniles and females accompanied with205

cubs-of-the-year or yearlings when collared. Restricting the analysis to these individuals206

also removed the potential for mating events in the time series. The locations of both the207

grizzly and polar bears are GPS locations taken every 4hrs with Gen II-IV collars from208

Telonics Inc. (Mesa, AZ, USA).209

The collars of all of these animals were programmed to collect locations at regular time210

intervals. Transforming sampled steps into biologically relevant steps is among the most211

difficult challenges of using GPS data in ecology (Hebblewhite & Haydon, 2010), and212

various methods have been proposed (e.g., Codling & Plank, 2011). We chose to use the213

local turn method, a technique that creates one step out of all consecutive sampled steps214

with a turning angle smaller than a threshold angle (see Codling & Plank, 2011;215

Auger-Méthé et al., 2015). This technique, as well as other similar methods, can cause the216

misidentification of CCRWs for Lévy walks (Codling & Plank, 2011;217

Plank, Auger-Méthé & Codling, 2013). However, misidentifications are more likely to occur218

when high threshold angles are used (Codling & Plank, 2011;219

Plank, Auger-Méthé & Codling, 2013). We chose a threshold angle of 10○ because this220

small value limited the potential for misidentification and interpreted movement in the221

same general direction (i.e., any sampled step within the 20○ forward sector) as part of a222

biologically relevant step (Auger-Méthé et al., 2015). To verify that variations in threshold223

angles did not affect the results, we also explored a range of threshold angles. We show in224

Appendix S1 that the results were broadly similar regardless of the threshold angle used.225

Note that this local turn method can impact the test of absolute fit based on turning angle226
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distribution (Auger-Méthé et al., 2015), and we presented only the test of absolute fit for227

the step length distribution. Because missing locations can affect steps defined by the local228

turn method, we included only individuals that had a time series with < 30% of the229

locations missing. We also limited the time series to those with a minimum of 50 steps230

(Appendix S2 presents the range of sample size). We applied the models to the data from231

each individual separately.232

3 Results233

According to AICc, one of the CCRWs (CCRWa or CCRWl) was the best model for more234

than 98% (53/54) of all movement paths and for at least 95% of the movement paths of235

each species (Table 3). For all species, the mean Akaike weight, wCCRW, of paths with a236

CCRW as best model was > 0.94. According to the test of absolute fit, some of the237

movement paths best described by a CCRW were not different from it: 48% of caribou,238

25% of grizzlies, and 0% of polar bears (Table 3). While the TLW and CRW were never239

the best model of a movement path, the BW was the best model for one of the 22240

movement paths of the caribou. The mean Akaike weight of this BW was 0.42 and this241

path was different from the BW. For a visual representation of the fit of the models see242

Fig. 1 and for the results for each individual see Appendix S2.243

For comparative purposes, we also present the results when the CCRWa, CCRWl, and244

CRW are excluded from the analysis and only the TLW and BW are considered as245

alternative hypotheses. Both the TLW and BW have a uniform probability density246

function to describe the turning angle frequency, and the same step length probability247

density functions as in Edwards et al. (2007). Thus comparing the AICc of these two248

models can be considered equivalent to current methods used by others to find evidence for249
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the Lévy walk. The TLW was better than the BW for 75% of the grizzly bears and 8% of250

polar bears (Table 4). The rest of the movement paths, including all caribou paths, were251

better described by the BW. While the BW was sufficient to explain the movement of half252

of the caribou and one grizzly bear, it was insufficient for all polar bears. All movement253

paths were different from the TLW according to the test of absolute fit.254

Many of the parameter estimates for the CCRWs (CCRWa or CCRWl) indicated that the255

movement paths could be divided into two distinct phases (Table 5). First, the mean step256

length of the intensive phase was shorter than that of the extensive phase for all species257

(λi > λe; note that 1/λ+ a represents the mean). Second, the extensive phase for the grizzly258

and polar bears had more directed movement than the intensive phase (κe > 0). However,259

we had weaker support for caribou, as the mean confidence interval for the scale parameter,260

