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Abstract 

Illumination receives a great deal of attention as white lighting-emitting diodes (WLEDs) become 

energy-efficient light sources in households and commercial buildings, on streets and highways, 

and at stadiums and construction sites. In general, lenses and mirrors are used to control the 

spatial distribution of WLED light. In this thesis, we propose to use optical diffuser, the key optical 

device in scattering optics, to achieve the desired figures of merit for WLEDs.  Optical diffusers 

are typically used to create soft light (similar brightness from any angle of view), however, here 

we can alter the concentration of nanocrystals in the nanocomposite film (optical diffuser) to 

control its optical property. Machine learning is employed to achieve the inverse design of the 

optical diffuser pattern on WLEDs, and this design task is beyond human capacities which are 

generally carried out using the brute force approach (solving a problem through exhaustion). In 

this thesis work, we have constructed the neural network architectures for machine learning and 

used them to achieve the inverse design of a symmetric pattern of optical diffusers (two-

dimensional design) on WLED modules. Furthermore, we focus on achieving the inverse design 

of non-symmetric patterns of optical diffusers (three-dimensional design), and several pre-

defined patterns of WLED light intensity are demonstrated for showing the success of our efforts.     
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Chapter 1. Introduction 

This thesis focuses on utilizing deep learning to reversely design the cellulose nanocrystal (CNC) 

nanocomposite film adhering to the white light-emitting diode (WLED) module for improving its 

performance. WLED is a common and promising device in outdoor and indoor lighting 

applications. Considering the differences in end-use circumstances, the structures and materials 

of WLEDs need to be modified to fulfill a variety of demands and conditions. CNC-based optical 

diffusers have already been verified to change the performances of WLED. The traditional method 

to design the CNC nanocomposite film (i.e. film pattern and CNC concentration) is achieved by 

trial and error, which are complex and time-consuming. Many studies have shown that inverse 

design problems can be efficiently solved by deep learning. Thus, this thesis will explore how 

machine learning can be used for inverse design of CNC-based optical diffusers for WLED lighting.  

In this chapter, the basic definition of WLED and its figures of merit will be introduced. 

Furthermore, the neural networks of deep learning approaches used in recent photonic research 

will be summarized. In the end, the targets and rationale of this thesis will be discussed. 

1.1 Introduction to white light-emitting diode (WLED) 

1.1.1 What is a WLED 

A conventional light-emitting diode (LED) is a semiconductor device that can emit light, mostly 

in the visible region of the electromagnetic spectrum, when applied current flows through it.1 The 

emitted light has a relatively narrow spectrum, about 20-30 nm of the full width at half maximum 

(FWHM) for most LEDs. However, a WLED is preferred for indoor and outdoor lighting (or called 

illumination) for its wide spectrum covering most of the spectrum in the visible region.2 Prior to 

the vast deployment of WLEDs for illumination, white-light sources are incandescent light bulbs 
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and compact fluorescent lamps. But these devices are not efficient in energy utilization compared 

to WLEDs.3 Thus, for most indoor and street lighting applications, WLEDs are replacing previous 

white-light devices due to their superior properties of high energy efficiency, long lifetime, and 

low cost.4  

In order to realize white light, three LED chips that radiate light of three primary colors (red, 

green, and blue) can be integrated together and colors are mixed to produce white light.3 Some 

studies also show that the combination of purple LED chips and yellow-green phosphors can 

efficiently emit white light.5 However, as shown in Fig. 1-1 (a), the most common and economical 

approach to achieve white illumination is to use yellow phosphor-converted WLED,3 which 

involves a blue LED chip embedded in a thin layer of yellow YAG (Y3Al5O12:Ce3
+) phosphors. In 

this device, phosphors absorb the blue light produced by a LED chip and generate yellow light. 

The remaining blue light is combined with the yellow light to create a white spectrum and appears 

white to human eyes, as shown in Fig. 1-1 (b).  

 

Figure 1-1: (a) The typical structure of WLED. (b) Emission spectrum of the white LED. Reprinted with 

permission from Copyright © 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.3 

1.1.2 Figures of merit of WLEDs 
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 The performance of WLED are mainly evaluated using two figures of merit: luminous flux and 

angular color uniformity (ACU). Here, we will discuss the definition and importance of these two 

critical performance metrics. 

Luminous flux 

The measure of the total power of electromagnetic radiation, including infrared, ultraviolet, and 

visible light, is called radiant flux.6 The SI unit of radiant flux is the watt (W) or joule per second 

(J/s). Assuming that the radiated energy is set as Q joule, the radiant flux can be defined as 𝛷𝑒 =

 
𝑑𝑄

𝑑𝑡
. Although it has considered the total power radiated from the light source, the radiant flux for 

each wavelength is different. Hence for the entire optical range of wavelength, the radiant flux 

function can be written as 7 

𝛷𝑒 =  ∫ 𝛷𝑒(𝜆)𝑑𝜆
∞

0

. 

One example of the measured radiant spectrum of radiant flux for WLED is shown in Fig. 1-2.8  

 



 
 

4 
 

Figure 1-2: An example of the spectral radiant flux of a WLED. Reprinted by permission from IOP 

Publishing Ltd: Measurement Science and Technology, copyright (2009).8 

Unlike radiant flux, luminous flux only measures the total amount of visible light emitted by a 

light source, which considers the various sensitivity of human eyes according to different 

wavelengths of light.7 The SI unit for luminous flux is the lumen (lm). The term for brightness 

measurement based on a normalized model of the sensitivity of the human eye is luminous 

efficiency. The rod and cone cells in the retinas of the human eye perform two different functions 

in vision. Under moderate and high levels of illumination, the vision is called photopic vision. In 

contrast, vision at a low level of intensity of light is named scotopic vision. The two curves in Fig. 

1-3 represent the sensitivity of eyes to all wavelengths, the standard light efficiency functions (V(𝜆)) 

for both photopic and scotopic vision, respectively.6  

 

Figure 1-3: Standard luminous efficiency functions. Reprinted by permission from Copyright © 2014 

Woodhead Publishing Limited.6 
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In order to calculate the luminous flux for one specific wavelength of light, the radiant flux will be 

multiplying with the corresponding standard luminous efficiency (𝑉λ) based on Fig. 1-3 and then 

the result needs to be further multiplied with the maximum spectral luminous efficiency (𝐾𝑚) 

which is a constant of 683 lm/W. The equation can be written as 6 

𝛷𝑉 = 𝐾𝑚 ∗  𝛷𝑒 ∗ 𝑉λ. 

Therefore, the ability of visible illumination for WLED is determined by luminous flux. For WLED 

that has a distributed spectrum, the first step is to calculate the integral of the radiant power for 

each wavelength multiplied by standard luminous efficiency obtained from eye sensitivity map 

from 380 to 780 nm, and then similarly multiplied by the maximum spectral luminous efficiency 

to output the overall luminous flux, as shown in the following formula: 

𝛷𝑉 = 𝐾𝑚 ∫ 𝛷𝑒 𝑉λ 𝑑λ
780 𝑛𝑚

380 𝑛𝑚

 

Angular color uniformity (ACU)  

As another important figure of merit, ACU reflects the uniformity of correlated color temperature 

(CCT) from the WLED module. The color temperature of light can be obtained by comparing it to 

the hue of light that an ideal black-body radiator radiates.6 The unit of color temperature is 

absolute temperature, the kelvin(K). As one characteristic of visible light, color temperature plays 

a significant role in lighting, manufacturing, photography, and other areas.  
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Figure 1-4: The CIE 1931 chromaticity coordinates. Reprinted by permission from Copyright © 2020 

Elsevier Ltd.6 

The set of color temperatures is located on the Planckian locus, which is the locus that plots the 

chromaticity coordinates of the black body radiators that produce light as the change of thermal 

energy. In order to match the spectrum of a black body to the light source that is non-Planck, the 

concept of correlated color temperature (CCT) is defined to fulfill a wide range of colors. The CCT 

of the light source is explained by locating the temperature of the black body radiator, whose color 

is most closely to that of the light source. Fig. 1-4 shows the chromaticity coordinates that present 

the hues of black-body light sources of various temperatures and the lines of CCT.9 Currently, the 

illumination industry default identifies the CCT between 2700 K and 3500 K as warm white light, 

and the cool light source ranging from 4500 K to 7500 K. For the light space illuminated from 

WLED, the high and low color temperature at different angles create the blueish type of cool white 

light and yellowish type of warm light, respectively. The unequal distribution of CCT brings about 

non-uniform and uneven emissions of white light from the WLED module, which causes an 

undesirable phenomenon named “yellow ring”. Therefore, high ACU is the essential demand for 

enhancing the performance of WLED.  
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Figure 1-5: The CIE XYZ standard observer color matching functions. Reprinted by permission from 

Copyright © 2010 Woodhead Publishing Limited.6 

The previous study has built a cubic approximation10 to calculate the CCT based on the tristimulus 

values and chromaticity coordinates. The tristimulus value is an expression of the amount of the 

three primary colors that cause the human retina to perceive a certain color, and the three results 

are expressed as X, Y, Z. To calculate the tristimulus values, the CIE’s color matching functions 

(�̅�(𝜆) , �̅�(𝜆)  and 𝑧̅(𝜆)) are used to numerically describe the chromatic response of the observer, as 

shown in Fig. 1-5.11 Combined with the emission intensity (𝐸(𝜆)) that can be obtained from the 

WLED spectrum, the three functions can be expressed as 

𝑡𝑟𝑡𝑚𝑠𝑋 =  ∫ �̅�(𝜆)𝐸(𝜆)
780

380
𝑑𝜆,              𝑡𝑟𝑡𝑚𝑠𝑌 =  ∫ �̅�(𝜆)𝐸(𝜆)

780

380
𝑑𝜆,              𝑡𝑟𝑡𝑚𝑠𝑍 =  ∫ 𝑧̅(𝜆)𝐸(𝜆)

780

380
𝑑𝜆. 

