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Abstract  

 

Pancreatic cancer is a leading cause of cancer-related death, due to its 

aggressive biology, lack of tools for early diagnosis and screening, advanced 

presentation and resistance to adjuvant therapy. Metabolomics, the newest of the 

“omics” sciences, may offer the potential for non-invasive screening of early 

tumor associated perturbations in cellular metabolism. We applied metabolomic 

techniques as a potential discriminating tool in the diagnosis of early stage and 

locally advanced pancreatic cancer. Urinary nuclear magnetic resonance 

spectroscopic analysis of pancreatic ductal adenocarcinoma was associated with 

a distinct metabolomics signature, was detectable in both early stage and locally 

advanced disease when compared with healthy, age and gender matched 

controls and was extinguished following complete, R0 surgical resection. These 

preliminary results suggest that metabolomics approaches may facilitate 

discovery of novel biomarkers capable of early disease detection. 
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Chapter 1: Introduction 

1.1  Summary and Statement of the Problem 

	  
Pancreatic ductal adenocarcinoma (PDAC) is associated with dismal prognosis, 

and surgical resection is rarely curative. These poor outcomes are in part due to 

the late presentation and biological aggressiveness of this tumor, coupled with 

resistance to standard and innovative chemotherapeutic approaches. While a 

subset of patients may be cured by major pancreatic resection, most are not, and 

despite dramatic progress in other surgically treatable cancers such as colorectal 

malignancies, overall outcomes for PDAC patients have changed little in recent 

decades. It should be noted however that surgical outcomes with the Whipple 

resection for pancreatic head cancers have improved substantially, and the 

previous 50% mortality of 30 years ago currently is of the order of 1-5% in high 

volume centers [1, 2]. 

These outcomes are unlikely to change substantially until effective tools become 

available for early detection of pancreatic cancers in high-risk populations, and 

until the biological basis of the tenacity of this cancer is better understood. 

Because PDAC is such a devastating and pervasive malignancy, any tool with 

the potential for early diagnosis could have a major impact on outcome.  

  

Metabolomic science offers one new potential approach that could provide a 

means for early detection based on identification of a discrete metabolomic 
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signature associated with PDAC. Furthermore, armed with a better 

understanding of the underlying biochemical pathways disrupted in PDAC, 

metabolomics has the potential to bring a number of advancements not only to 

early cancer detection and diagnostics, but also may lead to development of new 

targeted therapies tailored to molecular processes underlying the disease.  As 

such, metabolomics has the potential to dramatically alter the field of surgical 

oncology in the realm of diagnosis, treatment and understanding of tumor 

biology. Furthermore, an understanding of metabolomic pathways active in 

PDAC that differ from normal cellular metabolism may open up new pathways for 

interventional treatment. 

 

 

 1.2.1 Pancreatic Cancer - An Overview of Diagnosis, Screening 

and Molecular Pathogenesis 

 

PDAC is a biologically complex malignancy with dismal prognosis. This has 

largely been attributed to difficulty with diagnosis and late stage of presentation, 

as well as a lack of responsiveness to radio- and chemotherapy. Surgical 

resection provides the only potential for cure, however as a result of delayed 

presentation combined with the biological aggressiveness of PDAC and lack of 

potent adjuvant therapies, only 15-20% have surgically resectable disease [3]. 

The vast majority of patients are diagnosed after their disease has spread locally 
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or metastasized. Even those who undergo surgical resection, however have a 

dismal prognosis, with 5-year survival rates as low as 10-30% [3] (Table 1.1). 

 

 

Table 1.1 Survival Outcomes Following Resection in Pancreatic Ductal 
Adenocarcinoma  
(Reproduced with permission from John Wiley and Sons Bilimoria et 
al.,Validation of the 6th edition AJCC pancreatic cancer staging system. Cancer 
2007; 110(4): 738-744) 
 
 

These survival rates have remained largely unchanged for decades, despite 

parallel advances in surgical and adjuvant therapies for other cancers such as 

colorectal malignancies. Clearly improvements are urgently needed in the area of 

diagnostics and screening, therapeutics and global biological understanding of 

this heterogeneous and complex malignancy. 

 

1.2.2 Diagnostic Challenges in Pancreatic Cancer 

 

Early detection and precise preoperative diagnosis of PDAC remains an elusive 

area in desperate need of refined diagnostics and improved understanding of 

tumorigenesis. Prognosis is dismal, in part due to delayed diagnosis and the 
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aggressive nature of disease [4]. Given that the vast majority of patients with 

PDAC are not diagnosed until after their disease is incurable, the search for 

accurate, non-invasive and sensitive diagnostic tests will be a critical component 

if curative outcomes are to be transformed. 

 

Complete surgical resection remains the only potentially curative treatment. 

However, in nearly 80% of patients, disease is not detected until an advanced 

stage when curative-intent surgery is not longer an option [3].  Clinical features of 

pancreatic cancer presenting in the pancreatic body or tail are often vague and 

non-specific (abdominal pain, weight loss). Acute onset of painless jaundice is 

the one herald sign of relatively small pancreatic head and uncinate tumors. 

Nonetheless, even in this setting nearly half of patients have locally advanced, 

unresectable disease when pain occurs in the setting of jaundice, and jaundice is 

often a feature of more advanced disease [5, 6]. Jaundice can on occasion be a 

non-specific finding as it may be associated with benign disease such as 

cholelithiasis, pancreatitis or benign biliary strictures [5]. Currently available 

imaging techniques lack the sensitivity necessary for detecting early-stage 

disease and radiographic findings are not specific [5]. Reported accuracies of 

endoscopic ultrasound (EUS) are highly variable and are likely largely dependent 

on local expertise.  The reported sensitivity of EUS is generally high (85%), 

however negative predictive values are low (64%) [5]. While useful in diagnostic 

confirmation of patients presenting with symptomatic pancreatic tumors, EUS is 

not a palatable approach that can be widely used for screening of patients at 
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higher risk of pancreatic cancer. Furthermore, negative biopsies provide no 

benefit in clinical decision making [5, 7, 8]. Accurate diagnosis even at later 

stages can be challenging given that benign pancreatic disease can often mimic 

pancreatic cancer. Early and accurate detection of disease is crucial in helping to 

minimize unnecessary morbidity and mortality associated with surgery for benign 

disease, as well as improve survival in the case of true malignancy. In fact, 

between 10-25% of patients who undergo radical surgery 

(pancreaticoduodenectomy or radical pancreatectomy) for pancreatic lesions are 

found to have benign disease on final pathology [9-13].  Likewise, necessary 

surgical intervention is often delayed inappropriately in situations of diagnostic 

uncertainty.  

 

 

1.2.3 Molecular Markers in Pancreatic Cancer 

 

In an attempt to improve on early and accurate diagnosis of pancreatic cancer, a 

wide array of molecular markers have been described, the majority of which are 

still at the preclinical phase.  The most widely investigated markers are outlined 

in Table 1.2. To date, however no marker has adequate sensitivity and specificity 

to provide adequate clinical diagnostic resolution [14]. The carbohydrate antigen 

CA19-9 remains the only widely used and clinically recognized tumor marker for 

pancreatic cancer. Reported sensitivities and specificities of CA19-9 are 

relatively high (80-90%), however they are closely linked with tumor size [15-18]. 
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While useful in assessing prognosis and as an indicator of recurrence following 

potentially curative surgery, the role of CA19-9 as a diagnostic tool in detecting 

early stage disease amenable to surgical resection is limited and largely not 

established [19-23]. 

 

 

Table 1.2   Investigational Molecular Markers for Pancreatic Ductal 
Adenocarcinoma   
(Reproduced with permission from Lee et al., Screening for Early Pancreatic 
Ductal Adenocarcinoma: An Urgent Call. Journal of the Pancreas 2009; 10(2): 
104-108) 
 

 

Investigation for reproducible, accurate molecular markers of PDAC has involved 

primarily serum based studies, but has also addressed molecular markers 

expressed in pancreatic fluid, duct brushings, duodenal aspirates and pancreatic 

tissue obtained by EUS, core biopsy, drainage or from surgically resected 

specimens. The later approaches are not ideal for routine clinical use given their 

invasive nature and to date, none have proven to be clinically relevant. Broad 

categories of putative molecular markers include serum carbohydrate antigens 

(CA19-9, CA125), detection of specific genetic mutations (including activated 
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oncogenes, K-ras, and inactivated tumor suppressor genes, p16, p53, DPC4 and 

BRCA2), altered telomerase activity, growth factor and receptor overexpression, 

aberrant expression of mucins, abnormally methylated DNA, and abnormal 

protein expression [14]. 

 

Both genomic and proteomic-based research have been exploited in an attempt 

to identify more reproducible, sensitive and specific biomarkers capable of timely 

and accurate disease detection. However, despite early optimistic reports these 

have largely failed to demonstrate clinical efficacy [24, 25]. In an effort to 

advance biomarker discovery, metabolomics-based research in the area of 

cancer diagnostics has grown dramatically in the past decade [26-35]. 

Metabolomics offers a unique approach to early cancer diagnosis through  

detection of early metabolic signals of cellular perturbation, which occur prior to 

the surfacing of gross phenotypic change [36]. Only a handful of preliminary 

studies however, have examined the role of metabolomics in screening for early 

tumor-associated perturbations in cellular metabolism specific to pancreatic 

cancer. Virtually all of the research thus far has been serum-based, limited in 

sample size, and inclusive of advanced stage disease [5, 25, 37-39]. While it is 

still not yet established which biofluid is optimal for cancer-related metabolomics-

based studies, urinary analyses have a number of clear advantages. Sampling is 

non-invasive, requiring minimal sample processing and issues of degraded 

spectral resolution (encountered with serum) are avoided [40, 41]. In contrast to 

previous studies, we chose to focus on early stage disease, felt to be most 
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relevant in the context of developing an early detection and screening tool. Given 

the shortcomings of current diagnostic tools and the paucity of metabolomics-

specific research, further, in-depth investigation into the role of metabolomics and 

PDAC diagnostics is clearly needed. In this thesis, we therefore set out to 

investigate the potential of urinary metabolomic screening of early stage or 

locally advanced PDAC. 

 

 

1.2.4 Role of Screening in Pancreatic Cancer 

 

A fundamental precept of cancer screening is that early detection will improve 

survival, free of lead-time bias. When malignancies are detected late in the 

course of disease, effectiveness of therapies is compromised and curative intent 

surgery may no longer be an option. An ideal screening test should be highly 

sensitive and specific, cost effective, widely available and considered palatable 

by the at risk population being screened. Currently, early detection combined 

with surgery offers the only chance of survival in treatment of PDAC. However, 

unlike advancements made in screening and early detection of a number of other 

cancers such as breast and colorectal cancers, reliable, sensitive, primary 

screening modalities for pancreatic cancer in the general population do not yet 

exist [42]. Due to the low prevalence of disease and the low accuracy and 

invasive nature of presently available screening and diagnostic tests, population-

based primary screening for pancreatic cancer in the asymptomatic population is 
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neither advisable nor cost effective [43, 44]. However, it is becoming increasingly 

recognized that a higher-risk patient subgroup exists for PDAC where selected, 

targeted screening may indeed be both appropriate and advisable. 

 

 

1.2.5 Familial and Hereditary Pancreatic Cancer Syndromes 

 
 
While little is known about the etiology of PDAC, there are several clearly 

established risk factors. The strongest risk factor for the development of PDAC is 

a family history of the disease. Kindred pancreatic cancer families and familial 

predisposition have been recognized since the first case series was described in 

1967 [45, 46]. This notion was strengthened further by observational studies, 

which were followed by genetic analysis of families and the eventual 

development of nationwide family-based pancreatic cancer registries [47]. It is 

estimated that somewhere between 4-17% of pancreatic cancers are either 

familial or syndromic [47]. As outlined in Table 1.3 below, there are six widely 

recognized hereditary cancer syndromes which predispose patients to pancreatic 

cancer [46]. Arising from germline mutations of a number of genes, each has its 

own associated lifetime risk of development of pancreatic cancer. Genetic testing 

is now available for the majority of these hereditary cancer syndromes [48]. 
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Table1.3    Selected Conditions and Cancer Syndromes Associated with 
Increased Risk of Pancreatic Cancer 
(Reprinted from Best Practice & Research Clinical Gastroenterology (23), Greer 
et al. Hereditary Pancreatic Cancer: A Clinical Perspective. p159-170; 2009 with 
permission from Elsevier) 
 
 

 

Familial pancreatic cancers are defined as cancers arising in kindreds with two or 

more family members who have been diagnosed with pancreatic cancer and who 

are first degree relatives [48]. Inheritance patterns are autosomal dominant with a 

high degree of penetrance. While still largely unknown, it is thought that familial 

pancreatic cancer has more than one genetic cause, however these mutations 

are remain elusive [45, 49]. Unlike the hereditary pancreatic cancer syndromes, 

familial pancreatic cancer is not associated with the development of any other 

cancers. The overall lifetime risk of developing pancreatic cancer is dependent 

on the gene inherited, as well as other environmental factors (i.e. smoking) and 

therefore exact estimates of risk remain unknown but estimates range from 5-

100% (13, 15). 
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1.2.6 Natural History of High Risk Pancreatic Cancer Syndromes 

 

There remains a limited understanding of the natural history of familial pancreatic 

cancer and lifetime risk estimates vary in the literature.  In families with one 

family member diagnosed with pancreatic cancer, it is estimated that the risk of 

development of cancer in all first-degree relatives is 6.3 fold greater than the 

baseline, population risk of 1:10,000. In families with two relatives affected, the 

risk of development of pancreatic cancer in first-degree relatives has been 

reported to increase substantially with estimates ranging from 10 - 18 fold 

increase in risk, and an estimated 57-fold increase in risk exists in kindreds who 

have 3 affected relatives [48]. Sporadic pancreatic cancers occur rarely before 

the age of 45, and the incidence rises steeply thereafter. One series has 

suggested that the mean age of diagnosis in patients with familial pancreatic 

cancer is 44, with ages ranging between 29-63 [48]. Therefore many cases of 

familial pancreatic cancer demonstrate an early age of onset of disease, similar 

to other familial cancers [50].  

 

Pancreatic cancer family registries have been recorded since the 1990's. The 

largest registry to date worldwide is the National Familial Pancreatic Tumor 

Registry (NFPTR), which as of July 1, 2008 has a total of 2,877 families enrolled. 

This registry, first established at Johns Hopkins University, enrolls patients 

nationally in the United States and has been used as a research tool in the 

continued investigation of familial pancreatic cancer [51].  Development of cancer 
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registries such as the NFPTR provide an essential resource to allow researchers 

to examine the pathogenesis, natural history, biomarkers, underlying gene 

alterations and new diagnostic and therapeutic strategies, in managing high-risk 

pancreatic cancer patients [50].  

