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Abstract

The electrocardiogram is the standard tool for detecting cardiac abnormalities,

such as atrial fibrillation, irregular complexes, and heart blocks. However, the

interpretation of this data is an unsolved problem with discrepancies among

panels of cardiologists and automated analysis requiring additional human

over-reading. This thesis explores the classification of 12-lead ECGs to a set

of 27 diagnoses as defined in the PhysioNet/CinC 2020 Challenge.

I propose three approaches, starting with manual feature engineering and

classification using shallow gradient boosted tree ensembles. Our second ap-

proach uses a deep learning approach by combining fixed and variable length

autoencoders to learn the features, followed by a multi layer perceptron (MLP)

classifier. Our third approach combines the deep autoencoders and our shal-

low decision tree ensembles by training the shallow gradient boosted trees

with both the manually extracted features as well as the bottleneck dimension

representation of the 12-lead ECG record. I empirically evaluate our differ-

ent approaches using a weighted classification scoring function using repeated

random subsampling of the publicly available challenge dataset. This thesis

concludes with future ways to approach the multi-channel signal classification

problem that addresses some of the limitations discovered in the prior ap-

proaches. Our best model, using the averaged top 1000 manually engineered

features with autoencoder embeddings, attains a mean test split challenge

metric of 0.4366 with an overall mean classification accuracy of 30.7%.
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Preface

Chapter 3 contains an adapted version of “Multilabel 12-Lead Electrocardio-

gram Classification Using Gradient Boosted Tree Ensemble” [55], published in

Computing in Cardiology (CinC) 2020 conference under the PhysioNet Chal-

lenge track. This work contains manuscript revisions from Dr. Abram Hindle

and Dr. Sunil Vasu Kalmady.

Chapter 4 contains an adapted version of “Multilabel 12-Lead Electrocar-

diogram Classification Using Beat to Sequence Autoencoders” [56], submitted

to the International Conference on Acoustics, Speech, and Signal Processing

(ICASSP) 2021 and has manuscript revisions from Dr. Abram Hindle and

Dr. Sunil Vasu Kalmady. Figure 4.1, which showcases an overview of the

methodology, is contributed by Amir Salimi.
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Glossary

1st degree av block (IAVB)

Diagnosis; a delay in the electrical impluses from the atria, through the
atrioventricular node, to the ventricles.

atrial flutter (AFL)

Diagnosis; the occurrence of rapid beats of the upper chambers (atria)
of the heart.

atrial fibrillation (AF)

Diagnosis; the occurrence of chaotic or irregular beats of the upper cham-
bers atria of the heart.

bradycardia (Brady)

Diagnosis; sinus rhythm is below the normal range relative to patient
age, typically under 60 beats per minute in adults.

complete right bundle branch block (CRBBB)

Diagnosis; full action potential block to right bundle branch, QRS dura-
tion exceeding 120 ms with QRS complex rightward skew.

electrocardiogram (ECG)

A non-invasive tool for measuring the electrical activity of the heart.

incomplete right bundle branch block (IRBBB)

Diagnosis; a delay or blockage along the right side pathway that electrical
impulses travel to trigger a heart beat.

left bundle branch block (LBBB)

Diagnosis; action potential block to left bundle branch, QRS duration
exceeding 100ms with QRS complex leftward skew.

left axis deviation (LAD)

Diagnosis; cardiac axis exists between −30◦ and −90◦.

left anterior fascicular block (LAnFB)

Diagnosis; a defect in the anterior half of the left bundle branch, related
but distinct from left bundle branch block.
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low QRS voltages (LQRSV)

Diagnosis; QRS complex amplitudes < 0.5 mV in all limb leads and < 1
mV in all precordial leads.

nonspecific intraventricular conduction (NSIVCB)

Diagnosis; QRS complex durations over 100ms without anterior/posterior
skew characteristic.

pacing rhythm (PR)

Diagnosis; cardiac pacing stimuli is delivered using external means, such
as a pace maker.

premature atrial contraction (PAC)

Diagnosis; atrium beating prematurely, P wave occuring within the T
wave of the preceding beat.

premature ventricular contractions (PVC)

Diagnosis; ventricular contraction occurred prior to expected sinoatrial
node action potential.

prolonged QT interval (LQT)

Diagnosis; inadequate recovery/repolarization of the heart after each
beat, T waves ending beyond the midway point of an RR interval.

prolonged PR interval (LPR)

Diagnosis; delayed conduction through the atrioventricular node, PR
interval exceeding 200ms.

Q wave abnormal (QAb)

Diagnosis; Q wave duration exceeds 40 ms or amplitude exceeding 25%
of the QRS complex amplitude.

right bundle branch block (RBBB)

Diagnosis; action potential block to right bundle branch, QRS duration
exceeding 100ms with QRS complex rightward skew.

right axis deviation (RAD)

Diagnosis; the net direction of the depolarization wave of the heart is
between +90◦ to +180◦.

sinus tachycardia (STach)

Diagnosis; sinus rhythm is above the normal range relative to patient
age, typically over 100 beats per minute in adults.

sinus rhythm (SNR)

Diagnosis; normal, healthy function of the heart.

sinus bradycardia (SB)

Diagnosis; subtype of bradycardia, sinoatrial node firing fewer than 60
times per minute (in typical adults).
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sinus arrhythmia (SA)

Diagnosis; change in the beat-to-beat variation over time, irregular heart
rate.

supraventricular premature beats (SVPB)

Diagnosis; atrial contractions triggered through invalid conduction, such
as non-sinoatrial node origin.

Systematized Nomenclature of Medicine (SNOMED)

A systematic, computer-processable set of medical terminology, defini-
tions, and synonyms.

T wave inversion (TInv)

Diagnosis; T wave misaligned with QRS complex duration or not upright
in leads I, II, V3-6 or not inverted in lead aVR.

T wave abnormal (TAb)

Diagnosis; T wave missing asymmetry, misaligned with QRS complex
duration, low amplitude.

ventricular premature beats (VPB)

Diagnosis; see premature ventricular contractions (PVC).

xiii



Chapter 1

Introduction

Heart and cardiovascular diseases are the global leading cause of death, with

80% of cardiovascular disease related deaths due to heart attacks and strokes [51].

The electrocardiogram (ECG), when correctly interpreted, is the primary tool

in our ongoing efforts to detect cardiac abnormalities and screen vulnerable

members of our society for heart related issues [46]. An ECG works by record-

ing electrical activity corresponding to the heartbeat muscle contractions us-

ing non-invasive electrodes placed on the surface of the skin [11]. Although

computerized interpretations of ECGs are in widespread use, automated ap-

proaches have not yet matched the quality of an expert cardiologist reference,

leading to poor patient outcomes or even fatality [13].

Multiple configurations of ECG machines exist ranging from consumer

portable ECG devices such as the single lead AliveCor KardiaMobile and six

lead KardiaMobile 6L variant [3], the single lead Apple Watch [5] and the

three lead QardioCore devices [42], to the cardiologist focused devices built

by General Electric [1] and Koninklijke Philips [2]. The focus of this research

applies to the 12-lead ECG, as it is the standard hospital setting device used

by cardiologists for evaluating heart disorders [28].

In this thesis, I discuss approaches for the multi-label, multi-class classifi-

cation of ECG records using a combination of deep learning and traditional

machine learning methods. I explore in-depth the following predictions:

• Despite the overwhelming popularity of deep learning classifiers, I predict

that shallow learning methods such as gradient boosted decision trees
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can remain a viable and sensible choice for the ECG classification task,

outperforming a deep learning autoencoder model on summary classi-

fication metrics such as F-measure and weighted accuracy (see Scoring

Function, Section 2.2.3).