After acquiring the tristimulus values, the next calculation is to convert the X and Y values to 

chromaticity values, and the converting function is shown in the following equations: 

𝑐ℎ𝑚𝑡𝑥 =
𝑡𝑟𝑡𝑚𝑠𝑋

𝑡𝑟𝑡𝑚𝑠𝑋 + 𝑡𝑟𝑡𝑚𝑠𝑌 + 𝑡𝑟𝑡𝑚𝑠𝑍
 , 𝑐ℎ𝑚𝑡𝑦 =

𝑡𝑟𝑡𝑚𝑠𝑌

𝑡𝑟𝑡𝑚𝑠𝑋 + 𝑡𝑟𝑡𝑚𝑠𝑌 + 𝑡𝑟𝑡𝑚𝑠𝑍
 . 

The final calculation of CCT is to implement the chromaticity values into the cubic approximation, 

as shown in the following equation: 
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𝐶𝐶𝑇 = 437 ∗ 𝑛3 + 3601 ∗ 𝑛2 + 6861 ∗ 𝑛 + 5571,  where 𝑛 = (𝑐ℎ𝑚𝑡𝑥 − 0.3320)/(0.1858 −  𝑐ℎ𝑚𝑡𝑦). 

1.1.3 Conventional methods to improve the performance of WLEDs 

By modifying the inner WLED structure, methods have been proposed to improve the luminous 

flux for WLED, such as changing a sapphire substrate in a cone-shaped nanopattern.12 By 

patterning substrate, this structure can improve the crystalline quality of GaN-based LEDs and 

improve the light output of WLED. The dual structure phosphor layer has also been verified to 

enhance the luminous efficiency of WLED, as shown in Fig. 1-6.13 By inserting a thin silicone layer 

into the phosphor layer, the light output can be improved because the new added layer optimizes 

the ratio of the different layers with the increased transmission. The luminous flux can also be 

improved by applying GaN nanoparticles and GODs as phosphor and change-transfer medium, 

respectively.14 In this method, GODs-based phosphors provide better thermal stability by using 

this composite film due to the excellent thermal conductivity of GODs, which results in high 

luminous efficacy and color quality.  

 

Figure 1-6: Schematic cross-sectional view of (a) dual-layer and (b) conventional remote phosphor structures. 

Reprinted with permission from Copyright © 2020 The Institution of Engineering and Technology.3 

In order to produce good ACU, conformal phosphor structure has been employed, since it can 

reduce the CCT deviation. However, it may cause considerable light reflection, which leads to poor 
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light extraction.15 The color homogeneity of the WLEDs can be improved by utilizing different 

remote phosphor packaging methods and reconstructing the factors such as surface curvature and 

locations of the phosphors.16 Other methods have also been addressed to enhance the 

homogeneity of the WLED by carefully designing the silicon lens, or even applying the freeform 

lens design.17,18 Meanwhile, previous research indicates that combining TiO2 nanoparticles into 

the materials used in the packaging can resemble a graded-refractive-index multilayer structure.19 

Some works also show the uniformity of CCT can be realized by changing the dispersibility and 

surface of TiO2 nanoparticles.20 Another method uses blue laser irradiation to maintain the 

spatial distribution of the spatial phosphor to improve angular color uniformity.21 By considerably 

influencing the optical path to modify the deviation of CCT, as the use of different MgO 

nanoparticle concentrations with red phosphor thin films (PTFs) can improve the uniformity of 

CCT,22 as shown in Fig. 1-7. A recent report presents that boron nitride nanoparticles can be used 

in an inverted packaging structure to enhance its reflection.23 

 

Figure 1-7: Schematic diagram of PTFs: (a) red LED, (b) laminated white LED. Reprinted with permission 

from Copyright © The Royal Society of Chemistry 2019.3 

1.2 Improving the performance of WLEDs by employing 

cellulose-nanocrystal (CNC)-based optical diffusers 
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In optics, optical diffusers are used to produce soft light by scattering light with evenly spatial and 

directional intensity distribution. Due to the outstanding light scattering properties of optical 

diffusers, they have been used in a wide variety of industrial applications for brightness 

improvement, uniform backlighting, and efficiency enhancement in light-emitting diodes,24–26 

solar cells,27–29 photodetectors,30–32 and liquid crystal displays (LCDs).33–35 Optical diffusers are 

often manufactured based on translucent materials such as different types of glass. Previously, 

our group proposed that CNC-filled polymer is an effective optical diffuser material and improves 

ACU by coating a thin film layer on a WLED module. 

1.2.1 Superior properties of CNC as an optical diffuser on WLED modules  

CNC, an environmentally friendly material, is non-toxic and biodegradable and can be extracted 

from natural sources such as woody biomass or other fiber supplies available in plants.36 Because 

CNC is a high-molecular-weight linear polymer generated from monomers linked together by 

glycosidic oxygen bridges, they provide superior bulk and nanoscale properties such as high 

tensile strength, low density, and large surface area. With these excellent advantages, CNC has 

been used as a substrate in devices of sensors,37 solar cells,38 transistors,39 and LEDs.40 

Meanwhile, due to the rod-like shape and wavelength scale on the order of hundreds of 

nanometers, CNC-filled polymer can provide magnificent broadband light softening in the visible 

and near-visible regions of light. Our group’s previous study has doped CNC into 

polydimethylsiloxane (PDMS), and the CNC nanocomposite film can be used as an excellent 

optical diffuser to improve the ACU of WLED. Fig. 1-8 (a) shows that variation in the transparency 

and light diffusion behavior can be observed while the CNC concentration increases. The 

concentration of CNC doped in the polymer is represented by weight percentage. A high 

concentration of CNC filled in PDMS causes high light scattering properties and less transparency, 

which agrees with the changes of transparency and haze with a high density of filling material for 

other volumetric types of optical diffusers. 
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Furthermore, Fig. 1-8 (b) also shows the flexibility and mechanical properties of CNC 

nanocomposite film as optical diffusers to resist extreme physical pressure, such as stretching, 

twisting, and bending, without losing their other properties. In terms of the scattering 

mechanism, clusters of aggregated CNCs in the matrix materials lead to significant insensitivity 

to accepting the incident light. Less dependent on the wavelength of light compared to Rayleigh 

scattering, Mie scattering can be considered the dominant scattering method of CNC 

nanocomposite film. In the CNC nanocomposite model, the CNC particle size is 3 µm. The CNC 

and polymer matrix refractive indices are 1.6 and 1.4, respectively. As shown in Fig. 1-8 (c), a 635 

nm laser beam is scatted by the CNC nanocomposite film with different concentrations and 

compared to the market diffuser. The results show that 1 wt.% of CNC filled-in polymer can realize 

similar light diffusion ability as the performance of the marker diffuser.  
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Figure 1-8: (a) Picture of CNC nanocomposite film-based optical diffuser with different CNC concentrations (0.5, 1, 

2, 4 wt.%) (b) The physical properties of the diffusers withstand the applications of twisting, stretching, and 
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bending. (c) Optical diffusion of a 635 nm laser beam by CNC nanocomposite film-based optical diffusers with 

different concentrations (wt%) of CNC and compared with market diffusers. Reprinted with permission from 

Copyright © 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.3 

Furthermore, based on the incident light from the same laser beam, Fig. 1-9, illustrates the ACU 

after passing different concentrations of CNC nanocomposite film. With the increase of 

concentration of filler material, the light scattering angle becomes more expansive and the ACU 

is more uniform and inconsistent with the observed changes. For the sample with a CNC 

concentration of 4 wt%, the intensity distribution is very close to an ideal diffuse reflective surface 

with a Lambertian distribution (dashed line). It underscores the light-diffusing ability of the 

optical diffuser based on CNC-filled polymer has the ability to provide a Lambertian-like 

distribution of fill material at a concentration of only 4 wt% of filling material. 
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Figure 1-9: ACU of a 635 nm laser beam after passing through CNC nanocomposite film-based optical diffuser with 

different concentrations of CNC: (a) 0.5, (b) 1, (c) 2, and (d) 4 wt%. 

1.2.2 Challenges in design related parameters of CNC film pattern 

The industrial application generally needs to obtain a WLED product that can reach specific sets 

of performances. As discussed above, CNC filled-polymer-based optical diffuser effectively 

improves ACU with its light scattering ability. In order to achieve a well-defined numerical 

combination of these two properties, the standard approach first requires designing the shape of 

the CNC nanocomposite film. However, our previous research indicates that a simple central 

coverage shape with one coverage angle must be designed to improve ACU but decrease the 

luminous flux. Therefore, in order to balance the two performances, more complex shapes with 

plenty of structural parameters of CNC nanocomposite film need to be designed. Furthermore, 

the film thickness and concentration of the CNC in the nanocomposite film can effectively affect 
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the light diffusion ability due to an increase in the total quantity of CNC nanocomposite film used. 

The workflow of a traditional and complete design method for certain performance sets is trial-

and-error learning, which needs to iteratively run simulations and experiments based on lots of 

sets of structural parameters, thickness, and concentrations. It is tedious and highly time-

consuming and requires experienced optical designers for practical application. 

1.3 Applying deep learning to the inverse design of optical 

diffusers for WLED modules 

Over the past two decades, machine learning has been applied to address questions in many 

scientific studies and engineering applications. In machine learning, specific tasks are assigned to 

a computer program, and the machine is said to have learned the experience, while the visual 

performance in those tasks enhances with more and more experience performing those tasks. 

Machine learning is a data-driven technique that can make decisions and predictions based on 

the existing data or the learning experience. Deep learning as a new branch of machine learning 

has attracted much attention, and new models proposed in deep learning produce better 

performance in analyzing questions in various areas. Here we make a brief survey of the deep 

learning models used for inverse design in the photonic research. 

