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ABSTRACT
To characterize a petroleum reservoir and to develop a reliable static and dynamic model for assess‑

ing resources and reserves, the rock and fluid properties of the subsurface formation are modeled.

In most cases, multiple reservoir properties (categorical and continuous variables) are jointly uti‑

lized to represent rock properties. Standard practice is to model and characterize the categorical

properties of the reservoir such as facies, before modeling the continuous petrophysical properties.

A framework that applies theHierarchical Truncated Pluri‑Gaussian (HTPG) andProjection Pursuit

Multivariate Transformation (PPMT) techniques for multivariate modeling of rock properties in a

petroleum reservoir is developed and documented in this thesis. The HTPG technique and PPMT

workflow are established methods for modeling categorical and continuous variables, respectively.

Unlike other truncated simulation techniques such as Truncated Gaussian Simulation (TGS) and

Truncated Pluri‑Gaussian Simulation (TPGS),HTPG can be applied to a complex geological domain

and does not limit the number of latent Gaussian variables that are used. Although the traditional

modeling workflow for multivariate continuous property modeling reproduces important univari‑

ate statistics, it does not reproduce the complexity in the multivariate data, and this leads to models

that do not reproduce important characteristics of the reservoir. To overcome this limitation and

for ease in the geostatistical modeling workflow, the PPMT workflow is implemented. The PPMT

decorrelates the multivariate variable and transforms them into univariate Gaussian variables that

can be modeled independently.

This proposed integrated modeling method is implemented on the Hekla Reservoir. The HTPG

simulation technique is applied to model the five facies in the Hekla reservoir to generate one hun‑

dred simulated realizations of the facies, while the PPMT technique is subsequently applied to

model the continuous petrophysical properties (porosity and permeability) distributed in the reser‑

voir. This framework is reproducible and applicable to both mining and petroleum projects, which

often require multiple categorical and continuous variables of geologic deposits or reservoirs.
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CHAPTER 1

INTRODUCTION
Multiple geological rock properties are jointly used to characterize geological deposits and reservoir

formations and for developing reliable geological and engineering models. These models are used

for resource and reserves evaluation, to study the economic viability of mining, petroleum, and

environmental projects, and to make viable operational and economic decisions. The use of mul‑

tiple variables improves the performance and reliability of the model. In geostatistical subsurface

resource modeling, multiple simulated realizations of the subsurface are often generated to charac‑

terize geological heterogeneity at various scales; such models describe transitions and trends in the

subsurface formation and assess the degree of uncertainty (Pyrcz &Deutsch, 2014). The motivation

of this study is discussed, an overview of some statistical concepts used in geostatistical modeling

is given, the research problem statement is highlighted, and the thesis statement is summarized.

1.1 Background and Motivation

Knowledge of the distributions and relationships between the continuous (petrophysical) variables

of a reservoir is vital to the effective management of the reservoir and future field development. An

integrated reservoir study involves the determination of optimumwell placement for field develop‑

ment purposes and assessment of in situ resources and reserves. To assess hydrocarbon resources

in‑place and reserves, petrophysical properties such as porosity, permeability, volume of shale, and

connatewater saturation, aremeasured by severalmethods including special core analysis, well log‑

ging, well test analysis, and reservoir simulation techniques.

The hydrocarbon resources in‑place depends on the pore volume (porosity) of the formation and

the amount of in situ water (water saturation). Reserves assessment or calculation depends on sev‑

eral factors including the ability of the reservoir to transmit fluid through the inter‑connected pores

(permeability), flow rates of existing and future producing wells, availability of technology to de‑

velop the field, favorable economics or current prices of oil and gas, and government regulations.

Also, during field development, wells should be optimally placed to penetrate reservoirs at high

porosity and permeability regions, and to avoid interference with adjacent wells. Geological and

flow simulation models are often developed to study the rock and fluid properties of the reservoir

and to predict the performance of the reservoir under certain operating conditions; these models

are continually updated with improved knowledge of the reservoir and when more data comes

available in future. This process of consistently updating models helps to effectively manage the
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reservoir throughout its life.

Geostatistical modeling provides a timely and effective approach to developing reservoir models,

assessing the level of uncertainty, and making predictions with observed data (Caers, 2011); miss‑

ing data are also accounted for. Most projects in the mining and petroleum industries require the

characterization and modeling of multiple continuous variables. In petroleum reservoirs, the val‑

ues and distribution of continuous variables such as porosity and permeability are controlled by

the types and distribution of facies in the reservoir. Facies are categorical variables that constitute

either the flow units or the impermeable zones of the reservoir. Production history and research

have proven that the flow units or facies distribution has a strong influence on the fluid‑flow or dy‑

namic behavior of the reservoir (Hatloy, 1994). Hence, it is essential that a numerical facies model

is incorporated into a detailed reservoir description, as a means of emphasizing reservoir hetero‑

geneity, which helps to quantify the inherent uncertainty and possible economic risks in reservoir

management decisions.

The standard practice in geostatistical reservoir modeling is such that the categorical variables in

the reservoir are first characterized and modeled, and used as an input for modeling the contin‑

uous petrophysical properties, and as a basis for developing the flow simulation model (Hatloy,

1994; Murray, 1994; Pyrcz & Deutsch, 2014; Silva & Deutsch, 2018). Various stochastic methods

and tools have been successfully established to model categorical variables or facies architecture

and distributions in deposits and petroleum reservoirs. These tools are broadly divided into object‑

based and cell‑based methods. The object‑based methods reproduce the morphological shapes or

architecture of the facies such as meandering channels in fluvial environments, while the cell‑based

methods are those that assign facies on a cell by cell basis conditioned to the observed data from

wells or drillholes within the facies.

The SEdimentological SIMulation in IRAp (SESIMIRA) is one of the established object‑based facies

modeling tools, which has been successfully used to demonstrate how the stratigraphic sequence

or layers of facies in a fluvial channel are modeled with a combination of some geological rules,

empirical relations, and probability distributions (Hatloy, 1994); IRAp is a Geomatic mapping sys‑

tem. The SESIMIRA modeling concept involves a two‑stage modeling approach; the first stage is

the generation of simulated facies realizations and the second stage is the conditional simulation to

model the multiple continuous petrophysical properties.

Cell‑based methods such as Multiple Point Statistics (MPS), Sequential Indicator Simulation (SIS),

Truncated Gaussian Simulation (TGS), Truncated Pluri‑Gaussian Simulation (TPGS), Hierarchi‑

cal Truncated Pluri‑Gaussian (HTPG) facies modeling methodologies, have been successfully em‑
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ployed to model facies or categorical variables in geologic deposits or reservoirs (C. V. Deutsch,

2002; Pyrcz & Deutsch, 2014). The MPS methodology uses training images or reference models as

the basis for characterizing and modeling facies types in the reservoir. MPS has a capacity to re‑

produce complex features in the reservoir; however, this method has the limitations of difficulty in

handling non‑stationarity with the training images and the relative simple features embedded in

the training images (Silva & Deutsch, 2017).

SIS, TGS, and TPGS are variogram‑based facies modeling methodologies. Variogram‑based mod‑

eling methods are useful tools in modeling facies. SIS is commonly used to model reservoirs with

diagenetically controlled facies, which are characterized by anisotropy that is modeled by the vari‑

ogram. The HTPG simulation technique is an established categorical variable modeling technique,

which is more suited when the geology of the domain of interest has a complex structure.

Modeling multiple continuous variables in a reservoir enables the construction of not only static

reservoir models, but also flow simulation models, which are essential for reservoir performance

prediction. Like the simulated facies realizations, realizations of continuous petrophysical proper‑

ties depict the heterogeneity of the subsurface formation, and enables the modeler to quantify the

degree of uncertainty. When modeling multiple variables, the older geostatistical modeling meth‑

ods transform the variables to univariate Gaussian variables and assume a multivariate Gaussian

relations before cosimulating the transformed variables with the Sequential Gaussian Simulation

(SGS) technique (C. V. Deutsch, 2002; C. V. Deutsch & Journel, 1998; Kelkar & Perez, 2002). How‑

ever, there is a potential limitation in this assumption, as geological variables often exhibit complex

multivariate relationships such as non‑linearity, heteroscedasticity, and constraints. To overcome

this potential limitation, the Projection Pursuit Multivariate Transformation (PPMT) and other mul‑

tivariate transformation techniques are motivated. The HTPG and PPMT techniques will be jointly

incorporated in an integrated fashion and applied in a single geostatistical reservoirmodelingwork‑

flow.

1.2 Basic Statistical Concepts

The branch of statistics which involves the modeling of subsurface phenomena is known as Geo‑

statistics. Simply put, geostatistics is defined as the study of spatially distributed random variables.

To perform geostatistical analyses, some statistical concepts must be understood. Statistical con‑

cepts such as stationarity, random variables, continuous and categorical variables, cumulative dis‑

tribution functions, andprobability density functions are discussed. These statistical parameters are

important modeling input parameters in many geostatistical estimation and simulation processes

such as kriging and SGS.
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1.2.1 Geological Population and Stationarity Concept

In statistics, an important decision on how to group data into populations is made before any de‑

tailed analysis. These pools of data or populations are subsequently used for statistical analysis.

The decision to pool the data depends on the objectives of the proposed study, availability of spe‑

cific data types, and the geological setting of the data, among other factors (C. V. Deutsch, 2002).

A reservoir model is often constructed on the basis of specific facies in each stratigraphic layer of the

reservoir and each pool of data is referenced to specific facies. In this way, sample statistics are rep‑

resentative of the defined populations. The decision of which data is classified or pooled together

for further use as a representative sample statistics is known as stationarity (Pyrcz &Deutsch, 2014).

A decision of stationarity implies that the statistics of the pooled data such as the mean, variance, or

covariance are independent of any data location (Hohn, 1999). The choice of the pooled data also

depends on the geological context and expertise of the modeler. The decision of stationarity is vital

in geological modeling because when all data in the domain of interest are grouped into only one

population, important trends might be masked.

1.2.2 Univariate Statistics

Generating univariate statistics of regionalized variables gives the modeler knowledge of the quan‑

tity and quality of the available data used for geostatistical modeling. The following are the most

relevant concepts of geostatistics.

1.2.2.1 Random Variables (RV)

The major aim of predictive statistics is to characterize any unsampled value z as a RV Z, and the

probability distribution which models the uncertainty about z (C. V. Deutsch & Journel, 1998; Jour‑

nel, 1989). A RV is a variable that takes various outcomes from a random experiment according to

some probability distribution, such as uniform or normal distribution. The RV is conventionally

denoted as Z, while its outcome values are denoted as z. The use of uppercase letter Z indicates

that the value is not known. The outcome of the RV is denoted by the corresponding lowercase

letter z. Note that the RV is both location and information dependent, that is, the notation Z(u) is

often used, where u is the location coordinate vector. When the RV is distributed through space, it

is called a regionalized variable. Examples of RVs are categorical or continuous RV.

Categorical Random V ariables are variables that can only take a limited set of values or a small

number of integers. This can be 1 for Sand and 0 for Shale. The frequency at which each outcome

occurs is described by a probability mass function (PMF), as given in Equation 1.1. The categorical

variables are also known as discrete RVs. Examples are geological properties such as facies or rock

4



1. Introduction

types, counts of fossil species, etc.

FZ(u)(z) = Prob(Z(u) = z) (1.1)

Where u is a location coordinate vector. For ease in documentation, u is dropped from the notation

Z(u) beyond this point. Continuous Randon V ariables are variables that take real values. In the

categorical variable case, the frequency of possible outcomes can be counted. However, for the con‑

tinuous random variable case, the number of possible outcomes cannot be counted because there

are infinite possibilities. Examples of such varying quantities are petrophysical properties (poros‑

ity, permeability, water saturation, acoustic impedance, metal concentrations) and geographical

attributes (population densities, topographic elevations). The variations of a continuous RV are

commonly described in two equivalent ways: (1) Cumulative distribution function (CDF) and (2)

Probability density function (PDF).

1.2.2.2 Cumulative Distribution Function

The CDF is a general way of expressing a state of incomplete knowledge of a continuous RV. It is

mathematically expressed as:

FZ(z) = Prob(Z ≤ z) (1.2)

The CDF is a non‑decreasing function between 0 and 1, while the values of z are in the range of the

working data.

1.2.2.3 Probability Density Function

The PDF, denoted as fZ(z), is the derivative of the CDF, FZ(z) provided FZ(z) is differentiable,

Equation 1.3. Generally, the PDF is defined as the integral or surface area of a positive function and

this integral denotes a probability, as given in Equation 1.3, (Caers, 2011; Mallet, 2002).

fZ(z) =
d

dz
FZ(z) (1.3)

Prob(a ≤ Z ≤ b) =
∫ b

a

fZ(z)dz

Some important properties to be noted are:∫ +∞

−∞
fZ(z)dz = 1

fZ(z) ≥= 0

Prob(Z = z) = 0

Although the CDF is commonly used in summary statistics and other calculations, the PDF and

histogram are often used for data visualization and interpretation purposes (C. V. Deutsch, 2002).