• When working with gradient boosted decision trees, I predict that reg-

ularization of the input feature space and appropriately selecting the

important features for the classifier are more effective than incorporat-

ing deep learning autoencoder embeddings for improving the challenge

classification score.

• I predict that naively joining deep learning autoencoder embeddings with

manually engineered features for decision tree classifiers will improve the

summary classification metrics in the ECG classification task.

1.1 Contributions

My contributions to this thesis include:

• I defined a methodology and engineered the experiment for the classifi-

cation of 12-lead ECGs using manual feature extraction techniques and

an ensemble of gradient boosting trees and publish a submission to the

PhysioNet/CinC 2020 Challenge [40]. This attempt had an official phase

challenge validation score of 0.476 and test score of −0.080, ranking our

attempt at 36 of 41 successful entries (Chapter 3).

• I developed a deep learning approach using autoencoders to generate

representations of the ECG heart beat and sequence of heart beat em-

beddings for the classification of 12-lead ECGs (Chapter 4). Because the

official test set records are unavailable to the public, I utilize a monte

carlo repeated random subsampling approach, running 20 experiments

where the publicly available data is split into 80% training, 10% valida-

tion, and 10% testing sets. Our beat to sequence autoencoder classifiers

attain an average test split challenge score of 0.248, with worse overall

2



classification performance compared to the shallow machine learning ap-

proach, but slightly improved label-wise specificity on incomplete right

bundle branch block, left anterior fascicular block, pacing rhythm, and

right axis deviation.

• I created a hybrid shallow/deep machine learning approach for 12-lead

ECG classification by fusing together the manually engineered features

with the autoencoder sequence embedding representation of the record.

I fix the shortcomings of the prior challenge submission attempt, opt-

ing for feature selection for each diagnosis classifier rather than overall

importances of all labels. The best approach, “Top 1000 Features with

Embeddings”, selects 1000 features by importance for each classifier and

attains a test split challenge score of 0.4366.

1.2 Thesis Organization

This work is organized into the following chapters: Chapter 2 describes the

characteristics of an ECG, the dataset of ECG records used in our analysis and

algorithm training, and the different classification labels that our algorithm

predicts probabilities for. Chapter 3 contains an approach for the classifica-

tion of ECG records using manual feature extraction and a gradient boosted

decision tree ensemble. Chapter 4 contains a deep learning classification ap-

proach using stacked autoencoders to learn an embedding representation of

heartbeats and the ECG signal. Chapter 5 fuses the autoencoder and decision

tree ensemble into one hybrid model and showcases the results in compari-

son to the prior two methods. Additional improvements are made to address

shortcomings, notably in the feature selection process for the label-wise clas-

sifiers. Finally, Chapter 6 proposes future research directions and concludes

the thesis.

3



Chapter 2

Background Information

In this chapter, I give a brief overview of the anatomy of a human heart.

Next, I describe the characteristics of a standard 12-lead ECG and the notable

waves in a ECG signal. I then give an overview of the PhysioNet/CinC 2020

Challenge task/objective, provided dataset of ECG records, and definitions

for the diagnoses we are tasked to predict.

2.1 Cardiac Physiology

2.1.1 Anatomy and Electrical Conduction System

A high level overview of the primary valves and chambers within the heart

can be found in Figure 2.1. The upper chambers of the heart, consisting of

the right and left atriums, work in cooperation with the lower chambers of

the heart, consisting of the left and right ventricles [4]. The right ventricle

pushes blood into the pulmonary artery which connects to the lungs to return

oxygenated blood [4]. The oxygenated blood returns to the heart through the

pulmonary veins and enters into the left atrium [4]. The left atrium collects

and pumps the oxygenated blood into the left ventricle through the mitral

valve [4]. The left ventricle pumps the oxygenated blood out of the heart to

the rest of the body through the aorta [4]. The deoxygenated blood is collected

back into the heart through the superior and inferior vena cava and into the

right atrium [4]. The cycle repeats as the right atrium pumps the blood into

the right ventricle through the tricuspid valve, allowing the lungs to once again

oxygenate the blood [4].
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Figure 2.2: Anterior, anatomical view of the conduction system of a human
heart. The conducting components of the heart begin with the sinoatrial node
and include the internodal pathways, the atrioventricular node, the atrioven-
tricular bundle, the right and left bundle branches, and the Purkinje fibres [9].
Image licensed CC BY 4.0 from Betts et al [9] on the OpenStax platform,
source: https://openstax.org/books/anatomy-and-physiology/pages/

19-2-cardiac-muscle-and-electrical-activity#fig-ch20_02_02.

2.1.2 Electrocardiogram Tracing

Within a typical ECG, there are five peaks per beat, labeled PQRST respec-

tively, that define the major components of a heartbeat as shown in Figure 2.3.

The P wave represents the sinoatrial node initiating an impulse action poten-

tial and marks the start of a heartbeat [9]. The PR segment, which starts

after the P wave and ends before the QRS complex, represents the delay be-

tween the atrial contraction and the propagation of the signal through the

atrioventricular bundle [9]. The QRS complex is the notable large spike in

the ECG, which represents the electrical impluse traveling through the atri-

oventricular bundle and bundle branches to the Purkinje fibers [9]. The ST

segment, starting after the QRS complex and ending before the T wave begins,

is the phase of the ECG where the actual ventricle contraction occurs [9]. Af-
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derived from the limb leads [23].

VW =
1

3
(RA+ LA+ LL) (2.1)

Equation 2.1 shows a common virtual electrode, known as the Wilson’s cen-

tral terminal, defined by averaging three of the limb leads (RA, LA, LL) to-

gether [23].

I = LA−RA (2.2)

II = LL−RA (2.3)

III = LL− LA (2.4)

The unused limb lead RL does not show up in the ECG readings and is consid-

ered a neutral grounding lead for minimizing artifacts [16]. See Equation 2.2

for lead I, Equation 2.3 for lead II, and Equation 2.4 for lead III [23].

aV R =
3

2
(RA− VW ) = RA−

1

2
(LA+ LL) (2.5)

aV L =
3

2
(LA− VW ) = LA−

1

2
(RA+ LL) (2.6)

aV F =
3

2
(LL− VW ) = LL−

1

2
(RA+ LA) (2.7)

The augmented limb leads aVR, aVL, and aVF are derived from the same

three electrodes as leads I, II, and III but rely on Wilson’s central terminal as

their negative pole. See Equation 2.5 for lead aVR, Equation 2.6 for lead aVL,

and Equation 2.7 for lead aVF [23]. The remaining precordial leads V1 to V6

shown in the ECG are the directly measured signals from the electrodes.

An ECG’s cardiac axis refers to the average direction of the wave of ventric-

ular depolarization measured from the reference point of lead I on a standard

12-lead ECG [35]. One simple estimation of the cardiac axis is done by in-

specting the magnitude of the R-peaks on leads I, II, and III [15]. In a normal

ECG, leads I, II are positive while lead III may be positive or negative. There

is right axis deviation if lead I is negative and lead III is positive (lead II may

be positive or negative). Left axis deviation exists if lead I is positive while

leads II and III are negative.
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Alternatively, the Cabrera system or hexaxial reference system, can be used

to logically derive the heart’s electrical axis [30, 49]. By viewing the six frontal

planes in the sequence aVL, I, aVR, II, aVF, and III, we check the maximal

amplitude of the ECG vector (positive or negative) and use it to derive the

cardiac electrical axis. Figure 2.6 shows the hexaxial reference system and

the mapping to the six derived limb leads. A normal axis is a value between

−30◦ to 90◦, left axis deviation is between −30◦ to −90, right axis deviation

is between 90◦ to 180◦. Values that exceed the defined ranges are classified as

extreme axis deviations.

2.2 PhysioNet/CinC 2020 Challenge Overview

This chapter summarizes the task of multi-label, multi-class classification of

ECGs as proposed by Perez Alday et al. [40] in the PhysioNet/CinC 2020

Challenge.