κe, overlapped with 0. A scale parameter, κe, of 0 reduces the von Mises distribution to261

the same circular uniform distribution used for the intensive phase. In addition, the262

caribou, the 15 grizzly bears with the CCRWa as their best model, and the polar bears263

appeared to remain in the intensive phase for multiple steps. When modeled with the264

CCRWa, these animals had a greater than 50% chance of remaining in the intensive phase265

(γii > 0.5). When modeled with the CCRWl, they spent on average more than one step in266

the intensive phase (αi > 1). However, we had weaker support for such behavioural267

persistence for the 5 grizzly bears with the CCRWl as their best model because their mean268

number of steps in the intensive phase, αi, was only 0.28.269

4 Discussion270

We found substantial support for the two versions of the CCRW. 98% of the movement271

paths had one of these CCRWs as best model. Of these movement paths, 28% were272
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adequately described by the best CCRW version. In general, the estimated parameters273

from the CCRWs indicated that the movement patterns could be divided into two distinct274

movement behaviours, a directed extensive phase and a tortuous intensive phase consistent275

with an area-restricted search. However, not all movement paths were consistent with a276

CCRW. According to the test of absolute fit, the movement paths of many caribou, grizzly277

bears, and most polar bears were different from the best CCRW version, even though one278

of the CCRWs was, in almost all of these cases, the best model according to AICc. In279

addition, the confidence intervals on some parameter estimates indicated that the evidence280

for directed movement and behavioural persistence in the intensive phase was not strong281

for some species. These discrepancies indicate that although our versions of the CCRW can282

approximate the movement better than the three other models we investigated, it might be283

an incomplete representation of the search strategy used by some of the animals we studied.284

We found no movement patterns consistent with the Lévy strategy, which is in line with285

recent studies suggesting that Lévy movement may be less common than originally thought286

(Edwards et al., 2007, 2012; James, Plank & Edwards, 2011; Pyke, 2015, but see287

Humphries et al. 2012; Sims et al. 2012; Gautestad & Mysterud 2013). Although no288

movement paths had the TLW as its best model when all models were considered, support289

for TLW increased when the CCRWs were excluded from the set of alternative models.290

When the TLW was compared only to the BW, 75% of the grizzly bears and one polar291

bear had the TLW as their best model. This re-emphasizes the importance of comparing292

Lévy walk models to strong alternatives such as the CCRW (Auger-Méthé et al., 2011;293

Jansen, Mashanova & Petrovskii, 2012; Plank, Auger-Méthé & Codling, 2013). It also294

supports the contention that some Lévy walk movement patterns might emerge from295

multiphasic movement or other mechanisms rather than providing evidence for the Lévy296
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search strategy per se (Benhamou, 2007; Plank & James, 2008; Breed, Severns & Edwards,297

2015; Reynolds, 2015). Finally, the fact that all empirical movement paths differed from298

the TLW further indicates that it was likely an inappropriate model for our data. This299

reiterates the importance of testing the absolute fit of a model (Auger-Méthé et al., 2011;300

Plank, Auger-Méthé & Codling, 2013).301

The fact that we found support for CCRWs is unsurprising given that there is ample302

evidence of species showing similar biphasic movement behaviour (e.g. Morales et al., 2004;303

Jonsen, Myers & James, 2007; Dragon et al., 2012), including caribou (Johnson et al.,304

2002a,b; Tyson, Wilson & Lane, 2011). However, our results contrast with previous305

research on semi-domesticated reindeer (R. t. tarandus), a Eurasian subspecies of caribou.306

We found that CCRWs and the two null models were better than the TLW for the winter307

movement of all caribou (Appendix S2). In contrast, previous studies found that the308

movement of reindeer in spring and early summer was more consistent with the Lévy walk309

than with null models (Mårell, Ball & Hofgaard, 2002; Edwards, 2011). These differences310

might be due to behavioural variation between subspecies or between wild and311

semi-domesticated animals. They may also result from differences in the sampling scale,312

habitat, and season examined in the studies. Mårell, Ball & Hofgaard (2002) showed that313

reindeer changed their movement strategies over the course of the summer. For caribou,314