1.3.1 What is deep learning?  

Deep learning allows computational models composed of multiple hidden layers to learn data 

representations with multiple levels of abstraction.41 Besides, representation learning is a method 

that allows machines to automatically search and find the features and representations based on 

raw data. As one of the representation learning techniques, deep learning can achieve multiple 

levels of representations through the nonlinear combination of plenty of modules.42 Each one can 

transfer a low-level representation to a representation at the high level, which generally has more 

abstract features. With this complicated and nonlinear multilayer structure, deep learning can 
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learn complex functions and effectively employ model fitting to realize feature learning.43 

Currently, deep learning has emerged in many areas, broadly from laboratory research to 

industries, while concerned about data-intensive issues, such as speech recognition, computer 

vision, and natural language processing. Furthermore, for other applications, research has already 

recognized that it can be more convenient to train a system by collecting and inserting examples 

of demand input-output behaviour than manually trying all possible samples and anticipating the 

desired response by experiments or simulations.44 Meanwhile, deep learning has been used in 

photonics and optical area as one powerful computational method to solve problems such as 

inverse design.  

 

 

Figure 1-10: The schematics of the main neural network architectures in deep learning.  

1.3.2 Different types of neural networks involved in the photonic research 

Advanced deep learning model architectures have been proposed to solve tasks and can be 

generally divided into four categories which are deep neural network (DNN), convolutional neural 

network (CNN), recurrent neural network and deep generative models, as shown in Fig. 1-10. 
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DNN as the foundation of modern neural networks has the superior ability to extract high-level 

features from raw data. DNN has multilayered architectures, and each hidden layer is constructed 

with sufficient neuron units which support this model to learn complex input-output relationships 

based on the approximation theorem. Previous reports show that a bidirectional DNN-based 

architecture can be trained to inverse design the plasmonic nanostructure.43 They transfer the H-

shaped metallic structure to eight parameters, including the three continuous parameters (the 

rotation and length of arms) and five binary parameters representing the existence of certain arms. 

The desired performances are set as material properties, vertical and horizontal spectrum and 

each of them has 43 neurons in the output layer. Similarly, another study proposes a deep neural 

network with two bidirectional neural networks that can achieve the on-demand chiral 

metamaterials design and collect corresponding responses when receiving specific incident 

light.45 Applying the convolution operations, convolution neural networks have been used to 

extract features from the high-dimensional raw data. Recent research works have realized the 

photonics problem that inputs are plenty of images, such as inverse scattering of nonlinear 

electromagnetic waves.46–49 Additionally, recurrent neural networks are a type of artificial neural 

network in that connections between each node can create a loop, allowing the output of some 

nodes to affect subsequent inputs of the same node, which leads to the behavior of temporal 

dynamics. The previous study applied recurrent neural networks capable of learning sequential 

data to analyze optical signals and noise in high-speed fiber optic transmission.50–52 To 

accomplish the generating of new data similar to the original training samples, deep generative 

networks can provide innovative and unseen results. Generative adversarial network (GAN) and 

variational autoencoder (VAE) as practical applications of deep generative models have realized 

image generation in recent years. Especially, GAN is the famous model of the deep generative 

network because it has two neural networks inside, named generator and discriminator, which 

compete with each other to realize better accuracy and performance in their anticipation. In 
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photonics, GAN has been commonly used to achieve the efficient inverse design of hypersurfaces 

with training images as input.53–55  

1.4 Objectives and outline of the thesis 

Improving the performance of WLED is of interest to academia and industry in illumination 

application. Most developments reported in journals focus on modifying the materials or 

structures inside WLED. Besides, some emerging materials with excellent optical properties have 

also been developed to be used as optical diffusers adhering to the WLED module. However, these 

optical diffusers are built to cover whole or most of surface of the WLED module, therefore, 

luminous flux and ACU cannot be optimized at the same time. In this thesis, we show that deep 

learning is a superior data analysis method that can be used to solve the abovementioned 

challenges. Based on the well-trained neural network models, any intuitive inverse design of 

optical diffusers can be replaced by machine learning, and the new deep learning approach can 

produce even better results. Furthermore, optical diffusers have never been shown to control 

brightness distribution of WLEDs, since only lenses and mirrors are considered as optical devices 

to focus light and generate brightness patterns. After successfully building and training the neural 

network to solve the problem in this first project, we extended the application to three-

dimensional geometry, and we set up the objective to obtain the desired brightness distribution 

using optical diffusers. This work paves the way to apply scattering optics for WLED lighting, 

beyond the use of lenses and mirrors.  

In chapter 1, we show the basic definition of WLEDs and the description of CNC nanocomposite 

film-based optical diffusers. Additionally, we will provide a brief review of the recent development 

of inverse design of photonic structures by deep learning. 

In chapter 2, we demonstrate a deep learning-based inverse design method to design CNC 

nanocomposite films coated on WLED modules. To collect data sets, we varied different 
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parameter sets involving angles of the shapes, thickness, and concentration of the CNC films. After 

that, we trained forward neural networks based on the original data sets and used a pretrained 

forward model to build the total inverse design architecture. We implemented deep learning to 

predict the parameter sets according to the desired performances. We further utilized the pre-

trained forward neural network to search for CNC nanocomposite films with the best performance.    

In chapter 3, we tackle a new problem using the coated CNC composite films and apply the 

spherical convolutional neural network (CNN) in deep learning to inversely design the 

concentration distributions inside the CNC nanocomposite film for desired brightness 

distribution from WLEDs. In this study, we focused on the pattern of the CNC nanocomposite 

film in three-dimensional. We first broke the whole CNC film into 168 triangles and set up the 

output to be the brightness distribution in hemisphere spatial space. By training spherical CNN 

architecture, we found new solutions of concentration distributions of CNC in the nanocomposite 

film which could produce similar brightness distribution, compared to the intuitive design. 

Besides, to design a gradually changed brightness distribution using nanocomposite films, an 

intuitive design approach requires plenty of trial-and-error works to search the suitable 

parameters. While the deep learning method could directly provide the parameter of the CNC 

nanocomposite film to realize gradually varied brightness distribution. 

In chapter 4, we summarize our works and clearly show our contributions to the research field. 

Then we briefly discuss the future improvement and applications of our inverse design of CNC-

based optical diffusers for improving the performance of WLEDs.   
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Chapter 2. Deep learning enabled inverse design 

of nanocrystal-based optical diffusers for 

efficient white LED lighting 

2.1 Introduction 

White light-emitting diodes (WLEDs) have gained popularity in illuminating applications. With 

superior properties such as high efficiency, long lifespan, and low cost, WLEDs have replaced the 

traditional incandescent and fluorescent lamps as the new white light source.1,2 The most 

successful and common device to generate white light is the phosphor-converted WLED module.3 

A thin layer of yellow YAG (Y3Al5O12:Ce3+) phosphor absorbs blue light created by the LED chip 

and emits yellow light, which combines with the remaining blue light to form and emit a white 

spectrum. The two critical figure-of-merits of WLEDs are luminous flux and angular color 

uniformity (ACU).4,5 The main problem encountered with typical designs of WLEDs is the 

relatively poor ACU. To achieve high ACU for a WLED, previous studies utilized methods such as 

doping phosphor with TiO2 nanoparticles and modified conformal phosphor structure.6,7 Other 

approaches involved optimization of WLED substrates and improved lens design to strengthen 

the uniformity of light.8,9 Previously, we have reported an alternative method to enhance ACU by 

coating a thin film of cellulose-nanocrystal (CNC)-filled polymer on the WLED module as an 

optical diffuser.10 CNC as a green material can be mixed with polymer to be fabricated as CNC 

nanocomposite.11 It can adhere conveniently to the lens surface of the WLED and has been proved 

to have excellent light scattering ability. Employing nanocrystal-based optical diffusers is a widely 

used strategy to improve WLED performance. These nanoparticles have been demonstrated for 

improving ACU (reducing Δ CCT) in WLED lighting in previous reports.4–7,10,11 However, 

improved ACU normally comes with the cost of lowered luminous flux. Therefore, it is of 
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significance to balance the trade-off that improves ACU while maximizing output luminous flux. 

Yet, such optimizations like the optimization of lens design in illuminating applications were 

performed through the trail-and-error learning using simulations or experiments, which are 

tedious and extremely time-consuming and require experienced optical designers in practical 

applications. 

In recent years, machine learning, as one direction of artificial intelligence, has attracted much 

attention because it can automatically construct a mathematical model for prediction based on 

training data sets.12 Deep learning is a popular branch of machine learning, which employs 

artificial neural networks with multiple hidden layers to learn from data. With the complex 

nonlinear structure, deep learning can effectively adopt model fitting to accelerate the design 

process without continuously transferring data in each design step.13 Currently, deep learning has 

been applied in various areas such as computer vision and natural language processing.14 In the 

meantime, deep learning, as a powerful computational technique, has emerged as an 

effective tool for feature learning in photonics. Research in this field has been conducted with 

respect to various photonic applications, including unique shape design of metasurfaces,15–19 

structure prediction in photonic crystals,13,20 and inverse design of nanophotonic 

structures.21,22 To date, deep learning has yet to be incorporated into structure design of a 

WLED for improving ACU and luminous flux simultaneously. Such task of inverse design is 

complex and finding the optimized design can be beyond human capabilities when multiple 

parameters need to be considered for optimization.  Although deep learning offers a promising 

solution to this complex task, how to develop a neural network model and the corresponding 

learning process for CNC nanocomposite film design still requires extensive research.  

