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Abstract

The general goal of this thesis was to uncover the computational characteristics of verbal associa-

tion memory by focusing on two specific topics.

We first examined the role of mental imagery in association memory. One of the most effective

ways to improve verbal association memory is to ask participants to form mental images of verbal

stimuli. However, the functional role of mental imagery in cognition has been a subject of debate

(Pearson & Kosslyn, 2015; Pylyshyn, 2002). An idea we test in the following work is if conscious

mental imagery is an essential component of interactive imagery instructions. We tested this idea in

chapter 2 by examining whether individual differences in both mental imagery vividness, or mental

imagery ability predicted the benefit due to imagery instruction. We also examined how imagery

instructions benefited a sub-population of individuals who report little to no imagery experience

at all (aphantasia). We found that individual differences in visual imagery vividness and skill did

not co-vary with the effectiveness of interactive imagery, and self-identified aphantasics benefited

equally from imagery instructions. These results suggest that the visual image is not necessary for

interactive imagery effects, and opens the possibility for alternative explanations of this effect, such

as interactive imagery leading participants to encode more pair-unique representations of items.

Next, we examined memory for the constituent order of associations (AB versus BA). Existing

mathematical models of association memory predict that associations are remembered with perfect

order, or no order at all. However, empirical data indicates memory for the constituent-order of

associations is moderate (Rehani & Caplan, 2011; Kato & Caplan, 2017). To help resolve this

challenge to models, we first tested the possibility that imagery instructions could improve memory

for constituent-order, perhaps to the levels predicted by perfect-order models. In chapter 2, we
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found that imagery instructions did not improve the ability to judge constituent-order (AB versus

BA), nor the moderate relationship between order memory and association memory. This result

increased the need to modify the mathematical models themselves. In chapter 3, we attempted to

address this by extending convolution-based models, which normally store associations with no

order, to store order in four ways. We evaluated these extended models against several behavioural

benchmarks. We found that these extensions could account for moderate performance on order

judgments; however, only one out of four could solve the additional benchmark of double function

lists. This latter result suggests that to account for the full set of benchmark data, one needs to

adopt specific assumptions about how constituent-order is represented in memory.

In the final chapter, we discussed how we might synthesize both of the major topics examined,

considering our finding that interactive imagery instructions could not improve order recognition

performance. This finding indicates that any account of imagery effects, or order memory, must

also explain the in-variance of order memory to imagery instructions, providing an additional con-

straint for models. If a model can satisfy this constraint, it would simultaneously inform our

computational account of both imagery effects and memory for constituent-order.
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Chapter 1

General introduction

A fundamental question about cognition is how the mind forms and remembers associations be-

tween pairs of stimuli (Kahana, 2012; Murdock, 1974). From simple face-name relationships,

to remembering a sequence of ideas in a long speech, associations are an important component

of many cognitive processes. One way psychologists have gained insight into human association

memory is through verbal memory tasks with word pairs (study APPLE OVEN, given APPLE,

recall OVEN). Data from word pair tasks have supported the development of a number of suc-

cessful mathematical models, which have, in turn, given us more insight into the computational

characteristics of human association memory (Kahana, 2012; Murdock, 1974).

In the following thesis, we continue with the general goal of uncovering the characteristics

of association memory, but address two specific topics. First, one of the most effective ways to

improve association memory is to ask participants to study verbal materials by forming mental im-

ages. However, as we elaborate in the present chapter, there is debate about whether the conscious

experience of mental imagery corresponds to underlying cognitive representations (cf. imagery

debate, Pearson & Kosslyn, 2015; Pylyshyn, 2002). This made us wonder whether the conscious

experience of mental imagery is an essential component of the effectiveness of interactive imagery

instructions, which is an idea we test in the following work.

Second, participants have a moderate ability to remember the constituent-order of associations

(AB versus BA), but existing mathematical models of association memory either predict that as-

sociations are remembered with perfect order, or no order at all (Rehani & Caplan, 2011; Kato &
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Caplan, 2017). This represents a significant mismatch between models and data that needs to be

addressed. Can we solve this mismatch between existing models and empirical data, by directly

modifying models themselves? Alternatively, given that imagery instructions are an effective way

to improve association memory performance, might they also improve memory for the constituent

order, perhaps even to the levels predicted by perfect-order models? We address both of these

questions in the following work.

Before we begin addressing these specific topics, in this first chapter, we introduce the mod-

elling framework that will be central to the following work. Then, we introduce some of the exist-

ing research that led us to ask our stated questions, including how the imagery debate (Pearson &

Kosslyn, 2015; Pylyshyn, 2002) could speak to our interpretations of interactive imagery effect.

1.1 Representing items as sets of features

A common assumption held by many models of association memory is that any item, whether

it be a word, picture or sound, are composed of discrete attributes or features that describe its

unique characteristics (Kahana, 2012). For example, if we wanted to denote geometric shapes

with different colours, we could imagine that colour would be one feature, while shape (square,

circle, triangle etc.) would be another. We can implement this idea formally with vectors, where

a red circle and a red triangle are denoted by x =
[

1 −1
]

and y =
[

1 1
]

respectively, where

boldface denotes vectors. The first dimension in each vector denotes colour, where a value of 1

indicates red, and the second dimension denotes shape, where a value of 1 indicates triangle, and

a value of -1 indicates circle. Vector representations are handy, because we use operations like

the dot product to quantify the similarity between items, where larger dot products indicates more

similarity. For example, by comparing the dot product x ·x = 2, and the dot product x ·y = 0, we

can see that x is more similar to itself than to y. Furthermore, if we assume vectors are normalized

(have a length of 1), dot products are equivalent to the cosine of the angle between those vectors

in Euclidean space, and vary from ±1 to 1.

Although our example used vectors with two features, we would imagine that in the brain, items

2



are represented with much more detail and require larger n-dimensional vectors. Drawing a closer

analogy to the brain, we could imagine that n feature values in item vectors represent the firing

rates of a population of n neurons, where certain neurons would fire at a higher rate, while others

would fire less, unique to the item that is being represented. Also in our example, dimensions in

each vector denoted specific properties of the item; however, in practice, most memory models

keep features abstract and do not make assertions about what they represent, although there are

some exceptions (Criss & Shiffrin, 2004a; Cox & Criss, 2017, 2020; Hintzman, 1988; Nairne,

1990).

1.2 Modelling associations between items

Now that we have a canonical representation of items, we can turn our attention to modelling the

associations between them. Although there have been a number of ideas for this, in the following

work we pay special attention to a class of models known as distributed memory models (Kahana,

2012).

One of the first models of this type was Anderson’s (1970) matrix model, which encoded

associations as matrix-outer products between pairs of items (Figure 1.1). This model is expressed

as follows, M = xy⊺, where x and y denote n-dimensional item vectors, ⊺ denotes transpose, and

M denotes an n×n memory matrix. M is a set of n×n connection weights encoding the association,

or relating again to the brain, n×n synaptic strengths for the connections between two populations

of neurons. Here we can see why matrix models are referred to as distributed models, because

an association is encoded across all of the connection weights in the memory matrix. We can

also obtain one matrix that encodes multiple associations by summing multiple memory matrices

together, M = xy⊺+ab⊺, where a and b denote another pair of n-dimensional item vectors.

A key feature of matrix models is that they are content-addressable (Kahana, 2012). We can

ªcueº the memory matrix with any item vector stored in memory, which will recover an approx-

imate of its associated item from the matrix, even when multiple other associations are stored in

memory. This is implemented by multiplying a cue vector with the memory matrix. Assuming that
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all item vectors are normalized and approximately orthogonal to each other, My≈ x+noise. Based

on a variety of parameters such as n, number of pairs stored in memory, and the similarity between

stored item vectors, the recovered version of x is a somewhat noisy, imperfect approximation of

the original item. While this leads the model to sometimes make errors, it also makes it robust in

other interesting ways. For example, if the item vector used as a cue differs from the version stored

in memory, the model can still retrieve a target item associated with an item that is most similar to

the cue. However, if the messy cue vector is also similar to another item in memory, the model will

become confused and simultaneously retrieve that association as well, which seems analogous to

some of the similarity-based errors that human participants make (Anderson, 1970).

Another major family of distributed memory models is based on convolution. In these mod-

els, associations are encoded as the convolutions between item vectors, expressed as, m = x ∗ y,

where ∗ denotes convolution and m denotes the memory vector (Figure 1.1). Similar to matrix

models, multiple associations can be stored in the same trace by summing terms, m = a∗b+x∗y.

Convolution models are also content-addressable. We can cue the memory trace using circular

correlation, which is the approximate inverse of convolution, a # m ≈ b+ noise, where # denotes

circular correlation. Like cued recall mechanisms in the matrix model, this operation is also quite

noisy, and the model also makes similarity-based errors that are useful when modelling human

memory. A number of models have applied the convolution-correlation framework to associa-

tive learning (Borsellino & Poggio, 1972; Gabor, 1969; Longuet-Higgins, 1968; Pribram, 1969;

van Heerden, 1963), but TODAM (Murdock, 1982) and CHARM (Metcalfe Eich, 1982) were the

first models to apply convolution to verbal association memory. Convolution has since been suc-

cessful at modelling a wide range of psychological data, and some of its inherent properties such as

its symmetry (a∗b ≡ b∗a), turn out to be a good match to certain characteristics of verbal memory

(Kahana, 2002); however, as we elaborate below, also cause these models to generate erroneous

predictions about other characteristics.
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a Matrix model

a1b1

a2b1

a3b1 a3b2 a3b3

a2b3

a1b3

a2b3

a1b2

b1

a1

b2 b3

a2
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b Convolution model

a1b1

a2b1

a3b1 a3b2 a3b3

a2b3

a1b3

a2b3

a1b2

m1

m2

m3

b1

a1

b2 b3

a2

a3

Figure 1.1: Illustrations of encoding operations for (a) matrix-based models: matrix-outer product

between item vectors resulting a matrix, b) convolution-based models: the convolution between

item vectors that results in a single vector, where n = 3, a and b are item vectors, and subscripts

denote the index of the vector element. Vector m denotes the memory vector in convolution.

Convolution-model illustrations are modified from figures in Plate (1995). As Plate (1995) noted,

convolution is equivalent to a compression of the outer-product between two item vectors, which

we depict here.
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1.3 The problem of constituent-order

Although matrix models and convolution models are competing accounts of the same phenomena,

and there have been arguments in favour of and against both (Pike, 1984; Murdock, 1985), both

models have, overall, been successful at modelling a wide array of behavioural effects. However, a

key difference between both is how they account for the constituent-order of associations (AB ver-

sus BA). This difference arises directly from the mathematical operations intrinsic to each model.

Matrix outer-products are strictly non-commutative, meaning that ab⊺ ̸= ba⊺. By switching the

presentation order of pair of items, the matrix model stores a completely different association in

memory. On the other hand, convolution is a strictly commutative operation, a∗b ≡ b∗a, meaning

that for a standard convolution model, presentation order has no effect on the association encoded

in memory. Behavioural data contradicts both of these assumptions. Associations seem to be en-

coded with some moderate level of order that challenges all models (Kato & Caplan, 2017; Rehani

& Caplan, 2011). As we elaborate in Chapter 3, existing attempts to modify matrix models to

store associations with less order have been tried, but could not explain the fine details of the data.

Instead, the approach we take in the following work is to modify convolution to store associations

with more order (Chapter 3).

1.4 Mental imagery and association memory

There has been significant experimental work on uncovering the functional and theoretical impor-

tance of mental imagery in verbal association memory. Some of this work has examined explicit

instructions to use mental imagery as a study strategy, where participants are instructed to form

mental images with both words interacting together (e.g., for the pair DOG PIE, form a mental

image of the DOG eating the pie). This strategy, known as interactive imagery, is one of the

most effective ways to improve cued recall performance without training (Bower, 1970a; Bower

& Winzenz, 1970; Dunlosky, Hertzog, & Powell-Moman, 2005; Paivio & Yuille, 1969; Paivio &

Foth, 1970; Richardson, 1985, 1998). Participants instructed to use interactive imagery perform
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∼ 20− 50% better than participants instructed to use rote repetition (Bower & Winzenz, 1970;

Bower, 1970b). The effectiveness of imagery instructions suggests that mental imagery can play

a functional role in association memory performance. This idea is supported by related work fo-

cused on stimulus attributes such as imageability. Imageability is a subjective rating about how

likely a word is to evoke mental images (Paivio, Yuille, & Madigan, 1968).1 Multiple studies have

found that word pairs with high imageability words are remembered better than word pairs with

low imageability words (Paivio, Yuille, & Smythe, 1966; Paivio, Smythe, & Yuille, 1968; Paivio &

Yuille, 1969). Additionally, participants report using imagery-related strategies more often when

studying high-imageability words (Paivio, Smythe, & Yuille, 1968; Paivio & Yuille, 1969), sug-

gesting that high-imageability words might be remembered better because they allow participants

to use imagery-related memory strategies.

A classic explanation of both interactive imagery and imageability effects was Paivio’s dual-

coding theory (Paivio, 1969, 1971, 1986). Dual-coding theory proposes that there are two formats,

verbal and imaginal, by which information can be stored in memory. Highly imageable words

and/or verbal associations studied with mental imagery, are encoded with both a verbal and imagi-

nal format, while low imageability words studied with non-imagery related strategies, are encoded

with a verbal format. According to dual-coding theory, associations studied with interactive im-

agery are remembered more easily because both the verbal and imaginal format can be elicited at

test.

However, the role of visual imagery in cognition has been the subject of a decades-long de-

bate, which may be important to consider here. Kosslyn and colleagues argued that visual images

correspond to a distinct depictive format by which information can be represented in the mind. In

a depictive representation, the parts of that representation correspond to the parts of the physical

object being represented, and the distances between the parts of the depictive representation cor-

respond to the physical distances between the parts of the represented object (Pearson & Kosslyn,

1Imageability is highly correlated with stimulus concreteness (Paivio, Yuille, & Madigan, 1968), which is another

attribute that we refer in this thesis. Although there are words with high imageability and low concreteness, and vice

versa, many of the same effects are observed for both stimulus attributes, including, as we mention later, the high

versus low advantage for cued recall performance.
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2015). This view also assumes that these depictive representations co-exist with descriptive, or

language-like representations in the mind (Pearson & Kosslyn, 2015). Pylyshyn’s counter-position

was that mental images do not necessarily provide evidence of a distinct depictive format, and that

the experience of mental imagery may be epiphenomenal. Rather, we should first assume that all

information, whether visual or verbal, is represented with a common format (Pylyshyn, 2002).

These contrasting ideas are relevant to our interpretation of interactive imagery effects. On

one hand, interactive imagery instructions might be effective because they lead participants to en-

code associations with a distinctly (depictive) visual format alongside a descriptive verbal format.

Alternatively, if imagery is epiphenomenal, as Pylyshyn (2002) argued, then one would expect

that visual images are unnecessary for the underlying cognitive mechanisms leading to interactive

imagery effects.

We used an individual differences approach to test these contrasting ideas. There are well-

known individual differences both in self-reported mental imagery vividness (Marks, 1973; Zeman,

Dewar, & Della Sala, 2015; Zeman et al., 2020), and skill in objectively-scored imagery-related

tasks (Keogh & Pearson, 2018; Sanchez, 2019). Additionally, some individuals report aphanta-

sia, or little to no experience of mental imagery at all (Zeman et al., 2015, 2020). We leveraged

these individual differences to test contrasting hypotheses about the nature of interactive imagery

instructions. If imagery instructions truly rely on visual imagery, this implies that individual abil-

ity to form vivid, or incredibly accurate visual images would allow participants to store additional

detail in their stored image. In this case, participants with more visual imagery ability or vividness

should benefit more from imagery instructions. Alternatively, if visual images do not correspond to

underlying cognitive processes, then we should expect that additional detail or accuracy in the vi-

sual image should not have any effect. We elaborate on how we tested these competing hypotheses

in Chapter 2.
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1.5 The effect of interactive imagery on memory for constituent-

order

Bringing these threads together, although mathematical models have typically not incorporated the

effects of visual imagery, imagery instructions may cause qualitative differences in memory that

are relevant for mathematical models.

More specifically, image-like representations may allow participants to store additional detail

about the constituent-order of the association (AB versus BA). Pearson and Kosslyn (2015) sug-

gested that depictive image-like representations may allow us to recover information at test that

we did not directly focus on at study. For example, if you encode a visual image of a kitchen filled

with appliances, perhaps at test you could retrieve the image of the kitchen and use it to recall the

spatial organization of the various appliances in the room. Using a similar strategy, participants

may be able to use stored images to recover the constituent-order of an association with great ac-

curacy, which would be relevant for existing challenges to models. If imagery instructions lead

participants to store associations with images, and participants can use these images to store the

constituent-order of a pairing with great detail, this might improve order memory even to the levels

predicted by perfect-order, matrix models. If this were the case, then matrix models would actu-

ally be supported under some conditions. This is an idea that we also test in the following work

(Chapter 2).

1.6 Summary of research goals

Based on our review of the literature and analysis of existing mathematical models, we identified

the following research questions:

1. Is the conscious experience of mental imagery and/or mental imagery skill necessary to

benefit from interactive imagery instructions?

2. Can interactive imagery instructions lead participants to store associations with more order?

9



3. Is there a way to modify existing models to store moderate levels of order, and better account

for empirical data?

To address question 1, in chapter 2 we present three behavioural experiments. Each of these ex-

periments tested association memory with cued recall (study AB, given A, recall B), with a pre/post

imagery instruction manipulation, where we first measured baseline memory performance for each

participant, then administered imagery instructions halfway through the lists. This allowed us to

measure performance uninstructed memory performance and performance after imagery instruc-

tion for each participant, giving us closer sense of the effect of imagery instructions. At the end

of the session in each experiment we measured individual differences in imagery vividness with

the Vividness of Visual Imagery Questionnaire (Marks, 1973). In experiment 1 and 3 we also

measured objective imagery skill with the Paper Folding Task (French, Ekstrom, & Price, 1963).

Both of these tasks are described in more detail in the following chapter. We computed the corre-

lation between these two individual difference measures and memory performance to test address

question 1.

To address question 2, experiments presented in chapter 2 included an order recognition task

immediately after cued recall tests, where participants judged the constituent-order of pairs (exper-

iments 1 and 2).

To address question 3, in chapter 3 we proposed four extensions of symmetric, order-absent

models of association memory that could address question 3. This section begins with an overview

of the challenging empirical benchmarks regarding memory for constituent-order that each model

must overcome. We then provide formal expressions for the specific extensions of convolution

that we are proposing. Then, using a combination of Monte Carlo simulations, and algebraic

arguments, we evaluate each model extension against these empirical benchmarks.

Chapter 4 will present a summary of the previous chapters, and synthesis of the main themes.
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Chapter 2

The relationship between interactive

imagery instructions and association

memory
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Abstract

Interactive imagery, one of the most effective strategies for remembering pairs of words, involves

asking participants to form mental images during study. We tested the hypothesis that the vi-

sual image is, in fact, responsible for its memory benefit. Neither subjectively reported vividness

(all experiments) nor objective imagery skill (experiments 1 and 3) could explain the benefit of

interactive imagery for cued recall. Aphantasic participants, who self-identified little to no men-

tal imagery, benefited from interactive imagery instructions as much as controls (experiment 3).

Imagery instructions did not improve memory for the constituent-order of associations (AB versus

BA), even when participants were told how to incorporate order within their images (experiments 1

and 2). Taken together, our results suggest that the visual format of images may not be responsible

for the effectiveness of the interactive imagery instruction and moreover, interactive imagery may

not result in qualitatively different associative memories.

2.1 Introduction

One of the best known ways to increase memory for word pairs (e.g., study APPLE-OVEN, when

presented APPLE, recall OVEN), is to instruct participants to form a mental image of the two

words interacting (Bower, 1970a; Bower & Winzenz, 1970; Dunlosky et al., 2005; Paivio &

Yuille, 1969; Paivio & Foth, 1970; Richardson, 1985, 1998). For example, ªimagine an APPLE

cooked inside an OVEN, in your mind’s eye.º Participants who receive interactive imagery in-

structions perform significantly better at cued recall than participants given no strategy instruction

(Richardson, 1985, 1998), and ∼ 20−50% higher cued recall accuracy than participants instructed

to use rote repetition (Bower & Winzenz, 1970; Bower, 1970a). Bower and Winzenz (1970) and

Paivio and Foth (1970) found that interactive imagery instructions could even outperform com-

parable verbally mediated instructions (e.g., form a sentence with both words) for concrete word

pairs, although Dunlosky et al. (2005) found these instructions were comparable. At face-value,
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interactive imagery instructions might cause participants to literally construct rich visual represen-

tations, directly improving memory in this way (Yates, 1966). However, this hypothesis is hard to

test because visual imagery cannot be directly observed. Here we examine the effect of interactive

imagery instructions with two main approaches. First, we test the visually relevant characteristics

of the imagery instruction and individual differences characteristics of the participants. Second,

we ask whether interactive imagery changes the formal nature of the representation; specifically,

whether or not constituent-order (knowledge that it was APPLE±OVEN, not OVEN±APPLE) is

coupled with memory for the pairing, itself.

Testing for visual-imagery characteristics of associations formed through interactive imagery

One way to interrogate how visual imagery functions is to exploit individual differences. There is

large individual variability in the subjective experience of mental imagery (Marks, 1973; Zeman

et al., 2015, 2020) and objectively scored imagery/visuospatial tasks (Keogh & Pearson, 2018;

Sanchez, 2019; Zeman et al., 2010). If the visual image, itself, is fundamental to the benefit of

interactive imagery, one would expect that imagery instructions may benefit individuals with vivid

or accurate mental imagery more than those with poor mental imagery. Alternatively, visual im-

agery may be epiphenomenal (Pylyshyn, 2002), implying that individual differences in mental

imagery should not relate to objective memory performance. Our three experiments test the hy-

pothesis that both mental imagery vividness and skill determine how much an individual benefits

from interactive imagery instructions.

There is considerable support for a central role of imagery in association-memory. Instructions

to use interactive imagery produces higher cued recall than without imagery instructions, and as-

sociations involving words higher in imageability are remembered better (Bower, 1970a; Bower

& Winzenz, 1970; Paivio, Smythe, & Yuille, 1968; Paivio & Yuille, 1969; Paivio, 1969; Paivio &

Foth, 1970). Beyond memory for word pairs, ancient texts claim that forming vivid images can

improve memory of various kinds (Foer, 2011; Gesualdo, 1592; Yates, 1966). For example, when

using the Method of Loci, a popular technique for ordered lists, skilled memorizers report forming

mental images of to-be-remembered items in various locations (e.g., Maguire, Valentine, Wilding,

& Kapur, 2003).

Common advice by skilled memorizers is that vivid imagery is important for the efficacy of

mnemonic strategies (e.g., Foer, 2011; Konrad, 2013; MÈuller et al., 2018). To test this idea,
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Sanchez (2019) measured individual differences in imagery/visuospatial skill with the Cube Com-

parisons Task (CCT; a mental rotation task), and the Paper Folding Task (PFT; judging the outcome

of multiple folds and hole-punches of a paper) (French et al., 1963), and examined the correlation

to memory performance. In Sanchez’ (2019) study, aggregate CCT and PFT performance corre-

lated with serial recall performance for participants who were instructed to use the Method of Loci,

but not for participants who were given a control instruction. However, three studies did not find a

significant relationship between Vividness of Visual Imagery Questionnaire (VVIQ; Marks, 1973)

and successful use of the Method of Loci (Kliegl, Smith, & Baltes, 1990; Kluger, Oladimeji, Tan,

Brown, & Caplan, 2022; McKellar, Marks and Barron, cited as in-preparation by Marks, 1972).

In light of these variable findings, we included the VVIQ (all experiments) and PFT (experi-

ments 1 and 3) to assess subjective quality of imagery and objective imagery ability, respectively.

The hypothesis that the construction of a visual image is central to the success of interactive im-

agery instructions implies that either or both the VVIQ and PFT should covary with cued recall

accuracy. Alternatively, interactive imagery effects may not depend on vivid or accurate mental

images, or perhaps, do not require any conscious experience of mental imagery at all.

To further test the hypothesis that visual imagery is vital for the benefits of interactive imagery,

we tested people with the phenomenon of aphantasia, extremely low or non-existent self-reported

ability to form voluntary mental images. Current interest in aphantasia originated with patient MX

(Zeman et al., 2010), who, after undergoing coronary angioplasty, reported a complete inability to

form mental images. MX exhibited completely intact performance in imagery/visuospatial related

tasks. However, closer examination of behaviour and brain activity suggested MX was applying

distinct verbal/symbolic strategies to complete tasks typically thought to require mental imagery.

Other studies have examined larger populations of self-reported aphantasics who rate significantly

low vividness (Zeman et al., 2015), report worse autobiographical memory and difficulty with

recognizing faces (Zeman et al., 2020). Specific to memory, Bainbridge, Pounder, Eardley, and

Baker (2021) examined the ability of aphantasics to draw photographs of rooms in a house from

memory. Aphantasics were not different from controls in copying a presented image, indicating

no deficits to their perceptual ability. Interestingly, aphantasics remembered fewer objects than

controls, but for the objects they could remember, they reproduced their spatial arrangement at

the same level as controls. These results indicated that aphantasics had specific deficits to object,

but not spatial memory. If the visual image is the necessary mechanism by which interactive
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imagery instructions increase cued recall accuracy, aphantasics should show no such advantage

(experiment 3).

Interactive imagery and the formal properties of associations We could find no formal imple-

mentation of imagery in any mathematical model of association-memory. However, image-based

associations could differ in their qualitative or formal characteristics, which might be meaning-

ful from a mathematical modelling perspective. One hypothesis about the relationship between

imagery and the formal characteristics of association-memory emerged while reviewing existing

models, as we now elaborate.

Mathematical models make starkly different predictions about memory for the constituent-

order of associations (AB versus BA) (Kato & Caplan, 2017), a memory task that has only begun

to be investigated experimentally. Matrix-based models (Anderson, 1970) and concatenation-based

models (Hintzman, 1984; Shiffrin & Steyvers, 1997), which we now refer to as perfect-order mod-

els, encode associations with non-commutative operations, and consequently predict that order is

remembered perfectly given that the association itself is intact. Convolution-based models (Kelly,

Blostein, & Mewhort, 2013; Murdock, 1982; Metcalfe Eich, 1982; Plate, 1995), in contrast, are

based on commutative operations that completely discard order (and see Cox & Criss, 2017, 2020

and Criss and Shiffrin’s 2005 model, which also disregard order). In these models, which we now

refer to as order-absent models, information for order, if present, must be provided by some other

term, predicting that the ability to remember the constituent-order will be unrelated to remember-

ing the pairing itself. Kato and Caplan (2017) found no evidence for either of these predictions.

In their study, word pairs were tested with cued recall, and then, an order recognition task, where

participants had to recognize whether a probe was in the correct order (AB), or reversed (BA)

(Greene & Tussing, 2001; Kounios, Bachman, Casasanto, Grossman, & Smith, 2003; Kounios,

Smith, Yang, Bachman, & D’Esposito, 2001; J. Yang et al., 2013). Challenging both perfect-order

and order-absent models, they found a significant correlation between order recognition and cued

recall performance; however, this correlation was significantly smaller than a control correlation

(with associative recognition), suggesting associations are not stored with perfect order, nor are

they completely order-absent. If we take imagery at face-value, it seems plausible that a visual im-

age could provide an effective means of incorporating order, such as left-to-right within the image,

or top-to-bottom. This might be just the thing that participants are missing in their spontaneously
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adopted strategies. So in addition to increasing memory accuracy, interactive imagery instructions

might help participants incorporate order, and render the association non-commutative like in a

perfect-order model. This was our first hypothesis. The alternative hypothesis is that imagery is

simply a good ªhookº, engaging participants better in the task, but otherwise invoking the same

associative mechanism as in conditions without imagery instructions. This hypothesis leads to the

prediction that the relationship between order and the association itself will be unchanged with

interactive imagery instructions. We tested these two hypotheses in experiments 1 and 2 with order

recognition subsequent to cued recall for all studied pairs in one group, and as a control, associative

recognition in another group.

