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ABSTRACT -

Program testtng ‘involves the executton of a program oveh a set of
test data followed by the evaluation of ‘the program over the set. In
geheraﬂ, the problem of finding a finite‘set'ot paths to cdnduct )
testing 1% known to be unsolvable. For.a certain class of programs .
whlch resthmc\\the operat1ons to ]1near funct1ons, 1t is poss1b1e to
characterlze the set of errors wh1ch escape detect1on for a g1ven path.
This type of error is termed b71ndness The\b11ndness concept can be
formu]ated as a path select1on strategy to uncaver domain errors, one
cJass of. pr1ﬁ%1pa1 errors 1n computer programs, wh1ch occur when
spec1f1c 1nput data fo]]ow the wrong paths due to érrors in the controT
f]ow of the program. Two path se]ecf1on a]gor1thms based on the
b11ndness concept ‘are proposed to expose domain errors; one with a ,
fcpmb]ex1ty of O(n ) and_thevother w1th a comp]ex1ty of O(n), where n is

: the number of program‘variab1es.,The process of'se1ecting test paths is

--analyzed, heur1st1cs are summarized, *and a stopp1ng criterion is -

| suggested , ey

R
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_ i » CHAPTER ONE
,-\wﬁakﬁ} ;‘ : : ~ . INTRODUCTION

~ Glenford J. Myers, ae authoriﬁy on software engineering, once
.wrotee
-Given the tremendous amount of time and money spent in(tESting

-computer programs, and given the serious consequences of program

errors in computing systems, one would expect that software

testing would be'a highly developed and widely understood skill.
Actually, this is not the case at all. Less seems to be known

.about software fegting than about any other aepect of software

deve1opment‘[91.

Program testing is the execution of abprogram gver a set of test
data in order to identify desired proéram functions or to reveal
-program errors.:A testihg strategy is a method to conetrutt‘iest data.
A testing sirategy ie reliable for a program if any set of test data
cbnetructed py this strafegy indicates errors whenever the brogram.is/
incqrrect, o |

The correctness of the program is determined by evaluating..the
output of tesi data. We assume the existence of an "orac]e" which can
e1ways determipe whether the output correspondfng to tesf data is
: correct or not. The concept of a test orac" was or1g1nated by Howden,
[7] Test oracles can take on d1fferent forms: tables, hand ca]cu]ated
values, s1mu1ated resu]ts, formulae, program specifications, etc.

The difficulty of program testing arises from the fact that therel
" is no reliable testing sfrategy for programs in general. Howden [4]

proves that the problemiamounts to the determination of the equiva]ehce

£
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of arbttrary primitive recursive functions. AcCordi?g to computation

theory, this is unsolvable. .
Atthough the problem of finding a general testing,strategy for all
programs is unsolvable, for certain classes of programs, -however, it'is»

pnssible to construct a finite test data set to uncover certain classes

+of =2rrors. There are strategies, wh1ch involve the constructlon of
te;ts to expose specific classes of errors, for examp1e "algebraic
errors" [5] and "domain errors" [11] for certain c]&sses of programs,
Howden [4J has classified two types of errors for computer
programs domain errors and computation errors. A domain error occurs .

when an errgr in the contro] f]ow causes some 1nput to fo]]ow’the wrong ’

path. A computation error occurs when an, error in some ass1gnment

causes some input to compute the wrong funct1oq a]though the correct
. : y v

path is. fo]]owed Lo - N .
\ ‘ . . ‘ .- L -

Path analysis testing, a class of strategies based on the
. : - ' ’ M el
structure of the program to be tested, consists of two operations;‘/p/"
1. select a set of paths'torftesttng, SRR o

2. se]eCt'input data to execute the chosen paths. . IT.A.

Current]y, the second operat1on appears ‘to be better understood
‘ The Domarn Testrng Strategy [1}], for examp]e, generates test p01nts on .
or near. the boundaries of an input doma1n which can re11ab1y detect if
a domain error has occurred - as one or more boundar1es have sh1fted A

~f,
data se]ect1on method 1s re71ab7e<1f test data generated by the method._

Y

in the path doma1n causes’ 1ncorrect output whenever there is an error R
in the program The progress which has been made in the select1on of
input data a]]ows us to concentrate on ‘the f1rst operat1on se]ect1ng

test paths We assume the ex1stence of test data se]ect1on methods



| which_can utiiize selected paths to explicitly expose errors.

Zeil [13] identified three,typesvof blindness rrors,mhich occur
‘in_pathvtesting: assignnent blindness, equality bfz ness’ and |
self-blindness. Blindness errors are*a]gebraic eXpressionswhicﬁfcan be
added to the correct expression ofva program “tatement'(assignmentyor
fp'edicate) without being detected by ’?QIVQH path through that
“statement. Name]y, the execution of the program a]ong(the given path
w111 not distingu1sh if that statement contains an erroneous expresston
or not .Blindness errors, however can. be exposed by the se]ection of

different paths Zeil appiied the b]indness concept to formulate a path
- selection strategy, which we - refer to as blindness based testing |

This study w11] focus ‘on- blindness- based testing for domain
errorx’ Its theory and Justification w111 be discussed; its
i applicabiiity as a testing strategy will be exp]ored Prob]ems

fencountered in theory and practice w111 be 1dentified and analyzed;
'procedures to dea] W1th bhe e problems will be suggested and eva]uated
The goa1 1s to formu]ate a reliable: path gelection strategy for -
certain classes of programs which:can effectively. expose domain errors.
| "vthapter two gives a brief‘introdUCtionvto the results of Zeil.
Chapter‘threefpresents_a mathematica1 model for a simple programming
'énvironmént. Based on this modei, we study the biindness theory and
Cits justification. Chapter four summarizes the blindness concept and
proposes two b]jndness-based'path selection aigorithms. The compiexity
-and effectiyeness of these two a]gorithms are discussed. Chapter five
deals with a probiem encountered in b]indness testing 1nvar7a;t
‘expre557ons which are combinations of b]indness errors and’ cannot be

. eliminated by the seiection of different paths Chapter six discusses

s
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test data selection and related issues. Chapter seven is a SUmmafy of -
this study. The strength of blindness-based testing as well as its

Timitations is evaluated, and future study is outlined.



CHAPTER TWO
ZEIL'S STUDY

2.1 Background

Before we introducg the results of Zeil’s study, we will first
provide some background of program testing. For convenience, we
distinguish two types Qf variables in the program. Variables appearing
in the input statements are termed Tnput variableé; other variables
whose-values are established by the right hand side of assignment
sta’ ments are termed program vafiables.

A program can be represéntéd by a control flow graph G = (N, A),
where G is a directed grabh,.N %s a finite set of nodes, and Aﬁjs a set
" of arcs between nodes. Fach node in N represents a statement in.the
ﬁrogram. An entrance ‘node in the graph hés no predecessors; an exit
node in the gfaph has no successors. There is ‘only one entrance node ir -
the graph there can be mu]t1p]e exit nodes in the graph The control

1ow graph def1nes the paths within a program. A subpath is a f1n1te

LY

séquence of nodes in N ("1’"2""’n ) such that for all i, 1<=i<p, LT
is a successor of n, and (n.,n1+1) € A An 1n1t7a7 subpath is a subpath ,
whose first node is the entrance node. A complete path is an initial |
subpath whose last node is an 2xit node. The word path is used to
denote bot@ cor .eté paths‘and subpafhs. . ! ' -
k Assignmer statement; and predicatgs (conditional branch

stéfémehts) are two major cbmponents of most programgﬂ Assignment.
'statements ass1gn new va]ues to program var1ab1es Predicates determine

the program contro] f]ow When a pred1cate is evaluated a]ong a certa1nf

path, a pred;cate interpretation is produced by rep]ac1ng each program
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variabie éppearing in the predicate with its symbolic value calculated
in terms of input variables along that patht”
4 g ; |
Predicates control the program flow and partition the input.domain

into a set of subdomains. Each subdomain corresponds to a part1cu]ar
path. where 1nput data from the subdoma1n w11] cause Zhat path to be
executed. Whenever an error occurs in the contro] flow, 1t will usually
.cause a shift in the subdoma1n boundary As a resu]t, some input data’
w111 follow a wrong path which is a typ1ca] domain error.’

Domain errors may occur due to an error in a pred1cate? or an
error in an assignment statement which subsequently affects ;;§§t
interpretafion of a later predicate. The former is termed a predicate.
error, and~the‘1att§r is called an assignment error.‘However, an
.assignment error can cause a domain error, a computhtion erroh,'or
both. When a heqdired predicate is missing in a program, it is Céf]éd'a
missing path error [4]. No path test1ng methods can systemat1ca1]y

ect this type of error.
\ :
‘?.2 Zeil’s Results

As we ment1oned in the first chapter, Zeil identified three types

of blindness errors in path testing: assignment blindness, oqua11ty\\

blindness and self-blindness. B]1ndness erxors are associated with
. * ‘,- “*
assignments .and predicates. “For 1nstance, after the assignment

"yi := f(X)", the expression "y - f(X)" can be added to a 1ater
statement without detect1on Th1s behavior is ca]]ed assignment
b71ndness (F1g 1). Similarly, 1f an equa]%ty:restr1ct1on in terms of

input var1ab1es has been imposed along a path, this expression can be

added to a later statement without detection. This behavior is called

»
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’ equa?fty blfndness (Fig:'l). Finally, a test1ng pred1cate can’ never be

. diStinguished from its mu1t1p1es This can hard]y be~con51dered an ”

' error However, th1s expression, called self- blrndness, can. be cembired
with ass1gnment or equatlty b11ndness to y1e1d unexpected errone s

expressions (Fig. 1).

Assignment Blindness

Correct Code " Incorrect Code
Y=X_- , Y = X
\ _

IéTéY7f‘3.> o .- _ Tﬁjk_+ Y+ 350

Equality Blindness:

Correct Code e , Incorfect,Codek
(/‘ IF X =1 THEN IF X =1 THEN
L . ‘ 4
N IF Y > 0 THEN IF X+ Y -"1>0 THEN
Selfiblindness
% .
Correct Code ‘ : Incorrect Code
. Y=x Y= L

Y'>'1 THEN | © X+ Y > 2 THEN
REE B . e
Figure 1 Assignment Blindness, Equality Blindness, and Self-Blindness

-/

>B1indnesses are algebraic expressions which can be added to the
T correct expression of a program statement without being detected for a
given path. If a statement conta1ns a b]1ndness express1on wh1cp is -
1nd1st1ngu1shab1e in the program execution for any pOSStble path
through that statement, this blindness will not cause any error. In

this case, the program with the statement containing the blindness:



expression is equivalent to the’origina] program. Nhen we reter to )
blindness in the following discussion, we on]y‘concentrate on biindness
A’whichnwiiigactuaily‘cause rrors. ‘ |
- Thg»princip]e of the'biinqness concept is that a single path
cannot guarantee:the'correctness of the program..This,is dSegto'the .;h
. .fact that a singie path‘cannot‘distinguish blindness errors arising‘
;:from assignments and‘predicates aiong the path. In order to exciude
erbiindness errors, muitipie paths are nee-ad. [re b]indness concept can:
' be applied to gu1de the se]ection of patis “
Zeil deve]oped a vector space model for a certain c]ass of
programs l>rmed 77near7y‘doma1ned programs (they w111 be deFined 1ater
“in this section). In the vector space modei, variabies, asskgnments_and
‘predicates.are'aefined in an men+1 dimensional space, where m is the
“number of. input variabies and n the number of program variabies An -
infinite number of b]indness errors can be characterized by a finite
number of vectors A blindness sﬁgce is a coi]ection of biindness
‘ errors which can be added to a program statement without being
detected. The blindness space concept is app]ied to a path and a
f program statement respectiveiy A blindness space for a path Teading tor
a program statement consists of n a551gnment blindness vectors, no more
than m equality biindness vectors (equality constraints a]ong the
. path), and a se]f—b]indness'vectorf(fOr predicates only). A blindness
space for a program statement 1n1t1a]1y conSists of m+n+1 :vectors.
After a path is se]ected the new blindness space for the program
| statement is the intersection of the previous blindness space and the
blindness space for the selected path.

A set of test paths is.considered’sufficient for.a program

s
J
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mstatement if the fai1ure to detect an error using a re]iable data
seléction method along these test pathé imp]ies that the error cannot
be guaranteed deteétab]e for any path through the statement.
-Zei1‘s‘path selection strategy consists of-the following three

- criteria: -
o \(,z

1. Path selection crlterlon

If a set of subpaths ending at some program statement has been

prev1ous1y tested, then a new subpath end1ng at the same statement will
~«be se]ected if it can reduce the dimension of the b11ndness space for
the program statement. |

2v Stopping criterion.

A set of subpaths ending at some program statement is suftﬁéientv
for testing the statement if the blindness space for the program ?

| sgatement is a nu]] space (for an assignment) or contains a . * 7
self-blindness vector only (for a predicate).

3. Minimal sufficient test set criterion.

A minima1.set of subpaths sufficient for testing given program
statements will contain at most m+n+l subpaths (for a predicate) or
n(m+n+1) subpathg (fbr a\t]ock of assignments).‘ |

The 1ast criterion is based ofi the fact that the initial blindness
space for‘a predicate ha§ a dimension of m+n+l; since each selected |

'Path will reddce the diﬁension of the blindness space by at']east one,
; .a sufftcient test set will consist of no more than m+n}1 paths. The
.v'initia] b]indﬁess space for.a biock-of‘assignments has a dimension of

n(m+nf}) sincsfthe initia1 blindness space»for eaeﬁ asiignment'hasba

. 'dimension of m+n+l, and a block has up to n aSsignmentsL Therefore, a

sufficient test setafor a block of assignments will consist of no more
‘ N s

AY
~.

~
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than n(m+n+1) paths.

Zéi] applied this strategy to deal with predicate errors and

u

assignment errors respectively.

Programs under investigation in thisvstudy are termed linearly

domarned programs. which are subject to the fo11ow1ng assumpt1ons

1.
2.

| Thq ffrst assumption is inherent to path analysis testing methods.

m1ss1ng path errors do not occur,

predicates are simple, not combined with logical operators

(AND, OR); -

. the input spacé is continudus;
. adjacent domains compute different functions; and

. predicates and assignments are linear expressions in terms of

input'va?iab1es, and if they are incorrect, the correct ones

are;afko Tinear when expressed in terms of input variables.

Assumptions two to four are actually not limitations of this model,

- they are just for convenience to simplify the forms of predicatés and

the selection of test data. The last assumption assures that progfam

!

computations and predwcate 1nterpretat1ons are closed under vector

add1t1on and scalar mu1t1p11cat1on

&ﬁ\"::

.
i

2.3 Research Prob]ém§

The fo]]ow1ng problems are 1dent1f1ed in order to cont1nue the study in

Zeil’s study has 1laid the foundat1on for blindness- based testlng

2.

