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ABSTRACT

Bounds on the mass and electric charge ee of a fractionally charged (1071 < ¢ < 1)
particle (paraton) are calculated. Accelerator and Lamb shift experiments give
limits for values of € greater than 107*. Astrophysical argunients based on plasmon
decay in red giants and white dwarfs give lower bounds on the mass, bt only for
¢ < 107°. Cosmology provides a lower bound on the mauss from the Timit on the
number of neutrino flavours at nucleosynthesis, and an upper bound from requiring
that the paratons not overclose the universe. The cosmology limits ouly apply if
the particles are in equilibrium, which puts a lower bound above the upper nsass

bound.
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CHAPTER ONE
INTRODUCTION

This is a thesis about “funny fermions” f and f with fractional clectric charge €
¢ can take on any value less than 1, although only 1 > ¢ > 107" is considered
here. One can include such a peculiar particle in the Standard Model by adding
to the Lr~rangian, by hand, kinetic and mass terms for a particle with fractional
hypercharge. Alternatively, as suggested by Holdom [1], a particle can pick up
an ecffective fractional charge € via loop diagrams in a world where there are two

unbroken gauged U(1) symmetries.

We do not observe two U(1) interactions in our low energy wotld, so ordinary
particles do not carry the charge of the seccond U(1). However, the idea is that if,
at some large mass scale, there are particles carrying both charges (call them ¥ and
'), then the gauge boson of the first U(1); (‘photon’) can turn into a virtual pair of
thesc particles and then into the gauge boson of the second U(1), (‘paraphoton’).
This gives an effective interaction between the two gauge bosons, and therefore
between particles carrying only the charge of the U(1), (call these ;) and particles
carrying only the charge of the second U(1), (paratons = f). This can be described
by giving the f a small effective U(1), charge. Intuitively, virtual pairs of ¥ and
U’ formed around a ¥, or f give it a small interaction with the gauge boson of
the other U(1). It turns out that one can always arrange to describe the 9 — f

interaction by only giving one particle a small effective charge.

Suppose that onc has a toy world populated by fermions ¥y, f, ¥ and W'
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with masses my, pt, M and M’, where
M>M>m~p . (1.1)

4, is an ordinary particle and carries the charge of U(1);. f is the paraton and
carrics the charge of U(1);. ¥ and ¥ interact with both gauge bosons, but ¥’ is
assumed to have the opposite charge from ¥ under one of the U (1)s. The intrinsic

charges of the four types of fermion are therefore

Py (61, 0)
1/)2 — (0) 62)
U (e, 62)

T« (&1, —€3)

At some energy scale A > M, the gauge bosons have “diagonal” (in U(1)
space) kinetic terms:

1 v N
£kin(A) = _Z[Flqulﬂ + F2uuF2u ] . (13)

But if one integrates out fluctuations down to A’ < M’, the Lagrangian must acquire
an effective interaction term to describe the ¥ and ¥’ induced photon-paraphoton
mixing, because this can only happen at energy scales B > M' > A. Writing

Crin(A') in terms of the fields at A gives
> 1 v v v
Lkin(Al) = _Z[,\"lFl ;wFlu 4 X2F2uuF2” + 2XF1 ;wF2“ ] (14)

where

e3(A A3
xi =1+ 23(7r2)1n(A'MM’) (1.5)
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2 . 3
(A A
=14 (A’MM' (1.6)
and
_ e(A)es(A) (M) -
=%z In vz (1.7)

v1 and x arc just the expected scaling factors for Fy,, F*¥; the one loop contribution
to Z; and Z, (vertex and fermion wavefunction renormalisation coefficients) will still
satisfy the old Ward identity Z, = Z,, cven though there are two U(1)s. The gauge
fields A;(A’) therefore scale as 1/e;i(A’). For a theory with a single U(1) and one
particle in the loop, this means (2]

AX(N') = A%(A) (1 + e;(;:) In (-1’\1)) (1.8)

The obvious modifications of this for the theory considered here give (1.4), where
the last term is the effective photon-paraphoton interaction. It is finite becanse

there are two particles (¥ and ¥’) contributing to the diagram with opposite signs.

The Lagrangian (1.4) gives a 1.; opagating photon an amplitude to turn into
a paraphoton and vice-versa (from the Fy, F;” term). This is not particularly
attractive, so one can define new gauge bosons as linear combinations of the old
ones, to get diagonal kinetic terms with the expected normalization. Since there
is no reason to think that ordinary charged particles carry fractional paracharge,
it would be nice to leave the ‘photon’ (= A} x A,) as the gauge bhoson coupling
to electrically charged particles. This means that X2 Fu F3” + 2xFy, F3 needs to
be written as F'5,, F'5” = kinetic terms for some gauge boson A4;,. Aj, and A},
will then propagate indcpendantly of each other. If A} ,(A’) = X:/ %4, «(A) then the
photon kinetic terms can be written in the ordinary (no factor of x;) form. Finding

5, 1s not as simple, but one can explicitely check that to lowest order in x

e = X3 Az + X3 A (1.9)
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will give paraphoton kinetic terms of the desired forrn. (this argument is made more
clearly in [1}.)
One now has non-interacting gauge bosons, which has moved the effective

interaction between the two U(1)s from the photon-paraphoton kinetic term to the

gauge boson-fermion interaction term. To lowest order in x1, x2 and x one has
ea(A)Agu(A) = ea( M) Az,(A') = ex(A')(Ap, (1) = x A1, (A)) (1.10)

so the paraton ¥, intcracts with the photon Af,. It has an cffective fractional charge

2
S Q. (M) (1.11)

€ - 6‘;5 -M—'
that will remain present down to arbitrarily low energies, and is independant of the

scale at which the mixing takes place.

This discussion has assumed that the “real” U(1) (= U(1),) was electromag-
netism. However, if M, M’ > a few hundred GeV (which is likely), the U(1) will be

hypercharge, so the fractional electric charge will be 2 to some power times (1.11).

Suppose one puts a particle with fractional hypercharge é into the Standard
Model. The origin of this charge is unimportant—it can be intrinsic, as discussed
at the beginning of this introduction, or it can be an effective charge from loop
diagrams. The particle is an SU(2) singlet, and after symmetry breaking, will
couple to the Z and the photon, since the hypercharge gauge boson can be written

as a linear combination of these:
B, = cos0A, —sinbZ, . (1.12)

(8 is the Weinberg angle.) The paraton-gauge boson interaction term in the La-
grangian is

Lint = gg'cosﬂfﬁf— —g-g'sintZf (1.13)
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and since the electromagnetic coupling constant e = ¢' cos 8, this implies that the
paraton electric charge will be

E—é_lc_%.l (i‘_{.)—.gll (ﬂ) 11,1)
T2 %6x2 \ar) T 3x \ar (1.1

Assuming that 10'M’' > M > 5/2M' (M is assumed larger than Af'), this
gives

Bag > e> -2 (1.15)
2 10 .

which will be useful later on.

Calculations in this thesis use units where c =k =h =1 and G = m ...

there is a unit conversion table at the end (sce table B.1). The metric (when it
appears) is (+,—,—,—). Four-vectors arc represented by a letter (p) and three-

vectors by a vector (7).



CHAPTER TWO
ACCELERATORS

The most obvious place to look for particles with large fractional charge (> 107%) is
in high energy experiments. Numerous scarches have been done for the production
of quark pairs [3,4,5,6,7) which rule out paratons with ¢ > 1/3 and masses below
current accelerator encrgies. There is also a possible limit from the width of the
Z at LEP, but this does not appear to give interesting constraints. For € <1 /3,
it is probably reasonable to assume that paratons would not have been detected
as charged particles at ASP; their upper limit on the cross section for ete™ —
(v + weakly interacting particles) [10,11] therefore excludes paratons down to € =~
3 x 10-2. And finally for masses below 1 GeV, paratons with € > 1072 ought to
produce a “neutral current type” signal in beam dump experiments which has not

been observed [12].
2.1 free quarks

a) SLAC czperiment

In 1967 Bellamy ct al. [3] looked for the production of fractionally charged particles
produced by 12 GeV electrons incident on a copper target. The SLAC electron
heam was directed onto 10 radiation lengths of copper (i.e. enough to reduce the
beam energy by ¢71° [13]) where the electrons lose their energy by bremsstrahlung.
The photons can then produce pairs of charged particles in the fields of the copper
nuclei and nucleons. (The photons can interact with the whole nucleus or with an

individual proton.)



The beam of charged particles photo-produced in the copper was tuned to
|P/Q = 12.5 GeV, so that particles with momentum 12.5¢ GeV would be transmitted
through a series of five sodium iodide crystals. This avoids the large muon flux, No

particles were observed in all five crystals.

Assuming that the production of paratons is not suppressed by some mech-

anisin (as for quarks), the SLAC experiment forces them to have

e=2/3 pu>15GeV
e=1/3 1 >1.0GeV
e=1/10 ;> 0.5GeV
e=1/25 ;> 0.2GeV

(sce figure B.1).

b) ete accelerators

The Jade collaboration looked for particles with charges between 2/3 and 5/3 pro-
duced in e*e™ annihilations at PETRA with a centre of mass cnergy of 27-35 GeV
[4] . Exclusive production of a pair of fractionally charged particles (e*e™ — ff)
should produce two collinear tracks in the detector (drift chamber) with a smaller
or larger energy loss per unit length than ordinary particles. This is because the
energy loss in an ionizable material is, according to the Bethe-Bloch formula [14],
% = ¢ {(47rn):cf:2002§_ [log (—I(zlm_“;z )) - ﬁ’]} (2.2)
where m, is the electron mass, v is the paraton velocity (= ) , Ny is Avogrado’s

number, [ is the effective ionization potential of the material (= 10Z ¢V), and Z and
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A are the charge and atomic number of the material. No such tracks were observed.
Jade also looked for inclusive production of fractionally charged particles(e*e™ —
ff + X), and found none. Since the 90% confidence level ( 90% CL ) experimental
apper bound on the cross scction for the production of particles with € > 2/3 is

< 1072 of the theoretical prediction, paratons must have
p>12GeV fore=2/3 . (2.3)
A similiar experiment was done with the TOPAZ detector at TRISTAN [5],

looking for the exclusive production of particles with Q = 2/3, 1, and 4/3 at /s =

52 and 55 GeV. Their data force paratons to have

> 26GeV fore=2/3 (2.4)
(sce figure B.1).

A group at SLACs ¢*e storage ring PEP (positron electron project) 6],
built a detector specifically to look for fractionally charged particles, so that they

could extend the limit on € down to 0.2 . From their results, paratons must have
p>14GeV for.2<e<.8 (2.5)
(sce figure B.1).
There was also a free quark search by Mark II at SPEAR (7] but it only rules
out particles with € > 2/3 and p <1-3 GeV.

2.2 Z decay

One could hope that the width of the Z measured at LEP would give constraints on

paratons in a slightly higher mass range than the free quark searches. Unfortunately,
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this is not the case. In the Standard Model, the Z is
Z" = cos IV>* — sin@dB* (2.6)

where B is the gauge boson of hypercharge, W™ is the third gauge boson of weak
isospin and @ is thc Weinberg angle. Since sinf ~ 1/4, the Z will not couple very
strongly to paratons because they only carry hypercharge. From (1.13) the paraton-
Z interaction vertex factor is 7/2 6¢' sin 8y = iectan 8y*. The decay rate of a Z is
therefore (sce chapter 5 for a derivation of this)

tan? fe?a M,

N(Z — ff)=

=e2x6.79% 107% GeV . (2.

(&)
-1
~

This neglects the fermion mass, but including it will only decrease T

The measured decay rate of the Z from ALEPH is T, = 2.68::0.15 GeV [15].
If the theoretical width (with three neutrinos) is taken to be Ty = 2.487 £ 0.027
GeV [15], then this allows a width of roughly AT = .307 GeV for other particles.

This rules out

€>23 (2.8)

which is not an interesting limit.

2.3 ASP

The Anomalous Single Photon Detector (ASP) [10,11] was designed to look for

events of the form

ete™ — v + weakly interacting particles (2.0

at PEP (SLAC’s ¢te™ storage ring; /s = 29 GeV). Since ordinary charged particle

detectors do not seem to be used to search for quarks with q = 1/3, it should he
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reasonable to assume that paratons with € < .2 would not have been detected as
charged particles at ASP. This means that the ASP limit can be joined onto the

lower end of the PEP limit.

ASP fit the approximately 24 events that survived all their cuts to a signal
and background function, and conclude that they have 1.6 events of the form (2.9).
They then do a Monte Carlo to calculate, as a function of the number of single
photon events = ny,, the percentage of experiments like theirs that would observe
< 1.6 such interactions. Their 90% CL limit on ny, is the value for which 10% of

experiments would see < 1.6 events; which is 4.8 events.

The number of events is nyp: = 0wt X L X €, where gy 1s the total cross
section for ( 2.9), L is the luminosity and € is the probability that a photon will
be detected. ASP knows L and € from radiative Bhabba scattering, so the limit on

Tyge 15 2 limit on oy, which is

0ot < 0.072 pb. (2.10)

The “invisible” particles include 3 generations of neutrinos, which correspond
to an expected 2.6 events. So subtracting n, from ny, leaves ny = 2.2 as an upper

limit on the number of paraton pairs produced.

The ASP collaboration does not like this method of removing the neutrinos,
hecause it subtracts more events (n, = 2.6) than were actually observed (no, = 1.6).
So they define a “likelyhood function” £, which is proportional to the probability of
observing 1.6 events when expecting 2.6 + {events from invisible particles other than
nentrinos}, and is a function of the number of events due to these other particles

= ny. They assume that the number of observed events is a poisson distribution
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about 2.6 + ny and calculate their 90% CL limit on nyas {, where

t
/ L(ng)dn; = .90 . (2.11)
0
This gives
or
oy < 0.049 ph. (2.13)

It appears that, roughly, the difference between the first and second methods
is that in the first, the expected number of neutrino events (= 2.6) is subtracted
from the upper limit on ny (= 4.8), whereas in the second, it is the observed munber
(= 1.6) that is subtracted. The second method allows the the biggest cross seetion
for the production of “other particles” so gives the weakest limit on the paraton

charge. So from ( 2.13),

o(ete” = ff+v)<0.049 pb = 1.26 x 107" GeV* . (2.14)

a) whatiso(ete” — )

It should be safe to assume that the photon was emitted by one of the incident
electrons, because the paratons are € times less likely to do so. If the paraton has
intrinsic fractional hypercharge, it couples to the Z; if it picks up an effective charge
from the mixing of the paraphoton with the gauge boson of a Standard Model U(1),
this is probably hypercharge, so the paraton again couples to the Z. Z exchange
should therefore be included in the calculation of the amplitude for e*e™ — ff 4.
However, it is very convenient to ignore this contribution. Including Z exchange
should increase the cross scction, so the limits calculated without it should be

conservative.
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According to Bonneau and Martin [15], the cross section for ete™ — v +
other things, where the photon is emitted by the incident electron or positron, the
mediating particle is 2 virtual photon, and “other things” are not an ete” pair, can

be factonized as

(A(q)) x o(ete™ — other things) + O (m2) + 0 (—_mz_> (2.15)
E(E - )

where E is the energy of the incoming electron or positron in the centre of mass
frame, qq is the encrgy of the emitted photon and A(q) is a cocflicient that depends
on the energy and angle of the photon. At /s = 29 GeV, the second two terms
will be negligeable unless the photon is very energetic. This will never be the
case, because ASP did not include photons with go > 10 GeV. ( This was to avoid
counting ¢*¢~ — v, where one of the photons escaped undetected, as a single

photon event.) So neglecting Z exchange, photon emission by the paratons, and

the correction terms in ( 2.15), the cross section for ete™ — vff is [15]

2¢* sin @ dqo .
2 92
(27) (1 - (p2/ E?) cos?6)? qo Qg (1-go/ E+45/(2E")) dos=45(E-q0) (2.16)

do., =

where the clectron 4-momentum is (E,—p), the positron 4-momentum is (E,p),

the photon 4-momentum is (qo,§), and 0 < 8 < 7/2 is the angle between p and ¢.