Summary of experiments In all experiments, participants studied lists of eight word-pairs fol-

lowed by cued recall. First we obtained a baseline measure of memory with no strategy instruc-

tions, then participants were given imagery instructions (all experiments), or a filler instruction

(experiment 1). To test the hypothesis that visual images are necessary for memory benefit due

to interactive imagery, and that individual differences in imagery ability/vividness should predict

memory benefit, vividness was assessed with the VVIQ in all experiments, and imagery skill was

assessed with the PFT in experiments 1 and 2. Experiment 3 applied a stronger test of the visual

imagery hypothesis by recruiting aphantasics. In experiments 1 and 2, we also tested the hypothe-

sis that imagery could provide a way for participants to incorporate order and generate associations

that are more non-commutative (like a matrix model). Cued recall was followed by either order or

associative recognition, to test the relationship between constituent-order and memory for the pair,

itself. The prediction is that imagery instructions will increase order recognition and moreover,

its relationship to cued recall. Finally, we also include supplementary materials with additional

analyses.

2.2 Experiment 1

2.2.1 Methods

Participants

Participants enrolled in introductory psychology courses at the University of Alberta (N = 227)

participated for partial course credit. Participants were required to have learned English before
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the age of six, have normal or corrected-to-normal vision, and be comfortable typing. Participants

chose one of 15 testing rooms in order of arrival, blind to condition. One participant was excluded

from analyses for not completing the experiment within the allotted 50 minutes. Procedures in all

experiments were approved by a University of Alberta ethical review board.

Groups There were two main experimental groups. The imagery group (N = 113) received

interactive imagery instructions halfway through the word lists, and the control group (N = 114)

received filler instructions halfway through the lists (Figure 2.1). Each experimental group was fur-

ther subdivided into two conditions. Following cued recall, one condition performed order recog-

nition (N = 57 and 56 for imagery and control, respectively), and the other condition performed

associative recognition (N = 56 and 58, respectively). For analyses involving only cued recall,

these conditions were collapsed within the imagery group and control group. For all analyses in-

volving recognition tasks, these conditions were separated and named, accordingly, control-order

recognition, control-associative recognition, imagery-order recognition, and imagery-associative

recognition.

Materials

Stimuli were the 478 nouns from the Toronto Word Pool (Friendly, Franklin, Hoffman, & Rubin,

1982), four to eight letters and spanning the full ranges of concreteness mean (SD) = 5.32 (1.32),

and with frequency = 62.47 (82.45) per million (Kucera & Francis, 1967). Words were assigned

to pairs and lists with the computer’s random number generator. Study pairs, cued recall and

recognition test probes were presented in uppercase, white, Courier bold font.

Procedure

The experiment was run in Python, in conjunction with the Python Experiment-Programming Li-

brary (Geller, Schleifer, Sederberg, Jacobs, & Kahana, 2007), for the first cohort of participants.

Because software updates made lab computers incompatible with PyEPL, we ran the second co-

hort in a MATLAB port, written with the PsychToolBox experiment programming extensions

(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997), and the CogToolBox Library

(Fraundorf et al., 2014). Illustrated in Figure 2.1, the session included study of word pairs, cued

recall, followed by order or associative recognition tests, repeated for eight study sets, with five
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Study phase For each list, participants viewed eight pairs in sequence. The two words in a pair

were presented side by side, centered on the screen, for 2850 ms, with a 150-ms inter-pair blank.

Distractor Interleaved between study, recall and recognition, participants were administered a

math distractor task. Participants had to solve the sum of three digits, randomly drawn from two

to eight within 5000 ms followed by a 200-ms blank inter-trial interval. Participants typed their

response, which was displayed on the screen, and upon pressing ENTER, the colour of the response

digit changed to gray, to show the response registered, and the 200-ms inter-trial interval was

initiated after the 5000-ms response interval elapsed.

Cued recall Each studied pair was tested once with cued recall. Direction of cued recall (for-

ward, APPLE±?, or backward, ?±OVEN) was counterbalanced (Python version: across all lists

except the practice; MATLAB version: within each list). The cue word was presented in centrally

with a centered response line underneath, regardless of the direction of cued recall. The letters

appeared on the line as the participant typed, submitting the word with the ENTER key. The next

cued recall trial started 750 ms later. ENTER was only accepted once more than two letters were

typed, to reduce participants speeding through. In the Python version, if participants did not press

ENTER within 15,000 ms, the trial ended, was scored incorrect, and the next cued recall trial was

presented. In the MATLAB version, this time-limit was removed.

Recognition Two probe words were presented side by side centrally, as in the study phase. In

order recognition, participants judged if a presented probe was intact (e.g., OVEN APPLE) or

reverse (e.g., APPLE OVEN). In associative recognition, participants judged whether a presented

probe was intact (e.g., OVEN APPLE) or recombined (e.g., OVEN BUTTON). Key 1 was assigned

to intact and key 2 was assigned to reverse or recombined. Other keys were ignored. Recombined

probes were only rearranged with other pairs within the current list, and a pair probed with an

intact probe was never used to create a recombined probe. Pairs were tested in pseudo-random

order. In the Python version, the number of intact and lure (reverse or recombined) probes were

counterbalanced over all analyzed lists (excluding practice). In the MATLAB version, trials were

counterbalanced over all lists including the practice list.1 In the Python version, the trial was

1Due to programming error, counterbalancing was slightly unbalanced for associative recognition in the MATLAB

version. When one recombined trial was randomly assigned to given list, it did not have another recombined pair to
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aborted after 15,000 ms. Rather than score these timed-out trials as incorrect, they were omitted

from analyses (two trials in all, both in control-associative participants). To prevent missing data,

the 15,000 ms timeout limit was removed in the MATLAB version. The next recognition trial

started after a 750-ms blank screen.

Vividness of Visual Imagery Questionnaire Participants completed a computerized version of

the Visual Vividness of Imagery Questionnaire (Marks, 1973), which asks participants to imagine

four scenes. A description of each scene was displayed on the screen, followed by instructions

to imagine four items within the scene and to rate vividness on a scale from one (perfectly vivid

imagery), to five (no image at all) using the number keys. To indicate the response registered, the

choice changed to green for 1000 ms, immediately followed by the next item. VVIQ score was the

sum of these ratings, ranging from 16 (perfectly vivid imagery) to 80 (no image formed at all).

Paper Folding Task Participants completed a computerized version of the PFT (French et al.,

1963), consisting of 20 questions increasing in difficulty. Each question was a series of images

that depicted a piece of paper being folded successively and then hole-punched. The question was

displayed to the left of a central vertical line, and five possible choices were displayed to the right,

selected with the keys 1±5. The chosen option was highlighted in green for 1000 ms, immediately

followed by the next question. Mean accuracy and response time were analyzed.

Distribution of VVIQ ratings and PFT ratings Distributions of VVIQ ratings and PFT scores

aligned with previous studies (Table 2.1).

Analyses

To check null effects, we include Bayesian analyses (with uniform priors) run in JASP (JASP

Team, 2021). The Bayes Factor is a ratio of evidence, where by convention, when BF10 > 3, the

effect is considered supported, and when BF10 < 0.3, the effect is considered more consistent with

the null. For ANOVAs, BFinclusion, which summarizes across all factorial models and quantifies

whether each model fits better with the main effect or interaction included versus excluded. We

measured order and associative recognition with d′ = z(hit rate) − z(false alarm rate). Whenever

exchange words with, and appeared as an intact trial. The occurrence of this error was rare, with 11 participants having

one extra intact trial, and one participant having two extra intact trials.
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Table 2.1: M(SD) (Means and standard deviations) of VVIQ ratings for each group in experi-

ments 1, 2 and 3, and PFT scores in experiment 1, and 3, along with population estimates for

VVIQ ratings from McKelvie’s (1995), and PFT scores in the control and method of loci group in

Sanchez (2019).

Experiment and Group VVIQ Rating PFT score

Sanchez (2019) method of loci group N/A 12.52 (2.59)

Sanchez (2019) control group N/A 11.87 (3.30)

McKelvie (1995) VVIQ population estimate 36.9 (11.07) N/A

Experiment 1: Imagery-order recognition sub-condition 31.8 (10.86) 13.02 (4.06)

Experiment 1: Imagery-associative recognition sub-condition 32.9 (8.94) 13.70 (3.87)

Experiment 1: Control-order recognition sub-condition 32.5 (8.39) 13.14 (3.75)

Experiment 1: Control-associative recognition sub-condition 32.7 (9.73) 13.83 (4.54)

Experiment 2: Actor-object-order recognition sub-condition 36.2 (12.62) N/A

Experiment 2: Actor-object-associative recognition sub-condition 36.2 (10.07) N/A

Experiment 2: Standard-imagery-order recognition sub-condition 36.3 (10.52) N/A

Experiment 2: Standard-imagery-associative recognition sub-condition 35.2 (8.07) N/A

Experiment 2: Top-bottom-order recognition sub-condition 36.9 (11.92) N/A

Experiment 2: Top-bottom-associative recognition sub-condition 35.7 (11.35) N/A

Experiment 3: Consistent aphantasic group 61.0 (18.06) 12.40 (4.61)

Experiment 3: Consistent non-aphantasic group 38.1 (13.89) 13.15 (4.37)

Experiment 3: Inconsistent responder group 44.7 (15.67) 11.98 (4.50)
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hit or false alarm rate were zero or one, one-half an observation was added or subtracted to avoid

infinities.

2.2.2 Results and discussion

Cued recall We replicated the interactive-imagery advantage for cued recall. A mixed ANOVA

on cued recall accuracy (Figure 2.2), with design Group (imagery, control group) × Instruction

phase (pre-instruction, post-instruction), returned significant main effects of Instruction phase,

F(1,225) = 110.79, MSE = 2.91, p< .001, η2
p = 0.33, BFinclusion > 1000, and Group, F(1,225) =

4.92, MSE = 0.41, p = .03, η2
p = 0.02, BFinclusion > 1000; however, the interaction was also sig-

nificant, F(1,225) = 41.5, MSE = 1.09, p < .001, η2
p = 0.16, BFinclusion > 1000. Simple effects

found no difference between groups pre-instruction (p= .19, BF10 = 0.33), but significantly higher

accuracy for the imagery group post-instruction (p < .001, BF10 > 1000). Additionally, for both

groups, accuracy significantly increased post-instruction (both p < .001, BF10 > 33). Thus, per-

haps due to practice effects, the control group moderately improved as the experiment progressed;

however, the imagery group performed significantly better in the post-instruction phase, and ex-

hibited a greater improvement from baseline compared to the control group.2

Associative and order recognition A mixed ANOVA on associative recognition d′ (Figure 2.3),

with design Group (imagery-associative recognition, control-associative recognition) × Instruction

phase (pre-instruction, post-instruction) returned a non-significant main effect of Group (p = .25,

BFinclusion = 612.89)3, a significant main effect of Instruction phase, F(1,112) = 38.13, MSE =

22.79, p < .001, η2
p = 0.25, BFinclusion > 1000, and a significant interaction Group × Instruction

phase, F(1,112) = 21.24 , MSE = 13.29, p < .001, η2
p = 0.17, BFinclusion > 1000. Simple effects

revealed a non-significant group difference in performance pre-instruction (p = .14, BF10 = 0.54),

but the imagery-associative recognition condition performed significantly better post-instruction

(p < .001, BF10 = 31.12). Additionally, the imagery-associative recognition condition improved

post-instruction (p < .001, BF10 > 1000), but the control-associative recognition condition did not

significantly improve (p = .16, BF10 = 0.37). These analyses indicate that imagery instructions

2Expanding on these findings, we also found evidence that imagery instructions were most beneficial for partici-

pants with poor baseline performance (page 50).
3A non-significant effect can have strong evidence in a Bayesian analysis because JASP’s implementation of

Bayesian model selection refuses to consider models including interactions without the main terms. Thus, if there

is strong evidence for the interaction, it will also return strong evidence for the main terms included in interactions .
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Figure 2.2: Pre- and post-instruction cued recall accuracy for all three experiments. (Left) In

experiment 1, the imagery group received instructions to use interactive imagery halfway through

the word lists. The control group was simply instructed to continue with the experiment. (Middle)

In experiment 2, participants either received standard-imagery, actor-object imagery, or top-bottom

imagery instructions. (Right) In experiment 3, all participants received imagery instructions. Error

bars represent 95% confidence intervals based on standard error of the mean.
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substantially improved associative recognition performance over control instructions.

An ANOVA with the same design, on order recognition d′ (Figure 2.3) returned non-significant,

favoured null main effects of both factors (both p > .2, BFinclusion < 0.3). The interaction Group ×

Instruction phase nearly reached significance, F(1,111) = 3.90, MSE = 1.61, p= .051, η2
p = 0.03,

although the Bayesian analysis favoured the null (BFinclusion = 0.26). Nonetheless, we cautiously

followed up on the interaction with simple effects. The control-order recognition group performed

significantly worse post-instruction (p = .01, BF10 = 3.07), while the imagery-order recognition

group did not exhibit any significant change (p = .65, BF10 = 0.16). Additionally, the group differ-

ence in performance was not significant pre-instruction (p = .06, BF10 = 0.98), or post-instruction

(p = .80, BF10 = 0.21). In sum, imagery instructions did not improve order recognition perfor-

mance, but may have acted against a performance decrease observed in the control-order recogni-

tion group.

The relationship among mental imagery skill, vividness, and the effectiveness of interac-

tive imagery instructions Next, we asked if any individual difference measure would explain

individual differences in memory performance (Tables 2.5±2.7). Correlations between VVIQ rat-

ings and cued recall accuracy were all non-significant and either were, or were nearly, supported

null effects (all p > .09, BF10 < 0.45), and likewise for order recognition (all p > .15, BF10 <

0.46). VVIQ ratings significantly correlated with post-instruction associative recognition perfor-

mance in the imagery-associative recognition condition, r(54) = −.44, p < .001, BF10 = 44.10,

but this correlation was not significant post-instruction for control-associative recognition group,

r(56) = −.04, p = .78, BF10 = 0.17; and these correlations differed significantly (Fisher test,

p = .024). Thus, individual differences in mental imagery vividness explained differences in as-

sociative recognition performance under interactive imagery conditions,4 but could not explain the

interactive imagery advantage for cued recall.

PFT accuracy exhibited significant, positive correlations with nearly all memory tasks, and not

only with memory performance in the imagery group (Tables 2.5±2.7). Although the tables show

some exceptions, our results, particularly the presence of pre-instruction correlations, suggest that

PFT accuracy does not specifically relate to interactive imagery, and may have either reflected a

general factor such as motivation, task engagement or a distinct cognitive process such as working

4The significant correlation between VVIQ ratings and post-imagery instruction associative recognition d′ was not

replicated in experiment 2, thus, we do not consider this a robust finding and do not discuss it in the general discussion.
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Figure 2.3: Pre- and post-instruction order (OR), and associative recognition (AR) performance

for experiment 1 and 2. In experiment 1, participants either received standard imagery instructions

or control instructions. In experiment 2, participants received either standard-imagery, top-bottom

imagery, and actor-object imagery instructions. Error bars represent 95% confidence intervals

based on standard error of the mean.
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memory.

PFT response time was not significantly related to the memory measures apart from a sig-

nificant positive correlation with post-instruction cued recall accuracy, r(111) = .27, p = .004,

BF10 = 7.49, and post-instruction associative recognition performance, r(54) = .32, p = .017,

BF10 = 2.74, both in the imagery group. If longer PFT response times indicate worse perfor-

mance, these correlations would be counter-intuitive. A simpler interpretation is that longer PFT

latencies are a consequence of greater general effort or engagement (a successful speed±accuracy

trade-off) rather than mental imagery skill. Thus, the pattern argues against the idea that mental

imagery accuracy or skill is required for the memory benefit.5

The relationship of order recognition to cued recall Figure 2.15 plots log-odds transformed

cued recall accuracy versus both order recognition and associative recognition d′, for both imagery

and control groups. Pre-instruction, the associative recognition±cued recall correlations (imagery:

r(56) = .86, p < .001, control: r(56) = .83, p < .001), were larger than the order recognition±

cued-recall correlations (imagery: r(55) = .43, p < .001, control: r(54) = .46, p < .001). The

difference in correlations was significant for both groups pre-instruction (Fisher tests, imagery:

p < .001, control: p < .001). This pattern persisted post-instruction; associative recognition-cued

recall correlations (imagery: r(54) = .70, p < .001, control: r(56) = .81, p < .001) were also

larger than order recognition-cued recall correlations (imagery: r(55) = .31, p = .020, control:

r(54) = .37, p = .005; Fisher test, imagery: p < .001, control: p = .005). Thus, consistent with

Kato and Caplan (2017), order recognition exhibited a smaller correlation to cued recall accuracy

than associative recognition.6

Importantly, Fisher tests between the control and imagery group OR-CR correlations were not

significant pre- (p = .85) and post-instruction (p = .70), and AR-CR correlations pre- (p = .57)

and post-instruction (p = .15), suggesting that imagery instructions did not affect the dependence

of order or associative recognition on cued recall. This result does not support the hypothesis

that imagery instructions help participants incorporate order. Instead, we have evidence for the

5We also found no support for the idea that significant pre-instruction PFT correlations were due to high PFT

scorers spontaneously adopting imagery before being instructed to do so (page 50).
6When interpreting these results, one might consider the effect of testing pairs with cued recall before order recog-

nition. Indeed, this was a major point addressed by Kato and Caplan (2017), who, in their second experiment, withheld

half the pairs from cued recall testing, and in their third experiment, moved cued recall to the end of the session. In

both cases they found that the order-cued recall relationship persisted, which we also found when analyzing testing

effects in our own data-set, reported on page 47.
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alternative hypothesis, that imagery does not change the formal characteristics of the association.7

Summary of experiment 1 Interactive imagery instructions increased cued recall accuracy and

associative recognition d′ above baseline, and compared to the control group. Imagery instructions

did not improve order recognition, or change its relationship to cued recall. Both imagery vividness

and skill did not predict the effectiveness of imagery instructions.

2.3 Experiment 2

The results of experiment 1 raised an additional question. Although interactive imagery failed to

improve order recognition, if participants were given a specific way to incorporate order into their

image, could that improve order recognition? We addressed this question by modifying the inter-

active imagery instruction in two ways (see Figure 2.1 for instructions). First, physically enacting

verbal stimuli (e.g., hit the NAIL) improves benefits memory (enactment effects; cf. Allen, Wa-

terman, Yang, & Jaroslawska, 2022; Engelkamp, 1991, 1995; Sivashankar & Fernandes, 2021),

even when imagined (Allen et al., 2022; T. Yang et al., 2021). We hypothesized that imagining an

actor±object relationship might not only exploit this benefit but also incorporate order into the im-

age. Second, whereas the left±right axis is generally symmetric, gravity can break the symmetry;

for example, a MOUSE on top of an ELEPHANT conjures a different meaning than the ELE-

PHANT on the MOUSE. We thus added two imagery instructions, where images were to comprise

actor±object or top±bottom relationships, respectively.

Experiment 2 was pre-registered. All pre-registered analyses are reported. For analyses of the

within-subject relationship of order/associative recognition to cued recall of pairs, see page 58.

2.3.1 Methods

Participants

Participants (N = 433) were recruited through Prolific (www.prolific.co), and compensated

£6.50 for a 50-minute session. Participants were required to have English as their first language,

be fluent in English, and have a Prolific approval rating above 70%. Our initial pre-registered ex-

clusion criteria included failure to pass two attention checks, and/or exceeding a specified floor

7The within-subject analysis of the OR-CR relationship for experiment 1 and 2 are reported on page 50 and 58.
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or ceiling threshold for recognition performance. Instead, we excluded participants who demon-

strated clear evidence of disengagement, rather than exclude participants may have responded

earnestly but performed extremely poorly or well: 13 were excluded because they re-wrote the

presented probe in cued recall, suggesting they did not understand the task; three were excluded

because they did not respond to any cued recall trial; seven were excluded because they responded

to < 10% of recognition trials.

Groups Three main experimental groups were each divided into two sub-conditions: i) standard-

imagery/associative recognition, ii) standard-imagery/order recognition, iii) actor-object/associative

recognition, iv) actor-object/order recognition, v) top-bottom/associative recognition, vi) top-bottom/order

recognition. Groups/sub-conditions were assigned with a random number generator function.

Materials and procedures

Materials and procedures were identical to experiment 1; however, with the following differences:

(1) Experiment 2 was conducted online, with recruitment from www.prolific.co, hosted on

Pavlovia.org. Groups were assigned with a random number generator. (2) The Paper Folding

Task was omitted to save session time. (3) After the mid-session strategy instruction, participants

were asked ªPlease explain back to us, in your own words, what we have asked you to do on the

previous screenº. Short-answer responses were rated by two coders (KA and JT) blinded to group

to quantify comprehension of instructions (corresponding on page 54).8. (4) After completing the

VVIQ, participants rated, on a five-point scale, their frequency of incorporating mental imagery,

interactivity, and order during study (page 53). (5) Participants answered a reversed-sense aphanta-

sia question (see experiment 3 methods). Five aphantasic participants are presented as case studies

in supplementary materials on page 58. (6) Two engagement checks were included; participants

were presented a short message,ªNOTE: Remember the number: Xº, in the top-right corner of the

screen, highlighted in blue, and against a grey foreground, once during the mid-session strategy

instruction, and again, immediately after the VVIQ. Participants were asked to recall the number

shortly after;however, two participants indicated their monitor cut off this number from the screen,

thus, we applied different criteria, stated above. (7) Distractor trialswere held for a fixed 1000-

ms period after the response was entered, regardless of response time. Additionally, there was a

8Note that in these analyses, we did not perform the chi-squared tests proposed in the pre-registration.
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Table 2.2: Experiment 2: Included and excluded participants for each group and sub-condition. A

total of 23 participants were excluded.

Group/Condition Included Excluded

Standard-imagery/Associative Recognition 73 2

Standard-imagery/Order Recognition 91 4

Actor-Object imagery/Associative Recognition 72 6

Actor-Object imagery/Order Recognition 68 3

Top-Bottom imagery/Associative Recognition 76 4

Top-Bottom imagery/Order Recognition 53 4

5000-ms maximum time-limit, and a blank 200-ms inter-trial interval. (8) Recognition trials were

counterbalanced over all trials, including the practice list. However, there were two programming

errors with associative recognition; i) a single recombined trial assigned to a list appeared as an

intact trial, because could not exchange items with another pair.ii) random shuffling of recombined

probes sometimes resulted in the original pairing. N = 198 participants had more intact probes than

recombined probes, and of these participants, there was an average of nine extra intact trials. How-

ever, baseline associative recognition d′ was comparable to experiment 1 (Figure 2.3), suggesting

mean associative recognition performance was not sensitive to this design difference. (9) Recogni-

tion trials initially had a 15,000 ms time-limit. For d′ calculations, rather than omit these trials from

analyses outright, a correction was applied for each timed-out trial; if an intact trial was timed-out,

0.5 of an observation was added to hits and to misses. Likewise, if a recombined/reversed trial

timed-out, 0.5 of an observation was added to false alarms and to correct rejections. In this way,

timed-out trials pushed the overall d′ to 0, where d′ = 0 represents no memory, as if the participant

was guessing. Thus, with this correction we assume that when a trial times-out, a participant has

no knowledge, and would have guessed if given the opportunity. A total of 23 trials timed-out

and were corrected in this manner. To remove the need for this estimation and obtain a response

from each participant to each trial, time-limits were removed for recognition trials halfway through

data-collection.
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Distribution of VVIQ ratings VVIQ rating distributions were comparable to experiment 1 (Ta-

ble 2.1).

2.3.2 Results and discussion

Cued recall A mixed ANOVA on cued recall accuracy (Figure 2.2) with design Group (standard-

imagery, actor-object, top-bottom) × Instruction phase (pre-instruction, post-instruction) returned

a significant main effect of Instruction phase, F(1,430) = 71.13, MSE = 1.64, p < .001, η2
p =

0.14, BFinclusion > 1000. The main effect of Group was not significant, F(2,430) = 1.15, MSE =

0.10, p = .32, η2
p = 0.005, BFinclusion > 1000, but had strong evidence in the Bayesian anal-

ysis3.However, the Group × Instruction phase interaction was significant, F(2,430) = 24.74,

MSE = 0.57, p < .001, η2
p = 0.10, BFinclusion > 1000. Simple effects returned a supported null

effect of Group pre-instruction (p = .19, BF10 = 0.13), but significant effect post-instruction (p <

.001, BF10 = 379.6). Follow up t-tests on the post-instruction Group difference indicated a non-

significant, supported null difference between the standard-imagery and actor-object imagery,

p = .19, BF10 = 0.29. Additionally, cued recall accuracy was significantly lower in the top-bottom

imagery compared to the standard-imagery (p < .001, BF10 > 1000), and actor-object (p = .004,

BF10 = 7.27) imagery groups. Simple effects also returned a significant effect of Instruction phase

for the actor-object, and standard-imagery group (both p < .001, BF10 > 1000), both of which in-

creased in performance post-instruction, but a supported null difference for the top-bottom imagery

group (p = .60, BF10 = 0.11). In sum, the actor-object imagery instructions matched the robust

benefits of standard interactive imagery instructions for memory, but top-bottom instructions were

ineffective.

Associative and order recognition Broadly speaking, the results for associative recognition par-

alleled those for cued recall; standard and actor-object imagery instructions were effective to im-

prove performance and top-bottom instructions were ineffective. A mixed ANOVA on associa-

tive recognition d′ (Figure 2.3), with design Group [3] × Instruction phase [2] returned signif-

icant main effects of Instruction phase, F(1,195) = 21.38, MSE = 15.34, p < .001, η2
p = 0.10,

BFinclusion > 1000, and significant Group × Instruction phase interaction, F(2,195)= 7.56, MSE =

5.43, p < .001, η2
p = 0.07, BFinclusion = 22.13. Simple effects indicated that associative recogni-

tion performance increased post-instruction in both the actor-object group (p = .003, BF10 = 9.65)
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and standard-imagery group (p < .001, BF10 > 1000), while the top-bottom group had a supported

null difference between instruction phases (p = .86, BF10 = 0.13). Simple effects with the factor

Group returned a supported null difference pre-instruction (p = .34, BF10 = 0.16), but a signifi-

cant difference post-instruction (p = .005, BF10 = 5.82). Follow-up t-tests on the post-instruction

group difference indicate that actor-object and standard-imagery had a supported null difference

(p = .84, BF10 = 0.21), but both groups performed significantly better than the top-bottom group

(p = .017, BF10 = 3.75 and p = .003, BF10 = 9.86 respectively).

Results for order recognition diverged from the other tasks. A mixed ANOVA on order recogni-

tion d′ (Figure 2.3), with design Group [3] × Instruction phase [2] returned a significant main effect

of Instruction phase, F(1,232) = 12.89, MSE = 6.02, p < .001, η2
p = 0.053, BFinclusion = 37.83,

indicating that order recognition d′ improved in all three groups post-instruction. A significant

improvement in order recognition somewhat diverged from null effects observed in experiment 1;

however, the effect in all three groups was small in magnitude (d′ post-minus-pre ≈+0.25, Figure

2.3), and post-instruction performance was in the range of values from experiment 1, suggest-

ing the effect on order recognition was small in comparison to associative recognition. Impor-

tantly, both the main effect and interaction involving Group were supported null (both p > .32,

BFinclusion < 0.3), indicating that emphasizing order in the imagery instructions did not improve

order recognition more than standard interactive imagery instructions.

