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Abstract 

Oil and gas pipelines (OGP) play a crucial role in sustaining the economy. With the 

increasing speed of pipeline network building, there is a corresponding growth in 

energy supply and demand. Nevertheless, numerous pipeline network safety operating 

issues arise during oil and gas transportation, such as corrosion failure leading to 

leakage, often resulting in fatalities, significant environmental damage, and economic 

losses. Therefore, it is necessary to conduct risk and reliability analysis to identify 

accident precursors and prevent accidents before they happen. It can also predict the 

pipeline degradation process, avoid major failure, and determine the priority of risk 

mitigation, optimize resource allocation. Various categories of OGP systems generate a 

large amount of data during operation. However, current studies have encountered 

challenges using these data to model risk and reliability effectively. Existing studies 

have constructed generalized models that ignore specific characteristics of different 

OGP systems. Furthermore, some of these studies failed to use appropriate data sources 

and inadequately addressed the uncertainty associated with input data, resulting in 

inaccurate results. In addition, the current models exhibit computational inefficiency 

and operational complexity. 

Therefore, this thesis aims to utilize data sources from different OGP systems to 

develop more efficient and accurate data-driven models for risk and reliability 

assessment. This thesis fully considers the characteristics of different OGP systems and 

creates different risk and reliability analysis models in a targeted manner. The proposed 

models are more comprehensive. At the same time, the structure is simplified and the 

operation is more convenient, which can significantly improve the computational 

efficiency of the models while obtaining more accurate analysis results. 

For pipelines where in-line inspection (ILI) can not be conducted, a novel method 

of cloud-variable weight function is proposed to analyze the pipeline’s risk level and 

critical risk factors by establishing a pipeline risk assessment index system. The 

proposed method fully considers the uncertainty in the evaluation process, resolves the 

contradiction of existing methods to model the fuzzy concepts accurately, optimizes the 
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weight distribution, and obtains a more scientific and reasonable assessment result. For 

gas transmission system (GTS), a structure mapping method based on failure modes 

and effects analysis (FMEA) is proposed to form the GTS’s object-oriented Bayesian 

network (OOBN) framework, making the model more user-friendly. An accident 

precursor identification approach is proposed based on the piecewise aggregate 

approximation-cumulative sum (PAA-CUSUM) algorithm, which can better discover 

the potential risks in real-time. The proposed method identifies process anomalies 

through monitoring data and analyzes the events and propagation patterns with the 

highest potential risk. For pipelines where ILI can be conducted, a finite element (FE) 

model is established. A reliability prediction method based on Residual Neural 

Networks (ResNet) that can directly map the magnetic flux leakage (MFL) inspection 

data to the pipeline’s reliability is proposed. Pipeline defect effective area model, rather 

than those based on just depth, is effectively integrated with deep learning models. 

Moreover, an innovative approach for reconstructing the defect profile using a novel 

hybrid neural network to accurately and efficiently map three-axial MFL signals to the 

defects’ 3-D profile is also proposed. It utilizes the neural ordinary differential equation 

(ODE) as a module within the neural network architecture, which can map the MFL 

signals to the spatial position of each point on the defective concave surface. 

Additionally, the proposed model incorporates the Fourier integration kernel to enhance 

computational efficiency.  

The contributions of this study lay the foundation of for OGP potential risk 

discovery, risk control and rehabilitation, and pipeline digital integrity management. 

The proposed research can be extended to investigate the risk and reliability problems 

for OGP systems considering more complex events and situations in future work. 
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Chapter 1: Introduction 

1.1 Research Background 

1.1.1 Significance of pipeline risk and reliability analysis 

Pipelines are called the economy’s arteries since they are one of the most cost-effective 

and safe ways to transport oil, natural gas, and refined oil products [1]. They transport 

substantial quantities of oil and gas products from drilling sites to refineries, 

petrochemical facilities, and ultimately, to residential and commercial consumers, 

constituting an essential component of the energy industry. For example, the Canadian 

pipeline network comprises more than 840,000 km of transmission, gathering, and 

distribution pipes, including 117,000 km of large-diameter pipelines, with considerate 

pipeline infrastructure in most provinces [2]. In the United States, roughly 118,000 km 

of pipelines transport liquid petroleum, while over 1,491,000 km transport natural gas 

(including the distribution lines for households, offices, and businesses) [3].  

    Due to the combustible and explosive nature of oil and gas media, pipeline 

accidents occur from time to time, resulting in dire environmental, societal, and 

economic consequences [4-6]. Biezma [7] summarized 23 OGP major accidents with 

4,329 fatalities. According to statistics, there were 5598 major pipeline incidents in the 

United States between 1995 and 2014, with an average cost of 352 million USD. The 

overall cost of the accidents is estimated to be around USD 7 billion [8]. These statistics 

demonstrate that pipeline risk management is crucial to responsible development and a 

sustainable future. 

Many reasons lead to pipeline failure and accidents [9]. Figure 1.1 (a) shows the 

European Gas Pipeline Incident Data Group (EGIG) database’s five categories of 

pipeline failure causes and incident distribution per cause from 2010 to 2019 [10]. 