The ASP angle cuts are 20° < 8 < 160°, so if
sin? § d(cos )

; / )
W)= o T GH/E) cost O (217)
then doing the photon angle integral in ( 2.16) gives
2 4ra’B(3 — B?)
! = —d 7Y — 2 2 2.
dny = {2~ /) 21 - B+ g} BN T £ EE N (219
where the eross section for paraton pair production
4 2.2 2
o= —mele PB-F) (2.19)

12E(E — qo) 2
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has been included. B is the velocity of the outgoing paraton or antiparaton. Bon-
neau and Martin have calculated ( 2.17) to be

2 21 s
me ___cosy _ Lo ERABLeosd ) oy
2E21 — (p?/E*)cos?ty 2 T E—|p|cosip

2F
h() = =1/2 +log — +

h() does not depend on the photon energy, so to within some constants,

the qo integral is

I_/—~q (1-q/E+q*/(2E?)) S1E(E — 9 (2.21)
where
1 ..____“2 ) 99
pommd — v ‘).-‘
B E(E - q) (2:22)
3 - p 1l
— —_— .) ‘):
5 1+2E(E—q) (2.23)

and the subscript has been dropped on the go. ( 2.21) can be integrated exactly
... but unfortunately ASPs experimental cuts are gy < 10 GeV and | ¢ | > .8 GeV.
To calculate the cross scction corresponding to the ASP experiment would require
evaluating the energy integral in (2.16) first, with a § dependant lower bound, and
then doing the angle integral. This is not analytically feasible. A safe solution is
to take the lower energy bound to be qomin = (| @7 |min)/(sin 0in) = 2.3 GeV; e
the maximum energy possible for a detected photon with the minimum transverse
momentum. This ignores photons emitted at larger angles that would have been
detected, so the calculated cross section will be smaller than it truly is. (This allows
¢ to be larger, so makes the limit weaker.) The photons are emitted preferentially
at low energics and small angles (see 2.16), so taking go min = .8 GeV, for instance,

would overestimate the cross section.

To evaluate ( 2.21), define



2.3 ASP 14

(y = f?), so that the integral becomes

_ —1ra/ 1-y l
~ 3E? 1—y 1-—y—pu?/E? 2

(1 - y)2 1-—- Y #2 5
- - 2
2E2(1 -y) + (1 — y — 2/ E?) 4 AE? dy (2.25)

or

IEI1+I2+.[3+I4+15+16 (2.26)

From Gradshteyn and Ryzhik, (G+R) [16], equation 2.213.1

a ——  [(1-p*[E*+y—2y/(1-p?/E?)y
== |2Vy — V1 — 12/ E?log (

1-p?/E?—y

and
2 14+y—2/y
L+ I (+2E2)6E2[ \/— log( 1y (2.28)

I can be evaluated from G+R equation 2.213.5, which gives

Ta’ /l. vy o1 1+y-2./y
L= = —_— . .
3= R [1_y+2log( 1% (2.29)
I5 is simple:
2
_ T ap 5
I sEY (2.30)

and J; can be written

—7!'(1

li=%m /1— 2/E2—y 6E2/1-— 2/E2

dy . (2.31)

The first integral is like I;, I and I5, and the second can be evaluated using equation

2.213.2 from G+R, so

—Ta 02
== 9 z
h = i)
2 1— pu?/E? -2 1— u?/E?
2 1_112/E210g( 2/ E? 4y — 24/y(1 — p?/ ))

E? 1—y—p?/E?

. (2.32)
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Adding all the pieces together gives

4a°3¢?

0y = oslh(n/2) = h(x/9) [\/37 (H%E—)

T (- g (B T

2E? 1—u?/E -y
1 _ 2 2 3/2 Ymax
Lo (LYY L Y (2.33)
3 1-y 21—y 6 ||,

which must have numbers put into it. From ( 2.20) and ( 2.14), ( 2.33) becomes

204x1072=¢€[...] |Ume (2.34)

Ymin

where [...] is the same as the square brackets in ( 2.33), and

242

mazr — 1-
Y \/S_( \/‘;/?‘ - (Imin)

0 gmas < 10 GeV
Ymin = (2.36)

1—(262)/(5/2 = GmazV5) @maz = 10 GeV
V5 is 29 GeV, gmin is assumed to be 2.3 GeV and gmaz is the maximum energy the
photon can have. If the paraton is light, then gm.. is ASPs upper energy cut of 10
GeV; if the paraton is heavy, gn.; is the most energy the photon can have while
still leaving enough energy to make the paraton pair. This could be complicated to
calculate, because the rest frame of the incident e*e™ is not the rest frame of the
paratons. However, this does not matter because y = 4%, where f is the paraton

velocity in their rest frame, s0 Yymin = 0.
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Finally, putting ( 2.35) and ( 2.36) into ( 2.34) gives

p=1GeV €<.08
p=5GeV €<.08

(2.37)
p=10GeV €<.09

p=13GeV €<.20

(sce figure B.1).
2.4 beam dump

Beam dump experiments have often been used to constrain the parameters of weakly
interacting particles (see [12] for a list of some of these limits). In the case of
paratons, this calculation was done by E. Golowich and R. W. Robinett [12] using

data from the E613 experiment at Fermilab.

The idea is that paratons will be produced when the proton beam hits the tar-
get, and will reach the detector in large numbers if € < .1 ( There are approximately
100 “e = 1 interaction lengths” between the target and detector—if € = .1 this is
onc.). A large paraton flux in the calorimeter would probably produce hadronic
encrgy and no clectrons or muons, so would look like neutrino scattering. The E613
Collaboration cstimated that it had less than one hundred such interactions, which
gives a limit on the paraton mass and charge from requiring that the predicted flux

produce less than 180 ( 90% CL ) “neutrino scattering” interactions.

Golowich and Robinett calculate paraton production in the target from vec-

tor meson decay (pp = V+ X,V — ff ; where V = p,w,¢,orJ/¢ ) and from
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direct Drell-Yan production (pp — ff) . They neglect pion decay to ff 47 because
the paratons would not, on average, reach the detector with enough encrgy to pass
the experimental cut Eyi e > 20 GeV. At /s = 28 GeV the average number of
particles produced in a collision is 15, and many of them will be pions. Sinee the
incident proton has E ~ 400 GeV, the average pion will have ~ 400/15 ~ 30 GeV
of encrgy—dividing this cqually among the paratons and photon gives an average

cnergy of 10 GeV.

The limit calculated from these production mechanisms is
e=10" > 1.4 GeV
e=6x10"2 u>.6GeV
e=3x10"2 ;u>.5GeV (2.38)
e=25x10"% ;> .4GeV
e=18x10"% u>.4GcV

(sce figure B.1).



CHAPTER THREE
LAMB SHIFT AND G-2

Another way of setting experimental limits on paratons is to require that their con-
tribution to g-2 and the Lamb shift not disrupt the present agreement between
theory and experiment. The Lamb shift gives an interesting constraint, but rough
calenlations of the g-2 limit indicate that it is within the region ruled out by accel-

crator experiments, so it will be ignored.

3.1 g-2

The Dirac cquation implies that g = 2 for the electron; the non-relativistic limit of
the Dirac cquation (the Pauli equation) is [17)]

1 = =9 e . = _
[2m(P+cA) + 505 B - ep| ¥ = By (3.1)

where 3 is a two component spinor describing the non-relativistic electron, and
—¢7/(2m) is the magnetic moment . Defining

, e & .
A==-g5-5 (3.2)

‘."‘.‘ R 1 N _
(where S is the spin vector = 35) implies g = 2.

Calculating higher order (in @) contributions to the electron scattering am-
plitude gives, from the first order vertex correction, g — g + a/(27). Paratons do
not contribute to this, since it is just an ordinary vertex diagram with a photon con-
neeting the incoming and outgoing electrons. The paraton will contribute to only

one of the seven second order diagrams—the first order correction with a paraton

18
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loop in the photon propagator. It is therefore suppressed by at least a factor of o
However, the anomolous magnetic moment of the electron is known to 5 decimal

places past this, so it is still possible that g-2 might give an interesting limit.

The contribution of a massive paraton with e = 1 is [1§]

a1 (m,\’ -
Ag jas '754—5 (7) (J.J)
and if {19)
-9
(g _ “) — (1159652.4 £ 0.4) x 10~ (3.4)
~ expt

g-—2 9
(T) — (1150652.4 + 0.2) x 10~
& theo

then taking the paraton contribution Ags to be less than the maximum possible

deviation between the theoretical and experimental numbers (= 1.2 x 107") gives
it > 5.0MeV (e=1) . (3.5)

This is well below the accelerator limits. The same calculation for the muon mag-
netic moment gives u > .1 GeV, which is still uninteresting. If y is very small, and
€ < 1, then the paraton contribution to g-2 is [18]

2 9 2 2 2
o [ 1 me, 25 wpn  4p me ( jt )
-] {zlog— - — - log— + 3| — e 3.6
¢ <7r) [3 °8 p 36 +4m._. m? 8 7 + m, * (3.6)

Taking p = 1 eV gives
€< 1.3x1072 (3.7)

which is again not worth pursuing. The g-2 limit will therefore be ignored.

3.2 Lamb shift

According to the zeroth order solution of the Schrodinger equation for an electron

orbiting a proton, all the states with the same principal quantum number (n) are
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degencrate. One can then add pertubations that split the degeneracy [20]. The
spin-orbit interaction adds a term poportional to ¢ I that comes from the & - B
term in the Pauli equation and splits the 2P, and 2Py, states (the subscript is the
total angular momentum | J|=| L+§ ); this is the fine structure of the hydrogen
atom. The hyperfine structure causes the separation of the 1S ground state into two
levels (containing one and three states) due to the interaction of the electron and
proton magnetic moments. The list of “tree level” pertubations continues (Darwin

term, ctc.), but none of them split the degeneracy between 2P, and 285.

The Lamb shift does separate these two states by approximately 1063 MHz.
It is caused by two effects that contribute with opposite sign. The principal one
s from the vertex correction, and can be roughly understood as follows [21]. The
clectron can cmit and reabsorb virtual photons, which means there is a “virtual”
clectromagnetic field surrounding the electron. This causes fluctuations in the posi-
tion of the clectron , so that it sces a “smeared out” (and therefore weaker) Coulomb
potential. Since the potential is changing more rapidly near r = 0 where the s-state
has the greatest probability of being, the “ weakening” is more pronounced for £ =0

than for £ = 1. Paratons do not contribute to this correction to first order.

The sccond contributior comes from the “vacuum polarization” correction
to the photon propagator. The photon can briefly turn into a pair of charged
particles on its way from the electron to the proton, creating a cloud of virtual
particles around the nucleus. This shields the proton charge from the electron more
offectively at larger distances, so the energy of the 2P, state 1s increased relative

to the 25 state. The paraton can contribute to this.
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a) large mass limit
To order a, the photon propagator is [22

-1 2 A2 2207 1t 2,01 — -
_zgﬂz 1"%%10g7+%&[)(l:::(l—:)log(l—q (12 )>} (3.8)

2 ; ¢
q : T m; ms

where the sum is over charged particles of mass m; and charge @; = ¢;/¢ in the
loop. The first term is just a charge renormalisation term and can be ignored. The

second gives the vacuum polarization contribution to the Lamb shift.

Since the proton is far more massive than the clectron, the 4-momentum
transfer = ¢? can be taken to be —§?. The interesting term is therefore

2 o~
zgf; 2008 / dz 2(1 - z)log (1 + —(%———)) (3.9)

which gives the paraton contribution for m; = p and @Q; = e U §* <« p? the
logarithm can be approximated as (§22(1 — z))/p?), so that the paraton correction

to the photon propagator will be

g 20€? G
—_— 3.10
7?7 304 (3.10)
An electron orbiting a proton sees a potential [23]

= [ Dr(z ~ y)Ju(w)d'y (3.11)

where Dp(z — y) is the photon propagator from y to z and J, is the proton
current. Since the proton is approximately stationary, this can be taken to be
Ju(y) = 1€ 65 6%(y). (The v° matrix is being ignored because this is a non-relativistic
problem, so the anti-particle components of the wavefunction are hopefully negligi-

ble.) The paraton addition to the potential is therefore

4 —tq (z— y)zg#l’ ae? q v 3192
AA(z) = /d y/(2 e o raie8 o) (3.12)
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or

§(z). (3.13)

This is just (€2m?2)/ ;2 x {the vacuum polarization contribution from electrons}. From

first order pertubation theory, this introduces an cnergy shift for the state 3 of
AE; =<y |edA | ¥ >. (3.14)

The paraton contribution to the Lamb shift is therefore
€2m?
2

AE; = x 27.13 MHz (3.15)

where 27.13 MHz is the vacuum polarization contribution from electrons calculated

using ( 3.14).

The maximum difference between calculations and measurements of the

Lamb shift is approximately 0.09 MHz {24], so ( 3.15) implies

8.7x 1073 < HGeV (#2 > (Tz) . (316)
This is only applicable if 4? > §’? because it was derived on the assumption
that log(1 + =) = = (where z o §'/?). Bethe et al. [25] have calculated that the

average momentum transfer between an 2S-state electron and the proton is 226 eV,

s0 ( 3.16) probably applies for p > 1 keV, or € > 107*. The limit ( 3.16) is therefore

e=1 p>87MeV
e=10"2 pu>87keV (3.17)
e=10"% p> .87keV

(sce figure B.1).



CHAPTER FOUR
COSMOLOGY

Cosmological arguments provide two interesting constraints on the parameters of
the neutrino: a limit on the munber of light neutrino flavours, and a limit on the

mass. Both of these can be transposed into constraints on the paraton.

Big Bang nucleosynthesis calculations predict the observed abundances of the
light elements (“He, *He, D, Li) in the universe today. These caleulations depend,
among other things, on the number of light ncutrino flavours (or equivalently, on
the energy density) at ‘weak interaction frecze-out (T ~ 1 MeV). One can therefore
get an upper bound on N, by requiring that the predicted light element abundances
not disagree with observation. If the paratons were relativistic at T ~ 1 MeV| they
would count as ‘too many ncutrinos’, which gives the first cosmological limit on

paratons.