Johnson et al. (2002a) showed stronger support for a two-behaviour model in winter than315

in summer and attributed the difference to increased patch heterogeneity due to snow316

conditions and lichen distributions. Thus, it is possible that caribou exhibit CCRW317

movement patterns in winter but not during the summer.318

Unlike grizzlies and polar bears, one caribou had the BW as their best model. In addition,319

many caribou movement paths were not statistically different from the BW and the320
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parameter estimates indicated that the distinction between the two behaviours of CCRWs321

was not strong. Our caribou movement paths had the coarsest sampling scale and the322

smallest sample sizes (see Appendix S2). This sampling scheme may have favoured finding323

evidence for a simpler model in this species, and the small sample size might have324

contributed to the relatively low rate of rejection for caribou. However, Edwards (2011)325

also found that null models similar to the BW explained the movement of this species326

during part of the year, supporting our results that the BW is sufficient to explain the327

movement of some caribou. A single behaviour search strategy may be sufficient for large328

herbivores, which often rely on widely dispersed low-quality food rather than patches of329

highly nutritional items (Senft et al., 1987).330

CCRWs were the best model for all grizzlies and were sufficient to explain the movement331

paths of some individuals. We anticipated movement patterns consistent with a random332

search strategy because the bears in this population inhabit sparse and unpredictable333

environments and display home range drift (Edwards, Nagy & Derocher, 2009). Bears in334

this population vary in their foraging behaviours from a spectrum of near complete335

herbivory to carnivory (Edwards et al., 2011). Such specialisation was related to changes in336

movement behaviours, with carnivores moving faster than herbivores (Edwards et al.,337

2011). Indeed, we would expect carnivores and herbivores to use different search strategies,338

and such individual variation might explain why the movement of only some individuals is339

adequately represented by CCRWs. We might expect the intensive movement associated340

with the area-restricted search to be more effective for the herbivorous bears exploiting341

immobile berry patches than for carnivores preying on vagile animals. Further research342

could investigate how differences in diet are reflected in the search strategies used by343

grizzlies.344
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CCRWs were the best model for all polar bears, but were insufficient to explain the345

movement paths of all individuals. The parameter estimates indicate that there is a strong346

differentiation in both step length and directional persistence between the behavioural347

phases, suggesting that there is evidence for two movement phases even though the348

movement is not adequately described by the CCRWs. Difference in these phases could be349

driven by a variety of factors, including alterations in movement according to sea ice350

condition. Since the movement behaviour of polar bears is associated with the high levels351

of sea ice drift they experience (Mauritzen et al., 2003; Auger-Méthé, Lewis & Derocher,352

2016), neglecting sea ice drift may partially explain why our models were insufficient to353

explain their movement. Although studies have found movement consistent with random354

search strategies in animals experiencing drift from ocean and wind currents (e.g.,355

Fauchald & Tveraa, 2003; Humphries et al., 2012; Sims et al., 2012), neglecting currents356

can distort inference made from foraging movement models (Gaspar et al., 2006). This357

distortion may be attributed to the difficulty of distinguishing between voluntary358

movement and drift, but it may also arise from the fact that many species use currents359

strategically when traveling (e.g., Weimerskirch et al., 2000).360

The test of absolute fit revealed that the models we explored failed to accurately represent361

72% of the movement paths. There are multiple potential reasons for the high rejection362

rate of this test, the first three of which are methodological in nature. First, animals are363

unlikely to move exactly as modelled by our idealised representation of search strategies,364

and with large sample sizes, any small deviation could result in rejection. While we365

explored two CCRW versions that differed in how we modeled the number of steps made in366

a movement phase, varying step length and turning angle distributions can further increase367

the absolute fit of the CCRWs (see Appendix S3). Second, although the models are good368
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representations of a movement path composed of biologically relevant steps, they are not369

necessarily good representations of observed movement. To estimate biologically relevant370

steps from sampled steps, we used the local turn method. Such procedures can distort371

movement paths and bias results in favour of Lévy walk models (Codling & Plank, 2011;372

Plank, Auger-Méthé & Codling, 2013). In particular, the test of absolute fit we used has a373

slightly inflated rejection rate when a 10○ local turn threshold is used (Auger-Méthé et al.,374

