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Abstract Territoriality is a phenomenon exhibited throughout nature. On the individ-
ual level, it is the processes by which organisms exclude others of the same species
from certain parts of space. On the population level, it is the segregation of space into
separate areas, each used by subsections of the population. Proving mathematically
that such individual-level processes can cause observed population-level patterns to
form is necessary for linking these two levels of description in a non-speculative way.
Previous mathematical analysis has relied upon assuming animals are attracted to a
central area. This can either be a fixed geographical point, such as a den- or nest-site, or
a region where they have previously visited. However, recent simulation-based studies
suggest that this attractive potential is not necessary for territorial pattern formation.
Here, we construct a partial differential equation (PDE) model of territorial interac-
tions based on the individual-based model (IBM) from those simulation studies. The
resulting PDE does not rely on attraction to spatial locations, but purely on conspe-
cific avoidance, mediated via scent-marking. We show analytically that steady-state
patterns can form, as long as (i) the scent does not decay faster than it takes the animal
to traverse the terrain, and (ii) the spatial scale over which animals detect scent is
incorporated into the PDE. As part of the analysis, we develop a general method for
taking the PDE limit of an IBM that avoids destroying any intrinsic spatial scale in
the underlying behavioral decisions.

B Jonathan R. Potts
j.potts@sheffield.ac.uk

1 School of Mathematics and Statistics, University of Sheffield, Sheffield, UK

2 Department ofMathematical and Statistical Sciences, Centre forMathematical Biology,University
of Alberta, Edmonton, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-015-0881-4&domain=pdf


26 J. R. Potts, M. A. Lewis

Keywords Advection–diffusion · Animal movement · Home range ·
Individual based models · Mathematical ecology · Partial differential equations ·
Pattern formation · Territoriality

Mathematics Subject Classification 35B36 · 92B05

1 Introduction

Territoriality is a wide-spread phenomenon throughout nature. A territory is an area
of space used exclusively by an organism, or a group of organisms (Burt 1943). It
is formed by deliberately excluding others of the same species (called conspecifics)
from the area, either by aggressive confrontations or mutual consent (Adams 2001).
In the last two decades, there have been a number of studies that show analytically
how territorial patterns can form from the movements and interactions of animals
(Lewis and Murray 1993; Moorcroft and Lewis 2006; Potts and Lewis 2014). These
use mean-field approximations to model the animals’ behavioral decisions as partial
differential equations (PDEs), and so enable territory formation to be analyzed using
standard tools from PDE theory (Murray 2002).

Despite their success in uncovering drivers behind space use patterns (Moorcroft
et al. 2006), previous analytical models assume an attractive potential influencing the
animals’ movements. This could either be fidelity to a central place such as a den- or
nest-site (Lewis et al. 1997), or a tendency to move towards places that the animal has
previously visited (Briscoe et al. 2002). However, it is not clear that such an attractive
potential is in fact necessary for territory formation (Moorcroft 2012).

In this paper, we present a PDE model of territorial pattern formation based purely
on conspecific avoidance, with no attractive potential. It is based on an individual
based model (IBM) of so-called territorial random walkers (Giuggioli et al. 2011a).
Previous work used simulation analysis to demonstrate empirically that territories can
form in this system (Giuggioli et al. 2011a). Here, we show analytically the circum-
stances under which territorial patterns may form. Specifically, necessary conditions
for territorial pattern formation include

– spatial aversion to scent marks
– scent marks that persist for longer than it takes the animal to traverse the terrain,
and

– a reaction to conspecific scent averaged over a small area around the animal.

As is often the case in ecological applications, it is important that the discrete spatial
nature of each interaction is present in the model (Durrett and Levin 1994). In the case
of territorial interactions, this discreteness is inherent in the fact that animals have a
non-zero perceptive radius for determining the presence of scent. As part of this study,
we develop a limiting procedure that enables the transition from IBM to PDE without
losing this important aspect of spatially discrete interactions. This has the potential for
general use, as previous limiting procedures have often failed in this regard (Durrett
and Levin 1994).
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Territorial pattern formation in the absence... 27

The paper is organized as follows. Section 2 derives the PDE from the IBMmodel.
Sections 3 and 4 investigate the conditions under which patterns may form. Section 5
gives some concluding remarks.

2 From the individual-level description to a system of PDEs

2.1 Description of model

The individual based model (IBM) is based on a 1D model of territoriality which was
recently proposed by Giuggioli et al. (2011a), but then slightly modified and studied
in detail by Giuggioli et al. (2011b) and Potts et al. (2012). The model consists of
two agents moving on a 1D lattice. The agents represent either a single individual
responsible for territorial defense, or a group of individuals moving together, such
as a pack or a flock. For example, the former is appropriate when modelling fox
(Vulpes vulpes) behaviour where the dominant male in each group marks and secures
the territory (Harris 1980), whereas the latter may be more appropriate for modelling
wolf (Canis lupus) packs (Lewis and Murray 1993).

Agents move as discrete-time discrete-space nearest-neighbour random walkers,
depositing scent marks as they move. In the model of Giuggioli et al. (2011b), the
scent remains present for a finite amount of time, called the active scent time and
denoted by the symbol TAS. Once this time is up, provided the lattice site has not been
re-scented, the mark is no longer considered by conspecifics to be ‘active’. Agents
cannotmove into any lattice site that contains the active scent of another agent (Fig. 1a).