The second constraint on neutrinos and paratons comes from requiring that
the relic density in the universe today not exceed the critical density = p. that
would make the universe flat. (Inflation predicts p = p. ; most observations suggest
that the density is less than p..) When the temperature of the carly universe drops
below a given particles mass, these particles would start to annihilate. However,
if the universe is expanding fast enough, they would have a small probability of

finding each other, which would give a large relic density today.

Both these limits are derived on the assumption that the paratons are in
thermal equilibrium with the rest of the matter in the universe. For sufficiently

small ¢, this will clearly not be the case, so for each limit there is going to be some

23
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value of € below which the paratons conceivably could exist.

The first section of this chapter is a compilation of equations neccessary for
the second two; for a coherent introduction to cosmology see [27,28,29]. Scction 4.2
is an explanation of why primordial nucleosynthesis implies N, < 4.6; the nucle-
osyuthesis limits on paratons are in 4.3. 4.4 is a review of the approximation used
to caleulate the paraton number density today, and rough limits on the mass and
charge from this are in 4.5. And finally the upper bounds on € from requiring that

the paratons be in thermal equilibrium are at the ends of sections 4.3 and 4.5.

4.1 introduction to cosmology

a) the Robertson- Walker metric

The cosmic microwave background radiation (MBR) is evidence that the universe
was spatially isotropic (looks the same in all directions) when the photons decoupled.
The MBR spectrum is consistent with that of a blackbody at T = 2.7° K, and, if
one subtracts out the dipole effects due to the earths motion through the galaxy,
it looks the same in all directions down to at least 1 part in 10*. The photons
decoupled from matter when the electrons (re)-combined with the protons to form
hydrogen, so the isotropy of the MBR suggests that the universe was very isotropic

at Trecoms = 4000° K.

On very large scales, greater than those of galaxies, clusters, and superclus-
ters, the universe appears to be, or is assumed to be, spatially homogeneous (looks
the same at all points). The galaxy-galaxy correlation function, which measurcs
the inhomogeneity in the distribution of galaxies, gets smaller over larger distances,

which suggests that the universe is homogeneous on sufficiently large scales (the
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correlation function would be zero in a perfectly homogencous universe); and a
universe that is isotropic about all points must be homogencous, so unless we are

located at some privileged position, the universe should be homogeneous.

The metric for a spatially homogencous and isotropic universe is the Robertson

Walker metric [27,30], which can be written

2
2 _ 42 2 dr 2102
ds® = dt -—R(t)(l_kr2+7 dQ) («1.1)
where R(t) is the scale factor of the universe and has units of length (this means
r does not). For a closed universe (k= 1), the equation in parentheses is just the

metric for a three dimensional sphere (using r = siny) in which case R(f) is the

radius of an expanding (if the universe is expanding) sphere.

b) the stress-energy tensor

The stress-energy tensor of a homogenecous and isotropic universe is that of i perfeet

fluid:
T.,=(p+ P)UuUu ~ P (4.2)

where U is the four velocity of the fluid, p is the energy deunsity, and P is the
pressure. The fluid can be made of anything: galaxies, dust, radiation ...and is at
rest with respect to the homogeneous and isotropic space-like hypersurfaces. In the
reference frame of the fluid, it is clear that T,, must be of the form ( 4.2): isotropy
forces T;; = —Pg;;, and since Ty, is the flux of energy along i, it is zero becanse the

fluid 1s at rest.

The conservation of energy and momentum equation is

TY,=0=T, -1 T*+T% T (4.3)

[ "o ny
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where

[ _1_ —
Fuv_ \/__—g‘(\/-_g)n (4'4)

and ¢ is the determinant of the metric. One therefore has

1
fl“’ - — (/= ’_Z"’ - Tv ’4.
ow /—_g( ) o ).V Fou ¥ \ 5)

which becomes, substituting in the values of the connection coefficients and using
the fact that T, is diagonal,
o 1 [~ mo R 5
0= Ta ‘0 = _\/:g_( —g To ),o - Eg,-j T . (46)
This gives

0 = (R), + P(R%), (4.7)

which looks more familiar and meaningful if written

U oV
0= +Po- (4.8)

where U is the encrgy in some comoving volume V.

¢) the Einstein equations

The Einstein equations are

1
R, — sg,‘,,R = —87GT,, (4.9)
where R, is the Ricci tensor and R is the scalar curvature, not the scale factor R.
It can be shown [31] that for a Robertson-Walker metric, they give two equations:

a ‘time-time’ component

3R = —47G(p + 3P)R (4.10)
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and a ‘space-spacc’ component
RR + 2R? + 2k = 47G(p — P)R? (4.11)

where R = dR/dt. Substituting ( 4.10) into ( 4.11) gives

_'I'g_ k. 8xG

2 — —_—
HEm="mt 3

p (+.12)

This equation describes the cvolution of a homogencous and isotropic universe.
With the conservation of energy equation, it contains all the information in the
Einstein equations because ( 4.10) and ( 4.11) arc related by the Bianchi identitioes:
substituting R from the conservation of encrgy equation ( 4.7) into ( 4.12) gives the
‘space-space’ component of the Einstein equations, and the ‘time-time’ component,

can be derived from this using ( 4.12).

Both H (the Hubble parameter) and p (the energy density), are in principle
measurable today, so it should be possible to determine whether the universe is open
(k= -1), flat (k= 0), or closed (k = +1) from ( 4.12). Theoretical prejudice favours
a flat (k = 0) universe becausc (a ‘long enough’ period of ) inflation predicts it, and
the cold dark matter theory of galaxy formation scems to require it. Measurements

of p are therefore often written as a fraction

=" (4.13)
pe
where p, is the critical density that gives k = 0:
3H?
.= —— 4.14
Pe= 3G (4.14)

Measurements of 2 go as high as 4p., but most are clustered around @ = .1 [32].
(These are measurements of the total mass density on the scale of galaxies and
clusters; the luminous mass on the same scale is an order of magnitude smaller, and

2 could be larger on larger scales.)
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«, the carly universe

In a universe filled with an ideal gas of non-relativistic (m > T) particles (‘matter’)

Poat = MmatT K Pmat = MNpat (4.15)

where 1,4, is the number density of particles of mass m. The encrgy conservation
equation ( 4.7) therefore implies

Nmat X R . (4.16)

However, if the particles are relativistic (m < T), their masses are negligible and

they behave like radiation, so

P, = ”'gd Prag X T . (4.17)
Equation (4.7) then gives
Riprag + 4pRPR =0 = praq x R™* (4.18)

For R = 0, prad > Pmar, Which just says that the energy density of the hot early
universe will be dominated by relativistic particles, as expected. In the radiation

dominated era, the Einstein equation ( 4.12) can be taken to be

Ly 2
R 87G ¢
e (B) -t w1
(where ¢ is a constant relating the energy density to the scale factor) because
k. 8rG ¢
RE€TS R (420

for small R.

For an ideal gas of fermions (+) or bosons (—) in equilibrium at temperature

T, the number density per unit momentum range 1s

1

ni(q) = gim (421)
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where E = /72 + m? , v is the chemical potential (to avoid confusion with the
paraton mass ), ¢ labels the particle species and g; is the number of spin states
of the particle. The chemical potential is taken to be zero, on the assumption that
the universe has no net number density of any conserved quantum numbers. ¢, can
be confusing to count; I will treat the particles and anti-particles as one species, so
that g; = 2 for Majorana fermions and 4 for Dirac fermions. The munber density

is therefore

drg; /°° q* dq (4.22)

= (27)3 eEIT 41

and the energy density is

4mg; /°° E ¢*dq
0

;= 9

Pi= @ o FIT£1 (4:23)
In the relativistic limit the mass can be neglected, so
2

= L [T e %
n; il Jy Il (z=4¢/T) (4.24)
= g-(’(3)T3 (for bosons) (4.25)
= g. (3)T3 (for fermions) (4.26)

where ((3) = 1.202. In the non-relativistic limit, /T > 1 and E ~ m + ¢’/(2m),

which gives

. , )
n; = 2—‘(jr'—e""/r(2mT)3/2/ e z2dz  (z? = §2/(2mT))
0
3/2
— —m/T m; T) 4.27
G (4.27)

The energy density for non-relativistic particles is just

pi = myn; (4.28)
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and for relativistic particles it is

3
gi ~ z°dz
=L s, (429)
T[4
= %’—:—2—(%) (bosons) (4.30)
T4 1
= gz':;g(%) (fermions) . (4.31)

The total cnergy density of all the relativistic particles is

_ Gegf(T) T _ gegs(T)
P=" IS 5 I

where g.77(T) is the effective number of spin degrees of freedom of the relativistic

(4.32)

particles in cquilibrium at temperature T, counting 1 for each boson spin state and

7/8 for cach fermion spin state:
7 .
Gess = gIF for fermions
gess = gp for bosons (4.33)
See table B.2 for a list of g.ss as 2 function of temperature. Relativistic particles

that are not in equilibrium will also add to gess, but their contribution will be

multiplied by (T/T,)?, where T is their temperature.

¢) entropy

The second law of thermodynamics for particles in equilibrium in a volume V' at a

temperature T with zero chemical potential is
TdS =dE+PdV. (4.34)

The right hand side is d(pV) + P dV, and the conservation of energy equation (4.7)

gives
d dV
(v av _
dt(p‘ )+P 7 0. (4.35)
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One would thereforc expect the entropy in a comoving volume to he constant. This

is in fact the case. Taking S to be a function of V and T, ( 4.34) becomes

TdS(V,T) = d(p(T)V) + P(T)dV (4.36)

so that
9s 1 as Vidp .
v = T(P+P) a—T—’T:l—T- (4.31)

and requiring that 925/(0TdV) be the same, caleulated from cither of these equa-
tions, gives

oP 1
— == P). .
o7 = 7t P) (4.38)
The energy conservation equation ( 4.7) can be written VAP /0t = 0/0t|V (p + P)],
and using ( 4.38), this implics

a1V

= [Z(o+P) =0. (4.39)

This is the conscrvation of entropy equation. Taking the differential of what is 1n

brackets and using ( 4.38) gives

v 1 p
—_— = — — = l 4,
d [T(p + P)] d(pV) + AV = dS (4.40)

so V(p+P)/T is really the cntropy S. In a radiation dominated universe, p+P oc T,
so from ( 4.39)

T %{ (radiation dominated). (4.41)

This assumes that all the particles present are in thermal equilibrium, i.e.
that the density and pressure in the thermodynamic equation (4.34) are the same
as those in the conservation of cnergy equation (4.3). If there are n non-interacting

gases, so that the gravitational density is

i=1
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and the thermodynamic identity becomes
T.dS; = d(p;V)+ PdV V1 (4.43)
then the conservation of entropy equation is

ZT,E =0. (4.44)

Assuming that the entropy of each non-interacting ges “4” can not decrease, this

still implies that the entropy of cach ros is constant.

Entropy conservation means that the logarithm of the number of states ac-
cessible to the particles contained in a comoving volume is constant. As the universe
expands, the different particle species will become non-relativistic and annihilate
when the temperature drops below their mass. To keep the entropy constant, the
temperature of the remaining relativistic particles in equilibrium must increase by
some amount, which can be calculated from ( 4.39). If nes #(Ts) and nesp(Ta) are
the effective munber of spin degrees of freedom before and after particle species “4”

annihilates, then

V 4 negg(Ta) wT5 _ V4 negy(To) m°T4

T,3 2 15  T,3 2 15 (4.45)
or 1/3
T, = ["—!iTL)] Ty . (4.46)
nef!(Ta)

It is important to note that n.s; is somewhat different from the gy in
( 4.32). T, and n.ss(T,) are the temperature and effective number of spin degrees
of freedom of the particles in equilibrium with whatever the i”s annihilate to, and
T, and n.;(Ts) are for the same particles plus the “”s. gess is the total number
of effective degrees of freedom of all the particles present—including those not in

cquilibrium with the “”s.
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For instance, below T ~ 1 MeV the neutrinos are no longer in equilibrium
with the photons and clectrons because they interact to weakly (see next section).
So when the electrons annihilate, the photon temperature will increase from Ty to

T,, where

) 4x771/3
T, = [ +‘) 8 ] Ty . (-1.47)

The neutrinos will remain at T,.

The temperature of a gas of massless particles always scales as 1/R because
the energy is inversely proportional to the wavelength. So if the neutrinos are
massless, there should be a ‘neutrino microwave background’ at T, = (4/11)"/*T,

(where T, ~ 2.7° K).

f) equilibrium

A particle species is assumed to be in cquilibrium if 7 = the time scale for the
ensemble to change its energy (not including rest mass) by an amount comparable

to its initial value, is less than the age of the universe.

In the early radiation-dominated universe where p o« R™* and % is negligible:

R [8xGp 1.66

=== = ——/Geys T? 4.4
H R 3 m,,,‘/g”T (4.48)

(using 4.32). One can also write
H=-L2 (4.49)

which gives

(early universe). (4.50)
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The age of the universe is thercfore roughly one over the expansion rate. Putting

units into ( 4.50) gives

1 .
tsec T (early universe). (4.51)
MceV

The cnergy exchanged in an interaction between relativistic particles is of
the order the energy of the particles, so the time scale for a particle “i” to change

its energy by an order of magnitude is

1
~ = 9
T T, (4.52)

where T is the interaction rate for particle species “2” with everything else. Tech-
nically, T; should be

=Y [ni(@)ous &g (4.53)

i

where the sum is over the various particles that the “:”s can interact with, who
are assumed to be in equilibrium and have number densities per unit momentum
range, (sce 4.21), equal to nj(§). B is the relative velocity of the two particles, o;;
is the cross section for an “” to interact with a “j”, and the integral is over the

distribution of “j”s in momentum space. I am going to approximate this as
Ti(T) = )_n;(T)oi; B (4.54)
J

where nj(T) is now the “5” number density, and B ~ 1 in the relativistic limit.

Thercfore, the “” particles are in equilibrium if

1 1
T, < Y I'i>H (4.55)

As an example, consider the interaction of light neutrinos with other light
leptons. For T « mw, mgz, weak interaction cross sections are roughly

g2 T2

3
My

(4.56)

g~



4.2 nucleosynthess 35

(where g is the weak isospin coupling constant) so the interaction rate for a neutrino

will be (using 4.26 and 4.54)

m3 2m2
r~% (ﬂ) o1 (4.57)

72 | my

where the sum is over the other leptons.

If the neutrinos are in equilibrium with the thermal bath of leptons and other
particles when T' > H, and dccouple when ' = H, then (for T < myy) they will be
in cquilibrium at high temperatures and decouple as the temperature drops. This is
because I' ~ T® and H ~ T? To estimate the temperature at which this happens,

set I' = H, which gives, using ( 4.48) and ( 4.57) with g; = 4 for the clectrons,

My ; w? Tn?‘V . |

This gives a neutrino decoupling temperature of
Ty ~2MeV . (4.59)

The actual temperature is closer to 3.5 MeV for v, and v, who ouly interact via

neutral currents, and 2 MeV for v, [33].