2.2.1 Public Dataset

The challenge provided a public collection of 43,101 labelled ECG records for

training. These public records were sourced from multiple locations, including:

1. The China Physiological Signal Challenge (CPSC) 2018 [31] corpus of

data, containing 10,330 recordings.

2. The St. Petersburg Institute of Cardiological Technics (INCART)

database of 12-lead arrhythmias [48], containing 74 recordings.

3. The Physikalisch Technische Bundesanstalt (PTB) contributed datasets

PTB Diagnostic ECG Database [12] and the more recent PTB-XL

database [53], containing a combined total of 22,353 records.

4. The Georgia 12-lead ECG Challenge (G12EC) database, containing

10,344 records.

A separate hold-out set of ECG records is sourced from an undisclosed or-

ganization containing patients geographically distinct from the publicly avail-
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Table 2.1: Evaluated SNOMED CT codes with definition, count and percent-
age in dataset.

SNOMED Abbr. Diagnosis Count (%)
270492004 IAVB 1st degree av block 2394 (5.6%)
164889003 AF atrial fibrillation 3475 (8.0%)
164890007 AFL atrial flutter 314 (0.7%)
426627000 Brady bradycardia 288 (0.7%)
713427006 CRBBB complete right bundle branch block 683 (1.6%)
713426002 IRBBB incomplete right bundle branch block 1611 (3.7%)
445118002 LAnFB left anterior fascicular block 1806 (4.2%)
39732003 LAD left axis deviation 6086 (14.1%)
164909002 LBBB left bundle branch block 1041 (2.4%)
251146004 LQRSV low QRS voltages 556 (1.3%)
698252002 NSIVCB nonspecific intraventricular conduction 997 (2.3%)
10370003 PR pacing rhythm 299 (0.7%)
284470004 PAC premature atrial contraction 1729 (4.0%)
427172004 PVC premature ventricular contractions 188 (0.4%)
164947007 LPR prolonged PR interval 340 (0.7%)
111975006 LQT prolonged QT interval 1513 (3.5%)
164917005 QAb Q wave abnormal 1013 (2.4%)
47665007 RAD right axis deviation 427 (1.0%)
59118001 RBBB right bundle branch block 2402 (5.6%)
427393009 SA sinus arrhythmia 1240 (2.9%)
426177001 SB sinus bradycardia 2359 (5.5%)
426783006 SNR sinus rhythm 20846 (48.4%)
427084000 STach sinus tachycardia 2402 (5.6%)
63593006 SVPB supraventricular premature beats 215 (0.5%)
164934002 TAb T wave abnormal 4673 (10.8%)
59931005 TInv T wave inversion 1112 (2.6%)
17338001 VPB ventricular premature beats 365 (0.8%)

1st degree av block (IAVB) This is when there is an abnormally long de-

lay between the electrical impulse from the atria, through the ventricular

node, to the ventricles. On the ECG, this is detected by the presence of

a PR interval longer than 200ms [17] or by the existence of a notched

(bimodal) P-wave in leads I, II, III, and aVF [7]. See Figure 2.8 for an

example of an ECG record containing this ailment.
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that each cell contains the sum of all n records that are classified as diagnosis ci

and have the ground truth diagnosis of cj, see Equation 2.8 and Equation 2.9.

aij =
n

∑

k=1

aijk (2.8)

Due to the multi-label nature of this task, a single ECG record may have mul-

tiple diagnoses. The contribution of a single record is normalized by dividing

over |{xk ∪ yk}|, or the number of classes with a ground truth positive label

or classifier output.

aijk =







1

|{xk ∪ yk}|
if ci ∈ xk and cj ∈ yk

0 otherwise
(2.9)

A matrix of weights W = [wij] is provided by the challenge organizers

to specify the reward for a classifier output of class ci with a ground truth

positive label of cj. See Figure 2.33 for a visualization of the provided weights

and relationship to the classification labels.

s =
m
∑

i=1

m
∑

j=1

wijaij (2.10)

The objective of the challenge is to maximize the scoring metric s as defined

in Equation 2.10. The challenge emphasizes that the reward matrix used W

is opinionated and should be tailored to the preferences of the researchers and

institutions in future experiments [40].

2.3 Related Work

I summarize the PhysioNet/CinC 2020 Challenge [40] successful entrants, em-

phasizing noteworthy approaches and categorizing the general distribution of

the competition strategies. All of the ranked challenge participants have pub-

licly available papers 1. There are also publications that do not have a official

phase challenge entry, due to various failures in the remote evaluation and

1PhysioNet 2020 successful entrants and papers: https://github.com/

physionetchallenges/physionetchallenges.github.io/tree/master/2020/papers
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training of the submitted entry. All in all, there are 41 successful submissions

and 62 publications addressing the 12-lead ECG classification challenge.

The top ranked entry proposed by Natarajan et al combined handcrafted

ECG features with a deep learning convolutional and transformer neural net-

work model for learned discriminative feature representations [38]. They ini-

tially generated over 300 ECG features extracted from lead II, but pruned to

20 derived features using a random forest classifier. The remaining leads were

not used in tabular feature engineering, but were applied to training the trans-

former neural network. They achieved a final official phase validation score

of 0.587 with a test score of 0.533. Impressively, despite this approach using

deep learning techniques and winning the competition, no external datasets

were used to pretrain or otherwise enhance the model.

The second ranked entry submitted by Zhao et al used an adapted ResNet

for the classification of ECGs and attained a official phase validation score of

0.672 and test score of 0.520 [58]. The age and sex meta features were encoded

into their final classification layer using one-hot encoding, relying otherwise

on learned features from their deep convolutional network. Additionally, their

model was trained on additional data not provided by the official challenge

sources. The third ranked entry proposed by Zhu et al also used an adapted

ResNet with squeeze-and-excitation blocks and scored a challenge validation

score of 0.682 with a test score of 0.514 [59]. No metadata was used in their

classifier, relying only on signal morphology to generate their predictions.

Of all 62 accepted papers, the overwhelming majority of approaches used

deep learning as part of their model. Convolutions were used in 54 (87.1%)

of all challenge papers. Recurrent neural networks were used in 32 (51.6%) of

the papers, with 17 (27.4%) of the papers using the long short term memory

(LSTM) network variant. Three (4.8%) papers used the transformer neural

network architecture. Only 7 (11.3%) papers opted not to use deep learning

at all, relying on manual feature extraction and traditional machine learn-

ing approaches like decision trees and support vector machines (our challenge

submission being one of these 7 papers).
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Figure 2.4: Cardiac conduction correlated to ECG tracing waves [9]. 1. The
conduction system of the heart is currently at rest, with the ventricles re-
polarized. 2. The sinoatrial node begins an action potential which perme-
ates across the atria, causing the ECG P wave formation. 3. A 100ms
delay in the impulse occurs which allows the atria to complete pumping
blood, showing as the PR segment in the ECG. 4. The impulse proceeds
through the atrioventricular bundle and bundle branches to the Purkinje fibers,
appearing as the QRS complex in the ECG. 5. The contractile fibers of
the ventricles are stimulated by the impulse, causing the ventricles to con-
tract and appears as the ST-segment in the ECG. 6. The impulse dissi-
pates and the ventricular muscles relax, causing the ECG T wave formation.
Image licensed CC BY 4.0 from Betts et al [9] on the OpenStax platform,
source: https://openstax.org/books/anatomy-and-physiology/pages/

19-2-cardiac-muscle-and-electrical-activity#fig-ch20_02_08.
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Figure 2.5: Placement of 12-lead ECG for precordial electrodes V1-V6 [16].
V1 is located in the 4th intercostal space (ICS) on the right margin of the
sternum. V2 is placed at the 4th ICS on the left margin of the sternum. V3 is
placed midway between V2 and V4. V4 is placed on the 5th ICS mid-clavicular
line. V5 is placed on the anterior axillary line at the same level as V4 (5th
ICS). V6 is placed on the mid-axillary line at the same level as V4 (5th ICS).
Image licensed CC BY-NC-SA 4.0 from Mike Cadogan [16] on the Life In The
Fast Lane platform, source: https://litfl.com/ecg-lead-positioning/.
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Chapter 3

Gradient Boosting Tree
Ensemble

In this chapter, I propose an approach for the classification of 12-Lead ECGs

using manual feature engineering and an ensemble of gradient boosted trees.