 

 

1.2.7 Current Screening Strategies 

 

Currently, early detection combined with surgery offers the only chance of 

survival. However, unlike advancements made in the screening and early 

detection in a number of other cancers such as breast and colorectal, reliable, 

sensitive screening tests for pancreatic cancer do not yet exist [42]. As a 

consequence, the vast majority of patients present with advanced stage disease 

when curative surgery is no longer possible.  Significant challenges remain in 

screening for early pancreatic cancer in these high-risk groups and current 

screening guidelines vary from institution to institution, based largely on expert 

opinion. There are no consensus recommendations with regards to the modality 

or frequency of surveillance screening [52]. Most centers use a combination of 

annual pancreas protocol CT imaging and endoscopic ultrasound (EUS) 

evaluation, followed by fine needle biopsy or endoscopic retrograde 

cholangiopancreatography if concerning features are noted [52].  Other variations 

include tumor markers, such as CA 19-9, abdominal MRI scanning, MR 

cholangiopancreatography or positron emission tomography (PET) combined 
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with cross-sectional CT imaging. Each of the hereditary cancer syndromes 

associated with pancreatic cancer has its own set of surveillance guidelines, with 

variations in age of initial surveillance as well as frequency and screening 

modality [52]. Despite aggressive surveillance programs, currently available 

screening modalities are too insensitive to detect early-stage disease, when a 

cure is still possible. New, highly sensitive screening tests are needed, given the 

clear shortcomings of current surveillance tools and the fact that the majority of 

patients are not diagnosed until after their disease is incurable. Discovery of 

minimally invasive, accurate and cost-effective screening-modalities through the 

combined use of novel biomarkers and imaging studies is therefore critical for 

effective screening of these at-risk populations. 

 

 

1.2.8 Molecular Pathogenesis of Pancreatic Cancer 

 

A greater understanding of the biology of pancreatic cancer could lead to 

improved, targeted therapeutics in the treatment of this aggressive and 

devastating malignancy [53]. While many aspects surrounding the molecular 

pathogenesis of pancreatic cancer remain incompletely understood, PDAC arises 

from both inherited and acquired mutations in a number of different cancer-

associated genes [54, 55].   
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Advances in the understanding of these genetic mutations have helped in 

establishing the progression model of pancreatic tumorigenesis.  Pancreatic 

intraductal neoplasia (PanIN) is one of three known precursor lesions of PDAC 

which has been most fully characterized [4]. While exact molecular events 

resulting in progression of PanIN lesions to invasive carcinoma remain unknown, 

an increasing number of genetic mutations appear to be associated with 

increasing degrees of dysplasia (Figure 1.1). Thought to originate from ductal 

epithelium, PDAC evolves from premalignant lesions to invasive cancer [4]. One 

of the earliest events in pancreatic tumorigenesis appears to be mutational 

activation of the oncogene K-ras, first noted in low-grade lesions (PanIN 1). 

Activating mutations of this oncogene result in a spectrum of molecular events 

leading to cellular proliferation, survival and invasion. The precise role of K-ras 

effector pathways in PDAC carcinogenesis remain largely unknown, however 

there is some evidence pointing towards to the role of autocrine epidermal 

growth-factor receptor signaling [53, 56, 57]. Tumor suppressor gene mutations 

become increasingly apparent (p16/CDKN2a, SMAD4 and TP53) in higher-grade 

lesions (PanIN-2 and 3 respectively). This cancer-progression model resulting 

from successive accumulation of genetic mutations has been demonstrated in 

numerous animal studies [58-60].  
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Figure 1.1   Pancreatic Cancer Progression Model 
(Reprinted from The American Journal of Pathology permission 156(6), Hruban 
et al. Genetic Progression in the Pancreatic Ducts. p1821-1825; 2000 with 
permission from Elsevier)  
 
 

Mucinous neoplasm (MCN) and intraductal mucinous neoplasm (IPMN) 

represent the other two recognized precursor lesions of pancreatic cancer, 

however, these are less well characterized.  Identification and comprehensive 

molecular characterization of non-invasive precursor lesions in pancreatic cancer 

could provide an important target for screening, early diagnosis, and therapeutic 

interventions [61]. Furthermore, in-depth development of a stepwise molecular 

progression model capable of comprehensively integrating the role of genetic, 

proteomic and downstream metabolic alterations in the molecular pathogenesis 

of PDAC will be critical in developing novel biomarkers and targeted therapeutic 

strategies [61, 62].  
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The majority of genetic mutations present in pancreatic cancer can be 

categorized into 3 broad categories; i)  activation of oncogenes (i.e. K-ras) ii) 

inactivation of  tumor suppressor genes (i.e. TP53, p16/CDKN2A, and SMAD4) 

and  iii) inactivation of genome maintenance genes responsible for DNA repair 

(i.e. hMLH1 and MSH2) [62]. A recent study found an average of 63 genetic 

alterations per tumor, representing abnormalities of 12 core signaling pathways 

(Figure 1.2) (see below). There are a number of other genetic mutations not 

identified here also thought to be involved in PDAC progression. These include, 

BRCA2 (breast, ovarian, and pancreatic cancer), PALB2 (breast and pancreatic 

cancer), STK11 (Peutz-Jeghers syndrome and pancreatic cancer) and PRSS1 

(familial pancreatitis and pancreatic cancer) [63]. 

 

 

Figure 1.2  Summary of Cancer Pathways and Associated Genetic 
Perturbations in Pancreatic Ductal Adenocarcinoma 
(Reproduced with permission from Hidalgo et al., Pancreatic Cancer. New 
England Journal of Medicine 2010; 362: 1605-1617) 
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Multiple combinations of varying genetic mutations are present however, 

resulting in large degree of tumor heterogeneity [4, 64].  Pancreatic cancer cells 

do not exist in isolation, but are in close communication with surrounding dense 

stroma. The peritumoral stroma and stromal to tumoral cross-talk plays a key role 

in tumorigenesis and is critically involved in tumor genesis and progression [53, 

65, 66].  Making up 1-5% of the tumor cell population are pancreatic cancer cells 

with stem-cell properties. These cells are capable of unregulated regeneration of 

more-differentiated cells and are resistant to chemo and radiotherapy [4, 67, 68].  

Both the supporting stroma and stem-cell population of cells have their own 

altered cancer-related cellular pathways, which are still largely poorly understood 

but could however represent additional therapeutic targets. 

 

 

1.2.9 Clinical Applications of Tumor Biology 

 

A further understanding of tumor biology may also lead to discovery of clinically 

useful prognostic biomarkers that could assist in stratifying pancreatic cancer 

patients by identifying those with occult metastatic disease prior to aggressive 

surgical treatment. Microscopically negative margins do not necessarily confer 

long-term survival status. Reported 5-yr overall survival estimates following 

curative surgical resection vary widely and range between 3.5-15% [1, 69-73]. 

Regardless, these outcomes may indicate the presence of occult metastatic 
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disease at the time of surgery [74]. Furthermore, on occasion patients with 

positive margins or the presence of lymph node metastases may show a delayed 

tendency towards metastasis, with improved survival compared to those in whom 

complete surgical resection was achieved, indicating a large degree of tumor 

heterogeneity [74]. PDAC appear to be represented by distinct subtypes of 

disease progression. While some tumors metastasize early, a subset exhibit a 

tendency for continued local growth, with limited evidence of metastatic potential 

[75, 76]. These findings of disease heterogeneity suggest that underlying 

fundamental molecular differences may be responsible for differences in patterns 

of tumor spread [77]. Better predictors of individual tumor behavior are needed. 

Development of molecular markers capable of identifying these subtypes 

preoperatively, could provide a means to stratify patients for different treatment 

regimens [77].  A biomarker that could more accurately predict biological 

behavior preoperatively could help avoid potentially futile but aggressive, radical 

and potentially morbid surgical treatments on occasions where there is likely to 

be no substantial survival benefit [74]. Conversely, preoperative stratification of 

patients based on tumor biology could broaden the role of radical surgical 

resection of locally advanced disease previously thought to provide no survival 

benefit. Numerous candidate molecular markers have been explored as potential 

biomarkers of prognosis in PDAC, however to date none has provided clinical 

utility [14, 24].  
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Integration of metabolomics discoveries with genomics and proteomics research, 

could provide a new and valuable avenue for discovery of clinically useful tools 

for preoperative molecular prognostication of PDAC patients. While genomics 

research has led to the identification of specific gene mutations involved in PDAC 

progression, a clear understanding of the specific downstream biochemical and 

molecular events resulting from these mutations still remains largely unknown 

[53].  Cancer genetic studies have provided the conceptual framework for future 

in-depth analysis of downstream molecular effects of specific genetic mutations. 

By comprehensively assessing overall metabolic profiles of biological samples, 

metabolomics may have a role in establishing the missing link between 

gene/protein expression profiles and the final cellular phenotype of PDAC.  

 

 

1.3 Summary 

	  
Early detection and precise preoperative diagnosis PDAC remains an elusive 

area in desperate need of refined diagnostics and improved understanding of 

tumorigenesis. Prognosis remains dismal primarily as a result of delayed 

diagnosis and aggressive biological behavior. Given that the vast majority of 

patients with PDAC are not diagnosed until after their disease is incurable, the 

search for accurate, non-invasive and sensitive diagnostic tests is critical. 

Metabolomics, the newest of the "omics" sciences, may alter the landscape of 

surgical oncology through the discovery of a novel translational tool capable of 
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bringing the molecular world of cancer care to the bedside. By comprehensively 

assessing overall metabolic profiles of biological samples, metabolomics offers 

the potential for non-invasive screening of early tumor associated perturbations 

in cellular metabolism. This program of research aims to uncover the 

discriminating metabolomic profile associated with PDAC and examine the 

effects of surgical resection in modulating this metabolomic signature. Elucidation 

of a non-invasive, metabolomics-based multi-molecular biomarker associated 

with pancreatic cancer could allow for population based screening of at-risk 

populations, facilitate early intervention at a curable stage as well as potentially 

aid in the discovery of distinct molecular targets for future interventional 

therapies.  
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1.4 Objectives  

 

The objectives of this program of research were to:  

  

1)  Provide an in-depth overview of metabolomic applications in the areas of 

early cancer detection, personalized therapeutics and tumorigenesis;  

2)  Establish a clearly defined metabolomic signature for early stage and 

locally advanced pancreatic adenocarcinoma compared with healthy 

controls;  

3)  Investigate the impact of complete surgical resection (R0) in 

extinguishing this cancer-associated metabolomic signature;  

4)  Briefly examine the relationship between metabolomics profile and tumor 

metabolic kinetics.  

 

1.5 Program of Research 

 
This thesis therefore sets out in Chapter 1 to provide an up-to-date overview of 

pancreatic cancer in the area of diagnosis, screening and pancreatic biology.   

This introductory overview is followed by two papers, which contribute, to the 

overall study goals. The first study (Chapter 2) provides a detailed overview 

(published in the Journal of Surgical Oncology, Davis et al 2011) of applied 

metabolomic science, placing metabolomics in context of genomics, proteomics 

and other –omic sciences, and its potential clinical oncological applications in the 
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realm of diagnostics, personalized cancer care and further delineation of 

tumorigenesis. 

 

The second study (Chapter 3) provides a detailed comparison of urinary 

metabolomics profiles of a cohort of patients with early and locally advanced 

stage PDAC, compared with normal healthy control subjects. A series of 

important and substantial differences are identified in the PDAC cohort that are 

distinct from the controls, and these innovative findings represent a potentially 

applicable screening tool for further validation. Additionally, effects of complete 

surgical resection on the metabolomic signature associated with PDAC are 

examined (currently under review Annals of Surgical Oncology, Davis et al.).  

 

Chapter 4 is the concluding chapter of this Masters Thesis, and places the 

findings in PDAC in context while further discussing future proposed studies for 

definitive validation and potential application of these findings. Different 

metabolomic pathways active in PDAC are discussed in detail, together with 

potential explanations, including a direct association with PDAC biological 

processes, and the alternative confounding possible explanations related to the 

discrete metabolomic effector pathways that could be active in patients with 

aggressive cancer and underlying cachexia processes. 
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Chapter 2: Metabolomics and Surgical Oncology: Potential Role 

for Small Molecule Biomarkers 

 

2.1 Abstract 

 

Metabolomics, the newest of the "omics" sciences, has brought much excitement 

to the field of oncology as a potential new translational tool capable of bringing 

the molecular world of cancer care to the bedside. While still early in its 

development, metabolomics could alter the scope and role of surgery in the 

multidisciplinary treatment of cancer. This review examines potential roles of 

metabolomics in areas of early cancer detection, personalized therapeutics and 

tumorigenesis. 
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2.2 Introduction 

 

The new “omics” technologies have opened up exciting opportunities for 

screening, identifying novel biomarkers that may help in defining underlying 

mechanisms of tumorigenesis and development of 'cancer models'. These 

technologies also have the potential to help identify new targets for intervention 

at various stages of malignancy.  With completion of the human genome map, 

omic sciences such as genomics, transcriptomics and proteomics, have focused 

on establishing links between gene/protein expression profiles and final cellular 

phenotype in normal and diseased states, such as cancer, by providing vast 

arrays of data relating to changes in gene profiles, RNA transcription, and DNA 

expression. While new technological advances in these areas have led to the 

discovery of a multitude of therapeutic targets and tumor biomarkers, a complete, 

comprehensive picture of cellular networking is still lacking and both genomics 

and proteomics remain labor-intensive and expensive.  The new field of 

metabolomics reduces these cellular changes to a more sensitive and 

interpretable level, and provides an opportunity for non-invasive screening of 

early tumor- associated perturbations in cellular metabolism. 

 

Metabolomics (often used interchangeably with metabonomics) describes the 

“quantitative measurement of time-related multiparametric metabolic responses 

of multicellular systems to pathophysiological stimuli or genetic modification” [1]. 

Biomarkers of interest therefore consist of metabolites, small molecules which 
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are intermediates and products of metabolism, including molecules associated 

with energy storage and utilization; precursors to proteins and carbohydrates; 

regulators of gene expression; and signaling molecules [2, 3]. Although generally 

complementary to other omic sciences, metabolomics has several unique 

advantages, which could help overcome limitations of its predecessors [4].  While 

genomics and proteomics focus on upstream gene and protein products, 

metabolomics focuses on downstream outputs of global cellular networking. As a 

result of their downstream nature, changes in the metabolome may be amplified 

in comparison with changes in the transcriptome and proteome [5]. Thus, the 

metabolome represents a functional portrait of cells or the organism, reflecting 

the true cellular phenotype (Figure 2.1). 

 

 

 

 

Figure 2.1. The Omics Sciences: Side-by-Side Comparison 
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Unlike genomics and proteomics, metabolomics permits the study of endpoint 

metabolites which represent the ultimate, downstream response of biological 

systems to genetic or environmental change [6]. In addition, because the 

metabolome is quite discrete and because metabolites appear in patterns (as 

determined by defined biochemical pathways), analysis of the metabolome 

provides an opportunity to gain further insight on functional changes of the 

organism associated with a disease state.  It is estimated that the number of 

metabolites in any given biological system are in the range of 2000 to 3000 [7]. In 

contrast, the number of transcripts and proteins in any biological system is in the 

range of 40,000 to 100,000 products [7, 8].  Reduced complexity in metabolomic 

data greatly simplifies analysis and increases the likelihood of detecting 

meaningful changes that reflect alterations in biology [4]. Moreover, changes in 

metabolism result in alterations of the abundance of groups of metabolites. 