4.2 nucleosynthesis

There are two pieces of good observational evidence for the Hot Big Bang model:
the isotropy of the cosmic microwave background radiation and the observed abun-
dances of the light elements. Primordial nucleosynthesis calculations predict the
observed mass fraction of *He ( Y, = (4ny.)/np ~ .25, where ny is the baryon
number density), and number densitics relative to hydrogen of *He (~ 107%), D
(~1—5x107%), and Li (~ 107%) [33]. This agreement between theory and ob-

servation, across eight orders of magnitude, is impressive support for the theory,
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particularily since there arc no other scenarios (at present) that can account for

these abundances.

The theoretical calculations depend, among other things, on the number
of relativistic particle specics present when the weak interactions freeze out. By
requiring that the predictions not disagree with observation, one can get a constraint
on the number of relativistic particle species at freeze out, which is usually written
as an upper bound on the number of (light) Majorana neutrino flavours [33,34,35],
and which T will take to be 4.6 [35]. Assuming that there are three massless (m, <
1 MeV) neutrinos, this means that the paratons can not be relativistic and in

equilibrium when the weak intcractions freeze out.

a) making Helium

As caleulated at the end of section 1, neutrinos stay in equilibrium with the rest of
matter until Ty ~ a few MeV. Above this temperature the neutron to proton ratio

will be kept at its equilibrium value by the reactions
ntet —p+iv
n+ve—pte” (4.60)
ne—pt+e +v
At some temperature slightly below Ty, the reactions ( 4.60) can no longer keep up
with the expansion rate, and the neutron to proton ratio will ‘freeze-out’ at

LN

Ny

o e 8m/Ts (4.61)

where Am =m, —m, ~ 1.3 McV and T; ~ .8 MeV is the frecze-out temperature.

nu/n, then decreases slowly as the neutrons decay to protons.
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Baryons are sufficientiy rare in the carly universe that three or four body
interactions are very unlikely. Nuclei therefore have to be made by a series of
two-body processes, the first of which is the making of a denterium nucleus. The
deuterium binding energy = Eg is 2.2 MeV, so they can be made about the time
the neutrinos decouple. However, there are far more photons in the universe than

there are baryons—the baryon to photon ratio = 1, is
107% > 4 > 1071, (4.62)

For temperatures just below 2.2 MeV, the average photon encrgy will be less than
the deuterium binding cnergy, but there will be enough high encrgy photons to
disassociate any deuterium as soon as it is formed. If T'y is the rate, per neutron, at
which deuterium is formed, and T'; is the rate per deuterium nucleus at which it is

photo-disassociated, then an appreciable amount will start to form when I'y > Iy
Mn > no(Ey > E) > neFolT (4.63)

or at a temperature T, (nuclcosynthesis temperature), where
logn > Eg/T,. (4.64)

This happens at T, ~ .1 MeV. The binding energy of the other light nuclei is larger
than that of deuterium, so their equilibrium abundance is much higher (it takes a
more energetic photon to dissassociate them). However, since the heavier miclei
must be made by two-body processes, nucleosynthesis must wait until deuterinm

is formed. It therefore proceeds very rapidly once the temperature is past the
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“deuterium bottleneck”, via reactions like
n+p— D+7y
D+D-—*He+n
D+D—T+p
D+D —4He+7 (4.65)
T+D-—*He+n
D +3He —*He+p

%He +3He —*He + 2p
and almost all the ncutrons become part of helium nuclei. Since there are no
stable nuclei with atomic masses 5 and 8, it is difficult to make nuclei heavier than
1He by two-body processes, and as the temperature drops, it becomes increasingly
difficult for the protons to penctrate the Coulomb barriers of the nuclei. This is

why primordial nucleosynthesis only makes light nuclei, principally ‘He.

If the neutron to proton ratio freezes out at T ~ .8 MeV, n,/n, ~ 1/6 at
this time. The neutron to proton ratio then decreases due to § decay, so at T ~ .1

MeV (nucleosynthesis)

[ 1 —t/T
" 5¢ (4.66)

where 7 is the neutron half life and t ~ 100 seconds (see 4.51) is the time between
freeze-out and nucleosynthesis ( = the age of the universe at nucleosynthesis, since it
is only ~ 1.5 seconds old at frecze-out). This gives na/n, ~ 1/7 at nucleosynthesis.

If all the neutrons end up in helium, the primordial helium mass fraction will be

. 2n,/n
Y, = =P~ .
" 14 n,/n, 25 (4.67)
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which agrees well with the obscrvational estimates .22 < Y, < .26 [33].

b) parameters this calculation depends on

The value of Y, predicted by numerical calculations depends on 7,75 = the neutron
half life, N, = the number of light Majorana neutrino flavours, and 5 = the baryon

to photon ratio [33].

Almost all the neutrons are incorporated into *He at nucleosynthesis, so Y,
is essentially determined by the neutron to proton ratio at that time. This depends
on the temperature at which n,/n, freezes out and on the fraction of neutrons
that decay to protons between freeze-out and nucleosynthesis. Both of these effects
depend on 7y, where in the first case 71/, is a measure of the strength of the charged

current weak interactions.

The neutrinos decouple when the weak interaction rate (= AT" ; sce 4.57)
can no longer keep up with the expansion rate (= BT? ; see 4.48), or when

B
3 [ —
Ti~ . (4.68)

The more strongly interacting the neutrinos are {the larger A is), the longer they
will stay in equilibrium so the lower Ty (and therefore Ty) will be. Since n, /1, ~
e~8™/Ts | this means that the number of neutrons at freeze out will decrease, giving

less *He . If 11/, decreases, then the weak interaction rate increases, so that
1/3
Ty o [11po] / (4.69)
As 7y, increases, the number of neutrons at frecze out increases.

The neutrons decay to protons between freeze out and nucleosynthesis, so as

712 increases, a smaller fraction of them decay, which will increase the neutron to
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proton ratio at nucleosynthesis. This is insignificant compared to the first effect:
if the neutron half life is increased by an amount ATy, then the argument of the

exponential in ( 4.66) changes by an amount
t/r = t/7(1 - AT/T) (4.70)

and the argument of the exponential in ( 4.61) becomes (using 4.69)

Am  Am AT
— = — (1 == 4.71
Ty - Ty 3T (4.71)
where Am ~ Ty,and t ~ 100 seconds, T ~ 10.4 minutes. (AT ~ .2 minutes = an

upper bound on the experimental uncertainty on the neutron half-life).

So as Ty, incrcases, the weak interaction rate decreases, the neutron to

proton ratio freezes out earlier and more 1He will be produced.

T, can be changed (sece 4.68) by varying A ( o the strength of the weak
intcractions), or B ( « the energy density at freeze out). As the energy density
increases, the universe expands faster, so the weak interactions freeze out earlier.
This increases the neutron to proton ratio and produces more ‘He. An upper bound
on Y, therefore gives an upper bound on the energy density at freeze out, if all the

other parameters are fixed.

At T ~ a few McV, the universe is radiation dominated, so the density is
(scc 4.32) p = 1gesspy. An increase in p is therefore equivalent to an increase in
des> since p., depends only on the temperature. gess(Ty) is usually calculated by
considering only the photons, the electrons and some number N, of (light Majorana)

neutrinos. So an upper bound on p is an upper bound on N,.

The third parameter that the predicted helium mass fraction depends on is

the baryon to photon ratio 7. As it increases, the number of ‘energetic’ photons
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per nucleon decreases, so the temperature = T, at which an appreciable amount of
deuterium can be formed increases. This allows less time for the neutrons to decay
(see 4.51) , and makes it slightly easier for the baryons to find each other at T,
because the density is higher. T, depends logarithmically on g (see 4.64), so Y, is
not strongly dependant on the baryon to photon ratio. This is fortunate, becanse

it is difficult to measure.

Before considering how to measure 7, it is important to know whether a
lower or upper bound is wanted. Increasing the number of baryons per photon
increases the amount of *He produced. But ¥, can be measured—-what is wanted is
an upper bound on N,, from the measured values of Y, 75, and 5. So one needs
an upper bound on Y, (because Y, increases with N, ), and a lower bound on 7y,
and 7, because Y, decreases as they do, so more neutrino flavours would be allowed

for small values of the neutron half lifc and the baryon to photon ratio.

Since the baryon density of the universe is not known, it is very difficult to
calculate 7 directly. However, the amount of *He and D left over after nucleosyn-
thesis depends on the competition between the reaction rates (x 1), since the D and
3He number density increases with 1) and the expansion rate. H(T,) « TZ, and
T, increases as n does, but this dependance is only logarithmic, and can be ignored
in comparison with that of the reaction rates. So as 5 decreases, the D and *He
are less efficiently transformed into *He, and an upper bound on their primordial

abundance gives a lower bound on 7, as desired.

Unfortunately, we can only measure the abundances today, not the primor-
dial ones ... this makes the upper bound on (D+ *He)/H difficult to calculate. It is
the cause of the discrepancy between the upper limits on N, of [34] (N, < 5.5-G)

and of [35] (N, < 4.6). ([34] were using an anomalous measurcment of the present
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(D + *He)/H ratio that was a factor of 5 Jarger than [35]s upper bound, and which
was subscquently decreased by an order of magnitude.) The idea is that although
D is easily destroyed (it is burned to *He in stars), *He is less so. By estimating the
fraction of 3He that will survive stellar burning, one can get a (rough) upper bound

on the primordial value of (D+*He)/H [33,35].

The numerical calculations of Y, give a value that is well approximated by
[35]
Y, = .230 4 .011log 1o + .013(N, — 3) +.014(m/2 — 10.6) (4.72)

where g = 730 X 107'° and 7y, & 10.6 minutes is measured in minutes. Rearranging,

and using y3p = the primordial value of (D + *He)/H instead of 7 gives [35)
N, = 3+ (10.6 — 712) + (¥, — .243)/.014 4 9/7log{10"y3p) (4.73)
which becomes, using 7472 > 10.2 minutes, Y, < .26 and y23p < 1074 [35]

N, <46 . (4.74)

4.3 limits on paratons from nucleosynthesis

a) lower bound on the paraton mass

Assuming three light neutrinos, ( 4.74) allows 1.6 extra Majorana neutrinos, or their

cquivalent in other particles.

In the model where a paraton has intrinsic fractional hypercharge (no para-
photon), a paraton and anti-paraton with g < 1 MeV would be relativistic when
the neutron to proion ratio freezes out, and would count as two neutrinos. This is

ruled out by ( 4.74), so if the paratons are in thermal equilibrium with the photons
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at T> T; ( so that they contribute an cnergy density T1 ), one has (see B.2)

p>1MeV (without y'). (1.75)

For small ¢, the paratons will not be in equilibrium and this limit will not

apply. This will be discussed later.

( 4.75) is a rough limit on y; the neutron to proton ratio freezes out around
.8 MeV, and it is difficult to calculate the energy density of a particle in equilibrium

at u ~ T (one can not approximate the integral in 4.23).

In the model with a paraphoton, the mass limit is considerably more strin-
gent. The paratons annihilate principally to paraphotons, which raises the para-
!

photon temperature with respect to that of the photons, and means that the 5

contribute (see 4.32)

T \"
Jess =2 (i—) (4.76)

where T, is determined from ( 4.46) to he

2+ x4 1/3
T, = [ = } T.. (4.77)
1.6 ncutrinos contribute
Tx16¥%2
9ess(1.6 v) = . 5 2228 (4.78)

which is less than 7.7 = gess(7') from ( 4.76). The photon gas must therefore b

heated by annihilations between T ~ p and weak interaction freeze out.

The temperature at which the paratons must annihilate is calculated by
requiring that the paraphotons contribute less than 1.6 neutrinos to g.sy at weak

interaction freeze out:

T..\*
ycu(v’,T,)=2(-T’—) <238 (4.79)
v/ f
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or

4
(T—”) <14 (4.80)
T/,
From ( 4.76), s
T
— | =3. 4.81
(T‘T)a 5 ( ° )

just after the paratons annihilate, so the photon temperature must increase with
respect to that of the paraphotons by (3.9/1.4)'/4. But from ( 4.46) this is just

3.9 1/4_ Tlej_f(Ta) 1/3
(f2) - (nemn)) (4:82)

where nep(T,) { neyp(Ta) } is the effective number of degrees of freedom of the
gas of particles in equilibrium with the photons just after the paratons annihilate
{ just before the neutrinos decouple }. n.s(Tq) =24 7/2+ 3 x 7/4 (for photons,

clectrons, and neutrinos) so from ( 4.82)

= (4.83)

3.9\3143 93
ne,,a,,):(ﬂ) 17

which implies T, > T, (sec table I), where T, is the quark-hadron transition tem-

perature, 200 McV < T, < 400 MeV. So one has (see B.30

1> 200 MeV  (with v'). (4.84)

b) upper bound on €

The lower bounds on g assume that the paratons would be in equilibrium with the

clectrons and photons at T ~ a few MeV. For very small € this will not be the case.

The paratons are assumed to be in equilibrium when their interaction rate
with ordinary matter is much greater than the expansion rate of the universe. How-

ever, unlike the weak interaction cross sections below myy, paraton cross sections
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decrease as the temperature rises, so the paraton interaction rate increases more
slowly with temperature than the expansion rate. This suggests that paratons will
behave in exactly the opposite way from neutrinos—instead of being in equilibrinm
at high temperatures and freezing out as the temperature drops, they will be in

cquilibrium at low temperatures but not at high ones.

For sufficiently small €, the paratons will not be in equilibrium at T ~ a fow
MeV, their temperature will be unknown, and the lower bound on s from N, < 4.6
may not apply. To calculate this value of €, assume that the paratons come into
thermal equilibrium when I' = H, and that this must happen before T = 5 MeV

for the mass limit to apply.

At T ~ a few MeV, the only charged particle available for the paratons to
interact with is the electron, so temporarily ignoring collisions with photons, the

interaction rate is (sce 4.54)
ny
4

(sece Appendix A for an explanation of the factor of 4). Assuming that the electrons

T ~n.o(fe— fe)f+ ~Lo(ff— e ct)p (4.85)

and paratons are relativistic,

T3
e = Tf = — 4.80
n g 2.3 ( 8 )
(see 4.26), and [306]
- _ a’e?
O'(ff — €+C )2 —,T';— . (487)
The interaction rate for annihilations is therefore
2,2
T~ (—I—;—T . (4.88)

o(fe — fe) is infrared divergent, so must be delt with more carefully. The differ-
ential scattering cross—section is [37)

dosar  €a® s + 12
d 25  u?

(4.89)
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which is roughly (taking E = || = T and neglecting t*)
(s _ o |AF
Q. — 8T? |p
where |Af] is the momentum transfer. This gives a differential interaction rate
dT seat do seat T3 2a? s? + 12
a0 ™ Tde P T 23T W

It should be acceptable to approximate the clectron number density as that of a

(4.90)

8 (4.91)

relativistic gas, even though T, ~ 2m..