The work contained in this chapter is part of the Computing in Cardiology

2020 PhysioNet Challenge [40], where teams propose algorithms for the multi-

label, multi-class classification of 12-lead ECG signals. The submitted work,

“Multilabel 12-Lead Electrocardiogram Classification Using Gradient Boosting

Tree Ensemble”, published [55] in Computing in Cardiology (CinC) 2020, has

contributions and edits from Dr. Abram Hindle and Dr. Sunil Vasu Kalmady.

We would like to thank Eric Ly and Leiah Luoma of the Canadian VIGOUR

Center for their help and guidance during our research journey.

What to take away from this chapter

• a method for taking variable length signals and extracting tabular signal

processing derived features for use as inputs to shallow classifiers;

• the provided dataset is an incomplete approximation of real-world ECGs,

as shown in the poor results from the official test set challenge score;

• additional work, including deriving multi-dimensional features using many

leads simultaneously, may lead to better classification score and accuracy.
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Abstract

The 12-lead electrocardiogram (ECG) is a commonly used tool for detecting

cardiac abnormalities such as atrial fibrillation, blocks, and irregular com-

plexes. For the PhysioNet/CinC 2020 Challenge, we built an algorithm using

gradient boosted tree ensembles fitted on morphology and signal processing

features to classify ECG diagnosis.

For each lead, we derive features from heart rate variability, PQRST tem-

plate shape, and the full signal waveform. We join the features of all 12 leads

to fit an ensemble of gradient boosting decision trees to predict probabilities of

ECG instances belonging to each class. We train a phase one set of feature im-

portance determining models to isolate the top 1,000 most important features

to use in our phase two diagnosis prediction models. We use repeated random

sub-sampling by splitting our dataset of 43,101 records into 100 independent

runs of 85:15 training/validation splits for our internal evaluation results.

Our methodology generates us an official phase validation set score of 0.476

and test set score of -0.080 under the team name, CVC, placing us 36 out of

41 in the rankings.
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3.1 Introduction

The electrocardiogram (ECG), when correctly interpreted, is an effective tool

for detecting cardiac diseases. Despite much research in computerized inter-

pretations of ECGs, trained human over-reading and confirmation is required

and emphasized in published reports [45, 33]. This work classifies standard

12-lead ECGs to their clinical diagnosis as part of the PhysioNet/CinC 2020

Challenge [40]. We develop a multi-label classification algorithm using entropy

and signal processing inspired features and a gradient boosting decision tree

ensemble.

3.1.1 Dataset & Scoring Criteria

The official phase dataset contains a total of 43,101 ECG records. Each record

contains a set of one or more SNOMED CT codes, with only a subset of 27

codes evaluated in the challenge. The challenge objective is to maximize the

metric:
∑

ij wijaij. Given a set of diagnoses C = {ci}, we compute a confusion

matrix A = [aij] where aij contains records that are classified as class ci and

belong to class cj. The weights W = [wij], are set by the challenge to indicate

clinical similarity between classes. Refer to Perez Alday et al. [40] for the

description of the challenge scoring function weights and ECG dataset.

3.2 Methodology

Our approach is inspired by existing methods which use feature engineering

and shallow learning classifiers [24]. Figure 3.1 shows an overview of our learn-

ing algorithm pipeline from first cleaning and preprocessing the ECG, to then

extracting the full waveform, heartbeat template, and heart rate variability

features, finally using these features as input to our binary classifiers.

We rely on the NeuroKit2 (version 0.0.40) neurophysiological signal pro-

cessing library for ECG signal cleaning, PQRST annotation, signal quality

calculation, and heart rate variability metrics [34]. We also use the time series

feature extraction library tsfresh (version 0.16.0) for analysis of the PQRST
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and 0 corresponds to beats that are most distant to the average QRS. We use

the PQRST beat window with the highest signal quality as our candidate lead

heartbeat template.

3.2.2 Feature Engineering

Our engineered features are categorized as one of three categories. Full wave-

form features are derived using the end-to-end ECG signal. Template features

are constructed from the extracted PQRST window during pre-processing.

Heart rate variability features rely on the relative distances between each R-

peak. Each extraction technique is performed independently per lead and

concatenated together prior to classification.

For full waveform and heartbeat template features, we use the cleaned ECG

signal and apply the tsfresh feature extraction library. For full waveform fea-

tures, we cap the signal sampling rate to a maximum of 500Hz before limiting

the signal to the middle 2,000 samples to remove starting and trailing artifacts.

Template features are derived from the isolated heart beat window with high-

est signal quality. Using the default feature extraction settings, we generate

763 template and 763 full waveform features per lead. The extracted features

include autoregressive model coefficients, change quantiles, aggregate linear

least-squares regression trends, peak counts, sample/approximation entropy,

energy, continuous waveform transform coefficients, fast fourier transform co-

efficients, and other descriptive statistics of the signal.

Heart rate variability (HRV) features are generated from the cleaned signal

and corresponding R-peak annotations using NeuroKit2. We use the default

feature extraction settings and generate 53 different HRV features per lead.

HRV features include: mean, median, standard/absolute deviation, and in-

terquartile range of the RR intervals; standard deviation of the successive

differences between RR intervals; proportion of RR intervals greater than

50/20ms over total RR intervals; and geometric indices measuring triangu-

lar interpolation of the RR interval distribution.

For each 12-lead record we combine all three categories of engineered fea-

tures with the age and sex parsed from the ECG record metadata. We arrive
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at a 12 · (763+763+53)+2 = 18, 950 length feature vector per 12-lead record.

3.2.3 Classification

We train a XGBoost binary classifier for each of the 27 clinical diagnoses, using

xgboost@1.1.1 [18]. We sample each training instance with a selection prob-

ability proportional to the regularized absolute value of the gradients. Early

stopping is set to 20 rounds with binary logistic regression as our objective

function.

We use the evaluation scoring weights as instance sample weights, cap-

ping positive examples to a 0.5 threshold. For example, when training the 1st

degree atrioventricular block (IAVB) classifier we consider instances of brady-

cardia (Brady), incomplete right bundle branch block (IRBBB), prolonged PR

interval (LPR), sinus arrhythmia (SA), and sinus bradycardia (SB) as positive

examples with 0.5 weight. Other labels that have scoring function weights

below 0.5 are treated as negative examples with a sample weight of 1. To

account for the dataset label imbalance, we further scale the positive weight

using the number of negative samples over the positive samples in the training

set split.

Our classification models are trained in two phases. First, we randomly

sub-sample our total dataset, splitting our 43,101 records into an 85:15 train-

ing/validation set split. In the phase one, we train using all 18,950 features

to estimate the feature importances. Feature importance is defined as the

model reported gain in accuracy contributed by the feature over all branches

in the decision tree. We average the importances outputted by the 27 binary

classifiers to get the mean importance for each feature. We rank all of the

features by their mean importance and keep the top 1,000 important features.

In phase two, we train new models using the same training and validation split

but limiting the classifier input to the top 1,000 most important features. This

process is repeated 100 times, exhausting our available dataset.