*this area:
T

. uéﬂﬁ\agz1on of test1ng ass1gnments and pred1cates for doma1n

errors, and. E S IS

investtgation Of,the.stopping criterion and related issues.

:
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As Zet] has app]iea the 5esting‘strategy tohassignments and’
pred1cates separately, a 1og1ca1 conjecture is whether assignment
k testing and pred1cate test1ng can be-combined. A re]ated prob]em is the
complexity of Zeil’s approach in a551gnmentotest1ng, wh1ch is 0(n2),
ewhere nis thetnumber!of program variables. This method appears too—
ihpractica1 to be.implemented. In both theory and'practice we heed a
s1mp11f1ed scheme for assignment testing wh1ch can be eas11y como1ned

\
.w1th pred1cate testing to form a uniform test1ng strategy for doma1n

EI"Y‘OY‘S

The stopping criterion _suggested by Zeil is inadequate "to cover
pract1ca1 s1tuat1ons in test1ng Somet1mes there are vectors in the
b11ndness space, * 1n add1t1on to se]f b]lndness 1nd1cated by Zeil, whxch .
cannot be e11m1nated by the selection of d1fferent paths. Th1s‘
‘s1tuat1gn is f1nst-reported by-Sahay in reference [10]. These vectors -
arektérmed fnvarfant expfessionsfin this-paper'(they will be def1ned
1n ‘Chapter 5). If 1nvar1ant express1ons cannot be dea]t w1th ’
effectlvely, the path se]ection process may contrad1ct our goal i- the
search for a f1n1te set, of test paths may become end]ess

The obJect1ve of th1s stud& is. to deve]op a b11ndness based
. test1ng method for 11near]y doma1néd programs This method will se]ect

T a suff1c1ent set of paths to test ass1gnments and. pred1cates for doma1n

errors, and can/ﬁe 1mp1emented pract1ca11y

\

s,



CHAPTER THREE
A MATHEMATICAL MODEL FOR A SIMPLE PROGRAMMING ENVIRONMENT

In this chapter we will define a simple programming environment"'
and introduce a vector space model mainly based on Zeil’s study,_we
will give rigorous definitions for this model, and use thts model to
explore blindness-based testing. Some of Zeil’s ana]yttcaljmethodshhave‘
been adapted in the investigation. The analysis of predicate errors
follows a simi1ar approach to that of'Zeilé The ana]ysisvof‘assignment_-
errorﬁ comprises-a different approach, and difﬁerent conclusdons are |

derived.

3.1 A Simple Programming Environment’
Let us consider a simple programming environment . There are four
types of statements 1nput, output, ass1gnment and pred1cate These are

maJor components of most- computer programs As in structured

programming, we dea] with two types of predicate statements seléction, .

common]y "IF THEN- ELSE", and 1terat1on, common]y "WHILE" 1oop There
Loare two types of variables in the program 1nput and program var1ab1es

For the 51mp11c1ty of d1scuss1on we assume that the values of 1nput/

-a,var1ables remain unchanged throughout the program. This environment is

"11near1y doma1ned, J.e.y assignments and pred1cates are réstr1cted to _

‘_11near express1ons 1n terms of input variables. \

3 2 A Vector Space Mode]
L1near]y doma1ned programs can be modeled by Tinear vector spaces

vus1ng matr1ces to represent vector operat1ons The vector space model

12
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Lo ‘%\\\ .
is defined in an mtn+l dimensional space, where. m and n are the numbers

off}nput Variab]es and program variab]es respectively. In the
fo]]owing{ we will define program state, predicate, assignment, path,

"~ and predicate interpretations in this model.

w
i

£ 3

3.2.1 Definitions

In the following discussion, a row vector is represented by

'“m+n

(ao,f..,am;n); and a ce1umn vectpor is represented by (ao,... a )t,
where t.denotes a transpose. A éiogram state
"V = (l,xl,...,xm,yl,...,yn)t is an m+n+l dimensional column vector,
-whereyl is a cqpstant,.xl,...,xm are input variables and yl,...,yn
prOgram variables. The program state vector represents the values of
all variables at any point during the program execution. The constant
"1" is just for notational convenience. The initial state vector is
VO = (1,x1,...;xm,o,...,0)t, where X{»« -y X, assume Va]ues from the
input statement, and all program variables are initialized to zero
eeefore the first assignment. The program state is updated after every
assignment. Vi denotes the program state after the i-th assignment.
Since the values of input variables remain unchanged, program variables

contained in gg are always in terms of constants a 4 input variables.

A predicate gt Ay k. A X+ 2

n*m meYp tooee t A Yn ROP 0

m+n
is defined as an m+n+;}dimensiona1 row vector

P = (ao,ai,---,a where 3y is a constant, a

e ' R\
m’am+1’ ’am+n)?v 1’ *“m+n

are the coefficients of input and program variables, and ROP is a
relational operator. All predicates in the program are labeled

sequentially, e.g., 5k'denotes thelk-th predicate in the program.

m+nyn

An assignment yj =3y + a.1 IR Xy + am+1y1 + ...+ a



is defined as an (m+n+1)x(m+n+1) matrix

1' Xp cor Xp Yy oeee Y, ”l\\
1 0 ... 00 ... 0 1
0 1 00 ... 0 X)
A= {00 ... 10 o C Xo
0 0 ... 0 1 0 Y
;vao a] ,am am+1 - am+n yj
09 ... 00 ... 1 ‘ y

~7n .
A is an identity matrix with the (m+j+1)-th row (correspoﬁaing to the

Jj-th program variable) replaced by a constant and coefficients of input .~
and program variables assigned io the program viriab1¢ yj. All
assjgnments in thegprogram are'1abe1€d sequentially, i.e., Ai denotes
the i-th assignment in the program. A

Since the values of input variables remain unchanged; it is
obvious that the first m+l rows of thé‘éssignment matrix always form an
identity matrix followed by zeros from tﬁe (m+2)-th to (m+n+l)-th
columns. The (m+j+1)-th row, which corrésponds to the j-th prdgram
variab]e,760hsisfs of coefficients of‘fHe assignmeht;:the rest of the
.rows from m+2 to mtn+I¥are all zeros except for the elements on the
dfagona% line being one.

In this model, a path A = A, A, ... A, i< répresented by the

P k 'k-1 B
multiplication of a finite sequence of assignment/ matrices, and the

result is also a matrix. The path representati implies the Boolean

values assumed by predicates along the path, e though the predicates-
do not appear in the path repreﬁentation.\A feasible path requires tha; _
a]] predicate eXpressions with implied Boolean values a1ongfthé pa&h be
sdtiSfiab]e.(If not, the path is considered infeasible. Since the’

programming environment is linearly domained, the feasibility of any



1
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path can be decided by Tinear programmihg methods,xﬁay, fhe simplex
method. ' .

We have defined the program state and the initial state vector at
the beginning, and now we can provide a dynamic view of the program-
state vector after each assignment. A new program state after the i-th

\\éss1gnment is- V = ApV0 A AIVO’ namely, Viﬂjs the multiplication
of Ap whlch denotes an initial subpath (who§e last assignment'is Ai)’
and the initial state V.

The predicate interpretation is the result of a scalar pfghuct,
PVa = PAT, = P A, where P denotes the predicate, V; the
scalar product is then compared with'zerO‘tq,decide the Boolean value

‘\xuﬂ of the predicate. -

3.2.2 An Iustration |

| In the fo110w1ng we use a.sample program to illustrate the model
(F1g 2). We label ass1gnment predicate and output statements in
sequence. We also Tist corresponding assignment matrices and predicate

_vectors. .

15

program state, and Ap.the initia]‘subpath leading to the predicate. The



READ Xpr Xy
A1 ¥1 =X 10000 110000
01000 ‘\ 01000
A2 Y, = X, A1 =1{00100 -A2 = 00100
01000 00010
00001 00100
P1 WHILE Yy - ¥p 0 P1 =(0001 -1)
A3 Y1 =¥ Yy 10000 10000
. 01000 : 01000
A Yo =y, + 1 A,=100100 A,b,=100100
4 2 2 3 Jooo1-1] % |oo0o01g9
END WHILE . 00001 10001
P2 IF S 2x2 - 8 = 0 THEN P2 = (-3 1 2_0 0)
Yy =Y X 10000
5 17 Yot % 01000
ELSE A5 ={00100 10000
‘ 00101 01000
A Yo =¥, + 2%, + 2 00001 A-=]100100
6 2 1 .71 6 00010
END IF 22010
O1 PRINT xl, Xos Yo Yo

Figure 2 Sample Program and Vector Space Model Representations

We will give some examples to demonstrate the vector and matrix
- .

rebreéentations The subpaths Ap ending‘at the second aésignment and Aq

ending at the fourth ass1gnment can be represented respectively a

10000 10000
01000 01000
Ry =RA = [ 00100 | A =AAA = AAAA 00100
P2l 01000 q 43 - 4T 0;1-1 0 0
00100 | 17010 0

The program state after the second assfgnment is

10000 |1
_ B . 01000 Xy t
Vo=AV. =AAV = 00100 X = (1,X1,X0,Xy,X,) "
00100 "0 -

where program variables yl.and Y, are now expressed "in terms of

-1



constants and input variables. The program state after the fourth
aﬁsignment is

y4 Ao = A4A3A2A1VO (1, xl,x

- The subpath A 4.A3A2A1 1mp11es the: first predlcate P

i Tex 1t
21 X1 X 14x)

1
hencountered along the path be1ng true, name]y, A

>

V2 (0,0,0 1,-1)(1, Xl’ 2,xl, 2) Xyt Xy >0

] ‘
where 51 denotes the pred1cate and V2 the program state before. the

: pred1cate The result is a scalar product. -

"A11 initial subpath matrices have the following characteristics:

By,

" 1. The rows From m+2 to mn+l contain the actual ua]ues ass1gned'ﬁ

to the corresponding program varlables in terms of constantsg
i e :
and input var1ab1es.

_ 2. The Tast n columns are always zeros, since all program
1,
\ .
va%1ab1es are initialized to zero at the beg1nn1ng, and are._

always in terms of constants and input var1ab1es on]y

&
3.3 Predicate Errors
" An erroneous predicate P’ is represented as:

PP =P+ E E#0

where P denotes the correct predicate vector, and F the error vector,

=)

an m+n+l dimensional: row vector. A predicate error will escape

detection if én intérpretation of the erroneous predicaté is equivalent

to a multiple of the correct one. That is - )
WPV =PV = (B E)V =PV -E T e

where h is a non-zero constant and V the progfam-state before the

predicate.'From the abové equation, we have

P Ev-0 ' BYY



tet us consider h = 1 first, name an interpretation of the
erroneous predicate is'egactly equal to the correct one, a relatively
sihp]e situation. When h = 1, the equation (1) reduces to '

EV = EAT, - (2)
where Ap denotes the suf.ath 1ead1ng to the pred1cate and V the
initial state vector. ' B - ¢

‘Two'cases wi]] cgusevapvoleQUAT to zero: |

1. EA =0 . - . .(3)

2. EApVO =0 yhere EAp £0 o ' (4){

. Im the following, we will find a so]ution set -for E, which

satisfies eqUations (3) and (4). | | |

Equat1on (3) means that the product of E and Ap is a nu11 Yectqr.

Let us 1nvest1gate_the.1n1t1a1 ‘subpath matrix Aﬁ' As defined

previously, .
1 Xp oo Xg g 2.; Yn

1 0 ... 00 0 1
~ 0 1 .00 0 x|

A=A A= ool 10 o] x
p A 1 B ‘ : ' 0 Xg
o 350217 almQ ... 0 ; ¥y

A50%51- im0 0 Y3

anOanl":"¢anm0“"' 0 Yy

whefe the 1est n»co1umns‘of'Abhare all ieros, the upper 1eftvcorner is.
an identtty matrix and the 1owen\1eft'cqrner a‘nbn—zere métrix.jThis.'
non-zero matrix,*és we discussed before, c0ntains the velues-of‘
corresponding program var1ab1es in terms of constants and the -
coeff1c1ents of 1nput var1ab1es |

By observat1on we can eas11y construct a so]ut1on set whtch

' vsatwsf1es EAp = 0 name]y,'

~
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1 = (alojall,---,alm,-l)o, ..... . ,,0) - (5)

......

Bn = (ano;anljz..,anm, 0,0, ......,-1)

The solution set consists of the last n rows of the matrix Ap with
the (m+j+1)—th e]ement (zero)vrep1aced by -1, j = l

Us1ng each vector to mu]t1p]y the matrix Ap will resu]t in zero,
obviously, these vectors are the solutions to equation (3). This type:
of error is termed assrgnment blindness, whlch is so]e]y caused by
_ass1gnments along the path Furthermore we will prove that the
solution set is unlque, name]y, any solution to equat1on (3) can be
_represented as a 11near comb1nat1on of ‘these assignment b]1ndness
'vectors B _ _

- By transpos1ng the Teft hand side of equat1on (3), we’have

’ ‘A;Et = 0..Ag-can'bc considered as a Tinear transformation.matrix, an
(m+n+1) - d1mens1on to n- d1mens1on transformat1on Now we only have‘tob

_ prove that these n vectors B : 0,:..,-1,...§0),

.(aJO,aJI,...,ajm,
"j=1,...,n, are 11near1y 1ndependent Let us just consider the 1ast n
;elements a]one for each vector With a d1mens1on of n, clearly these n
'vectors are 11near1y 1ndependent Expand1ng each vector to m+n+1] .
d1men51ons, we st111 have n 11near1y 1ndependent vectors Therefore, we
conclude that any solution to equatloo (3) can be representeo as a
_]inear_combination.of_aésfgnment b1ihdnecs vectors, the ahove'set (5);
~,we der1ved o | o

Now let us. study equatlon (4), EApV0 s 0, where-fAO‘f 0. Since
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pr denotes a non-null vector, we use a vector ‘

C = (CO’Ci""’C 05...,0) to represent pr The last n e]ements of Ek
are all _:cros; this 15 due to the fact that the last. n co]umns of the
initial subpath matrix Ap are .all zeros. The product of (EA ) and V0 is
" a scalar in terms of constants and input var1ab1es,
BV = (cquc e 0,.450) (1,%),...,x,0,...0)"

.
=Co t clxl + ...+ C¥im = 0. (6)
Th s type of error is termed equal;ty b71ndness Equality blindness can
'happen in the following three cases: | |
| 1. equality predicates encountered a]png'the path, e.g., x; = X;;
2. combinations/of two or more inequalitywpredicatessbe.g.,
xi >= X, and Xy >= X, imply Xp = Xy these are referred.to'as
coincidental equalities; .
3. equalities due tQ the selection of input”values which form
some- identical relations, e.g., xi = 2%,3 these are referred to
as fnput equalitfes ’ 4
The nature of 1nput equa11t1es is ‘completely d1fferent from the *

,.flrSt two cases which are equa?rty oonstr*',ts along the path Equa11ty
constralnts are path dependent wh1]e 1nput equa11t1es are path:
independent S1nce 1nput equa11t1es are caused by the se1ectlon of
input va]ues, and in: ear11er d1scussfon, the ava11ab1]1ty of reliable
“data se]ect1on schemes is assumed therefore we can demonstrate that
1nput equa|1t1es can be effect1ve1y excluded prov1ded a re11ab1e data :
select1on scheme is adopted. Because 1nput equa11t1es d1rect1y re]ate: -
- to the selection of 1nput data instead of the selection of, paths, we

'w11] 1eave the d1scuss1on of 1nput equa11t1es to Chapter 6.