Our model set-up will take three stages. Stage 1 uses the formalism of coupled step
selection functions (Potts et al. 2014) to describe a stochastic IBM algorithm which

Fig. 1 Pictorial representation of the underlying model. The territory of each agent represents the sites
containing that agent’s scent. In a, agent 1 is unable to move to the right in the next step, since there is
active scent of agent 2 there. However, agent 2 can move in either direction. In b, we show the case where
the lattice spacing, a, is halved, so response to scent is averaged over several sites, given by the grey ovals.
As the lattice spacing is reduced by a factor of h(a), so the response to scent is averaged over 2h(a) − 1
sites. In this situation, agent 1 has a higher probability of moving left than right, while agent 2 has equal
probability of moving in both directions

123



28 J. R. Potts, M. A. Lewis

Table 1 Glossary of symbols

Symbol Definition Model

n Arbitrary lattice site Discrete

m Arbitrary time step Discrete

Ei (n,m) For animal i , the probability that there is conspecific
scent at (n,m)

Discrete

τ Length of a single time step Discrete

a Lattice spacing Discrete

κ(a) Probability that scent is deposited when the agent visits
a lattice site

Discrete

h(a) Number of lattice sites constituting the agent’s
perceptive radius

Discrete

f mi (n|n′) Probability of agent i moving to n next jump, given it is
at n′ at timestep m

Discrete

U (n,m) Probability that agent 1 is at n at timestep m Discrete

V (n,m) Probability that agent 2 is at n at timestep m Discrete

P(n,m) Probability that scent of agent 1 is present at n at
timestep m

Discrete

Q(n,m) Probability that scent of agent 2 is present at n at
timestep m

Discrete

μ Mean rate of scent decay Both

λ Mean scent deposition over a unit of space in a unit of
time

Both

x Arbitrary position in continuous space Continuous

t Arbitrary continuous time Continuous

u(x, t) Probability density function of agent 1 at time t Continuous

v(x, t) Probability density function of agent 2 at time t Continuous

p(x, t) Probability that scent of agent 1 is present at (x, t) Continuous

q(x, t) Probability that scent of agent 2 is present at (x, t) Continuous

D Diffusion constant Continuous

δ The agent’s perceptive radius Continuous

p̄(x, t) Mean of p(x, t) in a δ-ball around x Continuous

q̄(x, t) Mean of q(x, t) in a δ-ball around x Continuous

L Width of terrain Continuous

m Dimensionless composite parameter μL/λ Continuous

ε Dimensionless composite parameter D/Lλ Continuous

The first column shows the symbol, the second a definition, and the third whether it pertains to the discrete
(lattice) model or the continuous limit or both. Note that some symbols are used either as dimensional
quantities or their dimensionless equivalents, depending on the context (see Sect. 2.5)

generalizes that of Giuggioli et al. (2011b). Stage 2 describes how to derive a mean-
field probabilistic model from the IBM. Stage 3 involves taking the PDE limit of the
probabilistic model . The various parameters used in the study are detailed in Table 1.
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Territorial pattern formation in the absence... 29

2.2 Stochastic algorithm for the individual based model

If unconstrained by scent marks, an agent is simply a nearest-neighbor random
walker. Therefore the probability that agent i (i ∈ {1, 2}) moves from site n′ to n
is φi (n|n′) = 1/2 if |n − n′| = 1 and φi (n|n′) = 0 otherwise. This function φi (n|n′)
is the environment-independent movement kernel.

Now we add the effect of scent marks, which for this paper are thought of as
constituting of the animal’s ‘environment’. For each agent i , let the environment,
Ei (n,m), be the probability that there is conspecific scent at lattice site n and timestep
m. We give two possible definitions for Ei (n,m + 1), denoted by E1

i (n,m + 1) and
E2
i (n,m + 1), and both defined in terms of the state of the system at timestep m. The

first is given by

E1
i (n,m + 1) =

⎧
⎪⎨

⎪⎩

1 if an agent j �= i is at position n at any time

between m − TAS + 1 and m,

0 otherwise.

(1)

If E1
i (n,m) = 1 then there is conspecific scent present, otherwise there is not. This is

the definition used by Giuggioli et al. (2011b) and Potts et al. (2012).
An alternative to Eq. (1) is the following definition

E2
i (n,m + 1) =

⎧
⎪⎨

⎪⎩

1 − μτ with probability κ(a), if an agent j �= i

is at position n at timestep m,

(1 − μτ)E2
i (n,m) otherwise,

(2)

where τ is the length of a timestep and κ(a) is the probability that scent is deposited
when the animal visits a lattice site. Notice that scent left at timestepm has a probability
1 − μτ of remaining present at timestep m + 1.

Introducing κ(a) allows us to change the lattice spacing a without changing the
average distance moved between scent depositions, by insisting that a/κ(a) is kept
constant. From Sect. 2.3 onwards, we will use Eq. (2) to describe scent deposition and
decay. However, the stochastic algorithm of this section can be defined equally well
using either Eq. (1) or (2).

We now define the interaction term, which denotes how the scent affects the agent’s
movement. Animals typically have a perceptive radius that determines the spatial area
over which they respond to scent. The model of Giuggioli et al. (2011b) implicitly
identified this perceptive radius with the lattice spacing a. However, this limits the
model’s flexibility: if the lattice spacing is changed then the model assumptions about
the animal’s perceptive radius are also changed. Therefore, to ensure our model is
not constrained by the choice of a, we define the interaction term, C j

i (n,m), to be a
Bernoulli random variable taking value 1 with probability
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30 J. R. Potts, M. A. Lewis

ϕ = 1 − 1

2h(a) − 1

h(a)−1∑

l=1−h(a)

E j
i (n + l,m), (3)

where j ∈ {1, 2}, h(a) is defined so that ah(a) is the perceptive radius of the animal,
and C j

i (n,m) takes value 0 with probability 1 − ϕ. The model from Giuggioli et al.
(2011b) implicitly had h(a) = 1. In general, to change the lattice spacing whilst
keeping the perceptive radius δ constant requires setting h(a) = δ/a, which holds as
long as h(a) is an integer (see Fig. 1b).