Therefore, identifying patterns of change in metabolites would provide insight on 

functional changes that occur due to any given condition. It is therefore 

conceivable that individual disease states will produce a specific metabolomic 

profile that reflects the underlying biology of each disease state. 

 

While analysis of cellular metabolites is not a new field, burgeoning technological 

advancements have allowed for identification and quantification of a substantially 

broader number of individual metabolites. The concept of studying metabolites 

identified in tissue extracts and bodily fluids as a reflection of overall health status 

predates the era of large scale genome sequencing and comprehensive profiling 
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of the proteome [9]. However, relevant clinical applications have lagged slightly 

behind. Initial clinically relevant applications were established in areas of 

toxicology, functional nutrigenomics and in detecting inherited metabolic 

disorders, and have helped in bridging the gap between bench and bedside [10, 

11]. Oncologic applications were soon to follow as knowledge of the complex 

heterogeneity amongst different cancers grew and technology continued to 

advance. Using nuclear magnetic resonance (NMR) -based approaches, differing 

spectral regions between cancer patients and healthy matched controls have 

been identified [12]. While encouraging, clinical applications of metabolomics-

based research remain in their infancy, with many barriers to overcome before 

gaining widespread clinical use. 

 

The metabolome is dynamic by nature, as it is reflective of the continuous fluxes 

of metabolic and cellular signaling pathways and is responsive to both host and 

environmental factors (Figure 2.2) [13]. Through its ability to capture a myriad of 

subtle shifts in multiple and complex metabolic pathways of a given biological 

system, metabolomics holds promise as a tool capable of linking integrated 

metabolism to human health.  Evaluation of the metabolome may therefore offer 

a novel and sensitive approach to simultaneously evaluating multiple pathways 

and their downstream biological consequences, prior to any visible morphologic 

changes [14]. Here, we review potential applications of metabolomics in the field 

of surgical oncology in the realm of biomarker discovery, targeted therapeutics 

and interrogation of tumor biology. 
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Figure 2.2 Factors Influencing the Metabolome 
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2.3.1 Overview of Metabolomics: Principles, Techniques and 

Analysis  

 

 

2.3.2 Basic Principles and Samples 

 

Several factors distinguish earlier metabolic profiling work from today’s 

metabolomic research. There have been many advancements in analytical 

technologies and the number of analytical platforms available for metabolomics 

research has expanded dramatically. Also, advances in computing and modern 

software programs have allowed for processing and handling of previously 

prohibitive amounts of raw data and have permitted the use of multivariate 

statistical evaluation of metabolomic data [9]. Together, these advancements 

have made metabolomic profiling a key player in the field of biomarker discovery 

[9]. 

 

The overarching goal of any metabolomic experiment is to perform a quantitative 

assessment of all endogenous metabolites in a given cellular system. 

Metabolomic analyses have been described in a wide variety of tissues and 

complex biologic fluids. Each approach has its advantages and disadvantages. 

Analysis of tissue metabolites may provide insight into the tumor 

microenvironment and effects of metabolic perturbations on tumor biology. On 
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the other hand, tissue metabolomics has important limitations when used for 

diagnostic purposes. Like other biopsy-based diagnostic tests, results are 

incumbent on successful sampling of the lesion. Moreover, biopsies are invasive 

and have the potential to induce bleeding, infection or seeding of tumor cells. 

Fluids such as cerebrospinal fluid, bile, expressed prostatic secretions and 

bronchoalveolar lavage fluid have been studied, but use of these fluids for 

diagnostic purposes is limited to specific situations, such as in patients with 

lesions in direct contact with these biofluids. 

 

The vast majority of clinical research has been carried out on urine and serum 

specimens [6], perhaps because these fluids have the greatest potential to 

provide diagnostic information on the general health of the organism. Metabolites 

in blood or urine reflect products of the disease state and of the host response to 

disease. Only very small volumes are required, and when stored at -40°C, both 

blood and urine samples can be kept for extended periods without alteration on 

subsequent analysis [15]. Samples can be procured by relatively noninvasive 

means at multiple time points, permitting a temporal-based analysis. It is 

conceivable that more immediate changes in metabolites are seen in blood in 

acute physiologic events. Moreover, serum metabolite profiles have 

demonstrated less diurnal variation as well as decreased inter-and intra-subject 

variability in comparison with urine. On the other hand, preparation and 

processing of serum or plasma is much more complex, and even small changes 

in technique have been shown to alter the recovery of certain metabolites [16, 
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17]. Moreover, lipid and protein content of serum specimens may contribute to 

degraded spectral resolution in the analysis phase, a phenomenon which is 

avoided when using urine samples [18]. The metabolomic profile of 

serum/plasma and urine has been investigated for diagnostic purposes for a 

variety of malignancies including bladder, renal, liver, colon, breast, prostate and 

ovarian cancers [19-29]. Initial observations in these studies support the 

feasibility of using either blood or urine specimens for clinical studies of the 

metabolomic state of the patient as well as for biomarker studies. 

 

 

2.3.3 Analytical Platforms 

 

In contrast to other omics technologies, it is not possible to make a 

comprehensive analysis of the metabolome using a single analytical method. 

Multiple spectroscopic methods exist which are capable of generating 

metabolomic data sets, each with their unique advantages and disadvantages. 

The choice of analytical platform depends on the analysis goals as well as the 

biological specimen to be analyzed. The two major technological platforms used 

for most metabolomic applications are mass spectrometry (MS) and 1H-NMR 

spectroscopy [9, 30]. Coupling spectroscopic and MS-based analytical 

techniques to gas chromatography (GC) or liquid chromatography (LC) steps 

may improve the resolution, sensitivity and selectivity of these technologies 

further [31]. Each analytical method has advantages and disadvantages, most 
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notably differences in sensitivity, reproducibility and equipment costs. 

Comprehensive metabolomic analysis of any biofluid requires use of several 

analytical techniques. 

 

NMR spectroscopy is an analytical technique that exploits magnetic properties of 

atomic nuclei. When strong magnetic fields and bursts of radiofrequency pulses 

are applied to atomic nuclei, absorbed energy causes them to transition from 

low-to-high energy states. When the perturbing radiofrequency pulse is removed, 

they return to their original lowest energy state and during this process emit a 

predictable spectrum of radiation. This is detected by a radiofrequency receiver 

and is represented as a unique pattern of peaks, specific to each molecule [28, 

32]. The area of each resonance peak is representative of the relative 

concentrations of each nuclei resonating at a particular frequency [13]. 

1H-NMR spectroscopy is currently the most commonly utilized analytical platform 

for studying the metabolome for a number of reasons. Aside from its unparalleled 

analytical reproducibility, nearing greater that 98%, it remains one of the only 

technologies capable of analyzing metabolites in their liquid form as well as being 

capable of analyzing intact tissues. There are minimal requirements for sample 

preparation, so the sample is preserved in its native form. Unlike MS, NMR has 

the ability to quantitate compounds in mixtures, as well as to identify unknown 

metabolites [6, 30], both of which are critical elements of biomarker discovery 

when using biofluids. 1H-NMR’s throughput capacity has also continued to 

improve with the introduction of technological advancements such as robotic 
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assisted sample preparation and transfer techniques, permitting analysis of up to 

200-300 samples per day [6]. On the other hand, there are also limitations 

related to NMR spectroscopy. Perhaps the most significant limitation is that low 

abundance metabolites are not detectable [33]. 

 

MS involves identifying metabolites through generation and separation of ions on 

the basis of a mass-to-charge ratio [34]. MS must be used with a separation 

technique, as MS alone cannot distinguish isobaric metabolites. Combination 

with a separation technique also improves analytical resolution, as it reduces the 

complexity of the mass spectra and provides additional (identifying) information 

on physicochemical properties of metabolites. The two most commonly used 

separation techniques are LC and GC. GC-MS is useful for analysis of volatile 

metabolites or for metabolites that are rendered volatile by chemical 

derivatization. LC-MS is useful for analysis of non-volatile metabolites. 

 

MS in combination with a separation technique has a higher overall sensitivity 

than NMR spectroscopy and it has the capability to detect a wider range of 

metabolites, providing a more comprehensive picture of the metabolome. There 

are also significant disadvantages. These techniques require a sample 

preparation step, which can cause loss of certain metabolites and which results 

in destruction of the sample. Moreover, quantification, which is crucial for 

recognizing potentially useful biomarkers, remains a weakness of MS [30]. 



 46 

2.3.4 Data Acquisition and Interpretation 

 

The shear size and complexity of biochemical data generated from NMR spectra 

of tissues and biofluids remains a limiting factor in comprehending the wealth of 

information. Specialized mathematical, statistical and bioinformatic tools are 

necessary for adequate processing, analysis and storage of metabolomics data 

[6]. With several thousands of resolved lines apparent in the NMR spectra of 

biofluids, an efficient and categorical means of analysis is necessary.  Data 

reduction techniques as well as chemometric and bioinformatic methods are 

crucial in helping to derive meaningful information from such an immense 

number of complex variables.  The most efficient way to investigate this complex, 

multiparametric data is through the use of pattern recognition (PR) methods of 

analysis and in particular, multivariate statistical techniques. By reducing the 

dimensionality of complex data sets, these methods facilitate visualization of 

inherent patterns within each data set [6]. 

 

Multivariate statistical techniques generally fall into two categories: supervised 

and unsupervised. One of the first and most widely applied unsupervised tools is 

principal component analysis (PCA) [6]. This approach can be used to determine 

whether any intrinsic clustering exists within a complex pool of data without a 

priori knowledge of sample class. This statistical method of data reduction 

enables rapid identification of inherent data clustering, assessment of disease-

related patterns, and identification of outliers with minimal loss of accuracy [35]. 
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Used in isolation, however, PCA provides minimal information on variables 

responsible for separation, thereby adding little to biomarker discovery and 

further elucidation of tumorigenesis. Supervised methods include partial least 

squares-discriminant analysis (PLS-DA) or ANOVA where class information is 

supplied, and variables or metabolites giving rise to the class distinction are more 

easily discovered. Other chemometric tools exist; however discussion of these is 

beyond the scope of this review. 

 

Whether the aim of analysis is identifying a characteristic fingerprint of disease or 

biomarker discovery, several stages of analysis are involved. The first stage 

involves PR and results in group clustering, thereby permitting discrimination of 

healthy controls from those with disease, for example. The next stage involves 

identifying specific molecules responsible for differences in spectral patterns, 

specifically those that lead to the group clustering. Elucidating specific set(s) of 

metabolite(s) responsible for clustering patterns is accomplished through the use 

of published data and database searches [36-38], linking observed spectra with 

those of known metabolites [11, 39]. There are several databases available, 

including the Human Metabolome Database and the number is on the rise [39, 

40].  

 

The final stage of biomarker discovery involves statistical validation of the 

biomarker in question. Using conventional statistical approaches, such as 

Student’s t-test, ANOVA or nonparametric equivalents, the strength of 
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association between the putative biomarker and the particular clinical 

characteristic of interest is determined.  This association may be of diagnostic, 

prognostic or therapeutic significance, and includes such associations as 

response to a particular treatment or tumor grade [11]. Figure 2.3 outlines stages 

of analysis beginning with sample collection through to the validation process. 

 

 

 

 

Figure 2.3 Stages of Analysis 
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2.4.1 Clinical Applications in Oncology: From Bench to Bedside  

2.4.2 Potential Role in Early Cancer Detection and Improved Diagnostics 

The fundamental precept of cancer screening is that early detection will improve 

survival. When malignancies are detected late in the course of disease, 

effectiveness of therapy may be compromised and curative intent surgery may 

no longer be an option. Screening tests are most relevant in populations in which 

a disease is prevalent and in situations where an effective therapy is available 

early in the disease course. Most effective screening tests are highly sensitive 

and specific, cost effective, widely available, and accepted by patients. 

Metabolomics holds promise as a non-invasive, high-throughput and cost- 

effective means of analysis of metabolic biomarkers capable of detecting early-

stage malignancy, but also conceivably capable of identifying residual disease 

following surgical resection, monitoring treatment efficacy and assisting in the 

development of novel, targeted therapeutics. As a result, metabolomic research 

in biomarker discovery has grown dramatically in recent years. Figure 2.4 

depicts broad areas of research focusing on biomarker discovery aimed at early 

cancer detection. The majority of clinical research in metabolomics is pilot and 

exploratory in nature and has not yet been subject to the rigors of further 

validation in phase 3 and 4 studies. However, these early studies have clearly 

demonstrated that spectral-region differences are identifiable which discriminate 

healthy controls from patients with cancer in a variety of malignancies [12]. 
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Figure 2.4 Metabolomics and Biomarker Research: What Has Been Done? 
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Much of the research aimed at identifying biomarkers capable of early diagnosis 

has focused on breast [26, 41-43], ovarian [2, 28], colon [23, 44-46] and prostate 

cancers [27, 47, 48]. Highlighting breast cancer research, NMR studies have 

identified over 30 different metabolites reliably elevated in breast cancer tissue, 

including glycine and choline containing compounds such as phosphocholine 

[49]. By no means meant to be a comprehensive list, Table 2.1 (see below) 

serves to provide a sampling of some of the key metabolic disturbances 

associated with a number of malignancies uncovered through metabolomic-

based applications. It is important to note that the majority of malignancies 

investigated thus far are represented by a spectrum of metabolic change rather 

than variations in a single metabolite, and are therefore represented by a 

metabolomic profile or signature of disease.   A variety of related analytical 

platforms have been utilized to successfully discriminate malignant from healthy 

breast tissue, with a primary focus on the dissimilar pattern of choline-containing 

metabolites [26, 41-43]. The current conventional 'triple assessment' technique 

used in the investigation of a breast mass includes clinical evaluation, 

mammography and fine-needle aspiration biopsy, and has a reported sensitivity 

of 77-94% and specificity of 92-95% [43]. Using magnetic resonance 

spectroscopy (MRS) and data generated from fine-needle aspiration biopsies of 

benign (n=57) and malignant (n=57) breast tissue, Mountford et al. were able to 

distinguish benign from malignant breast lesions with a similarly high degree of 

sensitivity and specificity (93% and 92% respectively) based on relative 

intensities of choline-containing compounds.  
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Table 2.1. Breast, Ovarian and Colon Cancers: Key Metabolites 
Responsible for Observed Differences in Spectral Patterns  
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MRS was also capable of predicting lymph node status based on cellular material 

obtained from a fine-needle aspirate (FNA) of the primary tumor with a sensitivity 

of 97% and specificity of 96% [43]. They were also able to predict nodal 

involvement with a high degree of accuracy (sensitivity 97%, specificity 96%) 

based on cellular material derived from the aspirate of the primary tumor alone. 

Using a different analytical platform, high resolution magic-angle spinning 

magnetic resonance spectroscopy (HR-MAS NMR), Sitter et al. were able to 

distinguish tumor samples (n=85) from non-involved, healthy breast tissue (n=18) 

with a high degree of accuracy when the intensity of choline, phosphocholine and 

glycerophosphocholine were compared between normal and malignant breast 

tissue (sensitivity 83% and specificity 100%) [42]. Bathen et al. used the same 

technology to identify a metabolic phenotype that was also capable of predicting 

histologic grade, hormone receptor status, and axillary lymph node spread in 

breast cancer patients with a high degree of accuracy on the basis of metabolite 

information alone [41]. These results emphasize the abundance of information 

that can be obtained from the MR spectrum of an FNA-biopsy of a breast lesion 

alone [43]. While these studies and others demonstrate the ability of 

metabolomic-based technologies to identify a metabolic signature associated 

with breast cancer, and more precisely, a metabolic tool also capable of 

differentiating other morphologic and histological features, further research is 

warranted in order to fully validate these optimistic but early results [26, 43].   