The histogram could be considered as an approximation to the PDF. For a specific interval, the area
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of the histogram bar is equal to the proportion or relative frequency of measurement in that interval

(Montgomery & Runger, 2003). The relative frequency is simply an estimate of the probability

that the observed value of the continuous RV falls within the interval. Similarly, the area under

fZ(z) over an interval, say
[
a b

]
, is the actual probability estimate that the observed value of the

continuous RV falls in that interval, as expressed in Equation 1.3 (Montgomery & Runger, 2003).

1.2.2.4 Expected Values

The probability‑weighted average of a random variable RV is known as the expectation or expected

value of the random variable. It is a statistical way to summarize the distribution function of the

random variable of interest. The expected value of any RV is known as the mean, m or the first

moment and it is mathematically expressed in Equation 1.4.∫ +∞

−∞
zdFZ(z) =

∫ +∞

−∞
zfZ(z)dz = m (1.4)

The expected value could be considered as a statistical or linear operator (Rossi & Deutsch, 2013).

The expectation of the squared difference from the mean is called the variance, σ2 of the random

variable distribution. This is expressed in Equation 1.5.

E
{
[Z −m]2

}
= V ar

{
Z
}
= σ2 (1.5)

The standard deviation, σ is defined as the square root of the variance of the sample or population

and it is expressed in the units of the RV of interest. Traditionally, data is summarized by providing

them and σ.

1.2.3 Multivariate Geostatistics

Multivariate geostatisticalmodeling involves themodeling of randomvariables, with consideration

to the relationship between multiple variables. Such relationships may be important when predict‑

ing the variables relevant for resource and reserves evaluation. The fundamental tool that measures

the relationship between two RVs is known as the covariance. The covariance is used to character‑

ized bivariate distributions and it’s unit is the product of the units of the two variables of interest.

Consider two RVs Z1 and Z2 spatially distributed within a domain of interest A. If the mean of the

random variables Z1 and Z2 are mZ1 and mZ2 , respectively, then the covariance between the RVs

is expressed in Equation 1.6.

Cov
{
Z1, Z2

}
= E

{
[Z1 −mZ1][Z2 −mZ2]

}
(1.6)

The correlation coefficient, ρ between the RVs Z1 and Z2 is defined as the covariance between Z1

and Z2 divided by the standard deviations of the Z1 and Z2 variables, as expressed in Equation 1.7.

ρZ1,Z2 =
Cov

{
Z1, Z2

}
σZ1 .σZ2

(1.7)
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The correlation coefficient is a dimensionless value between ‑1 and +1 that depicts either an inverse

or a direct linear relationship. If the covariance, Cov
{
Z1, Z2

}
between the two random variables is

zero, the variables are said to be uncorrelated and there is no dominant direct or inverse relationship,

but the variables may have a non‑linear relationship (Journel, 1989; Rossi & Deutsch, 2013).

1.3 Thesis Statement

An integrated workflow that utilizes geostatistical techniques to improve modeling of reservoir facies and spa‑

tial prediction of continuous petrophysical properties in complex geological terrain will yield high‑performing

models, which aid resource and reserves assessment, uncertainty quantification, and management decision‑

making.

Modeling of multivariate geological and petrophysical properties is key to generating reliable geo‑

statistical reservoir models for resource and reserves evaluation. Multivariate modeling is required

for the analysis and assessment of most subsurface processes in the mining and petroleum indus‑

tries. The standard practice in geostatistical reservoir modeling is to model the categorical vari‑

ables in the formation and consider the simulated realizations of the categorical variables as input

to model the continuous properties.

HTPG, among other techniques, has been successfully established for modeling categorical vari‑

ables (Silva & Deutsch, 2018). HTPG was motivated to overcome the limitation of using only 2 or

3 latent Gaussian variables in other truncated Gaussian Simulation techniques. Unlike other trun‑

cated Gaussian simulation techniques, HTPG is more suitable to very complex geological settings

and the use of a truncation tree structure makes it more convenient to define the truncation rule in

the HTPG technique.

The PPMT is a multivariate transformation technique used for multivariate continuous variable

modeling. It was motivated to overcome the limitations of the older geostatistical modeling work‑

flows. The application of PPMT ensures that all the transformed variables are uncorrelated and

multi‑Gaussian; back transformed values reproduce the complex relationships that have been re‑

moved. The models developed by the PPMTmodeling workflow are likely to out perform those of

a conventional modeling workflow (Barnett, Manchuk, & Deutsch, 2016).

This thesis presents a framework that integrates the application of the HTPG and PPMT techniques

to model a petroleum reservoir. This methodology seems to provide a practical approach to model

the categorical and continuous variables in the reservoir.
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1.4 Thesis Outline

In Chapter 2, a comprehensive review is made on the geostatistical modeling techniques used for

modeling of categorical and continuous variables. The linear and non‑linear transformation tech‑

niques, as applied tomultivariate continuous propertymodeling, are discussed. Chapter 3 presents

an overviewof the theories of theHTPGand the PPMT techniques and highlights the researchwork‑

flow that integrates the application of both techniques. Chapter 4 discusses the implememtation of

HTPG ‑ PPMT integrated methodology to generate multiple realizations of the Hekla reservoir fa‑

cies, porosity, and permeability. This chapter also discusses model validation and checking of the

Hekla reservoirmodels. Chapter 5 draws conclusions from the results and highlights futureworks.
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CHAPTER 2

LITERATURE REVIEW
This chapter provides a review of methodologies and tools relevant to this thesis. The first section

discusses the techniques that are employed to model categorical variables, while the second section

discusses multivariate continuous property modeling techniques.

2.1 Modeling of Categorical Variables

Modeling of categorical variables such as facies is an important step in most reservoir modeling

workflows. A facies is a unique body of sediment with some specified characteristics, formed under

certain depositional conditions or settings; the unique characteristics include lithology, diagenetic

features, primary and secondary sedimentary structures (Heriot‑Watt, 1999). Different facies in the

reservoir have different porosity and permeability values. Also, the lateral and vertical changes

of a particular facies bring about porosity and permeability changes in the reservoir. This means

that facies models capture heterogeneity at different scales, help to quantify the uncertainty in the

reservoir, and are a key input in the field development plan for the purposes of well placement and

risk mitigation.

All facies of interest should have geological significance and sufficient data to allow reliable infer‑

ence of the required statistics for reservoirmodeling (C. V. Deutsch, 2002). The facies of a subsurface

reservoir must be properly identified bywell logs from the wells penetrating the reservoir and thus,

must have clearly defined petrophysical properties and spatial features. Some stochastic methods

have been developed and employed successfully to characterize and model categorical variables.

These methods are divided into Object‑Based Modeling (OBM) and Cell‑Based Modeling (CBM)

methods.

2.1.1 Object‑Based Modeling

The object‑based method is suited for facies modeling when there is a good knowledge of the de‑

positional environment and reservoir geometry. By this method, a reservoir model with a defined

geometry is initialized with a background facies, while some parameterized geometries (represent‑

ing other facies) are sequentially placed into the model by some geological rules, until certain crite‑

ria including the expected global facies proportions and data conditioning are met (C. V. Deutsch,

2002; C. V. Deutsch & Tran, 2002; Pyrcz & Deutsch, 2014). OBMmethods became famous in the oil

and gas industry in the mid‑1980s and early 1990s when they were extensively used to characterize
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the facies in the Norwegian North Sea reservoirs (C. V. Deutsch &Wang, 1996; Egeland, Georgsen,

Knarud, & Omre, 1993; Hatloy, 1994; Holden, Omre, & Tjelmeland, 1992). Reservoirs in fluvial de‑

posits tend to be highly heterogeneous; hence, simulating a 2‑D or 3‑D model of the geological and

petrophysical properties of such reservoirs is essential for planning production strategies and for

the prediction of recovery efficiency (Egeland et al., 1993).

Egeland et al. (1993) presented a stochastic method for modeling the facies architecture of fluvial

reservoirs by using a computer program known as SISA. Their model, which included four differ‑

ent facies types: a background, channel sand, sheetsplay sand, and barriers, was established with

a prior model for each facies. The prior model was then developed into a posterior model with

conditioning or observed well data. The prior model was based on general knowledge of fluvial

reservoirs and specific information from the reservoir of interest such as the size and geometry of

the channels. Two examples were demonstrated to explain their methodology: one synthetic case

with a limited number of facies and the other case with a North Sea fluvial field (Egeland et al.,

1993). The examples demonstrated the following features of the facies model: (1) location, archi‑

tecture, and behavior of facies bodies, (2) relationship or spatial correlation between the different

facies types, (3) conditioning to observed well data.

Hatloy (1994) developed the SESIMIRA concept, an OBM method for facies characterization. This

approach is considered general, as it enables themodeler to combine deterministic and probabilistic

parameters, with some geological rules and empirical relations, to model facies bodies in a fluvial

channel. The model developed by this approach is used for both uncertainty quantification in the

facies architecture and as a conditioning input model for developing models of petrophysical prop‑

erties in the reservoir. The SESIMIRA concept was utilized on IRAp (a Geomatic mapping system)

and was used in the mid 1990s (Hatloy, 1994).

A hierarchical object‑based method for modeling complex reservoirs in fluvial depositional envi‑

ronment was developed by C. V. Deutsch and Wang (1996), an approach that involves stochastic

modeling of fluvial channel shapes and then filling up those shapes with petrophysical properties

such as porosity and permeability. This approach was motivated by the obvious geometries ob‑

served at outcrops and those viewed aerially in modern fluvial deposits; and emphasis is placed

on geologically valid principles and conditioning statistics including vertical and lateral facies pro‑

portions (C. V. Deutsch & Wang, 1996). The modeling approach that is hierarchical, whereby a

stratigraphic coordinate transform is established for each layer of the reservoir, a number of chan‑

nel complexes are positioned in the reservoir layers, and then channels are placed in each of the

channel complexes. Codes were written in C and Fortran for this hierarchical OBM method. This

was later optimized to the fluvsim program (C. V. Deutsch & Tran, 2002), which is derived from
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the Geostatistical Software Library (GSLIB) programs (C. V. Deutsch & Journel, 1998).

One of the objectives of OBM methods for facies modeling is to reproduce the geometry or shape

of the geo‑objects as geometric shapes and preserve the large and small scales features of the geo‑

objects. The chosen geometric shapes depend on the modeler’s knowledge of the depositional en‑

vironment and the reservoir architecture. In most OBMmethods, geo‑objects are represented with

a template of cells, which provides a reasonable computational time; however, the preservation

and connectivity of the large and small scale features of the geo‑objects are highly sensitive to the

modeler’s chosen grid size (C. V. Deutsch, 2002; Hassanpour & Deutsch, 2010). In recent years, a

grid‑free OBM method has been adopted, whereby geo‑objects are represented with parametric

shapes instead of using a template of cells (Hassanpour & Deutsch, 2010; Pyrcz & Deutsch, 2014;

Zagayevskiy & Deutsch, 2015). This grid‑free modeling approach helps to preserve both the large

and small scale features in a particular model.

Although the OBMmethods generally have the capability of reproducing the appropriate morpho‑

logical shape or geometry of the objects in reservoirs, they have three notable limitations: (1) Each

geometric shape or object that represents facies are individually parameterized, which implies that

each OBM algorithm can handle just one type of reservoir, as in SISA (Egeland et al., 1993) and

fluvsim (C. V. Deutsch & Tran, 2002); (2) Difficulty in honoring dense well data when the data

spacing is compared to the average size of the object; (3) Difficulty in constraining the reservoir

models to spatial trends that are represented by maps of areal proportions or vertical facies propor‑

tion curve (Strebelle & Journel, 2001). However, beyond these limitations, the OBM can be used to

model the facies of reservoirs in complex geological settings, both in fluvial and non‑fluvial depo‑

sitional environments.

2.1.2 Cell‑Based Modeling

The cell‑based modeling (CBM) methods for modeling categorical variables are used to generate

simulated realizations of the variables within a pre‑defined grid that represents the domain of the

mineral deposit or reservoir. CBMmethods such as Multiple Point Statistics (MPS) and Variogram‑

Based (VB) facies modeling are data‑driven, as they are conditioned to the sampled data fromwells

(core and/or well log data) and seismic within the domain of interest. A number of CBM techniques

have been recently employed to model facies prior to modeling the continuous petrophysical prop‑

erties in the reservoir.