A particle was defined to be in equilibrium if I' 3> H because this meant
that it could change its energy as fast as the universe was cooling (see section
4.1.f). However, in this argument, it was assumed that the energy exchanged in an
interaction was of order the energy of the particles, and it is precisely because this is
not true that the scattering cross-section diverges. For a fixed momentum transfer
1A (or scattering angle 8), it will take ~ |Ap'|*/|7? interactions (squared because
it is a random process) to change the momentum by an order of magnitude. One

therefore needs
|Aﬁ|2 drscqt
72 dQ

to keep the particle in equilibrium. Using

P [FEe

dQ > H (4.92)

s 4,
|Ap? u? (4.93)
in equation (4.92) gives
T3 e2a? [ (4 + (1 + cosf)?)!/?
P d .
2.3 8T / (It cost) > H (4.94)

as the condition for paratons to be in equilibrium.  is the centre-of- mass scattering
angle, and masses have been neglected in calculating s, ¢ and u. One can then

rewrite the integral in the tractable form

g ey
o / Ve Y (4.95)
Y
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where y = 1+ cos 8. This still diverges as the momentum transfer u ~ T?y goes to
zero. However, in a thermal bath, the photon acquires an effective mass m, ~ T,
so scattering interactions with u < ¢*T? are forbidden. This gives a lower bound
on the y integral of yn,in = 47a, so (4.94) becomes

2.6e2a?T > L00Veis 7o

(4.96)
Myl

The left hand side of (4.96) is the scattering interaction rate = [,.q, 50 an upper
bound on ¢ (below which paratons will not be in equilibrium at nucleosynthesis and

therefore could exist) can be calculated by setting H =T' =T, + ['yopp ot T = 5

MeV. So
87G [g.4(T) w2
30702T = ¢_3_/%<_)B T (107)
T=5 MeV
or
oo L [4me(T) o (4.98
~ 3a’my 45 -98)
T=5 MeV

where m,; is the plank mass, and g.;;(T = 5 MeV) is 43/4 (sce table 1), which

means that the mass limit does not apply for
e<4x107? (4.99)

(sce figure B.2 and figure B.3).

This calculation ignored the scattering of paratons off photons. T the model
without paraphotons, this is not a problem because paraton -photon interactions
are O(e'). In the model with paraphotons, this is still acceptable; a paraton can
interact with a photon and a paraphoton, which is O(e2aa’), but since o' = ¢ this

is still unimportant.
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44 Q2<1

The second cosmological limit on paratons comes from requiring that they not
overclose the universe. Since Q ~~ 1 is attractive to theorists, and most observations
suggest 0 < 1, it should be reasonable to expect the paraton density today to be

less than the critical density
p. = 1.88 x 107A? g/cm® (4.100)

where 1/2 < h < 1 comes from the uncertainty in the Hubble parameter (H = 100h

(km/sec)/Mpc).

In the hot very carly universe, the paratons are assumed to be in thermal
cquilibriun with ordinary particles for T > p (this assumption will be discussed
later). As the temperature drops to < ji, they become non-relativistic and their
cquilibrium number density will drop very fast (it is suppressed by e T see 4.22
and 4.27): when the paratons meet, they annihilate, but it is difficult to find a
pair of particles with enough energy to make an f + f. Meanwhile, the universe is
rapidly expanding, so it becomes increasingly difficult for the paratons to find cach
other. When T~ 41/20, this expansion has sufficiently decreased the paraton number
density that they no louger can find each other and the number per comoving volume

stays approximately constant until today.

The more strongly interacting paratons are, the more efficiently they will
find each other to annihilate, so the lower the relic density will be today. Paraton
cross sections go as ~ €2/ E%, where Ej is the paraton energy, so they become more
“weakly interacting” as € gets smaller or as o gets lacger. This means that requiring
Q! < 1 will give a lower bound on € and an upper bound on g. The same argument

for neutrinos gives a lower bound on m,, because (for E, < my), the cross sections
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go as ~ E2 /M.

a) Lee and Weinbergs approzimation to the rate cquation

If there are N particles in a volume V at time ¢, and n = N/V is the nuniber
density, then

dn 1dN N JdV

G-V a Vid (1.101)

In the early universe, V' o« R3(t), and dN/dt = Nx {creation rate  anihilation

rate}. In the usual approximation (see 4.54), the annihilation rate is
Fan'n. = naannﬂ- (‘11()2)

The creation rate would be difficult to calculate directly; however if the particles
were in equilibrium in a box, the number created per unit time would have to be

cqual to the number that annihilated, so

dN afl )
= = (Nn = Negnip)= (1.103)

where n is the actual number density, n,, is the cquilibrium number density, and o

is the annihilation cross section. This gives
— = ——n—-—(n"—ng) (4.104)

( which differs from the Weinberg and Lee equation [38] by the factor of 4, beeause
their n is the particle number density, and mine is for particles and anti-particles;

sece Appendix A).

The interesting physics is in the decrease in 1 due to annihilations  not
duc to the expansion of the universe. So instead of calenlating the change in the

number density with time, consider the change in the nnmber of particles in a
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comoving volume with temperature (i.e. dN/dT). The decrease in n due to the
expansion, which causes the particles to freeze out, will still be taken into account

because dN/dt depends on n (see 4.102).

It should be possible to label a comoving volume by the number of photons
it contains, because the photon number density is proportional to T3 (see 4.25), and
the wavelength scales as R(2), so n(t)R3(t) = a constant. There are two possible
problems with this— it neglects the heating of the photons due to other particles
annihilating into them, and the temperature will not scale as 1 /R(t) if the photons
arc in cquilibrium with non-relativistic particles in a matter dominated universe,
because the matter temperature will not scale as 1/R(t). The second problem is
not serious: in the standard model cosmology, the universe does become matter-
dominated some time before the clectrons and protons ‘re-combine’, and therefore
decouple from the photons (how soon before depends on the value of Q). However,
the temperature is so low, and the universe is expanding so slowly, that it does
not matter. The first problem can be partially solved by calculating the amount of
heating due to annihilations (see 4.46), and putting it into the calculation by hand

at the end.

If
f(T) = n,(rrl;) (4.105)
feo(T) = ”:'r(f ) (4.106)

where T is the temperature of a fictitious gas of photons that is not heated by any
annihilations after the paratons freeze out, then f and f., are proportional to the
number of particles, and the cquilibrium number of particles, in a comoving volume.

Differentiating f gives

df 1dn 3n
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and from ( 4.104)

dn 1 R
_——= — —_ 1.108
T T ( 3Rn 4 (n neq)) (+4.108)
where T = 8T/0t and R = OR/dt. If the temperature is measured in units of
paraton mass
r=T/n (+1.109)
this gives )
df |T1 R o , , n
oy = [T T ( 3Rn 2 (n°—mng)| - 3'1‘" . (4.110)
If T x 1/R, then - .
T R
TR (4.111)

so the first and third terms in ( 4.110) cancel. This is true for the fictitious photon
gas, but for real photons, the ‘constant’ that relates T to 1/R will be temperature
dependant (because of the heating by annihilations) so ( 4.111) will not be strictly
true. This will be ignored, because it is not a very important effect, and the differ-
ential equation is not analytically solvable without this correction, let alone with it.

(It has been done numerically for a varicty of particles with this correction [39].)

Finally, from ( 4.111) and ( 4.48)

/3
%= ‘/ﬁIF (4.112)

df ;wﬁmp, 45 2 g2
— 4.11

For relativistic particles n., « T°, (sce 4.24), so that [ = [, = a constant

so that

is a solution of this equation. This makes sensc because for ¢ <« T, the same
number of paratons will be created and destroyed, so the number of particles in a
comoving volume will remain constant. As T drops below the paraton mass, the

approximation ng, o« T3 ( 4.26) does not Lold, and n = 1., is no longer a solutjon,
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Lee and Weinberg integrated ( 4.113) numerically for heavy neutrinos of
various masses. They say that their results can be approximated, to within an
order of magnitude, by assuming that the neutrino (paraton in this case) has its
equilibrium number density down to some freeze out temperature zy, (assumed
< p, so that the particles are non-relativistic) and only annihilates below that
temperature. This neglects the increase in n with respect to ne above z; due
to the paratons having difficulty finding each other, and neglects any crecation of

particles below z;.

For z < zy,
%f. = bf? (4.114)
T
and at z;
dfeq 2
4.11
o, =l (4.115)

where

b=ﬁi’ﬁ"2‘ﬂ\/f‘-§ . (4.116)
8,/g¢” 73

Equation ( 4.114) gives the number density as a function of temperature for
x < xy, and ( 4.115) defines ;. df/dz is positive, because although the number
density is decreasing in time, it increases with temperature. ( 4.114) can be solved

Ly setting f(z) = A(x + a)™:

mA(z + a)™"! = bA*(z + a)*" (4.117)
which implies m = —1, and A = —b~'. This gives
-1
fla) = Zta (4.118)

where a is a constant to be determined (later). From ( 4.27),

_ Y5  —ir_-3/2
feg = WC I+~ (4.119)
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where gy = the number of paraton spin degrees of freedom = 4. Substituting
( 4.119) into (4.115) gives
4 ey e (=3, 1 4 AN
e~z — 5] =t Mg 4,120
(27)*/? s 2z + Ty ’ (2%)3/20 g ( )

x is assumed to be small (of order 1/10), so 3/(2z;) can be neglected in comparison

with 1 /.1.'}, and ( 4.120) becomes

flag) = fegxy) = blln—? (1.121)

This determines the constant in ( 4.118), implying that

f(2) = o

. (4.122
(2 + 25— x) )
In the limit where £ — 0 (the present “zero temperature” universe), the paraton
number density will be
T:]
n(today) = ———— 4.123
(foday) = ST T 1/a)) (4129)

where T 1s the temperature of the fictitious photon gas that was not heated by
annihilations, and z has yet to be determined from ( 4.120). Negleeting the 3/(2x;)

in ( 4.120), and taking the logarithm of both sides, gives

1 4b 1
N Ty = —_ - = 4.12
leg.Lf log ((27;-)3/2) y (4.124)

or, neglecting the log(z),

-1 -1
[45 pofimy, jofl
=11 e = 4.125
Ts [og ( 39 73 gc”)} [41 + log ( T ( 5)

&y is not very sensitive to the mass and annihilation cross section of the paraton,

and tends to take on values between 1/10 and 1/30.

To get the paraton number density today in termns of known numbers, T

(the temperature of the fictitious photon gas) must be expressed in terims of the
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present temperature of the microwave background radiation. But this is simple
using entropy conservation: from ( 4.46)

1/3
ness(Ty)
= [ Lol 4.126
T (ne”(today)) T ( )

where nqsy(Ty) is the effective number of spin degrees of freedom of the relativistic
particles in equilibrium with the paratons at freeze out, and n.y (today) = 2. nesy
is taken to be equal to gers. The paraton energy density today is therefore, from

(4.123)

2 TS [64n® 1
today) = -— . . (4.127)
ps( \/gcjj(Tj) ofmu\ 45 z3(1+1/z))
If o4 is in units of GeV~2, then this is
3.2x10°% 1 3
pr = g/cm”. (4.128)
aﬂ\/gefj(Tj) «3(1+1/zy)

Wolfram {41] has numerically integrated ( 4.113) for charged particles (¢ = 1)
and says, like Lee and Weinberg, that the numerical results are within an order of
magnitude of an analytic approximation that he does not describe in detail. It
sounds like this one, except that the relic density that he calculates is a factor of ~
8/5 larger than ( 4.128). This is unimportant for a rough calculation such as this,
but since the lower density gives a weaker limit on g, I will use ( 4.128). (Wolfram
gives the relic number density as

§x10% _,

1o By[Neys i

where g is in GeV, o is in GeV™? and Nesy is gess/2. Transforming ( 4.128) to the

(4.129)

same units, and using a; = 1/20, gives
3.7x107% _,
——m
/‘aﬂ\/geff

so the two equations differ by less than a factor of 2.)

(4.130)
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4.5 limits on paratons from 2 < 1

a) upper bound on

Paratons can annihilate to 1) a pair of paraphotons, 2) a photon and a paraphoton,
3) two photons or 4) a pair of charged particles. The first two are obviously ouly
possible in the model with paraphotons. In this case the cross sections for 2) and
4) will respectively be suppressed by a factor €a/a, and e2a?/aj with respeet to
1), and since € < 5a, (see 1.15), these can be neglected. 3) is even less important
because it is proportional to e'. In the model without a paraphoton, only 3) and 4)

are possible, so the paratons will annihilate to charged particle pairs.

The non-relativistic cross scction for ff — 4’4" is [40)
7r___a'§2

A

so requiring that the paraton density today = p; be less than p, implies that (from
(4.128) and ( 4.100))

3.2 x 107392

g3(1+1/24)y/9ess(Ty)mad

2
—"2;" < 1.88 x 1002\ /g, /(T )a%(1 + /) . (4.133)
2

One can get a rough idea of what this limit implies by setting xy = 1/20 (see (4.125)

g =

(4.131)

g/em® < 1.88 x 1021 g/em’ (4.132)

or

and following paragraph), h = 1, and /G.7; = 13 (see table 1) which gives
i < 10%ay GeV (4.134)

in agreement with [42]. From (1.15), a3/10 < € < Sary, so the weakest limit on p as

a function of € will be approximately

1< 10% GeV (e < 107%). (4.135)
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This limit is cut off at ¢ = 1072 because this corresponds to ay < 1/10, i.e. above
this value the U(1); would become strongly coupled. I do not know how such a

thing would behave, so I will assume that a; < 1/10, which implies

<10 GeV (e >107%). (4.136)

This gives a rough idea of what the limit looks like, so the calculations can

now be redone using the proper 4 and e dependant values of ¢g.;y and z;. Using

@y = min(1/10, 10¢), 1/gcs7(1 TeV) = 13 and lower temperature values from table

B.2, gives

e>» 17?7 u< 10" GeV
e=10"% u<10 GV

e=10"" 1 <80 GeV
{withy') (4.137)

e=10"% <8 GeV
e=10"% 51 <600 MeV

e=10"7 p<60MeV

(see figure B.3).

If there is no paraphoton, the paratons do not interact as strongly (because
€ < Sap = ea K az). As the temperature drops below their mass, they have more
difficulty finding cach other, which gives a higher relic density today. The upper

bound on p from py < p, should therefore be lower than ( 4.137).

A paraton with intrinsic fractional hypercharge should annihilate to a pair
of charged particles, providing jo > ... If the paraton was lighter thau the electron,

it would have to annilulate to a pair of photons, which is O(e*) and therefore very
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difficult. However, nucleosynthesis rules out < 1 MeV, so it is reasonable to

assume jg > me.

The cross section for a pair of non-relativistic particles to annihilate to a

pair of relativistic ones is {41]

re?a?

1B

where N(T,) is the effective number of relativistic charged particle species present

N(T,) (-1.138)

when the paratons annihilate:

N(T,) =) Q? (-1.139)

and T, is now the temperature at which the paratons annihilate. The sum is over
particles of charge ; and mass < ji. As usnal, a ‘particle” includes both the partiele
and anti-particle, so the electron and positron together contribute 1. and cach quark

flavour contributes 3Q%. N(T) is calculated up to ry >y in table B.2.