Bathen et al. were later unable to reproduce the high degree of diagnostic 
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accuracy reported in previous studies when model verification by blind sample 

prediction was performed, pointing to the need for increased standardization and 

transparency of both analysis and verification techniques [41]. While limited by 

sample size, Kvistad et al. have also put into question the reliability of previous 

reports having demonstrated elevated levels of choline-containing compounds in 

the breast tissue of breast-feeding women (n=5) using 1H-MRS, and have 

proposed that the physiologic increase in metabolic activity in breast tissue 

during lactation has falsely paralleled the pathologic increase in cellular 

proliferation and turnover exhibited in malignancy [50]. Clearly, while initial 

results have been encouraging, continued research and validation of early results 

in larger, more heterogeneous patient cohorts is warranted. 

 

Metabolomics-based surgical applications could also conceivably arise in 

managing malignancies that pose a diagnostic challenge. For a number of 

tumors, current diagnostic technologies are often unable to correctly discriminate 

between benign and malignant disease. Such diagnostic uncertainty arises 

frequently in managing both cystic and solid pancreatic neoplasms. Studies 

indicate that accurate preoperative diagnosis of cystic neoplasms is achieved in 

less than 30% of cases, resulting in potentially morbid operations being 

performed for benign disease or conversely, inadequate operations for potentially 

malignant disease [51].  Promising early results with breast, ovarian, colon and 

prostate cancer suggest that metabolomics-based tumor signatures may provide 
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a means of correctly distinguishing benign from malignant disease in situations 

where current technologies fall short.  

 

Combining metabolite information with imaging techniques may also help to 

strengthen current diagnostic technologies. Proton magnetic resonance 

spectroscopic imaging (MRSI) is a metabolite imaging technique capable of 

visualizing and determining spatial relationships of metabolites in vivo, thereby 

providing a link between metabolite expression and anatomic distribution. Initially 

developed for clinically assessing brain tumors, it is now being used in the 

examination of anatomic and metabolic processes of prostate and breast 

cancers. As an adjunct to magnetic resonance imaging (MRI), studies have 

examined the role of MRSI in managing breast cancers that elude detection by 

conventional means such as mammography [52-54]. Use of MRI alone often 

necessitates subsequent biopsy for a confirmative diagnosis, resulting in many 

unnecessary biopsies for benign disease. In a prospective study by Bartella et 

al., MSRI was used to differentiate benign (n=20) from malignant tissue (n=12) 

with a 100% sensitivity and 85% specificity, and could have spared 68% of 

patients from further investigation with biopsies without compromising the 

diagnosis of breast cancer [52]. While there were no false-negative results, study 

size was limiting and patients with any form of breast hematoma or clips 

associated with the lesion were excluded in order to avoid any inhomogeneities 

of the magnetic field. Additionally, only lesions greater than 1cm were included in 
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order to optimize NMR spectra and minimize data imaging time, criteria which 

could certainly be limiting in the clinical setting. 

 

While biomarkers have been widely utilized in many areas of cancer care, 

advances in metabolomics in conjunction with the other omic sciences have the 

potential to offer a spectrum of novel, informative multivariate biomarkers 

capable of fully characterizing the malignant phenotype. These multivariate 

biomarkers, or disease signatures, are representative of metabolic patterns 

which characterize a state of cancer [11]. The true significance of metabolomic-

based biomarker research aimed at early cancer detection may result from 

identifying early signals of cellular perturbation which occur prior to the surfacing 

of gross phenotypic change [14]. 

 

While there have been many early promising results, many challenges do 

remain. The heterogeneity of analytical platforms and the complexity and at times 

restrictive nature of the statistical process necessitate both standardization and 

further validation of these techniques with a larger number of samples given the 

true variability of pathologies and patient demographics encountered in clinical 

practice.  Standardization of sample handling, processing and analysis are also 

necessary in order to ensure both intra and inter-laboratory reproducibility, a 

problem as evidenced by the wide range of reported diagnostic accuracies when 

different analytical platforms and statistical techniques are utilized. While 

encouraging, these early findings warrant validation in larger studies and in 



 57 

cohorts with diagnostic uncertainty before metabolomics-based technologies are 

ready for widespread use in the clinical setting. 

 

2.4.3 Potential Role in Personalized Cancer Care  

 

Advances in molecular diagnostics have the potential to provide a more targeted 

approach to cancer care. In contrast to the genome or proteome, the 

metabolome responds to stimuli nearly instantaneously thereby permitting 

assessment of tumor response to environmental perturbations such as drug 

treatment or surgical resection, on a nearly real-time basis. The highly 

responsive nature of the metabolome can be exploited to monitor treatment 

efficacy in response to either pharmacologic or surgical intervention. 

Identification of specific markers indicative of therapeutic efficacy as well as other 

pharmacodynamic endpoints such as early drug-toxicity, could improve both the 

efficacy of treatment while helping avoid unnecessary toxicity and morbidity. 

While the majority of research in these areas is preliminary, both animal model 

research and human studies have had promising results. 

 

In addition to advances in diagnostics, novel techniques linking metabolomics 

with imaging modalities have shown promising results in the realm of 

individualized therapeutics. PET, a form of metabolomic imaging done in vivo by 

measuring radiolabelled glucose, choline or thymidine as metabolic endpoints 

[11], is a well known example of metabolomic imaging which has been utilized 
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extensively in the field of oncology with respect to diagnosis, staging and 

monitoring treatment of a variety cancers. As an example, much success has 

been demonstrated with the use of  [18F] fluorodeoxyglucose-PET in predicting 

response to therapy with imatinib in treating recurrent gastrointestinal stromal 

tumors (GIST) much earlier than conventional CT [55, 56]. 

 

Studies using MRSI have demonstrated that malignant breast lesions contain 

significantly increased amounts of choline containing compounds [50, 57-59]. 

Preliminary research has suggested that optimization of neoadjuvant 

chemotherapy in patients with locally advanced breast lesions can be achieved 

by monitoring variations in total choline concentrations recorded within 24 h of 

treatment with the first dose of chemotherapy [60]. Changes in total choline 

concentrations from baseline correlated significantly with changes in tumor size 

thereby providing a method of detecting immediate response to a specific 

chemotherapeutic regimen [61]. In comparison, MRI assessment is unable to 

reliably detect response to chemotherapy until nearly 6 weeks of treatment [62].  

Currently, the use of metabolic-markers of treatment response employing 

metabolomics-based applications remains limited. To date, there have been 

several pilot studies of limited sample size examining effects of surgery on the 

preoperative metabolomic signature of colon cancer [23, 63, 64]. Ma et al. were 

able to detect patterns of metabolic disturbances in preoperative colorectal 

cancer (CRC) patients which appeared to resolve postoperatively [23]. Coupling 

ultra-high performance liquid chromatography (UPLC)/MS technology with PLS-
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DA analysis of urine specimens, metabolic patterns of healthy controls (n=80) 

and preoperative CRC patients (n=24) differed significantly. While the structural 

identification of the low molecular weight compounds accounting for these 

differences was not ascertained in this study, compounds which were 

significantly elevated in the preoperative group decreased significantly 

postoperatively. Qiu and colleagues had similar results using OPLS-DA analysis 

of GC-MS urinary metabolite spectra. While several of the metabolic differences 

observed between the pre and postoperative CRC patients were thought to be 

secondary to factors such as changes in nutritional supplementation (up-

regulated amino acid metabolism), muscle protein breakdown (increased 3-

methyl-histidine), and the preoperative bowel prep (down-regulated gut flora 

metabolites), cancer-specific metabolic changes such as normalized TCA 

metabolism (decreased TCA intermediates indicative of down-regulated energy 

metabolism) and recovered tryptophan metabolism towards a healthy state were 

also evident (see Table 2.1 above). Studies have been limited in size, potentially 

biasing the statistical analysis and the structural identity of low molecular weight 

compounds responsible for the clear separations of preoperative, postoperative 

and healthy counterparts need to be both identified and further validated. 

 

Such metabolomic-based techniques offer a means of non-invasive preoperative 

phenotyping, providing information critical in subsequently guiding both surgical 

and medical treatments. Subsequent discoveries, such as development of 

biomarkers capable of identifying micrometastatic disease undetectable by 



 60 

conventional diagnostic modalities, could help prevent some of the morbidity 

associated with aggressive operations done for truly unresectable disease while 

also allowing for more radical surgical options if disease is detected before 

becoming widespread. Furthermore, biomarkers capable of detecting residual 

disease following surgical resection could provide a reliable means of guiding the 

need for further adjuvant therapy, thereby individualizing treatment based on 

metabolic information. Early research suggests a vast potential for 

metabolomics-based applications to contribute to personalized cancer care 

through non- or minimally-invasive monitoring of metabolic-disturbances 

associated with a variety of malignancies and their unique responses to surgery 

and other adjuvant therapies. It is only a matter of time before further research 

exploring the effects of surgical interventions and adjuvant therapies on the 

metabolomic signature of cancers becomes more widely available, and whether 

these changes to the biochemical profile can reliably guide and personalize 

therapy. 

 

 

2.4.4 Tumor Biology: Shedding Light on the Unknown 

 

Many characteristic changes which tumor cells exhibit can be traced back to 

alterations in a number of key biochemical pathways involved in cell growth and 

proliferation. Multiple metabolic pathways that demonstrate characteristic 

differences between tumor cells and physiologically normal cells have been 
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identified. A non-exhaustive list of those metabolic pathways commonly altered in 

malignancy includes the glycolysis and pentose phosphate pathways, nucleotide 

and protein biosynthesis pathways, lipid and phospholipid turnover pathways, the 

citric acid cycle and the redox stress pathways [65].  

 

Knowledge of these metabolic pathways and their mutations has drastically 

transformed management of surgical malignancies such as GIST. Prior to the 

advent of targeted molecular therapies, surgery was the only available treatment 

option and in approximately 50% of patients [66], complete resection was not 

possible. Median survival rates have increased approximately 6-fold following 

introduction of small molecule tyrosine kinase inhibitors, such as imatinib [66, 

67]. Success of targeted therapy in GIST tumors highlights the need for 

continued research and understanding of tumor biology and metabolic pathways 

altered in malignancy. Because the metabolome is an amplified reflection of 

upstream changes in the genome and proteome, its characterization represents 

an integrated approach to the simultaneous evaluation of multiple pathways and 

their biological consequences [14].   

 

It is also possible that one tumor species may affect these metabolic pathways 

slightly differently across individuals and molecular differences may account for 

the spectrum of clinical outcomes seen among patients with similar TNM stage. 

Current cancer classification systems do not take these molecular differences 

into account. Rather than relying on tumor morphology alone, complementary 
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metabolic information may help elucidate a more inclusive tumor portrait, while 

providing a more accurate estimate of disease prognosis [13]. As demonstrated 

by the research of Denkert et al., metabolomic techniques were able to detect 

some of the metabolic changes associated with ovarian cancer while also 

detecting varying metabolic patterns associated with invasive ovarian carcinomas 

and ovarian borderline tumors [2]. Similar to functional genomics, metabolomics 

has a promising role in helping to classify different tumor types based on 

molecular differences. Discoveries such as these, may lead to a new a 

classification of cancers based on differences in metabolic tumor portraits which 

may in turn lead to a more accurate estimate of disease prognosis [13].  

 

 

2.5 Challenges and Future Directions 

 

Despite these encouraging results, there are still many challenges that must be 

overcome before metabolomic tools can be utilized on a routine basis for clinical 

purposes in both medical and surgical oncology. Metabolite analysis remains a 

key barrier to further advancements in the field. The numbers, diversity and 

dynamic concentration ranges of metabolites under study pose a significant 

challenge to researchers. Comprehensive management of massive amounts of 

data generated from high throughput screening, and simplification of complex 

data-outputs into more interpretable and user-friendly formats are just a few of 
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the areas to be addressed [13]. This discipline remains dependent upon 

continued sophistication in technologic, computational and analytical approaches 

[1].  

 

Both inter- and intra-individual metabolite variability also remain a complicating 

feature of metabolomics research. Internal and external factors, such as 

instrumental, environmental and physiologic factors (i.e. diet, hormonal milieu, 

stress, diurnal cycles) contribute to the overall expression profile, and could 

potentially confound the results of any metabolomic study. Several techniques 

have been developed for use in the preprocessing stage of analysis to minimize 

the influences of these extraneous confounders [68]. Orthogonal signal 

correction (OSC) or variable stability scaling (VAST) are both examples of 

techniques capable of removing the confounding effect of biologic variation, 

which may mask effects of disease-associated biochemical change [68, 69]. 

Further discussion of data filtering and scaling is beyond the scope of this review. 

The same issues of standardization that have plagued the fields of genomics and 

proteomics also remain a threat to metabolomics. Attempts to address this issue 

have been initiated by the Metabolomics Society through creation of a Chemical 

Analysis Working Group to develop standards for metabolomics analysis [70]. 

Adherence to developed standards through inter-laboratory data comparison will 

help with quality control and will help speed discovery of clinically important 

metabolite profiles.  
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Metabolomics is an emerging discipline with the potential to link molecular tools 

with clinically relevant applications in the field of surgical oncology as well as 

other areas of medicine, and has brought promising advancements in the areas 

of improved diagnostics and individualized therapy. Knowledge gained from 

metabolomic research may permit development of treatments tailored to the 

molecular processes underlying the disease rather than treating the phenotypic 

expression of the disease’s consequences [71]. This renewed level of information 

which focuses on detecting cellular changes long before phenotypic expression, 

has the potential to change the scope, role and goal of treatment.  Improved 

diagnostic tools may help in avoiding morbid operations that have a high 

likelihood of futility but conversely may widen the scope of surgical intervention 

by allowing detection of disease long before loco-regional or metastatic spread.  

Early detection of premalignant conditions or metabolic alterations indicative of 

malignant processes could further expand surgical indications, and in essence, 

result in the need for prophylactic surgeries. Real-time, guided therapies based 

on metabolic endpoints rather than symptomatology or imaging alone will allow 

for personalized treatments rather than one-size-fits all surgical and 

chemotherapeutic regimes.  

 

The future success and promise of metabolomic research will be dependent on 

continued collaborative and multidisciplinary research with integration of the 

other omic sciences in order to provide a truly holistic view of the malignant 

phenotype and the changes associated with malignant transformation. 



 65 

Acknowledgements: 

The authors would like to thank Ms. Dawne Colwell for her assistance with 

artistic design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 66 

2.6 References 

1. Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the 

metabolic responses of living systems to pathophysiological stimuli via 

multivariate statistical analysis of biological NMR spectroscopic data. 

Xenobiotica. 1999 Nov;29(11):1181-9. 