‘Theoreticql1y,ffhere are infinite Ek € pr, whi?h can cause
equality blindness (fk’s are vectors with the last n é]ements zeros).
However, for an input space of dimension m, there are no more than m
linearly inqependent Ek e~pr which satisfy equatjon (6). In othgr
words, the number of Tinearly independent equality b]indnessivectors“
along any given path is no greater than m;-Thg linear combinations of

Ek (k=1,...,m) also satisfy equation (6). Therefore, ‘
—_— m —_—
EA = 3 d,C )

where dk,vk = 1,...m, are constants. v

Since we want to find.the solution for E, let us set

“

E = (EO’el’""em’em+l""’em+n)‘
1 0 0 0 -0
0 1 0 0 0
_ | 0.0 ... 10 0
EAp = (EO’el""’em’em+1""’em+n) 310311 - almO 0
~ ajoajl"’ ajmo 0
| | | 30301 - aan 0
s (eo 'm+1210% *enendno’ C1*eme1211t *epennp - o
ente m+1 Ut Fenendpm 00 v 5 0) | ‘
= (EO’QI""’em’p 0) + em+1(a10,all,...,alm,O,...,O)_+;..+
o m+n(a_no,anl,... Qnm;o,;..,O).
,Us1ng the. so]ut1on set (5) we derived earlier,

J (aJo,aJl,;.n ajm’Q"'t"lﬂ""o)’ J =.;,,..,n, | o
and subst1fut1ng B for (a jO 351 g 0, .;,0), j=1,...n, jn the
‘r1ght hand side of the above-equat1on, we have '

EA —(e ...,em,O 0)+em+l 1 | m+nBn+(0 0, 0’em+1’7"fem+n)
o= F +e. +1B1 s tep Bl | )



Substituting the fight hand side of equation (7) for EAp an& setting

95 = -epp d =1 o, we have
mn n _ !
kfl dkfk =E 351 \ngJ
n _ .
£ JEI gJ§J ' kfl 4l (8)

Now we have a solution for equation (4). Here §j’s are assignment
, ,

blindness véctorsz fk’s are equality ?1indness vectors; gj’s and d, ’s
are constants. When the error terﬁ E Ean'be (epresented és a linear
combination of assignment blindness and equality blindness, the error
will escape detection. This so]ﬁtion set consjﬁts of no more than

m+n linearly independent vectors. When the second summation equals
zero, so]uti;n set'(8)'a1so satisfies equation (3). Therefore, solution
set (8) is a general solution for)eduation (2). We conclude the

discussion for the case h = 1.

Now, conSider.h # 1, namely, an interpretation of thé erronepus

22

predicate is equal to a multiple of the correct one. We haVe to s)]ve

equation (1), [(h-1)P'+ E]V = O, when h # 1. “ . : }

Since we have already solved equation (2), EV = 0, with solution

t_ set (8), we can use the‘same result to so]ve equat1on (1). Simi]ariy,

we have o 2 )
(h-1)P'+ E = g.B. + E dcC
g1 e kK

, . .
Moving P’, the self-blindness term, to the‘riéht hand side, -

S E= 3 g8+ I 43, + (NP (9)

Finally, -we havg derived a general §olut\on1to equatioh (1) for

both cases h = l:and h #1. As combared with equation (8), the



additional item i equat1on (9), a mu1t1p1e of the ‘predicate 1tse]f is

the result of se]f i, ness. When the error term can be represented as

a linear comb)nat1on of assignment b11ndness, equality b]indness and
self-blindness, the error mav escape detection.‘We can conclude that
assignment blindness, equality blindness and'se1f-b1indness are thet .

causes which make predicate errors escape detectijon.

3.4 Assignment Errors
An erroneous.assignment A’ is represented as:
A? =A+A, Ay # 0

where A denotes the correct assignment matrix, and A the error matrix.

An assignment matrix is an identity matrix w1th 1ts (m+j+1) -th row ‘"

replaced by the coefficients of variables a551gned to the J- th program

variable. The error matrix Ae represents an error in the a551gnment;
therefore, the (m+j+1)—th_row of Ae contains. the coefficients df‘the
error term, with the rest of the rows being all zeros. | '.
An assignment error will escape detection if a value ass1gned by
the erroneous ass1gnment is equ1va1ent to the correct one. That is -
AT = AT = (A~ AV = AV - Aev o (10) |
where V is the program state before the assignment.

~The necessary and sufficient condition for equation (10) td hold

© s

Aev}g AeApVO 0 | o (11)

where Ap represents the subpath leading to the ass1gnment and V0 the

1n1t1a1 state vector The three 1tems in the left hand’ 51de of the

equation can be expressed as

23
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0 0 1 0 O -0

0 1 0 0 |
0 0 ay, alm 0 | (LixpseeesXp0,..,0)
€ €men aJo aJm 0 0
0 0 a0 a0 0

~ The so]ution to the above equation is surprisingly simple.

. A]though A is a matrix, 1t has on]y one non-zero row vector, and

behaves exactly like a vector. We can easily apply the solution set (8)
to this equat1on. Us1ng Ei to denote the-non—zero row vector in Ae’

: n
E.= % g.B.+ 3 dkf

(12)
S 55 R A

k .
We can conclude that assignment blinaness and equality blindness
are the causes which make assignment errors escape detection
In the above d1scuss1on we analyzed the s1tuat1on where a subpath
wh1ch occurs before an erroneous ass1gnment may cance] out the error.

| Later we w111 ana]yze a similar situation where a subpath wh1ch occurs

after an erroneous ass1gnment may cancel out the error as we11

. ]

- An ass1gnment error may cause an erroneous predtcate
1nterpretat10n, whwch 1eads to a doma1n error; it may—a]so cause a “;'
computat1on error. In other words, an ass1gnment error may revea]

u1tse1f through a doma1n error or a computat1on error
3 4 1 The Effect of Assignment Errors oh a Predicate’ Interpretatlon

" We will 1nvest1gate how an ass1gnment error affects the -
interpretat1on of a subsequent predlcate Cons1der an 1n1t1a1 subpath
‘A A’A wh1ch leads to a pred1cate P,. where Ap represents an 1n1t1a]

q P
subpath before the erroneous a351ghment A’ and Aq represents ‘a. subpath



after the ass1gnment A' The pred1cate 1nterpretat1\P is PA A A Vo,
where V denotes the initial state. If the predicate P fo]]ows the
assignment A’ 1mmed1ate]y,.the subpath matrix.Aé becomes an identity'}
“matrix. | | . | .
The assqgnment error, w111 not be. revea]ed 1f the predicate

1nterpretat1on is a mu]fﬂp]e of the correct one, that is,

h V. = AA V = PA A AV = ‘A - o
PAqA Ap 0 PAq NS (A e)'pV0 lPAqA_ApVO PAquApV0

We can reorganize the equat1on as 't

PAq[(h-l)A + Ae]ApVO =0 N N (13)

Consider h = 1 first, name]y, the erroneous predicate
1nterpretation:is exact]y equal to the correct one. In this case;~

equetion (13) reduces to

A

PAAGAY, = 0 B ! = = (14)

The product of the fwrst three 1tems PAqA resu]ts in a row

v vector In the prev1ous section, we:solved the equat1on EApV0‘= 0 with

’so1ut1on set (8). Now, subst1tut1n§ EAqu for E, we have

R ] B N
PAA = 3 gB.+ 3 dC ; C(15)
AR g k=1“k koo |

‘ where B s and Ck s are vectors wh1ch represent ass1gnment b11ndness '
.»and equa11ty b11ndness, respect1ve]y o
PA A _, where P denotes the pred1cate Aq the subpath and A the,v

qe’
error term of the ass1gnment can be expressed as

1 0..00 ... 0 | ]0..0

o . 0 o0.. 1o o 0 fo.lo

PAqu = (pO’Pl""’pm+n)' 0%11° 21,2 Hm+1)" (m+n) 0 e 0
aioaii~ Aimd i(mel) (m+n) €9 -Cen

0 . 0

anOanl' 2hmd n(m+l) " ° n(m+n)
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. The f1rst two 1tems resu]t in a row vector,

PA q - (p0+pm+1310+ +pm+n n0’ 7"3‘pm+pm+lalm+"+pm+nanm’
m+1 1(m+1) : pm+n n(m+1)’ T pm+lal(m+n)+"+pm+nan(m+n))‘
therefore,” ’ : S :
‘ PAqu (pm+1ai(n}ij+"+pm+nan(m4t)) (90’91’5"’em+n)'

Using E to denote the non-zero. vector of the matr1x A , and b to

denote the-constant p )2 and. subst1tut1ng biEi

m+1 1(m+1) ‘+pm+n n(m+1

“;;r:PAqA in the 1eft hand side of equat1on (15), we have

g
cF

b.E. = % gB.+ Z-d,C, = S "~ (16)
Si el J J k=1 k k‘ | N

Flrst th1s resu]t conf1rms the conc]us1on der1ved ear]y in this
sect1on that when E 1s a 11near comb1nat;on of ass1gnment blindness
and- equa11ty b11ndness, the ass1gnment error w111 escape detection. In

“other words, the subpath before the erroneous a551gnment may nu111fy
the effect of the error on a subsequent pred1cate 1nterpretat1on
Second, 1f b E =0, the error w111 not be- revealed e1ther In th1stf
| equals zero.

\S1tuat1on, the constant P | +f;l‘ 53 P

m+1 1(m+1) mn n(m+1)

T mTh1s case 1nd1cates that, comb1ned w1th the pred1cate, the subpath

:_wh1ch occurs after the erroneous ass1gnment may nu111fy the effect of -
the error w1th respect to “the predlcate _ o -a'g ’-f.*f; ”
Now cons1der h- f 1, PA [(h l)A + A ]A V 0 S1nce the f1rst
) »three items PA [(h I)A + A ] resu]t 1n a vector, u51ng so]ut1oﬁ\{st (8)

. /
aga1n we have -

PA [(h l)A’+ A ] Z g B. + E d
J=1 373 - k=1 ,kkk

\

-PAqA .JEI gJBJ t 2 qu +°(1 h)PAqA
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Similarly, we can derive the solution as in (16),

n m —
b.E. - j>=:1 9;B; + kfl diCy + (1-h)PA A | S an

Solution set (17) is a general solution for equation (13). The
third item (l—ﬁ)ﬁAqA’ is similar to the -self-blindness terﬁrin
predicate testing. This is another case that combined with the

predicate, a subpath which occurs after the erroneous assignment may

nullify the effect of the error on the predicate interpretation.

3.4.2 The Effegt of Assignment Errors on Computétion

We just discussed how an assignment error affects a predi;ate
interpretation. Similarly, we will discuss how an assignmeﬁtwégfor
affects a cemputation. A computation error will be revealed whén an
incorrect‘output is produced. Ne'c;n treat an outpht statement as a
vgctor‘just as in the analysis of predicates,_wﬁere the vector cdntains
~the coefficients of variables in the output-expression. For insténce,
an output statement "PRINT 2x1+x2" can be represénted as. (0,2,1,0,...);
an ouiput statement "PRINT Yp» ¥p" can be coﬁ#ﬁdered two separate
statements'“PRINT yl" and "PRINT yz", and expressed in the vector 3

representation accordingly.

We can use a similar procedure to discuss thé effect of assignment

. errors on the output as that on the predicate. An assignment error will

not be revealed if the output is equiva]ent to the correct bne,ithat
is, _
OAA'A Vo = OA AA Vo = OA (A’-A JA V. = A A/A V. - DA A ATV, (I
OAqA ApV0 OAqAApV0 OAq(A Ae)ApVo 0 A 0 Pefpo¥o (18)
where VO denotes the initial state, A% the erroneous assignment, A the

correct assignment, Ae the error term, Ap the initia]lsubphth before



28

the assignment, and Aq the subpath after the assignment.

<

The necessary and sufficient condition for equation (18) to hold

is

OAquApV0 0 ‘ (19)

Using the resu]t in the last section, we have ‘
T

b.E. = % g.B. + = d,.C (20)
i j=1 JJ k=1 k“k i :

.+0.

. = a Y -
where b1 ° m+n n{m+i)

m131(mei) ¥

First, when E is a linear combination of ass1gnment b11ndness and
equality blindness, the assignment error will escape detect1on Second,
when bi 5'0, combined with the output statement, a subpath which occurs
after the erroneous assignment may cancel out the error with respect to
the output statement.
3.5‘Summary_of Predicate and Assignment Errors

A;signment; equality and self-blindness cause predicate and
assignment errors to escape detection for a given path. In other words,
any errof term in a predicate or éssignment yi]] be undetectable if the
error is a linear cdmbination of assignment, equality and
- self-blindness. In addition to blindness, a subpath which occurs after
an erroneols assignment may nullify the effect of the asSignment error-
oﬁ a sub§equent predicate or output statement.

The exclusion of blindness will guarantee the exposure of
predicate errors which may cause domain errors. If we not only exc]ude
blindness, but also prevent potential assignment errors from being"

nullified by subsequent subpaths, we can guarantee the exposure of

assignment errors which may cause domain errors. These conclusions form



o

the foundation of blindness-based testing for linearly domained

programs.
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CHAPTER FOUR
BLINDNESS-BASED TESTING STRATEGY

4.1 Blindness Testing Edncept} .
The objective of blindness-based testiﬁgljs to expose blindness
errors by selecting a set of reliable test patus. The term‘fe1iab1e
means that any blindness error.w1]1 be exposed by at 1east one of the
selected paths. For each program statement (assignment or predicate),
gd se1ect'a set of paths leading to the statement, which can reliably

test the statement for blindness errors. Com5$ning all-selected paths

" will form a set of reliable paths for the entire progféh;

4.1;1 Cancellation of AssignmenttErrors

In predicate testing, since blindness causes predicate errors to
escape detection, the elimination of blindness w111 guarantee}tpe
exposure of predicate errors which may Tead to domain errors. In other
words; the selection of a set of reliable paths will expose potential
predicate errors.