The relationship between mental imagery vividness and the effectiveness of interactive im-

agery instructions VVIQ ratings had a supported null relationship to cued recall in three groups

and instruction phases (all p > .15, BF10 < 0.3), replicating and extending findings from exper-

iment 1 and 2. A single exception was found in the top-bottom imagery group pre-instruction,

r(54) = −.18, p = .03, BF10 = 1.09, although a Bayesian correlation returned inconclusive evi-

dence for this relationship (Tables 2.8±2.10). Correlations between VVIQ ratings and both order

recognition, and associative recognition were non-significant, supported null effects (all p > .36,

BF10 < 0.31). The failure to replicate the correlation between VVIQ and associative recognition

in experiment 1 suggests that this finding is not particularly robust and will not be discussed fur-

ther. Thus, vividness ratings in the VVIQ could not explain the advantage of standard-imagery

instructions, nor memory performance under any imagery instruction variant.
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The relationship of order recognition to cued-recall Due to low trial counts for recombined

trials (see Methods), the associative recognition measures are noisy and should be interpreted with

caution. However, with maximal power by collapsing across groups (Figure 2.19, Table 2.3),

the OR-CR correlation was significantly lower than the AR-CR correlation, both pre- and post-

instruction (p = .047, p = .0034 respectively, Fisher tests), replicating experiment 1 and Kato and

Caplan (2017). Next, we asked if, for any instruction, the OR-CR correlation changed from pre- to

post-instruction. These comparisons were non-significant for top-bottom (p = .71, Fisher test) and

actor-object group (p = .63), but there was a significant decrease post-instruction for the standard-

imagery group (p = .034). This pre- versus post-instruction difference in the standard-imagery

group was largely driven by a single outlier (Figure 2.19) who performed extremely poorly in cued

recall, but extremely well in order recognition. When removed, the comparison was non-significant

(p = .14).

Summary of experiment 2 Standard interactive imagery and actor-object imagery instructions

boosted cued recall and associative recognition above baseline, and compared to the top-bottom

imagery instructions. Surprisingly, both imagery instructions that emphasized order had a neg-

ligible effect on order recognition, and did not affect its relationship to cued recall. Replicating

experiment 1, imagery vividness did not predict the effectiveness of imagery instructions.

2.4 Experiment 3

Experiment 1 suggested the large benefit to cued recall of interactive imagery has little to do with

subjective detail or objective visual imagery skill. In experiment 3, we recruited aphantasics, who

self-report an inability to form visual imagery, and non-aphantasics, to do cued recall, VVIQ and

PFT as in experiment 1. If the presence of visual images is required for interactive imagery, then

aphantasics should show substantially less benefit from imagery instructions than non-aphantasics.

2.4.1 Methods

Participants

Just as in experiment 1, participants (N = 122) were enrolled in an introductory psychology class

at the University of Alberta, and recruitment had the same basic restrictions. Participants who
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Table 2.3: Experiment 2: Correlations between log-odds cued recall accuracy and both order and

associative recognition collapsed across participants, and separated into groups.

Pre-instruction Post-instruction

r p r p

All Participants/Associative Recognition .67 < .001 .66 < .001

All Participants/Order Recognition .54 < .001 .47 < .001

All Participants Fisher test (Order versus Associative) z = 1.99, p = .047 z = 2.93, p = .003

Standard-imagery/Associative Recognition .64 < .001 .72 < .001

Standard-imagery/Order Recognition .58 < .001 .32 .0017

Standard-imagery Fisher test (Order versus Associative) z = 0.59, p = .55 z = 3.62, p = .0003

Actor-Object/Associative Recognition .70 < .001 .66 < .001

Actor-Object/Order Recognition .44 < .001 .50 < .001

Actor-Object Fisher test (Order versus Associative) z = 2.18 , p = .030 z = 1.34 , p = .18

Top-Bottom/Associative Recognition .67 < .001 .61 < .001

Top-Bottom/Order Recognition .64 < .001 .68 < .001

Top-Bottom Fisher test (Order versus Associative) z = 0.29 , p = .77 z = 0.64 , p = .53
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had enrolled in experiment 1 were not permitted to participate in this study. Four participants were

excluded from analyses because they accessed the online link and completed the experiment twice;

both sessions were excluded. One participant was excluded for providing no cued recall or math

distractor responses.

Recruitment Before the experimental session, potential aphantasics and non-aphantasics were

identified via online mass-testing questionnaires administered to University of Alberta introduc-

tory psychology students at the beginning of the Fall 2020 (N = 2357) and Winter 2021 (N = 1975)

semesters. Along with many other items that were part of different studies, questionnaire partic-

ipants responded yes/no to ªAre you able to form mental images (i.e., pictures) in your mind’s

eye?º.

Recruitment for experiment 3 was conducted after the Winter 2021 questionnaire was adminis-

tered, and was restricted to participants who responded to this question in either the Fall or Winter

questionnaire. We note here that filling out a mass questionnaire did not guarantee that a student

signed-up for our experiment. Participants could only sign up if they had answered the aphantasia

question in the mass-testing. A different project code was visible to those who answered yes and

no, respectively, to roughly equate recruitment rates. However, we further classified the 122 who

participated with the additional in-session, reversed-sense aphantasia question.

Aphantasia classification We classified aphantasia in these 122 participants based on three dif-

ferent criteria, which we call ªconsistentº, ªmoderateº and ªextremeº aphantasics, respectively.

The first criterion was based on consistent response to the yes/no aphantasia question. Par-

ticipants who consistently indicated being unable to form mental images in mass-testing and in-

session, were classified as ªconsistent aphantasicº (N = 25). Those who consistently indicated

the opposite were ªconsistent non-aphantasicº (N = 34). Those who were inconsistent in their

responses to this question formed a third ªinconsistent-responderº group (N = 64). Because in-

consistent responders changed their answers across testing sessions, we were hesitant to classify

them as either aphantasic or non-aphantasic, as they might have been unsure of their status. Ad-

ditionally, because the recruitment question was embedded within a much longer questionnaire

this raised the possibility that individuals would not respond conscientiously to each questionnaire

item. This provided more reason for classifying aphantasia based on multiple responses.
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To be more selective, we also applied more conservative second and third criteria from Zeman

et al. (2020). Of the ªconsistent aphantasics,º participants rating 73±79 (maximum 80) VVIQ in-

session were considered ªmoderateº aphantasics (N = 7), while ratings of 80/80 were considered

ªextremeº aphantasics (N = 3). VVIQ criterion aphantasic participants are reported as case studies

(Table 2.4).

A strength of our procedure was that our experimental session was separated by days or weeks

from the Winter mass-testing questionnaire. The in-session reversed-sense aphantasia question and

VVIQ were at the end of the session. We thought this should make the constructs of aphantasia

and even visual imagery less front-of-mind for participants than in previous aphantasia studies.

Mass questionnaire aphantasia prevalence rates Next, we applied our three aphantasia classi-

fication criteria to mass questionnaire data to provide an estimate of the prevalence of aphantasia

in our student population. Note that the following numbers are based solely on mass questionnaire

data and and not on the sub-sample tested with memory tasks in experiment 3.

We identified 772 participants who answered the aphantasia question in both the Fall and Win-

ter mass testing sessions. Of these participants, 30 indicated being unable to form mental images

in both sessions (3.9%). This approached Faw’s (2009) previously estimated rate of 2±3%.

Our conservative aphantasia classification criteria based on VVIQ cutoffs were identical to

Zeman et al. (2020), who observed the rate of moderate aphantasia (73− 79/80) and extreme

aphantasia (80/80) to be 2.6% and 0.7% in their mass-testing questionnaire. First, of the N = 2000

who completed the VVIQ in the Fall 2020 mass-testing, 23 (0.9%) and 9 (0.4%) met these VVIQ

cutoffs respectively. Next, of the 1975 participants who responded to the VVIQ in Winter 2021

mass testing questionnaire, 43 (2.2%) and 26 (1.3%) participants met the moderate and extreme

VVIQ cutoffs respectively. In sum, the prevalence rates that were derived from the Fall 2020

questionnaire were considerably lower than previous observations, while the rates that were derived

from the Winter 2021 questionnaire were closer to Zeman et al. (2020). The extreme cutoff appears

far more highly selected than prior aphantasic samples.

Materials and procedures

Materials and procedures were identical to experiment 1 except: (1) This experiment was con-

ducted completely online, on Pavlovia.org. The experiment was created using the PsychoPy
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Builder interface (Peirce et al., 2019) and translated to a PsychoJS experiment (Bridges, Pitiot,

MacAskill, & Pierce, 2020). As in experiment 1, recruitment was conducted through the Univer-

sity of Alberta psychology research participation pool, but participants completed the experiment

on their personal devices. (2) All participants were instructed to use interactive imagery half-way

through the session (no control group) (3) Recognition tasks were omitted; pairs were only tested

with cued recall. (4) To use the additional testing time freed up from the recognition tasks, par-

ticipants studied 10 lists (cf. eight in experiment 1). (5) The PFT was re-added to the design, and

administered after the VVIQ just like in experiment 1. (6) After the PFT, participants answered

a single free-form question about their strategy-use question. (7) Cued recall direction (forward

versus backward) was counterbalanced over all trials, including the practice list. (8) After the

strategy-use question (i.e., at the end of the session) a reversed-sense version of the aphantasia

recruitment question was administered: ªAre you unable to form mental images (i.e., pictures) in

your mind’s eye?º. (9) Distractor trials were identical to experiment 2, except that immediately

after the response was entered, the screen was held for 2000-ms fixed period (versus the 1000-ms

fixed period in experiment 2).

VVIQ test-retest reliability We analyzed test-retest reliability of the VVIQ between mass ques-

tionnaires and the in-session administration, reported on page 63.

Analysis of gender and interactive imagery effects We obtained data on self-reported gender

for participants in experiment 3. These are reported on page 62.

Free-form strategy self report After the PFT, participants were asked to ªdescribe how you

studied the word pairs, whether or not that included the use of visual imagery as instructed, in a

short one or two sentence response.º These responses were rated by two coders, blinded to condi-

tion, for two measures of interest. Firstly, rated either 1) response includes imagery, 2) response

explicitly excludes imagery, 3) response leaves open the possibility of imagery but was not ex-

plicit. Second, rated for whether it referred to interactivity or connection between words (yes/no).

Analyses incorporating these ratings are reported on page 61.
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2.4.2 Results and discussion

Of 122 participants, 25 were consistent aphantasics, 34 were consistent non-aphantasic and 63

were inconsistent responders.

Self-reported vividness Supporting the validity of our yes/no aphantasia self-identification ques-

tion, consistent aphantasic responders scored significantly higher (lower vividness) than the non-

aphantasic group (p < .001, Mann-Whitney U test9) and the inconsistent responder group (p <

.001) on the VVIQ, where higher scores indicate lower vividness. The difference between incon-

sistent responders and consistent non-aphantasic responders nearly reached significance (p = .07).

Additionally, the average VVIQ rating for consistent aphantasic responders was well above val-

ues in experiments 1 and 2 (Table 2.1). Visual inspection reveals a number of characteristics of

the VVIQ responses. First, the inconsistent responders contained participants who exhibited both

extremely high and extremely low vividness. Second, a sizeable number of consistent aphantasics

nonetheless reported moderate amounts of vividness in the VVIQ, with ratings within the middle

of the VVIQ distribution for consistent non-aphantasics. We do not think that participants are

simultaneously reporting an inability to form images (aphantasia question) while reporting vivid

mental images (VVIQ). Instead, consistent aphantasics who rated high vividness might have either

responded carelessly, or interpreted vividness in terms of the amount of detail within a non-visual

representation.

Cued recall A mixed ANOVA on cued recall accuracy (Figure 2.2), with design Group (con-

sistent aphantasic, inconsistent responders, consistent non-aphantasics) × Instruction phase (pre-

instruction, post-instruction), returned a significant main effect of Instruction phase, F(1,119) =

91.02, MSE = 1.59, p < .001, n2
p = 0.43, BFinclusion > 1000. However, Group, and Group × In-

struction phase, were supported null effects (all p> .5, BFinclusion < 0.3), indicating that aphantasia

status did not influence the benefit of interactive imagery instructions. Additionally, the cued re-

call accuracy achieved after the imagery instruction in each group was comparable to the imagery

group from experiment 1 (≈ 60%), suggesting that the imagery manipulation was successful, and

all three groups from experiment 3 would presumably have scored higher than a control group, had

9We tested group differences with non-parametric tests due to the skewed vividness rating distribution in the con-

sistent aphantasia group (Figure 2.4).
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it been included.

Paper-folding task A one-way ANOVA on PFT accuracy with Group[3] returned non-significant,

supported null effect (p = .52, BFinclusion < 0.3), and likewise for PFT response time (p = .83,

BFinclusion < 0.3). Thus, aphantasic participants did not exhibit worse visuospatial skill, measured

objectively, and achieved comparable scores to participants in other experiments (Table 2.1). These

results suggest that the PFT may be added to a class of visuospatial tasks for which aphantasics are

fully competent (Zeman et al., 2020), such as mental rotation (Shepard & Metzler, 1973), and the

Brooks’ matrix spatial task (Brooks, 1967), which we revisit in the general discussion.

The relationship among mental imagery skill, vividness, and the effectiveness of interactive

imagery instructions First, including all participants, VVIQ ratings had a supported null corre-

lation with cued recall accuracy (both p > .39, BF10 < 0.30), and both PFT accuracy and response

times had a positive correlation to cued recall accuracy in both instruction phases (Table 2.13),

replicating experiment 1, and with broader coverage of the range of VVIQ values.

Next, we asked whether variability within each group of participants might show different ef-

fects. With correlations computed separately for consistent aphantasics, consistent non-aphantasics

and inconsistent responders, VVIQ ratings again had a supported null relationship to cued recall

accuracy in both instruction phases and all groups (p > .29, BF10 < 0.36), except for inconsistent

responders in the pre-instruction phase, r(61) =−.27, p= .03, BF10 = 1.42, although the Bayesian

correlation was inconclusive. Importantly, VVIQ ratings did not determine the effectiveness of the

interactive imagery within the group of consistent aphantasics.

PFT accuracy positively correlated with cued recall accuracy for all three groups and in both

instruction phases, and PFT response time had significant positive correlations with cued recall

accuracy in both the pre- and post-instruction phases. Thus, skill on this visuospatial task did not

predict the effectiveness of interactive imagery even within the consistent aphantasic group.

More conservative criteria for aphantasia Next, we applied increasingly conservative criteria

for classification of aphantasics, as described in the Methods. Given the low numbers, these should

be interpreted as multiple case studies. Our goal was to check if applying more strict classification

criteria would show hints of increased group differences, even while reducing statistical power.
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Inconsistent with this, three one-way ANOVAs, with factor Group (VVIQ criterion consistent

aphantasics, non-VVIQ criterion consistent aphantasics, inconsistent responders, consistent non-

aphantasics) on PFT accuracy, PFT response time and Change in Accuracy returned favoured null

effects of Group (all p> .57, BFinclusion < 0.3). Five of the 10 VVIQ criterion participants reported,

unprompted, difficulty forming visual images. Eight exhibited at least a 10% increase in cued recall

following the imagery instruction, with four increasing by 22.5% or more.

Eight participants explicitly reported the use of alternative strategies. It was unclear if partic-

ipant 1 was referring to mental imagery or not, but described some difficulty with imagining and

resorting to ªmemory of thinking about itº. Two participants (7 and 9) reported rote repetition,

known to be a poor associative strategy (Bower & Winzenz, 1970), yet still increased substantially

(+22.5% and +15%). Two participants did not benefit from the imagery instruction; participant 3

exhibited a small negative change (−2.5%), participant 5 exhibited a substantial reduction (−25%)

in performance and, interestingly, was the only VVIQ criterion aphantasic who reported trying to

implement imagery instructions, suggesting that strict adherence to the imagery instructions may

not be beneficial to aphantasics.

Our extreme aphantasics, participants 4, 6, and 7, are of particular interest. Each reported no

vividness, were perfectly consistent across multiple administrations of the aphantasia question, and

described using non-imagery strategies, consistent with their complete lack of mental imagery. All

three benefited from the imagery instruction (+10%,+10%, and +22.5%).

In sum, the reduction in sample size was not offset by any hint of an emerging deficit of

aphantasics to respond to interactive imagery instructions, converging with our other evidence

against the centrality of visual imagery for interactive imagery instructions.

2.5 General Discussion

We replicated the positive effect of interactive imagery instructions on cued recall (Bower &

Winzenz, 1970; Bower, 1970a; Paivio, 1969; Paivio & Yuille, 1969; Paivio & Foth, 1970; Richard-

son, 1985, 1998) compared to control instructions (experiment 1), compared to the no-instruction

baseline (all experiments), and compared to the ªtop-bottomº variant of standard interactive im-

agery instructions (experiment 2). Correlations between characteristics of a participant’s visual

imagery (individual differences in visuospatial skill and vividness) and the effectiveness of inter-
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Table 2.4: Experiment 3: Change in cued recall accuracy, strategy self-report, VVIQ rating, PFT

accuracy and response times for ªconsistent aphantasicsº who scored higher than 73 on the VVIQ.

Responses from extreme aphantasic participants who rated 80/80 on the VVIQ are in bold.

Participant Change in

Accuracy.

Strategy self report VVIQ

(out of

80)

PFT ac-

curacy

(out of

20)

PFT re-

sponse

time

(sec-

onds)

1 +22.5% ªI chose to use visual imagery or the memory of

thinking about it since I have trouble imagining

things in my mind.º

77 16 8.84

2 +10% ªI did attempt to do as asked for some of the pairs

but I also tried to use short phrases to remember

alongside the imagery.º

76 10 27.77

3 −2.5% ªI tried to remember any word combinations that

stood out based on if they made sense together or

not or if the words presented were relevant to me.º

78 7 6.02

4 +10% ªI cannot really picture things so I just said the

words out loud and tried to create jokes that

included both words as they came up.º

80 15 19.65

5 −25% ªInitially I was saying associations out loud and

that worked well, then with the imagery it was

hard because I have a hard time invisioning things

quickly and alot of the images would have multi-

ple aspects so I would get confused on what I was

meaning to associate.º

76 12 17.38

6 +10% ªI tried to find a connection between the two

words so I can remember them better.º

80 16 19.25

7 +22.5% ªI said the words aloud as they appeared in

pairs and didnt do the visualisation thing.º

80 19 24.61

8 +25% ªIn the beginning I was trying to memorize them

just by saying them but when you told me to mem-

orize them by thinking of an image with them I

would think of a scenario where the two words

would go together for example ice cream and mis-

take would be dropping ice cream.º

76 4 14.20

9 +15% ªI cant picture anything in my mind so I couldnt

do that, I just kept repeating the words as many

times before they disappeared.º

77 12 13.55

10 +32.5% ªI attempted to use visual imagery but I cant get

a visual imagine in my mind so I just thought of

short scenarios of the two words merged together.º

78 10 13.69
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Figure 2.4: Experiment 3: Distributions of VVIQ responses for experimental group from experi-

ment 3. Note, lower scores indicate higher vividness.
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active imagery produced supported null effects.10 Furthermore, aphantasics showed no trace of

impairment despite their self-diagnosed inability to form visual imagery (experiment 3). Thus,

we found no support for the hypothesis that visual images are necessary for interactive imagery

benefits, raising the possibility of alternative explanations.

Curiously, order recognition was not improved by interactive imagery (experiment 1), nor

even instructions incorporating order into the image (experiment 2). Whatever additional de-

tail/information is afforded by interactive imagery instructions evidently does not provide order.

Moreover, the relationship between order recognition and cued recall was not influenced by in-

struction. These results argue against the hypothesis that imagery strategies result in formally

different association memories that contain more order. Instead, our results were more consistent

with the alternative hypothesis that imagery produces associations that are qualitatively the same

as non-imagery conditions.

Subjective vividness does not explain imagery-instruction benefits to cued recall In all three

experiments, subjective vividness of mental imagery (VVIQ rating) did not explain the effective-

ness of interactive imagery for cued recall. This was reinforced in experiment 3, where aphanta-

sics (high VVIQ) benefited from interactive imagery instructions as much as others (Figure 2.2).

All VVIQ-criterion aphantasics that benefited post-instruction reported either solely using non-

imagery strategies or a combination of imagery and non-imagery strategies, but evidently with no

consequence for their benefit from interactive imagery instructions. Even three participants who

reported exactly no vividness benefited from imagery instructions while reporting using imagery-

free strategies. This seems consistent with the observation that congenitally blind participants can

effectively apply the Method of Loci, which is typically described as heavily dependent upon vi-

sual imagery (de Beni & Cornoldi, 1985), and with null correlations of the VVIQ with this strategy

(Kliegl et al., 1990; Kluger et al., 2022).

Although the VVIQ has been widely used to assess subjective imagery vividness (Marks,

1973), and is a primary way to classify aphantasia (Zeman et al., 2015), there have been specific

critiques about its content validity that may be important to consider (McKelvie, 1995; Pylyshyn,

2002). McKelvie (1995) suggested the VVIQ may not capture important dimensions of imagery

experience, such as the distinction between imagery vividness and generation. Future studies

10Additionally, correlations between post-minus-pre instruction memory performance and our visual imagery mea-

sures produced supported null effects (page 64)
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should focus on qualities of visual imagery experience that the VVIQ may not adequately cap-

ture, like imagery generation.

Objective imagery skill does not relate to interactive imagery PFT accuracy did not predict

the effectiveness of the interactive imagery instructions, but covaried with performance even before

strategy instructions were given (experiments 1 and 2). Although this does not rule out the PFT as

a measure of other memory processes like working memory or visuospatial ability, it weakens the

argument that imagery skill determines success with interactive imagery instructions.

Interestingly, there was a supported null difference between PFT performance in aphantasics

and non-aphantasics in experiment 3, which may place the PFT in a class of visuospatial tasks that

aphantasics perform without any clear deficits (Zeman et al., 2010). Both Zeman et al. (2010) and

Bainbridge et al. (2021) suggested that aphantasics use symbolic/verbal strategies for visuospatial

tasks. Thus, the cognitive processes required for this task may not necessarily depend on visual

images, which suggests a dissociation between conscious mental imagery experience and the cog-

nitive processes engaged when solving complex visuospatial problems. Furthermore, because the

PFT could not explain the benefits of interactive imagery, its intact status in aphantasics cannot

explain why aphantasics showed virtually no reduced benefit from these instructions.

Validity of aphantasia-status classified by self-report Our three criteria for classifying aphan-

tasia in experiment 3 (multiple consistent responses to the aphantasia recruitment question, and

two VVIQ cutoffs), produced prevalence rates that approached the estimates in previous studies

(see methods), suggesting that methods of classifying aphantasia in experiment 3 aligned well with

previous aphantasia studies. Despite this, there are broader critiques of classifying aphantasia by

self-report. For example, de Vito and Bartolomeo (2016) suggested aphantasics may underestimate

a latent ability to form mental images. Perceived absence of mental imagery experience may then

be due to poor/altered meta-cognition rather than fundamental differences in cognitive representa-

tions. However, even if aphantasia is due to an inaccurate sense of one’s own imagery ability, our

findings still show that this kind of imagery self-efficacy is immaterial to memory-success follow-

ing interactive imagery instructions, again problematic for the hypothesis that interactive imagery

acts through the formed image, itself.
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Interactive-imagery effects without visual imagery Our findings challenge the notion that vi-

sual imagery, in any literal sense, is essential for the benefit to cued recall of interactive imagery

instructions. In other words, the subjective experience of mental imagery is experienced by those

who are able, but is not required for later memory benefits. This resonates with Pylyshyn’s (2002)

argument that the experience of mental imagery may be epiphenomenal, and not necessarily causal.

A similar story is emerging from recent research on word concreteness/imageability effects.

High-imageability words are recalled better low-imageability words (Paivio, 1969). Hockley

(1994) found better associative recognition for higher concreteness word pairs. Paivio and col-

leagues explained concreteness as providing participants the greater availability to construct visual

image mediators for concrete/imageable than abstract/low-imageable words, confirmed by findings

of more frequent self-reported use of imagery strategies during the study of high imageability word

pairs (Paivio, Smythe, & Yuille, 1968; Paivio & Yuille, 1969). Thus, the historical understanding

of the concreteness/imageability effects is functionally linked to visual imagery-related strategies

like interactive imagery.

However, behavioural and neuroimaging findings have challenged the idea that concreteness

effects can be explained via visual imagery. Westbury et al. (2013) and Westbury, Cribben, and

Cummine (2016) showed that concreteness effects on lexical decision could be explained by non-

imagery factors like size/density of a word’s context and its emotional associations (see Fiebach

& Friederici, 2004, and see Cox, Hemmer, Aue, & Criss, 2018 who found semantic diversity,

alongside concreteness, to be a strong predictor of memory performance). In neuroimaging studies,

one can look for memory-related activity in brain regions that are involved in mental imagery,

such as posterior visual-processing regions and right-lateralized activity. However, Caplan and

Madan (2016) found no brain activity reminiscent of visual imagery explaining word-imageability

effects on cued recall (see also Klaver et al., 2005). Rather, higher imageability was associated

with more hippocampal activity (somewhat left-dominant), which in turn, apparently increased

memory. Similarly, Duncan, Tompary, and Davachi (2014) found that functional connectivity

between hippocampus and ventral tegmental area during interactive-imagery instructions predicted

retrieval success, regions that are not specialized for imagery.

An alternative explanation of interactive imagery effects Vincente and Wang (1998) empha-

sized the idea that expert-memory effects depend on participants engaging with stimuli in a manner
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that is relevant to their expert domain. Extrapolating to non-expert domains, perhaps interactive-

imagery acts primarily by inspiring participants to engage with word pairs in a manner that leads

to this kind of meaningful or deep processing. But what is the nature of this deeper processing, and

how does it improve memory? Some hints may be gleaned from experiment 2. Standard-imagery

and actor-object imagery both resulted in benefits to memory. Given the high similarity between

the examples given for both instructions, both instructions may have engaged the same mecha-

nisms, perhaps revealing some role of motor imagery (Allen et al., 2022; T. Yang et al., 2021) in

interactive imagery effects. In contrast, top-bottom instructions which ask participants to imagine

a spatially organized image including both words, and do not explicitly refer to the words interact-

ing, did not change cued recall or associative recognition from baseline. Top-bottom imagery may

be difficult to implement, especially for certain word pairs. For example, it is easier to conceptu-

alize a spatially organized image of APPLE DRAGON, compared to ASPECT LEVEL (both of

which were possible pairings in our study); however, this challenge would also exist with standard

and actor-object strategies (concreteness effects; cf. Hockley, 1994; Paivio, 1969). Alternatively,

top-bottom instructions may miss a key componentÐ explicit instructions to conceptualize an

interactive, functional relationship between the items. Top-bottom imagery may resemble explic-

itly non-interactive ªseparation-imageryº instructions, where participants are asked to form mental

images of each word in isolation, which does not improve association-memory (Bower, 1970a;

Dempster & Rohwer, 1974; Hockley & Cristi, 1996).