The typical model architectures in deep learning are deep neural networks (DNN),23 

convolutional neural networks, recurrent neural networks, and deep generative models. In 

literature, the convolutional neural network has been used for the photonic problem like 
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nonlinear electromagnetic inverse scattering with images as inputs because this deep model can 

extract the features of high-dimensional inputs with convolution operations.24 Besides, previous 

research applies the recurrent neural network capable of learning sequence data to analyze optical 

signals and noises in high-speed fiber transmission.25 As one popular branch of deep generative 

models, generative adversarial networks can generate results similar to the training dataset. This 

network has been used for realizing high efficiency in the inverse design of metasurfaces with 

training images as inputs.15 However, in this study, CNC nanocomposite films are constructed by 

structural parameters according to the on-demand figure-of-merits. Convolution operations will 

face obstacles in capturing spatial information for the low-dimensional features. Deep generative 

models are inapplicable for this regression problem. Additionally, the input features are the 

disordered parameter sets that are unnecessary to perform recursion in the evolution direction of 

the sequence. It indicates that recurrent neural networks are inappropriate to be used in building 

the inverse design architecture for this study. Some recent research works indicate that DNN is 

well suited for the reverse design of structural parameters for optical structures, such as inverse 

design H-shape metallic structures.26 DNN is capable of fitting continuous functions for the 

features because it contains multiple hidden layers with sufficient hidden units allowing it to 

model complicated input-output relationships according to the universal approximation 

theorem.27 With the multilayered architecture, DNN has benefits in learning the hierarchical 

representations and a nonlinear transformation of the input features. In this paper, we apply DNN 

to learn the structural features and inverse design of the CNC nanocomposite films on the WLED 

optical module.  

Here, we focus on the design of CNC nanocomposite film that covers on the WLED module to 

improve both figure-of-merits: ACU and luminous flux. We propose a new approach to strengthen 

the integrated performances (luminous flux and ACU) of WLEDs by training a tandem deep 

neural network (DNN) to address the nonuniqueness issue existing in the inverse design.22 CNC 
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nanocomposite films of different structural parameters can provide similar figure-of-merits, 

which leads to the nonunique mapping between inputs and outputs. It consequently results in 

nonuniqueness problems, and the networks meet the failure of convergence during the training 

process.28 This study presents our method of training the bidirectional DNN model in the inverse 

design. In the forward DNN model, the inputs are the parameters representing the CNC 

nanocomposite film structures, and the two performances (luminous flux and ACU) are the 

outputs. An inverse predicting network based on an inverse DNN model and a pretrained forward 

DNN model generates the variables to form structures corresponding to various performance sets 

to form tandem architecture. Consequently, this deep learning model can not only predict two 

performances with high accuracy in the forward direction (mean square error at 6.55 × 10-3) but 

also generate valid parameters of CNC nanocomposite films covering WLEDs in inverse design. 

Through deep learning prediction and verified simulations, we locate several parameters to 

construct the structures of CNC nanocomposite film in the WLEDs module with higher luminous 

flux and ACU simultaneously. Furthermore, this deep learning approach provides solutions that 

are much faster and more productive than the conventional methods for demands of 

performances. 
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Figure 2-1: (a) Bare WLED packaging module. (b) luminous flux and ACU optimization by coating the WLED  module 

with coverage and a ring shape, where θ is the angle of coverage, and ϕ is the angle of the ring shape. (c) Angular 

CCT of WLED module with various coverage angles based on ring angle (𝜙 = 60°), the concentration of 4 wt.%, and 

film thickness of 0.3 mm. (d) Luminous flux as a function of angle of coverage. 

2.2 Data collection 

2.2.1 Simulation methods 

The structure of common phosphor-converted WLEDs has been discussed and constructed in 

previous studies.29,30 Commercial simulation software Zemax OpticStudio was used in this work. 

Fig. 2-1(a) shows the optical model of a WLED module used in simulations, in which the size of 

the LED chip is 1 × 1 mm2, with a layered stack consisting of p-GaN, multi-quantum well (MQW), 

n-GaN, sapphire substrate, and metal alloy film. The thicknesses of each layer are 150 nm, 100 
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nm, 4 µm, 140 µm, and 0.1 µm, respectively. The LED chip is covered by the dispensing-coated 

phosphor-silicone layer. These structures are inside a hemisphere silicone lens with a radius of 3 

mm. The material and optical properties of CNC have been described in the previous work.31 The 

particle size of the nanocrystal used in the simulation is 3 µm. According to our previous 

publication,11 slight variations in CNC particle size and uniformity of CNC dispersion have little 

influence on the optical properties of the nanocomposite film. As a comparison, Fig. 2-1(b) 

displays a new WLED module structure with the CNC nanocomposite film as an optical diffuser, 

which is divided into top coverage (θ) and side surrounding ring (ϕ). The arc measure for the 

surrounding ring is fixed at 4° to allow sufficient variations according to each coverage angle (θ) 

and generating noticeable changes for figure-of merits. When we optimized our nanocomposite 

films, we found that the central coverage of CNC nanocomposite film can improve Δ CCT but 

decrease the luminous flux. However, a side ring nanocomposite film at different angles could 

give better luminous flux when maintain the Δ CCT. Thus, we used the combination of a central 

coverage and a side ring nanocomposite film for design optimization. The detector in the 

simulation was set to capture the light from the integrated WLED module in the range of viewing 

angles from -90 deg to 90 deg (Fig. 2-1(a)). By increasing the angle of top coverage (θ) in the 

optical simulations, Fig. 2-1(c) and Fig. 2-1(d) demonstrate that correlated color temperature 

deviation (Δ CCT) is lowered, representing an improvement of ACU, but luminous flux decreases. 

2.2.2 Original data collection 

To realize the deep learning approach and address the targets described above, we varied four 

parameters and characterized the resulting luminous flux and Δ CCT; parameters include the two 

angles (ϕ and θ) for CNC nanocomposite film, CNC concentration (weight percentage wt.%) and 

film thickness. Fig. 2-2(a) shows the result for the rise of concentration, which illustrates that 

more quantity of CNC particles in the polymer will decrease luminous flux but improve ACU. 

Furthermore, the increase of thickness and top coverage (θ) describes radial and tangential 
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growth of CNC nanocomposite film respectively on the lens. As shown in Fig. 2-2(b) and Fig. 2-

2(c), the uniformity of CCT and luminous flux improves and falls respectively through the rise of 

thickness and coverage angle due to an increase in the total quantity of CNC nanocomposite film 

used. Fig. 2-2(d) indicates that increasing angle of CNC nanocomposite ring does not necessarily 

increase/decrease ACU and luminous flux. The defined parameters are in the intervals that 

include ample samples covering enough amplitude of performances. The concentration is tuned 

from 0.5 to 4 wt.%, and the thickness is changed from 0.1 to 0.3 mm with step sizes of 0.5 and 0.1, 

respectively. In order to ensure the presence of the ring nanocomposite, the ring angle (ϕ) should 

be at least 10 degrees larger than the coverage shape angle (θ), and both angles are less than 90 

degrees to be able to cover the lens. To construct the original data set, the four parameters are 

combined to generate various structures and obtain their performances in simulations. It is also 

noted that Δ CCT and luminous flux increase or decrease at the same time in the simulated results. 

Thus, for improving ACU and luminous flux simultaneously, finding optimized four parameters 

to lower Δ CCT while keeping high luminous flux is a challenging task. Here we developed forward 

predicting architecture and reverse network design to address this challenge.  
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Figure 2-2: Variation of simulated results of Δ CCT (red dashed line) and luminous flux (blue line) according to each 

parameter: (a) Concentration. Fixed parameters are coverage (𝜃 = 40⁰) and ring (𝜙 = 70°) shapes with a thickness 

of 0.3 mm. (b) Thickness. Fixed parameters are coverage ( 𝜙 = 70°)  and ring (𝜙 = 50°)  shapes with 4 wt.% 

concentration. (c) The angle of coverage. Fixed parameters are the ring angle (𝜙 = 65°) with concentration and 

thickness of 4 wt.% and 0.3 mm, respectively. (d) The angle of the ring shape. Fixed parameters are the coverage (𝜃 =

50⁰) shape with 4 wt.% concentration and 0.2 mm thickness. 

2.3 Inverse design methodology 

The workflow to design the reverse network is shown in Fig. 2-3, in which the inverse predicting 

network is set as the primary process to find unique parameter sets and the pretrained forward 

network is used to assist with learning and optimizing. The overall reverse design using deep 

learning can be divided into four phases: original data collection, training forward predicting 
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model, inverse network design, and sampling-based search for the best performance. The first 

phase is to use simulation to create the original data containing the structural parameters 

corresponding to their figure-of-merits, as discussed above. In the second phase, we build a 

forward DNN model with structural parameters and performances as input and output, 

respectively. This forward predicting model is trained by applying the training set of the original 

data set to learn and optimize model weights. When the model reaches convergence and achieves 

high accuracy without overfitting, it meets the goals of pretrained forward DNN and can be used 

to solve the nonuniqueness problem. The inverse network design phase (third phase) involves an 

inverse DNN and the pretrained forward DNN model. In the inverse DNN model, the input is the 

randomly selected figure-of-merits within a reasonable range, and the output is limited by passing 

through the nonlinear constraint layer. Thus, the generated parameters as input are received by 

pretrained forward DNN architecture and the model then calculates output parameters. The 

inverse predicting model is able to learn the inner set of rules of the structural parameters and 

figure-of-merits by comparing the output and initial performances. The final phase is to sampling-

search the improved figure-of-merits according to the structural parameter sets produced by the 

inverse predicting model.  
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Figure 2-3: Flowchart of the entire design scheme using deep learning approach.  

2.4 Results and discussion 

2.4.1 Forward predicting architecture and model evaluation 

As shown in Fig. 2-4(a), we built the forward DNN model that consists of 6 fully connected layers, 

in which the first 5 layers are each followed by an ReLU activation function. As the first layer of 

this network, the input layer has 4 neurons according to the parameters. Each of the 4 hidden 

layers contains 16 neurons, and the final layer is the output layer with 2 neurons corresponding 

to luminous flux and Δ CCT. The forward DNN model can fit the relationship between the 

structural parameters and the two figure-of-merits, and the target of developing this model is to 

use it in the design process and accelerate the design flow by substituting the simulation methods 

with this model. In the original data collection, we varied the values of four structure parameters, 

and performed simulation to obtain 160 samples of CNC structures and their figure-of-merits. For 
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developing the forward neural network, 80% (128 sets) and 20% (32 sets) of the total input sets 

were used as training sets and validation sets. 