For the submission component of the competition, we omit training phase

one of our classification models due to insufficient computing resources and

time constraints. We overcome this limitation by using the phase one models
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3.4 Discussion & Future Work

Despite the label specific scaling of our dataset, the correlation between the

label occurrence with the F1 scores suggest further improvements are neces-

sary to mitigate label imbalance. The label imbalance may be addressed by

adding more low occurrence disorders into the existing corpus of ECG records.

Synthesizing new records of low occurrence disorders to use as training data

may also prove promising. Additionally, exploration of new features to use as

classifier inputs may reveal common characteristics of specific heart disorders

that are currently missing.

Our approach, although applicable to 12-lead ECGs, perform feature ex-

traction on each lead separately before concatenating the features together for

classification. We believe that further improvements can be made utilizing fea-

ture extraction approaches capable of handling multi-dimensional time series

data.

Our approach does not use additional external datasets, nor do we modify

any of the labels provided in the available dataset. We anticipate that further

corrections in the ECG diagnosis labels, and including more ECG records,

would enable our approach to achieve more competitive competition scores.

We acknowledge that our internal results and corresponding figures report

optimistic values for the classification metrics, as our internal split of the

dataset does not include a hold-out test set. We rely on the hold out test set

from the challenge organizers to fairly evaluate our challenge score. Future

work includes replicating our method using a local training, validation, and

test set split, reporting label-wise F1 on the test set.

The requirement of the challenge to train a model on a hold out training set

added additional engineering complexity that could not be fully addressed in

our final submission. The computation time of training the phase one feature

importance models exceeded the allocated time constraints set by the chal-

lenge, using their provided cloud virtual machines. Our workaround therefore

relies on the feature importances generated locally, using the available, released

data. The feature importances used for the challenge submission model may
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not match the distribution of feature importances of the hold out training set.

3.5 Conclusion

We create an algorithm for the classification of 27 heart conditions using sig-

nal processing inspired feature engineering and an XGBoost tree ensemble

classifier. We combine a set of 18,950 features from full waveform, heartbeat

template, and heart rate variability groups. Using 100 repeated random sub-

sampling of 85:15 train/validation, we train models to get feature importances

and distilled out 1,000 most important features. Using this reduced set of

1,000 features, we retrain our models and achieve a mean challenge score of

0.486 on our validation split. For our team, CVC, the official phase challenge

scores are 0.476 on the validation set and -0.080 on the test set. We attain a

rank of 36 of 41 qualifying teams.

Errata

From Section 3.2.2, we set the ComprehensiveFCParameters parameter dur-

ing tsfresh feature extraction. For any undefined features, such as the heart

rate variability feature set on signals where no PQRST annotations could be

generated, NaN placeholders are set.

For Section 3.2.3 on the XGB classifier configuration, we use the dart

booster method with the gpu hist tree method and the gradient based sam-

pling method. All other model initialization parameters are left to their de-

faults.
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Chapter 4

Beat to Sequence Autoencoders

In this chapter, I propose an approach for the 12-lead ECG classification prob-

lem using a series of autoencoders to learn a dense embedding representation

underlying record. The work contained in this chapter is adapated from “Mul-

tilabel 12-Lead Electrocardiogram Classification Using Beat to Sequence Au-

toencoders” and has been submitted to the IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP) 2021. This work has

manuscript revisions from Dr. Abram Hindle and Dr. Sunil Vasu Kalmady, as

well as the contribution of Figure 4.1 from Amir Salimi.

What to take away from this chapter

• Our beat to sequence autoencoder approach is statistically more sensitive

than the XGBoost ensemble method for detecting IRBBB, LAnFB, PR,

and RAD;

• However, for overall ECG classification metrics, the beat to sequence

autoencoder is a less effective classifier than the prior XGBoost ensemble

approach;

• Future work, combining the benefits of the autoencoder embeddings and

the shallow tree classifier may lead to a better overall classifier.
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Abstract

The 12-lead electrocardiogram (ECG) measures the electrical activity of the

heart for physicians to use in diagnosing cardiac disorders. This paper in-

vestigates the multi-label, multi-class classification of ECG records into one

or more of 27 possible medical diagnoses. Our multi-step approach uses con-

ventional physiological algorithms for segmentation of heartbeats from the

baseline signals. We stack a heartbeat autoencoder over heartbeat windows

to make embeddings, then we encode this sequence of embeddings to make an

ECG embedding which we then classify on. We utilize the public dataset of

43,101 available ECG records provided by the PhysioNet/CinC 2020 challenge,

performing repeated random subsampling and splitting the available records

into 80% training, 10% validation, and 10% test splits, 20 times. We attain

a mean test split challenge score of 0.248 with an overall macro F1 score of

0.260 across the 27 labels.
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4.2 Related Work

We are inspired by prior work that uses autoencoders to generate features

for signal classification [26, 21]. Recent advancements in machine learning

and available data have heralded an influx of multi-lead ECG classification

algorithms [43, 19, 54, 6, 39, 55]. We extend our prior work by using neural

networks over feature engineering with gradient boosted tree classifiers [55].

Despite the large improvements in automated ECG classification, trained hu-

man over-reading and cardiologist confirmation is still mandated during use

in the clinical setting [45, 33].

4.2.1 Challenge Dataset and Task Specification

Refer to Perez Alday et al. [40] for the ECG sources and competition rules.

The challenge provides 43,101 ECG records where each record is labelled as

one or more of 111 possible diagnoses. The evaluated 27 label subset is shown

in Table 4.1.

We reuse the scoring function in preparation for the 2021 challenge, which

extends this task and adds a 2-lead classification variant. We want to maximize

the following scoring function:
∑

ij wijaij. Provided predictions C = {ci}, we

create a confusion matrix A = [aij] where aij indicates a record classified as

class ci belongs to class cj. The weights W = [wij], shown in Figure 4.2, are

challenge defined to provide partial reward for incorrect predictions.

4.3 Methodology

We propose a staged neural network architecture for autoencoding the ex-

tracted heartbeats, autoencoding the sequence of heartbeat embeddings, and

training a multi layer perceptron classifier. An overview is shown in Fig-

ure 4.1. Using 20 repeated random subsampling, we split our 43,101 available

ECG records into 80% training, 10% validation, and 10% test splits. No label

proportion stratification of the splits occurred.
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Table 4.1: Evaluated labels, count and percentage in dataset.

Abbr. Diagnosis Count (%)
IAVB 1st degree av block 2394 (5.6%)
AF atrial fibrillation 3475 (8.0%)
AFL atrial flutter 314 (0.7%)
Brady bradycardia 288 (0.7%)
CRBBB complete right bundle branch block 683 (1.6%)
IRBBB incomplete right bundle branch block 1611 (3.7%)
LAnFB left anterior fascicular block 1806 (4.2%)
LAD left axis deviation 6086 (14.1%)
LBBB left bundle branch block 1041 (2.4%)
LQRSV low QRS voltages 556 (1.3%)
NSIVCB nonspecific intraventricular conduction 997 (2.3%)
PR pacing rhythm 299 (0.7%)
PAC premature atrial contraction 1729 (4.0%)
PVC premature ventricular contractions 188 (0.4%)
LPR prolonged PR interval 340 (0.7%)
LQT prolonged QT interval 1513 (3.5%)
QAb Q wave abnormal 1013 (2.4%)
RAD right axis deviation 427 (1.0%)
RBBB right bundle branch block 2402 (5.6%)
SA sinus arrhythmia 1240 (2.9%)
SB sinus bradycardia 2359 (5.5%)
SNR sinus rhythm 20846 (48.4%)
STach sinus tachycardia 2402 (5.6%)
SVPB supraventricular premature beats 215 (0.5%)
TAb T wave abnormal 4673 (10.8%)
TInv T wave inversion 1112 (2.6%)
VPB ventricular premature beats 365 (0.8%)

4.3.1 Signal Preprocessing

We use theNeuroKit2 (v0.0.40) neurophysiological signal processing library [34]

to annotate our ECG signals and the SciPy (v1.5.2) family of Python pack-

ages for signal filtering and statistical tests [52]. The ECG cleaning approach

removes slow drift and DC offset using a Butterworth highpass filter (5Hz,

Q = 0.5) then smooths the signal using a moving average kernel of 0.02 sec-

onds. The R-peaks, or heartbeat locations, are annotated for each of our 12

signals.