The probability f mi (n|n′) of agent i moving to n at timestep m, given that is was

previously at position n′, is a combination of φi (n|n′) andC j
i (n,m), written as follows

f mi (n|n′)

=
⎧
⎨

⎩

φi (n|n′)C j
i (n,m)

φi (n′+1|n′)C j
i (n′+1,m)+φi (n′−1|n′)C j

i (n′−1,m)
ifC j

i (n′+1,m)+C j
i (n′−1,m) �= 0,

δk(n − n′) otherwise,
(4)

where δk is the Kronecker delta.
Equation (4) allows us to describe the stochastic algorithm. This is a one-step

Markov process, so can be fully described by determining the possible states of the
system at timestep m + 1, given the state at time m. Suppose that, for some m, we
know E j

i (n,m) for every n. Suppose further that animal i is at position ni at timestep
m. Then the algorithm is as follows

1. Calculate E j
i (n,m + 1) for each n.

2. Define a categorical distribution taking one of three values ni − 1, ni , ni + 1 with
probabilities given by f mi (ni − 1|ni ), f mi (ni |ni ) and f mi (ni + 1|ni ) respectively.
These values are the possible future positions of animal i .

3. Draw a random variable from this categorical distribution and move the animal to
the position just drawn.

4. Repeat steps 2 and 3 for each animal in turn.

2.3 Probability distribution of an agent in a given scent distribution

To construct a probabilistic master equation describing the above stochastic process,
we first assume that the evolution of the scent marks can be decoupled from the
movement of the agent. In other words, we calculate the equation governing a single
step of each agent’s movement that is true for any fixed, arbitrary scent distribution of
the other agent. This is a so-called mean-field approximation, that assumes covariates
between the agent and conspecific scent are small enough to ignore.

LetU (n,m) (resp. V (n,m)) be the probability of agent 1 (resp. 2) being at position
n at timestep m and P(n,m) (resp. Q(n,m)) the probability of there being scent
present of agent 1 (resp. 2) at position n at timestep m. By analysing the probability
of moving to site n from either site n − 1, n, or n + 1 in one timestep, we eventually
arrive at the following discrete space-time master equations
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Territorial pattern formation in the absence... 31

U (n,m + 1) =[1 − Q(n + i,m)]
{
1

2
U (n − 1,m)[1 + Q(n + i − 2,m)]

+ 1

2
U (n + 1,m)[1 + Q(n + i + 2,m)]

}

+ U (n,m)Q(n + i − 1,m)Q(n + i + 1,m), (5)

V (n,m + 1) =[1 − P(n + i,m)]
{
1

2
V (n − 1,m)[1 + P(n + i − 2,m)]

+ 1

2
V (n + 1,m)[1 + P(n + i + 2,m)]

}

+ V (n,m)P(n + i − 1,m)P(n + i + 1,m), (6)

where the following implicit summation notation (Einstein 1916) is used

P(n + i, t) := 1

2h(a) − 1

h(a)−1∑

i=1−h(a)

P(n + i, t),

Q(n + i, t) := 1

2h(a) − 1

h(a)−1∑

i=1−h(a)

Q(n + i, t), (7)

and a is the lattice spacing and the product ah(a) is the perceptive radius of the agent.
To give some intuition behind Eqs. (5) and (6), we focus on Eq. (5), and note

that all of the comments in this paragraph hold equally well for Eq. (6). The initial
[1 − Q(n + i,m)] factor in Eq. (5) ensures that there is a low probability of moving
to position n if there is a high probability of active conspecific scent being present at
or around position n. The factor [1+ Q(n + i − 2,m)] (resp. [1+ Q(n + i + 2,m)])
means that if scent is likely to be present at or around n − 2 (n + 2) and the animal
is at n − 1 (n + 1) at time m then it will be likely to move to n at time m + 1. The
final summand U (n,m)Q(n + i − 1,m)Q(n + i + 1,m) means that if the presence
of scent is highly probable both to the left and right of an animal at time m, then it is
likely to stay where it is. Notice that if

∑
n U (n,m) = 1 then

∑
n U (n,m + 1) = 1

so that probabilities are conserved.
Let τ be thewaiting-time between successive jumps. ThenEqs. (5) and (6) rearrange

to give

U (n,m + 1) −U (n,m)

τ
= 1

2τ
[1 − Q(n + i,m)]{U (n − 1,m)[1 + Q(n + i − 2,m)]

+ U (n + 1,m)[1 + Q(n + i + 2,m)]}
− 1

τ
[1 − Q(n + i − 1,m)Q(n + i + 1,m)]U (n,m),

(8)
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32 J. R. Potts, M. A. Lewis

V (n,m + 1) − V (n,m)

τ
= 1

2τ
[1 − P(n + i,m)]{V (n − 1,m)[1 + P(n + i − 2,m)]

+ V (n + 1,m)[1 + P(n + i + 2,m)]}
− 1

τ
[1 − P(n + i − 1,m)P(n + i + 1,m)]V (n,m),

(9)

Equation (8) can be re-written as follows

U (n,m+1)−U (n,m)

τ
= a2

2τ

{
1

a

[
U (n+1, t)−U (n, t)

a
−U (n, t) −U (n − 1, t)

a

]

+ 1

2a

[

4U (n + 1, t)
Q(n + i + 2, t) − Q(n + i, t)

2a

− 4U (n − 1, t)
Q(n + i, t) − Q(n + i − 2, t)

2a

]

+ 1

a

[
U (n, t)Q(n+i+1, t)Q(n+i−1, t)−U (n−1, t)Q(n+i, t)Q(n+i−2, t)

a

− U (n+1, t)Q(n+i+2, t)Q(n+i, t)−U (n, t)Q(n+i+1, t)Q(n+i−1, t)

a

]}

,

(10)

and similarly for Eq. (9). Taking the limit as a, τ → 0 and n,m, h(a) → ∞ such
that D = a2/(2τ), x = na, t = mτ , ah(a) = δ in the limit, and writing u(x, t)
(resp. v(x, t)) for the probability density functions of agent 1’s (resp. 2’s) position
and p(x, t) (resp. q(x, t)) for the probability that agent 1’s (resp. 2’s) active scent is
present at position x at time t , we arrive at the following PDE (see Appendix A for a
full derivation)

∂u

∂t
= D

∂2

∂x2
[(1 − q̄2)u] + 4D

∂

∂x

[
∂q̄

∂x
u

]