In contrast, by leading participants to think about an interactive relationship between words,

effective associative strategies like interactive imagery may facilitate encoding of additional item

features that are pair-unique. To illustrate how this may occur, consider an associative recognition

task for the pairs APPLE TEACHER and TABLE OVEN. An image (or non-visual analogue) of

a TEACHER with an APPLE (intact, here) may generate a stereotypical image of a crisp, red

apple on a teacher’s desk, whereas an image of an OVEN with a APPLE (recombined, here) might

bring to mind baked apples. The more a participant focuses on how the words might interact,

the more detailed and pair-specific the stored representations might be (see the modelling work

of Caplan, Chakravarty, & Dittmann, 2021, Cox & Criss, 2017, 2020, and Benjamin, 2010). For

example, Cox and Criss (2020) showed how similarity can cause the representations of two items

to become correlated, by drawing attention to their common features. One intriguing possibility

is that interactive imagery amplifies this very same effect by drawing the participant’s attention to
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shared features.

Supporting encoding of more detailed item representations, item recognition improves along-

side associative memory performance, when comparing interactive imagery to rote repetition (Dempster

& Rohwer, 1974; Hockley & Cristi, 1996).11 Such a mechanism could conceivably occur without

visual imagery. This is consistent with findings that verbally mediated strategies for association-

memory (e.g., form a sentence including both words) are nearly as effective (Dunlosky et al., 2005;

Hockley & Cristi, 1996).

Interactive imagery instructions do not change model-relevant characteristics of the asso-

ciation Largely replicating and extending the boundary conditions of Kato and Caplan (2017),

order recognition significantly correlated with cued recall accuracy, but significantly weaker than

the correlation between associative recognition and cued recall (Figures 2.15, 2.19, and 2.20). De-

spite large effects on association-memory, imagery instructions did not modulate these findings

(Figures 2.15, 2.19, and 2.20). Whatever additional detail/information is afforded by imagery in-

structions does not improve memory for order. An interesting possibility here is that order and

associative information are somehow represented differently in memory, explaining why manip-

ulations of association-memory do not affect memory for order. Cox and Criss (2020) suggested

order could be represented by item features distinct from associative features. In any case, our

findings indicate that challenges to perfect-order models, which predict a perfect relationship be-

tween order recognition and cued recall, and order-absent models, which predict no relationship,

are not particular to uninstructed participants, but generalize to several instructed strategies. This

increases the need for models that can accommodate moderate-level order within associations.

2.6 Conclusion

Interactive-imagery instructions improve associative memory without requiring vividness, visual-

imagery skill, nor even the subjective sense that one can create visual imagery. The instruction may

instead lead participants to conceptualize elaborate, interactive relationships, leading to storage of

more distinctive features. Finally, whatever additional detail aids associative memory does not

11Both Hockley and Cristi (1996) and Dempster and Rohwer (1974) also found that separation imagery improved

item recognition, suggesting that interactivity is not required to encode more detailed item representations. However,

the additional item features granted by non-interactive strategies would likely not be pair-specific, which may explain

the lack of effects on associative memory.
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provide order.

2.7 Supplementary Materials

2.7.1 Experiment 1

Correlations between visual imagery measures and memory performance

Tables 2.5±2.7 report each correlation between visual imagery measures (PFT and VVIQ) and

performance in cued recall, associative recognition and order recognition tasks.

Scatter plots of visual imagery measures versus memory performance

Figures 2.5±2.13 are scatter-plots corresponding to each correlation reported in Tables 2.5±2.7.

The effect of cued recall direction on order recognition performance

Because Kato and Caplan (2017) found that cued recall in the forward direction increased order

recognition of a pair whereas cued recall in the backward direction reduced order recognition, the

following analyses test if cued recall direction (forward versus backward) affected order recogni-

tion and its relationship to cued recall in our data.

First, a mixed ANOVA on mean order recognition d′ (Figure 2.14), with design Group (imagery-

order recognition, control-order recognition) × Instruction phase (pre-instruction, post-instruction)

× Cued recall direction (forward, backward) returned a significant main effect of cued recall di-

rection, F(1,111) = 68.0, MSE = 34.81, p < .001, η2
p = 0.38, BFinclusion > 1000, replicating the

finding that order recognition was better overall for pairs tested with forward cued recall (Kato

& Caplan, 2017). Group × Instruction phase nearly reached significance, F(1,111) = 3.73,

MSE = 2.06, p = .056, η2
p = 0.032, BFinclusion = 0.13, although the Bayesian analysis returned

supported null evidence (see experiment 1 in main text for an analysis of this interaction, which

indicated control participants became worse at order recognition as the experiment progressed,

while imagery participants did not change). All other effects were supported null (all p > .12,

BFinclusion < 0.3). In sum, although order recognition was better for pairs tested with forward
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cued recall, cued recall direction did not change the null effect of imagery instructions on order

recognition performance.

Next, to test if direction of cued recall affected the relationship between order recognition and

cued recall, we also calculated between-subject correlations between log-odds cued recall accuracy

to both order and associative recognition d′, split by direction of the cued-recall test. Scatter plots

of all of these correlations are plotted in Figure 2.16 for the control group, and in Figure 2.17 for

the imagery group, and reported in Table 2.12.

In brief, beyond the overall difference in d′, the pattern of results for pairs tested forward was

quite similar to the pattern for pairs tested backward. With only one exception, the correlation

between order recognition and log-odds cued recall was significantly smaller than the control cor-

relation (associative recognition-log-odds cued recall) in all groups and instruction phases, regard-

less of whether recognition involved pairs tested prior with backward and forward recall. In sum,

cued recall direction did not seem to affect model-relevant patterns that indicate order recognition

has a mid-range relationship to cued recall.

Self-report on strategy use

Halfway through data collection we included a section at the end of experiment 1 (i.e., after the

PFT) where both control and imagery groups were given an opportunity to rate how often they

used interactive imagery in both phases of the experiment 1 (e.g., 1: never, 2: sometimes, 3:

mostly, 4: always), and provide a free-form response about their strategy use. Because the control

group had not encountered interactive imagery instructions, the strategy was described to them

before they provided ratings or responses. The imagery group was reminded of the strategy before

they provided ratings and responses. To test whether self-report on imagery strategy use had any

relationship with objective task performance, we examined the relationship between both pre- and

post-instruction ratings and the change in cued recall accuracy (e.g., accuracy post minus pre)

below.
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Pre-instruction An ANOVA on Group (imagery, control) × Pre-instruction Imagery rating (never,

sometimes, mostly, always) returned significant main effects of Group, F(1,119) = 4.38, MSE =

0.18, p = .039, η2
p = 0.035, BFinclusion > 1000, Pre-instruction Imagery rating, F(3,119) = 9.54,

MSE = 0.40, p < .001, η2
p = 0.19, BFinclusion > 1000, and interaction Group × Pre-instruction

Imagery rating, F(3,119) = 4.19, MSE = 0.18, p = .007, η2
p = 0.095, BFinclusion = 31.10. Tukey

t-tests indicated that imagery participants who rated ªneverº exhibited a significantly larger in-

crease in cued recall accuracy than imagery participants who rated ªsometimesº (ptukey = .005),

ºmostlyº (ptukey < .001), and ºalwaysº (ptukey = .018), and control participants who rated ªneverº

(ptukey = .008), ªsometimesº (ptukey < .001), ºmostlyº (ptukey < .001), and ºalwaysº (ptukey <

.001). This indicates that participants who reported never using interactive imagery pre-instruction

received the most benefit. All other pre-instruction ratings did not differ significantly from each

other in the imagery group (all ptukey > .12). In sum, participants who reported no spontaneous

use of interactive imagery pre-instruction received the most benefits from imagery instructions.

Post-instruction An ANOVA on Group [2] × Post-instruction Imagery rating [4] returned a sig-

nificant main effect of Post-instruction Imagery rating, F(3,119) = 5.48, MSE = 0.26, p = .001,

η2
p = 0.12, BFinclusion = 185.91. The effects of Group, (p= .078, BFinclusion = 87.18), and the inter-

action Group × Post-instruction Imagery rating, (p = .69, BFinclusion = 0.79) were not significant,

although BFinclusion values indicated strong evidence for Group. Tukey t-tests indicated that, irre-

spective of group, participants who rated ªalwaysº exhibited significantly larger increases in cued

recall accuracy than participants who rated ªsometimesº (ptukey < .001), but were not significantly

different than participants who rated ªneverº, or ªmostlyº (both ptukey > .19), suggesting a positive

effect of compliance with instructions. Additionally, there was a trend towards participants who

rated ªmostlyº, exhibiting more benefits than participants who rated ªsometimesº, although this

difference fell just short of significance (ptukey = .061). Thus, as would be expected, participants

who self-reported ªalwaysº in the post-instruction phase exhibited the largest increases in cued

recall accuracy, although the effect was not large enough to reach significance over participants
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who indicated ªneverº.

Imagery vividness/ability and the spontaneous use of interactive imagery. We considered the

possibility that participants high in imagery vividness (VVIQ) or ability (PFT) might have been

more likely to have adopted imagery spontaneously pre-instruction, which would complicate the

interpretation of several of our results.

Participants who rated that they never used imagery pre-instruction exhibited a larger imagery

benefit to cued recall accuracy, suggesting participants had reliable retrospective insight into their

strategy use during the experiment. We were motivated to look for evidence that participants

who provided different ratings also had different PFT accuracy, PFT response times, and/or VVIQ

ratings. An ANOVA on PFT accuracy with one factor Pre-instruction Imagery rating (never, some-

times, mostly, always) returned a supported null-effect (p = .99, BFinclusion < 0.3), and likewise

for PFT response times (p = .36, BFinclusion < 0.3), or VVIQ ratings (p = .21, BFinclusion = 0.398),

arguing against the idea that participants with high imagery skill/vividness were more likely to

spontaneously use imagery as a strategy.

The effectiveness of interactive imagery instructions based on pre-instruction performance.

To check if imagery instructions would be more effective for participants with poor baseline per-

formance. Indeed, correlations between pre-instruction memory performance and post-minus-

pre instruction performance were significant and negative for all memory tests, although con-

siderably stronger in the imagery group; cued recall accuracy (imagery: r(111) = −.50, p <

.001,BF10 > 1000, control: r(112) =−.19, p = .042,BF10 = 0.58), associative recognition d′ (im-

agery: r(54) = −.68, p < .001,BF10 > 1000, control: r(56) = −.25, p = .06,BF10 = 0.59), and

order recognition d′ (imagery: r(55) =−.43, p = .001,BF10 = 23.45, control: r(54) =−.42, p =

.0015,BF10 = 16.04). Thus, participants with high initial performance may have already found a

strategy as effective as interactive imagery, explaining the weaker effectiveness of our manipula-

tion.
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The relationship between order recognition and cued recall: within-subject analyses

Kato and Caplan (2017) tested each word pair with cued recall, and then either associative or order

recognition depending on condition. In their study, order recognition performance for correctly

recalled pairs was significantly better than for incorrectly recalled pairs, but well below this same

difference for associative recognition. The following analyses test if instructed imagery instruc-

tions in experiment 1 modified these patterns.

As a reminder, for performance on order and associative recognition tests, we measured d′

= z(hit rate) − z(false alarm rate). Whenever hit or false alarm rate were zero or one, one-half

an observation was added or subtracted to avoid infinities. Because of the correction d′
max, or

the maximum possible d′ value, depends on the number of trials included. We computed d′
max

based on a (corrected) a hit rate of one, and a false alarm rate of zero, as a reference for the order

and associative recognition analyses separated by correctness in cued recall. Because participants

varied in the amount of correct and incorrect cued recall trials, d′
max also varied across participants.

These d′
max values, alongside recognition performance separately computed for correctly versus

incorrectly recalled pairs, are plotted in Figure 2.18.

To test if order recognition had less dependence on cued recall correctness than associative

recognition, we subtracted performance for incorrectly recalled pairs from performance for cor-

rectly recalled pairs, for both order recognition and associative recognition,12 to obtain difference

scores for each task for both groups and in both instruction phases. A mixed, repeated-measures

ANOVA was performed on this difference score measure, with the design Group (imagery, con-

trol) × Instruction phase (pre-instruction, post-instruction) × Task (associative recognition, or-

der recognition). This analysis returned a significant main effect of Task, F(1,188) = 9.36,

MSE = 9.91, p = .003, η2
p = 0.047, BFinclusion = 3.47. All other effects were non-significant

(all p > .07, all BFinclusion < 0.3), indicating that associative recognition had significantly larger

difference scores than order recognition, regardless of group or instruction phase. Thus, our results

12In associative recognition, recombined probes contain items that were not paired at study. In our study we iden-

tified correctly recalled pairs using the recall outcome of the left item in the probe. It would also be possible to base

this measure on recall outcome of the right item, but Kato & Caplan (2017) found that this made little difference.
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replicate the weaker coupling of order recognition to cued recall found in Kato & Caplan (2017).

However, visual inspection of Figure 2.18 shows that due to differences in trial counts, and

the correction to avoid infinities (see Methods), the maximum possible d′ value was not constant

across conditions. As a second way to ask about the relative coupling of order recognition to cued

recall accuracy, we next took d′
max into account. To test if associative recognition was closer to

d′
max as compared to order recognition, we subtracted each participant’s observed d′ from their

d′
max, for both associative and order recognition for correctly and incorrectly recalled pairs, and for

both groups and instruction phases. Independent samples t-tests indicated that associative recogni-

tion was closer to d′
max than order recognition for correctly recalled pairs, in both groups and both

instruction phases (all p < .001, BF10 > 1000). For incorrectly recalled pairs, this same difference

between observed d′ and d′
max was not significant in the control and imagery group pre-instruction

(both p > .34, BF10 < 0.31), and the control group post-instruction, t(109) = −1.43, p = .16,

BF10 = .50, but in the imagery group post-instruction, associative recognition for incorrectly re-

called pairs was significantly closer to d′
max than order recognition, t(104) = −2.89, p = .005,

BF10 = 7.92. In sum, when taking the maximum measurable d′ into account, the relationship

between order recognition and cued-recall is well below perfect.

To examine if the coupling between order recognition and cued recall was zero, as would be

expected for order-absent models, we ran paired-samples t-tests between order recognition for

correctly recalled pairs, and order recognition for incorrectly recalled pairs. Order recognition was

significantly higher for correctly recalled pairs for both groups, and in both instruction phases (all

p < .001, BF10 > 32), indicating non-zero coupling between order recognition and cued recall.

Imagery instructions increased associative recognition performance overall. Paired t-tests indi-

cated that associative recognition was significantly higher for both correctly recalled pairs, t(49) =

4.92, p < .001, BF10 > 1000 and incorrectly recalled pairs, t(50) = 4.03, p < .001, BF10 = 125.51.

Order recognition performance for correctly recalled pairs and incorrectly recalled pairs did not

significantly change after the imagery instruction (both p > .23, BF10 < 0.3).

In sum, just as in Kato and Caplan (2017), order recognition d′ had a significant dependence on
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cued recall correctness; however, this relationship was significantly smaller than observed between

associative recognition and cued recall, and order recognition performance was significantly below

maximum, even for correctly recalled pairs. Order recognition did not have maximal relationship

with cued recall (as perfect-order models would predict), nor a null relationship with cued recall

(as order-absent models would predict), but a mid-range relationship inconsistent with all model

accounts. Imagery instructions did not affect these patterns.

2.7.2 Experiment 2

Correlations between visual imagery measures and memory performance

Tables 2.8± 2.10 report each correlation between visual imagery measures (PFT and VVIQ) and

performance in cued recall, associative recognition and order recognition tasks.

Self-report on strategy use

At the end of the session in experiment 2, participants answered three strategy-use questions on a

scale of one (never) to five (always), in succession; Q1) ªWhen studying the word pairs, how often

did you imagine an image (in your mind’s eye)?º, Q2) ªWhen studying the word pairs, how often

did you imagine the word pairs interacting with each other?º, Q3) ªWhen studying the word pairs,

how often did you incorporate order into your mental image? º.

To check if the Mental Imagery Frequency rating had a relationship to the effect of interactive

imagery, we conducted A two-way ANOVA on post-minus-pre cued recall accuracy with the de-

sign Group [3] × Mental Imagery Frequency rating [5]. This returned a significant effect of Group,

F(2,410) = 11.17, MSE = 0.51, p < .001, η2
p = 0.052, BFinclusion > 1000. There was a significant

effect of Mental Imagery Frequency rating, F(4,410) = 2.39, MSE = 0.11, p = .05, η2
p = 0.023,

BFinclusion = 0.14, although a Bayesian ANOVA returned supported null evidence. Nonetheless,

we cautiously followed up with post-hoc tests, which indicated post-minus-pre cued recall accu-

racy for rating 4 was nearly significantly larger than rating one (never), ptukey = .065, providing

some evidence for a imagery strategy benefit (collapsed across groups), although all other post-hoc

tests were not significant (ptukey > .14).
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To check if the Interactivity Frequency rating had a relationship to the effect of interactive

imagery, we conducted a two-way ANOVA on post-minus-pre cued recall accuracy with the de-

sign Group [3] × Interactivity Frequency rating [5]. This returned a significant effect of Group,

F(2,410) = 9.25, MSE = 0.43, p < .001, η2
p = 0.043, BFinclusion > 1000, but a non-significant,

supported null effect for Group and interaction with the effect of Interactivity Frequency rating

(both p > .24, BFinclusion < 0.3), suggesting that self-reported imagining of interactivity between

words did not affect cued recall accuracy, matching results from the subjectively scored free form

responses in experiment 1.

We also checked if self-reported frequency of incorporating order into the mental image (rated

never to always) had an effect on order recognition d′. We subtracted pre-instruction from post-

instruction order recognition d′ and performed a two-way ANOVA on this measure, with the design

Group[3] × Order Incorporation rating[5]. All effects and interactions were not significant and

supported null (all p > .18, BFinclusion < 0.3), indicating that self-reported incorporation of within-

pair order at study did not affect order recognition performance.

Mid-session strategy instruction comprehension question

Immediately after participants received a strategy instruction in experiment 2, they were asked to

describe what they had just been asked to do. To quantify the degree to which participants under-

stood instructions, these responses were rated by two separate coders blinded to group (KA and

JT); First, based on the experimental group the coder thought the participant belonged to, 0) I don’t

know/Empty,13 1) standard-imagery, 2) top-bottom imagery, 3) actor-object imagery. These ratings

were then compared to the actual group of the participant and scored either correct or incorrect, re-

turning what we term ªGroup Identification ratingº in following analyses. Second, responses were

scored on whether participants understood the instruction, which we term ªInstruction Compre-

hension ratingº, 0) Zero understanding/Empty, 1) Somewhat understands, 2) Understands. All 433

participants were included. After initial coding, inter-rater reliability was substantial for Group

Identification ratings (Cohen’s κ = 0.81), but low for Instruction Comprehension ratings (Cohen’s

13Empty indicating no response entered.
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κ = 0.58). Thus, raters met and came to consensus for all disagreeing ratings, and these are the

values we report. To check if the ineffectiveness of top-bottom imagery instructions was due to

lack of comprehension, we repeated analyses from the main text that were performed on mean cued

recall, associative recognition, and order recognition, on a subset of participants with the highest

Instruction Comprehension rating i.e., ªUnderstandsº , and separately, on participants with correct

Group Identification ratings.

Cued recall accuracy Restricted to participants with the highest Instruction Comprehension rat-

ing (e.g., ªUnderstandsº), a mixed ANOVA was performed on cued recall accuracy with design

Group × Instruction phase. Following analysis of all participants regardless of rating (reported

in the main text), there was a significant main effect of Instruction phase, F(1,248) = 51.16,

MSE = 1.26, p < .001, η2
p = 0.17, BFinclusion > 1000, and significant Group × Instruction phase

interaction, F(2,248) = 19.29, MSE = 0.48, p < .001, η2
p = 0.14, BFinclusion > 1000. Simple ef-

fects indicated a significant increase in performance post-instruction in both the actor-object, and

standard-imagery group (both p < .001, BF10 > 1000), but a supported null difference in the top-

bottom imagery group (p = .52, BF10 < 0.3). Additionally, there was a supported null difference

between Group pre-instruction (p = .19, BF10 < 0.3), but significant post-instruction (p < .001,

BF10 = 77.33). Follow up t-tests on the significant post-instruction Group difference indicated a

non-significant, supported null difference between the standard and actor-object imagery, p = .34,

BF10 < 0.3, and that top-bottom imagery was significantly worse than standard-imagery (p < .001,

BF10 = 142.12) and actor-object imagery (p = .007, BF10 = 5.31). Next, restricted to participants

with correct Group Identification ratings, a mixed ANOVA was performed on cued recall accuracy

with design Group × Instruction phase. Again, there was a significant main effect of Instruction

phase, F(1,298) = 46.09, MSE = 1.15, p < .001, η2
p = 0.13, BFinclusion > 1000, and significant

Group × Instruction phase interaction, F(2,298) = 25.87, MSE = 0.65, p < .001, η2
p = 0.15,

BFinclusion > 1000. Simple effects indicated a significant increase in performance post-instruction

in both the actor-object, and standard-imagery group (both p < .001, BF10 > 375), but a supported
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null difference in the top-bottom imagery group (p = .17, BF10 < 0.3). Additionally, there was a

supported null difference between Group pre-instruction (p= .12, BF10 < 0.3), but significant post-

instruction (p < .001, BF10 = 2170.09). Follow up t-tests on the significant post-instruction Group

difference indicated a non-significant, nearly supported null difference between the standard and

actor-object imagery, p = .18, BF10 = 0.38, and that top-bottom imagery was significantly worse

than standard-imagery (p < .001, BF10 > 1000) and actor-object imagery (p = .004, BF10 = 8.78).

In sum, even when restricted to participants who demonstrated high instruction comprehension,

top-bottom instructions were ineffective to improve cued recall accuracy, while actor-object and

standard-imagery instructions improved performance to a similar degree.

Associative recognition Restricted to participants with the highest Instruction Comprehension

rating (e.g., ªUnderstandsº), a mixed ANOVA on associative recognition d′, with design Group

× Instruction phase returned significant main effects of Instruction phase, F(1,105) = 27.86,

MSE = 13.31, p < .001, η2
p = 0.21, BFinclusion > 1000, and significant Group × Instruction phase

interaction, F(2,105) = 8.49, MSE = 5.58, p < .001, η2
p = 0.14, BFinclusion = 43.18. Simple

effects indicated that associative recognition performance increased post-instruction in both the

actor-object group (p < .001, BF10 = 515.28) and standard-imagery group (p < .001, BF10 =

654.99) groups, while the top-bottom group had a supported null difference between instruction

phases (p = .92, BF10 < 0.3). Simple effects with the factor Group returned a supported null

difference pre-instruction (p = .37, BFinclusion < 0.3), but a significant difference post-instruction

(p = .004, BFinclusion = 9.92). Follow-up t-tests on the post-instruction group difference indi-

cate that actor-object and standard-imagery had a supported null difference (p = .72, BF10 < 0.3),

but both groups performed significantly better than the top-bottom group (p = .004, BF10 = 9.92

and p = .01, BF10 = 4.18 respectively). Restricted to participants with correct Group Identifi-

cation ratings, a mixed ANOVA on associative recognition d′, with design Group × Instruction

phase returned significant main effects of Instruction phase, F(1,128) = 20.18, MSE = 13.61,

p < .001, η2
p = 0.14, BFinclusion > 1000, and significant Group × Instruction phase interaction,
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F(2,128) = 9.62, MSE = 6.49, p < .001, η2
p = 0.13, BFinclusion = 183.72. Simple effects indi-

cated that associative recognition performance increased post-instruction in both the actor-object

group (p = .002, BF10 = 18.24) and standard-imagery group (p < .001, BF10 > 1000) groups,

while the top-bottom group had a supported null difference between instruction phases (p = .47,

BF10 < 0.3). Simple effects with the factor Group returned a supported null difference pre-

instruction (p = .44, BFinclusion < 0.3), but a significant difference post-instruction (p < .001,

BFinclusion = 54.37). Follow-up t-tests on the post-instruction Group difference indicate that actor-

object and standard-imagery had a supported null difference (p = .90, BF10 < 0.3), but both groups

performed significantly better than the top-bottom group (p = .002, BF10 = 14.67 and p = .001,

BF10 = 27.53 respectively). In sum, even in participants selected for high Instruction Compre-

hension ratings top-bottom instructions were significantly less effective for associative recognition

compared to standard and actor-object imagery instructions.

Order recognition Restricted to participants with the highest Instruction Comprehension rating

(e.g., ªUnderstandsº), a mixed ANOVA on order recognition d′, with design Group × Instruction

phase returned significant main effects of Instruction phase, F(1,140) = 12.98, MSE = 5.98, p <

.001, η2
p = 0.09, BFinclusion = 22.87, Group, F(2,140) = 3.55, MSE = 4.21, p = .03, η2

p = 0.05,

BFinclusion = 1.33 (although Bayesian analyses returned inconclusive evidence for Group), and

a non-significant effect of Group × Instruction phase (p = .18, BFinclusion = 0.71). Following

up on the main effect of Group with post-hoc tests returns a significant difference between the

standard and top-bottom group (ptukey = .026), and non-significant differences between the actor-

object and the other two groups (both ptukey > .19); however, because these Group differences are

only significant when collapsing across pre- and post-instruction phases, and the interaction Group

× Instruction phase was not significant, our results still suggest that order emphasizing strategy

instructions did not have an advantage over standard-imagery instructions for order recognition,

even when restricting to participants with the highest Instruction Comprehension rating. Restricted

to participants with correct Group Identification ratings, a mixed ANOVA on order recognition
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d′, with design Group × Instruction phase returned significant main effects of Instruction phase,

F(1,167) = 8.96, MSE = 4.62, p = .003, η2
p = 0.05, BFinclusion = 4.57, but the main effect and

interaction involving Group were not significant and supported null (both p > .19, BFinclusion <

0.3).

In sum, even when accounting for Instruction Comprehension, order-emphasizing instructions

did not improve order recognition more than standard-imagery instructions.

Aphantasia case studies

Out of 433 total participants, 120 participants self-identified as aphantasic with the end-of-session

aphantasia identification question. However, because participants in experiment 2 did not complete

a previous mass-testing questionnaire, we could not verify consistency across multiple responses.

Thus, we moved directly to the in-session VVIQ criteria stated in experiment 3. Among the 120

yes responders to the aphantasia question, four participants met our moderate aphantasia criteria of

73/80, and one participant met our extreme criteria of 80/80. These five participants are reported

as case studies in Table 2.11.

Among these five participants, participant 3 received standard interactive imagery instructions

and exhibited a 68% increase in cued recall accuracy post-instruction, consistent with results from

experiment 3 that interactive imagery instructions were just as effective for aphantasics. Three

out of five participants (1, 4, 5), including one extreme aphantasic, received top-bottom imagery

instructions, and all exhibited essentially no change to cued recall accuracy (+3.1%), or a sub-

stantial reduction, consistent with findings in the larger sample that top-bottom instructions were

ineffective for cued recall. Participant 2 received actor-object instructions and exhibited a substan-

tial reduction in cued recall performance, but a large increase in order recognition, a pattern that

should be followed up in a larger sample of aphantasics.

Scatter plots of log-odds cued recall versus order and associative recognition

Figures 2.19 and 2.20 are scatter-plots of log-odds transformed cued recall accuracy versus both

order and associative recognition d′.
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The relationship between order recognition and cued recall: within-subject analyses

As we report below, within-subject OR-CR versus AR-CR analyses diverged somewhat from re-

sults in experiment 1. This may have been because associative recognition performance sepa-

rated by correct versus incorrectly recalled pairs was especially sensitive to low trial counts for

recombined trials (see experiment 2 methods). Thus, the following analyses involving associative

recognition should be interpreted with some caution. Additionally, in the pre-registration for ex-

periment 2, an analysis of recognition d′
max for correctly and incorrectly recalled pairs was planned;

However, instead of d′
max, we analyzed hit rates and false alarm rates.