In assigqqgnt testing, however, the metter is not that simple. Iu
addition tq b]:ndness, other'factors may also tause assignment errors
to EScape detectiop. An»essignmept errorlméy lead to a “orzin error if
the affected program variable is involved either directly or indirectly
in a subsequent predicate interpretation. If the aftected program
‘ variab]qfis'not invo]vee in a subsequent predicate;bof course, the
1nterpretat1on of the predicate will not- revea]»the ass1gnment error.

An ass1gnment error is canceled out w1th respect to a subsequent

predicate 1f the error is conta1ned in a subpath 1ead1ng to the

300 .-
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predicate and the affected program variable is involved either directly
or indirectly in the predicate interpretation, but the interpfetation
of the pfedicate is equal to the correct one as if there were no

assignment error contained in the subpath. The cancellation may be

T

caused by a subpath which occurs either before or after the erroneous

1

assignment. Two examples are provided in Fig 3. ) N
Example 1 . ‘
Correct Code - Incorrect Code .
v Y1 =5 ' ) _Yl =5
Y2A= 2Y1 + 1 ,YZ = Yl + 6 *
IF Yl + Y2 >0 - IF Yl + Y2 >0
Example 2 °
Correct Code Incorrect Code
?1 =2X + 3 - %?”fyl =0 *
/? e o— N .. a= + - .
Y2 =1+ Y1 i . Y2 1+ Y1
JIF 4X - Yl + Y2 > 0;’ ' - IF 4X - Y1 +'Y2 >0

nguré 3 Cancellation of Assignment Errors

The iﬁcoffect assignments are mérked with a star. The first
'Jéxample shows the effect of a subpath which occurs before the erroneous
assignment, and cance]s out the ass1gnment error w1thgrespect to a
subsequent pred1cate The incorrect assignment ass1gns the same value
to the variable Y2 as the. correct one. In fact this is an examp]e o# ,

assignment b]1ndness It cance]s out the error term for anv subsequent

predicate 1nterpretat1on

The second example show5'the'effect of a subpath which occurs
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after the erroneous assignment, and cance]s out the assignment error
with respect-to a subsequent predicate. Combined’with‘the.predtcate,
the assignment ?2‘= 1 + Y, cancels out the error term for the predicate
-jnterpretation --

4 - ¥+ (14 Y)) = qx + 1
which is exactly the same as the predjcate'interpretatioﬁ of the ‘
.correct code. o |

In genera1, blindness errors are the on]y,causes for the situation’

‘ 4Lof .example 1 (Fig. 3),'where a subpath which occurs before an erroneouS‘

ass1gnment cancels out the error with respect to subsequent pred1cates
However, we are not able to attr1bute the causes to a certain type of
- error for the situation of example 2, ‘where a subpath wh1ch occurs
~after an erroneous ass1gnment cancels out the error w1th respect to a
subsequent pred1cate ;
[f an erroneous program'variab1e is9n6t involved either directly
or 1nd1rect1y in any subsequent pred1cateS“ we can conc]ude that it
.w111 not cause any domaln error, though it may caUse computat1on
errors. | |
‘We say an assignment- error is nullified: w1th respect to al,;
subsequent predvcate 1f the error term is e1ther cance]ed out or not '
1nvo1ved in the predicate 1nterpretat1on ‘

~ The concept of b11ndness-based testing5is'§OCUSedJon the local

envtrohment If we trace program stategents step by step, the se]ect1on

of paths base® on the b11ndness concep':w1l] guarantee the exposure of
b]1ndness errors “in any of the pred1cate or ass1gnment statement to be.
tested. For an. erroneous pred1cate, a d1fferent predwcate '

1nterpretat1on as compared with. t%e correct one w111 be produced by at |

-

O



least one of the seTected paths For ap erroneous ass1gnment,-a
d1fferent vaTue as compared w1th the. correct one wllT be’ ass1gned to
the affected‘program variable by‘at least one of theuselected patth,
If a symboTic trace is pertormed;‘a»difﬁereht’symboTic value wiTT
expose the erroneous pred1cate or. ass1gnment However, a doma1n error
~will be detected onTy by an - 1ncorrect pred1cate 1nterpretat1on An
ass1gnment error may not Tead to a domain error if the error. i's
'nuTT1f1ed Therefore the exposure of an ass1gnment error in-a TocaT
env1ronment does not automat1caTTy Tead to the exposure in a’ y oba]
’enV1ronment

The obJect1ve of bT1ndness based testlng is to expose aTT
ijindness errors. The 51tuat1on where an ass1gnment errar may be

"canceTed out by a subpath wh1ch occurs’ before the erroneous ass1gnment

| can; be prevented compTeteTy The s1tuat1on where an’ a551gnment errorv

- may ‘be canceTed out by a subpath wh1ch occurs after the erroneous

ass1gnment 1s preventab.e, but the cost is qu1te h1gh Each seTected

L -

','Tsubpath needs to be extended from the a551gnment towards a subsequent

. predtcate

In the foTTow1ng sect1ons, ‘we WTTT present two bT1ndness based
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3path seTect1on aTgor1thms for T1near]y doma1ned programs The first one

fempha51zes the compTeteness of test1ng, wh1Te the second onecemphas1zes

1the effect1veness of test1ng L | o :

-,

T{314 1:2 BT1ndness Based Path SeTect1on

[
' The path seTect1on aTgor1thm wh1ch wﬂTT be proposed tn th1s

' sect1on~1s based on the anaTys1s of ass1gnment and pred1cate errors

7'from the Tast chapter The a1m is to seTect a reTtabTe -set of’ paths to



-test assdgnments and predicates for donain errors. Predicate testing is
straightfdrward; the test will guarantee the exposure of all predicate
errors‘charactérized’by blindness. In asSignment testing, we have to

_ erpose'a11 asstgnment errors characterized~by‘b1indness, and prevent

rthe errors from being cance1ed out.

Reca11 our d1sqg:;hon on ass1gnment test1ng in the last chapter,:

where the so]ut1on to the equat1on

A [(h 1A’ + A ]A V, =0 o | (13)
s | ’
_ T om - o ‘ 4
b.E, - jfl'ngJ,+ kzl dka ¥ (l—h),PAqA | an

where P: denotes the pred1cate, A’ the erroneous assxgnment A the '
‘error term, Aq the subpath after the- ass1gnment Ap the subpath before
the ass1gnment V the 1n1t1a1 state E the nonrzero row vector of A
' EJ s and Ck s are ass1gnment b11ndness vectors and equa11ty b11ndness
vectors respect1ve1y, 9j s,vdk S and h-are constants, bi equa]s

pm+1 1(m+1) '“; Prinn(m+i)’

a scalar product of the pred1cate 3 and the (m+1+1) -th co]umn of the
subpath matr1xlAq. . :; 'A.‘ | oy ,

| ﬂhen Ei is a linear combination of assignment, equality and
seTf*b]indness, this'assignment error wii] escape detection. When
‘ fbi‘a 0, this assignnentierror will also escape detectionjwfth'respect
 to the predicate P. |
‘. Therefbre when we se]ect a test path for an ass1gnment based on
{the b11ndness concept we also need to prevent ‘the possible ass1gnment

_ﬂerror from be1ng cance]ed out by a subpath wh1ch occurs after the

; ass1gnment In other words, we have to make sure that b, is not zero.

34
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The process can be descr1bed as follows..

For ary ass1gnmentzto be tested whenever we se1ect a subpath
leading to the ass1gnment we extend th1s subpath to a subsequent
predlcate If the potent1a1 assignment error is nu111f1ed with respect
to this pred1cate, the subpath is. extended to a next pred1cate or a
different subpath is selected after that assibnment This process
continues until a pred1cate is reached where the" potent1a1 ass1gnment
error: will not be nullified in the predlcate interpretation, or it can
be ascerta1ned that no such pred1cate exists. ' ’

The following path se]ect1on algorithm consists of two major
-operat1ons It first selects a set of reliable subpaths for each
: program construct (assignment or predicate) accordﬁng-to the. sequence :
of its appearance in‘the program, and then comb1nes all selected paths\hf
to form a re11ab1e set for. the entire program The first operation is

carried out by four steps, and the second. operation has one step. We

“wWill describe each step in detail tater.

B]indnessiBased'Path Se]éction«A1gorithm f :
_ For each‘program construct (assignment or predicate):

1. Select anuinitia1bsubpath or eXtend’a:previous1y'se]ected
initial subpath 1eading to the program construct. Test its
feasibility, and exclude any infeasible subpath.

2. Calculate the b1tndness space for the progran construct. Reject .
the subpath if the dimension of the blindness space for the
program construct cannot be reduced by this subpath.

3. ~If the program construct is an assignment and the subpath is

not reJected, extend the subpath to a subsequent pred1cate 1f
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aAhotentia1 assignment error will be nullified with respect to
w,this predicate, extend the’subpath to a next predicate or
select a different subeath, until a predicate is reached where
the potential assignment error-will not be nullified or it is
established that no such preditate exits. |
4. When the blindness spaee for the program construct becpmes a
null space, or contalns 1nvar1ant express1ons on]y, a re11ab1e
' set for the construct has been obtained. Move to the next
construct (GO TO 1).
5. After:el13constructs in the program are processed, eombine any
‘1n1t1a1 subpaths 1f one contains the other, and extend all %
1n1t1a] subpaths tq'comp1ete paths. These paths form a re11ab1e

2

set.

The First step simpjy seleets an initia]leubpath by aesigning a
Boolean value to eath predicate encountered a]ohg the subpath ]eading
to‘the constrqct to be tested, e.g., (P1 t,P2 f,...), or extends a
preriohs}y selected §ubpath Teading-to the construct. The feasibi]ity,
test can be carried out hy calling a_lineer programming routine; all
predicateshencbuntered in the sdbpath form the constraints.

In step two the blindness space for each construct consists of
assignment b11ndness vectors, equa11ty b11ndness vectors (equality
constra1nts along the subpath), and a self-blindness vector In the
blindness space: for a pred1cate the self- b11ndness vector is the
- predicate express1on 1tse1f In the b]indness space for an assignment,
the se]f b11ndness vector 1s represented by a product of three items

(PA A’ in equat1on 17): the assignment, the subpath after the
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assignment, and the predicate. Each.blindness spéce is rebreseﬁted in
‘matrix form with each blindnéss vector as a row vector. The calculation
for the inter;éction of two blindness spaces is based on a method
appearing in the appendix of reference'[13].
In the third step, in order to prevent a possible assignment e}fof,
from being nu]]T?Téd, we can always check if
pm+lal(m+i)+'"+pm+nan(m+i)’
a scalar product of a subsequent predicate andgthe (m+i+1)-th column of
a subpéth matrix, equals zero orAnot. If the scalar product equals

1

zero, we either extend the subpath to another predicate.or ﬁe]éct.a
different subpath. | B

Step four gives a stopping criterion, which signa1§ fhe selection
of a 'sufficient set of subpaths for fhe cdngtfucf,to be tested.
Invariant expressioﬁs mentioned here are expressions in the blindness
spéce which cannot be e]iminated by the §e1ection of different paths.
Detai1ed discussion will be given in the next chépter.

i The fifth step simply combines subpaths and extends subpaths tofx

complete paths. | ' | i

There are twoiassumptions made for this algorithm. First, #or any
assignment or predicate stafément in the program,.it is assumed
that there exists an initial subpath wh1ch can reach that statement
Second, for any 1n1t1a1 subpath, it is assumed that the subpath can.be
extended to a halt statement (which corresponds to an exit node'in‘the
control flow graph) in“the program. These assumptions are not ‘
T extfaofd{nary-requirements.lThere must be‘sérious strUctura1~brobféms |

“which will prevent a statement from being reached or a path from

"reaching the exit. In fact, these grob1ems can be easily identified by
_ S R _



38

static testing [6],‘a.c1ass of techniques to pr&ducé general
information. about a program, such as cross-reference, search for
particular kinds of errors, etc;:These‘two asSumptions can be dropped )
coméleteJy if the é}pabi]jty of back tracking ié.inc1dded in the
~algorithm at the;expense of an increased complexity.

'fhé initial blindness spaég for‘each programcggnstruct has a
dimension of:m+n+1. Since every selected path will reduce the dimension
of thé blin&ness.space‘by‘at_1east one, therefore, a set of reliable
paths cbﬁsists of at most m+n+f\baths.

bng coﬁp]ication of this algorithm is the trace (step 3) from an
assignment under test toWéde‘a subsequent predicate in order to
’brevent a polent{a1fassignment error from.beingnganceled out. The trace
wi}] not end-until a predicate is found such that a scalar producf
betweeh the prédicafe and a column of a subpath matrix does not equal
zero, or i£>is established that no such predicate exists. This trace is
pbtentiaf]y endless. If we relax a bit with regard to theoretical
ﬁcompléteness, such a costly trace may not even be neceséary. This
re]aXétion, however, is not done in an arbitrary‘fagﬁion. In practice,
the .situation where an assignment efror may escape detection can be
reduced to a minimum by blindness-based testingt The reason is as
follows. S o ' ' &

When an assignment error is canceled out by a subpath which occurs
before the erroneous assignmgnt,‘the'error wifl»remain undetectable for
any path which extends that subpath. When an assignment error is
can;e]ed out with respect to a subsequent predicate by a subpath which

occurs after the erroneous assignment, the error may be revealed by the

selection of another subpath after the assignment. For a given path, an



' 1,be exposed

asstgnment error w111 escape detect1on comp]etely if the error is
~~nu1]1f1ed w1th respect to every subsequent predicate a]ong the path.
chh1s is. a rather. strong condition. For a sét of paths, an assignment’
_error W111 escape detect1on comp]ete]y 1f the error is nu111f1ed with
.respect to every subsequent predrcate a]ong all paths in the .set. Th1s
\situat1on rare1y happens So long as the.error is not nu111f1ed in one

.of the pred1cate 1nterpretat1ons a]ong one of the paths, the error WI]].
S1nce our'focus 1sAon domain errors, we onTy concentrate on the
‘]effect of ass1gnment errors on subsequent predlcate 1nterpretat1ons In
‘fact ‘an ass1gnment error may lead to an. 1ncorrect computatlon
‘Therefore, when an’ ass1gnment error is nu111f1ed w1th respect to every\ .
subsequent predicate a]ong a path the error may be’ revealed by an
1ncorrect output Due to this fact the 11ke11hood that an- assxgnment _
error may comp]ete1y escape detectlon 1s further reduced

The same argument can be app]1ed to the se]f b11ndness term. An

ass1gnment test1ng (PAqA’ in equat1on 17), where the error term of the
assignment causes the 1nterpretat10n of a subsequent pred1cate '
equal to a multiple of the correct 1nterpretat1on The chance that this
situation happens for every_subsequent pred1cate ]S very:un]1ke]y, . -,
since different subpaths are followed, and difterent predicates:are.
encountered The chance that this s1tuat1on happens aOY every ‘
subsequent predicate along all selected paths is even more unllkely So .
long as one of the interpretations is not equa] to a mu]tlple of the
correct one, the error will be exposed. Therefore .we need not to be
concerned with th1s error term in ass1gnment test1ng

.Summarizing our discussion, the B]lndness-ﬁased Path Selection -
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A]gorlthm I can be s1mp11f1ed 1f we: abandon the cost]y trace and
'concentrate on the s1tuat10n where an a551gnment error may escape
detectton due to a subpath whwch occurs’ before the ass1gnment “Since

”b]1ndness based test1ng ‘can effect1ve1y m1n1m17e the cance]]at1on of -

iass1gnment errors, the re11ab111ty of test1ng w1T1 not be deter1orated

| "by these s1mp11f1cat10ns In the next sect1on, we will’ 1ntr0duce the i

.fconcept of computat1on b]ocks; wh1ch ¢an further s1mp11fy the
] <comp1ex1ty of the proposed a]gor1thmn B '
"1'4 2 Computat1on.81ocks and A551gnment Test1ng |
| In a551gnment test1ng, we can treat a blo;h OF consequt1ve
ass1gnments as -if . 1t were -a s1ng]e statement th]S 1s termed 3
%':computatron block in reference ?13] In the vector space mode1, an .
ass1gnment 1s represented as a matr1x, & computat1on b]ock is
represented us1ng the mu1t1p11cat1on of consecut1ve ass1gnment b
matr1ces, wh1ch a]so can be represented as a matr1x |

4.2, 1 Computat1on B]ocks ,
In the. fo]1ow1ng examp]e there are’ two 1nput var1ab1es Xy and Xy
and two program var1ab1es y and Yy Ai and A2 are two consecutive

V;ass1gnments, hey form a conputat1c b1ock;A A .