The forward DNN model was implemented in PyTorch and optimized using the stochastic 

gradient descent optimizer. To guarantee productive learning with gradient descent algorithms, 

all the features in the original data set were individually normalized. The network was trained by 

minimizing mean squared error as a loss function. After training for a total of 10000 epochs, the 

forward DNN model achieved mean squared errors of 6.55 × 10-3 and 6.56 × 10-3 for the training 

and validation sets, respectively. These small mean squared errors ensure the high accuracy (low 

percentage error) in predicting figure-of-merits of WLEDs as shown in Fig. 2-4. To further show 

that our forward network is well pretrained, Fig. 2-4(b) compares the predictions of the forward 

DNN model with original simulated values of two performances for the training set. The predicted 

phase almost perfectly overlaps simulation results. The percentage errors between the predictions 

and simulations in both figures are consistently lower than 1%. Overall, the forward DNN model 

can be applied to replace the conventional optical simulations used to generate the two 

performances. Moreover, each simulation for a new design in the original data set takes at least 

45 minutes, consisting of creating the model, a one ray tracing simulation, and related numerical 

calculations. In contrast, the pretrained forward DNN model can calculate the two performances 

of a set of designs within a few seconds by using the same computing system. Thus, the forward 

DNN model has the ability to save a large quantity of time and effort. Equally important, this well 

pretrained network establishes the foundation for building an inverse predicting model, requiring 

the forward DNN model to behave remarkably in predicting the two performances. 
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Figure 2-4: (a) Forward neural network consisted of fully connected DNN. This forward predicting model takes 

concentrations, thickness, angle of coverage, and ring shape angle of CNC nanocomposite films as inputs and 

generates luminous flux and Δ CCT. (b) Comparison of simulated (red dotted dashed line) and predicted (blue dotted 

line) luminous flux and Δ CCT of samples in the normalized training set. The percentage error (green line) is the 

absolute difference between simulations and predictions in percentage. 

2.4.2 Inverse network design 

In a typical scenario, an optical designer creates a WLED module with an optical diffuser meeting 

the required performances and needs to discover the optimized structures to realize the better 

performances in terms of lower Δ CCT and higher luminous flux. The traditional design procedure 

is to continuously change certain parameters relying on experiences and physical intuition. As we 

presented above, an inverse DNN model can solve this problem by using Δ CCT and luminous flux 

as two inputs to predict four parameters. However, two critical obstacles need to be addressed 

when the parameters and performances are implemented in this conventional DNN model. One 
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fundamental problem is that various parameter sets can achieve the same performances, which 

leads to the nonuniqueness problem in the DNN training process. To solve it, we built an inverse 

predicting architecture using the tandem network in which an inverse DNN model is connected 

to the pretrained forward DNN model. Secondly, the whole network should satisfy the 

relationships of two angles as discussed above in the process of learning and converging. Thus the 

model can provide the parameters with actual physical meaning to define the structures. To this 

end, we added one nonlinear restriction layer after the inverse DNN model. Eventually, this 

pretrained inverse network can be used to output one parameter set achieving the desired 

performances and discovering new features to realize optimization. For the first part of this 

inverse predicting model, A fully connected network set to four layers with each layer having 2-8-

8-4 neurons can be functional. A ReLU activation function follows the input layer and each hidden 

layer. The two random performances in the reasonable ranges are fed as the inputs of the inverse 

DNN model, and four variables are calculated as the intermediate results serving as an input to 

the next layer. To build the nonlinear constraints layer, we first assigned a Sigmoid activation 

function after the output layer of inverse architecture to limit the values that the network can 

generate between 0 and 1. These results then passed through two linear functions (Eq. 1) to 

complete and realize the target, followed by re-normalization and transmitted to the forward DNN 

model as inputs. The outputs from the nonlinear constraint layer can effectively range the 

parameters and propagate to the next phase. 

                                        𝜙𝑖 = 10 + 80 ∗ 𝜙𝑠, 𝜃𝑖 = (𝜙𝑖 − 10) ∗ 𝜃𝑠                                    (1)    

The modified inverse predicting model can effectively learn the comparison between the figure-

of-merits corresponding to the output structural parameters from the constraint layer and the 

initial performance with the assistance of the pretrained forward network. The structural 

parameters as intermediate values can be obtained as the result of the inverse design. Fig. 2-5(a) 

shows the integrated inverse design network. To train this tandem DNN model, we uniformly and 

randomly generated the two performances for 200 input sets within the ranges ([64, 69] for 
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luminous flux and [1000, 2500] for Δ CCT). The maximum and minimum values for the ranges 

are the performances of the bare WLED module and its lens thoroughly coated with CNC 

nanocomposite film. Thus, these input sets can effectively cover the ranges of the two 

performances and ensure the differences between each input set. In order to obtain a good inverse 

network, 10,000 iterations were carried out for each input set so that all neutrals can be 

appropriately linked in the inverse DNN. As shown in Fig. 2-5(b), the percentage errors are lower 

than 8% for all input sets. During the training process of the whole network, the weights of 

pretrained forward networks are fixed, and we use a stochastic gradient descent optimizer to 

minimize the mean square error as the cost function. The mean square error of this inverse 

predicting DNN model is stably located at 0.3 after converging. Corresponding to various input 

sets, this inverse network generates parameter sets that are all valid and physically meaningfully 

values. In order to verify the actual responses of the predicted features, we implemented them 

into the simulations to generate the compared results. As seen in Fig. 2-5(b), the simulated 

performances of parameter sets predicted from the inverse predicting model are close to the target 

values. These results provide confidence in utilizing deep learning methods to inversely design 

structures of optical diffusers within the WLEDs module to reach improved performances. 
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Figure 2-5: (a) Inverse predicting tandem architecture formed with DNN-based inverse neural network, nonlinear 

constraints layer, and pretrained forward DNN model. The inputs and outputs of this network are both luminous flux 

and Δ CCT. (b) The evaluation of the inverse predicting tandem model for 20 random combinations of the two 

performances shows the differences between target performance sets (blue line) and verified simulations (red dashed 

line) based on predicted parameters. 

2.4.3 Sampling-based search for the best performances 

Although the inverse prediction network successfully predicts the parameters for the target figure-

of-merits, we expect the deep learning method in this study to discover new designs to enhance 

the two performances of WLEDs simultaneously.  
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Figure 2-6: Workflow of the common method to search the performances. (A) Create diverse sets of structural 

parameters. (B) Simulate the luminous flux and Δ CCT for each parameter set. (C) Check the simulated results with 

the required figure-of-merits. This approach needs to iterate these steps before meeting the goals and enormous 

simulations are time-consuming.   

To search for the best performances that our WLED module can achieve, the common method 

shown in Fig. 2-6 is to traverse all the possible combinations of the two figure-of-merits into 

simulation software to calculate the answers and compare to locate the required performances.32 

However, it is difficult and time-consuming to traverse each decimal precision of values and 

requires plenty of verified simulations. 

Fig. 2-7(a) shows the scatter plot of the performances in the original data set used for training the 

forward DNN model, and the red dash line represents data with the best performance (low Δ CCT 

and high luminous flux achieved at the same time) in the original data set. To find structure 

parameters that can lead to better performance than the ones showing on the red dash line, we 

applied our inverse DNN to find structure parameters according to a set of given figure-of-merits 

(performance).  Compared to the common method, we took a group of inputs by continuously 

reducing Δ CCT with a step size of 100 for one luminous flux in the same range as in the original 
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data set. Since the inverse model has fully converged, it can be used to search and locate the 

parameter sets for improved figure-of-merits with rough precisions. After verified simulations, 

we obtained new structures that realize better ACU for each luminous flux, as shown in the blue 

solid line of Fig. 2-7(b). Our method of finding improved performances by using inverse DNN 

successfully solves the issue of time-consuming in the common method. Comparing the blue 

solid line to the red dash line, we have realized a reduction of 100-200 in Δ CCT 

corresponding to the total range of luminous flux.  

Our target is to find exact values of the best performances and their structural parameter sets with 

high precision. To realize them, we sampled all combinations of the four parameters nearby the 

improved results (blue solid line in Fig. 2-7(b)) generated from the inverse model in the previous 

step. The ranges and step sizes of values for each of these four parameters are shown in Table 1. 

For more effective use of developed forward predicting architecture, we further applied the 

pretrained forward DNN model in the range around each parameter to search for better 

performance. This further optimization using the forward predicting architecture can greatly 

reduce the time required for optimization while keeping the accuracy in forward prediction. Fig. 

2-7(c) shows the schematic of the traversing search with the pretrained forward DNN model. 

Following simulations verified the outputs from the forward DNN model. Thus, optimized fine-

tuning results are shown as green dots in Fig. 2-7(b). It shows that the designed inverse model 

successfully gives a specific optimization direction. Fig. 2-7(d) shows two examples of  the new 

designs of coverage and the ring shape of CNC nanocomposite films from optimization results, 

which indicates the unique combinations of parameter sets that are difficult to find in the manual 

design flow. The common method takes 45 minutes for one simulation and completing the 

optimization will require thousands of simulations in iterations to find the four structure 

parameters. Compared to the common method, this demonstrated work only requires a few 

milliseconds using the trained inverse DNN and forward DNN models. 
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Table 2-1. Ranges and step sizes of concentration, thickness, angle of coverage, and angle of the ring shape.  