2015). However, the method’s ability to distinguish between the CCRW and TLW is robust375

to use of a 10○ threshold (Auger-Méthé et al., 2015), and we found consistent results over a376

range of threshold angles. The only noteworthy exceptions are that up to three grizzly bear377

movement paths had the TLW as best model when high threshold angles were used (e.g.378

40○) and that when a threshold angle of 50○ was used one grizzly bear movement path with379

a TLW as best model was not statistically different from it (see Appendix S1). Third,380

sampling scale can affect the observed movement pattern and thus behavioural inference381

(e.g., Codling & Hill, 2005; Andersen et al., 2008; Plank & Codling, 2009). The data we382

used was sampled at a coarse temporal scale (daily for caribou or every 4hrs for bears).383

Thus, investigating movement paths with locations taken at a more frequent interval could384

potentially increase the absolute fit of CCRWs. However, we showed previously that, for385

polar bears, movement paths with locations taken every 30 min gave similar results: the386

CCRWa was better than the TLW, BW, and CRW, but was insufficient to explain the387

observed movement (Auger-Méthé et al., 2015). Across sampling scales and species, we388

generally found stronger support for CCRWs compared to the BW and CRW, but in some389

cases these simpler models were favoured or had strong enough support to be kept as390

potential alternatives (see also Auger-Méthé et al., 2015). In contrast, the stronger support391

for CCRWs over the TLW was constant across the three species studied and the three392
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different sampling scales (locations taken every 30 min, 4 hrs, 1 day), indicating that this393

finding is relatively robust to sampling scale.394

In addition to these methodological reasons, there are at least four potential biological395

reasons for the lack of fit of these movement models. First, the Lévy walk and the396

area-restricted search strategy associated with CCRWs were developed for animals with397

scant knowledge of their environment (Knoppien & Reddingius, 1985;398

James, Plank & Edwards, 2011). Species like the caribou and polar bears exhibit some399

degree of site fidelity (Mauritzen, Derocher & Wiig, 2001; Faille et al., 2010; Tracz et al.,400

2010), thus we can expect them to be at least moderately familiar with their environment.401

As many species display site fidelity and are capable of storing information on their402

habitat, there is increasing interest in memory-based movement models403

(Börger, Dalziel & Fryxell, 2008; Smouse et al., 2010; Fagan et al., 2013). Ignoring memory404

may distort analyses of random search strategies (Gautestad & Mysterud, 2013), and some405

memory-based search strategies have similar movement patterns to CCRWs with406

area-restricted search (e.g. Fronhofer, Hovestadt & Poethke, 2013). Thus, accounting for407

memory in movement analysis may help understand the search strategies used by animals408

with knowledge of their environment (e.g. Regular, Hedd & Montevecchi, 2013). Second,409

random search strategies were developed for animal searching outside of their perceptual410

range (Benhamou, 1992; James, Plank & Edwards, 2011). Many species have an acute411

sense of smell and are thought to use olfactory cues to find their prey (Conover, 2007).412

Such species include the grizzly and polar bear (Stirling, 1999; Conover, 2007), as well as413

species that have been suggested to follow a random search strategy (e.g., wandering414

albatross, Diomedea exulans, Nevitt, Losekoot & Weimerskirch, 2008; Humphries et al.,415

2012). As with knowledge of the environment, the use of sensory cues and the extent of the416
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perceptual range are likely to affect the type of search strategies used by animals417

(Nevitt, Losekoot & Weimerskirch, 2008; Fronhofer, Hovestadt & Poethke, 2013). Third,418

landscape features can alter animal movement patterns and affect their search strategy. In419

particular, ignoring resource density levels can distort analysis of random search strategies420

(Gautestad & Mysterud, 2013), and including landscape features in movement models can421

enhance our understanding of animals’ foraging success (McKenzie et al., 2012). Fourth,422

animals have an extensive behavioural repertoire and their movement paths often include423

behaviours other than searching for food. Neglecting to remove other behaviours is known424

to distort analysis of search strategies (Edwards et al., 2007). We removed two types of425

resting periods, the denning period of bears and all steps where locations remained426

constant. In addition, we removed the main reproductive and mating periods of all species.427