Most cell‑basedmodeling and simulation algorithms target the reproduction of statistics that honor

well data. These well data are often sparse and only give estimates of two‑point correlation in the
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reservoir or domain of interest (Strebelle & Journel, 2001). Since the variogram considers the spatial

continuity between two points at a time, the VB methods for facies modeling may sometimes give

poor representation of the facies architecture of the reservoir (Pyrcz & Deutsch, 2014; Strebelle &

Journel, 2001). In comparison, the OBM methods give a good representation of the actual geome‑

tries of the facies bodies but in most cases, fail to honor dense well data. TheMPS technique, which

expresses spatial correlation at more than two points at a time, is capable of both honoring reservoir

data and adequately reproducing the facies geometries. The MPS method uses training images or

reference models as the basis for characterizing and modeling facies bodies in the reservoir and

has the capability of reproducing complex features in the reservoir. However, this method has

difficulty in handling non‑stationarity with the training images and reflects only relatively simple

features embedded in the training images (Pyrcz & Deutsch, 2014; Silva & Deutsch, 2017).

The Sequential Indicator Simulation (SIS) technique is commonly used to model reservoirs with

diagenetically controlled facies, which are characterized by anisotropy that is modeled by the var‑

iogram (C. V. Deutsch, 2002; Silva & Deutsch, 2018). Consider K mutually exclusive facies types,

sk, k = 1, . . . ,K , the indicator transform at a specific location uα ∀ facies sk is known as the prob‑

ability of facies sk present at that location: this probability is 1 if the facies is present and 0 if not

present. The SIS algorithm is such that each grid node is visited randomly and at each node a facies

code is assigned by: (1) finding nearby and previously simulated grid nodes and then estimating

the conditional distribution by kriging, that is, the probability that a particular facies is present at

that node, pk, k = 1, . . . ,K , then (2) drawing simulated facies realizations from the set of probabil‑

ities. This procedure is repeated with different random seeds to generate multiple realizations of

the facies (Pyrcz & Deutsch, 2014).

The Truncated Gaussian Simulation (TGS) technique generates realizations of a continuous Gaus‑

sian variable and then truncates the realizations at a series of thresholds to create realizations of

facies (Pyrcz & Deutsch, 2014). TGS is commonly applied to heterogeneous facies that have been

diagenetically altered, with no well‑defined geometric shapes, and are ordered in some predictable

way. In practice, the chosen thresholds for truncating the Gaussian variables to facies are ordered

based on the facies codes generated from an underlying continuous variable (Pyrcz&Deutsch, 2014;

Silva & Deutsch, 2017). One notable limitation of TGS is that it uses only one latent Gaussian vari‑

ables.

The Truncated Pluri‑Gaussian Simulation (TPGS) technique is one of the variants of the truncated

Gaussian simulation method for categorical variable modeling. Unlike TGS, it permits the use of

2 or 3 latent Gaussian variables, which makes it more suited for modeling more complex facies

relationships. The simulation of categorical variables is also done by multiple truncations of the la‑
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tent Gaussian variable realizations. The mapping between the categorical and continuous variables

could be modeled with one of the established methods for simulating Gaussian random functions.

TPGS is a viable method for modeling facies, however, its application is limited to not more than

three Gaussian latent variables (Pyrcz & Deutsch, 2014; Silva & Deutsch, 2018). The HTPG facies

modelingmethodology, which is discussed inChapter 3, wasmotivated to overcome the limitations

of the TPGS and TGS methods.

2.2 Multivariate Property Modeling

A detailed reservoir description needed for field evaluation requires models of continuous (petro‑

physical) properties. The variability or distribution of the petrophysical properties is a function

of the facies distribution in the reservoir. Greater variability in the petrophysical properties is ob‑

served when there is transition from one facies type to another facies type, while the variability is

less for transition within the same facies types. Models of continuous variables such as porosity

and permeability are not only essential for performing volumetric calculations, but also capture

reservoir heterogeneity and are utilized for sensitivity analysis and uncertainty quantification in

fluid production from the reservoir under different production regimes.

A good knowledge of the reservoir, expertise of the modeler, and the availability of valuable in‑

formation from sources including cores, well logs, seismic, well tests, and field production, will

aid the construction of a reliable and high‑performance reservoir model. Data from these sources

are often multivariate in nature; these multiple rock and fluid properties are jointly used to build

models that give a detailed description of the reservoir. This section discusses the old (traditional)

and recent techniques that are used in multivariate modeling.

2.2.1 Traditional Modeling Method

Most petrophysical rock and fluid properties tend to be correlated. As such, a geostatistical multi‑

variate modeling approach that employs a co‑simulation technique is commonly used to generate

realizations of the multiple continuous variables. This is often done by transforming the variables

into univariate Gaussian by the traditional normal score transformation method (C. V. Deutsch &

Journel, 1998; Isaaks & Srivastava, 1989; Journel & Huijbregts, 1978; Pyrcz & Deutsch, 2014) and

assuming that the variables exhibit multi‑Gaussian relations. The workflow commonly used in

this modeling technique is shown in Figure 2.1. The underlying issues with this modeling work‑

flow are (1) geological variables often have complex non‑Gaussian relationships, which violates the

assumption of multi‑Gaussianity. (2) the cosimulation and associated back‑transformation do not

effectively reproduce themultivariate relationships of the original variables; hence, the validity and

performance of models developed by this workflow are questionable (Barnett &Deutsch, 2015; Bar‑
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Figure 2.1: Traditional modeling workflow.

nett et al., 2016).

Although the traditional modeling technique has the above‑mentioned limitations, it has been suc‑

cessfully applied to evaluate resources and reserves of subsurface mineral deposits and petroleum

reservoirs, with some acceptable degree of accuracy (Barnett et al., 2016). The steps involved in the

traditional modeling workflow are highlighted below:

1. Normal score transformation of the original multiple variables to Gaussian distribution

2. Variogram modeling with the normal score data

3. Perform conditional Gaussian cosimulation

4. Normal score back‑transformation of the generated Gaussian realizations

Another notable downside of this modeling method is the complexity involved in building a linear

model of co‑regionalization prior to running co‑simulations, which becomes more cumbersome
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Figure 2.2: Complex relationships of multivariate properties in comparison with a multiGaussian distribution
(Barnett & Deutsch, 2015)

with an increase in the number of variables. Recently, this limitation is overcome by removing

the correlations between the variables through a multivariate transformation technique and then

running independent simulations.

2.2.2 Multivariate Transformation and Independent Simulation Method

The commonpractice in univariate propertymodeling is to transform the regionalized variable from

its original unit to the Gaussian unit, a process known as normal score transformation (Journel &

Huijbregts, 1978; Pyrcz & Deutsch, 2014). Simulation is run to generate multiple realizations of the

variable. However, the evaluation of geologic deposits and petroleum reservoirs requires the use of

multivariate properties of the subsurface mineral deposits and reservoirs. Whenmultiple variables

are modeled, the assumption that univariate Gaussian variables are multiGaussian is not always re‑

alistic since geological variables often exhibit complex non‑Gaussian features such as non‑linearity,

heteroscedasticity, and constraints (C. V. Deutsch, 2011). Figure 2.2 shows some of the complexities

exhibited by geological variables; note the elliptical contour shape of the multi‑Gaussian relation‑

ship. A potential issue with the traditional geostatistical modeling workflow, as highlighted above,

is that it does not reproduce themultivariate relationships of themultiple variables. To address this

issue, the development of multivariate transformation techniques were motivated.

2.2.2.1 Linear Decorrelation Transformation

Principal Component Analysis (PCA) is a multivariate transformation technique that reduces the

dimension and decorrelates a correlated multivariate distribution into orthogonal linear combina‑

tions of the original variables (Barnett, 2017a). Decorrelation of the multivariate variables facili‑

tates independent geostatistical modeling of the PCA transformed variables, before the PCA back‑

transformation is used to restore the correlations of the original variables. Consider the data matrix

Z: zα,i and the corresponding Gaussian data Y : yα,i, α = 1, . . . , N, i = 1, . . . ,K , where N is the

number of sampled locations or observations and K is the number of variables. The spatial coor‑

dinates of the N observations in Z are denoted by the vectors uα, α = 1, . . . , N . The PCA uses the

covariance matrix
∑

(h) as its input, see Equation 2.1, where h is the separation or lag distance.
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The algorithm performs a pre‑processing step, which involves the spectral decomposition of h = 0

covariance matrix,
∑

(0) to yield the value in Equation 2.2.

∑
(0) : Cij =

1
N

N∑
α=1

yα,i.yα,j , i, j = 1, . . . ,K (2.1)

∑
(0) = VY DY V

T
Y (2.2)

where VY is the eigenvector matrix of the standardized data Y and DY is the diagonal eigenvalue

matrix. The PCA transform is then performed by multiplying Y with VY to yield P in Equation 2.3.

This rotates themultivariate data such that the resultant principal components inP are uncorrelated.

When P is multiplied by the transpose of VY , it is rotated back to Y , which forms the basis of the

PCA back‑transformation.

P = Y VY (2.3)

The Minimum/Maximum Autocorrelation Factor (MAF) transform is an extension of PCA that per‑

forms a two‑step spectral decomposition of
∑

(h) at h = 0 and h > 0 lag distances; this will lead to

a better cross‑covariance reproduction in simulated realizations (Barnett, 2017b). Since the PPMT,

which is discussed in Chapter 3, only removes the correlation at h = 0, the MAF transform is an

effective post‑processing tool if any h > 0 correlation persists after PPMT.

2.2.2.2 Non‑linear Transformation

Gaussian techniques are commonly applied in geostatistical reservoir modeling to develop geolog‑

ical models due to their simplicity; these techniques require the variables of interest to be multivari‑

ate Gaussian. The traditional normal score transformation usually generates univariate Gaussian

distributions but does not enforce bivariate or multivariate Gaussianity. Some techniques have

been developed to transform multiple variables in a non‑linear fashion to generate multi‑Gaussian

distributions of the transformed variables.

The Stepwise Conditional Transformation (SCT) technique was conceptualized and first imple‑

mented by Rosenblatt (1952) formultivariate data transformation and has been applied successfully

in geostatistical reservoir modeling workflow (Leuangthong, Deutsch, Haas, & Shtuka, 2000). SCT

technique ensures that all the transformed variables exhibit multi‑Gaussianity with a correlation of

zero. Thus, independent simulation is run to generate multiple realizations with no requirement

to fit a model of coregionalization. The SCT technique is similar to the conventional normal score

transformation when the first variable is transformed. Consider a K ‑ variate problem with N ob‑

servations, the K variable is conditionally transformed with reference to the (K − 1) variables as
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described below.

y1 = G−1[F1(z1)] (2.4)

y2 = G−1[F2|1(z2|y1)] (2.5)

y3 = G−1[F3|2,1(z3|y2, y1)] (2.6)

...

yK = G−1[FK|1,...,(K−1)(zK |y1, . . . , y(K−1))] (2.7)

Where yi, i = 1, . . . ,K are the multi‑Gaussian variables that are independent at lag distance of zero,

h = 0, that is, covariance is equal to zero (Leuangthong & Deutsch, 2003).

Ci,j(h) = Ci,j(0) = C[Yi(u), Yj(u)] = 0, i ̸= j, i, j = 1, . . . ,K (2.8)

The SCT technique requires the data to be binned; the data are separated into classes based on their

conditional probabilities, then each class of data is normal score transformed. It is worthy to note

that themultivariate spatial relationship of the original regionalizedK‑variables is not transformed

at lag distances greater than zero (h > 0), which means no changes are made to the bivariate spa‑

tial distribution Y (u) and Y (u + h), or higher multivariate spatial distributions (Leuangthong &

Deutsch, 2001). Hence, the multivariate distributions at h > 0 are not Gaussian and the covariance

at h > 0 is not equal to zero, unless if such assumption is made for simplicity.

Ci,j(h > 0) = C[Yi(u), Yj(u+ h)] ̸= 0, i ̸= j, i, j = 1, . . . ,K (2.9)

For the bivariate case, this covariance is given as

C1,2(h > 0) = C[Y1(u), Y2(u+ h)] ̸= 0 (2.10)

The primary motivation for employing the SCT technique for multiple variable transformation is

because it facilitates independent simulation of the transformed variables instead of the rigorous

cosimulationmethod that requiresmodels of coregionalization for all the cross‑covariances ath > 0.

Although this data transformation has proven very useful formodelingmultiple variables, it has the

limitation of under‑performing with large amount of data and there are often some minor artifacts

due to binning and reduced data in transformation of high dimensional distributions (C. V. Deutsch,

2011).

TheMultivariate StandardNormal Transformation (MSNT) conceptwasmotivated to overcome the

limitations of the SCT and the multivariate linear transformation tools. ConsiderN observations of

K variables from an arbitrary multivariate distribution, the MSNT technique uses a modified Latin

hypercube sampling algorithm to generateN observations from aK‑variate multivariate standard

normal distribution; then each of the originalN data are technicallymapped to the standard normal
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observation (C. V. Deutsch, 2011). This concept is similar to the traditional normal score transform

and the SCT in that each data observation in the original units is mapped onto specific observation

in the standard normal distribution. However, while the MSNT technique maps the multivariate

observations directly, the normal score and SCT consider only one variable at a time (C. V. Deutsch,

2011).