Parameters Step size Range 

Concentration (wt.%) 0.100 ± 0.300 

Thickness (mm) 0.020 ± 0.060 

Angle of coverage (θ) 2.000 ± 6.000 

Angle of the ring shape (ϕ) 2.000 ± 6.000 
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Figure 2- 7: (a) The performance sets of the original data set used in the forward DNN model. (b) Comparison of the 

best performance sets in the original data set (red dashed line), improved performance (blue line) predicted from the 

inverse predicting model, and enhanced performances (green dots) by sampling searching with the forward DNN 

model. (c) Schematic of sampling-based search using pretrained forward DNN model. (d) Visualization of the 

structures of CNC nanocomposite layers based on two optimized parameter sets. 
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2.5 Conclusion 

In conclusion, we proposed a DNN-based data-driven method for rapid and accurate inverse 

design of two geometries of CNC nanocomposite film on WLED modules. The iterative workflow 

of inverse design in building the structures of optical diffusers can be simplified by using an 

inverse predicting network to generate desired structure. By combining the inverse predicting 

model and the forward propagation network, we located new parameter sets and realized 

optimized figure-of-merits. These results further provide a solution for the fast inverse design of 

optical diffusers with various shapes and materials on WLED modules. Although this paper 

mainly discussed the inverse design of a planar structure, the presented method can be extended 

to three-dimensional geometry in the future work by introducing more structural features 

according to different figure-of-merits. 
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Chapter 3. Scattering optics for LED lighting 

achieved by nanocrystals and machine learning 

3.1. Introduction 

Optical design was synonymous with the design of imaging optics in the past.1 While white LEDs 

(WLEDs) become the major light sources for the world, non-imaging optics, especially 

illumination design, started to emerge as an important area of engineering practice to optimize 

LED lighting systems for various practical applications.2 For efficient transfer of light from the 

source to the target, two major parameters are required to be considered in illumination design: 

transfer efficiency and the distribution at the target.3 For improving the transfer efficiency in 

illumination design of WLED sources, various techniques have been employed to boost the overall  

brightness (luminous flux) from WLEDs.3,4 In order to control the distribution of light as the 

target, lenses and mirrors are applied to change the spatial distribution of WLED light (brightness 

distribution), and the emerging field of freeform optics has been established to produce desired 

brightness patterns using specially designed lens shape and size3,4. Although scattering optics (i.e. 

optics diffusers), has been applied to improve the overall brightness of WLEDs5, it has never been 

demonstrated to achieve desired brightness distribution. It is generally believed that lack of 

control in transferring light in space makes optical diffusers impossible to focus light onto desired 

directions, so producing complex brightness distribution (patterns) using optical diffusers by the 

brute force approach (searching through all possible choices) is beyond the capacity of typical 

optics designers.  

Machine learning, which is famous for making predictions better than humans, has been applied 

for inverse design of photonic structures for broad applications.6,7 For examples, the artificial 

neural network was proposed to approximate light scattering through nanoparticles and using 
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machine learning to simulate such optical processes was demonstrated to be orders of magnitude 

faster than conventional simulations.8 The generative adversarial network was applied to make 

inverse design of metasurfaces and pre-defined transmission spectra were achieved using 

unexpected nanostructures that beyond the intuitive design of researchers.9 Deep artificial neural 

networks have been becoming powerful tools for many applications in nanophotonics.10 Since 

machine learning has been demonstrated in many areas to optimize the performance of a system 

with multiple design parameters, it has also provided such benefits in design photonic devices (i.e. 

solar cells11). Machine learning was even applied in the freeform optics design for significantly 

saving the effort in the design process12.  

 

 

Figure 3-1: Schematic of spatial light distribution illuminated from CNC nanocomposite film coated WLED module.   

Here in this work, we aim to solve the aforementioned challenges and apply scattering optics for 

LED lighting. Specially, we demonstrate how machine learning can be used in the inverse design 

of optical diffusers for WLEDs and achieve desired brightness patterns. It is well known that 

optical scatters on a particular location at the surface of a WLED module will diffuse light away 
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from this spatial direction. Thus, a patterned optical diffuser on the WLED module will produce 

a brightness pattern similar to the optical diffuser itself, as shown in Fig. 3-1. However, the 

brightness can not be completed suppressed to zero in the dark regions and the edge of the 

brightness pattern is not as sharp as the schematic illustrated in Fig. 3-1. In order to achieve our 

goals of tailoring WLED light distribution, in the first step, we altered the concentration of 

nanocrystals inside optical diffusers to control its optical property, so the optical scatters used in 

this work are not commercial optical diffusers which are typically Lambertian scatters with their 

light emission profiles independent on direction (angle of view). These modified optical diffusers, 

which are made of cellulose nanocrystal (CNC) nanocomposite films5 in this work, provide us 

some freedoms to control the percentage of light scattered to various directions, though this 

scattering is still symmetric in space. Then, we started to choose the pattern of CNC 

nanocomposite films to break the symmetry of Lambertian scatters like changing the shape of a 

lens surface to focus light to different directions. The selection of CNC patterns is challenging if 

we only use a trail and error approach. As shown in Fig. 3-2, fine adjustment of CNC patterns 

simply according to produced brightness patterns actually led to worse patterns through 

iterations, opposite to the intuition of researchers. To solve this challenge, we applied 

convolutional neural network (CNN) to build a machine learning model for the inverse design of 

CNC patterns. Finally, we used the machine learning model to build the optical diffuser (CNC 

patterns) and the produced brightness patterns look better than the ones made through intuitive 

design.  
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Figure 3-2: Two iterations of intuitive design “3” shape luminous flux distribution by varying the CNC nanocomposite 

film blocks corresponding to the previous spatial light intensity distribution. 

3.2. Experimental Section 

3.2.1 Optical modeling of WLED coated with CNC nanocomposite films 

For general applications, we have constructed the following model of a WLED module. The size 

of the LED chip in WLED is 1 × 1 mm2 with a multi-layer structure which are p-GaN, multi-

quantum well (MQW), n-GaN, sapphire substrate, and metal alloy film, as shown in Fig. 3-1. 

These layers have the thickness of 150 nm, 100 nm, 4 µm, 140 µm, and 0.1 µm, respectively. The 

LED chip is dispensing-coated by a phosphor-silicone and built as a spherical cap. The structure 

of the LED chip-coated phosphor is inside a hemisphere silicone lens with a radius of 3 mm. The 

optical properties and material characteristics of CNC used as an optical diffuser on a WLED 

module have been introduced in our previous studies.13–15 Commercial optical ray tracing software 

Zemax is used to calculate the spatial distribution of brightness based on the concentration. In 

the simulation, the particle size is set as 3 µm, and works of literature have shown small changes 
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in the size of the CNC particles, and the uniformity of the CNC dispersion had little effect on the 

optical properties of the nanocomposite films. The phosphor concentration is set as 0.21 g/cm3, 

which is fulfilled to produce white light, and its particle size is 8 µm. The two specific wavelengths 

applied in the simulated optical system are 454 nm and 569 nm, which can represent the blue and 

yellow light, respectively. 

In order to straightly display the desired light distribution and construct a physical model to show 

the pattern of CNC nanocomposite film, we propose a new spherical triangular structure formed 

by regular icosahedron as the basic block, and the pattern of the CNC nanocomposite film (optical 

diffuser) covering the WLED module is assembled with many such blocks. As an ideal regular 

polyhedron, the icosahedron can produce uniform spherical triangles with the same shape by 

projecting onto a circumscribed sphere. Meanwhile, previous research has confirmed that the 

deep learning approach can perform calculations such as implementing convolution computing 

on the icosahedral circumscribed sphere triangle.16,17 In this study, considering the possibility of 

constructing the CNC film blocks on the WLED module and the accuracy of the simulation, we 

continuously divided the CNC nanocomposite film of the circumscribed hemisphere of the 

icosahedron twice. Initially, we cut the hemispherical CNC nanocomposite film that can cover the 

WLED module into a shape composed of multiple spherical triangles according to projecting the 

regular icosahedron to the circumscribed sphere. After that, we then selected the midpoints of 

each side of the triangle projected onto the sphere, divided each into 4 triangles, and repeated the 

dividing process. Completing the two subdivision processes and 168 triangles covering the entire 

hemisphere can be obtained. This number of triangles has the ability to ensure that the 

subsequent neural network extracts features around each block to a certain extent. Besides that, 

it can achieve most of the required shape design in optics representation. 
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3.2.2 Inverse design of CNC nanocomposite films for desired spatial distribution 

of LED light intensity   

Based on this hemisphere shape consisting of spherical triangles, the complete intuitive approach 

for realizing one specific distribution of light distribution is shown in Fig. 3-3(a). For every single 

design object, intuitive design needs to manually assign specific concentrations of each CNC 

nanocomposite film block according to experiences. The simulations are then required to be 

finished, and one result of brightness distribution can be obtained. According to the previously 

simulated results, the following design can properly change several concentrations of blocks and 

expect a minor error between the target and the current design. Thus, after dozens/hundreds of 

generations, one distribution of CNC concentration can be found and used as one useful solution 

to realize the desired distribution of brightness. This brute force approach (solving a problem 

through exhaustion) is extremely time-consumping. For example, when intuitive design is used 

to tackle the question, one optical simulation with Zemax takes at least 1.5 hours, involving re-

building the distribution of CNC concentrations and simulation period. For this reason, the 

inverse design takes a prohibitive amount of time for the iterative process, which limits the 

usefulness of the intuitive inverse design. 

As mentioned in the introduction, one may think of a shortcut intuitive design by tweaking the 

CNC composite films according to previously obtained spatial distribution of light intensity. For 

example, the brightness distribution of one 3 shape-formed CNC nanocomposite film 

concentration distribution can be obtained by a simulation. The standard intuitive inverse design 

method is to reconstruct each block corresponding to its brightness amplitude. The CNC 

nanocomposite film with a concentration of 4 wt.% has been verified to realize Lambertian 

distribution. Thus the concentration of blocks will be set from 0 to 4 wt.% by categorizing their 

brightness into different ranges. The blocks showing the low and high brightness can be given 

concentrations such as 2 wt.% and 4 wt.%, respectively. After construction and simulation, we 
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found the intuitive inverse design failed to generative equally quality results as we desired because 

each brightness value of the block is affected by the surrounding concentrations and the exact 

brightness provided by the WLED module based on their position on the hemisphere space. 

Therefore, manual inverse design at least needs plenty of work processes to intuitively control and 

maintain CNC nanocomposite film concentration distribution until the results reach the target.  
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Figure 3-3: Flowchart of the entire design scheme of (a) intuitive inverse design. (b) machine learning inverse design.  

To mitigate this limitation, the workflow of the deep learning approach is shown in Fig. 3-3(b). 