A '

| R
Ay 1»f ;1;’—“;.?’51; Xt 3+ Y,
10000 | 10000 10000
s+ 101000 -~ ..{01000 01000
A =100100 "~ A =100100 AA =]100100
S 12-131 % {00010 '12-131
1.0.0001 | 20010 32131

- 40
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The computation block in fact transforms the two assignments‘into
¥y = 1+ 2x1 - X, + 3yi“+ yé |
Yo = 3+ 2x1 T Xyt 3yi + yé
where yi and yé are in terms of the program state prior to thg block.
These two assf@nments are equivalent to the origin#ﬁ‘ones.
This transformation is an important feature of the computation
block. Thus a block of consecutive assignments can be treated as a
single assignment. The whole block is updated éimu]téneous1y'instead of
sequentially as in conventional programming. Because of this powerful
feature, we need not to deal with the individué] assignment within the
block. Insteéd, we treat the block as a whole. As far as iesting is
concerned, a computation block is considered as avsingle entity. We are
no longer-concerned how the first ass{gnment will affect the second one
within the block; we are only concerned how the block is a‘fected Sy
.the previous program state and how the following program state is
affected by the block. ) | /
‘ The introduction of computation blocks has no effect §n predigate
testingj only assignment‘testing will be affeéted. A computation block
assigns pfogram variables simultaneously in a parallel fashion. The
advantage of using computation blocks is that it will great]} reduce
the complexity of testing. Instead:of’testing each assignment, now we -
only have to test each computation block, which amounts to a reductiog
of test paths from a maximum of n(m+n+l) down to m+n+l. The blindness
space for a computation block contains n vectorslof assignment
blindness and no more than m vectors of equality b]indﬁess; therefore,
no more than m+n+l paths are needed toAtest a compUtation block. This )
compares with tﬁe propozgépzﬁgorithm where a maximum of m+n+l paths fﬁl. |

k.
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needed to test an assignment, and a maximum of n{m+n+l) paths to test
all assignments in a computation block. S '

Moét of the analysis of assignment testinéwdiscussed previously
can be extended toJcomputation blocks without any problem.
Blindness-based testing still guarantees the exposure of all blindness
erroks up to the computation block to be tested. For any erroneous
assignment within the block, the affected program variable will be
assigned a different value as comparea with the corract one by at least
one of the selected paths. Testing each individual assignment or a
block of assignments as a whole makes no difference in this respect.

The fo]jgwing facts still hold for a computation block: for a
given path, an assignment error wi11 escape detection completely if thg
error is nullified with respect to every subsequent predicate along the
path; for a’set of paths, an assighmen‘kerror will escape detection
completely if the error is nu]]ifiéd With respect to every Subsequent ‘
predigate.a]ong»a]] paths in the set. |

The disadvantage of using computation biocks is that we cannot
completely brevent an assignment error from being canceled out by-a
subpath which occurs after the erroneous assignhent. For a single
assignment, we can extend a selected subpath to a subsequent predicate,
) andﬁwe ére able to determine whether a potential assignment error would
be nullified with respect to that predicate. For a block of . (ij
assignments, we are not able to perform such a trace to prevent
potentiai assignment errors from being canceled out, The reason is that
we aré not able to reéo]ve the combination effecp of several program
variables on §ubsequent predicates. Therefore, we are not able to

determine whether potential assignment errors would be nullified w{fﬁ



43 -

respect to these predicatés;

4.2.2 Simplified Path Se]ectfon Algorithm
This foltowing algorithm is a simplification of the

Blindness-Based Path Selection Algorithm I. It tests each computatibn

block instead of each assignment. It does not perform the trice from an

assignment under test towards a subsequent predicate.

. BHE;M{S-Based Path Selection Algorithm II -’

For eéch pfogram construct (computation block or prediéate):

1. Select an initial subpath or extend a previously selected
initial subpath leading to the prbg?ﬁm cbnstruct. Test its
feasibility, and exclude any infeasible subpath. |

2. Ca}cu]afe the b]indnéss space for the prog}am construct. Reject -

" the subpath if‘the dimension‘of the blindness space for the
program construct cannot be reduced by this subpath.

3. When the blindness space for the program construct becomes a
null space, or contains invariant expressions only, a reliable
set for/the construct has been obtaiqgaT\Move to the next
‘construct (GO T0 1). :

4. After all constructs in the program are processed,-combine.any
initial subpathﬁ"if oﬁe contains the.other, and extend_aT]
initial subpaths to complete paths. These paths form a reliable
set. | ‘

The reachability and halting assumptions we.made for the firct

algarithm also apply to this algorithm. The blindness space for

predicates contains assignment, equality and se]f—b]indnessﬁ The

- e
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blindness space‘?ek computation blocks contains 4:;; assignment and
equality blindness.

The complexity of this algorithm is m+n+l for each computation
block and predicate. The upper bound for theywho]e’program will be
k(m+n+1l), where k is the total number of computation blocks and
predicateé in the program. In fact, the‘actué1 number of.paths needed
to test the whole program is far less then/k(m+n+1), beeeuse‘mahy paths
are shared, namely, one path can be used ib test different predieates

and computation blocks. We will demonstrate this fact later.

4.3 Comparison, Between the Two Algorithms

The difference between these two a]gorﬁfhhs involves assignment
testing. The Blindness-Based Path Selection Algorithm I tests each
assignment, and attempts to prevent ﬁgss}b1e assignment‘errors from
beiﬁg canceled out in subsequent predicate interpretations. The
algorithm traces from the assignment under test towards'a'subsequent
predicate, which will force any potential assignment error to‘be
exposed in the predicate interpretatidn Therefore, ‘this a]gor1thm will
guarantee the exposure of all assignment errors which are character1zed
by blindness, and may cause domain errors.

However, the complexity of the Blindness-Based Path Selection
A1gorithm I is high; ityﬁeeds m+n+l paths to test each assignment, and
up te n(m+n+1) pafhs‘to test each computation block: The operation of

“this a]gor1thm is complicated too. The trace from an a551gnment under

test towards a subsequent pred1cate is a cemplex task, which needs

44

expens1Ve matrix operations, and the trace ds potentially endless. The .

questioh is whether the benefit can justify the cost, or whether it is

N\
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worthwhile to pay the excessive cost for the capacity to\prevent the

situation where an assignment error may escape detection comp]ete]j,
' : TN
: J

7

"~ which rarely happens.

'\\

The approach taken by the B]indness-Based Path Se]ectioh/ﬁigorithm
Il seems more effect1ve There are several advantages with sugh an
approach First, the complexity ot this a]gor1thm is Tow; 1t needs only
m+n+1 paths to test a computation block. Second, the operat1on of this
algorithm is re]at1ve]y simple. The trace which extends from the
assignment to a subsequent predicate is no longer performed. Third,

thiS'approach in aésignment testing is consistent with that of

predicate .esting. Therefore, it is possible to formulate a {dniform

" strategy to deal with both predicate and assignment errors.

: E

‘-'vf?a%fr“gm;

The disadvantage of the Blindness-Based Path Selection Algorithm
II js that in theory the exposure of all assignment errors which may -
cause domain errors is not guarahteed. Although the test will force the
exposure of assignment errors in a local environment, it cannot ensure‘
the exposure in a global environment. For any assignment, the se]ect1on
of a set of re11ab1e paths guarantees that if there is an error in the

ass1gn§§nt, a d1fferent va]ue as compared with the correct one w1]1 be
i 7

to the affected program variable by at least one . of the -
““paths However, it does not guarantee that the ass1gnment
error w1}1 be exposed in a subsequent predicate 1nterpretat1on In .
other words, the assignment error may be nullified. As we d1scussed
earlier, the likelihood that an ass1gnment error .may comp]etely escape
detect1on is rare. We ¢ the advantages far outweigh the
disadvantages. Most ihpt tantl: . this 15 the algorithm wh{ch can be

implemented practically.



. 4.4 Blindness- Based Testing and Branch Coverage

There are other path selection cr1ter1a, the. most common ‘ones are . ;
statement coverage, branch coverage, and path coverage. Statement ”
coverage will ensure the executlon of every statement 1n the program, K
" which requ1res every program statement to appear in at Teast one of the
~ test paths. Branch coverage will ensure the execut1on of every poss1b1e
-branch - 1n the program, which requires every pred1cate to ‘be tested )
using both true and false values. Branch coverage subsumes ‘ atement'*‘
coverage Path coverage wWill ensure the execut1on of every :i?%’bTe'v, -
,path in the program Wthh requ1res the eva1uat1on of all fea51b1e -
'comb1nat10ns of predlcates Path coverage subsumes branch coverage

For each statement or branch 1n-the program the determ1nat1on of
- feas1b1e path wh1ch conta1ns the statement or branch 1s in generaL v.
undec1dab1e) Neverthe]ess,,statement coverage and branch coverage are’.
pract1ca1 crlterla used in program test1ng In ai1 rema1n1ng 7
’hd1scuss$on ‘the ex1stence of feas1b1e paths for both statement coverage
,and branch coverage is assumed | | | .vw '
N Though path coverage is the most compTete and des1rab1e measure

~in rea11ty, 1t is usua1]y 1mposs1b1e or 1mpract1ca1 A program w1th a

"NHILE" 100p can conta1n 1nf1n1te y many paths D1sregard1ng 1oops, ‘a

RS
1

_program w1th Just 20 "IF THEN- ELSE" branches, can, conta1n over a

million’ posswb]e paths » B |

L Bltndness based path se]ect1on a1gor1thm' *mp]y statement coyeragebf;i'ﬁ
‘for the program, s1nce each pred1c1te and a551gnment (1nc1ud1ng the ' hfitfif
'case of computatton b1ocks) w111 ¢ estec B]1ndness based test1ng P

also 1mp11es branch coverage fou Lhe program, a1though 1t does,not

dlnd1cate the coverage exp11c1t1y In testlng an. "IF THEN" branch the

e



.bT1ndness based aTgor1thm does not exp11c1t1y force the Boolean vaTue
"FALSE“ to. be taken, though 1t guaraptees the BooTean value "TRUE" to
“be taken by test1ng the ass1gnments 1mmed1ate1y after the- predlcate
. There 1s no s1m11ar probTem for an "IF THEN ELSE" branch, since, the

;cBooTean vaTue "FALSE“‘1s guaranteed to be taken by test1ng the

' .-‘ass1gnments after the "ELSE”'statement However, the tester shoqu havevg

:no d1ff1cu1ty to conform to branch coverage by 51mp1y tak1ng "TRUE" nd
',"FALSE" at Teast once for every "TF-THEN" branch This does not

'-necessar11y mean that add1t1ona1 test paths are required. UsuaTTy

_"VhseveraT paths are needed to test a program construct The tester can

ass1gn "TRUE"'and "FALSE" to d]fferent paths

| v
bg;.é 5 An Examp]e
R Ne w1TT g1ve a- demonstrat1on of BT1ndness Based Path SeTect1on
f".ATgor1thm II wh1ch is to seTect test paths to expose domatn errors
'(ﬁg 9).. N |

We TabeT aTT ass1gnments and pred1cates 1n the program in

sequence There are. two pred1cates Pl and - PZ’ and f1ve computatlon _ T?jb

‘*.fﬁbTocks,Az 1, 4A3,>A5, 5 and A7 Ne have def1ned "program state" i

"_ethe Tast chapter te represent the vaTues of. all var1abTes at any po1nt ;»g'.]

3

L*f{]ﬂ the program ex ecut1on We Will use the.notat1on tIf) to 1nd1cate

. ,:gihe BooTean vaTue (TRUE or FALSE) of the i- th pred1cate, and notatlons vtft;;,

”’LaﬂCPii?) and (A 7) to 1nd1cate the pred1cate and ass1gnment under test

. . ~’v ‘.? R
,JE:(P t P f - aﬂfl??f%f -

$

.respect1ve1y Thus a Subpath Tead1ng to a pred1cate or ass:gnment tg be _,_j;f

tested can be representg% as a str1ng of (P t P f 7) or
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READ X, xzi
- xlh
_ ’.Yz = Xy
COWHILE Yy -y, > 0

Y1 =Y Y,
/.VZ=.YZ+1 \
END NHILE ’ . *

CIF x| + 2x, - 8'>= 0 THEN

Y1TYat X

=<
~n
i

yl‘% 2x1 + é

CEND IF |

Y X E Xy R Y,
PRINT ), Xy, Y15 ¥,

~ Figure 4 ’Samp1e Pregram_for Path Selection

J

'_ In thebf011ow1ng, we' w11] se]ect a. set of reliable paths for each

®

’program construct (pred1cate or computatlon b]ock) accord1ng to the

- »se1f-b1indnesstvector and‘tWo assignment'b1jndness vectors. The

‘Lsequencé of . 1ts appearance 1n the program.