. (11)

The equation governing the evolution of v(x, t) over time is analogous

∂v

∂t
= D

∂2

∂x2
[(1 − p̄2)v] + 4D

∂

∂x

[
∂ p̄

∂x
v

]

. (12)

Here, p̄(x, t) and q̄(x, t) are the locally averaged scent of agents 1 and 2, respectively

p̄(x, t) = 1

2δ

∫ δ

−δ

p(x + z, t)dz, (13)

q̄(x, t) = 1

2δ

∫ δ

−δ

q(x + z, t)dz. (14)
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2.4 Evolution of the scent distribution

Recall that we gave two different formulae for the scent decay process, Eqs. (1) and
(2). For the purposes of our mean-field analysis, it is convenient to use Eq. (2). In
other words, the probability of scent being present at lattice site n decays by a factor
of 1− τμ each timestep of length τ . Additionally, when a site is visited by the animal,
the probability that there is active scent present jumps to 1 with probability κ(a).

The followingmaster equation follows directly from taking the expectation of either
side of Eq. (2)

P(n,m + 1) = (1 − μτ)U (n,m)κ(a) + (1 − μτ)[1 −U (n,m)κ(a)]P(n,m).

(15)

The probability density version of Eq. (15) is the limit as a, κ(a), τ → 0 and n,m →
∞ of

p(na,mτ +τ)=(1−μτ)u(na,mτ)aκ(a)+(1−μτ)[1−u(na,mτ)aκ(a)]p(na,mτ),

(16)

such that x = na, t = mτ and λ = aκ(a)/τ in this limit.
Subtracting p(na,mτ) from both sides of Eq. (16), dividing by τ and taking this

limit leads to the following ordinary differential equation (ODE) governing p(x, t)

∂p

∂t
= λ(1 − p)u − μp. (17)

We can interpret λ as representing the amount of scent deposited over a unit of space
in a single unit of time. The derivation for q(x, t) is similar and gives

∂q

∂t
= λ(1 − q)v − μq. (18)

Analyzing the system of Eqs. (11), (12), (17) and (18) requires choosing an appro-
priate domain and boundary conditions. A simple and biologically realistic choice is to
assume that agents are confined in a domain [0, L]with zero flux boundary conditions.
The boundary conditions could either come about by being confined in a valley or on
a small island. Alternatively, the conditions could model a situation where the rate of
migration of animals into the domain is equal to the rate of movement outwards. In
other words, the population is assumed to be exhibiting a certain spatial and temporal
stability. These boundary conditions are given as follows

{
∂

∂x
[(1 − q̄2)u] + 4

[
∂q̄

∂x
u

]} ∣
∣
∣
∣
x=0

=
{

∂

∂x
[(1 − q̄2)u] + 4

[
∂ q̄

∂x
u

]} ∣
∣
∣
∣
x=L

= 0,

(19)
{

∂

∂x
[(1 − p̄2)v] + 4

[
∂ p̄

∂x
v

]} ∣
∣
∣
∣
x=0

=
{

∂

∂x
[(1 − p̄2)v] + 4

[
∂ p̄

∂x
v

]} ∣
∣
∣
∣
x=L

= 0.

(20)
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The existence of the boundary requires that we need to redefine p̄(x, t) and q̄(x, t)
in the cases where x < δ and x > L − δ, as follows

p̄(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
x+δ

∫ δ

−x p(x + z, t)dz if x < δ,

1
2δ

∫ δ

−δ
p(x + z, t)dz if δ ≤ x ≤ L − δ,

1
L−x+δ

∫ L−x
−δ

p(x + z, t)dz if x > L − δ,

(21)

q̄(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
x+δ

∫ δ

−x q(x + z, t)dz if x < δ,

1
2δ

∫ δ

−δ
q(x + z, t)dz if δ ≤ x ≤ L − δ,

1
L−x+δ

∫ L−x
−δ

q(x + z, t)dz if x > L − δ.

(22)

In addition to the boundary conditions, it is necessary to impose integral conditions
on the initial probability distributions u(x, 0) and v(x, 0), to ensure that probability
is conserved. In other words

∫ L

0
u(x, 0)dx =

∫ L

0
v(x, 0)dx = 1. (23)

A consequence of Eqs. (19) and (20) is that the time-derivative of
∫ L
0 u(x, t)dx is zero.

Therefore the initial conditions from Eq. (23) imply that probabilities are conserved
at every point in time, i.e.

∫ L

0
u(x, t)dx =

∫ L

0
v(x, t)dx = 1. (24)

2.5 A dimensionless version of the model

To minimize the number of model parameters, we re-write Eqs. (11), (12), (17), and
(18), using the following dimensionless parameters

ũ = Lu, ṽ = Lv, x̃ = x

L
, t̃ = t D

L2 , m = μL

λ
, ε = D

Lλ
. (25)

Dropping the tildes over the letters to ease notation, we arrive at the following dimen-
sionless system of equations, which will be the object of study for the rest of this
paper

∂u

∂t
= ∂2

∂x2
[(1 − q̄2)u] + 4

∂

∂x

[
∂ q̄

∂x
u

]

, (26)

∂v

∂t
= ∂2

∂x2
[(1 − p̄2)v] + 4

∂

∂x

[
∂ p̄

∂x
v

]

, (27)

ε
∂p

∂t
= (1 − p)u − mp, (28)
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ε
∂q

∂t
= (1 − q)v − mq. (29)

3 Territorial patterns

We define a territorial pattern to be a non-trivial steady-state solution to Eqs. (26)–
(29). These are found by setting to zero the left-hand sides of Eqs. (26)–(29). Setting
Eq. (28) (resp. Eq. (29)) to zero enables the steady state solution of p(x, t) (resp.
q(x, t)), denoted by p∗(x) (resp. q∗(x)), to be written in terms of the steady state
solution of u(x, t) (resp. v(x, t)), denoted by u∗(x) (resp. v∗(x)) as follows

p∗(x) = u∗(x)
m + u∗(x)

, (30)

q∗(x) = v∗(x)
m + v∗(x)

. (31)

To ease notation, we will henceforth drop the asterisks. By setting Eqs. (26) and (27)
to zero and integrating with respect to x , we have that

d

dx
{(1 − q̄[v(·), x]2)u(x)} + 4

[
dq̄

dx
u(x)

]

= c1, (32)

d

dx
{(1 − p̄[u(·), x]2)v(x)} + 4

[
d p̄

dx
v(x)

]

= c2, (33)

for constants c1 and c2. The boundary conditions given by Eqs. (19) and (20) imply
that c1 = c2 = 0.