To quantify the within-subject relationship between order recognition and cued recall, we sub-

tracted each participant’s recognition (order and associative) performance for incorrectly recalled

pairs from performance for correctly recalled pairs, and performed analyses on this difference. A

mixed, repeated-measures ANOVA was performed on this d′ difference measure with the design

Group (standard, actor-object, top-bottom) × Instruction phase (pre-instruction, post-instruction)

× Task (associative recognition, order recognition). All effects and interactions were not signifi-

cant and supported null (all p > .41, BFinclusion < 0.3); however, the effect of Task nearly reached

significance F(1,374) = 4.32, MSE = 5.15, p = .038, η2
p = 0.011, BFinclusion = 0.35, although

with supported null evidence in the Bayesian analysis. Thus, the expected effect of Task (which

indicates a difference between associative and order recognition’s relationship to cued recall), was

not observed. However, the near significance of Task (p = .038) suggests the conclusion of a sup-

ported null effect in the Bayesian analysis must be interpreted with some caution.14 The nearly

significant effect of Task led us to break analyses down into hit rates and false alarm rates, to check

if the expected patterns would be observed at these levels.

Hit rates. A mixed, repeated-measures ANOVA was performed on the hit rate difference mea-

sure with the design Group (standard, actor-object, top-bottom) × Instruction phase (pre-instruction,

post-instruction) × Task (associative recognition, order recognition), and a significant main effect

14Additionally, when applying the d′ correction suggested by Hautus (1995), the basic effect of Task (indicating a

smaller OR-CR relationship, compared to the AR-CR relationship) replicated.
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of Task F(1,402) = 8.82, MSE = 0.43, p = .003, η2
p = 0.021, BFinclusion = 2.79, indicating that

associative recognition had significantly larger difference in hit rate than order recognition. The

main effect of Instruction phase was also significant, F(1,402) = 6.36, MSE = 0.24, p = .01,

η2
p = 0.016, BFinclusion = 0.88, indicating that hit rate difference reduced post-instruction overall,

although the Bayesian analysis indicated weak evidence for this effect. All other main effects and

interactions, and most importantly those involving Group, were not significant and supported null

(all p > .12, BFinclusion < 0.3), suggesting that there was no effect of either of the three imagery

instructions on the relationship between order recognition and cued recall. In sum, analyses of hit

rates were consistent with the weaker coupling of order recognition to cued recall found in Kato

& Caplan (2017). Paired-samples t-tests indicated order recognition hit rate were significantly

higher for correctly recalled pairs, compared to incorrectly recalled pairs for all groups, and in

both instruction phases (all p < .006, BF10 > 5.42), indicating non-zero coupling between order

recognition and cued-recall contrary to order-absent models.

False alarm rates. A mixed, repeated-measures ANOVA was performed on the false alarm rate

difference measure with same design: Group (standard, actor-object, top-bottom) × Instruction

phase (pre-instruction, post-instruction) × Task (associative recognition, order recognition). There

significant main effect of Instruction phase F(1,390) = 11.71, MSE = 0.91, p < .001, η2
p = 0.029,

BFinclusion = 6.21, indicating an overall reduction in the difference between false alarm rates for

correct and incorrectly recalled pairs post-instruction. All other effects were not significant, and

supported null (p > .07, BFinclusion < 0.3). Thus, the dependence of order recognition false alarm

rates on cued recall was not significantly different than the dependence of associative recognition

false alarm rates. Paired-samples t-tests indicated order recognition false alarm rates were lower for

correctly recalled pairs compared to incorrectly recalled pairs for all groups, and in both instruction

phases (all p < .02, BF10 > 1.63).

In sum, despite divergence at the level of false alarm rates and d′ (which may have been espe-

cially affected by low trial counts for recombined trials), patterns in hit rates still challenge both
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perfect-order and order-absent mathematical models. Perfect-order models cannot account for the

lesser dependence of order recognition hit rates on cued recall correctness, compared to associative

recognition. Order-absent models cannot account for the significant effect of cued recall correct-

ness on order recognition hit rates, and false alarms. Importantly, there was no evidence that any

instruction had an effect on these patterns.

2.7.3 Experiment 3

Correlations between visual imagery measures and memory performance

Table 2.13 reports each correlation between visual imagery measures (PFT and VVIQ) and perfor-

mance in the cued recall task.

Self-report on strategy use

At the end of the session in experiment 3, participants were asked to ªdescribe how you studied

the word pairs, whether or not that included the use of visual imagery as instructed, in a short

one or two sentence response.º These responses were rated by two coders, blinded to condition,

for two measures of interest. Firstly, rated either; 1) response includes imagery, 2) response ex-

plicitly excludes imagery, 3) response leaves open the possibility of imagery but was not explicit.

Next, each response was rated for whether it referred to interactivity or connection between words

(yes/no). Of the 122 participants, 13 provided no response, and were omitted from this analysis.

After initial coding, inter-rater reliability was substantial for Imagery Reference scoring (Cohen’s

κ = 0.76), but somewhat lower for Interactivity Reference scoring (Cohen’s κ = 0.41). As a result,

we encouraged the coders to meet and come to consensus on disagreeing responses. Coders were

able to come to a consensus for all responses, and these are the ratings we report. One partici-

pant completed the experiment after the coding was completed and was coded based on the same

coders’ consensus. First, there was a trend towards aphantasics referring to imagery (54% of re-

sponses) less than inconsistent responders (74% of responses) and less than non-aphantasics (78%

of responses) but this was not significant, χ2(4,N = 110) = 6.75, p = .15.

Next, to test if change in cued recall accuracy (from pre-instruction to post-instruction) was
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affected by imagery-report ratings, we ran an ANOVA on change in cued recall accuracy, with

design Group[3] × Imagery rating[3]. There was a significant main effect of Imagery rating,

F(2,107) = 3.78, MSE = 0.13, p= .026, n2
p = 0.07, BFinclusion = 2.78, but the effects of Group and

the interaction were not significant (both p > .77, BFinclusion < 0.3). Post-hoc Tukey tests indicated

that participants who referred to imagery exhibited a significantly higher change in cued recall

accuracy than participants who explicitly excluded imagery (rating 2), ptukey = .025, but were not

significantly different than participants who left open the possibility of imagery but were not ex-

plicit (rating 3), ptukey = .46. Additionally, participants with a rating of two were not significantly

different than participants with a rating of three, ptukey = .56. A smaller proportion of aphantasics

referred to imagery in their self-report, suggesting that they would exhibit lower memory perfor-

mance; however, the findings above favoured null differences between self-identified aphantasics

and non-aphantasics in cued recall performance. Thus, the imagery self-report effect was evidently

not large enough to cause meaningful differences in aphantasic memory performance.

Consistent aphantasics also referred to interactivity (54%), less than inconsistent responders

(76% of responses), and consistent non-aphantasics (75% of responses), but this was also not

significant, χ2(2,N = 110) = 4.18, p = .12. An ANOVA on Group[3] × Interactivity rating[2]

returned all non-significant, supported null effects (all p > .09, BFinclusion < 0.3). In sum, although

there is a trend towards aphantasics referring to interactivity less than other groups, this rating had

little relationship to objective effectiveness of interactive imagery instructions.

Gender and interactive imagery effects

We could find no analysis of the influence of gender on interactive imagery effects in previous

literature. This motivated us to test whether self-reported gender could influence the general pat-

terns observed in this study. For participants from experiment 3, we gathered gender-identification

responses from the Winter 2021 mass questionnaire (see experiment 3 methods). Note, eight par-

ticipants recruited to experiment 3 did not fill out the Winter 2021 mass questionnaire, because

they were recruited to the study through their Fall 2020 questionnaire responses. Thus, we did not
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include their data in the following analyses. Additionally, one participant self-identified as non-

binary, and one participant did not wish to disclose. Because there was only one participant for

each of these groups, we could not include these participants in the following statistical analyses.

A mixed ANOVA on cued recall accuracy with the design Instruction phase (pre-instruction,

post-instruction) × Self-reported gender (male, female), a supported null effect of Self-reported

gender and the interaction Instruction phase × Self-reported gender (both p > .41, BFinclusion <

0.3). Thus, we found no evidence for that gender influenced the effectiveness of imagery instruc-

tions.

Additionally, independent samples t-tests between self-identified males and females returned

non-significant supported null differences in VVIQ ratings, PFT accuracy and PFT response times

(all p > .49, BF10 < 0.3), indicating mean values in our visual imagery measures did not differ

based on gender.

Furthermore, correlations between the VVIQ, PFT accuracy, PFT response times to the post-

minus-pre cued recall accuracy were not significant, and either weak or supported null for self-

reported females (VVIQ: r(80) =−.005, p = .96,BF10 = 0.14, PFT accuracy: r(80) =−.17, p =

.12,BF10 = 0.46, PFT response times: r(80) = −.17, p = .14,BF10 = 0.41), and for self-reported

males, (VVIQ: r(28) =−.035, p = .86,BF10 = 0.23, PFT accuracy: r(28) = .002, p = .99,BF10 =

0.23, PFT response times: r(28) = .10, p = .61,BF10 = 0.26). Thus, regardless of gender, there

was no relationship between interactive imagery effectiveness and individual differences in visual

imagery.

Mass questionnaire VVIQ and test-retest reliability The VVIQ was included in both Fall

2020 and Winter 2021 mass questionnaires. Test-retest reliability between the Winter 2021 mass

questionnaire administration, and our in-session administration was good, r(110) = .88. Relia-

bility between the Fall 2020 administration to in-session ratings, r(78) = .60, and Winter 2021

administration, r(740) = .59, was somewhat lower, which may warrant caution in interpreting Fall

2020 VVIQ ratings. However, all analyses in this study are based on the in-session VVIQ ad-
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ministration, and the good reliability between Winter 2021 and in-session ratings suggest that our

in-session VVIQ ratings were reliable.

Scatter plots of log-odds cued recall versus order and associative recognition

Figure 2.15 depicts scatter plots of log-odds transformed cued recall accuracy versus both order

and associative recognition d′.

2.7.4 All Experiments

As an alternative way to test the relationship between imagery vividness/ability and the effective-

ness of cued recall, we computed correlations between post-minus-pre-instruction memory perfor-

mance, to VVIQ ratings (all experiments) and PFT accuracy/response times (experiments 1 and 3).

These are reported in Tables 2.16±2.18. In general, these correlations were either weak or sup-

ported null, supporting the conclusions in the main manuscript that individual differences in visual

imagery ability do not relate to the effectiveness of interactive imagery. In Experiment 1, increased

PFT response time predicted a greater change in cued recall accuracy, and a greater change in as-

sociative recognition in the imagery group (Table 2.16), although we explain in the main text how

longer PFT response times more likely indicate increased effort/engagement rather than imagery

skill. Also in experiment 1, there was significant correlation between VVIQ ratings and the change

in associative recognition in the imagery group (Table 2.17); however, this correlation was not

replicated in experiment 2.
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Table 2.5: Experiment 1: Correlations between cued recall accuracy and visual imagery measures.

VVIQ ratings PFT accuracy PFT response time

r p BF10 r p BF10 r p BF10

Pre-instruction: Imagery .02 .86 0.12 .20 .03* 1.21 .01 .93 0.12

Pre-instruction: Control −.07 .44 0.16 .27 .004* 6.61 .17 .08 0.53

Pre-instruction Fisher test z = 0.67, p = .50 z = 0.48, p = .63 z = 1.17, p = .24

(Imagery versus Control)

Post-instruction: Imagery −.15 .10 0.44 .28 .002* 10.90 .27 .004* 7.49

Post-instruction: Control .02 .87 0.12 .24 .01* 2.86 .12 .22 0.25

Post-instruction Fisher test z = 1.27, p = .20 z = 0.36, p = .72 z = 1.20, p = .23

(Imagery versus Control)

indicates significance at .05.

Table 2.6: Experiment 1: Correlations between associative recognition d′ and visual imagery mea-

sures.

VVIQ ratings PFT accuracy PFT response time

r p BF10 r p BF10 r p BF10

Pre-instruction: Imagery .03 .80 0.17 .18 .18 0.40 .15 .28 0.30

Pre-instruction: Control −.12 .37 0.24 .35 .008* 5.33 .18 .19 0.38

Pre-instruction Fisher test z = 0.80, p = .42 z = 0.94, p = .35 z = 0.15, p = .88

(Imagery versus Control)

Post-instruction: Imagery −.44 < .001* 44.10 .34 .011* 3.76 .32 .017* 2.74

Post-instruction: Control −.04 .78 0.17 .38 .003* 11.12 .18 .17 0.41

Post-instruction Fisher test z = 2.25, p = .024* z = 0.26, p = .79 z = 0.76, p = .45

(Imagery versus Control)

indicates significance at .05.
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Table 2.7: Experiment 1: Correlations between order recognition d′ and visual imagery measures.

VVIQ ratings PFT accuracy PFT response time

r p BF10 r p BF10 r p BF10

Pre-instruction: Imagery .11 .43 0.22 .21 .12 0.55 −.04 .76 0.17

Pre-instruction: Control −.05 .71 0.18 .43 .001* 30.98 .30 .027* 1.82

Pre-instruction Fisher test z = 0.82, p = .41 z = 1.25, p = .21 z = 1.79, p = .07

(Imagery versus Control)

Post-instruction: Imagery −.03 .84 0.17 .16 .24 0.33 .22 .10 0.60

Post-instruction: Control .19 .16 0.45 .41 .002* 18.43 .37 .005* 8.27

Post-instruction Fisher test z = 1.15, p = .25 z = 1.40, p = .16 z = 0.88, p = .38

(Imagery versus Control)

indicates significance at .05.

Table 2.8: Experiment 2: Correlations between cued recall accuracy and VVIQ ratings.

VVIQ ratings

r p BF10

Pre-instruction: Standard-Imagery −.07 .40 0.14

Pre-instruction: Actor-Object Imagery −.07 .43 0.15

Pre-instruction: Top-Bottom Imagery −.18 .03* 1.09

Post-instruction: Standard-Imagery −.05 .52 0.12

Post-instruction: Actor-Object Imagery −.13 .16 0.14

Post-instruction: Top-Bottom Imagery −.12 .17 0.27

indicates significance at .05.
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Table 2.9: Experiment 2: Correlations between associative recognition d′ and VVIQ ratings.

VVIQ ratings

r p BF10

Pre-instruction: Standard-Imagery .01 .91 0.15

Pre-instruction: Actor-Object Imagery −.02 .88 0.17

Pre-instruction: Top-Bottom Imagery −.11 .36 0.26

Post-instruction: Standard-Imagery −.06 .59 0.29

Post-instruction: Actor-Object Imagery .04 .79 0.26

Post-instruction: Top-Bottom Imagery .02 .86 0.15

indicates significance at .05.

Table 2.10: Experiment 2: Correlations between order recognition d′ and VVIQ ratings.

VVIQ ratings

r p BF10

Pre-instruction: Standard-Imagery −.03 .80 0.14

Pre-instruction: Actor-Object Imagery −.002 .99 0.14

Pre-instruction: Top-Bottom Imagery −.07 .59 0.17

Post-instruction: Standard-Imagery .03 .80 0.14

Post-instruction: Actor-Object Imagery .14 .22 0.30

Post-instruction: Top-Bottom Imagery −.05 .67 0.17

indicates significance at .05.
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Table 2.11: Experiment 2: Group, condition, change in cued recall accuracy, change in recognition

d′, and VVIQ ratings for yes responders to the end-of-session aphantasia question who scored

higher than 73 on the VVIQ.

Participant Group Changed in

cued recall

accuracy

Condition Change in

Recognition

d′

VVIQ

(out of

80)

1 Top-Bottom −12.5% Order recognition −0.17 80

2 Actor-Object −25% Order recognition +1.00 79

3 Standard +68% Order recognition +0.93 77

4 Top-Bottom +3.1% Associative recognition +0.07 77

5 Top-Bottom −59% Associative recognition −0.61 74

Table 2.12: Experiment 1: Correlations between log-odds cued recall accuracy and both associative

and order recognition, broken down by direction of cued recall test for recognition probes.

Forward cued recall test Backward cued recall test

r p r p

Pre-instruction: Imagery Associative Recognition .80 < .001 .68 < .001

Pre-instruction: Imagery Order recognition .38 .004 .33 .012

Fisher test (OR versus AR) z = 3.71, p < .001 z = 2.52, p = .012

Pre-instruction: Control Associative Recognition .67 < .001 .77 < .001

Pre-instruction: Control Order recognition .47 < .001 .24 .08

Fisher test (OR versus AR) z = 1.62, p = .10 z = 3.98, p < .001

Post-instruction: Imagery Associative Recognition .71 < .001 .53 < .001

Post-instruction: Imagery Order recognition .30 .021 .17 .21

Fisher test (OR versus AR) z = 2.92, p = .0035 z = 2.19, p = .029

Post-instruction: Control Associative Recognition .80 < .001 .72 < .001

Post-instruction: Control Order recognition .41 .0019 .23 .085

Fisher test (OR versus AR) z = 3.50, p < .001 z = 3.52, p < .001
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Table 2.13: Experiment 3: Correlations between cued recall accuracy to VVIQ ratings, PFT accu-

racy and PFT response time.

VVIQ ratings PFT accuracy PFT response time

r p BF10 r p BF10 r p BF10

Pre-instruction: Total participants −.06 .48 0.14 .46 < .001* > 1000 .23 .01* 2.75

Pre-instruction: Consistent aphantasics .09 .67 0.27 .55 .005* 10.67 .33 .10 0.88

Pre-instruction: Consistent non-aphantasics .18 .30 0.36 .36 .04* 1.75 −.03 .86 0.22

Pre-instruction: Inconsistent responders −.27 .03* 1.42 .49 < .001* 481.04 .30 .02* 2.78

Post-instruction: Total participants −.08 .40 0.16 .39 < .001* > 1000 .21 .02* 1.45

Post-instruction: Consistent aphantasics −.14 .50 0.31 .54 .005* 9.77 .51 .009* 6.39

Post-instruction: Consistent non-aphantasics −.15 .40 0.30 .55 < .001* 49.61 .01 .96 0.21

Post-instruction: Inconsistent responders −.05 .68 0.17 .28 .03* 1.76 .21 .10 0.59

indicates significance at .05.

Table 2.14: Experiment 3: Number of participants whose free form strategy response referred to

imagery, did not refer to imagery, or left open the possibility of imagery, as rated by coders blinded

to group. Note that certain participants did not include a free form response, accounting for fewer

participants in this table than the total sample size.

Response rating Inconsistent responders Consistent aphantasics Consistent non-aphantasics

Includes imagery 40 13 25

Explicitly excludes imagery 5 7 4

Leaves open the possibility of imagery 9 4 3
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Table 2.15: Experiment 3: number of participants whose free form strategy response referred to

interactivity or did not refer to interactivity, rated by coders blinded to group. Note that certain

participants did not include a free form response, accounting for fewer participants in this table

than the total sample size.

Response rating Inconsistent responders Consistent aphantasics Consistent non-aphantasics

Does not refers to interactivity 13 11 8

Refer to interactivity 41 13 24

Table 2.16: All experiments: correlations between post-minus-pre instruction cued recall accuracy

and visual imagery measures.

VVIQ ratings PFT accuracy PFT response time

r p BF10 r p BF10 r p BF10

Experiment 1: Imagery group −.15 .11 0.41 .09 .36 0.18 .23 .01* 2.47

Experiment 1: Control group .11 .25 0.22 .02 .82 0.12 −.03 .74 0.12

Experiment 2: Top-bottom imagery .07 .44 0.14 N/A N/A

Experiment 2: Actor-object imagery −.06 .50 0.14 N/A N/A

Experiment 2: Standard interactive imagery .02 .81 0.10 N/A N/A

Experiment 3: Consistent aphantasics −.25 .24 0.48 −.10 .62 0.28 .12 .58 0.29

Experiment 3: Consistent non-aphantasics −.30 .09 0.88 .18 .31 0.35 .04 .83 0.22

Experiment 3: Inconsistent responders .26 .04* 1.27 −.28 .03* 1.72 −.14 .28 0.28

indicates significance at .05.
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Table 2.17: Experiments 1 and 2: correlations between post-minus-pre instruction associative

recognition d′ and visual imagery measures.

VVIQ ratings PFT accuracy PFT response time

r p BF10 r p BF10 r p BF10

Experiment 1: Imagery group −.35 .008* 5.08 .11 .44 0.22 .12 .38 0.24

Experiment 1: Control group .10 .46 0.22 .09 .49 0.21 .03 .80 0.17

Experiment 2: Top-bottom imagery .11 .37 0.22 N/A N/A

Experiment 2: Actor-object imagery .05 .71 0.18 N/A N/A

Experiment 2: Standard interactive imagery −.07 .54 0.18 N/A N/A

indicates significance at .05.

Table 2.18: Experiments 1 and 2: correlations between post-minus-pre instruction order recogni-

tion d′ and visual imagery measures.

VVIQ ratings PFT accuracy PFT response time

r p BF10 r p BF10 r p BF10

Experiment 1: Imagery group −.12 .36 0.25 −.03 .85 0.17 .26 .053 1.02

Experiment 1: Control group .25 .064 0.89 .03 .84 0.17 .11 .40 0.23

Experiment 2: Top-bottom imagery .007 .96 0.15 N/A N/A

Experiment 2: Actor-object imagery .16 .16 0.38 N/A N/A

Experiment 2: Standard interactive imagery .06 .60 0.23 N/A N/A

indicates significance at .05.

71



Pre-instruction VVIQ ratings versus Cued Recall Accuracy
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Post-instruction VVIQ ratings versus Cued Recall Accuracy
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Figure 2.5: Experiment 1: Scatter plots of VVIQ ratings versus cued recall accuracy for the pre-

and post-instruction phases in both imagery and control groups. Each point represents one partici-

pant. Regression lines are plotted in red.
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Pre-instruction PFT accuracy versus Cued Recall Accuracy
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Post-instruction PFT accuracy versus Cued Recall Accuracy

0 5 10 15 20

PFT score

0

0.2

0.4

0.6

0.8

1

C
u

e
d

 R
e

c
a

ll 
A

c
c
u

ra
c
y

Control group

0 5 10 15 20

PFT score

0

0.2

0.4

0.6

0.8

1
Imagery group

Figure 2.6: Experiment 1: Scatter plots of PFT accuracy versus cued recall accuracy for the pre-

and post-instruction phases in both imagery and control groups. Each point represents one partici-

pant. Regression lines are plotted in red.
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Pre-instruction PFT response time versus Cued Recall Accuracy
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Post-instruction PFT response time versus Cued Recall Accuracy
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Figure 2.7: Experiment 1: Scatter plots of PFT response time versus cued recall accuracy for the

pre and post-instruction phases in both imagery and control groups. Each point represents one

participant. Regression lines are plotted in red.
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Pre-instruction VVIQ ratings versus Associative Recognition performance
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Post-instruction VVIQ ratings versus Associative Recognition performance
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Figure 2.8: Experiment 1: Scatter plots of VVIQ ratings versus associative recognition d′ for the

pre- and post-instruction phases in both imagery and control groups. Each point represents one

participant. Regression lines are plotted in red.
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Pre-instruction PFT accuracy versus Associative Recognition performance
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Post-instruction PFT accuracy versus Associative Recognition performance

0 5 10 15 20

PFT score

-1

0

1

2

3

4

5

A
s
s
o
c
ia

ti
v
e
 r

e
c
o
g
n
it
io

n
 (

d
')

Control group

0 5 10 15 20

PFT score

-1

0

1

2

3

4

5
Imagery group

Figure 2.9: Experiment 1: Scatter plots of PFT accuracy versus associative recognition d′ for the

pre- and post-instruction phases in both imagery and control groups. Each point represents one

participant. Regression lines are plotted in red.
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Pre-instruction PFT response time versus Associative Recognition performance
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Post-instruction PFT response time versus Associative Recognition performance
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Figure 2.10: Experiment 1: Scatter plots of PFT response time versus associative recognition d′

for the pre- and post-instruction phases in both imagery and control groups. Each point represents

one participant. Regression lines are plotted in red.
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Pre-instruction VVIQ ratings versus Order Recognition performance
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Post-instruction VVIQ ratings versus Order Recognition performance
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Figure 2.11: Experiment 1: Scatter plots of VVIQ ratings versus order recognition d′ for the

pre- and post-instruction phases in both imagery and control groups. Each point represents one

participant. Regression lines are plotted in red.
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Pre-instruction PFT accuracy versus Order Recognition performance
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Post-instruction PFT accuracy versus Order Recognition performance
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Figure 2.12: Experiment 1: Scatter plots of PFT accuracy versus order recognition d′ for the

pre- and post-instruction phases in both imagery and control groups. Each point represents one

participant. Regression lines are plotted in red.
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Pre-instruction PFT response time versus Order Recognition performance
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Post-instruction PFT response time versus Order Recognition performance
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Figure 2.13: Experiment 1: Scatter plots of PFT response time versus order recognition d′ for the

pre- and post-instruction phases in both imagery and control groups. Each point represents one

participant. Regression lines are plotted in red.
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Figure 2.14: Experiment 1: Order recognition performance for pairs tested with forward cued

recall and for pairs tested with backward cued recall. Error bars represent 95% confidence intervals

based on standard error of the mean.
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Figure 2.15: Experiment 1: Scatter plots of log-odds transformed cued recall accuracy versus

associative recognition performance, and versus order recognition. Regression lines are plotted in

red. This measured the relationship between both associative and order recognition to cued recall

accuracy. Each point is a single participant.
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A Control Group: Prior forward cued recall
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B Control Group: Prior backward cued recall
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Figure 2.16: Experiment 1, Control group: Scatter plots of control group log-odds transformed

cued recall accuracy versus associative and order recognition for (Top) pairs tested with forward

cued recall (Bottom) pairs tested with backward cued recall. Regression lines are plotted in red.

Each point is a single participant.
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A Imagery Group: Prior forward cued recall

-4 -2 0 2 4
0

1

2

3

4

A
s
s
o

c
ia

ti
v
e

 R
e

c
o

g
n

it
io

n
 (

d
')

Pre-Instruction

-4 -2 0 2 4
0

1

2

3

4

A
s
s
o

c
ia

ti
v
e

 R
e

c
o

g
n

it
io

n
 (

d
')

Post-Instruction

-4 -2 0 2 4

Cued Recall Accuracy (log odds ratio) 

0

1

2

3

4

O
rd

e
r 

R
e

c
o

g
n

it
io

n
 (

d
')

-4 -2 0 2 4

Cued Recall Accuracy (log odds ratio) 

0

1

2

3

4

O
rd

e
r 

R
e

c
o

g
n

it
io

n
 (

d
')

B Imagery Group: Prior backward cued recall
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Figure 2.17: Experiment 1, Imagery group: Scatter plots of imagery group log-odds transformed

cued recall accuracy versus associative and order recognition for (Top) pairs tested with forward

cued recall (Bottom) pairs tested with backward cued recall. Regression lines are plotted in red.