Like the SCT technique, the MSNT technique yields transformed variables that are treated inde‑

pendently, which would thus facilitate quick independent simulation to generate multiple realiza‑

tions of the K variables. Although the MSNT concept is promising, some challenges implicit to

this technique include (1) the requirement or need for large amount of data to reasonably span the

input multivariate space; limited data implies far apart neighbors and interpolation becomes diffi‑

cult, and (2) the requirement for equal data sampling, that is, having equal number of variables at

all sample locations.

To overcome the potential limitations of the SCT and MSNT techniques, Silva and Deutsch (2015)

developed an SCT algorithm, gmm_sct, a derivative of the GSLIB that transforms multivariate data

with SCT usingGaussianMixturesModel (GMM) as reference distribution. First, a GMM is fitted to

the data and the GMM is referenced in the transformation steps of SCT. This permits the use of SCT

in high dimensions and for sparse data, thereby eliminating artifacts due to binning. Note that the

transformed multivariate data may not be perfectly decorrelated. Such deviations are anticipated

due to the use of limited data and the use of a fitted distribution as reference (Silva &Deutsch, 2015).

The associated GMM back‑transformation is achieved by using gmm_sctb.

Although these linear and non‑linear decorrelation techniques have been successfully employed to

transformmultiple variables prior to simulating themgeostatistically, the PPMT technique has been

frequently applied in recent times formultivariate data transformation. PPMT is not constrained by

the dimensionality of the multivariate data and perfectly removes the correlation between multiple

variables at lag distance h = 0. The concept of the PPMT technique is discussed in the next chapter

and it is utilized by the modeling workflow adopted in this study.
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CHAPTER 3

METHODOLOGY
This chapter is divided into three sections. The first section discusses the HTPG concept, which

is applied in this research for categorical variable modeling. For more insight into the theory and

implementation of the HTPG, see the detailed documentation by Silva and Deutsch (2018). The

second section presents the PPMT theory; see Barnett and Deutsch (2015) for the complete guide

on modeling with the PPMT. The third section discusses the workflow adopted in this study.

3.1 Hierarchical Tuncated Pluri‑Gaussian

Categorical variable is often available to geostatistically model and characterize a petroleum reser‑

voir and the categorical variable has a number of possible outcomes or categories. In reservoirs, for

example, the distinct rock categories commonly observed are sand, shales, and carbonates. Based

on the particle size distribution, sand could be observed and characterized as very fine sand, fine

sand, and coarse sand. In fluvial depositional environments with mixed sediments and extremely

strong currents, such mixed sediments are often characterized as unique categories or facies, such

as shaly‑sand and sandy‑shale. Modeling of facies architecture of a reservoir helps to discern the

regions and layers of the reservoir that will probably be most productive or constitute barriers to

fluid flow. The conventional modeling approach is either to combine the categories or to model

them independently. When multiple categories are modeled independently, key statistics, such as

the joint categorical proportions, are not properly reproduced (Rossi & Deutsch, 2013).

The concept of truncating continuous variables to model categorical variables is very flexible. The

TPGS approach for modeling categorical variable does not explore the full capacity of the trunca‑

tion concept (Pyrcz &Deutsch, 2014; Silva &Deutsch, 2017). Regardless of the number of categories

under consideration, for practical purpose, the TPGS is limited to the use of only two or three con‑

tinuous variables (Silva &Deutsch, 2018); however, there is no theoretical restriction on the number

of Gaussian variables that could be used. Also, the concept of using truncation masks in TPGS is

limiting, since the geological interpretation degrades when a larger number of categories and/or

continuous latent Gaussian variables are available. The increased difficulty in mapping the spatial

continuity of the categorical variable to the continuous space is often used to justify the restriction

to two latent Gaussian variables in TPGS applications.

The Hierarchical Truncated Pluri‑Gaussian (HTPG) technique uses a tree structure to define trunca‑
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tion rules. This facilitates the definition of the mapping between continuous and categorical space,

whichmakes it possible to effectively use any number of Gaussian variables for the modeling of cat‑

egorical variables (Silva & Deutsch, 2018). The use of a tree structure gives flexibility to the HTPG

approach andmakes its application suited for complex geological settings. There are five developed

steps for the application of truncated Gaussian methods, which are:

1. Definition of the truncation rules;

2. Mapping of spatial continuity from categorical to continuous space;

3. Imputation of continuous data;

4. Simulation of continuous variables at the modeling nodes; and

5. Truncation of the continuous variable realizations to generate realizations of the categorical

variable (Silva & Deutsch, 2018).

Although all these steps are key to the success of the HTPG technique, the truncation rule impacts

the entire process and the generated categorical realizations.

3.1.1 Truncation Rule

The definition of a truncation rule is a fundamental step in the HTPG approach to modeling cate‑

gorical variables. It determines the quality and dependability of the generated models. The HTPG

truncation rule is defined by a decision tree, where the parent nodes represent the latent Gaussian

variables and the leafs on the tree represent the resultant categories. Thresholds are applied to the

nodes and the proportion of categories present in the simulated realizations is controlled by the

truncation thresholds.

The main purpose of defining the truncation rule is to introduce geological understanding of the

sedimentary depositional setting into numerical models; and this controls the contacts between

the categories or facies. When defining the truncation rules for HTPG, geological expertise of the

depositional environment should be the main consideration. Geological structures are technically

defined from information in the observed data. These vital pieces of information are often obtained

from core samples, well logs, and outcrop examination. The geological information that goes into

the HTPG truncation rule is mainly qualitative. By carefully analyzing and interpreting the avail‑

able geological information, structures including folds, faults, intrusions, and unconformities, are

properly defined and factored in when defining the truncation rule for the rock layering sequence

or strata.
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Transition probabilities and Multidimensional Scaling (MDS) mapping are also used to comple‑

ment the definition of the truncation rule. The calculation of the transition probability matrix is

discussed in Chapter 4. It is a quantitative tool that has been used for data‑driven definition of

truncation rules. Note that the objective of the HTPG technique is to facilitate geological interpre‑

tation and allow the geo‑modeler to construct the truncation tree based on individual expertise.

Also, lack of transition between two categories is often observed, which could be caused by various

factors. For instance, the chronological order of a sedimentary sequence may introduce a physical

barrier between two geological units in which the transition between one unit to another is not pos‑

sible without the transition to intermediary units. In this case, there is a sharp well defined barrier

between the two geological units and the transition or lack of transition is enforced using the trun‑

cation rule. In certain instances, there may be no sharp well defined barrier, and the two categories

do not coexist at the same region. In these cases, the lack of transitions could be enforced using

locally varying proportions (Silva & Deutsch, 2018).

3.1.2 Global and Local Proportions

The categorical proportion is defined by the probability, pk, of observing a certain categorical vari‑

able at a given location, u. If the proportions of the categories do not change with location, the

categorical variables are said to be stationary and the proportions are given by Equation 3.1.

pk(u) = pk, k = 1, . . . ,K, ∀u ∈ A (3.1)

However, categorical variables are often non‑stationary, as their proportions change with location

in the domain of interest. As such, locally varying proportions are calculated to facilitate the mod‑

eling of trends and calculating the indicator residuals in the geological domain, as the spatial vari‑

ability of the categorical variable is a combination of the continuity of the local proportions and the

stochastic residuals (Silva & Deutsch, 2018). Indicator variograms calculated directly from categor‑

ical data without consideration of the spatial structure of the trend leads to realizations that are

more spatially continuous than the underlying variable. Also, in order to achieve appropriate var‑

iogram reproduction while modeling categorical variables with trends, it is important to calculate

and utilize the variogram of the indicator residuals (Silva & Deutsch, 2018).

3.1.3 Local Thresholds

Consider the truncation tree in Figure 3.1, defined to interpret the stratification of five facies (coarse

sand (C_Sand), fine sand (F_Sand), sand dominated Inclined Heterolithic Stratification (S_IHS),

mud dominated Inclined Heterolithic Stratification (M_IHS), and shale (Shale)) in a geological

domain. Four Gaussian variables and four thresholds are utilized to define the truncation rule,
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Figure 3.1: Sample truncation tree

where the C_Sand facies is placed above all the facies and the Shale facies underlying all the facies

in the geological domain. The F_Sand realizations are mapped from the realizations of Gaussian

variable 2, while M_IHS and Shale realizations are controlled by the Gaussian variable 4. The

threshold applied on the HTPG truncation tree controls the proportions of the categorical variables

in the simulated realizations. Thresholds are often calculated from local varying proportions and

are well distributed along the latent Gaussian variables. The Gaussian variable to which thresh‑

olds are applied are well specified in the truncation structure. These thresholds are applied when

mapping from continuous to categorical space, as discussed in Chapter 4.

3.1.4 Mapping between Continuous and Categorical Variable Spaces

TheHTPG algorithm uses the truncation rule and calculated local thresholds tomap the spatial con‑

tinuity from categorical to continuous variable space. The latent variable variograms are calculated

and modeled by this mapping process. These variograms are used as a key input parameter in the

latent variable data imputation process and in subsequent simulation that generates realizations of

the categorical variables.

Imputation of latent Gaussian variables at data locations is done by the HTPG algorithm devel‑

oped by Silva and Deutsch (2018). This is treated as a missing data problem since in practice, the

latent variables are not originally sampled at the data locations but are needed as conditioning input
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data during simulation. The imputation process generates multiple realizations of latent variable

data that are simulated at a defined grid and fromwhich the categorical variables are mapped. Dur‑

ing the simulation process, the HTPG algorithm truncates the latent variable realizations at certain

thresholds to generate multiple realizations of the categorical variables.

3.2 Project Pursuit Multivariate Transformation (PPMT)

Realizations generated from simulations are considered representative of the subsurface deposits

or reservoir when they reproduce both the univariate and multivariate statistics of the variables of

interest. The traditional modeling workflow which is often used in multivariate property model‑

ing uses a cosimulation techniques, with the assumption that the multivariate distribution of the

variables is Gaussian. This workflow is capable of reproducing univariate properties but does not

reproduce the multivariate relationships between the variables. To resolve this potential limitation,

the projection pursuit multivariate transformation PPMTwas conceptualized and has been applied

successfully in mineral deposit and petroleum reservoir modeling (Barnett & Deutsch, 2015). The

PPMT is known to reproduce the multivariate relationships of the variables and thus improve the

performance of the reservoir model during evaluation.

The idea of projection pursuit for multivariate data analysis was first implemented successfully

by (Friedman, 1987). Friedman (1987) conceptualized the Projection Pursuit Density Estimation

(PPDE) technique, which was used for multivariate density estimation. The PPMT is based on the

modified components of PPDE. The limitations of linear rotation, PCA and MAF, and the SCT are

basically the motivation for the development of the PPMT for geostatistical modeling (Barnett et al.,

2016).

Unlike the SCT, the PPMT technique transforms data of any multivariate form. K variables at N

sampled locations or observations are transformed to an uncorrelated multi‑Gaussian distribution,

that is, the PPMT is not constrained by the dimensionality of the multivariate data. The fundamen‑

tal operation of the projection pursuit algorithm is to find the vector θ with the most non‑Gaussian

projection. The multivariate data along this projection are then transformed to make the projection

values Gaussian. The PPMT continues the search and transform iteration process until the least

non‑Gaussian projection approximates to the univariate Gaussian model (Barnett et al., 2016).

The primary goal of the PPMT workflow is to decorrelate the multivariate variables of interest and

transform them into a multiivariate Gaussian distribution. This zero correlation could be visually

observed from bivariate scatter plots of the PPMTdata, the Gaussianity of the PPMTdata could also

be observed from the multi‑Gaussian density contour scatter plot, showing the kernel density. The
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PPMT algorithm starts with normal‑score transform of the original dataZ and removes all marginal

complexities in the Gaussian data Y (Barnett & Deutsch, 2015; Barnett et al., 2016; Madani, 2019). Y

is then rotated by the data sphering process to yield the data matrix X in Equation 3.2.

X = S−1/2Y (3.2)

where S−1/2 = VY D
−1/2
Y V T

Y ,DY and VY are the eigenvalue and eigenvectormatrices obtained from

spectral decomposition of the covariance matrix,
∑

(h) = VY DY V
T
Y . After sphering, the projection

pursuit is achieved by the projection of the sphered data X on the vector θ (Barnett et al., 2016;

Madani, 2019). The PPMT modeling steps are shown in Figure 3.2.

1. Normal score transformation of the original multivariate data

2. Apply PPMT algorithm to the normal score transformed data

3. Variogram modeling with normal score data

4. Independent simulation is run with the normal score variogram model as input parameter

and the PPMT data as conditioning data.

5. Realizations are PPMT back‑transformed to the original space.

Note that the multivariate data used for PPMT must be declustered and homotopic, as the PPMT

algorithm is applicable to equally sampled or homotopic data.