We use the notation p̄[u(·), x] and q̄[v(·), x] to emphasize the fact that p̄ and q̄ are
functionals. That is, they map the functions u(·) and v(·), respectively, to the interval
[0, 1]. These functionals are given by the following formulae

p̄[u(·), x] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
x+δ

∫ δ

−x
u(x+z)

m+u(x+z)dz, if x < δ,

1
2δ

∫ δ

−δ
u(x+z)

m+u(x+z)dz if δ ≤ x ≤ 1 − δ,

1
1−x+δ

∫ 1−x
−δ

u(x+z)
m+u(x+z)dz if x > 1 − δ,

(34)

q̄[v(·), x] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
x+δ

∫ δ

−x
v(x+z)

m+v(x+z)dz, if x < δ,

1
2δ

∫ δ

−δ
v(x+z)

m+v(x+z)dz if δ ≤ x ≤ 1 − δ,

1
1−x+δ

∫ 1−x
−δ

v(x+z)
m+v(x+z)dz if x > 1 − δ,

(35)

In sum, as well as Eqs. (34) and (35), we have the following system of equations,
whose non-constant solutions correspond to territorial patterns

d

dx
{(1 − q̄[v(·), x]2)u(x)} + 4

[
dq̄

dx
u(x)

]

= 0, (36)
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d

dx
{(1 − p̄[u(·), x]2)v(x)} + 4

[
d p̄

dx
v(x)

]

= 0, (37)

p(x) = u(x)

m + u(x)
, (38)

q(x) = v(x)

m + v(x)
. (39)

3.1 Territorial patterns with only local interactions

We first examine the case where δ → 0 so that agents only respond to scent at the
exact position where they are situated. This means Eqs. (36) and (37) become

d

dx
{(1 − q(x)2)u(x)} + 4

[
dq

dx
u(x)

]

= 0, (40)

d

dx
{(1 − p(x)2)v} + 4

[
dp

dx
v(x)

]

= 0. (41)

The limit δ → 0means that the functionals p̄[u(·), x] and q̄[v(·), x]havebeen replaced
by functions p(x) and q(x), which makes analysis tractable. To ease notation, we
hencefore drop the explicit dependence of the functions u, v, p, and q on x .

By substituting Eqs. (38) and (39) into (40) and (41), the following system of ODEs
for the steady state solution of (u, v) is found

Au̇ = 0,

A = m

(
(m + 2v)(m + v) 2u(2m + v)

2v(2m + u) (m + 2u)(m + u)

)

,

u̇ =
(
du/dx
dv/dx

)

. (42)

The system of ODEs in Eq. (42) is simple enough to analyze mathematically. The
results of this analysis are summarized in the following

Theorem 1 1. No scent decay. If m = 0 then p(x) = q(x) = 1 and u(x), v(x) can
take any value.

2. Positive scent decay. If m > 0 then there are no non-constant solutions to Eq. (42).
Hence no territorial patterns can form in this case.

Proof See Appendix B. 	


3.2 Territorial patterns with non-local interactions

In the case where δ > 0, Eqs. (36)–(39) give a system of integral-ODEs, so are harder
to analyse analytically. Instead, we solve them numerically using the method of false
transients (Mallinson and Vahl 1973). This involves solving Eqs. (26)–(29) forward
in time until the solution is unchanging.
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Our algorithm uses a forward-difference approximation for time and a central
difference approximation for space. We divide the interval [0, 1] into 1000 equal, non-
intersecting, sub-intervals of length 0.001.We iterate finite-difference versions of Eqs.
(26)–(29) using timesteps of 0.01, until all of the u(x, t) or v(x, t) values in all of the
sub-sections are increasing by less than 10−8 over each timestep. The initial conditions
have all of u(x) concentrated on the sub-interval [0.25, 0.251) and all of v(x) on the
sub-interval [0.75, 0.751). This means u(x) and v(x) are zero outside the sub-intervals
[0.25, 0.251) and [0.75, 0.751) respectively, and each integrate to 1 over [0, 1].

Numerical analysis shows that patterns emerge from this system corresponding to
two territories: u(x) on the left and v(x) on the right (Fig. 2a, b). Notice that a larger

(a) (b)

(c)

Fig. 2 Numerical steady state solutions of the model. Solid red (resp. black) lines denote values of u(x)
(resp. v(x)), whereas dotted red (resp. black) lines show values of p(x) (resp. q(x)). In both panels,m = 0.4
and ε = 0.01. In a, δ = 0.1, whilst b has δ = 0.01. Notice that a larger the scent-averaging radius, δ, gives
a larger overlap between territories. c Compares steady states of simulations of the original IBM (dashed
lines) with numerical results from the PDE approximation (solid lines). As in a and b, dotted red (resp.
black) lines show values of p(x) (resp. q(x)). Here, δ = 0.01, m = 0.4, and ε = 0.01. This corresponds,
in the IBM, to TAS/τ = 500 and N = 100
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scent averaging radius leads to wider overlap of the probability distributions, meaning
that the perceptive scale of the animal plays a large role in the territorial patterns that
emerge.