The desired distribution of brightness can be used as input, and output of the architecture is the 
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distribution of concentration of CNC film blocks. There are three phases in the whole inverse 

design process. The first phase is the construction of the dataset. As discussed above, we have 

constructed a convolution neural network to realize the deep learning-based optical reverse 

design. For conventional convolution computing, the kernel matrix commonly tackles a 

rectangular pixel region within images as input. Compared to conventional convolution networks, 

spherical convolutional computing is designed to fit the convolution calculation on the triangle 

blocks of the circumscribed hemisphere of the regular icosahedron. Most of the triangle blocks 

are adjacent to three other blocks, and the rest are near the two blocks. Therefore, a 1×4 kernel 

matrix ([𝑤1, 𝑤2, 𝑤3, 𝑤4]) can extract the surrounding features of a certain block. In the final phase, 

several new user-defined light distributions are fed into the deep learning architecture as test data 

set. The simulation is used to verify the correctness of these predicted new patterns. Consequently, 

this deep learning approach can search for new solutions for the desired goals in less than a 

minute.  

3.2.3 Training Dataset for machine learning inverse design 

We constructed a dataset containing 45 sets of geometric data divided into three categories: 

numbers, letters, circles, and fans. The CNC blocks on the WLED module that can form the 

corresponding shape are then selected and set a concentration randomly chosen in the range from 

1 wt.% to 4 wt.%. To receive a detailed distribution of brightness the hemisphere space, we use the 

same 168 spherical triangles outside the WLED module as the optical observer, and 168 sets of 

brightness values can be collected after simulations. After constructing the geometry of the CNC 

film-based optical diffuser, the distribution of brightness data is simulated using the commercial 

optical ray tracing software Zemax. Among them, the concentration distribution of the CNC 

nanocomposite film and related light brightness distribution are the input and output data, 

respectively.  
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3.3. Result and Analysis 

3.1 Inverse design: model developed and evaluation 

According to the description of the network structure and design process, we know that the CNN 

network can calculate the brightness of each block according to the light power of its surrounding 

blocks. Recording the connection relationship between each block is the basis for constructing a 

spherical convolutional network. The initial step is to index each block of the hemisphere from 1 

to 168. The numbering method starts from the central triangular block containing 16 small 

triangle blocks and then indexes each block sequentially by layer. After completing the definition 

of each block, we implement a 168×168 adjacency matrix where both the index of rows and 

columns represent the indices of the corresponding blocks. The element set to 1 in the matrix 

means that the two blocks represented by its row and column numbers are adjacent or the row 

and column index represent the same block, while the element value of 0 demonstrates that the 

two blocks are non-adjacent. Involving this adjacent matrix into the neural network design, we 

can customize each block to only consider convolution computing with its adjacent blocks and 

update weights. In the meantime, as described above, the convolution kernel has four weights, 

resulting in the sequence problem that needs to be considered when multiplying with the data of 

the brightness of adjacent blocks. In other words, the adjacency list only provides the connection 

relationship without arranging the position in the matrix for each block. A sequence table is 

further constructed in which the block itself is the first element of the matrix, and the blocks at 

the remaining three positions are embedded in the clockwise direction of the target block. In 

addition, as presented above, the spatial light power detector is composed of precisely the same 

168 blocks without any material doped. Before running simulations and constructing the neural 

network architecture, we first simulate the bare WLED module without adding any optical 

diffuser. By analyzing the distribution of its brightness, we found that the data of brightness 

received by the blocks located approximately at the bottom two layers are much smaller than that 
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of the blocks on the upper layer and are still decreasing layer by layer. In comparison, for the 

brightness distribution of the upper layer, although the brightness starts to drop from the top of 

the center of the model, the attenuation is small, and the brightness of the light can still be 

maintained at a high level. Furthermore, we performed simulations on the upper and the two 

lower layers with identical amounts and distributions of CNC nanocomposite films. The 

simulation results show that the received brightness at the lower level is relatively low, and there 

is no noticeable effect of dispersing light by adhering to CNC based optical diffuser. Adding CNC 

nanocomposite films has a strong suppression effect on decreasing the light for the blocks with 

high light brightness in the upper layer. Unlike general point light sources, the rectangular-shaped 

light source of the LED chip causes the distribution of brightness on the space hemisphere surface 

gradually decrease from the top layer to the bottom layer. Meanwhile, in most typical engineering 

practical application scenarios, the desired distribution of brightness is designed in a relatively 

large range based on the center of the model. From the perspective of machine learning, we 

compared the convolution calculations of the lower two layers and the upper layer and found that 

the convolution kernel has distinctly different convergence directions when tackling the two 

different distributions of data. Moreover, it shows a more stable and efficient convergence state 

when dealing with the layer convolution calculation of features of the upper layer. Therefore, 

according to the design requirements of optics and machine learning, we decided to remove the 

blocks of the bottom two layers (40 CNC nanocomposite film blocks) and only learn the blocks of 

the upper layer when building the neural network model to ensure the accuracy and functionality 

of the model. 

We further modify the dataset and create an adjacency matrix with sequential relationships 

according to the above description. Fig. 3-4(a) shows the CNC film design of shape “3” in the data 

set, and the simulation result is shown in Fig. 3-4(b). Subsequently, we construct a convolutional 

neural network applying a dual channel with one spherical convolution in each channel. The 
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neural network models are implemented using PyTorch. A rectified linear unit (ReLU) activation 

function follows each convolution layer. For the convolution as the input layer, the 88 × 1 light 

intensity distribution matrix will be used as the input of both convolutions layers in each channel 

and output a matrix of the same size. The two output sets of matrices are averaged to obtain a new 

88 × 1 intermediate layer result. In order to excite neural network architecture to learn the feature 

distribution of data, another dual-channel spherical convolution architecture is built after the 

input layer. Therefore, the following hidden layers will input the outcome matrix of the previous 

layer and output a result of that size. The two-pass results are then passed through an average 

calculation and provide an 88 × 1 matrix as the final result of the concentration distribution matrix. 

The loss equation used in this neural network architecture is the mean square error function, and 

the optimizer uses stochastic gradient descent. Backpropagation is performed by comparing the 

concentration distribution in the original dataset with predicted outputs, and then the resulting 

gradient updates the weights of each convolution block. After training 2000 epochs according to 

the original data set, the mean squared error of the neural network is 0.019 without declining, 

which indicates that the model has reached convergence. By using the distribution of brightness 

of the “3” shape in the data set as the input shown in Fig. 3-4(b), our neural network architecture 

can then calculate the concentration distribution, as shown in Fig. 3-4(c). After reconstructing the 

optical diffuser based on CNC nanocomposite film according to the new data set, the simulation 

provides the brightness distribution shown in Fig. 3-4(d). Based on human-eyes observations, the 

deep learning model can predict the concentration distribution of a new set of films with this small 

loss error, and the WLED module with the optical diffuser of this set of concentrations can achieve 

a light distribution similar to the data set. Fig. 3-4(e) compares the brightness distribution of 

shape “3” in the original dataset and is achievable by the concentration distribution predicted by 

the neural network and offers an average percentage error of 10%. The model can complete the 

target with high accuracy, which means that the training process of the neural network model is 

adequate and effective. On the other hand, the neural network model also finds a new set of 
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solutions for an existing light distribution result, which provides a model basis for our subsequent 

prediction work. By analysis, two main reasons lead to the neural network can perform excellent 

functionality based on only 45 sets of data sets. The first part is to remove the irreverent block 

that negatively influences the training process while we design the entire optical model. This 

preprocessing makes the model easier to fit within a relatively short training period. Secondly, 

using multiple convolutions in the neural network model construction can make the model more 

robust to the data and effectively extract the features of the hemisphere structure. 
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Figure 3.4: The related design and simulated results of shape “3” in both the original data set and predicted by the 

dee learning method. (a) CNC nanocomposite film concentration distribution in original data set. (b) Simulation 
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result of brightness distribution in the original data set. (c) Concentration distribution predicted by deep learning 

approach. (d) Verified simulation result of the brightness distribution of neural network architecture. (e) The 

comparison of the two brightness distributions in the line chart.  

 

3.3.2 Inverse design for user-defined gradually changing 

patterns 

Currently, our deep learning model can realize the reverse design of the CNC nanocomposite film 

concentration distribution based on the brightness distribution obtained by simulation. However, 

for the typical application of this optical modeling, the common scenario is to provide a manually 

designed light distribution, and the requirement is to find a concentration distribution of a set of 

CNC films that can achieve this distribution. Fig 3-5(a) shows a manually designed O-shaped light 

distribution with gradually varying brightness. For an intuitive design workflow, to achieve this 

target, we embed the high concentration of 4 wt.% in the block with the lowest brightness and 

then gradually fill the entire “O” shape from 4 to 0 wt.%, as shown in Fig. 3-5(b). However, after 

simulation, the result of this design fails to provide the expected gradually changing brightness 

distribution, as shown in Fig. 3-5(c). Because the light amplitude of each area is affected by at 

least three surrounding blocks, it is difficult to achieve the desired effect only by designing the 

concentration of the blocks within the target shape. Compared to the intuitive design, we directly 

fed the target brightness distribution into the well-trained neural network architecture, and then 

the model predicted a new set of concentration distributions, as shown in Fig. 3-5(d). Through 

simulation, this set of concentration distributions can achieve the distribution of brightness as 

shown in Fig. 3-5(e). Although the result provided by the deep learning model is still different 

from the desired target and there are certain disturbances around, machine learning distributes 

the appropriate concentration around each block by calculating the brightness changes around 

each block. Compared with intuitive design, the reverse design method of machine learning 

quickly achieves results that are difficult to achieve with human design. 
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Figure 3.5: (a) The “O” shape as the desired gradually varying light distribution target. (b) The concentration 

distribution of CNC nanocomposite film and its (c) simulated result of brightness distribution in an intuitive design. 

(d) The concentration distribution of CNC nanocomposite film and its (e) simulated result of brightness distribution 

in machine learning design. 