3.3 Research Workflow

Fivemajor steps are often taken to develop a reliablemodel that is used to calculate in situ resources

and reserves, and to predict future reservoir performance to a reasonable degree of accuracy. The

first step involves building a structural framework or conceptualmodel of the reservoir. The second

step is to construct a model of facies distribution in the reservoir. The third step is to characterize

and model the continuous petrophysical properties, using the facies model as conditioning input

data. The fourth step involves scaling‑up of the geological model to generate a dynamic simulation

model. The fifth step involves history matching or calibration of the flow simulation model with

observed field data, a process which fine‑tunes the final model and makes it fit for future perfor‑

mance prediction. The focus of this research ismainly on the second and third steps, which involves

modeling of reservoir facies and petrophysical properties.
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Figure 3.2: Research workflow.

As shown in Figure 3.2, the workflow adopted in this study is an integrated methodology that

incorporates the application of the HTPG and PPMT techniques. In the first stage of the research,

the HTPG is used for modeling the facies in the reservoir to generate multiple realizations of the

reservoir facies. The second stage involves conditioning the facies realizations as input tomodel the

petrophysical properties (porosity and permeability) in the reservoir. The PPMT is employed here

as the multivariate transformation tool prior to simulating the properties independently. Note that

at different stages in the workflow, the categorical and continuous variable models are validated by

data reproduction method. Codes are written in Python in Jupyter notebook and this workflow is

implemented with an actual reservoir case study in Chapter 4.
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CHAPTER 4

IMPLEMENTATION AND CASE STUDY
This chapter discusses the practical application of the integrated HTPG ‑ PPMT modeling work‑

flow on the Hekla reservoir and it is divided into four sections. The first section is a description

of the geometry and location of the Hekla reservoir, the second section provides the multivariate

Exploratory Data Analysis (EDA) performed on the Hekla reservoir dataset, the third section dis‑

cusses the application of HTPG simulation technique to model the facies of the reservoir, while

the fourth section discusses the implementation of the PPMT technique to model the continuous

petrophysical properties of the Hekla reservoir.

4.1 The Hekla Reservoir

TheHekla reservoir is a portion of a largeNorth Sea reservoir covering about 5000m x 6500m in area.

The geology of the reservoir represents a fluvial environment with a channel, marginal depositions,

and background lithological elements (Zagayevskiy & Deutsch, 2016). The Hekla reservoir has two

distinct layers,H1 andH2, and the facies in the two layers of the reservoir are uniquely distributed.

A close look at the surface maps of the reservoir shows that the reservoir is structurally faulted,

with most of the wells strategically positioned between the two noticeable normal faults, and the

top‑right region of the reservoir is slightly folded, see Figures 4.1 and 4.2. The position of the wells

(spherical dots) shows that most of the wells are drilled or concentrated around the 45° line in the

x‑y plane of the reservoir. Shallow portions of the reservoir are denoted by the blue color, while

the deeper regions are coded in red.

4.2 Exploratory Data Analysis

EDA is an important step in all statistical and geostatistical workflows. It is a process that involves

cleaning and investigating the data to discover possible anomalies and trends like outliers andmake

some inferences and decisions from the visualization and statistics that are generated. A detailed

EDA is a key to the success of any data‑driven research. This process is important as it enables us

to eliminate unwanted data (outliers), that is, values that are too large or too small in a range of

data. The EDA yields important data visualization and summary statistics, which reveal possible

geological trends and anomalies that may probably require further investigation. The approach

used to perform a comprehensive EDA is dependent on the objectives of the proposed study and

the nature of the dataset. An EDAperformed onmultiple variables requiresmore analyses than that

performed on a single variable, since the relationships between a variable and other variables are
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Figure 4.1: Plan view of the Hekla reservoir showing 15 well locations as spherical dots

also carefully studied, whether they are collocated or not. As a major step in the research workflow,

EDA is performed on the Hekla reservoir dataset.

4.2.1 Data Inventory

The Hekla dataset comprises two sets of data: (1) 2‑Dimensional surface seismic data ‑ at a resolu‑

tion of 101m x 131m across the entire extent of the reservoir, and (2) 3‑Dimensional well data ‑ that

contains well locations, facies encountered, petrophysical log porosity, permeability, and acoustic

impedance data from fifteen wells in the reservoir. All fifteen wells have well‑defined locations,

drilled between the two normal faults and across two distinct zones or layers (H1 and H2) of the

Hekla reservoir, as shown in Figures 4.1 and 4.2. The reservoir contains five different facies or rock

types that are widely distributed in the area of study of the reservoir. The seismic dataset contains

surface depths of each layer (H1 Top, H2 Top, and H3 Top) and acoustic impedance values (H1

Impedance and H2 Impedance) that are exhaustive of the reservoir areal extent. These regional‑

ized variables of the Hekla reservoir are carefully analyzed in the EDA process.

4.2.2 Well Logs

Well logs are generated from the well data. This is necessary to visualize the variation in petro‑

physical properties of the reservoir with depth. The well logs shown in Appendix A give a clearer
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Figure 4.2: 3‑D surface map of the Hekla Reservoir, see Figure 4.1 for scale.

Table 4.1: Facies in the Hekla Reservoir

Facies 1 Fine Sand (F_Sand)
Facies 2 Coarse Sand (C_Sand)
Facies 3 Shaly Sand (Sh_Sand)
Facies 4 Sandy Shale (S_Shale)
Facies 5 Shale

picture of the characteristics of each well, in terms of depth, the layers of the reservoirs, the facies

encountered by each well, and the associated acoustic impedance, porosity, and permeability, at

different reservoir depth. We could infer from all 15 logs that Facies 1, 2, and 3 have relatively good

porosity and permeability distribution, which make them easily producible. They could be classi‑

fied as Sand, however, the degree of fineness and cleanliness of the sand is not accurately known.

Facies 4 has relatively poor porosity distribution, with little or no permeability; this facies could be

a mix or intercalation of mud and sand, with more mud content. The relatively low permeability

of Facies 4 encountered by Well 17, as shown in Figure A.13, could result from the presence of in‑

terconnected fractures. Facies 5 has very little or no porosity and no permeability, and could be

classified as Shale. Hence, the codes or names in Table 4.1 are used for identification of the facies

in this study.
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Figure 4.3: Contour map of the H1 and H2 layers of the Hekla reservoir.
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Figure 4.4: Thickness map of the H1 and H2 layers of the Hekla reservoir.

4.2.3 Contour and Isopach Maps

Lines of constant depth and thickness are plotted to generate the Hekla reservoir contour and

isopach maps, respectively. This was done to visually analyze the shallow and deep areas of the

reservoir, and the portion with reasonable thickness. The maps in Figure 4.3 show that the deepest

areas of the reservoir are on the edge or flank of the two layers of the reservoir, while the maps

in Figure 4.4 show the thickness of the two layers of Hekla reservoir. The H1 layer is relatively

thicker than the H1 layer, as depicted by the color code of the map, with light‑green to yellow color

more evident on the H1 layer isopach map. The average thickness of the H1 and H2 layers are

approximately 24.8m and 23.2m, respectively.
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Table 4.2: Facies count and proportion in H1 of the Hekla Reservoir

Facies F_Sand C_Sand Sh_Sand S_Shale Shale
Count 103 1355 300 331 2347
Proportion 0.023 0.305 0.068 0.075 0.529
Declustered Proportion 0.023 0.282 0.062 0.095 0.538
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Figure 4.5: Facies count and proportion in H1 of the Hekla reservoir.

Table 4.3: Facies count and proportion in H2 of the Hekla Reservoir

Facies F_Sand C_Sand Sh_Sand S_Shale Shale
Count 36 646 133 397 2695
Proportion 0.009 0.165 0.034 0.102 0.69
Declustered Proportion 0.01 0.152 0.033 0.114 0.691

4.2.4 Facies Analysis

Facies analysis is done by total count and proportions of the facies in H1 and H2 layers of the reser‑

voir. Tables 4.2 and 4.3 show the summary statistics of facies in each layer of the Hekla reservoir.

We can infer from the statistics that layer H1 has a higher count of Sand (Facies 1, 2, and 3) than

layer H2. It implies that H1 would probably be more productive than H2, with consideration to

other parameters such as thickness, average reservoir pressure, fluid viscosity, wellbore flowing

pressure, and surface choke size. The plots in Figures 4.5 and 4.6 are visual representations of the

summary statistics of facies in the reservoir.

4.2.5 Multivariate Relationship

Since the dataset containsmultiple continuous random variables which are distributed in the Hekla

reservoir, the bivariate relationship of the variables is studied. The scatter plots of porosity and

permeability by facies, in each layer, are plotted to ascertain the correlation between porosity and

permeability in the reservoir, as shown in Figures 4.7 through 4.11. The porosity ‑ permeability

bivariate relationship in the figures indicates that Facies 2with high facies count, and high porosity
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Figure 4.6: Facies count and proportion in H2 of the Hekla reservoir.
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Figure 4.7: Bivariate plot of Porosity vs. Permeability in F acies 1 of H1 and H2 layers of the Hekla reservoir.
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Figure 4.8: Bivariate plot of Porosity vs. Permeability in F acies 2 of H1 and H2 layers of the Hekla reservoir.

and permeability values, as reflected in the kernel density estimates, is the most relevant of all

five facies of the Hekla reservoir and will probably constitute the most productive flow unit in the

reservoir. Although Facies 5 has the highest facies count, it is the least relevant because of its low

porosity and permeability values.
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Figure 4.9: Bivariate plot of Porosity vs. Permeability in F acies 3 of H1 and H2 layers of the Hekla reservoir.
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Figure 4.10: Bivariate plot of Porosity vs. Permeability in F acies 4 of H1 and H2 layers of the Hekla reservoir.
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Figure 4.11: Bivariate plot of Porosity vs. Permeability in F acies 5 of H1 and H2 layers of the Hekla reservoir.

4.2.6 Acoustic Impedance

The Hekla dataset presents acoustic impedance values, which are carefully analyzed to obtain valu‑

able statistics that are representative of the reservoir. The histograms of the gridded (seismic)

impedance and those impedance values recorded at well locations in each layer of the reservoir

are plotted as shown in Figures 4.12 and 4.13. Although it is expected that the seismic data be

exhaustive, the statistics show that the seismic impedance is limited when compared to the well

impedance. This is due to large number of missing acoustic impedance values in the Hekla seismic
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Figure 4.12: Histograms of seismic and well impedance values in H1 of the Hekla reservoir.
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Figure 4.13: Histograms of seismic and well impedance values in H2 of the Hekla reservoir.

dataset. Note that the wide difference between the maximum seismic and well impedance values

indicates that there could be some discrepancies in the measurement of acoustic impedance either

during seismic acquisition or log measurement at well locations.

4.2.7 Calibration of Seismic Property

Integrating seismic data to construct a reliable predictive 3‑D reservoir model is very important.

Unlike other data sources like core and well logs, seismic provides key information about reservoir

properties for the almost or entire areal extent of the reservoir. Seismic attribute such as acoustic

impedance is often integrated to construct a 3‑D facies model and continuous variable models of a

reservoir. However, seismic data are sometimes difficult to use or integrate because of the impreci‑

sion in the large‑scale seismic data when used for reservoir characterization and modeling.
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Figure 4.14: Seismic impedance vs. facies proportion and Seismic impedance vs. facies porosity of F_Sand
facies in Hekla H1 layer

Figure 4.15: Seismic impedance vs. facies proportion and Seismic impedance vs. facies porosity of C_Sand
facies in Hekla H1 layer

In this study, the Hekla reservoir seismic property is calibrated to determine the quality of the

seismic data. Calibration is done by correlating the acoustic impedance at each well location to the

proportions of facies and the average porosity of each facies observed in eachwell cutting across the

H1 layer of the Hekla reservoir. The acoustic impedance ‑ facies proportion/porosity relationships

are shown in Figures 4.14 through 4.18. For the Hekla seismic data to be relevant to this study, it is

expected that the acoustic impedance should have a high negative correlation to the sand (F_Sand,

C_Sand, and Sh_Sand) facies proportions and porosity, and a high positive correlation to the shale

(S_Shale and Shale) facies proportions and porosity. Contrary to what is expected, the acoustic

impedance is weakly correlated to the facies proportion and porosity of the reservoir. This weak

correlation of the seismic acoustic impedance to the facies proportions in both sand and shalemakes

the seismic impedance data not relevant to this study. The poor correlation between the acoustic

impedance and the facies proportions may be due to the small number of wells, among other pos‑

sible factors.
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Figure 4.16: Seismic impedance vs. facies proportion and Seismic impedance vs. facies porosity of Sh_Sand
facies in Hekla H1 layer

Figure 4.17: Seismic impedance vs. facies proportion and Seismic impedance vs. facies porosity of S_Shale
facies in Hekla H1 layer

The EDA carried out on the Hekla reservoir is not exhaustive for a multivariate statistical or geosta‑

tistical study. EDA is a flexible process, as it depends on the nature and amount of data available

and the objectives of the proposed study. It is always advisable that a thorough and exhaustive

data processing and multivariate EDA should be performed as a major step in the multivariate geo‑

statistical modeling workflow. The EDA process will provide modelers with sound knowledge of

the quality and quantity of data relevant to the proposed study.