These can be compared with the territories that form in the original IBM with the
interaction rules from Giuggioli et al. (2011b). Although there is some qualitative
agreement, the patterns generated by the IBM are still quite different to the PDE.
In the IBM, at any point in time, there is a border between the two territories. This
border fluctuates about the central point, typically much slower than the movement of
the agent. Each agent is free to move within its territory borders. Consequently, the
probability density of both agents combined (u + v) ends up being roughly uniform
(Fig. 2c). This does not happen in the mean field approximation studied here. Indeed,
the value of u + v appears to be lower in the middle of the terrain. Since this is just an
artifact of the assumptions made in using the PDE limit, it is necessary to be cautious
when inferring biological lessons from such pattern features.

4 Investigating pattern formation via linear analysis

A common technique for examining whether patterns spontaneously form in a dynam-
ical system is to linearize the system about the uniform steady state and examine the
resulting dispersion relation, e.g. Murray (2002, chapter 2). For our system, the uni-
form steady state is

(us, vs, ps, qs) =
(

1, 1,
1

1 + m
,

1

1 + m

)

. (43)

That us = vs = 1 arises from the integral conditions (Eq. 24). The values for ps and
qs then follow from Eqs. (38) and (39).

Letting w = (û, v̂, p̂, q̂) = (u − us, v − vs, p − ps, q − qs), we use Eqs. (26–29)
to give the linearized system

∂ û

∂t
=

[

1 − 1

(1 + m)2

]
∂2û

∂x2
+ 2

[

2 − 1

1 + m

]
∂2 ˆ̄q
∂x2

,

∂v̂

∂t
=

[

1 − 1

(1 + m)2

]
∂2v̂

∂x2
+ 2

[

2 − 1

1 + m

]
∂2 ˆ̄p
∂x2

,

∂ p̂

∂t
= m

ε(1 + m)
û − 1 + m

ε
p̂,

∂q̂

∂t
= m

ε(1 + m)
v̂ − 1 + m

ε
q̂. (44)

Searching for solutions of the form w = (u0, v0, p0, q0) exp(σ t + ikx), we obtain the
following eigenvector equation
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(a) (b)

Fig. 3 Dispersion relations. a Show the dispersion relation for the dynamical system in Eqs. (26–29),
where m = 0.1 (solid line), m = 0.5 (dotted), m = 1 (dashed), and m = 3 (dot-dashed). We set ε = 0.01
and δ = 0.01 throughout. b Shows the same dispersion relations, but this time the animals respond only to
the scent density at the particular point in which they reside, i.e. we take the limit δ → 0. This system is
given in Eqs. (28), (29), (46) and (47). The values of ε and m are identical to those in a

Aw = σw

A =

⎛

⎜
⎜
⎜
⎜
⎝

[
1

(1+m)2
− 1

]
k2 0 0 −2

[
2 − 1

1+m

]
k
δ
sin δk

0
[

1
(1+m)2

− 1
]
k2 −2

[
2 − 1

1+m

]
k
δ
sin δk 0

m
ε(1+m)

0 − 1+m
ε

0
0 m

ε(1+m)
0 − 1+m

ε

⎞

⎟
⎟
⎟
⎟
⎠

.

(45)

The dispersion relation is given by plotting the real values of σ as a function of the
wave number k, wherever det(A − σ I ) = 0. As shown in Fig. 3a, patterns can form
for a finite range of wavelengths as long as m < 1; that is, as long as the scent decay
is not too rapid.

We can gain biological insight by relating this result back to the underlying IBM.
Recall that m = μL/λ (Eq. 25). Recall also that λ is the limit of aκ(a)/τ . In the
original lattice model, where κ(a) = 1, aκ(a)/τ is simply the speed of the animal.
Then m < 1 if and only if the time it would take a freely moving animal on the lattice
to traverse the whole terrain is less than the characteristic timescale for scent-mark
decay 1/μ.

The dispersion relation changes somewhat if we examine the case where δ → 0,
so that animals only respond to scent in the exact place that they are located at any
point in time. In this case, p̄ and q̄ are replaced by p and q respectively, so that Eqs.
(26) and (27) are replaced by

∂u

∂t
= ∂2

∂x2
[(1 − q2)u] + 4

∂

∂x

[
∂q

∂x
u

]

, (46)

∂v

∂t
= ∂2

∂x2
[(1 − p2)v] + 4

∂

∂x

[
∂p

∂x
v

]

. (47)
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Equation (45) becomes

A =

⎛

⎜
⎜
⎜
⎜
⎝

[
1

(1+m)2
− 1

]
k2 0 0 −2

[
2 − 1

1+m

]
k2

0
[

1
(1+m)2

− 1
]
k2 −2

[
2 − 1

1+m

]
k2 0

m
ε(1+m)

0 − 1+m
ε

0
0 m

ε(1+m)
0 − 1+m

ε

⎞

⎟
⎟
⎟
⎟
⎠

,

(48)

which is the limit as δ → 0 of Eq. (45). The corresponding dispersion relation is given
in Fig. 3b. Here, for 0 < m < 1, σ is an increasing function of k, indicating that
the steady state is unstable but arbitrarily large wave numbers grow fastest. In other
words, this is an ill-posed problem.

5 Discussion and conclusions

We have shown how stable territorial patterns can form purely from a conspecific
avoidance mechanism, without requiring any attractive potential. Our model is con-
structed by taking the continuous space-time limit of a discrete latticemodel. Therefore
it can be rigorously linked to the underlying movement and interaction processes. We
have demonstrated that patterns will only form if the scent marks last for a sufficiently
long time. If they decay too quickly, i.e. m ≥ 1, the territorial structure breaks down.
This can be interpreted as saying territories can only emerge if the animal is able to
patrol its territory faster than the scent marks decay.

Similarly, patterns will only form reliably if the animals react to the averaged
scent density across the local vicinity of the animal. From a biological perspective,
an animal will always have a perceptive radius over which it will react to scent.
Therefore this spatial averaging is implicit in the system being modeled. As such,
our study demonstrates the importance of ensuring that the mathematical limiting
process, moving from discrete to continuous space, does not destroy a key feature of
the underlying biology. Our procedure for performing this limiting process has the
potential for broad application, since there are many examples where the discreteness
of ecological interactions is known to be an important feature of the modeling process
(Durrett and Levin 1994).