Each point is a single participant.
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Figure 2.18: Experiment 1: Associative and order recognition performance from experiment 1

computed separately for correctly versus incorrectly recalled pairs. Also plotted is d′
max for each

measure (see methods). This measured the within-subject relationship between both order and

associative recognition to cued recall performance. Error bars represent 95% confidence intervals

based on standard error of the mean.
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B Standard-Imagery Instructions
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Figure 2.19: Experiment 2: Scatter plots of log-odds transformed cued recall accuracy versus

associative recognition performance, and versus order recognition. Regression lines are plotted in

red. (Top) Scatter-plots for all participants, collapsed across groups. (Bottom) Scatter-plots for the

standard-imagery group. This measured the between-subject relationship between both associative

and order recognition to cued recall accuracy. Each point is a single participant.
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B Top-Bottom Instructions
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Figure 2.20: Experiment 2: Scatter plots of log-odds transformed cued recall accuracy versus

associative recognition performance, and versus order recognition. Regression lines are plotted

in red. (Top) Scatter-plots for the actor-object imagery group. (Bottom) Scatter-plots for the

top-bottom imagery group. This measured the relationship between both associative and order

recognition to cued recall accuracy. Each point is a single participant.
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Chapter 3

Modelling constituent-order despite

symmetric associations in memory
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Abstract

Mathematical models of association memory either predict that knowledge for constituent order

of a word pair (AB vs. BA) is perfectly unrelated, or completely dependent on knowledge for the

pairing itself. Behavioural data contradicts both predictions; when a word pair can be remembered

(given A, recall B), knowledge for its constituent-order is above chance, but still fairly low. The

inherent symmetry of convolution has enabled convolution-based models to explain symmetry of

associative strengths, but offers no way to discriminate AB from BA. We evaluated four ways to

extend convolution to store order, where order is encoded as item features, partial permutations

of features, explicit item-position associations, or the addition of item and position vectors before

convolution. All approaches were successful in discriminating order within behaviourally observed

ranges, without compromising associative symmetry. Only the permutation model passed a further

challenge, disambiguate AB from BC in double-function lists, as humans can do. It is possible that

each of our proposed mechanisms might apply to a different, particular task setting. However, the

partial permutation model can thus far explain the broadest set of empirical benchmarks.

3.1 Introduction

Memory for associations forms the cognitive basis for a large portion of behaviour (Murdock,

1974; Lashley, 1951). In many cases, such as remembering face-name relationships at a dinner

party, or that colorful snakes are poisonous, it is sufficient to remember that stimuli are asso-

ciated to each other. But sometimes it is important to remember an association along with its

constituent-order (AB versus BA). Indeed, many examples of order-sensitive associations exist

in language, such as modifier-head relationships in compound words, PAN CAKE versus CAKE

PAN, or HOUSE GUEST versus GUEST HOUSE (Dressler, 2006; Caplan, Boulton, & GagnÂe,

2014). However, memory for order has typically not been a focus in the experimental study of

verbal association memory. Standard tests of association memory ask participants to study pairs
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of words (AB), followed by cued recall (given A, respond with B). Participants can respond with

B when given A, and vice versa, without knowing the constituent-order of the pairing. Moreover,

memory for order is typically studied with separate tasks such as serial recall (study A, B, C, D,

recall the list in order).

Consequently, mathematical models of association memory are quite poor at accounting for

constituent-order, either assuming that associations are stored with perfect order, or with no order

at all. Models based on convolution (Kelly et al., 2013; Murdock, 1982; Metcalfe Eich, 1982;

Plate, 1995), and recent models within the REM framework (Cox & Criss, 2017, 2020; Criss &

Shiffrin, 2005), assume associations are stored with no order. In these models, AB is mathemat-

ically equivalent to BA. The face-value prediction is that memory for constituent-order will be at

chance. However, given evidence that participants can remember constituent-order above-chance

(Greene & Tussing, 2001; Kato & Caplan, 2017; Kounios et al., 2001, 2003; J. Yang et al., 2013),

one might rescue convolution, and other symmetric models, by allowing for some additional source

of information to support order judgments, such as an additional term in the model. The conse-

quence of storing order separately from associations is that the models would predict that memory

for constituent-order should be unrelated to memory for the pairing itself. The second type of

prediction, that associations are stored with perfect order, comes from matrix models (Anderson,

1970; Humphreys, Bain, & Pike, 1989; Pike, 1984) and models that concatenate the two item

vectors (Hintzman, 1984; Shiffrin & Steyvers, 1997). These models can infer order with no am-

biguity, predicting that memory for constituent-order (AB versus BA) should be perfect given that

the association itself can be recalled.

Kato and Caplan (2017) tested these predictions with a task we refer to as order recognition

(Greene & Tussing, 2001; Kounios et al., 2001, 2003; J. Yang et al., 2013). Order recognition

tests memory for constituent-order directly by presenting pairs in their original (AB) or reversed

order (BA). Participants then provide a forced-choice judgment whether the probe is intact or re-

verse. One group of participants were tested with cued recall, and then order recognition for each

studied pair, and compared to another group tested with associative recognition after cued recall

instead.1 Matrix models predict that order recognition performance should be perfect for correctly

recalled pairs. Convolution models predict that order recognition performance should be equiv-

1Cued recall and associative recognition should be highly correlated because they essentially test the same

informationÐ knowledge of pairings between words. Thus, the cued recall-associative recognition group provided a

realistic upper ceiling to compare the order recognition group against.
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alent for correct and incorrectly recalled pairs. Contradicting both predictions, order recognition

was significantly better when cued recall was correct, but well below maximum, and well below

associative recognition for correctly recalled pairs.2 These results indicate that verbal associa-

tions are neither encoded with perfect order, nor are completely order-absent, inconsistent with

assumptions in all models.

Another clue about the representation of associations and their constituent order comes from

from double function lists in Rehani and Caplan (2011), where cued recall was direction-specific.

Double function lists (Howard, Jing, Rao, Provyn, & Datey, 2009; Primoff, 1938; Rehani & Ca-

plan, 2011; Slamecka, 1976), contain pairs, where each constituent item appears in two pairs, once

in the left position, and once in the right position (AB, . . . , BC, . . . , CA, . . . ). Consider that B is

presented as a cue on the left-hand side. Correctly responding with C requires knowledge of rela-

tive position/order, for example, that B appeared on the left in pair BC, but not AB. Performance

is compared to single function pairs that do not share items (EF, . . . , GH, . . . , IJ, . . . ). Because of

their extreme assumptions about order, matrix and convolution models generate direct predictions

about this task. A convolution model has no information to select between A and C. Thus, assum-

ing the model guesses between two possible responses, convolution predicts cued recall accuracy

for double function pairs will be one-half that of single-function pairs. In contrast, matrix-based

models suffer no interference between AB and BC (see below). Therefore, the model predicts

equal accuracy for double and single-function pairs. Contradicting both matrix and convolution

model predictions, Rehani and Caplan (2011) found double-function cued recall accuracy was

somewhat lower, but well above one-half of single-function accuracy, converging with evidence

from the order recognition task that associations are neither stored order-absent, nor with perfect

directionality.3

In sum, participants can discriminate AB versus BA during a word pair task (Greene & Tussing,

2001; Kato & Caplan, 2017; Kounios et al., 2001, 2003; J. Yang et al., 2013), and even use

order/item-position information to aid cued recall (B ?) to solve AB versus BC interference (Rehani

2Kato and Caplan (2017) also addressed the possibility that testing with cued recall influenced order recognition.

In their second experiment they withheld half the pairs from cued recall testing, and in their third experiment moved

cued recall to the end of the session. In both cases they found that the order-cued recall relationship persisted.
3One could argue that the ability to disambiguate double function pairs does not come from memory for order, but

rather, because each item in these pairs was repeated, and thus more available in memory. However, Caplan, Rehani,

and Andrews (2014) found when participants were able to respond with both associates for double function pairs,

double and single function cued recall accuracy was equivalent, arguing against this confound.
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& Caplan, 2011). Taken together, this suggests that the constituent-order of verbal associations is

explicitly stored, and in a way that is moderately dependent on memory for the pairing itself.

3.1.1 Associative Symmetry

Despite evidence that associations are stored with moderate levels of order, there is also a sense

in which verbal associations are rather symmetric. Initial support for idea, known as associa-

tive symmetry, arose from the stable tendency for forward cued recall accuracy (APPLE ?) and

backward cued recall (? OVEN) accuracy to be equal on average (Asch & Ebenholtz, 1962;

Horowitz, Brown, & Weissbluth, 1964; Kahana, 2002; Kato & Caplan, 2017; Murdock, 1962).

However, Kahana (2002) showed that an asymmetric model could produce symmetry in mean

cued recall accuracy, suggesting this result is not diagnostic of symmetric associations. Instead,

Kahana (2002) proposed that associative symmetry should be tested at the pair level, with two

cued recall trials for each word, and where test 1 and test 2 is either forward or backward cued

recall. Indeed, multiple studies have returned a near-perfect correlation for incongruent condi-

tions (forward-backward, backward-forward), that are remarkably close to what are essentially

test-retest correlations for congruent conditions (forward-forward, backward-backward) (Kahana,

2002; Kato & Caplan, 2017; Rehani & Caplan, 2011; Rizzuto & Kahana, 2000, 2001; Sommer,

Schoell, & BÈuchel, 2008). These findings either suggest forward and backward cued recall are test-

ing the same bi-directional association in memory, or, that there are distinct forward and backward

associations for a given pair, but these are highly correlated in their strengths (Kahana, 2002).

We were particularly interested in associative symmetry here because of the potential paradox

between association memory that is highly symmetric, yet supports memory for its constituent-

order. As we elaborate below, it was especially challenging in previous attempts to modify matrix

models to simultaneously produce moderate order memory and associative symmetry (Kato &

Caplan, 2017). A strong account of association memory should be able to account for both con-

straints, and thus, we include this as an additional benchmark for all models.

3.1.2 Attempts to produce order and symmetry in current models

Next, we describe how current models fare against the constraints of associative symmetry and

moderate memory for order.
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Matrix-based models Associations are encoded as follows, M = ab⊺, where M denotes the

memory matrix, a and b represent item vectors, and ⊺ denotes transpose. Bold-face indicates col-

umn vectors. Cued recall is simulated with matrix multiplication, for example, Mb ≈ a+ noise.

Matrix multiplication is direction sensitive, meaning that b⊺M ≈ 0+noise. By comparing the out-

puts of Mb and b⊺M, the model can unambiguously infer that item b appeared in the left position.

For similar reasons, matrix models also have a perfect ability to solve double function interference.

If two pairs that share an item are stored in memory, M = ab⊺+bc⊺, the direction specificity of

forward and backward cued recall means that a given item vector b can cue completely different

pairs in memory based on direction, Mb ≈ a and b⊺M ≈ c.

One can eliminate this directionality by simultaneously storing the forward and reverse associ-

ation, α f a⊺b+αbb⊺a, where α f and αb are scalar random values that represent variable encoding

strengths. Assuming that α f and αb are perfectly correlated, and that E
[

α f

]

= E [αb], this model

could produce perfect associative symmetry (Kahana, 2002), but as a direct consequence, cannot

discriminate AB from BA (Kato & Caplan, 2017) or solve double function lists (Rehani & Caplan,

2011). To regain some ability to disambiguate AB from BA, E
[

α f

]

could be increased relative to

E [αb], so that the forward association is stronger in memory; however, the model now produces

an forward recall advantage violating associative symmetry, and predicts order recognition perfor-

mance would positively correlate with the difference between forward and backward cued recall

performance. Kato and Caplan (2017) found no evidence for the latter prediction, these correla-

tions were not significant. Kato and Caplan (2017) also tested a model that sometimes encoded

pairs in the incorrect order with probability prev. Increasing prev reduced the model’s order recog-

nition performance, even to the moderate levels seen in behaviour. However, the model assumes

that even wrong order judgments are made with perfect certainty, because they come from perfectly

directional associations in memory. The resulting prediction is that participants should be unlikely

to switch their response if they are tested twice for order recognition, correct-correct or incorrect-

incorrect judgments should be most frequent. This prediction was also unsupported in Kato and

Caplan’s (2017) dataÐparticipants did not stick with their order judgments more frequently than

they switched their order judgments. Along with evidence from other analyses, order judgments

seem to not be made with perfect certainty, but are rather more like uncertain, noisy decisions that

are prone to change on retest.
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Convolution-based models Convolution models do not store order at all. Associations are stored

as follows, m = x∗y, where x and y denote item/word vectors, m denotes the memory vector, and

∗ denotes circular convolution. Importantly, convolution is strictly commutative, a∗b ≡ b∗a. This

property causes convolution to naturally produce associative symmetry (Kahana, 2002), but also

means that there is no way to recover the constituent-order of the pair after encoding. To retain

order information in a convolution model, one could permute the elements of item-vectors before

encoding (Jones & Mewhort, 2007; Kelly et al., 2013; Plate, 1995; Recchia, Jones, Sahlgren, &

Kanerva, 2010), expressed as follows, m = pl(x) ∗ pr(y), where p denotes permutation operator,

and subscript l and r indicate the position-specific permutation pattern applied to each vector.

Permutation allows convolution to encode order-sensitive relationships (Jones & Mewhort, 2007),

along with other useful side-effects (Kelly et al., 2013); however, in published implementations,

the whole vector has been permuted, which effectively implements a non-commutative operation,

more like a matrix-outer product, pl(x)∗ pr(y) ̸= pr(x)∗ pl(y). Thus, fully permuting item vectors

may be incompatible with empirical data in a similar way as an unmodified matrix model, although

we do test this idea, with a small twist, below.

3.1.3 Extending convolution to store order

In sum, the concurrent empirical constraints of associative symmetry and moderate order memory

prove difficult for all existing models. Convolution models and modified matrix models can pro-

duce perfect associative symmetry, but disregard order, while non-commutative versions of both

matrix and convolution models over-predict the degree to which order is remembered. One could

address these challenges with two possible approaches, either modify matrix models to have re-

duced order memory, or extend convolution models to store order. In the present article we take

the latter approach. Our objective here is not to fundamentally alter basic model mechanisms, but

to present minor modifications that could allow convolution to produce mid-range order memory

while preserving useful characteristics, like associative symmetry, that make convolution a rich

account of verbal association memory.

To this end, we designed four simple modifications (Illustrated in Figure 3.1) that could encode

order without significantly increasing model complexity,

• Model A (Figure 3.1a): Order is encoded as explicit associations between item vectors and

ªpositionº vectors, bearing some resemblance to positional-coding models of serial recall
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(Conrad, 1960; Brown, Neath, & Chater, 2007; Burgess & Hitch, 1999; Farrell, 2012; Hen-

son, 1998), or item-context associations in the Temporal Context Model (Howard & Kahana,

1999) but with just two unique position vectors. These two associations for the left and right

positions are stored along with the item-item association.

• Model Σ (Figure 3.1b): Similar to model A, position vectors are used to represent order,

but are instead added element-wise to each item before convolving, mathematically simi-

lar to extensions of TODAM (Murdock, 1995), where item vectors were summed before

convolving.

• Model φ (Figure 3.1c): Order is encoded by incorporating dedicated positional feature val-

ues into the item vector alongside item-unique features. This bears some resemblance to the

ways in which numerous models have incorporated attributes such as list context as special-

ized features. All items in the left position receive the same set of positional feature values,

and likewise for right position items.

• Model Π (Figure 3.1d): To encode order, item-unique feature values are shuffled or per-

muted in a pattern that is specific to the position of that item vector. This mechanism is di-

rectly derived from other models (Jones & Mewhort, 2007; Kelly et al., 2013; Plate, 1995),

but the key difference in our implementation is that a subset of features are permuted, rather

than the entire vector.

3.1.4 Summary of modelling approach

Our evaluation of these models will proceed as follows. First, we formally describe each model

and its accompanying assumptions. Then, we simulate order recognition, cued recall, and associa-

tive recognition to show the relationship between model performance and key model parameters.

Next, we fit models to data, to determine if each can produce a moderate relationship between or-

der recognition and cued recall, while preserving the near-perfect correlation between forward and

backward cued recall (benchmark 1a). Next, we dissect order recognition data even further, and

evaluate each model against order recognition data for individual participants (benchmark 1b), and

the between-subject correlations between order and associative recognition to cued recall (bench-

mark 1c). Finally, we evaluate each model against double function lists (benchmark 2), to test

whether or not each model solve this task.

95



a Model A b Model Σ

*+ +

+ ** +*

c Model φ d Model Π

* *

Figure 3.1: Four different mechanisms to store the constituent-order of associations within a con-

volution model. Blue circles denote item features, green circles correspond to the left position, and

yellow circles correspond to the right position. Note, the color of the circles were for illustrative

purposes, and do not indicate that features were the same value.
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3.1.5 Four ways to extend convolution to store order

Before evaluating models against empirical benchmarks, we begin by formally describing each

model and its accompanying assumptions.

Model A

Associations between item vectors and positional vectors are stored alongside the item-item asso-

ciation itself,

mA =
L

∑
i=1

αi ((fi ∗ l)+(gi ∗ r)+(fi ∗gi)) , (3.1)

where fi, gi are n-dimensional item-vectors, and l and r are n-dimensional position vectors, and L

denotes list length or number of pairs stored in the memory vector mA. Features values for all vec-

tors are sampled from N(0,σ2), and then vectors are strictly normalized. To ensure that memory

for the association co-varies with memory for its order, item-position, and item-item associations

share an associative encoding strength αi, which is a scalar value sampled from N(µ,σα), and

where σα , and µ are free parameters. As we elaborate in later sections, the model infers order

by comparing a dot product between a correct item-position pair to the memory vector, and a dot

product between an incorrect item-position pair and the memory vector. By increasing µ (which

increases the average associative encoding strength), the model can increase the difference between

these two dot products, which increases overall order discrimination.

Model Σ

Model Σ also represents position as two distinct vectors l and r, but instead adds these positional

vectors element-wise to their respective item vector,

mΣ =
L

∑
i=1

αi((fi + l)∗ (gi + r)), (3.2)

where L, αi, fi, gi, l, and r are identical to their definitions in equation 3.1, and mΣ denotes the

memory vector. After expanding this equation, mΣ = ∑
L
i=1 αi((fi ∗gi)+(gi ∗ l)+(fi ∗ r)+(l∗ r)),

we can see it is equivalent to model A (equation 3.1) with an additional noise term, l∗r. This model

also draws associative encoding strengths αi from N(µ,σα), and also assumes σα , and µ are free
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parameters. Thus, at a given value of σα , increased values of µ can increase order discrimination

ability for this model with the same mechanisms as in model A.

Model φ

To encode order, each item gains a set of position features,

mφ =
L

∑
i=1

αi((fi ⊕ l)∗ (gi ⊕ r)), (3.3)

where l and r consist of np positional features that are concatenated (denoted by ⊕) onto item

vectors fi and gi respectively, and mφ denotes the memory vector. Vectors fi and gi each consist

of unique item features, and have n−np dimensions to ensure that resulting dimensions of the full

vector, with position features, is always equal to n. All feature values, including position features,

are independently sampled from N(0,σ2), and item vectors, with position features, are strictly

normalized. The number of positional features (np) is a free parameter. The model can infer order

by comparing a dot product between a pair of items with correct position features to the memory

trace, (fi⊕ l)∗(gi⊕r) ·mφ , and a dot product between pair of items with incorrect position features

to the memory trace, (fi ⊕ r)∗ (gi ⊕ l) ·mφ . Parameter αi is a scalar associative encoding strength

sampled from N(1,σα), where σα is a free parameter, and L is defined as in previous models.

Model Π

Position/order is encoded as patterns of permutation,

mΠ =
L

∑
i=1

αi(pl(fi)∗ pr(gi)), (3.4)

where fi and gi are n-dimensional item vectors, of which n elements are independently sampled

from N(0,σ2). Vectors are then strictly normalized, and mΠ denotes the memory vector. A distinct

pattern of permutation is applied to every left position item, denoted by pl , and another pattern

of permutation is applied to the right position item, denoted by pr. The number of elements

permuted by pl and pr is a free parameter nperm. The model can infer order by comparing a

dot product between a pair of items with the correct position permutations to the memory vector,

pl(fi)∗ pr(gi) ·mΠ , and a dot product between a pair of items with incorrect position permutations

and the memory vector, pr(fi)∗ pl(gi) ·mΠ . Parameters αi, and L are defined as in equation 3.3.
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3.2 Empirical benchmark 1: Order recognition and associative

symmetry

We first wondered whether each of these models could produce above-chance order recognition

performance, with a moderate relationship to cued recall performance, and alongside the near-

perfect symmetry between forward and backward cued recall. Benchmark data was obtained from

experiment 1 in Thomas, Ayuno, Kluger, and Caplan (in press),4. The design of this experiment is

illustrated in Figure 3.2. Similar to Kato and Caplan (2017), participants first performed cued re-

call5 of studied word pairs. This was followed by either order or associative recognition depending

on condition. Departing from Kato and Caplan (2017), cued recall was only tested once per pair,

meaning that the correlation between forward and backward cued recall could not be measured

at the level of individual pairs, although we as we discuss below, we used general ranges from

previous experiments to check whether the correlations in the present models are consistent with

previous reports. Finally, Thomas et al. (in press) included an additional between-subject manip-

ulation where some participants received instructions to use a memory strategy; however, we only

used the control group in the following fits, as it was most comparable to conditions in Kato and

Caplan (2017).

We derived three empirical benchmarks, 1a, 1b, and 1c from this data-set to evaluate mod-

els. Benchmark 1a was order recognition performance separated by cued recall correctness (and

associative recognition as a control), alongside the near-perfect correlation between forward and

backward cued recall. Benchmark 1b was individual differences in order recognition performance,

that occupied a range around the means observed in benchmark 1a. Here we wondered if models

could not only produce means that characterized empirical data, but account for individual partic-

ipants within the data-set using different parameter sets. Benchmark 1c, was the between-subject

correlation between order and cued recall. In both Kato and Caplan (2017) and Thomas et al. (in

press), this correlation was well-below the correlation between associative recognition and cued

recall. To distinguish benchmark 1c from benchmark 1a, we also denote benchmark 1a as the

within-subject relationship between order recognition and cued recall.

To begin, we describe how order recognition, cued recall and associative recognition are simu-

4data is posted at https://osf.io/x78gp/?view only=17fbc3e1614545648d45ac19e62c2249
5cued recall was performed in both the forward and backward direction, and direction was counterbalanced so that

each participant received equal forward and backward cued recall trials
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ιA = ((fi ∗ l)+(gi ∗ r)) ·mA, (3.5)

ιΣ = ((fi + l)+(gi + r)) ·mΣ , (3.6)

ιφ = ((fi ⊕ l)∗ (gi ⊕ r)) ·mφ , (3.7)

ιΠ = (pl(fi)∗ pr(gi)) ·mΠ , (3.8)

And then, a dot product between items with incorrect positions and the memory trace, simulated

for each of our four models using the following expressions respectively,

ρA = ((fi ∗ r)+(gi ∗ l)) ·mA, (3.9)

ρΣ = ((fi + r)+(gi + l)) ·mΣ , (3.10)

ρφ = ((fi ⊕ r)∗ (gi ⊕ l)) ·mφ , (3.11)

ρΠ = (pr(fi)∗ pl(gi)) ·mΠ , (3.12)

For equations 3.7 and 3.11 (model φ ), position features are first concatenated to item vectors, and

then the entire vector is strictly normalized. For all other models (equations 3.5, 3.6, 3.8, 3.9, 3.10,

and 3.12), all item vectors and position vectors are strictly normalized. Each equation above is

computed for all L pairs in memory, which returns L samples per list. Overall order recognition

sensitivity (d′) is computed from these L samples across all lists according to d′ =
(µι−µρ )

√

0.5(σ2
ι +σ2

ρ )
.

Cued recall

Cued recall is simulated with the correlation operation, denoted with #. Forward cued recall

fi # m ≈ gi, and backward cued recall, gi # m ≈ fi, are simulated for all studied pairs. For each

cued recall trial, a dot product is computed between the retrieved vector and all L×2 item vectors

representing possible candidate responses, which we refer to as lexicon vectors. Lexicon vectors

are strictly normalized. The highest match is selected as the response with a winner-take-all rule,

and is scored correct if it matches the target item. Following Thomas et al. (in press), where cue

words had no positional information, in all models position is excluded for the cue and lexicon

vectors; 1) Model A, and Σ , positional vectors l and r are omitted from all cued recall operations.

2) Model φ , position features for cue vectors and lexicon candidate item vectors are replaced with
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noise, sampled from N(0,σ2) for each item. 3) Model Π , the cue vector and lexicon vectors are

not permuted, departing from previous implementations (Kelly et al., 2013).

Associative recognition.

The following two dot products are used to assess model associative recognition performance,

ι = (fi ∗gi) ·m, (3.13)

ρ = (fi ∗gx) ·m (3.14)

Equation 3.13 is a dot product between the memory vector and an old (studied) pairing of list

items, and equation 3.14 is a dot product between the memory vector and a new pairing of list

items. For equation 3.14, this dot product is repeated for L unique new pairings between left

and right items from the studied list. All item vectors fi and gi are strictly normalized. Overall

associative recognition performance (d′) is computed using the outputs of these two dot products

repeated for L pairs, across all lists, according to d′ =
(µι−µρ )

√

0.5(σ2
ι +σ2

ρ )
. Just as for cued recall, we

assume no positional information in both equations; 1) Model A, and Σ , positional vectors l and r

are omitted from intact and recombined probes. 2) For model φ , this means that position features

for item vectors in intact and recombined probes are replaced with noise, sampled from N(0,σ2).

3) Model Π , item vectors in intact and recombined probes are not permuted.

Procedure

Following Thomas et al. (in press), encoding, cued recall, order recognition, and associative recog-

nition are repeated for eight word lists. For recognition tasks, this results in L×8 intact probe

matches (OR: Equations 3.5±3.8, AR: Equation 3.13), and reverse/recombined probe matches (OR:

Equations 3.9±3.12, AR: Equation 3.14), from which order and associative recognition sensitivity

(d′) is computed. Similarly, cued recall accuracy was computed across L×8 trials for forward cued

recall, and L×8 trials for backward cued recall.

3.2.2 Parametric plots of model performance.

Before fits to data, we wanted to understand the sensitivity of each model to parameters, with

special attention to the single parameter that directly modifies each model’s ability to discriminate
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order. This parameter was µ in models A and Σ , np in model φ , and nperm in model Π . These

parameters are now called the ªorder parameterº of each model. We simulated cued recall, order

recognition, and associative recognition at the following values of each model’s order parameter;

for models A and Σ , µ = {0, 0.1, 0.2 ...,1.0}, model φ ,
np

n
= {0, 0.1, 0.2 ...,1.0}, and in model Π ,

nperm

n
= {0, 0.1, 0.2 ...,1.0}. Simulations were repeated for σα = { 0.1, 0.5 ,1.0} (SD of associative

encoding strength α). Total item vector features was held constant at n = 100 for all simulations,

and all procedures were according to the specifications stated above.

Results

Parameter µ in models A and Σ had a positive relationship to performance in all memory tasks (fig-

ure 3.3). In contrast, parameter nperm in model Π had a positive relationship with order recognition

performance, but a negative relationship with associative recognition and cued recall performance.

Parameter np in model φ was similar to nperm in this way, but negatively affected order recognition

performance after roughly half of the item vectors consisted of position features. With a few excep-

tions, reducing the value of σα , and therefore overall noise, improved performance for all models

and memory tasks. Some of these relationships between model parameters and performance could

be changed if models were implemented in different ways. For example, in model Π , we did not

permute the cue vector based on position, because cue words did not contain position information

in Thomas et al. (in press). However, if we did permute the cue vector, all of the features of the

cue vector would be diagnostic for cued recall, rather than just the n−np non-permuted features,

and there would then be a positive relationship between nperm and cued recall performance.

3.2.3 Empirical benchmark 1a: The moderate within-subject relationship

between order recognition and cued recall correctness

Thomas et al. (in press) found that order recognition performance was significantly better when

cued recall for that pair was correct, but well below associative recognition for correctly recalled

word pairs (Figure 3.4). To test if each model could account for these within-subject patterns we

performed quantitative fits to means in figure 3.4, along some other empirical constraints described

below.