4.3 HTPG Application

The Hekla dataset presents five facies. The HTPG simulation technique is applied to model and

characterize the facies in the H1 layer of the reservoir. This layer seems to have higher proportions

of sand when compared to the H2 layer, and may constitute the most productive zone of the reser‑

voir.

The HTPG software package developed by Silva and Deutsch (2018) has four programs or executa‑
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Figure 4.18: Seismic impedance vs. facies proportion and Seismic impedance vs. facies porosity ofShale facies
in Hekla H1 layer

bles that are utilized to facilitate the HTPG workflow; they are:

1. htpg_thresholds ‑ which calculates thresholds from categorical (global and local) proportions

and defines the truncation parameters

2. htpg_gaussvarg ‑which uses the categorical variable indicator variograms to define the spatial

structure of the latent Gaussian variables.

3. htpg_cat2gauss ‑ which performs imputation of latent Gaussian variables based on the obser‑

vations of the categories.

4. htpg_gauss2cat ‑ which uses the defined truncation rule to map from continuous space to

categorical space, a process that generates simulated realizations of the categories.

The HTPG programs are coded in Fortran and are derived from the GSLIB (C. V. Deutsch & Journel,

1998). Python codes with some Pygeostat functions are written in Jupyter Notebook to run these

programs. Beginning with coordinate transformation, the steps taken to model the facies in the H1

layer of the Hekla reservoir with HTPG are discussed.

4.3.1 Stratigraphic Coordinate Transformation

Most oil and gas accumulations are found in reservoirs that exist as a series of structurally deformed

stratigraphic layers. This deformationmainly results frompost‑depositional events such as tectonic

uplift, differential compaction, and erosion, and leads to the formation of structures and features

like folds, faults, and domes. Each layer in the reservoir corresponds to a particular depositional

event, which can be correlated with seismic and well log data. The presence of folds and/or faults

often constitutes complex reservoir layer architectures that pose a significant challenge in geosta‑

tistical modeling. Such architectures make it difficult to capture the original spatial continuity of

facies and petrophysical properties.
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Before calculating the experimental variogram, some prerequisites must be satisfied. The coordi‑

nates of the domain of interest may be transformed to align with the directions of spatial continuity.

Hence, folded and faulted reservoirs in petroleum, and tabular deposits in mining, are always flat‑

tened or unfolded. This process of coordinate transformation restores the deformed stratigraphic

layers to their original depositional state. This facilitates a straightforward calculation and interpre‑

tation of two‑point statistical variogram calculation and also helps to preserve the original spatial

continuity of the facies and petrophysical properties of interest. Calculating an experimental var‑

iogram before coordinate transformation may significantly underestimate the extent of horizontal

continuity of the facies or reservoir properties of interest.

Each reservoir layer is defined by the existing top and base surface grid, zet(x, y) and zeb(x, y),

where x and y are areal coordinates, et refers to the existing or present top, and eb represents the

existing or present base (Pyrcz & Deutsch, 2014). The continuity of the facies and the petrophysical

properties within a layer does not follow the grids that are based on existing boundary surfaces;

additional correlation grids may be required to define stratigraphic continuity within each layer.

Four common correlation styles shown in Figure 4.19 have been successfully used for coordinate

transformation to facilitate the restoration of existing deformed layer structures to their original

state; they are (1) Proportional: where the existing top and base grids coincide with the correlation

grids; however, the strata may have varying thickness due to differential compaction and/or sedi‑

mentation rate, (2) Truncation: where the existing grid bottom coincides with the correlation grid

base but the strata top does not conform to the correlation grid top due to surface erosion, (3)Onlap:

where the existing strata top has not been eroded and thus coincides with the correlation grid top

but the existing strata base does not conform to the correlation grid base, (4) Combination: here,

both the existing top and base of the strata do not conform to the top and base of the correlation

grids.

Each stratigraphic layer of the reservoir is independently modeledwith a new relative stratigraphic

coordinate, zrel, that is defined by the equation proposed by C. V. Deutsch (2002). By this transfor‑

mation, each layer of the reservoir is modeled in a regular Cartesian x, y, zrel coordinates. Note

that the transformation retains the original x and y coordinates of the strata, only the z coordinate

is transformed to zrel (M. V. Deutsch &Deutsch, 2014), as expressed in Equation 4.1. The associated

back‑transformation to the original stratigraphic coordinates is given in Equation 4.2.

zi,rel =
zi − zcb
zct − zcb

.Tavg, i = 1, . . . , N (4.1)
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Figure 4.19: Proportion, Truncation, Onlap, and Combination stratigraphic coordinate system transforma‑
tions, where the original surface is represented by dotted lines and existing surface with solid lines (Source:
(Pyrcz & Deutsch, 2014)).

Where:

zi = depth of the existing strata,

zcb = base of the correlation grids,

zct = top of the correlation grids,

Tavg = average thickness of the existing strata or layer, calculated from zeb and zet, and

N = number of observations or samples

zi = zcb +
zi,rel
Tavg

.(zct − zcb) (4.2)

Since the workflow in this study considers modeling the facies and petrophysical properties of

interest independently by layers, the coordinate transformation of H1 layer of the Hekla reservoir

is considered. H1 has an average vertical data spacing vertspacing= 0.11m and an average well

spacing in the x − y plane horspacing= 887.75m. The proportional correlation style, defined by the

above equation, is applied with the following parameters on per well basis.

zi = depth of H1 layer in the Hekla well data, zcb = base of the correlation grids of the Hekla seismic

data, zct = top of the correlation grids of the seismic Hekla data, and Tavg = average thickness of H1
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Figure 4.20: 3‑D location map of wells in H1 of the Hekla reservoir, before stratigraphic coordinate transfor‑
mation
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Figure 4.21: 3‑D location map of wells in H1 of the Hekla reservoir, after stratigraphic coordinate transforma‑
tion

layer (228m), calculated from zeb and zet in the Hekla well data

By this transformation, the zrel Cartesian coordinate of the wells in H1 of the Hekla reservoir was

calculated and further used for trend modeling, experimental indicator variogram calculation, and

subsequent simulations in the workflow. The location maps of the Hekla wells before and after

coordinate transformation are shown in Figures 4.20 and 4.21.

4.3.2 Trend Model

The global proportions presented in Table 4.2 show that the facies in H1 of the Hekla reservoir are

unequally distributed. The declustered proportion varies from a very low value of 0.02 in F_Sand

to a high value of 0.54 in Shale. With the calculated declustering weights, the local proportions of

facies in H1 are calculated. It is a common practice to account for trends or locally varying propor‑

tions when modeling categorical variables since categorical variables are often non‑stationary. The
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Figure 4.22: Local proportions of the facies in layerH1 in x− y orientation, with 15 well locations

Figure 4.23: Local proportions of the facies in layerH1, x− z orientation

local proportions of the five facies inH1 layer of the Hekla reservoir are shown in Figures 4.22, 4.23,

and 4.24. It is shown that in the lateral (x− y) direction of the reservoir, the F_Sand, C_Sand, and

Sh_Sand facies trend from low to a high proportion, from the South‑West to the North‑East region

of the reservoir; while the S_Shale and Shale facies trend from high to low a proportion in that

direction. In the vertical (x− z and y − z) direction, the facies trend from low to a high proportion

from the West to East region of the reservoir. The trend also reviews that the reservoir is highly

stratified, which is evident in the well logs in Figures A.1 through A.15.

4.3.3 Indicator Residual Variograms

The Indicator (residual) variograms are calculated and modeled directly from categorical variables

with trends. Note that the spatial variability structure of the categorical variable is the combina‑

tion of the continuity of the deterministic trend and the stochastic residuals (Silva & Deutsch, 2017).
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Figure 4.24: Local proportions of the facies in layerH1, y − z orientation

To achieve a good variogram reproduction when modeling categorical variables with trends, it is

a good practice to calculate indicator residual variograms and use them for subsequent simulations.

Residuals of the Hekla facies and calculated from the trend or local varying proportions and the

indicator residual variograms of the five facies in the Hekla reservoir H1 layer are calculated and

modeled, as shown in Figure 4.25. The variograms are modeled with a spherical model in two di‑

rections ‑ vertical direction with a lag distance of 0.5m and 10 lags, and horizontal (omnidirectional)

with a lag distance of 650m and 4 lags. For all five facies, variogrammodels with good spatial conti‑

nuity are obtained in the vertical direction than in the lateral direction due to fewer number of wells

in the reservoir. Also, the vertical variogram model of C_Sand and Shale facies are more continu‑

ous than the vertical variogrammodel of F_Sand, Sh_Sand, and S_Shale facies, which implies that

the C_Sand and Shale facies are widely distributed in the reservoir vertically than the other facies;

this is evident in the facies count and proportions in Table 4.2, and the well logs in Figures A.1 and

A.15.

4.3.4 Definition of Truncation Rule

The use of truncation (decision) tree makes the HTPG technique very flexible and suited to model

complex geological domains. The expertise of themodeler and good knowledge of the sedimentary

depositional environment come into play when defining the HTPG truncation rule qualitatively.

The transition probability and MDS mapping are important quantitative tools that can be used to

define the truncation rule from available data. These quantitative measures compliment the knowl‑

edge of the geological terrain to define the truncation rule.

In this study, the truncation rule is defined quantitatively. The transition probabilities are calculated

upward and downward along the wells. The downward transition probability matrix, td = ti,j(h)
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Figure 4.25: Indicator residual variograms of the facies in Hekla reservoir H1 layer

that is calculated along the well is often not equal to the upward transition probability matrix,

tu = ti,j(−h); hence, the transition probability matrix is often asymmetric, that is, ti,j(h) �= ti,j(−h)

(Silva & Deutsch, 2018). The transition probabilities measure spatial continuity or variability and

are calculated for the shortest possible lag distance equivalent to the vertical data spacing derived

from well logs; and the high density of data along the wellbore aids the definition and interpreta‑

tion of geological contacts in the reservoir. For a given lag distance or vertical data spacing h, the

transition probability between two facies is defined by Equation 4.3 (Silva & Deutsch, 2018).

ti,j(h) = P
{
1j(u+ h) = 1|1i(u) = 1

}

42



4. Implementation and Case Study

ti,j(h) =
P
{
1i(u) = 1 and 1j(u+ h) = 1

}
P
{
1i(u) = 1

} , i, j ϵ
{
1, . . . ,K

}
(4.3)

Where 1i(u) and 1j(u + h) are two different indicator variables separated by lag distance h, i and

j are indices that differentiate one facies indicator from another, and K is the total number of cat‑

egorical variables or facies indicators, which also represents the rank of the transition probability

matrix that is derived (Silva & Deutsch, 2018). For illustration purposes, the wellbore in Figure 4.26

is used to demonstrate the transition of five facies along a wellbore and how the resulting transition

probability matrix, T (h) = 1
2 (td(h) + tu(h)), is calculated. The diagonal terms of the transition

matrix measure the transition between same facies, while the off‑diagonal terms measure the tran‑

sitions from one facies to a different facies. From the matrix T in Figure 4.26, facies 1 has a 75%

probability of transitioning between itself along the wellbore and 25% probability of transitioning

to facies 2, but however, does not transition or have noticeable geological contacts with facies 3, 4,

and 5. Facies 4 does not transition to facies 1 and 2, but it has a 16.5% chance of transitioning into fa‑

cies 3 and 5, and 67% probability of transitioning between itself. So, the information obtained from

the transition probabilitymatrix provides ameaningful guide to defining theHTPG truncation rule.

Tables 4.4 shows the calculated transition probability of the five facies in the Hekla reservoir H1

layer. The Shale and C_Sand facies or categories have the highest probabilities of transitioning

to same category (expressed by the diagonal terms), which is also an indication of their dominant

proportions or wide distribution in the H1 layer of the reservoir. The large difference between

the diagonal and off‑diagonal terms makes it quite difficult to interpret to transition probability

matrix. In such a case, the transition matrix is best interpreted visually with the aid of the MDS

mapping in two dimensions, as shown in Figure 4.27. The MDS, however, uses a dissimilarity

matrix, D(h) = di,j(h), which is obtained by standardizing the off diagonal values of the transition

matrix with the transpose; this gives symmetry to the dissimilarity matrix. Also, the diagonal terms

of the transition matrix are set as zero since a particular facies type cannot be different from itself,

as defined in Equation 4.4. The dissimilarity matrix of the facies in the Hekla reservoir H1 layer is

given by Table 4.5. For any given pair of facies in the reservoir, the lower their dissimilarity value,

the higher the likelihood of transition between the facies, and vice versa. The off‑diagonal term

of 1.0 indicates a 100% dissimilarity of the Shale from the F_Sand facies, which implies that the

F_Sand never transitions into the Shale facies. This is also evident in the well logs in Figures A.1

through A.15, where the F_Sand and Shale are the only facies in theH1 layer that do not share the

same geological contact.
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Figure 4.26: Illustration of how transition probabilities of the five Hekla facies are calculated (upward and
downward) along the wellbore.