1 Computat1on block A A There s on]y one subpath The program

7 state after A2 is yhﬁ- 1’ yz 2

2. Pred1cate P1 F1rst we celect subpath (P ?). The »r gram state

after A2 is y1»=”x1, Y, = xz. Its b11ndness space conta1ns a

‘ se]f-b]1qgges$ vector and two assignment b11ndness vectors. Second

4

" we selggtfanpther subpath (P t,P1 ?). The program state after A
is'yi'u X] = Xpy ¥y = Xy + 1. Its b11ﬁdness space also contains a

A



intersection of these two b]indness spaces contajns only the
se]f-b]indness vector, which cannot be.e1iminated. Therefore a
re]iab]eiset for this predtcate ébnststs of twovsubpaths(Pl:?) ;Q
and (P, t,P,:7). et ) '
| 3.  Computation block AgRy: We extend selected subpath (PI:?) to
: a(Pl t, A :?) and another se]ected subpath (Pl t,P1 ?) to

(P t,P1 t A3 ?). The program state of variab]es has not changed,
and no ca]cu]at1on 1s needed
,4 Pred1cate P We extend se]ected subpath (P :?) to'(PI:ffPZ:?)thf
Its program state is yl = Xl’ y2 = x2 Ne-extend another selected
}'vdsubpath (P t,P 7) to (P t,P1 f, P2 ) Its program state 1s
| Y =,x1, 2, y2 = xé +1. Each b1\ndness space conta1ns a ;:h
self-blindness vector and two a551gnment b11ndness vectors The

,,,,,

‘ 1ntersect1on of thése two' spaces conta1ns only the self b11ndness

' vector As d1scussed prev1ous1y,‘these two subpaths are suff1c1ent T

to test th1s pred1cate -
5. ASSIgnment.Ast We extend se]ected subpath (P :f,P,:?) to -

(Plzf P

2°

2:t AS:?) and. another se]ected subpath (Pl.t,Pl:f;PZ:?)-to

(Plbt P.:f,P, it A5 ). This ass1gnment shares the same b?hndness

12
space with Pza(no change of the program state).
6. Assignment Aé, We aga1n extend selected. subpath (P :f, P 7) to
(Pl:f,Pé: 6:7) and another se]ected subpath (P t,Pl f, P 7) to -
(Pl't,P1 f, P2:f A6 ?). ThIS assignment shares the same b11ndness

f,A

space with' P, (no change of . the program state).
2

7. Assignment A,: We extend the subpath to (P}A{ P2 7¢ ?).

program state after a551gnment As_ls y1 =-2x2, Yp = X5- We extend

t, A Its

another subpath to (Pl t,P1 f, P :f, A ) Its‘program state/atterw'



!
\

i 50
assignment Ac is y; = X; - X5, ¥y, = X; - X, + 2. Each blindness
sbace contains two assignment blindness vectors. The interéection
of these two b]indnessxspaces is the hu]T‘spate. —
Finally, we have four paths (P1 f,P,:t), (P :t,P f,P :t),

(Pl:f;Pz:f) and (Plzt,P :f,PZ:f): In the above descr1pt10n of the path

selection process, we omitted the feasibility test, which is required

" at each decision point (prediéate) to extend the selected path. This

test can be carried out easily By allinear programming method. In fact

all these selected paths are feasib1é7 This set of paths also conforms
to branch coverage.

Fromlthis example we can see an importént'feature of
blindness-based testing: élthodgh the algorithm specifies the selection
of a set of paths for éQ%ry prédicate and computation b]oék, only a few
of them iﬁvo]ve the acpua] calculation of the intersection of b]indﬁessv
spaces. In this example, it only happens in-selecting paths for
prediéates P1 and PZ’ and assignment A7 In selecting paths for
computationfblock A4A3 and assignments Ag and A, no ca]cu]at1on of the _
b{{ndhésé space is needed. They share the result of P1 or P2 0n1y the

H feasEEj11ty test is needed. Thus, the actual calculation requ1red for.

vth1s a]gor1thm 1s much 1ess than it might appear. In this examp]e, a
’ ‘.re11ab1e test set cons1sts of only four paths, far less than the-
'* theoretica1 upper bound k(m+n+1) 30 (six predicates and computat1on
b]ocks, four 1nput‘and progrém;variébles). This illustrates the fact

'-thaybmaﬁy pgths may- be Shakéd{fbr testing different predicates and

"computation_BJOCks.
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4.6 Implementation - »

~ In the last chaptef, we have introduced matrix'operations’in,the
vector soace model. The imp]ementation of this model, however, need not
follaw 1é§’deve1opment exactly. Symbolic execut1on [3], a simp]e method
to execote the symbo11c representatlon af path domains and
'computattons, W111§§e used to 1mp1emeht these Operat1ons. All
operatiohs defined tn this model can be\carried;out equivalently by
symbolic execution. The vector space model is uséfd] to analyze the
va11d1ty and reliability of program test1ng When it comes to

1mp1ementat1on, cost and efficiency are our major concern. Matrix.

operations are very inefficient, especially matrix multiplications.

;537 Comparison of Diffehent Methods
B The Blindness-Based Path Selection A]gorithm II has been
implemented in a computer system called BBTEST An exper1ment has been
conducted to compare different methods. Four. programs (see Appendix 1)
are selected from [10]. The data is compiled in Table 1. The resu]ts
from BBTEST are compared w1th the ones from another computer system 2
named SPTES?Q;&ﬁch 1mp1ements Ze11 s algorithm in predicate testing-.
Both methods are b11ndness-based. SPTEST tests pred1cates only, wh11e
BBTEST tests both predicates ahd assignments Also included is the data
which ¢onforms to branch coverage when'the Blindness-Based Path
Selection Algorithm II is app11ed.

No attemht is‘made.to optimize the number of se]ected paths ih'any
if the méthods A]thoUgh these results are farAfrom cone%usive they do

‘provide some 1ns1ght into b]1ndness based testing. First, it aga1n

conflrms the fact. that the number of required paths to test the whole
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program is far less than its theoretical upper bound. Second, the

number of paths needed to test éssignments in additionf@gfpredicates is -
marginal. In two of‘the examples, there is no increaségﬁfhis situation
agrees with the fact that manylﬂgfhﬁsgig shared. Third, the number of
paths needed to provide bfanch coverage is also marginal. In two of the

~examples, there is no increase. Although all selected programs are

\
Number of Paths Required
Number
of : : ‘ >
Program| Input Number Number BBTEST
and of - of SPTEST BBTEST plus
Program |Predicates|Computation Branch
Variab. Blocks Coverage
1 4 3 2 30 s 4 4
2 4 2 3 2 2 3
3 | 4 4 3 4 4 6
4 -5 3 - 2 4 5 5

Note: 1. The first computation block at the beginning of the program is
not counted for the number of computation blocks, since it has
no effect on path selection.

2. SPTEST does not assure branch coverage.

| Table 1 Experiment Resu]ts for Diffprent Methods

Falio:

re]atiVe1y small in size, there is no reason to doubt these\facts will: 36#.?

o

e

not hold for programs of larger size.

One distinction between BBTEST and SPTEST is that BBTEST implies
statement coverage, whi]é SPTEST does not;.A'sufficient ﬁet of test
path;ﬁgeneratéd by SPTEST bn]y guarantees the exposure of all predicate

errors which are characterized by blindness, and may cause domain
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errors. Itlcannot guarantee the same for assignment errors. In fhe
following, we provide an example (Fiﬁ@ﬁS) in which SPTEST may fail to

include a test path that may cause a domain error due to an erroneous

> I U U >

assignment.
/
READ x, y :
1 W= X
IF w + x >= 0 THEN ' ;
; IF w > 0 THEN | %&
7 W=X+Yy 3
ELSE .
3 W=X-Y -
. END IF U
' END IF , : ' /
P3 IF w+ x - 2y <;0 THEN

Figure 5. Samp]e.Program for Two Path Selection Methods

s

X Al

In SPTEST, subpaths (Plzf,P3:?)“and (Plzt,P

2:t,‘P3:?‘) will

tonstitute a sufficient set for predicate P3. This set will guarantee
the exposure of all possible predicate errors in P3, which are

characterized by blindness, and may cause domain errors. However, none
of these two paths traverses assignment A£¥ If there is an error in A
it can certainly cause an incorrect interpretation of predicate P

3)
3 As
a result, domain errors may occur. SPTEST cannot guarantee the exposure
of ‘such errors. Since BBTEST will test each assignment in addition to

predicates, these errors will be revealed.



CHAPTER FIVE
INVARIANT EXPRESSIONS

5.1 Definitions 3 Y- %
One prob]em commonzko pathﬁanaﬁ:' esting is. the selection o
o: S }_‘ E) \):{\:.
finite set of baths from the set of a11 pos'1b1e pa h
gy
Although the path selection algorithm proposed in thes E&st chapter does

“.

the program.

provide the path selection criterion and the stopping criterion based
on the dimension and components 6f£§9etb1indness space, it is stiT] up
to the tester to decide how to select paths and when to stop.

In this’chapter, we will analyze the compsnents of the blindness
space, and summarize the heuristies and procedures which will guide the
selection of paths and the completion of the selection process.

The path selection criteripn and the stopping criterion indicate:
A path will be selected if it can redhce the dimension of the blindness
space for the program construct, until the blindness space becomes a
null space or contains invariant expressions only. i

YWhat is an invahiant expression? An invariant expression is an
algebraic expression which can be added to the correct expression of a
program statement (assignment'df predicate) without being detected
-along a7l possible paths through that statement. Namely, the execution
of theoprogram along all paths will not d{stinguish whether the.
statement contains an invariant expression or not. Therefore, invariant
expressions cannot be eliminated from the blindness space by the
selection of multiple paths.

Invariant expressions are jn fact combinations of assignment,

equality and self-blindness. These three types of blindness are

54
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originally defined for a single path, while ip»sriant expressions are ,ﬁﬁ
defined for miltiple patns. In other words, A b11ndness term for a
single path may not be a blindness term for Myl ¢iple paths. A
self-blindness wi]17a1ways become an invariahy ¢Xpression; an
assignment blindness and an equality blindness Wy or may not become | i
invariant expressions depending on program C0ps {ruct s.

. The goal of the path se]ect1on process T 40 redyce the dimension
of the bl indness space by selacting different psths Unt11 a null space
is obtained or the space contains invariant fypyessions only.

Saﬁay [10] reported, based on his experiyents with SPTEST, a
computer system imp]eménting Zeil’s model to test predicates, that
there are unused variables, equality blindness, Se1fjp1indness, and

~

invariant expressfons iglthe blindness space. These Vectors form an*,
irreducible error s"aceﬂahich cannof be eliminayed by the sé]ection of
different paths. w;(gi11 demonstrate Tater that al1] Components in the |
irreducible error sp;:;5fa1] under the definitign of invariant
expressions. ‘

Since invariant expressions cannot be elininated from the
selection of different paths,‘ear1y identifitytyon of jnvariant
- expressions can avoid a useless search'for n&y biths, which may be
endless when 1oop$ are inyo]ved.

An invariant expression, from its defipitign, iS jnvariant with
respect to a program construct along all paosSipYe paths Teading to the
construct. If an expression is invariant with‘rQSDeﬁt to a program
- construct along certain paths but not all poSyihIe path. this

expression is not an invariant expression, aly Qsh pe eliminated from

the blindness spacé by the proper selection oF nyltiple paths.
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The difficulty §%jses from the determination as to whether an
expression is invariant with respect to a program construct along
. certain or all paths. Theoretiga]]y,‘this problem is in qgnera]
undecidable. In practical situations, nevertheless, with ihe help of
heuristics we are able to deal with most programs. In the following we
will study some chargcteristics of invariant expressions, which will be

useful for the identification of these express?ons.

5.2 Characteristics of Invariant Expressions ¢

| Invariant expressions can be classified based on their appearance
in the program. There are two types of Jinvariant expressions: one can
‘be traced to a‘single statement (assignment or predicagg)'in the
program, the other can be traced to 'multiple statementgﬂin the program.

As we ment¥®ned earﬁier, invariant expressions are combinations of
the three types of blindness. Examining the value of an expression in
the blindness space,/yhich can be obtained by substituting constants
and input variables for program variables in the egpresS?%n, can help
to identify assignment, equality and self-blindness which compr{sé the
e*pression.

A self-blindness vectpr only appears in the b]indnesélspace fgr'
predicates. Since self-blindness has no effect on any assignment’fn
general, it will not be a component.in thé blindness space‘for
assignment;. Because every blindness space for a subpath leading to a
predicate cpntains'a se]f-b]indnéss vector, the self-blindness vector
cannot be eliminated from the intersection. Therefore, a self-blindness
véctor is always an fnvariant expression,

A

An equality blindness vector in the blindness space is eithéf in

~
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..been used or not, it becomes an invariant expression.

Fx
\

the original form of an equality predicate, or consists of constants

-and input variables on]y (after program varmab]es are rep]aced),

namely, the vector contains all zeros in its last n elements (n is the
snumber of program variables). h

An edua]ity blindness veétor will not become an invariant
expression unless an equality constratnt is in effect along all
possible paths leading to the program constfuct to be/tasted. The
equality constraint can arise from an equality predicatg§\a
non-equality predicate, or multiple inequa]ity predicates (a
coincidental equality).

When “a program var1ab1e remains constant in a local or g]oba]
environment, it w111 become an 1nvar1ant expr9551on An unused variable
is a special case of constant program variables, where the program
variable has been initialized bui not used. However, the situation

where an unused variable becémes an invariant expression has nothing to

do with the usage of the vantab]e; It is decided by the assignment

'(def%nition). As long as the variable remains constant, whether it has

g

Since }he*stopp1ng criterion for the path selection a]gor1thm
k.

‘depends on the identification of 1nvar1ant expressions, we will impose
;a ¥1g1d criterion for the 1dent1f1cat1on An invariant express10n

H'.should not be adm1tted unt11 it can be proved that 1t is indeed

-

invariant a]gng~a]] poss1b1e paths. Tnerefore, the identification
process mustébe supported by program analysis. It is easy to verify an
invariant expréssion which arises from’a single statement. For an s
invariant\expression arising from multiple statementsd analytical

methods (induction, for instance) used in program verification are
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needed. We will analyze an example to demonstrate how to reduce the

dimension of the blindness spacerand how to identify invariant

expressions.

5.3 An Example

& :
The following program (Fig. 6) is from [10], which performs

integer round-up.

"READ n ,
‘ 4
Al i=0 ,/
A2 J=n | .
P1 WHILE j >= 1
Mo Peed | ',
- END WHILE |
Ag Jrn -
PZW/ IF r >= .5 THEN
e S . i=1i+1
“\» . & ; : »
véf ‘viM;END IF
Y CPRINT n, i %
;?, o ’ |
-Figure 6 Samp]e‘Progrém for Invariant Expressions
In this program,'theretarg;;hree_program variables i, j and r, and

one input variable n.