2. Denkert C, Budczies J, Kind T, et al. Mass spectrometry-based metabolic 

profiling reveals different metabolite patterns in invasive ovarian 

carcinomas and ovarian borderline tumors. Cancer Res. 2006 Nov 

15;66(22):10795-804. 

3. Lahner B, Gong J, Mahmoudian M, et al. Genomic scale profiling of 

nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol. 2003 

Oct;21(10):1215-21. 

4. van Ravenzwaay B, Cunha GC, Leibold E, et al. The use of metabolomics 

for the discovery of new biomarkers of effect. Toxicol Lett. 2007 Jul 

30;172(1-2):21-8. 

5. Goodacre R. Metabolomics of a superorganism. J Nutr. 2007 Jan;137(1 

Suppl):259S-66S. 

6. Lindon JC, Holmes E, Nicholson JK. So what's the deal with 

metabonomics? Anal Chem. 2003 Sep 1;75(17):384A-91A. 

7. Di Leo A, Claudino W, Colangiuli D, et al. New strategies to identify 

molecular markers predicting chemotherapy activity and toxicity in breast 

cancer. Ann Oncol. 2007 Dec;18 Suppl 12:xii8-14. 



 67 

8. Ryals J. Metabolomics: An important emerging science. Journal [serial on 

the Internet]. 2004 Date: Available from: http://www.touchbriefings.com. 

9. Nordstrom A, Lewensohn R. Metabolomics: Moving to the Clinic. J 

Neuroimmune Pharmacol. 2009 Apr 28. 

10. Garg U, Dasouki M. Expanded newborn screening of inherited metabolic 

disorders by tandem mass spectrometry: clinical and laboratory aspects. 

Clin Biochem. 2006 Apr;39(4):315-32. 

11. Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of 

metabolomics in oncology: a review. Clin Cancer Res. 2009 Jan 

15;15(2):431-40. 

12. Lindon JC, Holmes E, Nicholson JK. Metabonomics and its role in drug 

development and disease diagnosis. Expert Rev Mol Diagn. 2004 

Mar;4(2):189-99. 

13. Claudino WM, Quattrone A, Biganzoli L, et al. Metabolomics: available 

results, current research projects in breast cancer, and future applications. 

J Clin Oncol. 2007 Jul 1;25(19):2840-6. 

14. Kim YS, Maruvada P, Milner JA. Metabolomics in biomarker discovery: 

future uses for cancer prevention. Future Oncol. 2008 Feb;4(1):93-102. 

15. Beckonert O, Keun HC, Ebbels TM, et al. Metabolic profiling, metabolomic 

and metabonomic procedures for NMR spectroscopy of urine, plasma, 

serum and tissue extracts. Nat Protoc. 2007;2(11):2692-703. 

16. Castle AL, Fiehn O, Kaddurah-Daouk R, Lindon JC. Metabolomics 

Standards Workshop and the development of international standards for 



 68 

reporting metabolomics experimental results. Brief Bioinform. 2006 

Jun;7(2):159-65. 

17. Lenz EM, Bright J, Wilson ID, et al. A 1H NMR-based metabonomic study 

of urine and plasma samples obtained from healthy human subjects. J 

Pharm Biomed Anal. 2003 Dec 4;33(5):1103-15. 

18. Reo NV. NMR-based metabolomics. Drug Chem Toxicol. 2002 

Nov;25(4):375-82. 

19. Issaq HJ, Nativ O, Waybright T, et al. Detection of bladder cancer in 

human urine by metabolomic profiling using high performance liquid 

chromatography/mass spectrometry. J Urol. 2008 Jun;179(6):2422-6. 

20. Gao H, Dong B, Liu X, et al. Metabonomic profiling of renal cell carcinoma: 

high-resolution proton nuclear magnetic resonance spectroscopy of 

human serum with multivariate data analysis. Anal Chim Acta. 2008 Aug 

29;624(2):269-77. 

21. Perroud B, Lee J, Valkova N, et al. Pathway analysis of kidney cancer 

using proteomics and metabolic profiling. Mol Cancer. 2006;5:64. 

22. Yang J, Xu G, Zheng Y, et al. Diagnosis of liver cancer using HPLC-based 

metabonomics avoiding false-positive result from hepatitis and 

hepatocirrhosis diseases. J Chromatogr B Analyt Technol Biomed Life Sci. 

2004 Dec 25;813(1-2):59-65. 

23. Ma YL, Qin HL, Liu WJ, et al. Ultra-High Performance Liquid 

Chromatography-Mass Spectrometry for the Metabolomic Analysis of 

Urine in Colorectal Cancer. Dig Dis Sci. 2009 Jan 1. 



 69 

24. Yan SK, Wei BJ, Lin ZY, et al. A metabonomic approach to the diagnosis 

of oral squamous cell carcinoma, oral lichen planus and oral leukoplakia. 

Oral Oncol. 2008 May;44(5):477-83. 

25. Tiziani S, Lopes V, Gunther UL. Early stage diagnosis of oral cancer using 

1H NMR-based metabolomics. Neoplasia. 2009 Mar;11(3):269-76, 4p 

following  

26. Frickenschmidt A, Frohlich H, Bullinger D, et al. Metabonomics in cancer 

diagnosis: mass spectrometry-based profiling of urinary nucleosides from 

breast cancer patients. Biomarkers. 2008 Jun;13(4):435-49. 

27. Osl M, Dreiseitl S, Pfeifer B, et al. A new rule-based algorithm for 

identifying metabolic markers in prostate cancer using tandem mass 

spectrometry. Bioinformatics. 2008 Dec 15;24(24):2908-14. 

28. Odunsi K, Wollman RM, Ambrosone CB, et al. Detection of epithelial 

ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer. 2005 

Feb 20;113(5):782-8. 

29. Woo HM, Kim KM, Choi MH, et al. Mass spectrometry based metabolomic 

approaches in urinary biomarker study of women's cancers. Clin Chim 

Acta. 2009 Feb;400(1-2):63-9. 

30. Van QN, Veenstra TD. How close is the bench to the bedside? Metabolic 

profiling in cancer research. Genome Med. 2009 Jan 20;1(1):5. 

31. Goodacre R, Vaidyanathan S, Dunn WB, et al. Metabolomics by numbers: 

acquiring and understanding global metabolite data. Trends Biotechnol. 

2004 May;22(5):245-52. 



 70 

32. Mazurek S, Eigenbrodt E. The tumor metabolome. Anticancer Res. 2003 

Mar-Apr;23(2A):1149-54. 

33. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based 

metabolomics. Mass Spectrom Rev. 2007 Jan-Feb;26(1):51-78. 

34. Dunn WB, Bailey NJ, Johnson HE. Measuring the metabolome: current 

analytical technologies. Analyst. 2005 May;130(5):606-25. 

35. Robertson DG. Metabonomics in toxicology: a review. Toxicol Sci. 2005 

Jun;85(2):809-22. 

36. Fan W. Metabolite profiling by one- and two-dimensional NMR analysis of 

complex mixtures. Prog NMR Spectrosc. 1996;28:161 - 219. 

37. Nicholson JK, Foxall PJ, Spraul M, et al. 750 MHz 1H and 1H-13C NMR 

spectroscopy of human blood plasma. Anal Chem. 1995 Mar 1;67(5):793-

811. 

38. Pretsch E, Seibl J, Simon W, Clerc T. Structure Determination of Organic 

Compounds: Tables of Spectral Data Berlin: Springer-Verlag; 1989. 

39. Kell DB, Mendes P. Snapshots of systems - metabolic control analysis and 

biotechnology in the post-genomic era. In: Cornish-Bowden A, Cardinas 

ML, editors. Technological and medical implications of metabolic control 

analysis. Netherlands: Kluwer Academic Publishers; 2000. p. 3 - 25. 

40. Wishart DS, Tzur D, Knox C, et al. HMDB: the Human Metabolome 

Database. Nucleic Acids Res. 2007 Jan;35(Database issue):D521-6. 



 71 

41. Bathen TF, Jensen LR, Sitter B, et al. MR-determined metabolic 

phenotype of breast cancer in prediction of lymphatic spread, grade, and 

hormone status. Breast Cancer Res Treat. 2007 Aug;104(2):181-9. 

42. Sitter B, Lundgren S, Bathen TF, et al. Comparison of HR MAS MR 

spectroscopic profiles of breast cancer tissue with clinical parameters. 

NMR Biomed. 2006 Feb;19(1):30-40. 

43. Mountford CE, Somorjai RL, Malycha P, et al. Diagnosis and prognosis of 

breast cancer by magnetic resonance spectroscopy of fine-needle 

aspirates analysed using a statistical classification strategy. Br J Surg. 

2001 Sep;88(9):1234-40. 

44. Chan EC, Koh PK, Mal M, et al. Metabolic profiling of human colorectal 

cancer using high-resolution magic angle spinning nuclear magnetic 

resonance (HR-MAS NMR) spectroscopy and gas chromatography mass 

spectrometry (GC/MS). J Proteome Res. 2009 Jan;8(1):352-61. 

45. Denkert C, Budczies J, Weichert W, et al. Metabolite profiling of human 

colon carcinoma--deregulation of TCA cycle and amino acid turnover. Mol 

Cancer. 2008;7:72. 

46. Monleon D, Morales JM, Barrasa A, et al. Metabolite profiling of fecal 

water extracts from human colorectal cancer. NMR Biomed. 2009 

Apr;22(3):342-8. 

47. Cheng LL, Burns MA, Taylor JL, et al. Metabolic characterization of human 

prostate cancer with tissue magnetic resonance spectroscopy. Cancer 

Res. 2005 Apr 15;65(8):3030-4. 



 72 

48. Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization 

with three-dimensional proton MR spectroscopic imaging--

clinicopathologic study. Radiology. 1999 Nov;213(2):473-80. 

49. Sitter B, Sonnewald U, Spraul M, et al. High-resolution magic angle 

spinning MRS of breast cancer tissue. NMR Biomed. 2002 Aug;15(5):327-

37. 

50. Kvistad KA, Bakken IJ, Gribbestad IS, et al. Characterization of neoplastic 

and normal human breast tissues with in vivo (1)H MR spectroscopy. J 

Magn Reson Imaging. 1999 Aug;10(2):159-64. 

51. Le Borgne J, de Calan L, Partensky C. Cystadenomas and 

cystadenocarcinomas of the pancreas: a multiinstitutional retrospective 

study of 398 cases. French Surgical Association. Ann Surg. 1999 

Aug;230(2):152-61. 

52. Bartella L, Thakur SB, Morris EA, et al. Enhancing nonmass lesions in the 

breast: evaluation with proton (1H) MR spectroscopy. Radiology. 2007 

Oct;245(1):80-7. 

53. Jacobs MA, Barker PB, Bottomley PA, et al. Proton magnetic resonance 

spectroscopic imaging of human breast cancer: a preliminary study. J 

Magn Reson Imaging. 2004 Jan;19(1):68-75. 

54. Bartella L, Huang W. Proton (1H) MR spectroscopy of the breast. 

Radiographics. 2007 Oct;27 Suppl 1:S241-52. 



 73 

55. Gayed I, Vu T, Iyer R, et al. The role of 18F-FDG PET in staging and early 

prediction of response to therapy of recurrent gastrointestinal stromal 

tumors. J Nucl Med. 2004 Jan;45(1):17-21. 

56. Holdsworth CH, Badawi RD, Manola JB, et al. CT and PET: early 

prognostic indicators of response to imatinib mesylate in patients with 

gastrointestinal stromal tumor. AJR Am J Roentgenol. 2007 

Dec;189(6):W324-30. 

57. Katz-Brull R, Lavin PT, Lenkinski RE. Clinical utility of proton magnetic 

resonance spectroscopy in characterizing breast lesions. J Natl Cancer 

Inst. 2002 Aug 21;94(16):1197-203. 

58. Huang W, Fisher PR, Dulaimy K, et al. Detection of breast malignancy: 

diagnostic MR protocol for improved specificity. Radiology. 2004 

Aug;232(2):585-91. 

59. Kaplan RS. Complexities, pitfalls, and strategies for evaluating brain tumor 

therapies. Curr Opin Oncol. 1998 May;10(3):175-8. 

60. Jagannathan NR, Kumar M, Seenu V, et al. Evaluation of total choline 

from in-vivo volume localized proton MR spectroscopy and its response to 

neoadjuvant chemotherapy in locally advanced breast cancer. Br J 

Cancer. 2001 Apr 20;84(8):1016-22. 

61. Meisamy S, Bolan PJ, Baker EH, et al. Neoadjuvant chemotherapy of 

locally advanced breast cancer: predicting response with in vivo (1)H MR 

spectroscopy--a pilot study at 4 T. Radiology. 2004 Nov;233(2):424-31. 



 74 

62. Rieber A, Brambs HJ, Gabelmann A, et al. Breast MRI for monitoring 

response of primary breast cancer to neo-adjuvant chemotherapy. Eur 

Radiol. 2002 Jul;12(7):1711-9. 

63. Qiu Y, Cai G, Su M, et al. Urinary metabonomic study on colorectal 

cancer. J Proteome Res.  Mar 5;9(3):1627-34. 

64. Jordan KW, Nordenstam J, Lauwers GY, et al. Metabolomic 

characterization of human rectal adenocarcinoma with intact tissue 

magnetic resonance spectroscopy. Dis Colon Rectum. 2009 

Mar;52(3):520-5. 

65. Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. 

Cancer Cell. 2008 Jun;13(6):472-82. 

66. Otani Y, Furukawa T, Yoshida M, et al. Operative indications for relatively 

small (2-5 cm) gastrointestinal stromal tumor of the stomach based on 

analysis of 60 operated cases. Surgery. 2006 Apr;139(4):484-92. 

67. DeMatteo RP, Lewis JJ, Leung D, et al. Two hundred gastrointestinal 

stromal tumors: recurrence patterns and prognostic factors for survival. 

Ann Surg. 2000 Jan;231(1):51-8. 

68. Holmes E, Antti H. Chemometric contributions to the evolution of 

metabonomics: mathematical solutions to characterising and interpreting 

complex biological NMR spectra. Analyst. 2002 Dec;127(12):1549-57. 

69. Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass 

spectrometry in metabolomics. Anal Bioanal Chem. 2007 Jan;387(2):525-

7. 



 75 

70. MSI Chemical Analysis WG.  [cited]; Available from: http://msi-

workgroups.sourceforge.net/chemical-analysis/. 

71. German JB, Hammock BD, Watkins SM. Metabolomics: building on a 

century of biochemistry to guide human health. Metabolomics. 2005 

Mar;1(1):3-9. 

  



 76 

 

 

 

 

 
 

Pancreatic Ductal Adenocarcinoma is Associated with a 
Distinct Urinary Metabolomic Signature 

 
 
 

Vanessa W Davis1 MD BSc, Daniel E Schiller1 MD MSc, Dean Eurich2 BSP PhD, 
Oliver F Bathe3 MD MSc and Michael B Sawyer4 MD B.Sc. 
 