However, given that our sampling interval was coarse and that the movement paths428

encompassed months, it is likely that many behaviours, including nursing, predator429

avoidance, and socialising, are still present in the movement paths. These four explanations430

for the lack of fit of simple movement models emphasises how difficult it is to understand431

how animals search for food, and echoes the calls for more mechanistic movement models432

(Nathan et al., 2008; Schick et al., 2008).433

While we have movement patterns consistent with CCRWs and Brownian motion, there is434

likely no universal search strategy. Both species and individuals differ. Thus, we will only435

be able to accurately represent how animals search for food once we incorporate into436

movement models aspects such as memory, landscape features, and the effects of sampling437

on observed movement paths.438
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foraging hypothesis. Methods in Ecology and Evolution, 6, 1–16.641

R Core Team (2015) R: A Language and Environment for Statistical Computing. R642

Foundation for Statistical Computing, Vienna, Austria.643

URL http://www.R-project.org/644

Regular, P.M., Hedd, A. & Montevecchi, W.A. (2013) Must marine predators always follow645

scaling laws? Memory guides the foraging decisions of a pursuit-diving seabird. Animal646

Behaviour, 86, 545–552.647
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Table 1: Likelihood functions and number of parameters to estimate (k) for the five models.

For a description of the probability density functions: ψt(l), v0(θ), φ(l), and v(θ), see Table

2.

Model Likelihood function k

TLW ∏n
t=1 ψt(lt∣µt, a, b) v0(θt) 3

BW ∏n
t=1 φ(lt∣λ, a) v0(θt) 3

CRW ∏n
t=1 φ(lt∣λ, a) v(θt∣κ) 4

CCRWa ∏n
t=1 Γt( φ(lt∣λi,a) v0(θt) 0

0 φ(lt ∣λe,a) v(θt∣κe) ) (
1
1 ), Γt =

⎧⎪⎪⎨⎪⎪⎩

( δi 1−δi ) if t = 1
( γii 1−γii

1−γee γee

) otherwise
7

CCRWl ∏n
t=1 Γt( φ(lt∣λi,a) v0(θt) 0

0 φ(lt ∣λe,a) v(θt∣κe) ) (
1
1 ), Γt=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
† if t = 1

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1−γi(1) ... 0 γi(1) ... 0
⋮ ⋱ ⋱ ⋮ ⋮ ... ⋮
0 0 ... 1−γi(m−1) γi(m−1) ... 0

0 0 ... 1−γi(m) γi(m) ... 0

γe(1) 0 ... 0 1−γe(1) ... 0
⋮ ⋮ ... ⋱ ⋱ ⋱ ⋮

γe(m−1) 0 ... 0 0 ... 1−γe(m−1)
γe(m) 0 ... 0 0 ... 1−γe(m)

⎞
⎟⎟⎟⎟⎟⎟
⎠

‡ otherwise
6

† As in Langrock et al. (2012), we are using the stationary distribution for the initial values, δ, of the
Markov chain for CCRWl.

‡ As in Langrock et al. (2012), γi(r) = pi(r)
(1−∑r−1

k=1
pi(r))

and γe(r) = pe(r)
(1−∑r−1

k=1
pe(r))

. For both phases, we are using

a Poisson distribution, pi(r) and pe(r), for the state dwell time. See Table 2 for a description of the
Poisson distribution p(r).
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Table 2: Formulas for the probability density functions (PDFs) used in the models and the

restrictions on their variables and parameters. The variables l and θ represent step length

and turning angle, respectively.

Distribution Symbol PDF Restrictions

Exponential φ(l∣λ, a) λ e−λ(l−a) a ≤ l, λ > 0
Truncated Pareto ψt(l∣µt, a, b) (µt−1) l−µt

a1−µt−b1−µt
a ≤ l ≤ b †

Von Mises v(θ∣κ) 1

∫ π
−π eκ cos(θ)dθ

eκ cos(θ) ‡,§ κ > 0
Uniform v0(θ) 1

2π

Poisson p(r∣α) αr

r!
e−α α > 0

† Unlike in Auger-Méthé et al. (2015), we are not placing restrictions on the estimated µt values.
‡ This is a simplified and expanded equation of the von Mises PDF. The same equation is often written
with a modified Bessel function of the first kind and of order 0.