Due to variable quality of sensor placements or noise artifacts caused by
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Training stops if the validation set challenge score fails to improve after 30

epochs or 200 epochs pass. We use the highest validation set scoring model

from all epochs and calculate the challenge metrics on the test set split, setting

thresholds to maximize the training data receiver operating characteristic.

4.4 Results and Discussion

We compare our results with our prior XGBoost ensemble classifier [55]. Label-

wise test F1 scores can be found in Figure 4.4. Using the Wilcoxon signed

rank test, our autoencoder F1 means statistically outperform our prior work

in detecting incomplete right bundle branch block (IRBBB, p = 1.9 × 10−6),

left anterior fascicular block (LAnFB, p = 9.4 × 10−3), pacing rhythm (PR,

p = 1.9× 10−6), and right axis deviation (RAD, p = 1.9× 10−6).

Overall test classification metrics is shown in Figure 4.5. Our methodology

achieves a test split mean PhysioNet/CinC 2020 Challenge score of 0.248,

AUROC of 0.806, AUPRC of 0.261, accuracy of 0.113, macro F1 score of 0.260,

Fβ of 0.309, and Gβ of 0.126 using β = 2. Our autoencoder is worse than our

shallow classifier on all summary metrics. Our results cannot be compared

with official rankings because the challenge evaluates the algorithms on secret

hold-out test sets.

Our methodology trains a neural network using the general shapes of heart-

beat windows and indirectly models the overall signal by looking at consecu-

tive heartbeats. Consequentially, due to the variable distances of the R-peaks

within an ECG record, portions of the ECG signal not bounded between a

heartbeat window are dropped. Because we resample the overall signal to en-

sure heartbeat windows are 400 samples long, we drop heart rate information.

Currently we do not capture features like average heart rate or changes in heart

rate over time. Additionally, because of the l2 normalization of the heartbeat

windows, we also do not capture the original signal amplitudes and voltage

changes. Future work should expand on our findings to incorporate heart rate

velocities, raw amplitudes, and continuous full signal characteristics.
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4.5 Conclusion

Using a signal processing and heartbeat window extraction preprocessing step,

we train heartbeat autoencoders to be fed into ECG sequence autoencoders

before training a multi-label perceptron to classify 27 heart conditions. We

run 20 independent experiments, randomly sampling our available dataset

into 80% training, 10% validation, and 10% test set splits. Our methodology

achieves a mean unofficial test challenge score of 0.248 with an overall macro

F1 score of 0.260.

Errata

Figure 4.1 incorrectly states the embedding size in stage (4) to be [1× 786].

Corrected, this value is [1× 768].

Extending Section 4.4, all sequence autoencoders early stopped, running

for an average of 70.75 (standard deviation of 22.6) epochs.
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Chapter 5

Autoencoder Embeddings with
Improved Tree Ensemble

In Chapter 4 I discovered that the autoencoder classification models provided

worse overall challenge metrics compared to the gradient boosted tree model

proposed in Chapter 3, but are more sensitive in detecting IRBBB, LAnFB,

and RAD.

This chapter explores the effectiveness of combining the autoencoder learned

embeddings with the manually engineered features to train a new set of gra-

dient boosted tree models. I extend the approaches used in Chapters 3 and 4

with the following research predictions:

RQ1 What is the effect of selecting top features with respect to the label-

wise classifiers, compared to averaging the feature importances over all

classifiers? I predict that labelwise selection of important features will

result in an improved classifier, providing a statistically significant higher

challenge metric with a mean difference of over 0.01.

RQ2 How important is feature selection when evaluating the classifier chal-

lenge metric? I predict that classifiers that do not perform any feature

selection will have a statistically significant lower challenge metric than

classifiers that perform feature selection, but there will be no significant

difference between aggressive pruning (top 100 features) and moderate

pruning (top 1000 features).

RQ3 Will incorporating the sequence embeddings from our deep learning
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autoencoder improve classification challenge metric? Aligning with my

thesis statement, I predict that adding in the deep learning autoencoder

will statistically significantly increase the overall challenge metric of the

classifiers.

5.1 Methodology

I combine the techniques applied in Section 3.2.2 and Section 4.3.3 to convert

the variable length features into fixed length input vectors for all ECG records.

This chapter focuses on the training of xgboost [18] binary classifiers for

each of the 27 labels selected by the PhysioNet/CinC challenge. I explore ten

different configurations of the tabular inputs:

1. All Features with Embeddings: I combine the heartbeat features,

heart rate variability features, and overall waveform features input vec-

tor used in Section 3.2.2 (size 18,950) with the autoencoder sequence

embedding vector (size 768) to create a combined input vector of size

19,718 and train an XGBoost classifier for each of the 27 diagnosed la-

bels. These label-wise classifiers provide feature importances for use in

configurations 3, 4, 5, and 6.

2. All Features: I only use the heartbeat features, heart rate variability

features, and overall waveform features to create an input vector of size

18,950 as the input to our label-wise XGBoost classifier ensembles. One

XGBoost classifier is trained per label. This configuration is identical

to the Phase 1 methodology described in Section 3.2.3. The trained

classifiers are subsequently used to provide feature importances for con-

figurations 7, 8, 9, and 10.

3. Averaged Top 1000 Features with Embeddings: Using the trained

models from Configuration 1, all label-wise classifier feature importances

provided by the XGBoost classifiers are averaged together before select-

ing the top 1,000 features. Using this averaged overall set of 1,000 most

important features, one XGBoost classifier is trained per label.
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4. Top 1000 Features with Embeddings: Starting from Configura-

tion 1, I select the top 1,000 features for each XGBoost diagnosis classi-

fier and retrain a new set of 27 classifiers using the reduced feature set.

One XGBoost classifier is trained per label only using the importances

of the parent model sharing the same label.

5. Averaged Top 100 Features with Embeddings: Using the trained

models from Configuration 1, all label-wise XGBoost classifier feature

importances are averaged together before selecting the top 100 features.

One XGBoost classifier is trained per label using the averaged 100 most

important features of all parent XGBoost label-to-classifier pairs.

6. Top 100 Features with Embeddings: Starting from Configuration 1,

I select the 100 most important features for each XGBoost diagnosis

classifier and retrain a new set of 27 classifiers. A separate XGBoost

classifier is trained per label using the 100 most important features of

the parent classifier sharing the same label.

7. Averaged Top 1000 Features: Using Configuration 2, the XGBoost

classifier feature importances for all labels are averaged together to select

the top 1,000 features. These 1,000 features are used to train a new model

for each label. This configuration is identical to the Phase 2 methodology

described in Section 3.2.3.

8. Top 1000 Features: Starting from Configuration 2, a new set of 27

XGBoost classifiers are trained using the reduced top 1,000 most impor-

tant features per label classifier. One model is trained per label using

only the top 1,000 features of the parent model sharing the same label.

9. Averaged Top 100 Features: Using Configuration 2, the XGBoost

classifier feature importances for all labels are averaged together to select

the top 100 features. Using the averaged 100 most important features of

all classifiers, a model is trained for each label.
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10. Top 100 Features: Starting from Configuration 2, a new set of 27

classifiers are trained using the reduced top 100 most important features

per XGBoost binary label classifier. The reduced set of 100 features

are specific to the label and are not averaged together between other

classifiers.