 
 

1Department of Surgery, University of Alberta, Edmonton Alberta, Canada, 2 

School of Public Health, University of Alberta, Edmonton Alberta, Canada, 
3Department of Surgery and Oncology, University of Calgary, Calgary Alberta, 

Canada and 4Cross Cancer Institute, Edmonton Alberta, Canada 
 

Currently Under Review 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 77 

Chapter 3: Pancreatic Ductal Adenocarcinoma is Associated 

with a Distinct Urinary Metabolomic Signature 

 

3.1 Abstract 

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive 

malignancy with poor prognosis in part due to the lack of early detection and 

screening methods. Metabolomics provides a means for non- invasive screening 

of early tumor associated perturbations in cellular metabolism.  

 

Methods: Urine samples of PDAC patients (n=32) and healthy, age and gender-

matched controls (n=32) were examined using 1H-NMR spectroscopy. Paired pre 

and postoperative urine samples (n=20) were also examined. Targeted profiling 

of spectra permitted quantification of 66 metabolites. Unsupervised (principal 

component analysis, PCA) and supervised (orthogonal partial-least squares 

discriminant analysis, OPLS-DA) multivariate pattern recognition techniques 

were applied to discriminate between sample spectra using SIMCA-P+ 

(version12, Umetrics, Sweden).  

 

Results: Clear distinction between PDAC and controls were noted when using 

OPLS-DA. Significant differences in metabolite concentrations between cancers 

and controls (P<0.001) were noted. Model parameters for both goodness of fit, 

and predictive capability were high (R2 = 0.85; Q2 = 0.59, respectively). Internal 
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validation methods were used to confirm model validity.  Sensitivity and 

specificity of the multivariate OPLS-DA model was summarized using a receiver 

operating characteristics (ROC) curve, with an area under the curve (AUROC) = 

0.988, indicating strong predictive power. Preliminary analysis suggests that the 

cancer-associated metabolomic signature was extinguished following RO 

resection.  

 

Conclusions: Urinary metabolomics detected distinct differences in the 

metabolic profiles of pancreatic cancer patients compared with healthy controls. 

These preliminary results suggest that metabolomic approaches may facilitate 

discovery of novel biomarkers capable of early disease detection.  
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3.2 Introduction 

	  
 

Pancreatic ductal adenocarcinoma (PDAC) is associated with dismal outcomes, 

and despite radical surgical resection and adjuvant chemotherapeutic strategies, 

these outcomes have not changed substantially in decades. Incidence and 

mortality rates almost parallel each other, with a median survival of 12 months 

[1]. The only potentially curative treatment is surgical resection, but even with 

negative margin (R0) resection, recurrence rates are high, with 5-year survival 

rates varying between 2.8% and 31.4% based on disease stage [1]. Furthermore, 

75% - 80% present with advanced, unresectable disease [2]. Failure to detect 

early cancers and a lack of understanding of the unique biological 

aggressiveness of PDAC are major contributors to poor outcomes. Current 

radiographic studies do not have sufficient spatial resolution to detect early stage 

disease, and accurate diagnosis even at later stages can be challenging given 

that benign pancreatic disease can sometimes mimic pancreatic cancer [3].  

 

Application of urinary metabolomics to PDAC offers an opportunity to define 

unique tumor-related signatures. Identification of such signatures could open up 

new avenues for non-invasive screening of high-risk populations; up to 17% of 

PDACs are associated with familial or hereditary cancer syndromes, including 

BRCA2 mutations, thereby representing one sub-population suitable for targeted 

screening [4]. Furthermore, a unique PDAC-specific metabolomic signature could 

potentially uncover novel pathways for therapeutic intervention, and novel 
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targeted adjuvant therapies where surgical resection fails to eradicate the 

disease. Knowledge gained from metabolomics research may permit 

development of treatments tailored to molecular processes underlying the 

disease rather than treating the phenotypic expression of the disease’s 

consequences [5]. 

 

To date several studies have looked at metabolomic profiles in PDAC [3, 6-12]. 

However, the majority are based on serum profiles and have been universally 

carried out in late, stage IV disease. The current study sets out to compare 

metabolomic profiles in urine of patients with early stage or locally advanced 

PDAC, with appropriate age and gender-matched, healthy controls. We 

hypothesize that global metabolite analysis of urine samples using nuclear 

magnetic resonance (NMR) -based approaches and multivariate statistical 

techniques will reveal a characteristic metabolomic signature associated with 

PDAC. 
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3.3.1 Methods 

 

3.3.2 Study Design and Sample Collection 

This study was approved by the Alberta Cancer Research Ethics Board and the 

Human Research Ethics Board of the University of Alberta. Written and informed 

consent was obtained from all participants prior to study enrollment. Midstream 

urine samples were collected preoperatively from patients with PDAC (n=32) in 

the Edmonton region. All cases were correlated with histologic findings and 

follow-up data was available in all cases to ensure accurate classification of 

disease. Controls (n=32) were healthy, age and gender-matched male and 

female volunteers with no declared history of malignancy. Breastfeeding or 

pregnant women were excluded from study enrollment, as were patients with 

uncontrolled bacteria, viral or fungal infection. Additionally, subjects with 

compromised renal function reflected by impaired creatinine clearance (based on 

estimated glomerular filtration rate (GFR)) were excluded to prevent confounding 

effects of impaired metabolite excretion. Paired pre and postoperative (median 

3.7 months) urine samples were also compared in patients with resectable 

disease undergoing complete R0 resection (n=20).  

 

Urine samples were stored at -80°C until NMR data acquisition. Prior to data 

acquisition, samples were thawed and prepared by adding 75 µl of a chemical 

shift standard (Chenomx Inc., Edmonton Canada containing 5.046 mM sodium 

2,2-dimethyl-2-silapentane-5-sulfonate-d6 [DSS-d6] and 0.2% NaN3 in 99.8% w/v 
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D20) to 675 µl of urine. The pH was adjusted using small additions of NaOH or 

HCl to obtain a final pH of 6.75 +/- 0.05 in order to reduce pH variation among 

samples. A 700 µl aliquot of prepared sample was then transferred to a 5mm 

NMR tube (Wilmad, Nuena, NJ) immediately prior to NMR acquisition. 

 

3.3.3 1H-NMR Spectroscopic Acquisition and Targeted Profiling 

1H-NMR spectra were acquired according to previously published and accepted 

methods [13, 14]. Briefly, one-dimensional 1H-NMR spectra of urine samples 

were optimized, and excitation pulse calibrated based on single pulse nutation 

[15-17]. Spectra were acquired using the first increment of a standard NOESY 

pulse sequence [18].  Experiments were executed on a 2 channel 600 MHz 

VNMRS spectrometer (Agilent Inc., Palo Alto, CA) equipped with a 5mm-HX dual 

tune probe. Spectra were acquired at 25°C with an observation width of 12 PPM, 

100-ms mixing time, 4 second acquisition time, 4 steady state scans, and 32 

transients.  Water suppression was achieved utilizing an 80-90 Hz gammaB1 1H 

continuous wave saturation pulse applied on the optimized water resonance 

during the 0.9s presaturation period and throughout the 100-ms mixing time.  All 

spectra were zero-filled to 131k data points followed by apodization with a line-

broadening weighting function of 0.5 Hz. 

 

Using Chenomx NMR Suite 7.0 software (Chenomx Inc. Edmonton, Canada), 

metabolites were identified and quantified using a targeted profiling approach 

[19, 20]. This method compares the integral of a known reference signal, DSS, 
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with signals derived from a documented database of 297 compounds in order to 

determine concentrations relative to the reference signal [13]. All samples were 

analyzed blindly in a random fashion. A minimum of two analysts independently 

analyzed the spectra and only those compounds whose identity and 

concentrations were agreed upon were included.  A set of 66 metabolites was 

identified and quantified.  Additionally, creatinine concentrations of 12 randomly 

selected urine samples were verified using non-NMR, laboratory based 

colorimetric techniques using a commercially available kit (Arbour Assays, 

DetectX Urinary Creatinine Kit, Cat K002-H5), and 95% correlation was 

achieved.  

 

3.4.1 Data Analysis 

3.4.2 Data Preprocessing and Statistical Analysis 

Prior to further analysis, drug metabolites and drug vehicle constituents were 

excluded. Because of a low yield of detection among samples (only 1-2 values 

differing from the median concentration), gluconate, glycerol, ornithine, uracil and 

1,6-anhydro-β-D-glucose were also excluded. The remaining 58 metabolites 

were included in all subsequent model generations.  

 

Metabolite concentrations were log-transformed to account for non-normal 

distribution of metabolite data, mean-centered to improve interpretability of the 

models generated and scaled univariately to ensure all metabolites, both high 
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range and low range, were given equal weight in analysis. Patient characteristics 

were compared using Welch’s two-sample t-test for continuous variables and 

exact methods for categorical variables. Metabolite differences between PDAC 

and healthy controls were compared using Mann-Whitney non-parametric 

statistical analysis. Statistical significance was set at p < 0.05. GraphPad Prism 

Version 5.0c was used for all descriptive statistics (GraphPad Software, San 

Diego, CA). 

 

Unsupervised (principal component analysis, PCA) and supervised (orthogonal 

partial least-squares discriminant analysis, OPLS-DA) multivariate pattern 

recognition techniques were applied to pre-processed metabolite concentration 

data to discriminate between sample spectra of PDAC patients and healthy 

controls using SIMCA-P+ (version 12, Umetrics, Umeå, Sweden). By reducing the 

dimensionality of a set of measured variables, PCA provides a crude dataset 

overview and is used for initial exploratory analysis. For class discrimination, 

OPLS-DA with an integrated orthogonal signal correction (OSC) filter was 

applied. Partitioning of predictor variables improves both model transparency and 

interpretability [21, 22].  

 

Cross validation and permutation testing were applied for internal validation [23-

25]. A receiver operating characteristics (ROC) curve was generated to define 

the predictive accuracy of the OPLS-DA model from cross-validated predicted Y-

values (SIMCA-P+ software, Y-predcv, predictive Y). Area-under-the ROC curve 
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(AUROC) was calculated using STATA/SE 10.1 (TX, USA). The variable 

importance on projection (VIP)-parameter was generated for a weighted, 

quantitative measure of discriminatory power of the metabolites. Represented by 

a unit-less number, the higher the value, the greater the discriminatory power of 

the metabolite. VIP scores >1 generally represent those metabolites carrying the 

most class discriminating information [23]. 

 

 

3.5.1 Results 

	  

3.5.2 Patient Characteristics 

Table 3.1 (see below) provides a detailed outline of pertinent patient and tumor 

characteristics. Patients with PDAC (n=32) were age and gender-matched with 

healthy controls (n=32, p=0.80 for age and p=1 for gender). PDAC was 

confirmed histologically in all cases. Sixty-three percent of cases were located in 

the pancreatic head and the majority were moderately differentiated, stage IIb 

disease (69%). Fifty nine percent of cases were amenable to surgical resection. 

The majority of patients with PDAC exhibited significant weight loss (≥ 5% over 

6-12 months). 
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Table 3.1. Clinical Features of Study Subjects and Tumor 
Characteristics 
 
 
 
 

 

Number of Subjects (n) PDAC (32) Controls (32) p
Age [median (range)]  69.5 (48-83)     69.5 (47-84) 0.802

Gender (male/female)         18/14            18/14 1
TNM Stage
     Ia/b 2/32 (6.3%)           -           -
     IIa 3/32 (9.4%)           -           -
     IIb 22/32 (68.8%)           -           -
     III 5/32 (15.6%)           -           -
Histologic Type           -
         Invasive Ductal Adenocarcinoma 31/32 (96.9%)           -           -
         Invasive Adenosquamous Carcinoma 1/32 (3.1%)           -           -

Histologic Grade           -
!!!!!!!!1 3/32 (9.4%)           -           -
!!!!!!!!2 14/32 (43.6%)           -           -
!!!!!!!!3 6/32 (18.8%)           -           -
      Unavailable 9/32 (28.1%)           -           -
Location           -
    Head 21/32 (62.5%)           -           -
    Head/Uncinate 7/32 (21.9%)           -           -
    Body/Tail 4/32 (12.5%)           -           -
Resectable 19/32 (59.3%)           -           -
Unresectable 13/32 (40.6%)           -           -
Weight Loss (≥5%)           -
      Yes 21/32 (65.6%)           -           -
       No 2/32 (6.3%)           -           -
       Unavailable 9/32 (28.1%)           -           -
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3.5.3 Metabolomic Profile Differences Between Pancreatic Cancer and 

Healthy Controls 

Metabolite concentration data was then analyzed using both unsupervised (PCA) 

and supervised (OPLS-DA) multivariate pattern recognition methods. Group 

clustering based on disease status (cancer vs. healthy) was observed at the 

exploratory, unsupervised phase (Figure 3.1A) (see below). Supervised methods 

were then applied using OPLS-DA and resulted in clear discrimination between 

PDAC and healthy controls (Figure 3.1B). OPLS-DA model parameters for 

explained variation (R2) and cross-validated predictive ability (Q2) were robust 

(R2= 0.85, Q2 = 0.59).  
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Figure 3.1. PCA and OPLS-DA Score Plots of Urinary Metabolite 
Profiles Derived from PDAC and Healthy Controls 
 
 
PDAC samples are represented by red triangles and black circles depict controls. 
Both are 2 component models based on 59 measured metabolites. A) 
Unsupervised, PCA score plot. B) Supervised OPLS-DA score plot.  
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Unique metabolite expression patterns were observed when comparing PDAC 

patients and controls.  Twenty-two metabolites showed significantly different 

levels of expression (p < 0.0001-0.026). While all perturbations in metabolites 

contribute to the OPLS-DA model, the direction of change for key metabolites 

according to the VIP-parameter is reflected in Table 3.2 (see below). It is 

apparent that simultaneous perturbations in multiple metabolic pathways are 

responsible for the observed class separation.  
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Table 3.2. Key Metabolite Differences Between Pancreatic Ductal 
Adenocarcinoma and Healthy Controls. 
 
Key metabolites involved in OPLS-DA model generation according to the VIP- 
parameter and p-value significance. Only those metabolites with significant 
concentration differences or a VIP-parameter ≥ 1 are displayed.  p-values were 
obtained using Mann-Whitney nonparametric statistical analysis. * p <  0.05, ** p 
< 0.01, ***p ≤ 0.001.   Fold change was calculated by dividing the median 
metabolite concentration in cancers by controls.  Those metabolites increased in 
cancers are projected to the right, while those decreased in cancers are 
projected to the left. 
 

 

 

Metabolites VIPFold Change
Acetone***

Hypoxanthine***
O-Acetylcarnitine***

Dimethylamine**
Choline**

1-Methylnicotinamide*
Threonine**

Fucose**
cis-Aconitate**
4-Pyridoxate*

Glucose*
Trimethylamine-N-oxide***

Aminobutyrate**
Tryptophan**
Trigonelline*

Xylose*
trans-Aconitate*

Methanol*
4-Hydroxyphenylacetate**

2-Hydroxyisobutyrate
Taurine**

-2 -1 0 1 2 3 4

2.60
1.72
1.67
1.60
1.47
1.46
1.42
1.42
1.41
1.37
1.33
1.31
1.26
1.26
1.24
1.18
1.13
1.10
1.07
1.06
1.05
1.00
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Additionally, a sub-analysis was carried out excluding exogenous metabolites to 

minimize dietary and environmental influences on model generation. These 

included 1,6-anhydro-D-beta-glucose, adipate, 2-hyroxyisobutyrate, ascorbate, 

ethanol, sucrose and xylose. Methanol (a microbial metabolite) was also 

excluded in the secondary analysis. The OPLS-DA model (results not shown 

here) achieved comparable class separation, with similar model parameters 

(R2=0.79, Q2=0.52). These results suggest that exogenous metabolites did not 

contribute significantly to class discrimination.  