Table 4.4: Transition probability matrix of facies in Hekla reservoir H1 layer.

Transition Matrix
F_Sand C_Sand Sh_Sand S_Shale Shale

F_Sand 0.804 0.104 0.007 0.000 0.000
C_Sand 0.074 0.956 0.090 0.004 0.000
Sh_Sand 0.027 0.054 0.801 0.068 0.013
S_Shale 0.006 0.019 0.029 0.787 0.089
Shale 0.000 0.002 0.011 0.079 0.976

Table 4.5: Dissimilarity matrix of facies in Hekla reservoir H1 layer.

Dissimilarity Matrix
F_Sand C_Sand Sh_Sand S_Shale Shale

F_Sand 0.000 0.911 0.983 0.997 1.000
C_Sand 0.911 0.000 0.928 0.989 0.999
Sh_Sand 0.983 0.928 0.000 0.952 0.988
S_Shale 0.997 0.989 0.952 0.000 0.916
Shale 1.000 0.999 0.988 0.916 0.000

di,j(h) =


1 − 1

2

(
ti,j + tj,i

)
, if i �= j, i, j ε

{
1, . . . , K

}
0, otherwise

(4.4)

With the information provided by the dissimilarity matrix and the visualization by MDS mapping,

the best interpretation of how the facies or categories are ordered from top to bottom is F_Sand,

C_Sand, Sh_Sand, S_Shale, and Shale, with the Shale underlying the other four facies in the reser‑

voir. However, to define the truncation rule in this study, consideration is also given to sediment

fining with depth in the reservoir, that is, from coarse grain at the top, to very fine‑grained sedi‑

ments at the bottom. Hence, the stratification order chosen is C_Sand, F_Sand, Sh_Sand, S_Shale,

and Shale, with the C_Sand facies placed on the top, while the Shale is placed at the bottom of the
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Figure 4.27: Multidimensional Scaling mapping of facies in Hekla reservoir H1 layer.

Figure 4.28: HTPG truncation tree for modeling the facies in Hekla reservoir H1 layer.

reservoir.

Four latent Gaussian variables and four thresholds are utilized in the truncation tree definition,

with the S_Shale and Shale being controlled by the last Gaussian variable, as shown in Figure 4.28.

Note that the importance of applying existing knowledge of the reservoir or depositional environ‑

ment to complement the truncation rule definition cannot be overemphasized. When there is a

good understanding of the reservoir architecture, as in the case of redeveloping and producing a

brownfield, such understanding should be applied as the dominant tool or measure to define the

truncation rule, while being complemented by other quantitative measures. However, if the case

study is a greenfield and there is no offset data, quantitative tools such as the transition probability
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Figure 4.29: Local thresholds for generating realization of facies in the Hekla reservoir H1 layer, in the x − y
orientation

matrix andMDS, and themodeler’s experience will guide the definition of the truncation rule. Gen‑

erally, the HTPG is a flexible technique for modeling categorical variables because of the flexibility

in defining the truncation rule.

4.3.5 Calculation of Thresholds

The htpg_thresholds software (Silva & Deutsch, 2018) is used to calculate the local thresholds from

the local varing proportions of the facies and the defined truncation rule. Figure 4.33 is the defined

HTPG truncation structure, while Figures 4.29, 4.30, and 4.31 show the thresholds for mapping the

H1 layer facies from the latent Gaussian variables. Note that the number of thresholds is often equal

to the number of categorical variablesminus one, (K−1). The thresholds are spread along the latent

variables. So, when defining the truncation tree, the latent Gaussian variable to which the threshold

is applied is often specified. Although there are certain cases where more than one threshold is

assigned to a latent Gaussian variable, in the Hekla reservoir case study, there is only one threshold

to a latent variable. Also, the number of categories or facies is assigned to each threshold; in this

study, only one facies is specified per threshold, as defined by the truncation tree in Figure 4.28.

4.3.6 Mapping of Spatial Structure and Imputation of Latent Variables

The htpg_gaussvarg software (Silva & Deutsch, 2018) is utilized to define four latent Gaussian vari‑

able variograms. Spatial continuity is mapped from categorical to continuous space. The exper‑

imental points which result from the mapping between the categorical and continuous space are
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Figure 4.30: Local thresholds for generating realization of facies in the Hekla reservoir H1 layer, in the x − z
orientation

Figure 4.31: Local thresholds for generating realization of facies in the Hekla reservoir H1 layer, in the y − z
orientation

fitted with the Gaussian variogram model with the varmodel software (C. V. Deutsch & Journel,

1998), as shown in Figure 4.32. The variograms are modeled in two directions ‑ horizontal (omnidi‑

rectional) and vertical.

The HTPG algorithm is developed to truncate the realizations of latent Gaussian variables at some

thresholds to generate multiple realizations of categorical variables. However, in practice, the la‑

tent variables do not exist, but are needed as conditioning data at the sampled categorical data

locations. With the calculated local thresholds and defined variograms of the latent variables, the

htpg_cat2gauss software (Silva & Deutsch, 2018) is applied to perform multiple imputation of the

latent variables at the sampled data locations. In this case study, multiple (L = 100) realizations of

the latent Gaussian variable data are generated and used as input data for simulation.
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Figure 4.32: Variograms of latent Gaussian variables

4.3.7 Mapping from Continuous Variable to Categorical Variable Space

Gaussian simulation of the latent variable is run with a simulation grid of 101 x 131 x 65 nodes in

the x, y, and z directions. The node spacing in the horizontal and vertical directions are 50m and

0.5m, respectively. The truncation system or structure in Figure 4.33 shows that at certain threshold,

t1, the categorical variable 2 or C_Sand facies is mapped from the realizations of latent Gaussian

variable Y1, while at threshold t4, the S_Shale and Shale facies are mapped from the realizations of

latent variableY4. Thehtpg_gauss2cat software (Silva&Deutsch, 2018) performs thismapping from

continuous to categorical variable space by applying the defined truncation rule. Multiple (L = 100)

realizations of the five facies in theHekla reservoirH1 layer are generated by this truncation process.

Four simulated facies realizations in the x, y, and z slices are shown in Figures 4.34, 4.35, and 4.36.

The realizations depict how the C_Sand (orange) and Shale (red) facies are widely distributed in

theH1 layer of the reservoir, which is evident in the high proportions ofC_Sand and Shale in Table
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Figure 4.33: HTPG truncation system for generating realization of facies in the Hekla reservoir H1 layer

4.2, and the well logs in Figures A.1 through A.15.
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Figure 4.34: Simulated facies realizations in the Hekla reservoir H1 layer, in the x − y orientation

Figure 4.35: Simulated facies realizations in the Hekla reservoir H1 layer, in the x − z orientation

Figure 4.36: Simulated facies realizations in the Hekla reservoir H1 layer, in the y − z orientation
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4.3.8 Facies Model Validation

All realizations generated from simulations are considered representative of the reservoir when

they reproduce the original statistics and input parameters that go into the simulation process. To

assess how the constructed faciesmodel will perform, the input univariate statistics and parameters

such as facies proportion and indicator residual variogram are checked, as shown in Figures 4.37,

and 4.38. As highlighted in Table 4.6, the absolute error, ϵabs, of the facies realizations reproducing

the proportions of F_Sand, C_Sand, and Sh_Sand facies are 8.7% , 7.8%, and 3.2% respectively,

while the Shale proportion is reproduced with an error of 2.0%, as calculated from Equation 4.5.

ϵabs =
∣∣Declustered prop.−Avg. realization proportion

∣∣
Declustered prop.

(4.5)

The variograms of facies indicator residuals are also fairly reproduced. Some factors affect a bet‑

ter variogram reproduction including the position of the facies or category in the truncation tree

and amount of sampled data. By default, the category that overlies other categories in the trunca‑

tion tree will have the best variogram reproduction, while the category that is placed at the base

of the tree will have the least variogram reproduction, putting other factors into consideration as

well. The residual variogram of C_Sand facies is well reproduced because C_Sand is topmost in

the truncation tree and it has sufficient data. Although the Shale facies underlies other facies in

the truncation tree, its residual variogram is also well reproduced due to sufficient data or its high

Figure 4.37: Facies proportion reproduction in the Hekla reservoirH1 layer

Table 4.6: Facies proportion reproduction in the Hekla ReservoirH1 Layer

Facies F_Sand C_Sand Sh_Sand S_Shale Shale
Declustered Proportion 0.023 0.282 0.062 0.095 0.538
Avg. Realization Proportion 0.021 0.304 0.064 0.083 0.527
Error, ϵabs 0.087 0.078 0.032 0.126 0.020
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Figure 4.38: Facies indicator variogram reproduction in the Hekla reservoir H1 layer

proportion in the H1 layer of the reservoir. Note that the horizontal variograms are not fairly repro‑

duced due to fewer number of wells and insufficient data available to model the spatial continuity

of the reservoir facies laterally. In general, the fairly reproduced residual variograms and the min‑

imal error in reproducing the facies proportions mean that the facies model will perform well and

can be considered as input to develop the model of continuous petrophysical properties in the H1

layer of the Hekla reservoir.
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Figure 4.39: Normal score vs. PPMT transformed porosity ‑ permeability bivariate relationship of F_Sand
facies in the Hekla reservoir H1 layer

4.4 PPMT Application

Having developed the model of facies distribution, the continuous petrophysical properties in the

HeklaH1 layer aremodeledwith the PPMTmodelingworkflow. The continuous properties (poros‑

ity andpermeability) are controlled by the facies distribution in the reservoir; so the simulated facies

realizations are considered as input to simulate the continuous properties. The steps taken tomodel

the Hekla reservoir continuous properties with the PPMT workflow are discussed in this section.

4.4.1 Decorrelation of Variables

To model the continuous petrophysical properties (Porosity and Permeability) in the Hekla reser‑

voir H1 layer, the H1 data was extracted from the entire Hekla dataset and was grouped into five

categories or facies data. Each facies data was declustered to have representative distributions of

the continuous variables. The PPMT technique was applied to the declustered data to transform

the variables to Gaussian and independent variables, as shown in Figures 4.39 through 4.43. As ob‑

served in the figures, the kernel density estimate of the PPMT‑transformed data approximates the

typical multi‑Gaussian density contours and the correlation coefficients between the transformed

variables are zero, indicating that the variables in each category are uncorrelated and can be simu‑

lated independently.

4.4.2 Variograms of Continuous Variables

The variogram is a key input parameter in all geostatistical estimation and simulation exercises. In

this study, the variograms of the continuous variables are calculated and modeled by each facies

present in the Hekla reservoir. The PPMT algorithm outputs the normal score (NScore) data, which

are used to facilitate variogram calculation for the porosity and permeability of each facies in the

reservoir. Figures 4.44 through 4.53 show the variogrammodels of Porosity and Permeability in all

five facies in the H1 layer of the reservoir. The vertical variograms of C_Sand and Shale are more
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Figure 4.40: Normal score vs. PPMT transformed porosity ‑ permeability bivariate relationship of C_Sand
facies in the Hekla reservoir H1 layer

Figure 4.41: Normal score vs. PPMT transformed porosity ‑ permeability bivariate relationship of Sh_Sand
facies in the Hekla reservoir H1 layer

Figure 4.42: Normal score vs. PPMT transformed porosity ‑ permeability bivariate relationship of S_Shale
facies in the Hekla reservoir H1 layer

continuous than those of other facies due to the high proportion of C_Sand and Shale in the reser‑

voir and consequently, availability of more data location for modeling. The vertical variograms of

F_Sand, Sh_Sand, and S_Shale do not look great because of the limited thickness of these facies.

Generally, in all the facies, it was difficult to have a reasonable horizontal variogram model since

there are few wells in the reservoir.
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Figure 4.43: Normal score vs. PPMT porosity ‑ permeability bivariate relationship of Shale facies in the Hekla
reservoir H1 layer

Figure 4.44: Variogram of Porosity in F_Sand facies in the Hekla reservoir H1 layer

Figure 4.45: Variogram of Permeability in F_Sand facies in the Hekla reservoir H1 layer

Since it is difficult to model the variograms of F_Sand, Sh_Sand, and S_Shale facies due to their

low count and proportions, and fewer data location, it is reasonable to merge all the sand data and

model the variogram of the combined data; a similar approach is used to model the variogram of

the merged shale data. Figures 4.54 through 4.57 show the variogrammodels of the combined sand

data (F_Sand, C_Sand, and Sh_Sand) and the combined shale data (S_Shale, and Shale). In both

cases, the variograms of the merged data show good spatial continuity.