§ These simplified versions assume that the distribution is centred at 0, for full version see
Codling, Plank & Benhamou (2008).
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Table 3: Relative and absolute fit of the five models on the movement paths of 22

caribou, 20 grizzlies, and 12 polar bears. For each model, we present the number of

movement paths selected as best model with AICc and the mean Akaike weight, w, of

these selected paths. Note that we used the summed Akaike weight of the CCRWa and

CCRWl because these two models represent the movement pattern of the same search

strategy. We also present how many of the selected paths are not different from the

best model according to a test of absolute fit based on the step length distribution.

Model N○ as best model w of best model N○ p-value > 0.05
Caribou Grizzly Polar bear Caribou Grizzly Polar bear Caribou Grizzly Polar bear

CCRWa 4 15 9
0.95 1.00 1.00

1 1 0

CCRWl 17 5 3 9 4 0

TLW 0 0 0 – – – – – –

BW 1 0 0 0.42 – – 0 – –

CRW 0 0 0 – – – – – –
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Table 4: Relative and absolute fit of the two models generally used in Lévy walk

analysis. For each model, we present the number of movement paths selected as

best model with AICc and the mean Akaike weight of these selected paths. We also

present how many of the overall paths are not statistically different from the TLW

and BW when only the step lengths are considered.

Model N○ as best model w of best model N○ p-value > 0.05
Caribou Grizzly Polar bear Caribou Grizzly Polar bear Caribou Grizzly Polar bear

TLW 0 15 1 – 1.00 1.00 0 0 0

BW 22 5 11 1.00 0.93 1.00 11 1 0
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Table 5: Parameter estimates for the best models. The mean parameter

estimates and associated confidence intervals (CIs) are presented for

each species. Only the movement path of individuals that had the

model as its best are used. The locations of caribou were taken daily,

those of grizzly and polar bears were taken every 4 hrs.

Symbol
(unit)

Description Caribou Grizzly Polar bear

a
(km)

Minimum step length of the BW, CCRWa,
and CCRWl

0.053 0.0030 0.023

γii Probability of remaining in the CCRWa’s
intensive phase

1.00
(0.98-1.00)

0.54
(0.44-0.64)

0.83
(0.78-0.88)

γee Probability of remaining in the CCRWa’s
extensive phase

0.97
(0.89-1.00)

0.85
(0.80-0.90)

0.96
(0.96-0.97)

κe Scale parameter of the directional correlation
of the CCRWs’ extensive phase

0.22
(0.00-1.14)

0.41
(0.22-0.62)

1.1
(1.0-1.3)

λ
(km−1)

Rate parameter of the exponential
distribution of the BW

0.43
(0.36-0.50)

– –

λi
(km−1)

Rate parameter of the CCRWs’ intensive
phase

7.7
(1.2-18.1)

53
(35-82)

16
(13-21)

λe
(km−1)

Rate parameter of the CCRWs’ extensive
phase

0.37
(0.25-0.54)

0.56
(0.49-0.63)

0.19
(0.18-0.21)

αi Mean of the Poisson for CCRWl’s intensive
phase

15
(10-19)

0.28
(0.13-0.53)

13
(9-16)

αe Mean of the Poisson for CCRWl’s extensive
phase

14
(9-19)

4.0
(3.3-5.2)

17
(15-19)
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Figure 1: Fit of the models on the movement path of each species: (A-C) caribou, (D-F)

grizzly, and (G-I) polar bear. (A, D, G) black lines represent the movement path using

the 10○ threshold angle and the gray dashed line the missing data. (B, E, H) Step length

frequency with the probability density function (PDF) of each model, on log-log axes. (C,

F, I) Turning angle frequency with the PDF of each model. The best model for these three

individuals was either the CCRWa or CCRWl with Akaike weight: wCCRW > 0.99. The

p-value of the test of absolute fit for the step length and turning angle distributions of the

best model are indicated in the legend. See Appendix S2 for the other individuals.
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