Given the challenge associative symmetry posed in previous efforts to modify models (see

introduction), we included it as an additional constraint for the following model fits. We quan-
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Figure 3.3: Parametric plots of cued recall, order recognition and associative recognition perfor-

mance for each model as a function of; 1) models A and Σ : mean associative encoding strength µ ,

2) model φ : number of position features (np), 3) model Π : number of permuted features (nperm).

Simulations were repeated for σα = { 0.1, 0.5 ,1.0}.
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titatively fit the symmetry between forward and backward cued recall accuracy using data from

Thomas et al. (in press). Previous studies (e.g., Kahana, 2002; Kato & Caplan, 2017) have used

Yule’s Q (Bishop, Fienberg, & Holland, 1975), to measure the within-pair correlation between

forward and backward cued recall . Yule’s Q quantifies the relationship between two tests with di-

chotomous outcomes, and like a Pearson correlation, ranges from -1 to 1. Thomas et al. (in press)

could not compute Yule’s Q because pairs were only tested with cued recall once. However, given

that high Yule’s Q more diagnostic of associative symmetry than average performance (Kahana,

2002), we still checked whether each model could produce values in the basic empirical range,

such as Q ≈ .85 in Kato and Caplan (2017).

Parameter search and methods

Each model was fit to the following empirical values from Thomas et al. (in press); 1) order recog-

nition d′ for correctly recalled pairs, 2) order recognition d′ for incorrectly recalled pairs, 3) as-

sociative recognition d′ for correctly recalled pairs, 4) associative recognition d′ for incorrectly

recalled pairs, 5) the difference between order recognition d′ for correct and incorrectly recalled

pairs, 6) the difference between associative recognition d′ for correct and incorrectly recalled pairs,

7) forward cued recall accuracy, 8) backward cued recall accuracy. The empirical values for each

of these measures are reported in Table 3.2.

The closest fit for each model was determined via direct search. The direct search matrix was

defined across the following parameters and parameter ranges; (1) σα = {0, 0.1, 0.2 ...,1.0}, (2)

n = {10, 20, 30 ...,500}. (3) Again, the third free parameter was specific to each model. For mod-

els A and Σ , µ (mean of associative encoding strength)= {0, 0.1, 0.2 ...,1.0}, model φ , number of

positional features,
np

n
= {0, 0.1, 0.2 ...,1.0}, and in model Π , the number of permuted features,

nperm

n
= {0, 0.1, 0.2 ...,1.0}. Forward cued recall, backward cued recall, order recognition and as-

sociative recognition were simulated as described above, for 8 lists of L pairs. These simulations

were iterated 100 times for each cell of the direct search matrix, and model predicted values were

averaged across these 100 iterations. Root-Mean-Squared Error (RMSE) was computed between

empirical and model predicted values for the four means plotted in Figure 3.4. RMSE was then

transformed to Bayesian Information Criterion (BIC) values via an estimation of log-likelihood

(Burnham & Anderson, 2004). The BIC minimum was selected from the direct search matrix to

find the best fitting parameter set. By convention, if ∆BIC > 2 the models are considered mean-

105



ingfully different.

To compute model predictions for Yule’s Q, we used the outcome of cued recall simulations

for each pair in the backward and forward direction. Predicted Yule’s Q values were generated

for each of the 100 iterations at each cell of the direct search matrix as follows. The frequency of

the following four outcomes was tallied; a = # of pairs where forward and backward cued recall

were correct, b = # of pairs where forward cued recall was correct and backward cued recall was

incorrect, c = # of pairs where forward cued recall was incorrect and backward cued recall was

correct, d = # of pairs where both backward and forward cued recall were incorrect. Yule’s Q is

then calculated according to (ad − bc)/(ad + bc), and can range from -1 to 1. Yule’s Q values

for each cell were then log-odds transformed, averaged, and then inverse log-odds-transformed6 to

generate a single predicted value at each cell of the direct search matrix.

For comparison we also plotted and reported the performance of a reference model by sim-

ulating 100 iterations of the Model Π at
nperm

n
= 0, σα = 1, and n = 100. At these parameter

values this model is equivalent to an unmodified convolution model with no information for item

position/order. This model is unable to produce order recognition d′ above 0, and would thus be

unconstrained by empirical order recognition performance. As a result, we did not fit the reference

model to data.

Results

All four modified convolution models improved substantially on the reference model fits (Table

3.1), but Model A (item-position associations) produced worse quantitative fits than models Σ

and Π , although these differences fell short of meaningful (∆BIC > 2). Nonetheless, all models,

including model A, could produce greater order recognition performance for correctly recalled

pairs, that was also well below associative recognition for correctly recalled pairs (Figure 3.4).

Models were also quite successful at preserving associative symmetry. All models exhibited

equal forward and backward cued recall accuracy; however, models over-predicted the magnitude

of accuracy values. The one exception was model A, which produced values that aligned more

with empirical observations. There was a marked reduction in Yule’s Q for all models compared to

the reference model (Table 3.2), although this could be considered a strength of the present models,

6This followed analyses of empirical Yule’s Q in Kato and Caplan (2017), who log-odds transformed Yule’s Q to

ensure that these measures met parametric assumptions.
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Table 3.1: Best fitting model parameters for fits to benchmark 1a. Data was obtained from experi-

ment 1 in Thomas et. al. (in review). All models produced substantially closer fits compared to the

reference model (BIC> 2), but model A performed substantially worse than models Σ , φ and Π .

For model φ , free parameters were σα , np, and n. for model Π , free parameters were σα , nperm,

and n, and for models A and Σ , free parameters were µ , σα , and n. For models φ and Π , parameter

µ was held constant.

Model n σα Order parameter BIC

Reference 400 0.5 N/A 5.88

Model A 50 0.3 µ = 0.9 ±13.65

Model Σ 440 0.2 µ = 0.8 ±15.39

Model φ 300 0.3 np

n
= 0.3 ±14.99

Model Π 200 0.4 nperm

n
= 0.3 ±15.64

as this was more comparable to values that are observed in behavioural data (Yule’s Q > 0.85 for

all groups in Kato & Caplan, 2017). In sum, all modifications extended convolution to support

moderate order recognition, without compromising associative symmetry.

3.2.4 Empirical benchmark 1b: Fits to individual differences in order recog-

nition performance

Fits to aggregate data can be informative, but can lead to misleading conclusions if participants

vary substantially, where some participants are better fit by one model and others, by a different

model. Indeed, even though order recognition performance exhibits a moderate relationship to

cued recall, individual participants in Thomas et al. (in press) occupied a range around these mean

values (Figure 3.6). Thus, we also tested how each model could fit individual differences.

Parameter search

We fit models to individual participant values for; 1) order recognition d′ for correctly recalled

pairs, 2) order recognition d′ for incorrectly recalled pairs, 3) log-odds transformed cued recall

accuracy.7 Re-using simulated model predictions from the direct search matrix for benchmark 1a,

best fits were selected by minimizing BIC for each participant.

7Log-odds transformed cued recall was included in the fitness measure because we also used the following model

fits for benchmark 1c (see below).
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Figure 3.4: Each model’s best fit to order and associative recognition d′, for correct versus incor-

rectly recalled pairs, from Thomas et. al. (submitted). (a) Order recognition performance separated

by correctness of recall. (b) Associative recognition performance separated by correctness of re-

call. Error bars in all panels represent 95% confidence intervals based on standard error of the

mean.
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Table 3.2: Data from experiment 1 in Thomas et. al. (in review) along with predictions generated

by each model at best fitting parameters. ªcorrectº denotes recognition performance for correctly

recalled pairs. ªincorrectº denotes recognition performance for incorrectly recalled pairs. ªdiffer-

enceº is recognition performance for correctly recalled pairs minus performance for incorrectly

recalled pairs, which provides a measure of the dependence of that recognition task on cued recall

performance. Also reported are model predicted values for Yule’s Q, which unlike other measures,

was not quantitatively fit-to.

Order recognition d′ Associative recognition d′ Cued recall accuracy

correct incorrect difference correct incorrect difference forward backward Yule’s Q

Data 1.71 1.12 0.59 2.73 1.41 1.32 0.44 0.40 -

Reference 0 0 0 3.21 0.38 2.83 0.91 0.91 .99

Model A 1.67 1.42 0.25 2.57 0.89 1.68 0.34 0.35 .84

Model Σ 1.52 1.28 0.25 2.99 1.26 1.73 0.62 0.62 .87

Model φ 1.51 1.24 0.27 2.99 1.22 1.77 0.63 0.63 .87

Model Π 1.70 1.23 0.47 2.92 1.09 1.83 0.62 0.62 .90

Results

Starting with model Σ , this model could only produce a narrow range of performance values and

was the poorest at accounting for individual differences across all models. Model A and φ pro-

duced a range of predictions (Figure 3.5), although model A biased towards predicting high order

recognition d′ for correctly recalled pairs (relative to the central tendency of the empirical data),

while model φ tended to predict values closer to the center or even on the lower end of empirical

order recognition d′ for correctly recalled pairs. Model Π produced widest range of predictions,

and seemed the most accurate at accounting for broadest range of individual differences.

As an additional step, we compared model fits with winner-take-all rule, tallying the number

of times each model produced the lowest BIC value for a given participant. If a model did not win

by significant margin compared to the other three models (∆BIC > 2) we omitted that participant

from plots and reported counts. 14 participants were excluded on this basis.

Model Π provided the strongest account of benchmark 1b, producing the best fit to 32 par-

ticipants which were located throughout the scatter (Figure 3.6). This was followed by model φ

which provided the best to 6 participants. Next was model A, which provided the best fit to 4
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Figure 3.5: Model fits to individual participants values for order recognition d′ for correct versus

incorrectly recalled pairs from Thomas et. al. (in review).

participants that were located in the upper regions of the scatter plot (with high OR d′ for correctly

recalled pairs). Finally, model Σ did not win for any participant, strengthening the conclusion

that this model provided a poor account of individual differences. In sum, in addition to provid-

ing good accounts of mean order recognition performance, model Π provided the closest fit to

the largest number of individuals. However, certain participants were better described by other

models, suggesting that participants may, in fact, judge order in more than one way.

Distribution of best fitting model parameters

Models used a wide range of parameter values to fit to individual participants, with roughly even

distribution across the total explored parameter space (Figure 3.7, Table 3.3). There were some

notable exceptions, for example, parameter distributions for n and σα in model Σ were noticeably
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Figure 3.6: Model fits where filled-in circles denote the participants that each model provided the

closest fit to by a margin of BIC> 2. Open circles also include the 30 participants that did not have

clear winner.
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Table 3.3: The mean and standard deviation (Mean(SD)) for the distribution of each model’s free

parameters used for fits to individual participants in benchmark 1b, along with Mean(SD) of the

distribution of BIC values. This distribution of parameters were also applied to benchmark 1c.

Model n σα Order parameter BIC

Model A 294 (209) 0.43 (0.23) µ = 0.69(0.26) ±0.76 (5.46)

Model Σ 429 (141) 0.21 (0.19) µ = 0.74(0.25) 1.17 (4.29)

Model φ 379 (98) 0.17 (0.24) np

n
= 0.56(0.28) ±6.59 (5.11)

Model Π 329 (121) 0.57 (0.32) nperm

n
= 0.4(0.25) ±10.66 (5.18)

skewed. These distributions indicate model Σ used high values of n and low values of σα to fit

participants, both of which reduce the overall noise in the memory trace. Interestingly, model

Σ had an additional noise term compared to model A, and may have used parameters n and σα

to counteract this effect. For model φ , the distribution of parameter σα was also right skewed,

although the other two free parameters in this model were more evenly distributed (Figure 3.7).

3.2.5 Empirical benchmark 1c: Between-subject correlations between recog-

nition and recall extrapolated from fits to benchmark 1b

Thomas et al. (in press) also examined between-subject correlations between both recognition tasks

and cued recall performance. These were consistent with benchmark 1a; there was a moderate cor-

relation between order recognition and cued recall performance, but this was well below the corre-

lation between associative recognition and cued recall (Figure 3.8). We wondered if models would

also exhibit a moderate between-subject relationship between cued recall and order recognition.

Rather than re-fit the models, we simply plotted model output from previous fits to benchmark 1b.

Note, this meant that plotted model predictions for associative recognition d′ were not included

in the original fitness measure at all. This placed models at a significant disadvantage when pro-

ducing the associative recognition-cued recall correlation, especially considering that a completely

different set of participants were tested for associative recognition in Thomas et al. (in press).

Results

For models φ and Π the order recognition-cued recall correlation was smaller than the associative

recognition-cued recall correlation, but fell short in accounting for the magnitude of correlations

observed in behaviour (Figure 3.8). Models A and Σ produced order recognition-cued recall cor-

relations that were comparable to the associative recognition-cued recall correlation, essentially
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a Model A

b Model Σ

c Model φ

d Model Π

Figure 3.7: Histograms for the distributions of each model’s free parameters for fits to benchmark

1b and 1c. Panels on the left plot the distribution of total item-features (n) used for model fits.

Panels in the middle plot the distribution of SD associative encoding strength (σα ) for model fits.

Panels on the right plot the distribution of each model’s order parameter values (µ ,np,nperm).
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Figure 3.8: Model predictions and empirical data for order recognition versus log-odds trans-

formed cued recall accuracy (left panels), and also associative recognition versus log-odds trans-

formed cued recall accuracy (right panels). Model predicted values were generated in fits to bench-

mark 1b. Least squares lines for model predicted values are plotted in red, and least square lines

for behavioural data are plotted in light grey. Each circle represents a participant, and crosses rep-

resents model predicted values.

predicting a maximal relationship between order recognition and cued recall. Despite the mis-

match between model predictions and the magnitude of each correlation in behaviour, because

models were not quantitatively fit to this data, the conclusion here is not that models are unable to

account for benchmark 1c. In fact, although we do not report it here, models were quite good at

producing the behavioural values for each correlation when directly fit to quantitative values for

each participant. Rather, the conclusion here is that models cannot account for benchmark 1c by

extrapolating from fits to benchmark 1b.

3.3 Empirical benchmark 2: double-function lists

Although models varied in their ability to account for individual differences, we have shown that

simple modifications to convolution can produce moderate order memory without compromis-

ing its inherent symmetry. As a further test of each model, we leveraged another paradigm that

demands memory for constituent-order, double function lists (AB..., BC..., CA...). Recall that

114



standard convolution models are unable to disambiguate double function pairs during cued recall

(see introduction). For example, if A is presented as a cue to a convolution model, both B and C

are retrieved equally, and the model must guess. We start with algebraic expressions to come to

general conclusions about how each model may solve this task, and then tested these conclusions

with simulations.

Model A

First assume that three double-function pairs are encoded in memory, AB, BC, and CA. Following

Rehani and Caplan (2011), each item appears in two pairs, exactly once in the left position and

exactly once in the right position. This is expressed in model A as follows,

m = a∗b+a∗ l+b∗ r

+b∗ c+b∗ l+ c∗ r

+c∗a+ c∗ l+a∗ r

(3.15)

where a, b, and c denote item vectors, and l and r denote left and right position vectors respectively.

Cued recall is expressed as follows,

a # m = b+ c+ l+ r (3.16)

We see that the retrieved vector is essentially a sum of b and c with noise. As a result, there is no

information to help the model select between competing items, resulting in perfect double function

interference. To address this, one could incorporate the positional vector into the cue,

(a+ l)# m = 2b+2c+a+ l+ r (3.17)

However, the retrieved vector is still equally similar to c and b. This is because the positional

vector l is associated to every item exactly once in the list, and provides no information to solve

double function interference.

Model Σ

Model Σ cannot solve double function interference for the same reason. Again, assume that pairs

AB, BC, and CA are encoded in memory,
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m = (a+ l)∗ (b+ r)

+(b+ l)∗ (c+ r)

+(c+ l)∗ (a+ r)

(3.18)

Expanding the above expression shows that model Σ is equivalent to model A, with an additional

noise term (l∗ r) generated for each pair,

m = (a∗b)+(a∗ r)+(b∗ l)+(l∗ r)

+(b∗ c)+(b∗ r)+(c∗ l)+(l∗ r)

+(c∗a)+(c∗ r)+(a∗ l)+(l∗ r)

(3.19)

In its expanded form, we can see that both positional vectors are associated to every item in the

list. As a result, if cued recall is simulated with the cue a+ l,

(a+ l)# m = 2b+2c+a+ l+4r (3.20)

the retrieved vector is equally similar to the target item b, and non-target item c. Just as in model

A, positional vector l provides no diagnostic ability.

Model φ

Position features also cannot be used to solve double function interference. AB, BC, and CA would

be encoded as follows,

m = (a⊕ l∗b⊕ r)+(b⊕ l∗ c⊕ r)+(c⊕ l∗a⊕ r) (3.21)

Assuming n = 3 and np = 1, this can also be expressed in its expanded form,
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 (3.22)





m1

m2

m3



=





a1b1 +a2r3 + l3b2+
a1b2 +a2b1 + l3r3+
a1r3 +a2b2 + l3b1+

b1c1 +b2r3 + l3c2+
b1c2 +b2c1 + l3r3+
b1r3 +b2c2 + l3c1+

c1a1 + c2r3 + l3a2

c1a2 + c2a1 + l3r3

c1r3 + c2a2 + l3a1



 (3.23)

We can see that positional features l3 and r3 are distributed throughout the memory vector after

convolution, appearing in terms with item features from every item of the list. Ultimately, this
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means that positional features are no longer specific to any item. This becomes clearer if we

proceed with cued recall, which is expressed as, x = (a⊕ l) # m, where x is the retrieved vector.

The expanded form of equation is expressed as follows,
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#
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 (3.24)
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 (3.25)
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 (3.26)

The retrieved vector x is essentially an equal sum of b⊕r and c⊕r, and to a lesser extent c⊕r. As a

result, dot products to both candidate items will be equal (E [x · (b⊕ r)] = E [x · (c⊕ r)]), regardless

of the number of positional features np. Thus, because position features are repeated for multiple

items, they cannot be used to cue a specific item in memory. Thus, the position-feature model

cannot solve double function interference.

Model Π

Permutation, in contrast, can be used solve double function interference. First assume that pairs

AB, BC, and CA are encoded as follows,

m = pl(a)∗ pr(b)+ pl(b)∗ pr(c)+ pl(c)∗ pr(a) (3.27)

To understand why interfering pairs can be disambiguated with permutation, consider a case where

the whole item is permuted (
nperm

n
= 1) before encoding. Given this, pr(a) and pl(a) will behave as

distinct, orthogonal items (assuming large n). As a result, if cued recall proceeds with the following

expression,

pl(a)# m (3.28)
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pl(a) will only evoke pair, pl(a) ∗ pr(b)in memory, and grant the model perfect ability to disam-

biguate double function pairs.

If we assume only a subset of item vectors are permuted (
nperm

n
< 1), The degree to which vector

pl(a) retrieves the target pr(b) is proportional to nperm. This is because the non-permuted portion

of pl(a) is identical to the non-permuted portion of pr(a), it will also evoke pair pl(c)∗ pr(a). As

we demonstrate below, changing nperm allows the position-specific permutation model to produce

a range of performance values ranging from zero (like an unmodified convolution model) to perfect

(like a matrix model) ability to solve double function pairs.

3.3.1 Simulation methods

To test the insights gained from algebraic expressions, we also simulated double function lists with

each of our four models.

Encoding

Assume that each model stores double function pairs AB, BC, and CA. Encoding for each model

proceeds as follows,

mφ = α1(a⊕ l∗b⊕ r)+α2(b⊕ l∗ c⊕ r)+α3(c⊕ l∗a⊕ r) (3.29)

mΠ = α1(pl(a)∗ pr(b))+α2(pl(b)∗ pr(c))+α3(pl(c)∗ pr(a)) (3.30)

mA = α1(a∗b+a∗ l+b∗ r)+α2(b∗ c+b∗ l+ c∗ r)+α3(c∗a+ c∗ l+a∗ r) (3.31)

mΣ = α1((a+ l)∗ (b+ r))+α2((b+ l)∗ (c+ r))+α3((c+ l)∗ (a+ r)) (3.32)

where a, b, and c are word vectors with n features, l, r represent positional vectors in models A

and Σ with n features, and α1, α2, and α3 represent associative encoding strengths.

Cued recall

Assuming that A is a left-position cue, cued recall proceeds as follows,

(a⊕ l)# mφ (3.33)

pl(a)# mΠ (3.34)

(a+ l)# mA (3.35)

(a+ l)# mΣ (3.36)
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Then for all models, a dot product is computed between the retrieved vector, and each of the

vectors, b, and c, which represent candidate items B and C. Note that for model Π , the output of

equation 3.34 is permuted with the inverse of the right permutation pattern to reproduce the original

non-permuted item, following previous implementations of permutation (Jones & Mewhort, 2007;

Kelly et al., 2013). If a model can disambiguate double function pairs, the retrieved item should

be more similar to item B than to item C.

Procedure

For item vectors, a, b, and c, and position vectors l, and r, n = 100. Vector features were

drawn from N(0,σ2), where σ2 = 1
n
. Associative encoding strengths (α1,α2,α3) were drawn from

N(µ,σα), where σα = 1, and µ = 1 for models φ and Π . We varied the number of item position

features (np) in model φ , permuted features (nperm) in model Π , and mean associative encod-

ing strength (µ) in models A and Σ according to the following ranges
np

n
= {0, 0.1, 0.2 ...,1.0},

nperm

n
= {0, 0.1, 0.2 ...,1.0}, µ = {0, 0.1, 0.2 ...,1.0}. For each model, dot products between the re-

trieved vectors from equations 3.33-3.36, and candidate items b and c were averaged across 10000

iterations, for each value of np, nperm, and µ .

3.3.2 Results

The main results from these simulations are plotted in figure 3.9. Confirming our arguments above,

models φ , A, and Σ , could not solve interference between b and c, even when parameters
np

n

and µ were increased. In contrast, for model Π the difference in matching strengths between the

retrieved vector to both b and c increased with parameter
nperm

n
. At

nperm

n
= 1, this difference reached

the maximum possible value, where the matching strength to c reached the minimum dot product

between two normalized vectors (≈ 0). This indicates that model Π is able to mimic both zero,

and perfect ability to solve double function interference, and all values in between. Taken together,

this confirms the idea that models φ , A, and Σ suffer from cue-overload when tested with cued

recall for stored double function pairs. Permutation (model Π ) overcame this challenge because

permuting a given item by two different patterns (e.g., pl(a) versus pr(a)) decreases similarity

between both versions, in proportion to the amount of permuted features. This meant that a cue

vector with a certain positional permutation can selectively activate a pair without activating the

corresponding double function pair.
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Figure 3.9: Double function list simulations for each model. Dot products were computed between

a retrieved vector from cued recall, and the target versus the non-target item. For models φ , A,

and Σ matching strengths are identical for the target and non-target at all parameter values. For

model Π , the difference between the target and non-target item match, and therefore the ability

to solve interference, increases with the proportion of permuted features. At nperm/n = 0, model

Π is equivalent to an unmodified convolution model and has no ability to solve this interference.

At nperm/n = 1, model Π is essentially non-commutative like in previous implementations of

permutation (e.g., Kelly et. al., 2013), and has perfect ability to solve interference.

Relating these simulations back to previous model fits, when we fit models to averaged order

recognition data (benchmark 1a), model Π achieved its best fit at
nperm

n
= 0.3. At this same param-

eter value in the present simulations, model Π shows a clear separation between the target item

and non-target item, but the match to the non-target item is not zero, consistent with high rates

of errors observed to the non-target item in behaviour (Rehani & Caplan, 2011). In other words,

model Π may not need to deviate from the fits to the other benchmark data to be able to perform

well on double function lists.
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3.4 Discussion

We started with the following puzzle: the perfect symmetry of convolution-based models matched

behavioural data well, but offered no ability to discriminate the constituent-order of associations.

This contradicted empirical data, which revealed that order recognition could be judged above-

chance, and that this ability was moderately dependent on remembering the pairing itself.

All of our four models were constructed to address these challenges, and were largely success-

ful. All models produced order recognition that was above chance, and moderately dependent on

cued recall (Figures 3.3, 3.4, and 3.8). Model Π provided the closest fit to the most amount of

individual participant values for order recognition for correct versus incorrectly recalled pairs, al-

though all models were capable of producing a range of performance values (benchmark 1b, Figure

3.6). When we extended fits from benchmark 1b to produce predicted values for between-subject

correlations, models φ and Π were able to produce smaller order recognition-cued recall correla-

tions than associative recognition-cued recall correlations. Models did not match the magnitude of

correlations seen in behaviour, but as we indicated above, models were not fit to order and asso-

ciative recognition values. Finally, only model Π could perform position-sensitive cuing without

simultaneously retrieving every item in a position (Figure 3.9). We discuss the implications of

these findings below.

Simple modifications can produce memory for order with symmetric associations We tested

several possible mechanisms that could extend a convolution model to store order. Position per-

mutation (model Π ) produced close fits to order and associative recognition data at only 30%

permuted features, departing from previous implementations (e.g. Jones & Mewhort, 2007; Kelly

et al., 2013). The positional-feature model (model φ ), item-position associations (model A) and

addition of item and position vectors (model Σ ) were similarly successful at fitting recognition

data. This suggests convolution can be modified quite easily to produce moderate order recogni-

tion performance.

We also checked whether each model could preserve the inherent symmetry of convolution

while fitting recognition data. This was especially important consider given the difficulty this

additional constraint posed in previous efforts to modify matrix models. Matrix models start out

asymmetric, but can be modified to produce associative symmetry by storing both the forward and

backward associations (and with highly correlated forward and backward associative encoding
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strengths), although this removes any information for order. To regain some order, one could

increase the forward association strength, but this causes the model to violate associative symmetry,

along with generating additional erroneous predictions (see introduction). In contrast, all four

of our models here maintained symmetry between forward and backward cued recall accuracy.

Additionally, our models produced high Yule’s Q values, although not quite as high as values from

unmodified convolution model (Table 3.2).

Interestingly, less-than-perfect forward-backward Yule’s Q may be more consistent with empir-

ical findings. In data, the test/re-test correlation (both tests forward or both backward) is typically

nearly perfect, whereas the forward-backward correlation is typically well below 1, around 0.8±0.9

(Kahana, 2002; Kato & Caplan, 2017; Rehani & Caplan, 2011; Rizzuto & Kahana, 2000, 2001;

Sommer et al., 2008). In a symmetric model, one way to reduce the forward-backward correla-

tion would be add noise between successive tests; however, this would also reduce the test/re-test

correlation. In contrast, all four of our models produced correlations well below 1 without such a

mechanism. Thus, it seems that deviating from the perfectly commutative convolution operation

can also explain why forward and backward cued recall are slightly decoupled from one another

(compared to testing twice in the same direction), without losing other desirable characteristics of

convolution, such as equal accuracy in the forward and backward direction on average.

The success of our models shows that symmetric item-item associations can still support order

judgements. Furthermore, the paradox between associative symmetry and moderate order mem-

ory may be particular to unmodified matrix model, which assume order is derived directly from

a perfectly directional association. However, these results do not necessarily argue against ma-

trix models, but suggest modifications to these models need to take a different approach. For

example, one could incorporate partial-permutation into a symmetric matrix model as follows,

M = α(pl(a)pr(b)
⊺+ pr(b)pl(a)

⊺), where the forward and backward association share the same

associative encoding strength α to produce high Yule’s Q. The model could infer order by re-

trieving an item, then computing a dot product to a copy of this item with the correct position,

pr(b) · (Mpl(a)), and incorrect position, pl(b) · (Mpl(a)). Order recognition performance, as the

difference between these two dot products, would be proportional to amount of permuted features.