From ( 4.128) and ( 4.100), requiring p, < p. gives

2
E <1002\ fgoy /(T 22(1 + 1/ )N(T,) (4.140)

2
where g is in GeV, as usual. Taking h =1, fgesy = 10, 0y = 1/20, and N(T,) = 7
gives a rough upper bound:

it < 2x10% GeV (4.111)



4.5 limits on paratons from @ < 1 58

or, using the correet values of 2y, N(T,) and gy (T, ):

e=1 p<2x103GeV
e=10"" ;<200 GeV
e= 10" i < 20 GeV

(no v") (4.142)
e=10"" < 1GeV

e= 10" j < 50 MeV
e=10"" jt < 6 MeV

(see figure B.2).

b) lower bound on p

These limits ( 4.137 and 4.142) assume that the paratons are in thermal equilibrium
with ordinary matter at T > .. This is only going to be true for ‘sufficiently large’
values of € - if I give the paraton a fractional charge of 1072, it is not, for all praci’cal
purposes, going to interact with ordinary matter (other than gravitationally). It
will still be present in the expanding universe at some temperature of its own
= T}, and when T; drops below p the paratons will start to annihilate. How
effectively they do this will depend on the expansion rate of the universe at that
time, which is controlled by the total energy density. In the early universe, all the
relativistic particles at a given temperature contribute approximately equally to
the total energy density, (even if the paratons give @ = 1 today) so the expansion
rate will depend on the temperature of the ordinary matter (assuming it is in the

majorits ). This means that to predict a relie number density today, one needs to
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know the ratio of the paraton temperatur:. to that of ordinary matter. (The ratio
of the entropies is actually more useful, because it is not changed when a particle
species annihilates ... see [43] for a discusion of “shadow matter™ in the universe.)
Since this ratio is unknown, it is not possible to predict a relic density today unless

the paratons are in equilibrium with ordinary matter before they freeze out.

The paratons are assumed to be in equilibrivtn when their interaction rate

with ordinary matter is greater than the expansion rate, or roughly, when

1.66 "
W(T)Fann + Lacar) > —=/0esy T" (4.113)
114

pl

Using Tynn and Tgeye from (4.97) and(4.96), this becomes

3In(T)eta’T >

n

1.66 )
— i T (1.1.01)
pl

If the paraton mass is above this temperature. then conceivably the p o p,
limits no longer apply. Solving ( 4.144) for T gives
e2N(T)
f/lfff(T)

T < x 1.2 x 10" GeV (1.145)

For large € this temperature is so many orders of magnitude above the energy levels
at which physics is ‘well understood’ (< 100 GeV), that it is meaningless. However,
for € < 107% ( 4.145) gives T < 1 TeV, assuming N(T) = /4,77 (zeroth order
approximation in the now familiar iterative way of avoiding the implicit dependance

of N and g.s; on yr and e).

At temperatures below T thee paratons will be in equilibrivimng if yo < T The
p < pe limit will therefore apply. For o> T, it is not clear what the paratons do,
so there is a tentative upper bowid to the masses ruled ont by the p < p, limit; e,

paratous may be allowed if they are sufficiently heavy, The dividing line between
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the masses for which the p < p. limit applies and does not apply is pp ~ T, which

gives a lower bound on the paraton mass of

e2N(T)
ft > —F———=
v/9ers(T)

(sce 4.145), or using the proper values of N and g.yy,

1.2 x 10"° GeV (4.146)

€=10"% it > 100 TeV
€=10"° 1nw>1TeV
¢e=10"" > 6 GeV (4.147)
e=10"% e > 40 MeV
e=4x10"" pu>6MeV
(sce figure B.2 and figure B.3).
This limit also “cuts off” the top right hand corner of the rectangle in p — €
space that was ruled ont by nucleosynthesis for the model with a paraphoton.

The limits calculated in this section assume that the paraton only interacts
clectromagnetically with the other particles in the Universe. Below T ~ 200 GeV
this is a reasonable approximation, since the paraton coupling to the Z is a factor
of tan?8,, (~ .04) smaller than its coupling to the photon. Above T ~ 200 GeV,
SU(2)xU(1) will be unbroken and the paraton will interact with particles carrying
hypercharge. This changes the interaction rates by less than a factor of 3/2, so it
is reasonable to pretend that electromagnetism lasts up to arbitrarily high energies

(or at least as long as SU(2)xU(1) does).



CHAPTER FIVE
RED GIANTS AND WHITE DWARFS

The usual way to get constraints from stars on ‘unobserved particles from the the
orists zoo' is to calculate the rate at which the star would lose cuergy to these
‘other particles’, and then get limits on the coupling constant and/or mass of the
particle by requiring that the star not lose more energy via “others™ than via ordi-
nary radiation (scc references in [44]). Red giants are a popular place to caleulate
these constraints because they have hot dense cores (which means that they are
good at making strange particles), and they are observed to exist. White dwarfs
can give a uscfe  limit because of their high densities, and of course there is the
superaova. Red glants and white dwarfs give interesting constraints on paratons,

but the supernova does not appear to be very helpful.

The principal method of paraton production in red giants will be plasmon
decay (y — ff). Pair production in the field of a nucleus is O(e'), which makes
it negligible. The cross section for trident production is rather messy, so the ‘red
giant limit’ on paratons is calculated solely from plasmon decay. This is 4lso the
mechanism for paraton production in white dwarfs, so in the very simplistic models
used here, a great deal of the white dwarf analysis can be borrowed from the red

giant calculations.

I have treated the plasmon as a massive vector boson. Its decay rate can
therefore be caleulated and is very large; essentially a plasmon will decay if it cau.
This implies ¢ > m,/2 down to very stall values of e, assuming that the paratons

escape from the star. (If the charge is large enough that they are trapped inside the

61
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star, this limit no longer applics.) How small € needs to be is calculated by requiring
that the energy lost to paratons in the core be less than the energy generated by

helinm burning. This should provide a very conservative upper bound on e.

The first thing calculated is the plasmon decay rate T; then the rate of energy
loss of the red giant core is caleulated to get an upper bound on ¢. Finally there is
an estimate of when the paratons will be in equilibrium in the star (giving a lower
bound on €), a similiar set of calculations for the white dwarf limit, and a short

diseussion of why the supernova has been ignored.

5.1 plasmon decay in red giants

a) the decay rate T

The plasmon is assumed to be a photon with a mass m,, so it has a rest frame and
can decay to a pair of charged particles while conserving encrgy and momentum.

In the plasmon rest frame

Pd

k = photon momentum = (m,,0)

(5.1)

p+ = (anti)paraton momentum = (E.+p)

(where the ‘=’ corresponds to the paraton), so that, using the conventions of Bjorken

and Drell

prlr) =7 u(po,s-)e T

P(a) = /¢ B(py. s )T (5.2)

A“(.I‘) = ;;2rlrh\’ 5“(,—“:-:
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The S-matrix element for plasinon decay is, up to a phase,

/1/*;(1‘) A ) () Yd'r (5.3)

or
ecqt

————a fv &' (k = p_ — p)(27)! 5.41)
BV oV Fo&'(k —p = pe X (5

So the transition rate per unit volume = | Sy; |* /(VT), i

Sp=i

ety .
97” Egl‘}g ‘ u #’U |2 L - P+ —pP- (‘)71')4 (5'“)

This must be divided by the photon density (1 per unit volume, with the normal-

ization 5.2), and multiplied by the density of final states

Vidip,dPp_
ML i L (5.6)
(27“)"
to get the decay rate T’
y dpydip. .
/'7711 7 I igo |* 8k =py = po)——2— (27{)2 (H.7)
or, doing some of the integrations
¢?
r= / g 1P| 5] A9 (5.8)
2mm?

The matrix clement is, assuming the plasmon has three spin states,

| @ go |*= ( Z ehe '") ( Z u*/"n'u'y,,u,) . (5.9)

4 spins ff spins
If the plasmon is assumed o be like an intermediate veetor boson, then its spin
sum is ~(g — k,k,/m32) [45], so that the matrix element is

. 1 k.k,
|igo | = —-5 (_q,“, -3 ) Tr{wuy"vey") (5.10)

4

= 3 2('}F + 7P 3 (5.11)
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Substituting ( 5.11) into ( 5.8), doing the angle integral, and noting that E =m,/2,

gives
2 _ a2
r== a:;m'v B(3 _ B) (5.12)

where A is the velocity of the outgoing paraton.

The photon acquires its ‘mass’ from its constant interactions with the elec-
tron gas, so m., depends on the energy and number density of electrons and positrons
in a complicated way [46). However in the limit of a non-relativistic electron gas,

T« ., [47)

, A4man,

m,y =

(5.13)

me

The red giant is very naively assumed to be a homogeneous core of density
p = 10" g/em3, temperature T = 108 °K (8.6 keV), mass .5 Mg ( .5 solar masses),
radius 7 = 3 x 10° em. and cnergy generation rate R, = 10° ergs/(em® sec). (This

is copied from [44].) This density gives
m., = 2 keV (5.14)

which in turn gives a plasmon lifetime in red giants of (from 5.12, assuming B~1)

1.4
r=T"==x10""sec . (5.15)

€
Unless € is very small, a plasmon will decay if it can. And it can unless

jt > 1keV (5.16)

(see figure B.4) which is the lower bound on the paraton mass from plasmon decay

in red glants.
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b) upper bound on €

If € is very small, the plasmons will decay very slowly and the star will not lose
too much cnergy to paratons. For instance, if € <3 x 10717, it will take a plasmon
Jonger than the age of the universe (~ 10'7 sec) to decay. The upper bound on ¢ is
calculated by requiring that the rate of energy loss per unit volume to paratons be

less than the nuclear energy generation rate per unit volume, which is {1
Y B ,

R, = 100 ergs/(g sec) = 10%rgs/(see em™) . (5.17)

The rate of energy loss per unit volume to paratons will be dE/(dV dt) -

{energy of a plasmon}x {plasmon mumber density} x {decay rate}, or

d*E ~ w 3d%k ,
/ [ (5.18)
o

dV dt Ap ) /T 1
where w = \/m2 + k? is the plasmon energy and & is its momentum. The decay
rate is independant of the photon energy, so defining + = w/T and r, = m, /T,

( 5.18) becomes

LE 30, =zl
= ——T"/ — . (5.19)
dV dt  2m? ., ¢F -1
This is not simple to evaluate; writing
LN o (5.20)
17
gives
d*E U= [~ . K] D
= —T! / ¥\ f2? — ple™dr = - - T I(r,) . 5.21
dVdt 2n? "X=:l z o0 R n)z"l (r.) ( )
I(x,) can be written, after integration by parts, as
1 >, . . ,
I(z,) = —5/ (* — .l‘f, M=y 4 % / st .l'l‘f)"/l('~ "Telr (5.22)
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and both these integrals can be found in tables. Using G+R [16] 3.389.4 and 3.387.0,
( 5.19) becomes

FE 30 o~ L g . .
W ot %o Lo [zonK3(zon) — Ka(zon)) (5.23)

where z, = m,/T and K; is a bessel function of imaginary argument. Using I’ =

¢, /3, this becomes

d*E
dV dt

[
=219 x 107" Y -nlz-[:t,,nf\"3(xan) — Ky(z,n)) GeV® . (5.24)
n=1
Bessel functions are tabulated for arguments .1 .2 .3 etc. [49], and there are
interpolation formulas for arguments in between. However, this is only an “order
of magnitude” limit on €, so the Bessel functions will be taken to be lincar between
the tabulated values, and the series will be approximated by its first three terms
(The K's decrease very rapidly as n increases). With these assumptions the sum is
2 225, which implies (see 5.24)

d*E
dV dt

= ¢® x 1.¢ x 10™ ergs/(cm’scc) . (5.25)

Recall that the nuclear energy generation rate was 10° ergs/( cm?sec). So the upper

hound on € is 8 x 10715, or

¢ < 107 (5.26)

(sce figure B.4).

¢) lower bound on ¢

The limits calculated so far ( 5.16 and  5.26) tacitly assume that the paratons
escape the star when they are produced. This will not be the case if € is large; the

paraton density will build up until the creation rate is balanced by the rate at which
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paratons annihilate to photons or diffuse to the surface and escape. The paraton
luminosity will depend on this diffusion rate, which I do not know how to caleulate.
It is therefore assumed that the lower bound on the paraton mass ( 5.16) only holds
if the cnergy of the paratons can escape freely. If there is no paraphoton, this means
‘if the paratons can escape freely’s if there are paraphotons, the paratons are more
likely to annihilate to them than to photons because ap > €2, One must therefore
check that the paraphotons are trapped in the star if the paratons arve. (This is
true: see section 5.1.d.) Otherwise the paraphotons could carry the energy ont of

the red giant, even if the paratons could not escape.

The principal interactions that should interfere with a paratons escape from
the star are scattering off electrons and helium nuclei (assuming that all the protons
are in helium). For the model without paraphotons, scattering off photons and
other paratons is O(¢e'), and therefore negligible. For the model with a paraphoton,
scattering off a pair of paraphotons can be neglected because the paraphotons will
not be trapped in the star unless the paratons already are, and it is precisely when
they become trapped that needs to be calculated. Scattering off another paraton
vin virtual paraphoton exchange can also be ignored, becanse although o? 3 20,
the ruraton number density will be much smaller than the electron number density
:f -hey escape the star at approximately the speed of light as soon as they are
prodiiced. The paraton mean free path is therefore

= ! (5.27)

NeTe + N1 Ty

where o, is the cross section for paraton-electon scattering, and gy, is the cross
scction for paraton-helium nucleus scattering. Since the energy density in the star

c 10 3 . -
is 10" g/cm”, the clectron and helium number densities are

n, = 2.8 x 1047 e ™ (5.28)
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nye = 1.4 x 10* em™®
(This assumes that all the energy is contained in the rest mass of helium nuclei.)

Both the clectron and nucleus are non-relativistic, so the cross sections can
be caleulated using a screened Coulomb potential. This gives [50]
167 % Z%%e%a’
g =
(4k2%a? +1)

where ji is the reduced mass, Z is the electron or helium nucleus charge, k is the

(5.29)

(three) momentum of the incident paraton and a is the screening length. The

paratons are relativistic, so

k~T (5.30)
and the screening length is [48]
[ T
= 5.3
. 4ran, (5:31)
S0
VAT T?
. = J —_— .
7i T3/(ran,) + 1 (ng) (5-32)
or
0, =€ p? x 3.4%x1071% cm?® (5.33)
Ope = €12 x 1.4 x 107 cm?® . (5.34)

The paraton mean free path is therefore (using 5.33, 5.34, and 5.28)

- 1 _
ﬂ,ze—z—l—i-2—><3x10 19CI’n (535)

with s in GeV.
If T arbitrarily assume that paratons do not escape if the core radius is greater
than 10 mean free paths, then the lower bound on € is (using the radius from the

paragraph following 5.13)
ejgey > 3 x 1071 (5.36)



5.1 plasmon decay i red grants 69

or

€>10"% for u=1keV
(5.37)

e>10"% for p=1cV

(sce figure B.4).

d) trapping of paraphotons

The limit ( 5.37) will apply to the model with a paraphoton unless the 4" mean free
path is long enough that it can escape from the star, even if the paratons can not.