The model is derived from an individual-based model, previously studied using
stochastic simulations (Giuggioli et al. 2011a; Potts et al. 2012). As noted in recent
reviews (Giuggioli and Kenkre 2014; Potts and Lewis 2014), one of the advantages of
this approach is that it gives a clear delineation between the related notions of ‘home
range’ and ‘territory’. The territory of an animal is defined as the area containing active
scent marks of the animal (Burt 1943). Therefore, in the model presented here, p(x, t)
and q(x, t) can be considered the probabilities of position x being part of the animals’
territories at time t .

On the other hand, the home range of an animal is its utilization distribution (Burt
1943). Therefore u(x, t) and v(x, t) can be considered as the home ranges of the
animals at time t . The utilization distribution of an animal is typically much easier to
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measure in the field than the fluctuating locations of the territory border (Potts et al.
2012). In our approach, the concepts of territory and home range are related by rather
simple steady-state equations (30) and (31). This gives an explicit way to calculate the
probable location of a territory border, given data on its home range.

A key reason for studying PDE limits of IBMs is to provide mathematical analysis
of the conditions under which patterns may form, rather than relying on empirical
evidence from computer simulations. However, as shown here, patterns that form from
numerically solving the PDE may to be quantitatively different from those formed
by simulating the IBM. Therefore, if such PDE models were fitted to data on real
systems, it is important for the user to check that the PDE results are not significantly
different to those given by the IBM. Otherwise, there is a danger of making incorrect
inferences about biological patterns, thatmaymerely arise as artifacts of themean-field
approximation and/or limiting procedure.

Models such as ours could be of use in analyzing territory formation when there
is no reason to believe the animals have any fidelity towards particular locations, or
where these locations are not known, e.g. Bateman et al. (2015). Though memory
processes have recently been invoked to explain pattern formation (Briscoe et al.
2002; Moorcroft 2012), it is unclear how to find out what is going on inside the minds
of the animals using current science. This makes conjectures about memory difficult
to falsify. Conspecific avoidance mechanisms, on the other hand, can be measured
directly, e.g. Arnold et al. (2011). Therefore our model of territorial emergence has
the potential to be parameterized from empirically measured interaction mechanisms.
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Appendix A

Let u(x, t), v(x, t), p(x, t) and q(x, t) be the density functions corresponding to
U (n,m), V (n,m), P(n,m) and Q(n,m) respectively, where x = an and t = mτ .
First note the following limit as a → 0, k(a) → ∞, ak(a) → δ

1

2k(a) − 1

k(a)−1∑

i=1−k(a)

Q(n + i,m)

= 1

2k(a) − 1

k(a)−1∑

i=1−k(a)

q(x + ai, t)a → 1

2δ

∫ δ

−δ

q(x + z, t)dz. (49)

Using the definition of q̄(x, t) given in Eq. (14), and writing Eq. (10) down in terms
of the density functions, we have

123



42 J. R. Potts, M. A. Lewis

u(x, t + τ) − u(x, t)

τ
= a2

2τ

{
1

a

[
u(x + a, t) − u(x, t)

a
− u(x, t) − u(x − a, t)

a

]

+ 1

2a

[

4u(x+a, t)
q̄(x+ 2a, t)−q̄(x, t)

2a
− 4u(x−a, t)

q̄(x, t)−q̄(x − 2a, t)

2a

]

+1

a

[
u(x, t)q̄(x + a, t)q̄(x − a, t) − u(x − a, t)q̄(x, t)q̄(x − 2a, t)

a

−u(x + a, t)q̄(x + 2a, t)q̄(x, t) − u(x, t)q̄(x + a, t)q̄(x − a, t)

a

]}

. (50)

We keep x constant in the limit as a → 0, n → ∞. Taylor expanding the right-hand
side about x , assuming a is arbitrarily small, gives the following expression

u(x, t + τ) − u(x, t)

τ
= a2

2τ

{
∂2u

∂x2
−

[

4
∂u

∂x

∂q̄

∂x
+ 4u

∂2q̄

∂x2

]

−
[

2uq̄
∂2q̄

∂x2
+ 2u

∂q̄

∂x

∂q̄

∂x
+ ∂2u

∂x2
q̄2 + 4

∂u

∂x

dq̄

∂x
q̄

]

+ O(a)

}

.

(51)

In the limit as a, τ → 0 such that a2/(2τ) → D, this simplifies to give Eq. (11).

Appendix B

We look for solutions to Eq. (42) in two cases: det(A) �= 0 and det(A) = 0. For
det(A) �= 0, one solution is to have u̇ = 0, implying that u(x) and v(x) are constant
functions so territorial patterns do not form.

Otherwise, suppose that det(A) �= 0, du/dx = 0 and dv/dx �= 0. Then the
following equations hold

2u(2m + v) = 0, (52)

(m + 2u)(m + u) = 0. (53)

Equation (52) implies u = 0 or v = −2m. However, if u = 0 then Eq. (53) would
imply m = 0, which contradicts det(A) �= 0. Furthermore, if v = −2m then v < 0,
which contradicts the fact that v(x) is a probability density function. In conclusion,
if det(A) �= 0, we cannot have du/dx = 0 and dv/dx �= 0. Similarly, if det(A) �= 0,
we cannot have dv/dx = 0 and du/dx �= 0. Therefore the only possible way for
non-constant steady states to arise is if det(A) = 0.

Lemma 1 If det(A) = 0 then there are two possibilities.