For predicatg Pi; we 3e1ect_subpaﬁh'(P1:?). Its program state is
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i=0,J=n,r-= 0. The blindness space along this subpath is

iJjr

0 00-1 1
0l1o00 n
-1000 i
0-101 J
00-10 r

It consists of four vectors, the first three are assignment b11ndness ; C?
and the fourth is self-blindness. Now we select another subpath N
(Py:t,Py:?). The purpose of selecting this path is that at least two
program variables (1~and Jj) are asﬁigned different values. We hope it

will reduce the dimension of the b]ihdness space.‘Its‘program state is =

i=1,J=n-1, r=0. The blindness space along this subpath is

1-1 0-1+] 1 /
0100 n
-1000 i
0-1 01 J
0 0-10 r

&, .
It also consists of four vectors. The intersection of these two spaces

does reduce the dimensiona]ity:as we expected, which is

-y

v

1
-1
1
0
0

1
OO O
— O OO0

1
n
i
J
: r
{ ) . .
The intersection consists of three véctors. Since our objective is to
eliminate as many vectors as possible, we select a third subpath
(P): t,Pl t,P:?), hoping it will reduce the dimensionality further. Its
program state is i =2, j =n -2, r=0. The blindness space along

-

this subpath is

2-2 0-1 1
0100 n
-1000 i
0-1 01 J
00-10 r
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"The intersectjon of -the above three'b]indness spaces,’to,0ur

- surprise, is still. -~ - B .

oo;—ob—db—t
e =-X-X=k—}
O et O O
- = T e

(A.
| AcCord1ng to the path se]ect1on cr1ter1on, the th1rd subpath 1<:—— :'f
' reJected s1nce 1t cannot reduce the d1mens1on of: the 1ntersect1on of e
'b11ndness spaces If we try- to se1ect d1fferent subpaths, name]y takxng
»more iterations a]] results are Just the same none of»the subpaths- v
can reduce the d1mens1on of the 1ntersectlon Why does th]S happen? We
:’iw111 ana]yze these three rema1n1ng veCtors in the b11ndness space

The th1rd vector (—l 00 1 O) 1s a se]f b]1ndness vector wh1ch

f s, of course, an 1nvar1ant express1on The secohd vector (0 0 0 0 l)

.'.,1s a. constant program var1ab1e where the variab]e r 15 1n1t1a112ed to

A

"uzero at the beg1nn1ng, and not be1ng ass1gned any new va]ue 1n thxs

"envlronment Th]S 15 a]so an 1nvar1ant express1on
The f1rst vector (1 -1 1 0 0) 1s a b1t tr1cky ——'1ts express1on 5h}},zl

h["l - n';? seems unre1ated to the program Ne can check 1ts va]ue‘-a‘;;:f-7-
Taktng one subpath, say, the flTSt one, and subst1tut1ng the va]ues of
”-program var1ab1es (1 = 0 J = n, c = 0), we have “1 ;;nf (s1nce 1’%'0)ﬂjf»'
'nThe va]ue of . the express1on is eQUa] to the 1nterpretat1on of the -
predlcate wh1ch 1ndtcates se]f b11ndness 1s one of the factors that h{:;; -
‘compr1se the express1on B | | . | o
In order to e11m1nate'the effect of self b11ndness, e can add.the
: se]f b11ndness vector to the flrst vector, whlch results o g )

‘.(0 ~1 1 1 0) Its expre551on 1s P N+t J" Now we have restored 1ts'

or1g1na1 form -- thxs express1on is der1ved from ass1gament N
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. St LLnE S . .

. . - - B . . : b‘”
’~-'-‘A5 J = n - 1 It 1s the 1ast ass1gnment be/?r@ eX1t1ng the 1oop No

o matter how many 1terataons are taken, it 1s a]ways the- 1ast ass1gnmen@

= wh1ch equals zero Eor the subpath w1thout enter1n§~t”;
4 second and th1rd ass1gnments (J = n and r o= O) 1mp1y‘that the .

'.AeXpress1on "-n e it J" a130 equals zeno S1nce subpaths 1ead1ng"to P

) before the 1oop ends Therefore we have the expﬁéss1on "-n + 1 Y J",'

E I
s
Eog

‘Ioop, the

]
: ’{’%

o
AR

1

‘h$e1ther enter or sk1p~iht 1oop, hav:ng exhausted a]] poss1b1e paths, weﬁ

' ',v.have proved that the
e ’
B 'expre551on Now we have 1dent1f1ed a]] three vectors rema1n1ng in the

X ress1on Tenod it J" s indeed an inyariant .

:b11ndness space as 1nvar1ant expre351ons Accordlng to the path

',:iselect1on a1gor1thm, no more paths are needed for this predicate (Py).-

Tw

In the above d1scuss1on, "J N - 1" 1s actua]]y a lToop~ 1nvar1ant:

o

"}.It is. true on entry to the ]oop, and rema1ﬁ§ true after each iteration

, (1nc1ud1ng the f1na1 ex1t from the 1oop) ,'_ ;

For pred1cate P2 we extend the subpath to (P :f, P2 ?). Its program

;;state 1s 11— O ] n = The b11ndness space along this subpath is
o - 0 0 0- 5 l"
- . 20110 n g
K ~1000 "4
' 0-100 | -j
0 0-1.1: ”-r

g t conta1ns four vectors, where the First three are aSS1gnment

- .=;b11ndness and the fourth is se]f b11ndness He extend another subpath

. to (P t P °f, P *?) Its program state 1s i= 1 J=n-1,r=n-1,

The b]tndness spaceaalongvth1sgsubpath is f'

NG

CD—‘OD—"—‘

1-
0
-1
0-
0

t—lOC)r—‘H
— OO0

\1;__..4....:36—- ’

;lThe 1ntersect10n of these two spaces is-
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.

.5-.5-.5 1.
-1 00 n

1 0 0 .i
010 J

0 0 1 ro

%ffwe can ‘prove that if we select other subpaths with more iterations,

none.of them will reduce the dimensionrdf the,intérsectjon of blindness
spaces. In fact these three vectors are all invariant éxpressions.

Let .us gﬁart with the easiest, the third vector, which is a

| self-blindness vector "r - .5". We can trace the origins  of the other

¢ .
two vectors by adding the first vector to the second, and the first

vector to the third. The results are (0 -1 1"1 O)t_and (O -1 10 l)t.

The former "-n +’i + j" appears in the previous blindness space for
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predicate Pl' The only assignment (A6) between these two states.(_P1 and

Pz)'invo1ves the assignment_of prpgfam variable r, which has no effect

on the expressior "-n + i + j". Therefore, it remains an invariant

‘expression. The latter "-n + i + r" is a new expression, which is the

direct result of assignment A6: r=n -'i. Since every subpath leading
to predicate P2 passes through Aggiand P2 fo]]dws A6’immediate1y, as a
résu]t, "r=n-i" holds fbr all possible p;ths. Hence, it is also an
invariant expression.’ | .

5.4 Summary of Procedures - c | 1
From above‘discqssion, it is un]iké]y that there exists a general

method to deaf wi%h invariant exﬁressipns due to the uhdecidabi]ify of

program testing aﬁd the cohp]iéation of inVariant eXpreésions. However,

invariant expressions are often identifiable by careful imspection and

v

“analysis of the program.fThere appears to be an effective way to deal

with invariant expressions.

4
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The -following procedures can be taken during the test1ng process
1. Eliminate vectors in the b11ndness space which are variant.

‘_ Vectors wh1ch are varqgnt along d1fferent paths can be e11m1nated
by the proper se]ect19§ of mu]tlple paths. In order to e11m1nate
assignment blindness vectors, multiple paths shou]d bexse1ected where
program variab1es"are assigned different va]ues In order to e11m1nate
equality b]1ndness vectors, mu1t1p1e paths, should be selected where o
different Boolean values are assumed, “or different predicate
~interpretations are produced. - " |

2. Identify the type of invariant expressionsf.; ,
It‘is‘easy to idehtjfy séTF-b]indness:and other invartant
expressions which can be traced to a single:program statement, such as
constant program variables and equality b11ndness As a result
comp11cated 1nva#1ant expressions Jhlch cannot be traced to a. s1ng1e
statement are isolated for 1ater 1nvest1gat10n FRIARE
3. Check the value of-the expression-in“the b]tndhessrspace~ :3
Subst1tut1ng the va]ues of program var1ab]es 1n the express1on
#1]] provide 1nformat1on how the express1on 1s composed by ass1gnment

L

‘b11ndness, equa]wty b11ndness,fand se]f b]lndness

©

4. Use comp051t1on and decomposlt1on methods

The process. to add or subtract an. 1dent1f1ed a551gnment, equa]1ty,‘
k4

or self- b11ndness vector to another vector in the b11ndness space under

K

1nvestlgat10n w111 help to trace to’ the or1gln of the expresslon and
restore the ass1gnment, equality and self- b11ndnes;\;h;ch comprise the,
origin of the express1on Therefore we can determ1ne if the. expressmon .
is indeed invariant or not. The analysis should be based on program |

statements a]ong d1fferent paths, assoc1ated program states of
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o

variables,vassbcfated blindness spaces, and intersections of blindness
' spaces o ” | |

The above prpcedures are interfre]ated, and should be taken in an
fintegrated manner We do rot know if an expressionbis indeed invariant.
until it is e1ther e]1m1nated by the se]ect1on of mu]t1p1e paths or
proven as an 1nvar1ant expreSSIOn For al] vectors in the b11ndness
space, the f1rst choice is try1ng to e11m1nate them by se]ect1ng
d1fferent paﬁhﬁmgvfgnot successfu] the second choice is try1ng to

.prove them as’hnvar1ant express1ons, there 1s no bther ch01ce

3

5 5 Heuristies 1n Se]ectlng Paths‘
A]though the -existence of any. method wh1ch will. guaﬁ%htee an .
. ppt1ma] test set appears un]1ke1y, some heur1st1cs can certa1n1y-reduce
the amount of ca]cu]at1on and the number of paths needed ‘
. The most effect1ve way to reduce the number of paths for b11ndness'
testing.. is to se]ect d1fferent paths where as many program var1ab1es as
fposs1b1e are ass1gned d1fferent values along d1fferent paths In th1s
f:way, &he d1mehs1on dt the b]1ndness space can be reduced qu1ck1y {f1s N
tlpcr1ter1on is espec1a11y effect1ve when nested 1oops and branches are ‘
~involved. Testers usua]1y se]ect short paths (th1s is a good strategy),'
but over]ook max1m1z1ng d1fferent va]ues a]ong d1fferent paths If}a
“program variable’ has the same va]ue in- two d1fferent paths, the' ‘J
var1ab1e will certa1n1y appear in the 1ntersect10n of these two
b11ndness spaces Our obJect1vev1s to e11m1nate as-many vectors in ‘the
b11ndness space as p0551b1é in a S1nq1e path _ N
The other cr1ter1on is to 1dent1fy dinvariant express1ons as ‘early
as,poss1b]e If some express1ons cannot be e]1m1nated from the

1

Ly
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blindness space along several péths, program inspection and analysis
§hou]d be made to rulé out the possibility of invariant expressions.
Any attempt to eliminjte invaria;t expressions will result in a usels
search for new paths, qﬂich is potentially endless when loops are”

W
involved. -

Cr
N



CHAPTER SIX
TEST DATA SELECTION KND RELATED ISSUES

6.1 Test Data §e1ection
This study, as we stated before, is focused on path se1ect10n
based on the b11ndness concept Blindness- based test1ng is 1ndependent .

of any test data selection schemes We suggest however the’Doma1n |

i

Testing Strategy (mentioned in Chapter 1), is a su1tab1e test data ;Qm S

se]ect1on scheme to carry out the b11ndness testing. In Chapter 3, we.

have mentioned 1nput equa11t1es, another source of equa]1ty b11ndness

"'The effective exclusion of input equalities depends on a re11ab1e data '

selection method. In this chapter we will give deta11ed d1scusswon,of

AT iy

qna1ities and exp1Ein why domain testing can effectiVe]y'preventa;

input eooalities; In the following, we wii]lfirst give a brief” .~ -

introduction to domain testing.

6.2 Domain Testing strategy

Domain testing constructs test data for selected paths in order to
expose domain errors. This method falls into the category of path |
analysis test1ng A1l feasible paths in the program partition the input

space into subdoma1ns Input points in each subdomain cause the

“execution of'statements along a certain path, which calculates the

function associated with the path The boundary of each subdomain is

formed by pred1cates along the path. Domain test1ng ana]yzes the
boundar1es of subdomains to detect domain errors. Since domain errors
are manifested by a shift 1n part of the subdoma1n boundary or a change

in the corresponding re]at1ona] operator, domain testing selects po1nts

66
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. L
on or near thg subdomain boundary. This selection is bas:q on “he fact
that points near the boundary are most sensitive to domair errcrs.

The segments of the subdomain boundary are determined by

predicates along the path, which are termed borders. There are two

types of test points, defined by their positions with respect to the

border. An ON test point lies on the border; an OFF test point lies on
the open side of the border, which is in. the adjacent subdomain, In a
two-dimensional case, domain testing selects two ON test “points on the

border, and one’ OFF test point with a small distance from the testing

<

- border. In an m- d1mens1ona1 case, domain testing selects m linearly

<

- 6.3 Input Equality

independent ON test points on the border, and one OFF test point in the

'adgacent subdomain whose prOJect1on on the, g1ven ‘border is a convex

'comb1nat1on of these m points.

There are some limitations with domainﬂtesting for certain types
of errors. missing path errors, for 1nstance which are in fact common
to path analysis testing methods. Nevertheless, domain testing can
re]1ab1y detect any border shift or change in the correspondlng

re]at1ona1 operator within a tolerance limit.

O )

The deriVation of input equalities is from the following equation

which appears'in Chapter 3,-

EA v = 0, (EA A0) .7 (4)

| where E 1s the error term in thefgredlcate Ap the subpath 1ead1ng to

a
the pred1cate and Vo/the initial state (1, Xpo eees Xo y 0, ..., 0).

We mentioned in Chapter 3 Ze11 has identified two types of

, equa11ty blindness: equallty predJcates and coincidental equalities.
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These two type of equa]1ty blindness form equa11ty constra1nts a1ong

the path. Whenever the error term E is a 11near comb1nat1on of equality

constraints, the error will escape detection along the path.

(;pr‘]ét us consider all solutions to equation (4). Apparently, in”
addition to the error term E, the jnput VO also plays a. role in ;h1§ |
equation. This equation,can”be”satisfied.even without fne presenpé of
equality constraints. This situétion arises when fhe error term
coincides with jnput values. This is referréd:to as an %nput equality.
Hefe is an example. | o |

Correct Code | Incorrect Code

1

x1 + 3x2‘- 6 >0 | ] 2x1 +»x2'- 6 >0 |

The error term for the incorrect code is xl.- 2x2. If the input
data selection happens to be Xy as two times as XZ’ say, x| = 2 and
Xy = 1, then the error term X| - 2x2 will resu1t~1n zero. In general,
‘any selection satisfying Xy = 2x2 wi11 nullify the error.