55



4. Implementation and Case Study

Figure 4.46: Variogram of Porosity in C_Sand facies in the Hekla reservoir H1 layer

Figure 4.47: Variogram of Permeability in C_Sand facies in the Hekla reservoir H1 layer

Figure 4.48: Variogram of Porosity in Sh_Sand facies in the Hekla reservoir H1 layer

Figure 4.49: Variogram of Permeability in Sh_Sand facies in the Hekla reservoir H1 layer
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Figure 4.50: Variogram of Porosity in S_Shale facies in the Hekla reservoir H1 layer

Figure 4.51: Variogram of Permeability in S_Shale facies in the Hekla reservoir H1 layer

Figure 4.52: Variogram of Porosity in Shale facies in the Hekla reservoir H1 layer

Figure 4.53: Variogram of Permeability in Shale facies in the Hekla reservoir H1 layer
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Figure 4.54: Variogram of Porosity of all the Sand in the Hekla reservoir H1 layer

Figure 4.55: Variogram of Permeability of all the Sand in the Hekla reservoir H1 layer

Figure 4.56: Variogram of Porosity of all the Shale in the Hekla reservoir H1 layer

Figure 4.57: Variogram of Permeability of all the Shale in the Hekla reservoir H1 layer
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4.4.3 Gaussian Simulation

By using the normal score variograms and PPMT transformed data as input parameter and condi‑

tioning data, independent Gaussian simulation is run to generate multiple (L = 100) realizations of

the continuous petrophysical properties in H1 layer of the reservoir. The 100 realizations of facies

or category variables initially generated are considered as rock type data in the simulation process.

The simulation grid contains 101 x 131 x 65 nodes in the x, y, and z directions. The node spac‑

ing in the horizontal and vertical directions are 50m and 0.5m, respectively. The associated PPMT

back‑transformation is done to restore the original units and dependency of the Porosity and Perme‑

ability variables. Four of the 100 realizations of porosity and permeability are shown in Figures 4.58

through 4.63, in different reservoir orientations. As shown in the realizations, the C_Sand (orange)

and Shale (brown) facies are widely distributed in the domain of the reservoir; this is expected due

to the high count and proportions of C_Sand and Shale facies. The realizations show that the re‑

gions of the reservoir with high porosity and permeability distributions are in the C_Sand facies,

while the regions with very low to zero porosity and permeability distributions are in the Shale fa‑

cies. Also, the realizations show that the F_Sand (gold) and Sh_Sand (grey) are poorly distributed

in the reservoir but have intermediate porosity and permeability values.

4.4.4 Model Validation

To assess the models developed by the PPMT workflow, the univariate statistics, multivariate rela‑

tionships, and input parameters such as histogram and variogram, are checked. When performing

resource and reserves calculations, and during field development, the sand lithology or regions

Figure 4.58: Porosity realizations in Hekla reservoir H1 layer, x − y orientation
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Figure 4.59: Permeability realizations in Hekla reservoir H1 layer, x − y orientation

Figure 4.60: Porosity realizations in Hekla reservoir H1 layer, x − z orientation

of the reservoir with good sand distribution are often given attention. So, to check the validity of

the continuous petrophysical property models, consideration is given to the C_Sand facies and the

entire sand in the reservoir. Also, porosity and permeability are continuous variables that take a

range of values and cannot be coded as indicators. So, unlike the facies model that is assessed by

the error in reproducing the global proportions of the categories, the performance of the porosity

and permeability models is checked with the error in reproducing the global mean and standard

deviation of the original data.

Figures 4.64, 4.65, and 4.66 show how the simulated realizations of porosity and permeability re‑

produce the univariate statistics of the original C_Sand, all H1 sand, and entire H1 data. The error

in reproducing the statistics of the reference data is calculated by Equations 4.6 and 4.7. The repro‑

duced univariate statistics in the figures show that themean of the porosity and permeability data in
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Figure 4.61: Permeability realizations in Hekla reservoir H1 layer, x − z orientation

Figure 4.62: Porosity realizations in Hekla reservoir H1 layer, y − z orientation

Figure 4.63: Permeability realizations in Hekla reservoir H1 layer, y − z orientation

the C_Sand facies are reproduced with absolute error merror of 0.4% and 4.7%, respectively, while

the continuous properties in the C_Sand facies are reproduced with an average error of 2.5%. Also,

the continuous properties in all the sand facies (F_Sand, C_Sand, and Sh_Sand) and the entire H1

layer are reproduced with an average error of approximately 4%, while the average errors in repro‑

ducing the standard deviation σerror are 6% and 0.8%, respectively, see Table 4.7. These minimal

errors imply that the model of continuous petrophysical properties will perform relatively well. Al‑
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Figure 4.64: Histogram reproduction of C_Sand facies data in Hekla reservoir H1 layer

though the mean and standard deviation of the realizations closely match those of the original data,

the slight shift of the realizations from original data could be the result of the input parameters such

as variogram model. Due to the limited number of wells, it was difficult to model the variograms

of porosity and permeability in facies, especially those of F_Sand, Sh_Sand, and S_Shale.

merror =

∣∣∣mref − mreal

∣∣∣
mref

(4.6)

σerror =

∣∣∣σref − σreal

∣∣∣
σref

(4.7)

Where:

merror = error in reproducing the mean of the reference data,

mref = mean of the reference data,

mreal = mean of the average realization,

σerror = error in reproducing the standard deviation of the reference data,

σref = standard deviation of the reference data,

σreal = standard deviation of the average realization.

The variograms of continuous properties in the sand facies are also fairly reproduced, as shown

in Figure 4.67, while Figures 4.68, 4.69, and 4.70 show the reproduction of the bivariate relationship

between porosity and permeability in the data. It is evident that the shape of the bivariate scatter

plots and the correlation coefficients between the variables are reproduced well.
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Figure 4.65: Histogram reproduction of all sand data in Hekla reservoir H1 layer

Figure 4.66: Histogram reproduction of data in the entire Hekla reservoir H1 layer

Table 4.7: PPMT workflow error assessment for the Hekla Reservoir H1 Layer

Facies C_Sand All_Sand Entire Layer
Data Reproduction Error merror σerror merror σerror merror σerror

Porosity 0.004 0.044 0.013 0.024 0.051 0.000
Permeability 0.047 0.094 0.072 0.096 0.034 0.016
Average 0.025 0.069 0.043 0.060 0.042 0.008

4.5 Discussion

The application of HTPG simulation technique to the Hekla reservoir yields a facies model that

is consistent with original data. HTPG has the capability of generating facies or categorical vari‑

able model for any number of categories and reservoir complexity. As evident in the final facies

model and validation results, the developed facies model of the H1 layer of the Hekla reservoir

will perform well with minimal error. Although parameterization in the HTPG technique is a bit

challenging, the technique seems to generate facies model that describes the facies architecture of

the reservoir. Considering the facies realizations as rock type in the PPMT modeling workflow

also generates porosity and permeability models that are consistent with the facies model. The
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Figure 4.67: Variogram reproduction of all sand data in Hekla reservoir H1 layer

Figure 4.68: Porosity ‑ permeability bivariate relationship reproduction in C_Sand facies in Hekla reservoir
H1 layer

HTPG‑PPMTmodeling workflow, as adopted in this research, emphasizes the applicability of both

techniques for modeling categorical and continuous variables in a petroleum reservoir or geologic

deposit.
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Figure 4.69: Porosity ‑ permeability bivariate relationship reproduction in allSand of Hekla reservoirH1 layer

Figure 4.70: Porosity ‑ permeability bivariate relationship reproduction in the entire Hekla reservoir H1 layer
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK
Although the workflow adopted in this research is applicable to projects in mining and petroleum

industries, this thesis focuses on categorical and continuous property modeling in the petroleum

context. These are key steps in the process of developing a reliable a reservoir model that is utilized

for reservoir performance prediction and field development planing purposes, and also used to

quantify and manage the inherent uncertainty in the reservoir.

5.1 Covered Topics and Contribution

The HTPG and PPMT techniques are established geostatistical methods for modeling categorical

and continuous variables, respectively. Chapter 4 discusses how the HTPG is implemented to

model the facies in the upper (H1) layer of the Hekla reservoir. The definition of the HTPG trun‑

cation rule is one of the key steps in the HTPG workflow, as this determines how the categories or

facies are mapped from the latent Gaussian variables. This makes the HTPG a flexible technique

and suitable for modeling reservoirs or mineral deposits in complex geological settings.

The developed facies realizations of the Hekla reservoir are considered as rock types to develop

models of continuous properties (porosity and permeability). The continuous petrophysical prop‑

erties are controlled by the distribution of facies in the reservoir. To model the porosity and perme‑

ability in the Hekla reservoir H1 layer, the PPMT modeling workflow is used. PPMT transforms

the continuous variables to uncorrelated variables and thereby facilitates independent simulation

of the variables. Multiple (L = 100) realizations of porosity and permeability are generated for the

Hekla reservoir. The porosity and permeability realizations are consistent with the facies realiza‑

tions, as high porosity and permeability distributions are observed in the regions of C_Sand facies,

while low porosity and permeability are distributed in regions of Shale facies. Such facies and

continuous petrophysical property models can be utilized to study reservoir heterogeneity, which

helps to assess and manage the uncertainty in the reservoir. These models are also used in field de‑

velopment and redevelopment to discern the productive regions of the reservoir; this will facilitate

infill and outstep well placement in the reservoir.

The main contribution to this thesis is the integration of the application of HTPG and PPMT tech‑

niques into a single geostatistical reservoir modeling workflow. To achieve this, codes are written

in Python in Jupyter Notebook, with appropriate use of some Pygeostat functions to run the HTPG
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and PPMT software. Note that the models developed in this study are specific to the Hekla reser‑

voir H1 layer. The adopted workflow is reproducible and applicable in mining and petroleum to

model categorical and continuous variables.

5.2 Limitations and Future Work

One of the challenges encountered in this study is the limitation of theHekla reservoir dataset. First,

the limited number of wells (only 15 wells available) makes it challenging to have a good model of

spatial variability or continuity in the lateral direction of the reservoir. This increases the uncertainty

in discerning the possible lateral continuity of each facies in the final model. This can be overcome

by utilizing a dataset or case study with more wells, as this would help improve the horizontal

variogram of each facies indicator residual. Second, the inconsistency in acoustic impedance data.

As discussed in Chapter 4, after calibrating the seismic data, the weak correlation of the acoustic

impedance values to facies proportions observed in both sand and shale makes the impedance data

not helpful in this study. Seismic data are exhaustive and often provide good information about the

reservoir lithology and architecture. This means a reservoir model should consider seismic data. A

case study or dataset with reliable seismic attributes could be considered in the future.

Note that the models of facies and continuous petrophysical properties developed in this study

are static models. Therefore, the scope of this research does not cover the process of upscaling

such static models to a flow or dynamic model that is utilized to predict future performance of the

reservoir under different production or operating conditions.
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APPENDIX A

APPENDICES
A.1 Hekla Reservoir Well Logs

The logs shown in Figures A.1 through A.15 are the well logs of all fifteen wells in the Hekla reser‑

voir. The well logs are records of the variation of facies and continuous petrophysical properties

(porosity and permeability) with depth, in the two distinct layers (H1 and H2) of the reservoir. The

first log clearly shows the two layers (H1 and H2) of the Hekla reservoir through which the wells

are drilled. The second log shows the vertical distribution of the five facies at the well locations in

the reservoir. The third and fourth logs are the record of porosity and permeability, respectively,

with depth in the reservoir.
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Figure A.1: Well log of HeklaWell 1 showing the distinctive reservoir zones, facies, porosity and, permeability
records
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Figure A.2: Well log of HeklaWell 2 showing the distinctive reservoir zones, facies, porosity and, permeability
records
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Figure A.3: Well log of HeklaWell 3 showing the distinctive reservoir zones, facies, porosity and, permeability
records
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Figure A.4: Well log of HeklaWell 4 showing the distinctive reservoir zones, facies, porosity and, permeability
records
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Figure A.5: Well log of HeklaWell 5 showing the distinctive reservoir zones, facies, porosity and, permeability
records
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Figure A.6: Well log of HeklaWell 6 showing the distinctive reservoir zones, facies, porosity and, permeability
records
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Figure A.7: Well log of HeklaWell 9 showing the distinctive reservoir zones, facies, porosity and, permeability
records
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FigureA.8: Well log ofHeklaWell 10 showing the distinctive reservoir zones, facies, porosity and, permeability
records
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FigureA.9: Well log ofHeklaWell 11 showing the distinctive reservoir zones, facies, porosity and, permeability
records
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Figure A.10: Well log of Hekla Well 12 showing the distinctive reservoir zones, facies, porosity and, perme‑
ability records
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Figure A.11: Well log of Hekla Well 13 showing the distinctive reservoir zones, facies, porosity and, perme‑
ability records
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Figure A.12: Well log of Hekla Well 14 showing the distinctive reservoir zones, facies, porosity and, perme‑
ability records
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Figure A.13: Well log of Hekla Well 17 showing the distinctive reservoir zones, facies, porosity and, perme‑
ability records
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Figure A.14: Well log of Hekla Well 18 showing the distinctive reservoir zones, facies, porosity and, perme‑
ability records
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Figure A.15: Well log of Hekla Well 20 showing the distinctive reservoir zones, facies, porosity and, perme‑
ability records
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