1. No scent decay. If m = 0 then p(x) = q(x) = 1 and u(x), v(x) can take any
value.

2. Positive scent decay. If m > 0 then, for each x ∈ [0, 1], there are finitely many
possible values for u(x) and v(x), one of which is u(x) = v(x) = m. Furthermore,
all solutions other than u(x) = v(x) = m have u(x), v(x) �= m.
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Proof If m = 0 then det(A) = 0. Furthermore, by Eqs. (30) and (31), we have
p(x) = q(x) = 1. Therefore dp/dx = dq/dx = 0 so that Eqs. (32) and (33) hold
regardless of the values of u(x) and v(x), proving part 1 of the lemma. Indeed, in the
time-dependent PDEs (28, 29, 46, 47), if an initial condition of p(x, 0) = q(x, 0) = 1
is given and m = 0 then dp/dt = dq/dt = du/dt = dv/dt = 0 so u(x, t) = u(x, 0)
and v(x, t) = v(x, 0) remain unchanged for all times t .

Now suppose m �= 0. For notational ease, we drop the explicit dependencies of u
and v on x for the rest of this proof, noting that they always refer to the steady states.
Then the equation det(A) = 0 implies the following polynomial holds

(m + 2v)(m + 2u)(m + u)(m + v) = 4uv(2m + u)(2m + v). (54)

Equation (54) can be rearranged to give

u2(2m − 2v) + u(3m2 − 7mv − 2v2) + (m3 + 3m2v + 2mv2) = 0. (55)

Clearly m = u = v satisfies Eq. (55). Furthermore, it follows from Eq. (55) that
u = m if and only if v = m. Hence any solution other than u = v = m has both
u �= m and v �= m.

Differentiating Eq. (54) with respect to x , we find

du

dx
= dv

dx

7mu − 3m2 − 4mv + 2u2 + 4uv

3m2 − 7mv + 4mu − 2v2 − 4uv
. (56)

UsingEq. (56) and the top line of the vector equation (42), togetherwith our assumption
that du/dx, dv/dx �= 0, we find that

(7mu − 3m2 − 4mv + 2u2 + 4uv)(m + 2v)(m + v)

+ (4mu + 2uv)(3m2 − 7mv + 4mu − 2v2 − 4uv) = 0. (57)

Proving part 2 of the lemma requires applying Bézout’s Theorem (Fulton 1969) to
Eqs. (55) and (57). Bézout’s Theorem states that if two projective plane curves are
zeros of polynomials with no non-constant greatest common divisor, then the curves
intersect at finitely many points. The polynomials on the left-hand sides of Eqs. (55)
and (57) are homogeneous in three unknowns, therefore Eqs. (55) and (57) describe
curves in the real projective plane. Thus, to prove part 2 of Lemma 1, it suffices to
show that these two polynomials have no non-constant common factor.

Let f (m, u, v) be the polynomial on the left-hand side of Eq. (55). Since this is
quadratic in u, it written as precisely one of the following two possible decompositions:

f (m, u, v) = [a1(m, v)u + b1(m, v)][a2(m, v)u + b2(m, v)]c(m, v), (58)

or

f (m, u, v) = α(m, u, v)β(m, v), (59)
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where a1(m, v), a2(m, v), b1(m, v), b2(m, v), and β(m, v) are polynomials, and
α(m, u, v) is an irreducible polynomial. By solving Eq. (55) in terms of u, we find
that

u = 7mv + 2v2 − 3m2 ± √
4(v − γ+m)(v − γ−m)(v − ϑ+m)(v − ϑ−m)

4(m − v)
, (60)

where

γ± = 1

4

[

−11 − 4
√
3 ± 2

√
225

4
+ 30

√
3

]

,

ϑ± = −11

4
+ √

3 ± 1

4

√

15
(
15 − 8

√
3
)
. (61)

Therefore the numerator of Eq. (60) is not a polynomial, so the decomposition given
in Eq. (58) cannot hold.

It follows that f (m, u, v) = α(m, u, v)β(m, v) where α(m, u, v) is irreducible
and β(m, v) is the greatest common divisor of the coefficients of un in f (m, u, v) for
n = 0, 1, 2. These coefficients are 2m−2v, 3m2−7mv−2v2 andm3+3m2v+2mv2

(Eq. 55). Since m − v does not divide 3m2 − 7mv − 2v2 or m3 + 3m2v + 2mv2, it
follows that β(m, v) is a constant. Hence f (m, u, v) is irreducible.

Since f (m, u, v) is both irreducible and not a constant multiple of the polynomial
in Eq. (57), there is no non-constant greatest common divisor of the polynomials in
Eqs. (55) and (57). The proof of part 2 then follows from Bézout’s Theorem. 	


Lemma 1 enables us to prove Theorem 1 from Sect. 3, as follows.

Proof of Theorem 1 Part 1 of Theorem 1 is identical to part 1 of Lemma 1. To show
part 2, note that classical solutions must be continuous. Lemma 1 states that there are
only finitely many possible values of u and v. Therefore any classical solution must
be constant. 	

Note 1 Numerical analysis suggests that u = v = m is the only positive real solution
(Fig. 4). Since we are interested in the case m �= 0, we set vm = v/m, um = u/m and
assume v �= m. Then Eq. (55) implies

um = 7vm + 2v2m − 3 ± √
(3 − 7vm − 2v2m)2 − 8(1 − vm)(1 + 3vm + 2v2m)

4(1 − vm)
. (62)

Furthermore, Eq. (57) rearranges to give um as another two-valued function of vm

um = 4v3m + 4v2m + 3vm + 19

8v2m + 4vm − 36

±
√

(4v3m+4v2m+3vm+19)2−4(4v2m+2vm−18)(8v3m+18v2m + 13vm + 3)

8v2m + 4vm − 36
.

(63)
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Fig. 4 Possible values of um = u(x)/m and vm = v(x)/m. The black curve denotes solutions to Eq.
(62), whereas the grey curve shows solutions to Eq. (63). There appears to be only one crossing-point for
positive real values of both um and vm , which is where um = vm = 1, so that u = v = m

The black curve in Fig. 4 has an asymptote at vm = 1, where the denominator
of the right-hand side of Eq. (62) tends to 0. The grey curve has an asymptote at
vm = (

√
73 − 1)/4, where the denominator of the right-hand side of Eq. (63) tends

to 0, so the two curves do not cross at values of um higher than those shown in Fig. 4.
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