If the paratons are relativistic and in equilibrium, their number density is ( 4.26)
T3 25 : .
ny o~ 23 = 3.5 x 10 em™ (n.38)

and the cross scction for paraton-paraphoton scattering in the relativistie it is

[51]
T} 2T 1 o
o="3 (1 of = + ) (5.39)

where the paraphoton encrgy is taken equal to the temperature. So the paraphoton

mean free path is

5 1 2x 107"
€ = ’.'4()
T ngoy avg(log 2T/ + 1/2) e (540)

with i in GeV. For u = 1 keV, thi

- 6xio™!
&,: = cn (54])
@3
and for g =1eVitis
- 2x 10~ .
(= ———— cm (5.42)

%
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Assuming that paraphotons remain in the red giant if the core radius is

greater than 10 2, and using oy < 10€ (sec 1.15), the lower bound on € is

e>4x 107" p=1keV

—
o
[*4Y
¢.

N

e>8x 10718 p=1¢V

The paraphotons woald be trapped in the red giant before the paratons are (if the
paratons were trapy.1). So if the paratons can not escape from the star, the energy

they carry can not cither and { 5.37) also applies when there is a paraphoton.

5.2 white dwarfs

At first sight it is strange that a dying star should give useful lisnits on paratons.

However, the *mass’ of a plasmon in a degenerate electron gas is

[4man,
m, = \ Tl (5.44)

Er
where g is the Fermi energy including rest mass, and n. is the electron number
density. In a white dwarf of one solar mass with a radius of 5000 km, one has
ne = 2 x 10% em™ | g = 600 keV, and therefore m, = 40 keV, which c:wid
increase the lower bound on the paraton mass to g > 20 keV: the present theory
of white dwarf cooling scems to agree with the observed luminosity distribution of
the white dwarf population [52], so white dwarves can not be losing substantial

amounts of energy to paratons.

o) white dwarf cooling

A white dwarf is a star that is not large enough to build up the central temperature

necessary to burn heavier elements (for instance carbon). When core helium burning
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ends, the star can no longer generate the radiation pressure necessary to support
itself against gravitational contraciion, so will shrink until it acquires a new pressure
source. For stars of approximately one solar mass (2 x 10 g3, this happens when the
radins has decreased to ~ 5000 km: the electrons become degenerate and support
the star. The white dwarf then gradually radiates away the kinetie energy stored

in its ions over a period of roughly 10? years.

Since electrons are fermions, they must all be in distinet states. As the star
contracts, the space volume occupied by the electrons deercases, foreing them mto
higher and higher momentum states. When there is so little volume available to the
clectrons that they fill all the accesible states up to an energy ¢ > T, the cleciron

number density (4.21) (with chemical potential ¢4:) can be approximated as

8x ¢, .
N, = EFF[) pedp {(H.15)
where ep = /pi +m2. This gives
e = (3720, )2 + m? = 600 keV (5.46)

Using this value of ¢ in ( 5.44) gives a plasmon mass of

m., = 39 keV (

[l §
-
-1
~—

Assuming that the plasmons can be treated as massive bosons, their munber

density will be

9..

-

. 3/2
= 3ol (M) (5.48)

Sinee m. is greater than and independaut of the temperature, the plasmon numbey
density will be exponentially suppressed as the star cools. Any limits on paratons
from plasmon +Jecay must therefore come from the carly stages of white dwes?

cooling, since » =~ 6 em™ by the time T = 107 "K (.9 keV).
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5.2 white dwarfs

in & world withent paratons, white dwarfs cool by emitting photons. If the
Star is assumed to be a degenerate core at uniform temperature, surrounded by a
thin surface layer of non-degenerate matter through which the photons must diffuse,

the white dwarf luminosity can be shown to be [53]

L=2x10° M ergs/sec (5.49)

Me

where T is the temperature of the core in degrees Kelvin, M is the mass of the star,
and My is the mass of the sun. The principal source of encrgy that the core can
lose by radiation is the heat in the jons; the star is prevented from collapsing any
further by the electron pressuve, so no grovitational energy, and the clectrons can
not cool because they are already in the lowest available energy state. If the ions
are treated as an ideal monoatomic gas with a heat capacity of ey = 2 per ion (k=1
units), then the total thermal energy of the white dwarf is

U= gTN (5.50)

where NV is the total numnber of carbon ions = M/m.. Equating the luminosity
( 5.49) with —dU/dt gives

3 dT  2x10° .5
_ ZI_IT_(IT = —-——A/[(;) Toy crgs/sec (5.51)

which implies, when integrated, that the time to cooi frein T; to T should be
T=—— (5.52)

(assuming T, & T;s/ %). T is again the core temperature, related to the Jumi-
nosity by ( 5.49). The observed distribution of hot (107'Lg > L > 1073Ly) white
dwarfs, combined with a model for the rate of star formation, agrees with this
prediction[54,55). One can therefore require that the paratons do not cool a white
dwarf to, say, 1072Lg (Ly = 3.9 x 10% ergs/scc) in less than 3.3 x10'° seconds

~ 10% years, which is what ( 5.52) predicts.
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h) paraton cooling of white dwarfs

The rate at which the star loses energy to paratons should be the volume integral
of {plasmon number density} x {plasmon decay rate} x {energy carried away by

paratons}, which can be approximated as
Lyj~n,Tm,V (5.53)

because the star is assumed to be a sphere of uniform density and temperature,

Using (5.48),(5.12), and (5.44) gives

Lff — €2Dc—m-,/'l‘ T:;/'z

Sy
D= \/;%R-‘m;“ . (5.55)

For a white dwarf radius R of 5000 km, D is 4.3 x 10™ GeV/see, if T is measured

,-\
o
=
-—

=

where

in GeV. Setting this cqual to —dU/dt (sce 5.50), gives

2m € Ty ¢F

D 1 / I (5.5
T == —=dx 5.
3M N Y

G)

where = m,/T. If one now takes the /7 out of the integral becanse it varies

much more slowly than the exponential (for m., not « T) this becomes

;= i VTf 3M_0m-,/'l']
e m, 2m.D"

where 7 is the time it takes to cool to T (assumed much smaller than Ty). Using
M = Mg = 1.9 x 10* grams, m, = 12 GeV (pure carbon star), m., = 39 keV and
T; = 1.5 keV {which corresponds to Ly = 107%L.,), this gives

5x107°
TN —— see ( .
€?

s}
ot
o0
—
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The observations require 7 =~ 3.4 x 10'® seconds, which implics that the paraton

imass must be greater than m., /2, or that € raust be small:

for e >1.2x1071° p>20 %eV (5.59)
I this ealeulation, the cooling time increases exponentially with the plasmon mass,
s0 1., has been taken as large as possible. This gives the weakest limit on €, but
perhaps makes the mass limit too high. It is safer to usc a smaller plasmon mass for
the limit on g (this corresponds to a larger radius and smaller mass for the star),

which means the white dwarf limit 1s

for €>1071% 1> 10 keV (5.66)

(sce figure B.4).

¢) paraton trapping in white dwarfs

As in the case of red giants, paratons with large € will be trapped in the star. They
are unlikely to interact with the electrons, because these are degenerate, but will
scatter off the carbon ions. So copying the arguments made for red giants gives a

ssaraton mean free path in white dwarves of

f=—

(5.61)

n.o.
where o, 15 the paraton-carbon scattering cross-section and n is the number density
of carbon 1ons, which 1s

n, = 1.8 x 10% em™ (5.62)
if all the mass is in the carbon. Using a screened Coulorb potential (see 5.32) for

the jons, with a screening length of [56]

T
“= Wmn.n (5.63)
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gives

e~ 1T x e x 107" em? (5.6:4)

for a one solar mass white dwarf at a temperature of 2.8 keV (this corresponds to

L =10""Lgy). The mean free patn is therefore

. 34X 10~

(f ~ > cm (5.65)

€
Assuming again that the paratons are trapped if their mean free pathis less than

1/10 of the white dwarf radius, one has that paratons are allowed for

=10 ke’ e > 107"
(5.66)

jp=1c¢c¢V e > 107

(sce figure B.4).

5.3 supernova

The 1987 supernova in the Large Magellanic Clond (LMC), SN1987TA, has been
used to get limits on the axion mass and the neutrino lifetime, mass, and nunber of
flavours (see [57] for references). One would hope that the very high temperature (~
10 McV) and enormous amount of energy available (~ 10° ergs ... better than 100
times the energy the sun will emit in its lifetime), would give intresting constraints
on paratons. This is a considerably more difficult problem than the red giant limit
because of the short time scales involved (milliseconds — seconds), so the results

could easily be wrong by more than an order of magnitude.

About ten million vears ago. an cighteen solar mass stae was born in the
o b

LMC, and for the following teu million years. burned hydrogen to helinm, When
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it rau out of hydrogen in its central region, the helium core contracted, heated and
started to bum to carbon (the star is now a red giant); when the helium at the
centre was exhausted, the process repeated itself again and again, until the star
beemne a giant onion with a central core of iron surrounded by layers of burning
silicon and sulfer, oxygen and neon, helium wud finally hydrogen. Since enecrgy
is required to make both lighter and heavier nuclei from iron there is no energy
generation process available to the core to balance the force of gravity. The core
contracts and heats—however this decreases the pressure instead of increasing it
hecause the temperature has become high enough for the protons to capture the
degenerate electrons (who were providing most of the pressure that supported the
core), and energy gets used up photodisintegrating the nuclei. The core therefore
collapses very rapidly for a few tenths of a second—until the density exceeds that of
a nucleus, at which point the nuclear force becomes repulsive and the core rebounds,
sending a shock wave out through the onion. This shock (perhaps with the help of

the neutrinos) explodes the outer layers of the star, creating a supernova.

Mcanwhile the core has become a very hot lump of neutrons, protons, elec-
trons and neutrinos with a radius of ~ 100 kua .. . to cool and contract to the radius
of a neutron star (~ 10 km) it nceds to lose a great deal of energy, which it does by
emitting neutrinos. However the density is so high that even neutrinos can not es-
cape freely, which is why there is still a significant fraction of electrons and protons
in the core. There will be a very short (millisccond) energetic (luminosity ~ 10%
ergs/sec) burst of neutrinos as the core starts to collapse, emitted while the density
was still low enough for the neutrinos to be able to escape, followed by a longer (~

20 second) ‘tail’ of neutrinos who had to diffusc out

IMB and Ikamioka observed neutrinos over a period of 11 seconds, indicating

that the proto neutron star did, in fact, cool by emitting neutrinos. One can
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thercfore get a limit on paratons by requiring that they not cool the star within the

first fow seconds.

To be cfficiently produced and emitted by the core, paratons need ¢ suthi-
ciently big to be :ande in large quantities, and a small enough charge to escape
frecly. This means that there will be a lower bound on e, above which paratons
are allowed because they could not escape freely, and an upper bound bhelow which
they are allowed because they would not be produced in suflicient mumbers to cool
the neutron star within a few scconds. To get a useful limit from the supernova,
the lower bound obviously neceds to be a numnber of orders of magnitude above the

upper bound—and it does not appear to be.

Although the temperature is well above the electron mass, there are very
few positrons because the electrons are degenerate: the chiemical potential is v ~
150 MecV and the positron number density is suppressed by a factor ¢ /T Pair
production of parstons from ¢* ¢~ annihilations is therefore not very efficient. The
interaction rates for more exotic processes, such as ¢ + 2 — ¢ + Z + [+ f and
p+p — p+p+ f+f, are difficult to approximate, bui roug i esthimates indicate that
they are respectively well above the lower botine ais - (wiwids is € 271077 — 107%7)
and just below it. And finally plasmon deccay prowicdy g an npper hound on €
of 1071° — 1078, which is too close to the lower berinid te b worth pursuing. So

no uscful limits on paratons are expected from the superaevi.
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it ran out of hydrogen iu its central region, the helium core contracted, heated and
started to burm to carbon (the star is now a red giant); when the helium at the
centre was exhausted, the process repeated itself again and ageir, until the star
beeamne a giant onion with a central core of iron surrounded by layers of burning
silicon and sulfer, oxygen and ncon, helium and finally hydrogen. Since energy
is required to make both lighter and heavier nuclei from iron there is no energy
generation process available to the core to balance the force of gravity. The core
contracts and heats—however this decreases the pressure instead of increasing it
beeause the temperature has become high enough for the protons to capture the
degenerate clectrons (who were providing most of the pressure that supported the
core), and energy gets used up photodisintegrating the nuclei. The core therefore
collapses very rapidly for a few tenths of a second—::::%il the density exceeds that of
a mucleus, at which point the nuclear force becomes repulsive and the core rebounds,
sending a shock wave out through the onion. This shock (perhaps with the help of

the neutrinos) explodes the outer layers of the star, creating a supernova.

Meanwhile the core has Lecome a very hot lump of neutrons, protons, elec-
trons and neutrinos with a radius of ~ 100 km ... to cool and contract to the radius
of a neutron star (~ 10 km) it needs to lose a great deal of energy, which it does by
cmitting neutrinos. However the density is so high that even neutrinos can not es-
sape freely, which is why there is still a significant fraction of electrons and protouns
in the core. There will be a very short (millisecond) energetic (luminosity ~ 10%
ergs/sec) burst of neutrinos as the core starts to collapse, emitted while the density
was still low enough for the neutrinos to be able to escape, followed by a longer (~

20 second) ‘tail’ of neutrinos who had to diffuse out.

IMB and Kamioka observed neutrinos over a period of 11 seconds, indicating

that the proto-neutron star did, in fact, cool by emitting neutrinos. One can
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therefore get a limit on paratons by requiring that they not cool the star within the

first fow seconds.

To be efficiently produced and emitted by the core, paratons need e sutlhi-
ciently big to be made in large guantities, and a small enough charge to escape
frecly. This means that there will be a lower bound on ¢, above which paratons
arc allowed because they could not escape freely, and an upper bound below which
they are allowed because they would not be produced in suflicient nmbers to cool
the neutron star within a few seconds. To get a useful limit from the supernova,
the lower bound obviously needs to be a number of orders of magnitude above the

upper bound-—and it doecs not appear to be.

Although the temperature is well above the electron mass, there are very
few positrons because the clectrons are degenerate: the chemieal potential is v -
150 McV and the positron number density is suppressed by a factor ¢ Pair
production of paratons from ¢*e™ annihilations is therefore not very efficient. The
interaction rates for more exotic processes, such as ¢ + Z — ¢ + Z + f -+ [ and
p+p — p+p+ f+ f, are difficult to approximate, but rough estimates indicate that
they are respectively well above the lower bound on € (which is € >71077 — 107%?)
and just below it. And finally plasmon decay probably gives an upper bound on ¢
of 1071% — 1078, which is t0o close to the lower bound to be worth pursuing. So

no useful limits on paratons are expected from the supernova.