 

 

3.5.4 Model Validation and Prediction Accuracy  

Two separate methods of internal validation, permutation testing and cross-

validation, were used to confirm model validity. Permutation tests involve  

random assignment of class labels to cases and controls. Figure 3.2 (see below) 

demonstrates that the R2/Q2 values of the original model were always higher than 

those of the 100-permuted models.  
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Figure 3.2. Permutation Analysis of OPLS-DA Model. 
 

Statistical validation of OPLS-DA model by permutation analysis using 100 
different model permutations. The goodness of fit (R2) and predictive capability 
(Q2) of original model are indicated on far right and remain higher than those of 
the 100 permuted models to the left. 
 

 

OPLS-DA model generation employed a seven-fold cross validation step. This 

involves omitting a portion of the data from model development, developing 

parallel models from the reduced data, predicting the omitted data from the 

different models, and then comparing predicted with actual values, providing an 

estimate of overall predictive power. Using the cross-validated Y-predicted 

values, model sensitivity and specificity were summarized with an ROC curve 
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(Figure 3.3). The calculated AUROC of 0.988 is indicative of strong predictive 

power.  

 

 

 
 
 
Figure 3.3 Measure of Model Predictive Ability Using ROC Curve 
Analysis. 
 
ROC curve analysis using cross-validated predicted-Y values of the OPLS-DA 
model discriminating PDAC patients from controls. AUROC= 0.9881 indicating 
strong predictive ability.  
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3.5.5 Effects of Surgical Resection on Metabolomic Profile 

PCA and OPLS-DA pattern recognition techniques were applied to paired, pre 

and postoperative metabolite concentrations after complete R0 surgical 

resection. While no group clustering was observed with PCA, OPLS-DA 

supervised methods revealed distinct class separation following surgical 

resection (model parameters R2=0.86, Q2=0.30, sensitivity 95.2%, specificity 

85.7%) (Figure 3.4) (see below) 
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Figure 3.4. OPLS-DA Score Plot: Effect of Surgical Resection on 
Urinary Metabolomic Profile Associated with PDAC  
 

Urinary Metabolite Profiles Derived from Preoperative and Postoperative PDAC 
Patients. Red circles represent preoperative PDAC samples and postoperative 
PDAC samples are represented by black squares. 2 component model based on 
59 measured metabolites. Abbreviations: OPLS-DA Orthogonal Partial-Least 
Squares Discriminant Analysis, PDAC  Pancreatic Ductal Adenocarcinoma 
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3.6 Discussion  

	  
 

PDAC remains an aggressive malignancy with a high degree of biological 

heterogeneity and dismal prognosis. Delayed diagnosis precludes the majority of 

patients from curative intent surgery since up to 80% of patients present at an 

advanced, incurable stage [26]. While a wide array of molecular markers have 

been developed to help with early and accurate diagnosis of pancreatic 

pathologies, they lack adequate sensitivity and specificity to provide useful 

clinical resolution [27]. Additionally, despite many advances, current imaging and 

diagnostic technologies are frequently unable to discriminate benign from 

malignant pancreatic disease often resulting in unnecessary or inadequate 

surgery. Furthermore, between 10-25% of patients undergoing radical pancreatic 

surgery are found subsequently to have benign disease on pathology [3, 28-30].  

 

Unlike advances in the screening and early detection of other malignancies such 

as breast and colorectal cancers, reliable and sensitive population-based 

screening modalities for PDAC do not yet exist.  Given the relatively low 

prevalence of disease and limited accuracy of current testing modalities, 

presently population-wide screening is not practical. However, high-risk patients, 

accounting for up to 17% of all cases of PDAC, represent a potentially important 

target population where effective screening tools are needed [4, 31-35]. While 

several institutions have screening protocols for patients with familial or 

hereditary predispositions, guidelines are sometimes conflicting and diagnostic 
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tools invasive and inadequate [35]. Timely diagnosis alone however, will unlikely 

improve outcomes but may enhance lead-time bias. Survival remains dismal 

even among those patients in whom complete resection (RO) is achieved. 

Improved understanding of the molecular basis of PDAC is needed to provide 

avenues for advancements of targeted therapeutics. 

 

Urinary metabolomics offers a reliable, non-invasive means of identifying tumor-

associated perturbations of cellular metabolism. By comprehensively assessing 

overall metabolic profiles of biological samples, metabolomics may establish the 

missing link between gene/protein expression profiles and final cellular 

phenotypes in normal and diseased states. Metabolomics has the potential to 

drastically alter the field of surgical oncology in the diagnosis, treatment and 

understanding of tumor biology.   

 

To date several studies have explored the role of metabolomic profiling and 

diagnostics in pancreatic cancer. Using an NMR-based approach, Bathe et al. 

recently established a serum metabolomic profile capable of discriminating 

pancreatic cancer patients from patients with benign pancreaticobiliary disease 

[3]. These results were congruent with previous serum studies which were limited 

in sample size (n=5/17) and analyses technique, using unsupervised methods 

alone [9]. One study reported successful discrimination of malignant from benign 

biliary disease using bile samples [12]. Using 1H-NMR, Nishima et al. discovered 

significantly elevated lactate levels in the serum and bile of patients with 
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malignant hepatobiliary disease [8]. However invasive methods are required for 

collection of bile. While it is still unclear which biofluid is optimal for metabolomics 

processing, urine has the distinct advantage of being easy to collect, simple to 

handle and process, and avoids issues of degraded spectral resolution resulting 

from hydrophilic lipid compounds present in serum samples [36]. Recently, 

Napoli et al. identified a distinct urinary metabolomics signature of PDAC, 

distinguishing patients from healthy controls. However, a large proportion of 

patients had advanced stage disease and gender-effects were not examined as 

profiles were developed from a cohort of male patients alone [7]. 

 

Using a representative sample of male and female patients with early stage or 

locally advanced disease, we have identified a urinary metabolomic signature of 

PDAC with strong predictive accuracy. In comparing metabolite expression 

profiles of PDAC patients and healthy controls, it is evident that a number of 

pathophysiological processes may contribute to the differences observed. We 

suspect that the spectrum of metabolic perturbations observed is reflective of 

changes occurring both at the tumor microenvironment level and in global 

metabolism. Cancer-specific elevations of hypoxanthine, choline, trimethylamine-

N-oxide, o-acetylcarnitine and acetone, may be indicative of metabolic 

disturbances associated with tumor metabolism. These changes possibly 

represent enhanced capacity for DNA synthesis and energy production 

(hypoxanthine), cell membrane formation (choline, trimethylamine-N-oxide) as 
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well as increased rates of lipolysis and fatty acid metabolism (o-acetylcarnitine, 

acetone) seen in rapidly proliferating tumor cells [37-40].  

 

Cancer-specific increases in a number of amino acids and amino acid derivatives 

were also noted; threonine, tryptophan and 4-hydroxyphenylacetate were highly 

significant, while alanine, isoleucine, leucine and valine showed trends towards 

significance.  This pattern may be reflective of muscle protein breakdown, during 

which all constituent amino acids enter oxidative pathways [14]. PDAC has one 

of the highest incidences of cachexia among patients with solid-epithelial 

malignancies [41].  A majority of our patients had ≥ 5% weight loss at diagnosis.  

Representing a complex metabolic syndrome characterized by anorexia and high 

rates of fat and skeletal muscle degradation, cachexia results in severe metabolic 

disturbances in energy and protein metabolism [41]. Muscle wasting can occur 

independent of changes in fat mass, and often occurs as an occult phenomenon 

in early stages of malignancy, before becoming clinically apparent [14, 42]. A 

noninvasive means of detecting early muscle wasting in patients harboring occult 

malignancy could have significant clinical utility.  The above postulations are 

speculative however and further experimental in vivo modeling is required to 

confirm their relevance. 

 

Complete surgical resection successfully eliminated the observed PDAC 

associated metabolic perturbations. The sensitivity and specificity of the surgical 

model were high (95.2% and 85.7%, respectively). These findings are 
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preliminary, and will require further validation in a larger patient subset. This data 

suggests however that the PDAC-associated profile is driven primarily by altered 

tumoral metabolism, rather than epi-phenomenal cachexia related change. 

 

Using NMR and multivariate statistical techniques, we were able to define a 

discrete metabolic signature associated with early and locally advanced PDAC 

with a high degree of accuracy. Such a tool could allow for mass-screening of at 

risk populations, and facilitate early intervention at a curable stage as well as 

potentially uncovering distinct molecular targets for future interventional 

therapies. Limitations of this study include small sample size, and future 

investigations should include model validation using an external, independent 

cohort of patients. Additionally, further exploration of underlying molecular 

mechanisms of metabolic change are required through the use of in vivo 

studies/animal models. Integration of results from diverse biofluids and analytical 

platforms including mass spectrometry, will also further refine these preliminary 

results. 
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Chapter 4: Summary and Concluding Remarks  

	  

4.1.1 Summary of Research 

4.1.2 Metabolomic Signature of Pancreatic Cancer 

	  
	  
Metabolomics has been defined as "the systematic study of metabolic responses 

of multicellular systems to pathophysiological stimuli or genetic modification [1]." 

Application of metabolomic tools in oncology offers a potential to uncover new 

pathways in cancer control and signaling, and could potentially facilitate non-

invasive screening for early cancer detection for broader application in high-risk 

populations. In contrast to genomics and proteomics research, metabolomics 

science involves a comprehensive study of endpoint metabolites, representing a 

more mature, downstream response of biological systems to genetic or 

pathophysiologic insults.  Metabolomic screening would gain considerable 

traction if signals of altered cancer cell metabolism were detectable prior to the 

surfacing of gross phenotypic change and clinical presentation, providing an 

opportunity for earlier surgical, chemotherapeutic or other neoadjuvant therapies 

with a consequent increased likelihood of cure.   

 

PDAC remains one of the most aggressive cancers to manage. Surgical 

resection of early stage disease provides the only chance for cure, however 

disease remains undetected in the vast majority of patients until advanced and 
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inoperable. The opportunity to diagnose and intervene at a much earlier stage 

would therefore have profound clinical consequence, especially if disease 

detection occurred at early or even pre-invasive stage. A wide array of molecular 

markers have been explored for potential use in early diagnosis and accurate 

detection of pancreatic pathologies, however to date none have had clinical 

utility. Targeted screening tools could prove to be transformative in patients with 

higher risk of pancreatic cancer. Timely diagnosis must occur in concert with 

improved therapeutics since outcomes remain dismal even when margin 

negative resection is achieved. A greater understanding of the molecular 

pathogenesis of PDAC and the downstream functional significance of 

genomic/proteomic discoveries will provide an avenue for advances in effective, 

targeted therapeutics.  

 

Using 1H-NMR and multivariate statistical analysis, we have successfully 

identified a discrete, highly predictive urinary metabolomic signature associated 

with early stage and locally advanced PDAC.  Class separation was apparent 

between PDAC patients and controls even at the unsupervised phase of 

analysis, which to date, has not been consistently demonstrated in 

metabolomics-based studies of PDAC. Given that a spectrum of metabolic 

perturbations appear to be responsible for the metabolomic PDAC signature, we 

have identified a multi-molecular biomarker capable of distinguishing patients 

with PDAC from normal healthy controls. The strong predictive accuracy of this 

multi-molecular biomarker is promising, in light of the shortcomings of CA19-9 
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which is currently the only clinically available biomarker for pancreatic cancer. 

Such a multi-molecular biomarker might in fact be more relevant and avoid the 

pitfalls of single-marker studies, given the molecular heterogeneity of pancreatic 

cancer [2-4].  It is apparent from our analysis that simultaneous perturbations to 

multiple metabolic pathways are likely responsible for the class separation 

achieved (cancer vs. normal). We hypothesize that metabolite expression 

patterns detected in urine are reflective of a convergence of metabolic 

disturbances associated with tumor metabolism as well as alterations in global 

metabolism. Various analytical methods were applied to ascertain which 

metabolites were most responsible for class discrimination. These included non-

parametric statistical analyses of metabolite concentrations, fold-change 

calculations, and VIP parameters specific to each metabolite.  

 

Attempts to link the metabolic signature of PDAC with underlying molecular 

pathways involved in pancreatic carcinogenesis remain speculative at this 

exploratory stage. The metabolic signature presented here provides a starting 

point for more in-depth interrogation of pancreatic cancer biology, where further 

integration of genomic and proteomic discoveries and use of in vivo 

investigations with appropriate model systems may uncover definitive cancer 

pathways [4].  

 

A brief, preliminary discussion of the patterns of metabolite expression will be 

largely limited to those metabolites thought to be key contributors of the PDAC-
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specific metabolic profile, at this exploratory phase of analysis. Patterns of 

metabolite disturbance have been segregated into those associated with altered 

tumor metabolism and those associated with more global metabolic disturbance 

(Figure 4.1) (see below). 
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Figure 4.1 Patterns of Altered Tumoral and Global Metabolism 
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O-acetylcarnitine was significantly elevated in PDAC patients in comparison 

with controls. An acetylated form of carnitine, this metabolite facilitates transport 

of acetyl-coA into mitochondrial matrices during the oxidation of fatty acids via 

the beta-oxidation cycle, which is necessary for generation of reduced energy 

carriers [5].  High rates of energy expenditure are needed for tumor growth and 

proliferation; increased rates of lipolysis and fatty acid metabolism are required to 

meet this increased metabolic demand.  Accordingly, acetone, one of three by- 

products of fatty acid breakdown was also significantly elevated in PDAC 

patients, further validating the hypothesis of high-energy expenditure associated 

with tumor metabolism.  

 

Altered expression of choline and choline containing compounds have been the 

focus of much attention in metabolomics research, most notably breast-related 

metabolomics studies. Elevated levels of choline and choline derivatives have 

been used for diagnostic purposes as well as a means of optimizing neo-

adjuvant chemotherapy by monitoring variations in choline concentrations [6-9]. 

Choline and choline metabolites are known to be markers of cellular proliferation, 

representing key constituents in phospholipid metabolism of cell membranes [10, 

11].  In addition to its role in phospholipid metabolism, choline acts as a methyl 

donor, important in a number of chemical processes including cell replication 

[12]. 
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Trimethylamine-N-oxide, also elevated in PDAC, is an oxidation product of 

trimethylamine, which is derived from choline [5]. This pattern of elevated choline 

expression was observed among PDAC patients, in concordance with previous 

findings and is likely representative of rapid tumor cell proliferation, characteristic 

of PDAC. While a number of features of carcinogenesis are common among 

cancers of different origin, PDAC is unique in its aggressiveness, tendency to 

form large tumors and rapidity of growth [4, 13].  