This version of the matrix model may be able to function similarly to its cousin implemented with

convolution (model Π ).

Like convolution, some recent models within the REM framework such as Criss and Shiffrin

122



(2005) and Cox and Criss (2017, 2020) also disregard the order within associations. The ideas from

models Π and φ could also be applied to these models quite easily. Indeed, Cox and Criss (2020)

suggested something to this effect, where features representing the spatial locations of each item

could be incorporated into item vectors in their model to produce some memory for order. Partial

permutation could be applied to REM-based models with the same logic as with matrix models

(described above). Because item-item associations are represented with concatenation within the

REM framework, applying model A would be formally equivalent to applying model φ .

The influence of order/position on associative recognition Across six experiments and under

various conditions, J. Yang et al. (2013) found that associative recognition probes were judged

faster, and with higher accuracy when presented in the correct order, replicating the results of

a number of studies (Giovanello, Schnyer, & Verfaellie, 2009; Haskins, Yonelinas, Quamme, &

Ranganath, 2008; Wiegand, Bader, & Mecklinger, 2010). Our models here may help us understand

how these results are still be consistent with symmetric associations in memory.

First, consider the position-specific permutation model (model Π ). Assume the model stores

the following pairs in memory, m= pl(a)∗ pr(b)+ pl(c)∗ pr(d). If the model ªknowsº that probes

may be reversed at test, it is reasonable to assume that it will apply permutation to probe items to

incorporate order into the recognition process. The model could simulate a ªforwardº intact trial as

follows, pl(a)∗ pr(b) ·m, along with a ªbackwardº intact trial, pr(a)∗ pl(b) ·m. These two matches

are identical to our implementation of order recognition in model Π (equations 3.8 and 3.12), so

we already know that the model can produce an advantage for forward intact probes. The model

could not produce a forward advantage for recombined probes, because both E [pl(a)∗ pr(d) ·m]

and E [pr(a)∗ pl(d) ·m] are equal to 0. Thus, the permutation model would predict that forward

asymmetries for associative recognition are only driven by asymmetries in intact probe trials.

Model φ (position-features) would function similarly. Again, we know the model can produce

a correct-order advantage for intact pairs because the comparison between a forward and back-

ward intact trial is identical to its implementation of order recognition (Equation 3.7 and 3.11),

thus E [(a⊕ l)∗ (b⊕ r) ·m] > E [(a⊕ r)∗ (b⊕ l) ·m]. However, because E [(a⊕ l)∗ (d⊕ r) ·m]

and E [(a⊕ r)∗ (d⊕ l) ·m] are both equal to 0, like in model Π , this model predicts no order-

advantage for recombined pairs.

Model A (the item-position association model), and by extension model Σ , can also pro-
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duce a order-advantage for associative recognition. Given that encoding is as follows, m = (a ∗

b+ a ∗ l+ b ∗ r)+ (c ∗ d+ c ∗ l+ d ∗ r), the model produces a correct-order advantage to intact

probes because, E [(a∗b+a∗ l+b∗ r) ·m]> E [(a∗b+a∗ r+b∗ l) ·m]. However, unlike model

Π and φ , model A (and Σ ) can also produce a correct-order advantage for recombined probes,

E [(a∗d+a∗ l+d∗ r) ·m]> E [(a∗d+a∗ r+d∗ l) ·m].

Thus, models differ in their ability to produce correct-order advantages for recombined probes.

In experiment 6 of J. Yang et al. (2013), associative recognition judgements were more accurate for

intact pairs in the correct order (compared to incorrect order), but with no significant difference for

recombined pairs. This may suggest that order did not influence judgements of recombined pairs,

consistent with models Π and φ ; however, because these were analyses of accuracy values, and

not of d′, they did not account for bias effects. In any case, our main point here is that symmetric

associations can still cause associative recognition to depend on constituent-order if position/order

is incorporated at encoding and at test.

Order incorporated into the item representation Models were largely comparable when fitting

order recognition data. However, the double function task posed significant challenges to model A,

model Σ , and model φ . This was because items in double function pairs appear in both positions

exactly once. As a result, information for position is not specific to a given item, and incorporating

position into cue vectors provided no information to select between interfering double function

pairs. Model Π (partial permutations) could overcome this issue, because permuting a given item

by two different patterns (e.g., pl(a) versus pr(a)) decreases similarity between both versions, in

proportion to the amount of permuted features, but permuting distinct items by the same pattern

does not increase their similarity. This meant that a cue permuted based on position could activate

a specific pair based on position, and the model solve double function interference.

The success of permutation here may allow us to come to more specific conclusions about how

order is represented in memory, suggesting that order is encoded by directly modifying item rep-

resentations based on position. The idea that item vectors are modified by their appearance in a

word pair has precedence in existing memory models (Benjamin, 2010; Caplan et al., 2021; Criss

& Shiffrin, 2004b; Cox & Criss, 2020). For example, Benjamin’s (2010) DRYAD model encoded

context as a subset of each item’s features to explain age-related memory deficits in context mem-

ory. If we assume that order/position is also part of context, this idea would be quite similar to our
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position-feature model, although the present analysis shows the challenges with this representation

choice when context is repeated for multiple items.

Caplan et al. (2021) proposed a model where certain features of a word were selectively at-

tended to, while others were not, and set to zero. Attended features were based on the item it was

paired with at study, implementing the idea certain meanings of a word are highlighted based on

the context it appears in (e.g., BANK in RIVER BANK versus MONEY BANK). The model could

use the pattern of attended features to judge pairings between items without storing any explicit as-

sociations. Vector permutation in our present model may be functionally related to this idea. Like

permutation, setting certain features of an item to zero rotates item vectors in vector space, causing

them to be dissimilar from the original word. Taken together with the success of permutation in

the present article, this may suggest that a generality to permutation-like mechanisms to encode

various information about the context in which that item appeared in, including its spatial position.

The influence of task demands and memory strategies on order-encoding strategies Al-

though we found the most evidence for permutation with the present data, it is possible that other

models could be supported under different conditions. For example, if participants studied word

pairs, but were only required to judge their constituent-order (rather than item-item pairings), it

might be optimal to ignore associations between items and focus on the relative positions of each

item. In this case, a participant’s cognitive strategy might be more consistent with the item-position

association model (model A), or addition of item and position vectors (model Σ ). Even in Thomas

et al. (in press), model A provided a substantially closer fit (BIC > 2) to 4 participants (Figure 3.6),

suggesting that even when association memory is tested, participants still may adopt qualitatively

different order-encoding strategies that may consistent with different models. Future work could

examine the conditions that cause participants to either encode order within the item representation,

or as explicit item-position associations.

Non-commutative convolution in the brain Both Plate (2000) and Kelly, Mewhort, and West

(2017) noted that precisely implementing convolution in the brain would require intricate patterns

of neural connectivity. However, even if a network of neurons is wired perfectly to compute con-

volution, it is unlikely that the synaptic strengths would be perfectly equal within the network.

Unequal synaptic strengths may actually be useful from the perspective of encoding order. Con-
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sider the following expression, a∗b, which can be expanded as follows,





a1b1 +a2b3 +a3b2

a1b2 +a2b1 +a3b3

a1b3 +a2b2 +a3b1



 (3.37)

Now consider a network of neurons that computes this operation, but by random chance, has one

synapse that is stronger than the rest, represented with the coefficient ζ ,





m f 1

m f 2

m f 3



=





a1b1 +ζ a2b3 +a3b2

a1b2 +a2b1 +a3b3

a1b3 +a2b2 +a3b1



 (3.38)

If same network computes the reversed association, mb = b∗a,





mb1

mb2

mb3



=





b1a1 +ζ b2a3 +b3a2

b1a2 +b2a1 +b3a3

b1a3 +b2a2 +b3a1



 (3.39)

We can infer constituent-order by comparing m f and mb as follows. First consider the dot product

m f ·m f ,

m f ·m f = (a1b1 +ζ a2b3 +a3b2)
2+

(a1b2 +a2b1 +a3b3)
2+

(a1b3 +a2b2 +a3b1)
2

(3.40)

= (a2
1b2

1 +ζ 2a2
2b2

3 +a2
3b2

2)+noise+

(a2
1b2

2 +a2
2b2

1 +a2
3b2

3)+noise+

(a2
1b2

3 +a2
2b2

2 +a2
3b2

1)+noise

(3.41)

The expectation of this dot product can can be expressed as the sum of specific products between

random variables. The noise terms can be dropped for expectation calculations because they con-

sist of odd powers of random variables, and the expectation for odd powers of standard normal

distributed variables is 0 (Anderson, 1970). Thus, the expectation of this dot product can be ex-

pressed as follows,

= E
[

m f ·m f

]

= (n2 −1)E
[

X2Y 2
]

+ζ 2E
[

X2Y 2
]

(3.42)
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Where X and Y denote random variables drawn from N(0,σ2). Following Weber (1988), expecta-

tions of squared random variables can be substituted,

= E
[

m f ·m f

]

= (n2 −1)σ4 +ζ 2σ4 (3.43)

Assuming that each element from a and b is drawn from N(0,σ2), and σ2 = 1
n
, which produces

approximately normalized vectors, this equation can be simplified even further,

= E
[

m f ·m f

]

=
(n2 −1)+ζ 2

n2
(3.44)

Equation 3.44 reveals that E
[

m f ·m f

]

has a quadratic relationship to to ζ . For comparison, let us

also derive E
[

m f ·mb

]

, which is expanded as follows,

m f ·mb = (a1b1 +ζ a2b3 +a3b2)(b1a1 +ζ b2a3 +b3a2)+

(a1b2 +a2b1 +a3b3)(b1a2 +b2a1 +b3a3)+

(a1b3 +a2b2 +a3b1)(b1a3 +b2a2 +b3a1)

(3.45)

= (a2
1b2

1 +ζ a2
2b2

3 +ζ a2
3b2

2)+noise+

(a2
1b2

2 +a2
2b2

1 +a2
3b2

3)+noise+

(a2
1b2

3 +a2
2b2

2 +a2
3b2

1)+noise

(3.46)

Again dropping the noise terms because odd powers of random variables have expectations of zero,

we can derive the expectation of this dot product as follows,

E
[

m f ·mb

]

= (n2 −2)E
[

X2Y 2
]

+2ζ E
[

X2Y 2
]

(3.47)

= (n2 −2)σ4 +2ζ σ4 (3.48)

=
(n2 −2)+2ζ

n2
(3.49)

These equations reveal that E
[

m f ·mb

]

has a linear relationship to ζ , while E
[

m f ·m f

]

has a

quadratic relationship, meaning that the difference between these dot product would increase with

ζ . Thus, in this extremely simple implementation of a neural network with unequal synaptic

strengths (with only one ªstrongº synapse), we can start to see how this type of mechanism could

127



introduce differences between the forward and backward versions of an item-item associations

thatcould be leveraged to infer order, and without any explicit mechanism to encode order. In sum,

the simple assumption that convolution is not be strictly commutative when implemented in the

brain could provide a simple way to support order memory.

Applications to serial recall. Associations that are symmetric yet support some ability to dis-

criminate the item position could also be useful for understanding how people remember ordered

lists of items with serial recall. Associative chaining (e.g. Ebbinghaus, 1885/1913; Lewandowsky

& Murdock, 1989) is a major class of model of serial recall, and assumes that a participant learns

a list of words in order by forming direct item-item associations between neighbouring items. At

test, the list is remembered by sequentially chaining through the items, using one item as the cue

for its next. Although there is evidence for chaining-like effects (Caplan, 2015; Lindsey & Lo-

gan, 2019; Solway, Murdock, & Kahana, 2012), certain benchmark findings have argued against

a pure chaining account. This has led to the proliferation of positional-coding models that strictly

avoid inter-item associations, and associate each item with its own positional code (Conrad, 1960;

Brown et al., 2007; Burgess & Hitch, 1999; Farrell, 2012; Henson, 1998), although even these

models have trouble with different empirical findings (Solway et al., 2012). In sum, chaining can-

not be completely ruled out (Caplan, 2015), but it may need some modifications to account for the

latest benchmark findings, which is where our examined extensions to convolution may be useful.

Implementations of chaining such as Lewandowsky and Murdock (1989); Solway et al. (2012),

and Caplan, Ardebili, and Liu (2022) have used symmetric operations like convolution to encode

item-item associations. A symmetric chaining model matches well with certain behavioural bench-

marks. For example, if participants accidentally skip an item during serial recall, participants fre-

quently go backward in the list and recall the missed word (fill-in errors, Henson, 1998) rather

than proceeding on with the list (in-fill errors).8 Symmetric associations could be useful for a

chaining model to account for these findings. If an item is skipped, (A,. . . C), having equal for-

ward and backward association strengths would mean that using C as a cue would retrieve both

B and D equally, and the model could produce fill-in errors with high frequency. Other findings

that suggest item-item associations are somewhat directional. For example, cued recall of serial

lists tends to exhibit forward asymmetries (Kahana & Caplan, 2002). Applying any our present

8Some studies have found that in-fill errors are more frequent (Solway et al., 2012; Caplan, 2015)
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order-encoding mechanisms to a symmetric chaining model (e.g., left right patterns of partial per-

mutation for each item-item association), would allow the model to have some ability to make

use of the ability to discriminate the constituent-order of item-item association, while preserving

the ability to progress backward and forward equally through the list. This type of model may

be well-equipped to fit both benchmark findings that support symmetric associations, and findings

that indicate some directionality to memory for serial lists.

3.5 Conclusion

Multiple modifications to convolution preserved important properties of this model while adding

some ability to judge constituent-order. However, only position-specific permutations could suc-

cessfully disambiguate double function pairs. This demonstrates that there are a number of possible

mechanisms by which symmetry can co-exist with some ability to judge constituent-order, but the

partial permutation model accounted for the broadest set of empirical benchmarks.
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Chapter 4

Conclusions and synthesis, accounting for

order and mental imagery within

mathematical models

Our first research question was whether conscious experience of mental imagery and/or mental

imagery skill was necessary to benefit from imagery instructions. We found that:

• Individual differences in both visual imagery vividness (Vividness of Visual Imagery Ques-

tionnaire ratings) and skill (Paper Folding Task performance) had null relationships to the

effectiveness of imagery instructions

• Self-identified aphantasics who report little to no ability to form mental images exhibited no

hint of reduced benefit from imagery instructions.

Our next research question was whether associations studied with visual imagery would be

stored with more information for constituent-order. We found that:

• Interactive imagery instructions did not improve order recognition performance, nor change

its moderate relationship with cued recall performance (chapter 2, experiment 1), even when

participants were provided ways to incorporate order into the image (chapter 2, experi-

ment 2).

Our third research question was whether existing models could be modified to store moderate
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levels of order. This was especially important to address given the robustness of moderate order

memory to imagery instructions. We found the following:

• Convolution-based models, which otherwise have no ability to discriminate AB from BA,

can be modified in four separate ways to discriminate order above-chance and capture the

moderate relationship between order recognition and cued recall performance, without com-

promising the inherent symmetry of convolution.

• The additional constraint of double-function lists could only be satisfied by partial permuta-

tion variant of convolution (model Π ).

In this final chapter, we elaborate on our discussion of these findings from earlier, which special

focus on connections to mathematical models.

4.1 An alternative explanation of interactive imagery effects

Through the lens of dual-coding theory (Paivio, 1969, 1971, 1986) imagery instructions are effec-

tive because they elicit visual imagery, allowing participants to store both an imaginal and verbal

format of the association. This explanation aligned with Kosslyn and colleagues’ position in the

imagery debate, which proposed that mental imagery corresponded to a distinct depictive format

by which information is represented in the mind (Pearson & Kosslyn, 2015). If associations stud-

ied with interactive imagery are stored in both an imaginal and verbal format, this implies that

individuals who can form more vivid, or accurate visual images should be able to store the visual

format of the association with more detail, which could aid memory performance. Furthermore,

individuals with little to no ability to form mental images (aphantasia) should be unable to store

imaginal representations, and receive less benefits from imagery instructions.

However, individual differences in both imagery vividness and skill could not explain the ef-

fectiveness of interactive imagery. Furthermore, in self-identified aphantasics, we saw no reduced

benefit from imagery instructions. These results suggest that the experience of mental imagery is

not required for interactive imagery effects. This result was more consistent with the argument that
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visual imagery itself is epiphenomenal (Pylyshyn, 2002), and does not necessarily correspond to

underlying cognitive mechanisms that lead memory to improve by a large margin. This motivated

us to think about alternative ways by which interactive imagery instructions improve memory.

Although interactivity did not emerge from subjective reports in experiment 2 and 3 (see Chap-

ter 2, Supplementary Materials), the ineffectiveness of top-bottom imagery compared to other

instructions led us to suspect that imagining one word on top of the other, without any explicit

instruction to imagine them interacting, might have experimentally reduced the rate of interactiv-

ity. Thus, we re-considered the potential benefits of imagining interactions between words. Our

suggestion was that forming images, or non-visual analogues, which conceptualized explicit inter-

actions between words in a pair could highlight item features that are pair-unique, which would

have downstream benefits for association memory. To remind the reader of a helpful illustration,

consider the different ways you would think about the word APPLE, if you saw it in OVEN AP-

PLE versus TEACHER APPLE. Although there may be many ways one could implement this idea

mathematically, one possible idea is concatenate additional features and increase total dimension-

ality of item vectors, representing the additional pair-unique details that the participant is led to

think about after they receive interactive imagery instructions.

Future directions One way to test the validity of our present explanation of interactive imagery

effects, is to modify the instructions to be even more effective based on our insights. Future studies

could test instructions that remove references to mental imagery, which by our current findings

do not seem essential, and add an emphasis on processing each word in a pair-unique way. For

example, changing instructions in figure 3.2 from ªPlease try this technique for the next word pairs.

Form a mental image with both of the words interacting together when you are presented with a

word pair. For example, for the word pair CAT±DOG, you could imagine the cat chasing the dog.º

to ªPlease try this technique for the next word pairs. When you think about both of the words, think

about them interacting together in a way that makes them unique to the pairing itself. For example,

for the word pair OVEN APPLE, you could think about baked apples in a hot oven, while for the
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pair TEACHER APPLE, you could think about a happy teacher holding a polished red apple.º. If

this strategy proves more effective, we might have more evidence for the importance of processing

words in a way that is conducive to association memory performance.

4.2 Moderate memory for order is unaffected by imagery in-

structions

The initial idea that imagery instructions led participants to encode distinct visual or imaginal rep-

resentations led us to hypothesize that imagery instructions might be an effective way to improve

memory for order. We hypothesized that stored visual representations could provide participants

with a better way to store and recover the constituent-order of associations, leading to increased

order recognition performance, even to the maximal levels predicted by matrix models.

In experiment 1 in chapter 2, we found that interactive imagery instructions had no effect on

order recognition performance, or its relationship to cued recall performance. In experiment 2

we modified standard imagery instructions to indicate how the participant was to encode order

within the visual image, to address the possibility that participants did not improve because they

could not think of an effective way to incorporate order into the image. These imagery instruction

variants like actor-object imagery (e.g., DOG ate the PIE), seemed like a simple way to form an

image incorporating both the association and its order. Yet, participants administered these variants

exhibited no substantial benefit to order recognition performance. These results both replicate

and extend Kato and Caplan (2017), demonstrating the surprising generality of mid-range order

recognition performance, even when participants are given explicit study strategies that are quite

effective to improve memory for the association itself.

As we discuss this later in this chapter, these results present an additional mystery about the na-

ture of interactive imagery effects, and also about how participants represent the constituent-order

of associations. Whatever effect that imagery instructions have to improve association memory

is ineffective to improve order recognition, which must be accounted for in efforts to model or

explain these effects.
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Future directions Our results indicate that the moderate relationship between order recognition

and cued recall performance is quite general, which has direct implications for the existing mathe-

matical models. However, there may be certain factors that could influence the ability to store the

constituent-order of associations, and further inform our understanding of order memory, as we

discuss below.

First, in the experiments presented here, and in Kato and Caplan (2017), words in each pair

were presented simultaneously. In this case, order judgements are specifically asking participants

to remember the left-right spatial relationship between words within a pair. Another common pre-

sentation method is to present word pairs sequentially, where the first associate is presented on its

own, followed shortly after by the second associate. In this case, judgments of constituent-order

would ask participants to remember the temporal, first versus last, relationship between words.

Some effects generalize between these two presentation methods. For example, J. Yang et al.

(2013) and Madan, Glaholt, and Caplan (2010) found associative symmetry in both simultane-

ous and sequential presentation conditions. However, if we found that order recognition differed

between these two conditions, it may suggest that models need to adopt different parameters in

both conditions, or completely different models altogether for temporal and spatial order. Another

parameter to consider is our presentation rate, which was 2.85 seconds/pair in all experiments.

Had participants been given more time to incorporate order into formed images (or non-visual

analogues) at study, this may have allowed them to improve order recognition performance post-

imagery instruction. Future studies could test if order recognition performance and its relationship

to association memory would be increased at longer presentation rates.

We should also consider that in many real-world scenarios we can make judgements about

order based on our prior knowledge about stimuli. For example, with names such as BRIAN

O’BRIEN, if you are familiar with both words, it is straightforward to judge which word is more

likely first name, and which word is more likely last name. In this case, one can infer order based

on prior knowledge about the individual words, rather than memory of a specific instance in which

these words were seen together. Another example is compound words, which have modifier-head
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relationships (Dressler, 2006; Caplan, Boulton, & GagnÂe, 2014) where it is immediately clear what

the correct order of the pair is based on prior knowledge (FISH HOOK versus HOOK FISH). These

examples suggest that explicitly storing and retrieving the constituent-order of novel associations

is often unnecessary, and may explain why we find that participants are considerably worse at

judging order compared to remembering novel associations.

4.3 Producing ordered, symmetric associations with convolu-

tion models

One of the main theoretical developments in this thesis was the successful extension of symmetric

convolution models to produce above-chance order recognition, and in a way that was moderately

dependent on association memory. This was accomplished with minimal modifications that did

not substantially increase model complexity, preserving useful characteristics of convolution such

as its inherent symmetry. In chapter 3, we contrasted our attempts with previous attempts to mod-

ify matrix-based models to encode associations with less order (Kato & Caplan, 2017). These

attempts proved more challenging, especially with the additional constraint of associative symme-

try, although we discussed how our examined mechanisms may be applied to a symmetric matrix

model to overcome previous issues. In any case, this analysis returned multiple ways that sym-

metric associations could also support moderate, behavioural levels of order memory, reconciling

seemingly contradicting characteristics of verbal association memory.

We pushed our investigation even further by evaluating each of our model modifications against

double function lists. We found that this additional constraint could only be satisfied by partial per-

mutation (model Π ). Item-position associations (model A), item and position vectors summation

(model Σ ) and position features (model φ ) were all ruled out because position information was

repeated for every item in the list, and did not provide any pair-specific information that could be

used to solve AB versus BC interference. The success of permutation allowed us to make more

specific conclusions about how order may be represented in memory, suggesting that order was

encoded by modifying the item representation directly, rather than through associations to some
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separate position vector.

Future directions As we mentioned in chapter 3, an interesting limitation of model Π and φ is

that both models can only judge order above-chance if items are in their original pairing. Although

our previous discussion of this model property was in regards to the correct-order advantage for

associative recognition (J. Yang et al., 2013), predictions can also be generated about when the

primary task is order recognition. For example, assume that model Π encodes the following pairs,

m = pl(a) ∗ pr(b) + pl(c) ∗ pr(d). As we know, the model Π can discriminate AB from BA,

because E [pl(a)∗ pr(b) ·m] > E [pr(a)∗ pl(b) ·m]. However, the model cannot discriminate AD

from DA, because E [pl(a)∗ pr(d) ·m] and E [pr(a)∗ pl(d) ·m] are both equal to 0. A similar

argument applies to model φ , where E [(a⊕ l)∗d⊕ r ·m] and E [(a⊕ r)∗d⊕ l ·m] are also both

equal to 0. In contrast, model A and Σ can make independent judgements about the positions of

items, by, for example, comparing E [(a∗ l) ·m] and E [(a∗ r) ·m].

These predictions could be tested empirically by asking participants to perform order recogni-

tion judgments for four types of probes AB, BA, AD and DA. Model φ and Π could, as we know,

produce above-chance order recognition d′ for AB versus BA, but produce d′ for AD versus DA

should be 0. Models A and Σ would predict comparable order recognition d′ for AB versus BA,

and AD versus DA. J. Yang et al. (2013) conducted an experiment that would test these predic-

tions. The main focus of their study was associative recognition; however, J. Yang et al. (2013)

also included a ªdirectional judgementº task in Experiment 6 for pairs AB, BA, AD, and DA.

Directional judgements here were essentially the same as our order recognition task, except that

participants were instructed to judge if words were in their correct position regardless of whether

in their correct pairing or not. For intact pairs, they found that accuracy for correct order pairs

(AB) was significantly higher compared to accuracy for pairs in the incorrect order (BA), but there

was no significant difference for recombined pairs between correct order (AD) and incorrect order

(DA) pairs. These results seem consistent with model φ and Π ; however, a direct evaluation of our

models against this data would require more steps.
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4.4 Common themes: accounting for imagery effects and order

recognition data within a unified modelling framework

Throughout this thesis we have addressed two separate research questions somewhat indepen-

dently. However, given our overall goal of understanding the computational characteristics of

association memory, an interesting future direction may be to integrate imagery effects and our

models of order memory. In chapter 2, we found that order recognition performance, and its corre-

lation to cued recall performance, was unaffected by imagery instructions. This result indicates that

whatever mechanism interactive imagery instructions are engaging to improve association mem-

ory, whether it be increased item features or something else entirely, is not effective to improve

order memory. Besides emphasizing the need for models with mid-range order, this reveals an

additional puzzle that future modelling work must address. How can imagery strategies provide

detail that boosts association memory without improving order recognition?

We can derive some hints about whether each of our present extensions of convolution can

accomplish this from previously reported simulations in chapter 3. If we focus on each model’s

ªorder parameterº, parametric plots in figure 3.3 show that our models cannot independently modu-

late cued recall/associative recognition and order recognition performance. However, when models

were able to vary parameters n and σα in figure 3.8 we see a different story. Models φ and Π could

clearly produce a variety of cued recall accuracy values at the same order recognition d′. Models

A and Σ produced a considerably narrower range of cued recall accuracy values at each value of

order recognition d′; however, as we noted earlier, models A and Σ may be better at producing the

same range in cued recall accuracy as the other models if they were fit to this data.

In any case, these simulations may indicate we already have models that can different combina-

tions of free parameters to mimic imagery effects on association memory, without changing order

recognition d′. Future work could test whether each of our models can account for these effects

while closely examining how each model uses its parameters to do this.
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4.5 Overall conclusions

In sum, we found no evidence for the idea that visual imagery is necessary for the benefits due to

imagery instructions, consistent with existing arguments that the experience of imagery is epiphe-

nomenal (Pylyshyn, 2002). This leaves open the possibility for alternative explanations of imagery

effects.

In pursuit of our other major goal, we replicated and extended the finding that associations are

remembered with moderate order, to conditions where participants are given imagery instructions.

Additionally, we modified convolution-based models in multiple ways to resolve these challenges,

although only the partial permutations (model Π ) could solve the additional benchmark of double

function lists.

Then, synthesizing the work here, we considered the additional finding that imagery instruc-

tions only benefit association memory and not order recognition performance. This presents an

additional puzzle for future modelling efforts. Any account of imagery effects, or order mem-

ory, must also explain why the engaged mechanism after imagery instructions does not improve

memory for order.
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