Input_equa]ities have two.consfituents: an.efror term and the
imput va]ues-which match the error term. For each error term in a
statement, there'can be infinite sets of input véﬁues which match the
error term. On the other hand g1ven one set of 1nput values, it can
match 1nf1::te1y many potent1a1 error terms. : R

A typical pred1cate_statement is

a0+a1xl+.rl+amxm+amf1y1+.;.+am+n+1yn+(b0+blx1+...Q..+bm+n+1yn) ROP 0%
where ROP stands for a relational operator, and item§ in the.

parenthesis form the error term. Since the interpretation of the error

term is comprised of constants and input variables only, where program

PR
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N
var1ab1es é}e being replaced, geometrically the error term of an input
equality 1%ﬁk‘r1ct1y contained on a line (2- d1mens1ona1), a plane

’ v

w:by a careful selection of input data. In a
two-dimensional space, if we select ;ne'point (a pair of input values),
it can match infinitely many potential érror terms; if we select two
independent points, it can only match a unique error terh since two
points determine a Tine; if we select three’independent points, no
error term can be matched, name]y; theverror term will be revealed by
at ]east one of the test points. Therefore, input equalities will be
detected.

We can easiiy expand the above observation. Since three
independent points will ndf lie on a line in a two-dimensional space,
fhus m+1 independent points will not lie on a hyperplane i; an
m-dimensional space. Hence, m+l independent points will be the minimum
number which guarantees the exclusion of input equalities in any
statement. The simpTe explanation is that at ieast one of the m;l test
points will assure the error term béing non-zero, and, as a result, the
error will be exposed. There is a noticeable s1m1]ar1ty between thlS
result and the data selection method proposed by domain testing: both
require m+1 test points.

The understanding of input equalities will assist us in data
selection along chosenrpaths. With m input variables, if less tpan m+1
data points are selected td test a predicate, the test will not\be

considered reliable for its vulnerability to input equalities: Using
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thiS'cfiterion we can conclude that domain testing is reliable to
.detect input equalities. Since domain testing selects m linearly
{ndependent ON points and one OFF point, these m+l points are
guaranteed to lie on different hyperplanes. If there an error in the
prédicate, a domain error will be detected.

The existence of input equalities wiT] not inval ‘e the path
selection a1gorithms\based on the blindness concept as .ong as a
reliable data selection method is adopted. Assignment blindness and
equality constraints are usua]]y'path dependent, namely, the errors may
escapgbdetection for certain paths but not for others; the exclusion of .
these errors require5s a set of paths. Input equalities are path
independent, namely, the errors may escape detection for certain input
- values instead of certain paths; the exclusion of these errors does not
necessarily require a set of paths, but a ;et of test boints.

Because of fhe path independence, the number .of test points
necessary to detect all errors due to input equa]ities in the program
will be far Tess than the number of points necessary to detect othef
blindness errors which are path dependent. Just considéring predicate
errors, if a path traverses all predicates in the program, we may only
need to select data toltest this path alone, which Qi]] expose input
equalities for all predicates in the program. This is certainly not
true for path dependent blindness errors, where a set of paths aré .
-u:ually required. | |

We have‘demonstrated that ‘m+1 independent test points wi etect
input equalities fo; any given program statement. The distribution of

theée test points is not as strict as that of domain testing, where m

ON points and one OFF point are required. The exclusion of input
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equa]iijes only requires that the m+l points be independent. in other
words, lie on different hyperplanes. Since the Domain Testing Strategy
is an established data se]ectionrmethod, Which can reliably detect
domain errors, and also satisfy the criterion te detect input

equalities; it can be a desiranle tool to carry out blindness-based

@

testing. 1)}
. 2



CHAPTER SEVEN
SUMMARY

7.1 Blindness-based Testing . ‘ A
The phi]dsophy of program testing is to assure the quality of - ™
software. Program testing involves the execution of a program over a
set of test data. Since there is no general testing méthod for
arbitrary prdgrams, researchers attempt to circumvent this prob)em by
concentrating oh certain classes of programs over certain ciasses of
errors. Path analysis testing, a class of testing strategies, fnvo]ves
the selection of test paths and the selection of test data for the
chosen paths. Zei]fs study focuses on the selection of test paths. He
has identified three types of blindness errors which will escape
detection along a-given path for linearly domained programs: a class of_J
programs defined in Chapter_Z, and proposed a strategy to expose
blindness errors by selecting a set of test paths. |
White and Cohen [11] proposed the Domain Testing Strategy, a
simple and effective method to detect domain~efrqrs by selecting test _:
data on or near the boundary of a path domain. fhe'remaining problem,
general to path oriented methods, is how to deal yith the number of
paths in the program, which is potentially infinife; Zeil has applied
the blindness .concept to select a finite set df paths to test
assignments and predicates separately. The question is whether these
two tests can be combined and simplified.
This research attempts to select a finite set of paths for doﬁain
testing. The objective is to develop a blindness-based testing method

for linearly domained programs, which will test assignments and
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predicates for domain errors, and’can be implemented practically.

The main_contributionsvgf this research are the analysis of
assignment testing, the proposal of a uniform strategy to combine
assignment and predicate testing, the analysis of invariant
expressions, the summary of procedures to deal with invariant
expressions, and the -computer implementation of the proposed tescing
strategy.

Leil’s model has been refined. Input equa11t1v,, anoiher potential
source of blindness, have been analyzed. , r |

Two b]indness-based path selection a]gorjthms have been proposed.
The Blindness-Based PSEQ;§e1eetion‘Algorithm I 'tests each assignment

and predicate with & 2o f 0(n2), where n is the number of

program variab1es. T'x“ BFLy is consistent with the upper bound

’suggested by Zeil.<Th S oeithm will guarantee the exposure of‘a11
ass1gnment and predicate errors which ere characterized by blindness
and %ayﬂcause domain errors. The Blindnes$-Based Path Selection
Algorithm I tests each block of assignments and pred1cate with a
comp]ex1ty of O(n). In theory, this proposed a]gorlthm cannot quarantee
the exposure of all a551gnment errors which are character1zed by
blindness. Under certain circumstances, an assignment error may not
manifest itself in subsequent predicates following specific oamhe?vand
the error will escape detection. In practice, however, these
circumstanees are rare; therefore, the Path Selection Algorithm II can
be as effective as. the Path Se]ection Algorithm 1.

Due to the existence of invariant expressions, a combination of »

blindnessverrors, the search for a finite set of test paths may become

endless. Therefore, the understanding of ‘invariant expressions is

Y




crucia1 to b]indnesslbased te;ting. This research forma]]y'defines

.1nvar1ant express1ons and c1assifies them according to their

are summarized, and a- stopplng criterion for test1ng as we]] as’

heuristics for se]ect1ng paths is suggested

7. 2 Future Research
Although 11near]y domaﬁned programs represent a large class of v

data processing - programs, th1s c]ass mema1ns rather restrlcted

Extending bllndness based test1ng ‘to"non- 11near1y doma1ned programs

will be a major challenge. The main prob1em 1s that blindness- based

‘ testing requires the‘c]osure of program operat10ns under a. vector

afh

i)‘

'space, which -most non- 11near1y doma1ned programs cannot sat1sfy Many

features assoc1afed with linearly doma1ned programs, e. g , the

feasibility of a test path the re11ab111ty of blindness test1ng, w111

{become uncerta1@;for non- 11near1y doma1ned programs.

In order to extend the test1ng to non- 11near1y domained programs

. .,,

~new theory needs to address the above prob]ems, new strateg1es need’ to
trim the number of paths, whleh\w111, conce1vab1y, grow exponent1a11y

Zeil attempted to address the’ non\11near class of programs by p

\ -

_introducing a method caJ]edy"pertdrbation testing” [14, 15], which can

be further~exp10red.
. ) \)” ¢
The- other. prob]em associated with non- 11near1y domalned programs

is the se]ect1on of test data a]ong chosen paths Doma1n test1ng, the-
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~ appearance in the program. Procedures to identify invariant expressions

method we recommended to perfbrm the selection of test'data,-is mainly -

applicable to Tinearlx domained programs. The selection of test data is
J s -

inseparab1e‘from the setection ot test paths How to select reliable .

test data.is another cha]]enge facang non 11near1y doma1ned programs
N : - .

B ‘."X"
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APPENDIX 1
TESTING PROGRAMS ’

Program 1: Euclid GCD

READ, X, Y
A= X S
B =Y , -
YWHILE (A .NE. B) DO
WHILE (A .GT. B) DO .
A=A-8B
END WHILE
WHILE (B .GT. A) DO
B=B-A
END WHILE
END WHILE
PRINT, X, Y, A
STOP
END

' Requ1red Paths' for the Second Algorithm: °

(.

1. (P,:t, P2 t,P t P,:f, P :t,P

1 2" 2

f, Py: £,p, :f)

3:FPyif)

2. (Py:t,P,:t,P

1" 2 e

3. (P (t,P, i f, Pyt Py, P i, P, P :f,P3:f,P :f)

1"772" 3

4, (Plzt,P :f,? :t,P3

3’
:t,P

2
:f,Py:f)

2
3

&

N
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Program 2: Integer Round-up

READ, N

1=0

J =N

R=0

WHILE (J .GE. 1.0) DO
I =1+1
J=N-1

END WHILE

R=N-1

IF (R .GE. :5) THEN DO

STl =1 41

END IF

PRINT, N, 1

STOP

END

i vgired Paths for the Eecond A]gorithm;gy
R B
1 I“iu{(Plzt,P :f,PZ:t)

2. (Py:t,Pyit,Poif,P,t)

2

-~
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t

| Program 3: Integer Division Remainder

READ, X, Y
R=20
A=20

. IF (X .GE. 0) THEN DO

IF (Y .GT. 0) THEN DO
R=X

WHILE (R .GE. Y) DO
A=Y

WHILE (R .GE. A) DO - ih
R=R-A
- A=A+A
END WHILE
END WHILE
END IF : . )
END IF
PRINT, R, X, Y ~ : ' ;g“
LSTOP ¢
END

Required Paths for the Second Algorithm:

1. (P,:t,P,:t,P,:f)

3
:t,P3at,P

1
2. (Pp:t,P

2

2 4:t,P4:f,P3Et,P4:t,P4:f,P3:f)

3. (Pl?t’PZ:t’P :t,P4:t,P4:ﬁ,P4:f,P3:t,P4:t,P4?f,P3

4. (P,:t,P :t,P3:t,P4:t,ﬁ4:t;P4:tiP4:f,P3:t,P :t,P

1"772 4* "4

+:f)
F,Py1f)
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?35'(P1 P, P Ek? £,Pyit,P

Program 4: Euclid GCF

READ, A, B

S = A

T -8B /-
U=0 .

WHILE (S .NE. T) DO
IF (S .GT. T) THEN DO

wrc
LR [ [ I |}
c—wm

) T

* END-TF -
END-WHILE .
IF (S .EQ. 1) THEN DO -

_ PRINT, A, B ‘
ELSE -

ORINT, A, S

END IF° ﬂa
sTop %

END

.
o T

5. ! /
»K,J :

Requ1red Paths for the Second A]gor1thm

1. (P :t,P,:t, P f P f)

2°

2. (P :t, p7*f P t Pyit,Py:f, P

PpifiPyit)

2°
it P it Pyt P ) Py

Z:t’Pllt’pZ:f’pl:t’PQ:_

4. (Pl:t,P
57 (Pizt,P

»

.f;

y
&
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APPENDIX 2
BLINDNESS-BASED TESTING SYSTEM
, ¢
The Bﬁindnésélbased Testing System (BBTEST) has 1mp1ement§d the
second path selection algorithm presented in chapfer four. THef
\1mp1ementat1on modified the Sufficient Path Testing System (SPTEST), a
system implementing Zer] s algorithm in pred1cate test1ng, “to
incorporate the second path selection a]gor1thm The system is hocated
on Pembina of the UNIX operating system at the Computing Science |
Department, the University of Alberta. The érogramming language used is
FORTRAN. The source code is stored under the.diregtory .
/ul/prof/leew/program.testing/bbtest/src. ,

The operation of the system can be divided into three phases. The
first phase.i§f}he compi]ation(of the input program; the secoﬁd phase
is the $e1ectioﬁ of test path% through an interactive symbolic

‘exchtion;‘the third pha§e is the‘determination a§ to whether to accept
or reject the selected path based on the path selection algorithm. To
the end the user will be}infdrmed whéthef a sufficient set of test
paths has beég achieved ‘or not. ‘

In order to execute thé system, the user should change the
directory t0\/ul/prof/1eew/program testﬁag/bbtest/b1n There are three

- commands: takea, takeb, and takeab Takea Will comp11e the 1nput
'program Takeb will select test paths. Takeab w1§} comp11e ‘the program
and se]ect paths A program -only needs to be comp1ﬂed once, However,
there is no 11m1t to the number of paths to be se]é\ted After the

program is comp11ed.(through*takea or takeab), ‘the command takeb can be;

executed repeatedly. The syntax of command lines: '
. : : 80 . l“ .;
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fakea <input”pregfam name>§
takeab ;iﬁth pFogram'name>i
3,} takeb , | |
Dur1ng the execut1on the system generates some 1nformatlon which
is stored under the directory /ul/prof/]eew/program test1ng/F11es The
following are some of the files:
‘. pfogram,]st: the Tist of the ieput program;
pregrem.prd: the list of predicates'a1ong the path(s)'
~.spaﬁ vecter° the blindness space(s) after se]ected path(s).
The system will not operate correctly if an input program conta1ns'
'syntax errors or s}atements unrecognized by the system.

The following is a list of FORTRAN statements recognized by the

system:.
ACCEPT END WHILE
ASSTGNMENT STATHENT @ B ELSE DO
AT END DO T ForMaT
CASE o GO TO
COMPUTED GO 0 CIF (.;L) CEXE STATEMENT> .
CONTINUE . IF (...) TWEN DO
DO CASE b ,PRINT b o
DO - READ (FORMATTED OR UNEORMATTED)
END ' o : STOP '
' ,Eﬁo'CAse - WHILE (..R)‘oé“
. END IF ' L o WRITE -

SOme restrictions are set- for the input program:
Maximum length (1ines® 150

. Ari;hmetic Stateﬁents | ©100



‘Assignment Statements
Do Lobps

Input Variables
Output Variables
Labels

‘Predicate Stateméhts
Reéd Statements

Write Statements

50
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20
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40
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