The significant differences distinguishing these approaches from the top

1000 features approach used in Section 3.2.3 are that the importances of fea-

tures for each of the labels are now evaluated independently, where the prior

experiment used the same reduced set of features for all classifiers.

The “gain” feature importance is used. This is the relative contribution of

the provided feature to the overall model, defined as the sum of each feature’s

contribution for every tree in the XGBoost classifier.

I further revise the inadequate dataset partitioning to use Monte Carlo

cross-validation 20 times, randomly partitioning the available corpus of public

data into 80% training, 10% validation, and 10% test splits.

For each experiment configuration run, I train an XGBoost binary classifier

for each of the 27 diagnosed labels. I use the dropout augmented regression

tree booster proposed by Vinayak and Gilad-Bachrach [50] and sample the

training instances using probabilities proportional to the training gradients. I

use the scoring function reward matrix weights from Figure 2.33 as instance

sample weights, capping positive examples to a threshold of 0.5. I further scale

the positive samples using the ratio of negative samples over positive samples

for the given label and dataset split. During training, if the evaluation set

binary logistic regression loss fails to improve after 20 epochs of training, we

early stop to mitigate overfitting on the training set.

5.2 Results

Refer to Figure 5.1 and Table 5.1 for the test set split classification metric

summaries for all experiment configurations. The experiment configuration

with the largest mean challenge score is Configuration 3 “Averaged Top 1000

Features with Embeddings”, or the top 1000 features from both the engineered
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Table 5.1: Test split classification metrics mean (x̄) and standard deviations
(σ) for all experiment configurations. Bolded value indicates largest mean for
metric category.

# Experiment AUROC AUPRC Accuracy F Measure F-Beta G-Beta
Challenge
Metric

1
All Feats x̄ 0.8821 0.3813 0.3137 0.3587 0.4047 0.2160 0.4207
w/ Embd σ 5.3E−3 4.9E−3 6.8E−3 5.9E−3 8.1E−3 3.9E−3 7.7E−3

2 All Feats
x̄ 0.8815 0.3809 0.3139 0.3582 0.4036 0.2150 0.4206
σ 5.5E−3 5.0E−3 7.9E−3 6.0E−3 8.6E−3 5.2E−3 1.0E−2

3
Avg Top 1000 x̄ 0.8876 0.3900 0.3068 0.3637 0.4165 0.2194 0.4366

Feats w/ Embd σ 4.6E−3 5.5E−3 6.5E−3 4.5E−3 6.0E−3 4.3E−3 7.1E−3

4
Top 1000 Feats x̄ 0.8836 0.3837 0.3062 0.3613 0.4128 0.2183 0.4316

w/ Embd σ 4.8E−3 6.4E−3 5.4E−3 5.4E−3 6.7E−3 4.3E−3 7.0E−3

5
Avg Top 100 x̄ 0.8740 0.3740 0.2800 0.3482 0.4062 0.2066 0.4215

Feats w/ Embd σ 5.1E−3 7.8E−3 9.7E−3 6.5E−3 6.8E−3 5.2E−3 9.9E−3

6
Top 100 Feats x̄ 0.8836 0.3876 0.2820 0.3588 0.4190 0.2143 0.4348

w/ Embd σ 4.9E−3 7.0E−3 6.2E−3 5.1E−3 6.8E−3 4.9E−3 7.8E−3

7
Avg Top x̄ 0.8871 0.3890 0.3085 0.3640 0.4165 0.2187 0.4358

1000 Feats σ 5.1E−3 6.7E−3 6.6E−3 6.2E−3 8.1E−3 5.6E−3 8.1E−3

8 Top 1000 Feats
x̄ 0.8843 0.3836 0.3075 0.3619 0.4126 0.2179 0.4295
σ 5.2E−3 5.6E−3 6.4E−3 5.2E−3 7.5E−3 4.4E−3 8.1E−3

9
Avg Top x̄ 0.8714 0.3748 0.2800 0.3471 0.4035 0.2057 0.4195
100 Feats σ 6.7E−3 6.4E−3 5.3E−3 4.6E−3 6.2E−3 5.1E−3 7.8E−3

10 Top 100 Feats
x̄ 0.8848 0.3857 0.2830 0.3604 0.4198 0.2150 0.4335
σ 4.5E−3 8.5E−3 7.5E−3 4.0E−3 5.3E−3 3.3E−3 8.2E−3

and autoencoder sources. Although Configuration 3 has the highest mean

challenge score, it is only statistically different compared to Configurations 1,

2, 5, and 10. See Figure 5.2 for the Wilcoxon signed-rank test evaluated on all

configuration pairs.

5.2.1 Averaged vs Labelwise Feature Selection

For RQ1, I investigate if selecting important features by classifier is an im-

provement to just averaging all of the classifiers together. If my prediction

holds true, I expect to see the averaged top feature configurations perform

worse than the top feature configurations. With an alpha of 0.001, I analyze

the relevant configuration pairs:

• 1000 Features with Embeddings: Configuration 3 has a higher chal-
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lenge score than Configuration 4, but it is not statistically significant.

• 100 Features with Embeddings: Configuration 5 has a lower chal-

lenge score than Configuration 6, and it is statistically significant, sug-

gesting labelwise selection of features increases the challenge metric.

• 1000 Features: Configuration 7 has a higher challenge score than Con-

figuration 8, and it is statistically significant, suggesting labelwise selec-

tion of features decreases the challenge metric.

• 100 Features: Configuration 9 has a lower challenge score than Configu-

ration 10, and it is statistically significant, suggesting labelwise selection

of features increases the challenge metric.

RQ1: When the feature pruning is not aggressive, such as taking the top

1000 features, the improvement in the challenge metric score is inconsistent

resulting in no clear conclusion. Labelwise selection of features results in a sig-

nificantly higher challenge metric for the “100 Features with Embeddings” and

“100 Features” configurations, suggesting that labelwise selection of features

improves classifier performance when the feature pruning is aggressive.

5.2.2 Effectiveness of Feature Selection

In RQ2, I hypothesize that reducing the number of features passed to the

classifier from the original unpruned set of features will improve the challenge

metric. If my prediction is accurate, I expect to see the models using “All

Features” and “All Features with Embeddings” to have lower challenge scores

than all other configurations. Using an alpha of 0.001, I compare the appro-

priate configurations:

• From All to Top 1000: Configuration 1 has a statistically signifi-

cant lower challenge score than Configurations 3 and 4, suggesting that

pruning from all 19,718 features down to the top 1000 features is effec-

tive in improving the classifier’s challenge score. In addition, the non-

embedding variants Configuration 2 also has a statistically significant
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lower challenge score compared to Configurations 7 and 8, suggesting

that a moderate pruning from all 18,950 features down to the top 1000

features is effective in improving the classifier’s challenge score.

• From All to Top 100: Configuration 1 has a lower challenge score

than Configurations 5 and 6, however it is only statistically significant

when compared with Configuration 6 that performs labelwise selection

of feature importances. When looking at the non-embedding variants,

Configuration 2 has a statistically significant lower challenge score than

Configuration 10, but no significant difference when compared to Config-

uration 9. These comparisons suggest that when performing aggressive

pruning down to a subset of 100 features, the classifier’s challenge metric

score improves only if labelwise feature selection is applied.

• From Top 1000 to Top 100: Configuration 3 has a statistically sig-

nificant higher challenge score compared to Configuration 5. Config-

uration 4 has no significant difference in challenge score compared to

Configuration 6. Configuration 7 has a statistically significant higher

challenge score compared to Configuration 9. No significant difference in

challenge score is found between Configuration 8 and Configuration 10.

RQ2: When pruning from all available features, moderate pruning to re-

duce the feature space to 1000 inputs is effective in improving the challenge

score of the classifiers. When aggressively pruning to reduce the feature space

to 100 inputs, the improvement in challenge score is effective only when label-

wise importances are used, reaffirming the results of RQ1.