 

In concordance with the phenotypic observation of rapid tumor growth 

characteristic of PDAC, cancer-specific elevations of hypoxanthine could 

represent an underlying enhanced capacity for DNA synthesis and energy 

production. Hypoxanthine is a purine derivative; purine and pyrimidines are 

building blocks of RNA and DNA, making up the two groups of nitrogenous 

bases, including the two groups of nucleotide bases [5, 14]. Hypoxanthine is also 

an intermediary metabolite of adenosine metabolism and a reaction intermediate 

in the formation of nucleic acids [5]. Purines not only have a critical role in 

formation of RNA and DNA, but are involved in energy metabolism and are 

constituents of a number of important cellular molecules such as ATP, GTP, 

cyclic AMP and NADH. Cancer-specific elevations of purine derivatives clearly 

points to altered energy metabolism and possibly an enhanced capacity for 

DNA/RNA synthesis. 
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Cancer-specific elevations of a number of amino acids and amino acid 

derivatives were evident among PDAC patients; threonine, tyrosine, tryptophan 

and 4-hydroxyphenylacetate were highly significant, while alanine, isoleucine, 

leucine valine and glutamine, showed trends towards significance. It is possible 

that this pattern may in part be reflective of muscle protein breakdown, during 

which all constituent amino acids enter oxidative pathways [15].  

 

Cancer cachexia, is a complex, inflammatory metabolic syndrome associated 

with severe illness and is characterized by an unintended loss of weight 

exceeding 5-10% of stable weight. This phenomenon is associated with nearly 

80% of upper gastrointestinal tract malignancies and PDAC specifically, has one 

of the highest incidences of cachexia of all solid-epithelial cancers [16-18]. 

Cancer-related cachexia features severe disturbances in energy and protein 

metabolism, the etiology of which is still largely unknown [18]. Muscle wasting 

occurs with or without the loss of fat mass and is often an early, occult 

phenomenon, clinically undetectable until advanced stages of disease [15, 18]. A 

majority of patients with early stage/locally advanced disease included in this 

thesis reported a minimum of 5-10% weight loss at the time of diagnosis, and 

were likely suffering from some degree of early, cachexia related muscle protein 

breakdown long before becoming clinically apparent. A noninvasive means of 

detecting early muscle wasting in patients harboring occult malignancy could 

have significant clinical utility and urinary NMR spectroscopy combined with 
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multivariate techniques may provide an avenue for the potential development of 

such a tool [4]. 

 

The pattern of metabolic derangements associated with the metabolomic 

signature of PDAC appear to include altered lipolysis, enhanced capacity for 

DNA synthesis and energy synthesis and amino acid catabolism (possibly related 

to cancer cachexia). This however represents only a preliminary analysis and 

further exploration and in-depth pathway analysis using applications such as 

Ingenuity Systems Pathway Analysis followed by confirmation of these results 

with in vivo studies using appropriate model systems are needed to fully 

characterize the patterns of altered metabolite expression profiles observed here. 

Conclusive discernment of whether the metabolic signature associated with 

PDAC is a direct phenomenon related to cancer cachexia or rather an 

epiphenomenon requires prospective monitoring of a high-risk pancreatic cancer 

cohort to see if the distinctive metabolic signature emerges prior to the onset of 

visible cachexia.  Collaborative integration of these findings with the other 'omic' 

sciences are needed to provide complete a picture of malignant phenotype and 

the cellular changes associated with malignant transformation in pancreatic 

cancer. 
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4.1.3 Effects of Surgical Resection 

 

Effects of complete, RO surgical resection were examined in a subset of patients. 

Preliminary analysis suggests that the PDAC metabolomic signature was 

extinguished following surgical resection given that clear separation was 

observed when supervised multivariate statistical methods were used to compare 

metabolite expression profiles of PDAC patients pre and postoperatively.  While 

recognizing the limitations of this analysis given the small sample size, these 

preliminary results appear promising (sensitivity 95.2%, specificity 85.7%). When 

the inciting tumoral burden is surgically removed, the cancer- associated 

metabolite expression profile is no longer detectable. If the metabolomic 

signature is in fact reflective of altered tumor metabolism as well as alterations in 

global metabolism, including muscle protein breakdown related to cachexia, 

these results support that the thought that the cachectic process is being driven 

by multiple inflammatory mediators associated with the tumoral environment, 

including known catabolic cytokines such as IL-6, TNF- α, IL-1, and IFN-γ [19-

22]. Future investigations could involve prospective monitoring of patients 

following R0 resection in order to uncover the pre-emptive re-emergence of the 

PDAC signature ahead of clinical evidence of recurrent disease. Additional 

potential applications of this urinary molecular biomarker could include a novel 

means of surveillance post-resection or adjuvant therapy, providing an 

opportunity for early intervention when effective therapies become available. 

Furthermore, prospective monitoring of patients following curative resection could 
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lead to identification of a molecular signature associated with poor prognosis and 

early metastases. Such a prognostic tool could guide treatment, helping to 

minimize futile surgical intervention among patients who are early progresors. 

 

4.2.1 Challenges and Future Directions 

 

 

4.2.2 Sample Size Limitations 

 

Sample size remains a limiting factor not only in the results presented here, but 

in pancreatic cancer research of all types given the low incidence of disease. 

Coordinated collaboration with other surgical centers could help in this regard, 

however, methods must be in place to assure standardized sample collection 

and processing procedures in order to avoid confounding results. Standardization 

of sample handling, storage and processing stages are necessary to minimize 

the confounding effects of protocol variation on sample recovery. While 

multivariate statistical techniques are able to deal with highly correlated, 

multidimensional data matrices, caution must be used when interpreting results 

of smaller studies where the number of metabolites greatly exceeds the number 

of samples, a common feature of omics studies in general [23].  False discovery 

rates (FDRs), referring to the frequency of Type I error, are more likely to occur in 

studies of inadequate sample size.  In these situations, model validation steps 
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are increasingly important to ensure the veracity of results.  While the results 

presented here are both novel and compelling, they are still exploratory and 

require further validation in larger patient cohorts.  Preliminary results such as 

these provide an important path for further validation and are a necessary step 

for incremental discovery in any new scientific arena. 

 

 

4.2.3 Multiple Hypothesis Testing 

 

Another challenge that should be addressed is the issue of multiple hypothesis 

testing, an inherent part of omics research. Metabolomics-based experiments are 

no exception and involve the simultaneous examination of expression pattern 

differences of a vast array of metabolites under varying pathophysiological 

conditions. Bonferonni correction, in which the p value for statistical significance 

is divided by the number of metabolites examined, is one of a number of 

methods aimed at minimizing the risk of false discoveries [23-25].  While 

providing protection against the risk of Type I error (false positives), such 

stringent criteria also increase the risk of Type II error (false negatives), and are 

arguably too conservative especially at the exploratory phase of analysis [25].   

Bonferonni correction also assumes that all variables are independent of each 

other, a false assumption in any metabolomics experiment.   More appropriate 

multiple testing correction techniques for highly correlated data aimed at limiting 

the rate of false positives without unnecessarily increasing the rate of false 
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negatives are being developed and include Benjamini-Hochberg correction or 

bootstrap sampling [24, 26]. Future work is needed examine the appropriateness 

of such techniques in the setting of metabolomics-based research. 

 

Post hoc stratification is another form of multiple hypothesis testing which was 

avoided in this thesis by establishing hypotheses a priori. Posthoc stratification, 

sometimes referred to as or ‘data dredging’ involves the performance of 

additional analyses at the end of the primary experiment with the aim of 

discovering patterns, or relationships in subgroup populations.  While these types 

of posthoc analysis were not performed here and must be interpreted with 

caution, they are also arguably a valuable technique at the exploratory stage of 

analysis.   

 

 

4.2.4 Spectrum Bias 

 

In planning future studies to further examine the role of urinary metabolomics as 

a diagnostic or screening tool in PDAC, the issue of spectrum bias must be 

addressed.  While the use of healthy, asymptomatic volunteers may be 

appropriate in early stages of diagnostic test development, the use of control 

subjects lacking diagnostic uncertainty may produce a biased estimate of a tests 

true performance [31, 32]. Ideally, in order to avoid unrepresentative patient 

selection, both cases and controls should present a diagnostic dilemma. While 
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study enrollment was limited to those patients with earlier stage disease, 

excluding those with stage IV disease, a more representative control population 

is needed in future analysis to avoid the risk of biased estimates of model 

performance as a diagnostic tool. Bathe et al. were the first to examine the role of 

metabolomics in accurately identifying PDAC patients from a representative 

cohort of patients with benign pancreaticobiliary disease, presumably for whom  

there was some degree of diagnostic uncertainty. We have begun preliminary 

work (not included in this thesis) comparing early stage disease PDAC patients 

to a more representative control group consisting of patients with benign 

pancreaticobiliary disease (n=25). Early results are promising and consistent with 

our primary findings. Future analyses with larger patient cohorts are necessary to 

further explore these results and going forward, should include cases and 

controls more representative of day-to-day clinical practice where diagnostic 

uncertainty exists.  

 

 

4.2.5 Biofluids and Analytical Platforms 

 

The majority of clinical metabolomic studies have been serum or urine-based 

experiments. Urine has been the most frequently used biofluid in toxicology-

related research, however a growing number of studies have examined its utility 

in cancer diagnosis [27-29,[4, 27]. While it is still not clear which biofluid is 

optimal, urine has several clear advantages including its non-invasive nature of 
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sample procurement and ease of collection at multiple time points permitting a 

temporal based analysis [28]. While even slight changes in sample handling and 

processing of serum samples can alter metabolite recovery rates, urine 

processing steps are simple and easily reproducible [28]. Nevertheless, serum 

metabolite profiles have shown decreased diurnal variation as well as decreased 

inter-and intra-subject variability compared with urine. Further studies are needed 

linking the results from urine, serum and bile in order to provide the most 

comprehensive picture of overall global metabolic perturbations. In addition to 

integration of results from an array of biofluids, integration of varying analytical 

platforms will also provide further refinement to the metabolic signature of 

pancreatic cancer presented here.  

 

It is increasingly apparent that no one analytical platform will alone provide a truly 

complete molecular fingerprint of disease. While NMR is fast, inexpensive, 

reproducible, low abundance metabolites are not detectable. MS used in 

combination with a separation technique has a higher overall sensitivity than 

NMR thereby providing a more comprehensive picture of the overall metabolome 

[28]. As such, an increasing number of metabolomics studies are attempting to 

integrate results from multiple analytical platforms (i.e. NMR and MS), in order to 

provide the most comprehensive picture of the metabolic milieu underlying a 

given disease state.   
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4.2.6 Improving Diagnostic Accuracy 

 

The diagnostic accuracy of the metabolic signature of PDAC presented here may 

be further improved by minimizing influences of external, potentially confounding 

factors not related to disease [4, 15].  Environmental and physiologic factors (i.e. 

diet, hormonal milieu, stress, diurnal cycles) which influence the overall 

expression profile run the risk of confounding or at least clouding the results of 

any metabolomics experiment [28]. Innate physiologic variations of biofluid 

spectral profiles present a significant analytical challenge. In this thesis, steps 

were taken to minimize influences of age and gender by matching PDAC patients 

to controls according to these factors. Further studies should include additional 

steps to abrogate or minimize the influence of these external effects, allowing for 

a clearer picture with improved interpretability. Repeated sample collection from 

the same individual at different time points is an example of one such step. OCS 

and VAST are both examples of techniques used at the pre-processing stage of 

sample analysis that minimize the influence of extraneous confounders [29, 30]. 

Scaling and data filtering may also enhance the attainment of class-specific 

information [29].  While OCS and data scaling were used in this thesis, further 

analysis should include additional techniques to maximize relevant information 

recovery. 
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4.2.7 Model Validation 

 

Internal validation techniques provide an alternative method of testing model 

validity in the setting of small sample size, however, the most rigorous method of 

model validation is through external validation which involves making predictions 

for an independent set of data not involved in model generation [33]. While model 

validity was confirmed using internal validation techniques, the preliminary results 

presented here must next be validated on an external patient population. Low 

disease incidence and delayed presentation in the majority of patients with PDAC 

are limiting factors however in recruiting patients with early stage disease 

suitable for further analysis and therefore recruitment will take time. Registries 

such as the NFPTR are essential for continued research into the early detection 

of pancreatic cancer. A cohort of high-risk patients such as these represent an 

ideal, truly representative external population for further validation of these 

results. Further refinement to the proposed metabolic signature of PDAC is 

required, including validation with larger sample sizes prior to external validation 

using such a population however. While further refinement is needed, the highly 

predictive, discrete urinary metabolic signature of PDAC established could 

conceivably advance programs for early detection and population-based 

screening for PDAC. 
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4.2.8 Potential Future Applications 

 

Metabolomics based research not only has the potential to bring advances in the 

area of diagnosis and screening as outlined in this thesis, but could also 

conceivably play a role in advancing current systems of prognostication, targeted 

therapeutics, and methods for therapeutic response monitoring. Figure 4.2 (see 

below) outlines potential target areas of future metabolomics-based research in 

pancreatic cancer. 

 

 

 

 

Figure 4.2 Future Potential Target Areas for Metabolomics-Based Research 
in Pancreatic Ductal Adenocarcinoma 
(reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Cancer, 
Ludwig et al., Biomarkers in Cancer Staging, Prognosis and Treatment Selection  
2005; 5: 845-856) 
 
 

The current TNM staging system for pancreatic cancer has little clinical value in 

the prognosis and staging patients for treatment given the poor overall outcomes 

associated with this disease [34].  Continued advancements in delineating 
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tumorigenesis are necessary in bringing improvements to such classification 

systems which rely on tumor morphology alone. Complementary metabolic 

information may help portray a more inclusive tumor portrait, providing a more 

individualized estimate of prognosis [28].  A method of more personalized 

prognostication, incorporating molecular information with gross tumor 

morphology is especially important in pancreatic cancer that exhibits a high 

degree of molecular and phenotypic heterogeneity.  Prognostication methods 

capable of stratifying patients into subgroups whose disease metastasizes early 

versus those who tumor biology displays features of preferential local growth 

could allow for more tailored treatment. A combination of improved diagnostic 

and prognostic tools could help avoid aggressive surgical treatments with a high 

likelihood of futility, while also conceivably broadening the scope of surgical 

intervention through early detection at pre-invasive or early stages of disease. 

Metabolomic-based techniques offer a means of non-invasive preoperative 

phenotyping, providing information critical in subsequently guiding both surgical 

and medical treatments [28]. 

 

An increased understanding of the molecular pathogenesis of PDAC will also 

lead to advancements in targeted therapeutics tailored to molecular processes of 

underlying disease. Therapy guided by metabolic endpoints rather than gross 

tumor morphology and imaging alone will allow for personalized treatment of this 

biologically heterogeneous disease in contrast to current one-size -fits all surgical 

and chemotherapeutic treatment regimes [28]. Personalized therapy guided by 
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early metabolic responses rather than waiting for evidence of gross phenotypic 

change based on comparatively insensitive imaging modalities could improve 

outcomes by helping to individualize therapy. Going forward, new holistic 

approaches involving the correlation of genomic, proteomic and metabolomics 

data are required in order to provide a truly comprehensive view of the malignant 

phenotype of PDAC and the molecular mechanisms of malignant transformation, 

necessary for improvements in both diagnosis and treatment of this devastating 

disease. 
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