 

3.4 Conclusion 

In conclusion, we have achieved to apply scattering optics for LED lighting which has never been 

demonstrated before. Control brightness distribution of a WLED using optical diffusers is 

challenging, since it is well known that optical diffusers are lack of the ability to focus light. We 

solved this problem by using machine learning method to reversely design the concentration 

distribution of nanocrystals inside the nanocomposite film. In details, we built a spherical 
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convolutional network to extract the relationship between the spatial brightness distribution and 

the distribution of spherical triangular CNC concentrations in the hemisphere nanocomposite 

film. The trained neural network used the brightness distribution from the original dataset as 

input to derive a new set of structure parameters for the optical diffuser producing the same 

brightness distribution compared to the original dataset. Finally, several pre-defined patterns of 

WLED light were realized in the trained neural network. The success of our machine learning 

approach to apply scattering optics for LED lighting open the door to include scattering optics in 

the illumination design. This work can also foster the adoption of machine learning in photonics 

research.   
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Chapter 4. Conclusions and future works 

4.1 Conclusions 

In conclusion, we have applied machine learning to achieve the reverse design of CNC-based 

optical diffusers on WLED modules and improved the performance of WLEDs in this thesis work. 

By tuning the CNC concentration in CNC nanocomposite films, we have changed the scattering 

property of the CNC-based optical diffusers, and this ability of producing non-Lambertian light 

scatters are required to achieve the control of CCT distribution and luminous intensity (brightness) 

distribution. In order to solve the inverse design problem, we have constructed different neural 

network architectures to learn the relationship between the structural parameters of the CNC 

nanocomposite film adhering to a WLED module and the output performance for different 

illumination applications. Finally, optimized performance metrics, luminous flux and CCT in 

Chapter 2 and brightness distribution in Chapter 3 are accomplished. The detailed contributions 

in this thesis work are summarised in the following paragraphs.    

In the thesis work shown in Chapter 2, we have reported the deep learning enabled inverse design 

of nanocrystal-based optical diffusers for efficient white LED lighting. For the first time, we 

demonstrated a deep learning-based inverse design approach to design optical diffusers on WLED 

modules for improving luminous flux and ACU simultaneously. This work opens the door to apply 

optical diffusers for existing WLED modules and improve the performance of existing devices on 

the market. To accomplish this work, the CNC nanocomposite film involving a top-coverage and 

one side-ring was designed to coat on the WLED module, and this design consisted of four 

structural parameters. The output was set to be major figures of merit of WLEDs: luminous flux 

and derivation of the maximum and minimum CCT values. Firstly, we designed a forward deep 

neural network (DNN) that could successfully predict two figures of merit with high accuracy. And 

then, a tandem network architecture was designed to train a reverse network that inversely 
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designed structural parameters. Finally, based on the reverse design results, the forward neural 

network was used to sample the valid data set selected from the reasonable ranges and it predicted 

several structure parameters for better performance.  

In the thesis work shown in Chapter 3, we have achieved the demonstration to apply scattering 

optics for LED lighting. For the first time, we proposed a method to control brightness distribution 

of a WLED using optical diffusers, which are known to be lack of the ability to focus light. We 

achieved it by using machine learning method to reversely design the concentration distribution 

of the CNC nanocomposite film coating on the WLED module. Based on the geometric 

characteristics of the icosahedron, the CNC nanocomposite film coating on the hemisphere was 

divided into 168 spherical triangles. We built a spherical convolutional network to extract the 

relationship between the spatial brightness distribution and the distribution of spherical 

triangular CNC concentrations in the hemisphere. Then, the trained neural network used the 

brightness distribution from the original dataset as input to derive a new set of concentration 

distributions that achieves the exact brightness distribution. Finally, several pre-defined WLED 

light distribution patterns were realized in the trained neural network and it proved the success 

of our machine learning approach.   

4.2 Future works 

This thesis successfully realized the reverse design of the CNC nanocomposite film coating on the 

WLED module for various illumination applications by using machine learning. The neural 

network architecture can accurately predict the structure of CNC nanocomposite film based on 

the desired performances. Although our machine learning method shows excellent potential in 

inverse design of optical diffusers for illumination, there are still challenges that need to be 

addressed before commercial use. Here we propose the future works are proposed below. 

4.2.1 Fabrication and experimental verification   
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As we mentioned above, the collection of the original data set and subsequent verifications are 

both based on optical simulations. Besides, the optimized structures of CNC nanocomposite films 

predicted from the neural network architecture are also proved to be valid through simulation 

using software rather than collecting the experimental results from real devices. Thus, for 

commercial applications, it is necessary to manufacture the actual CNC nanocomposite film on 

the WLED module and validate the design. The experimental verification can be first done in a 

research lab. If it is successful, it can be carried forward to test in practical environments. 

4.2.2 Improvement of neural network architecture 

For now, our neural networks can successfully predict the results for a three-dimensional design. 

However, there are still two parts that can be optimized for the current models. In order to further 

decrease the percentage error, one utterly different network model or more complex, carefully 

designed neural network architecture can be built to search the relationship between the input 

features and output performances. Furthermore, the original data set should be enlarged to 

ensure more correct training and forecast more accurate results.       
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Appendix – Optical simulation using Zemax  

In this thesis work, the optical modeling was carried out using the commercial ray tracing software 

- Zemax. To build an optical model, all the parts of the model are constructed as objects in the 

software. By using its ray tracing function, this simulation software can provide various outputs 

for different demands. The thesis focused on applying CNC nanocomposite film to realize or 

improve the performance of the WLED module. We used the phosphor-converted WLED model 

to realize the white illumination, and such model involved a blue LED chip, a phosphor layer, a 

silicone substrate, and the coverage hemisphere (lens). The Mode used for our WLED module was 

based on the non-sequential. The following figure shows the object editor of the construction of 

this WLED module with CNC nanocomposite films in Zemax. 

 

And the NSC-shaded model of the bare WLED is shown in the following figure.  
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The LED chip contained five layers: p-GaN, multi-quantum well (MQW), n-GaN, a sapphire 

substrate, and metal alloy film. The thicknesses of each layer were 150 nm, 100 nm, 4 µm, 140 µm, 

and 0.1 µm, respectively. All these layers were built as rectangular volume objects in the software 

and their material properties and thickness were entered with appropriate values. All these 

parameters for this LED chip were provided from the previous literature using the Monte Carlo 

method and experiments to design the WLED module in Zemax that could realize the same 

performance as the standard WLED module. Based on multiple simulations process, we set the 

number of analysis rays as 1×106 to produce the stable and accurate simulated results. After that, 

a phosphor in silicone was constructed in a phosphor DLL-defined scattering model in the Zemax 

with all the physical properties provided by the literature. The phosphor DLL setting is shown in 

the following figure.  

 

Especially since the light out of the phosphor was the yellow illumination, to describe that in the 

software, we used two wavelengths in the wavelength shift window of this object, which were blue 

and yellow light set as 454 nm and 569 nm, respectively.  Additionally, there was an object type 

of cylinder volume below the WLED chip as a substrate. The hemisphere lens of this WLED 

module was built in the standard len object in the material of PDMS, and its radius was set as 3 

mm. Overall, we built the complete WLED structure in the Zemax, which could be directly used 

in the two projects shown in this thesis work. The results from these two projects are summarized 

and shown in Chapter 2 and 3 of this thesis. 

For the first project, we used a ring shape and central coverage shape of CNC nanocomposite film 

on the WLED module. To build two CNC nanocomposite films, we used a standard lens object 
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whose material was set as PDMS. Based on our previous literature, CNC nanocomposite could 

accomplish the Mie scattering with its particle size. Thus, we used the Mie DLL-defined scattering 

model within the object setting and set the corresponding material properties to make this CNC 

film. The specific set of material properties of CNC nanocomposite film is shown in the following 

figure.  

 

Since the concentrations and thickness of CNC film were the varied parameters in this project, we 

could change the radius and density of this object to arrange different values to reflect the changes. 

The final step was to set an optical detector in Zemax to provide the final performance of this 

structure. Therefore, we added a polar detector, which can directly provide a luminous flux of the 

desired viewer ranges (-90◦ - 90◦). Besides, it could also provide the tristimulus values varied with 

the angles, and the CCT of each angle could be directly calculated based on the diagrams. The 

NSC-shaded model of the WLED with two shapes of CNC nanocomposite films is shown in the 

following figure. 
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In the second project, the objects of the WLED module could be the same as in the first project. 

The differences were that we considered dividing the non-symmetric patterns on WLED and the 

whole hemisphere into 168 spherical triangles. To begin with, we constructed the hemisphere 

consisting of 169 spherical triangles in the Solidworks by using the multiple cutting and rotation 

processes, as shown in the figure below. In the construction process, we arranged the fixed 

thickness of 0.3 mm for each block, and the concentration of the CNC film was the only changed 

parameter. And other properties of CNC material could use the same values as chosen in the first 

project to construct the model.  

After that, all the triangles were exported as IGS files from Solidworks and transferred to the 

internal CAD part folder in Zemax. The below figure shows the object editor of a 3-shape CNC 

nanocomposite film, in which each block was constructed based on the CAD object and could 

directly use the IGS file to assign on the WLED.  

 

The object properties for each block were designed by applying the same parameters as the first 

projects. To automatically assign the blocks and their concentration, we used the ZOS-API 

function of the ZEMAX and maked it connected to python. With this method, all the constructions 

and assignments of concentrations could be solved in about 15 minutes for one design. 
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Furthermore, since the luminous flux was the only performance considered in this project, to 

collect the distribution of luminous flux in the hemisphere space, we inserted all the 168 spherical 

triangles in the model, all of which were constructed without setting any properties. By checking 

in the “object is the observer” in Zemax, these spherical triangles could work similarly to the 

detector polar and directly provide received luminous flux. The following figure shows the NSC-

shaded model of the WLED with 3 shapes of CNC nanocomposite film.  

 

 