5.2.3 Adding Embeddings vs Without Embeddings

The hypothesis of RQ3 aims to test if incorporating the autoencoder embed-

dings has any effect on the challenge score of the resulting classifiers. I analyze

the relevant configuration pairs, using an alpha of 0.001:

• Averaged Top 1000 Features: Configuration 3 containing the em-

beddings has a higher challenge score than Configuration 7 which does
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not have embeddings, but it is not statistically significant.

• Top 1000 Features: Configuration 4 containing embeddings has a

higher challenge score than Configuration 8 which is missing embed-

dings, but it is not statistically significant.

• Averaged Top 100 Features: Configuration 5 that includes the au-

toencoder embeddings has a higher challenge score than Configuration 9

which lacks embeddings, but it is not statistically significant.

• Top 100 Features: Configuration 6 with the embeddings from the

autoencoder has a higher challenge score than Configuration 10 which

does not contain embeddings, but it is not statistically significant.

RQ3: Adding autoencoder embeddings into the input vector as additional

representation of the ECG record does not result in any statistically significant

change in the classifier’s challenge metric output. These results suggest that

my original prediction is incorrect- the proposed approach of combining deep

learning autoencoder embeddings with manually extracted features is actually

ineffective for improving classification score.

5.3 Discussion

Bengio discusses in an informal academic research panel [8] current and up-

coming deep learning challenges, where he dismisses the viability of engineering

deep learning models into old-fashioned symbolic machine learning methods,

instead proposing learned attention mechanisms as a viable alternative. This is

enforced by the experiment results, as no significant improvement in challenge

metric can be attributed to the addition of autoencoder embedding repre-

sentations alone. Additionally, although the engineering of the two different

mechanisms into one shallow machine learning classifier is feasible, we obscure

the semantics of feature importance for the embedding features. It is no longer

clear how to trace the importances assigned to the embedding features back

to their original lead sources.
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The public dataset provided by the challenge contained notable irregulari-

ties that were not corrected when training the models. Example irregularities

include:

• ECG records containing voltage over time changes exceeding physiolog-

ically possible voltage measurements

• ECG records with miniscule voltage gain, peaks undiscernible from noise;

• ECG records not labeled as bradycardia despite having resting heart rate

of below 60 beats per minute;

• LQRSV ECG records incorrectly labeled as AF, TAb, or SNR;

• TAb labeled ECG records undiscernible from noise;

• inconsistent dataset labeling of AF and AFL;

Additional improvements in the quality of the underlying dataset and the

discarding of unusable ECG records would likely improve the performance of

the classifiers.

For future work, a replication of this study using other shallow classifiers,

such as support vector machines, could provide insight into the relative effec-

tiveness of the gradient boosted trees. Using a wide set of tabular features per

ECG record appears to be inefficient, as feature pruning was the most useful

regularization technique for improving the challenge metric score. Expert do-

main specific knowledge for feature generation and selection may prove to be

a more effective approach than distilling features from a general purpose time

series feature extraction library.

Additionally, the challenge provided dataset contained an additional 88

unused classification labels. Future work could consider applying these unused

labels as additional features for classification in a gambit to learn diagnosis

correlations or interactions.
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5.4 Conclusion

This chapter extends and improves upon the gradient boosted tree models

from Chapter 3 using the deep learning autoencoder embeddings from Chap-

ter 4. We discover that the label-wise selection of features, in combination

with feature pruning, is effective in improving the classifier’s challenge metric

score, but adding in autoencoder embeddings has no statistically significant ef-

fect on the scoring function. Our configuration that attains the highest mean

challenge metric is the “Top 1000 Features with Embeddings” setup, which

achieves a test split mean challenge metric of 0.4366, with an overall test split

average accuracy of 0.3068.
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Chapter 6

Conclusion

In this thesis, I proposed three approaches for the classification of 12-lead ECG

records. I demonstrated that ECG records can be classified using traditional

signal processing and feature extraction techniques in combination with a shal-

low gradient boosted tree ensemble algorithm (Chapter 3). I showcased a deep

learning ECG record classifier using beat to sequence autoencoders to learn

fixed length embeddings from arbitrary length signals (Chapter 4). I proposed

a set of experiment configurations, experimenting on the original shallow gra-

dient boosted tree ensemble methodology with labelwise feature pruning and

incorporating the autoencoder embedding representations into the classifier

inputs (Chapter 5).

To summarize the three predictions provided in the introduction:

• I support my original prediction, showing experimental results indicating

that shallow learning boosted decision trees can outperform deep learn-

ing autoencoder models on summary classification metrics such as the

PhysioNet/CinC 2020 Challenge scoring function and overall F-measure.

• I support my original prediction, showing that proper regularization of

the input feature space and selection of relevant features for the gradient

boosted decision tree classifiers are more effective than concatenating

autoencoder embeddings for improving the scoring function output.

• I refute my original prediction, as naively joining deep learning autoen-

coder embeddings with manually engineered features for decision tree
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classifiers does not significantly improve the summary classification met-

rics in the ECG classification task.

The gradient boosted decision tree approach, stacked autoencoders ap-

proach, and combined approaches described in this thesis are capable of pre-

dicting multiple cardiac diagnoses from unstructured, 12-lead ECG records.

Specific to the PhysioNet/CinC 2020 Challenge, our most prominent approach

selects the label-wise top 1000 most important features and autoencoder em-

beddings from the entire input space of features and trains an XGBoost binary

classifier for each of our 27 diagnoses. This approach achieves an average test

split challenge score of 0.4366, with an overall test split classification accuracy

of 0.3068.

6.1 Future Work

The biggest unrealized gain in the classification of ECG records using the

PhysioNet/CinC provided public data is for a human expert to overread and

correct all erroneous labels and discard unusable samples from the available

corpus. This can also be addressed by augmenting the available corpus of

data with new ECG records that are sourced from known distributions and

labelled by trusted cardiologists. Because the PhysioNet/CinC 2021 Challenge

extends the current challenge and incorporates a 2-lead classification variant,

a replication of this study using a subset of 2 leads is also warranted.

For use as a general ECG classifier, the success of the wide and deep trans-

former architecture proposed by Natarajan et al [38] emphasizes the impor-

tance of the transformer family of neural networks. When trained on the raw

signal and a selection of manually engineered features, transformers may re-

sult in superior classifiers than approaches using convolutions, recurrent neural

networks, and shallow classifiers alone.

The classification of ECG records in this thesis were limited to the 27

labels defined by the PhysioNet challenge organizers. Future work should

tailor the multi-label multi-class classification task to incorporate a more broad

scope of cardiac diagnoses, or explore matching diagnoses to high dimensional
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embedding space as an alternative to discrete binary classifiers per label.
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Appendix A

XGBoost Classifiers with
Autoencoder Embeddings

A.1 Label-wise Feature Importances

In an extension of Section 5.2, I provide a categorical breakdown of the feature

utilization from Configuration 4 in Figure A.1, as well as Configuration 6

displayed in Figure A.2.

Feature utilization is a value ranging between [0, 1] that represents how

many features from the given category is used in the pruned classifier. For

example, consider the meta variable Age. Within an ECG record, there is only

1 tabular feature representing patient age. A utilization of 1 means that age

is always determined to be an important feature to be kept. Consider another

category Heart Rate. Referring to Section 3.2.2, we know that any given lead

may contribute at most 53 heart rate variability features. A utilization of 0.4

means that only 21 of the available 53 features generated from the lead were

deemed important and kept in the pruned classifier input space.

A.2 Label-wise F1 Scores

A plot showcasing all of the labelwise F1 scores outputted by the 10 classifier

configurations of Section 5.1 can be found in Figure A.3.
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