CHAPTER SIX
THE WILD GOOSE CHASE

6.1 the problems

There are numerous ways of trying to rule out fractionally charged particles in the
central area of figures B.5 and B.6. However, the experimental numbers involved
tend to be limits on number densities, so one needs te be able to calculate “gold-

plated” lower limits on the paraton relic density.

a) halo cooling

The only way to predict the abundance of paratons is to assume that they have
the relic cosmological density calculated from their mass and charge (sce chapter
4, scetion 4), and then try to predict how many will be cn the earth today. This
involves understanding what they will do during galaxy fo ¢.ut'un If cold dark
matter galaxy formation (CDM) is right, then paratons neea . contribute € < 1
because they are not “dark”, so they probably would not work as ‘the’ dark matter
of CDM. However this only matters for a narrow baud just below the p; < p.
lim;: fand possibly only for ‘large’ values of €). Ordinary weakly interacting (dark
maiior) particles are assumed to clump gravitationally with ordinary matter, but to
ges feft behind in a halo when the baryons collapse into the disk of the galaxy. This
is because the weakly interacting particles can not radiate away their gravitational
potential energy. One can then make standard assumptions about the density of
the halo (~ 1 GeV/em®) and the velocity of the particles it is made of (~ 3 x 10°

m/s), to predict a particle flux at the carth.

-1
on
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Paratons interact clectromagnetically, and the value of € ranges from 1 to
107 in the central arcas. If € ~ 1, presumcably the paratons will cool and collapse
with the baryons—if ¢ ~ 1077 they are probably weakly interacting enough to
remain in the halo. What happens in between is unclear ... the principal energy
loss mechanism is probably paraton-electron scattering, so the cooling time scale is
inversely proportional to the number density of free electrons. This in turn depends
on the electron temperature which is complicated to caleulate. (The gas is heated
by shocks and star formation, but when ionized can probably radiate energy away

faster than it gains energy from gravitational collapse, and therefore cools. [59])

b) the earth’s magnetic field

The paratons have to get through the carth’s dipole field in some manner. For mo-
menta greater than some critical value given approximately by the Stormer formula

[60]
_ e 59 cos A
Pe = 12(1 4 /1 — cos® Asin@sin ¢)?

they go straight through. In this equation r is the distance from the earths centre

(6.1)

in units of earth radii, A is the magnetic latitude (slightly different from ordinary
latitude because magnetic north is not the north pole), 8 is the zenith angle and ¢
is the azimuth measured clockwise from magnetic north (this makes sense standing
on :he earth looking out). For p < p,, incident paratons can get in directly at the
poles, spiral around the field lines and again come down at the poles, or he deflected

away.
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¢) getling through the atmosphere

Ordinary dark matter particles are sufficiently weakly interacting that they can
casily penetrate several nndred feet underground to dark matter detectors. They
are truly weakly interacting in the sense that they interact via the exchange of a
massive intermediate vector boson; this means that WIMP-ordinary matter scat-
tering is @ point interaction, and the WIMPS can " » 1 to scatter off nuclei,

but not electrons.

Paratons are very different in that they interact via a long range force; elec-
tromagnetic cross scctions diverge at low energies. Furthermore, light charged par-
ticles in a medium lose vertical momentum by scattering of nuclei, but lose energy
by scattering of electrons [61]. (One might guess that a particle heavier than a
nueleus would also lose energy by scattering of nuclei.) So the range of a paraton in
the atmosphere should somchow be calculated starting from the Bethe-Bloch for-
mula, not frei the cross section for paraton-nucleus scattering. Holdom used the

first meth Goldberg and Hall [62] and Caldwell et al. [63] used the second.

Go. - nd Hall calcule! the number of particles that will arrive at a
germanium devector 4000 mwe . ... s water equivalent) underground by taking
the paraton-nucleus scattering cross section to be constant (a screened Coulomb
cross scction is inversely proportional to the paraton velocity squared), and cal-
culating how many collisions, on average, it would take for a paraton to be left
with too little energy to trigger the detector. This gives them an average depth
at which the paratons are no longer detectable of &~ 2000 mwe (no ¢ dependance
indicated...107% — 107" ? pu ~ TeV), and they assume that the average depth of
the paraton flux is a poisson distribution about this average. They claim that the

counting rate at 4000 mwe constrains jrrove™ ¥ 107 < 1. From modifying the
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The time-of-flight experiment gives an upper limit on the munber density in
sea water of onc in ~ 102 — 10%° (for particles with charge +1 and mass beween
8 and 1200 GeV). This is a very stringent limit, but unfortunately, three problems

apply here.

Paratons with e ~ .1 — 1 and yt ~ GeV — TeV would probably cool into
the disk of the galaxy. What they do next is not clear. They could condense into
stars with the baryons, in which case most of them would annihilate in the star and
leave no traces. They could still be floating around in the disk, which could put too
much dark matter in the disk for ¢ ~ TeV, but if it is a thick disk it might not be a
problem. It is probably safe to assume that the paraton density is at least €2,/ x
{ the baryon density in the local interstellar medium}. If all the paratons incident,
on the earth at this density were evenly distributed on the hydrogen in the ocean,
and if they stayed bound to the proton during the time-of-flight experiment, then
the predicted number density is at least eight orders of magnitude greater than the

experimental upper bound.

However, paratons with parameters that could be ruled out by the time-of-
flight experiment would not have sufficient momentum to get through the carths
magnetic field (assuming the paraton velocity is the standard WIMP velocity ~ 300
km/sec). Some fraction would be deflected away from the carth, some fraction
would spiral around the field lines and come down at the poles, and of course they
can always get in at the poles because the field there is vertical. It is possible to
calculate a minimum number of paratons incident on the poles, but I could not

begin to guess what kind of number density this would give in the oceans.

There is the additional problem that according to Holdoms range caleula-

tions, paratons with € ~ .1 — 1 are going to stop a long way above the carths
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surface. The negative ones will presumeably bind to the molecules in the atmo-
sphere, and I do not know at what rate the paratons would be transfered to the

hydrogen or oxygen in the oceans.

I do not know how to quantify either of the above problems, so I do not think

I can use this limit.

For large ¢, the D;O density limit also suffers from the halo cooling prob-
lem. Assuming, as above, that the density of paratons in the solar system is
0y /2y x {mass density of the interstellar medium}, then the predicted number den-
sity in the oceans (neglecting the magnetic field and assuming uniform mixing in
all the water in the oceans) is within 1 to 3 orders of magnitude of the experimental
limit. I think this is a little too close to rule out paratons with € ~ .1 — 1 and

e > 1 TeV. It is also not reasonable to neglect the magnetic field.

For smaller values of ¢, the paratons could be in the halo, which would

increase the flux by ~ 10%; however it is also possible that they are not ...

Stopping in the atmosphere will also be a problem for this limit; if the
paratons do not rcach the surface, they will presumeably bind equally well to the
nitrogen (~ 80%), oxygen (~ 20 %) and water (~ 0 — 4 %) in the atmosphere.
If only the paratons that bind to the water molecules end up in the ocean, this

decrcases the predicted number density by > 102.

De Rujula, Glashow and Sarid [67] have more anomolous nuclei search refer-
ences, but they are all for rocks and metals, which makes them even more difficult

to use (at least the ocean washes around).
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b) dark matter searches

Rich, Rocchio and Spiro [65] sent a silicon semi-conductor detector up near the
top of the atmosphere in a ballon to look for “strongly interacting” dark matter
particles. This (probably) avoids the problem of getting through the atmosphere,
and paratons with the parameters that this experiment could rule out would get

through the earths magnetic field, so the only question is whether they would stay

in the halo.

If our galaxy was initially a large cloud of ionized gas, the ordinary matter
(baryons and electrons) could probably cool faster than it could collapse into a
disk [66]. It might therefore recombine juto hydrogen, leaving some fraction of free
clectrons. If the number density of free clectrons was less than 107 em™ (= 1% of
the clectrons unbound), then the paratons in the ‘arca’ (in p — € space) considered
by this experiment could not have cooled in the age of the universe. However, this
assumes that the hydrogen is not kept ionized by shock heating, star formation, or
the existence of the paratons (if the electrons just try and cool the baryons , many
of them might recombine; if they also try to cool the paratons, more of them would

have to stay unbound so that they could do this.)

The timescale for paratons to collapse into the disk of the galaxy is [58]

~ 2 % 108,ucev

T
en,

sec¢ (6.3)

where n. is the electron number density in em™>. If all the clectrons are assumed
to remain unbound (n. = 1 cm™), then paratons with parameters that could be
ruled out by this experiment could have collapsed into the disk within the life-time

of the universe.

Underground dark matter detection experiments are not interesting for the
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model of paratons cosidered here. Goldberg and Hall tried to rule out an ‘area’
(contained by the ballon experiment) using surface and underground detector re-
sults, but Holdom n.aintains that they greatly overestimated the distance paratons
would travel in the earth due to their neglect of the Bethe-Bloch inechanism of en-
ergy loss. The results from the underground germanium detectors could only rule
out an ‘arca’ considerably to the ‘left’ (smaller €) of the balloon experiment results

hecause € would have to be very small for the paratons to penctrate that far.

¢) annihilation in ‘proton decay’ detectors

There is a small ‘area’ in the left hand corner of the triangle where the paratons
arc probably sufficiently weakly interacting to remain in the halo, and would have a
small enough charge to get through the earths magnetic field. For ¢ < 10~* — 10-°
they would also not bind to nuclei. If a sufficient number of them diffused down
to proton decay detectors, their annihilation there would be detectable. This is
only true for the model with a paraphoton, because paratons in the ‘triangle’ on
the graph without paraphotons do not have enough momentum to get through the

magnetic field.

The branching ratio to something visible for paraton annihilation is
o(ff = ete”) €a?
(T~ e

(6.4)

or

o ff =77)  o? '
If one assumes that oz ~ a, at least one annihilation in €~2 should produce some-

thing visible.

If the incident paratons were evenly spread through the whole earth, and
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if they annilulate at the 1ate at which they are incident, then there should be a
very observable signal in the underground detectors. However, the paratons stop
ncar the surface and diffuse downwards. annihilating as they go. Results are then

sensitive to details of the process of diffusion and annihilation.

d) annihilation to gammma rays

If the paratons remain in the halo, they do not annihilate often enough to produce
a detectable gamma ray flux. If they collapse into the disk, whether or not they
annihilate in sufficient numbers to give a detectable gamma ray flux will depend on

whether they cool into a lumpy or a homogencous gas.

If most (> 90 %) of the paratons do annihilate, the predicted gammna riy
flux would be in contradiction with the observed one for a large range of ¢ and g, 1
the predicted flux is isotropic. Omu this assumption, it would be possible to ressurect
the dark matter scarch (and heavy water) linit: either the paratons are in the halo
and the dark matter limit applies, or they annihilated which is ruled out by the
observed gamma ray spectrum. (Heavy water would be more difficult beeause there

are still problems with the magnetic field and the atmosphere.)

I do not know whether it is reasofniable to assume that the flix is isotropic
if the paratons annihilated in stars, there wiuld be no flux at all. If the nnmverse is
imagined to be an expanding ballon, with spots on it where the galaxies are, then
the gamma ray flux would be a ring moving out from ecach spot. If the rings are
wide, the distribution would be isotropic; if they are narrow, it would not be. Limits

of this type are clearly dependant on details of galaxy formation and evelution.



CHAPTER SEVEN
CONCLUSION

One can get useful constraints on paratons from accelerator experiments, stellar evo-
lution and cosmological arguments. The limits for the model without paraphotons
are plotted in figure B.5; those for the model with paraphotons zre in figure B.6.
It is unfortunate that these calculations leave a central triangular window where
paratons are allowed, but there do not seem to be any simple physical arguments

to rule this region out.
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APPENDIX A
FACTORS OF 2 IN INTERACTION RATES

(‘This is copied virtually word for word from [39].) Suppose a particle comes in g
different spin states, where a particle is counted as itself and its antiparticle —so
Majorana spinors have ¢ = 2 and Dirac spinors have g = 4. Then the number

density ean be written
g
n= Zn,- (A1)
=1

where n, is the density of particles in a specific spin and particle/antiparticle state.
The rate per unit volume at which the i-state particles annihilate will be

R = Z < n,-njagjﬁ > (A.2)
J

" b

where aj; is the eross seetion for an 27 to annihilate with a *j7 and the average 15
over the distribution in momentum space of the “j”s. The rate at which the whole
species of particle annililates will be
R=Y <nnoi;B> . (A.3)
i

Assuming n, = n; = n/g, this is
n?
= F Z < U,’jﬁ > (A4)
9° 5

When cross sections are caleulated, they are averaged over the spins of the
incoming particles, so that o;, will not depend on the spins of “4” and “;7, but only

on whether they are particles or anti-particles. So

% (g ,
J ‘; < (01 4+ 09 + 030 + 033) B > (A.5)

-

R=

8]
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where ? is the particle.

Applying this to paratons, where oy = 0, =0 and g = -1, gives

712
R::-—((T{i‘> (‘\(;)

where n is the density of paratons and antiparatons. This is just

R=nm;<ap> (A7)

as expected.
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Table B.1: unit conversions
In units where h=c=%t=1:
G =1/m? and m, =1.22x10" GeV
1 GeV =1.16 x 103 °K
= 1.77 x 10~ grams

= 1.60 x 10~ crgs

1GeV™! =197x10""cm

= 6.58 x 1025 scc

Appendir B
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Table B.2: gy and N as a function of temperature

mass 495y N(T)
< m, < .5MceV 135 8)« 1
m, « Ty 5 e 1 MeV 43 (22) = 1
Ty m, .5 e 100 McV 43 1
my, «my, 100 & 137 MeV 57 2
my = T % 137 MceV &7 69 3
T. & mn, ? & 180 McV 205 11/3
My & M 48 « 1.65 GeV 247 4

me < m, 1.65  1.80 GeV 289 16/3
M, & My 1.8 & 5.2 GeV 303 19/3
My & 1Yy 5.2 <7407 GeV 345 20/3
my & myy 7407 « 90 GeV 387 8

> my > 90 GeV 423 9

+ the quantity in parentheses is the effective number of interacting spin degrees
of frecslom = 4ngpy (.. .so does not include neutrinos below the weak interaction

freeze out temperature)

+* T, is the quark-hadron transition temperature, and is somewhere between 200

and 400 McV
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1: SLAC

2: TOPAZ 0

3. PEP (GeV)
4. ASP B

5: Beam dump
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Fignre B.1: region of i—e space ruled out by accelerator and Lamb shift experiments
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Figure B.2: region of 1 — € space ruled out by cosmological arguments, if there is

no paraphoton
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Figure B.3: region of 1 — € space ruled out by cosmological arguments, if there is a

paraphoton
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Figure B.4: region of g — € space ruled out by red giants and white dwarfs
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1. Accelerators
2: Lamb shift .
3: Nucleosynthesis \ .
4: 01

5: Red giants

6: White dwarfs
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Figure B.5: region of jt — € space ruled out for the model without a paraphoton
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1: Accelerators e
2: Lamb shift

3: Nucleosynthesis
4. <1

5: Red giants
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Figure B.G: region of i1 — e space ruled out for the model with a paraphoton