Figure 1.1 (b) shows the causes of serious gas pipeline incidents from 2005 to 2020 
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from the Pipeline and Hazardous Materials Safety Administration (PHMSA) [11]. 

PHMSA has established eight different categories of pipeline failure causes. The 

“excavation damage” category established by PHMSA is similar to the “external 

interference” category established by EGIG, both accounting for a large percentage of 

pipeline incidents. Other scholars have identified factors affecting pipeline safety when 

researching specific pipelines, as shown in Table 1.1. Thus, it can be found that risk of 

pipeline system include many categories, and in many cases, pipeline risk usually arises 

from the combination of multiple risk factors.  

Table 1.1 Research studies on factors affecting pipeline safety 

Research studies Main factors affecting pipeline safety 

[12] Pipeline installation and backfill, equipment testing 

[13] Corrosion and external interference 

[14] Seabed soil; Man-made drilling oil stolen 

[15] Hot work with an open flame 

[16] Corrosion and external interference 

 

 

(a) EGIG incident distribution per cause in the 

2010–2019 period 

 

(b) PHMSA incident distribution per cause in the 

2005–2020 period 

Figure 1.1 Incident distribution per cause of two databases 

Therefore, it is necessary to conduct an overall risk assessment of the pipeline and 

specific analysis of key risk factors using multiple data sources. Risk and reliability 

assessment is the most critical part of risk management. It is low-cost and effective for 

pipeline operators to identify accident precursors and predict pipeline degradation 

processes to ensure safe pipeline operation. In complex systems, the results can provide 

27.17%

26.63%15.76%
1.63%

15.76%

13.04%

External interference
Corrosion
Construction defect/Material failure
Hot tap made by error
Ground movement
Other and unknown

13.29%

3.62%
2.42%

24.64%

14.49%

9.18%

6.04%

26.33%

All other causes
Corrosion
Equipment failure
Excavation damage
Incorrect operation
Material failure or pipe or weld
Natural force damage
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a basis for whether a component requires risk mitigation and identify the priority of risk 

mitigation. High-risk components may cause accidents, and control measures can be 

prioritized for their risks to prevent accidents before they happen. 

Meanwhile, it is also essential to quantify the defects using inspection signals and 

assess the reliability of oil and gas pipeline systems. This enables more precise 

quantification of system performance, comprehension of reliability characteristics, 

execution of efficient maintenance strategies, reduction of maintenance expenses, and 

evaluation of inspection intervals. 

1.1.2 Basic theories and definitions 

The following are some basic definitions and concepts related to the research of this 

thesis. 

(1) Risk 

Decision-making is fundamentally based on the quantification of "risk." Risk 

analysis is a process that involves the use of qualitative and quantitative data to estimate 

and quantify the level of risk associated with a particular situation. Potential causes, 

consequences, and the likelihood of unexpected incidents should be considered during 

this process. The resulting information can then be used to support decision-making in 

scientific risk management. The NORSOK standard Z-013 [17] defines quantitative 

risk analysis (QRA) as four steps: risk estimation, risk analysis, risk assessment, and 

health, safety, and environment (HSE) management. ISO 31000:2009 [18] also defines 

four main steps in the risk management process: risk identification, risk analysis, risk 

evaluation, and risk treatment. Risk identification, also known as hazard identification, 

is an essential step before conducting risk analysis. Hazards can be classified into three 

categories [19]: (1) Time-dependent: external corrosion, internal corrosion, cracking, 

etc. (2) Time-independent (random): third-party damage, incorrect operation, and 

natural disasters. (3) Stable (resident): manufacturing and construction defects. There 

may be some variability in the expression of these criteria, but the definitions and the 

analysis framework are similar. Risk analysis was first used in nuclear safety studies in 
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the 1960s, and it was then expanded to other fields, such as the military and chemical 

industries [20]. Nowadays, risk analysis methodologies have developed rapidly in 

response to the growing demand for pipeline operation safety.  

Due to the deterioration of the OGP and the continuous changes in operating 

conditions and environment, the inadequacies of traditional static risk analysis methods, 

such as fault tree analysis (FTA), failure mode and effect analysis (FMEA), etc., are 

exposed. Many researchers have worked on developing dynamic risk analysis methods 

in time dimensions to accomplish the dynamic description of the system’s or a certain 

factor’s risk changes [21, 22]. According to the literature search, most dynamic risk 

analysis approaches are based on upgrading traditional methods, with various data and 

information updating methods used to adjust the analysis results continually. 

Because of the advances in sensor technology, OGP development is heading 

toward intelligence and digitalization. With the advancement of “Industry 4.0,” “Oil 

and Gas 4.0” has just been added to the agenda [23]. During the operation of the OGP, 

a massive amount of data is generated. Hanga [24] stated that machine learning (ML) 

has enormous potential in oil and gas industry applications, especially regarding data 

analysis and interpretation. Mohammadpoor [25] also demonstrated how big data 

technology is becoming more prevalent in oil and gas transportation. As a result, many 

scholars established pipeline risk assessment and prediction models based on intelligent 

technologies such as machine learning (ML) and deep learning (DL) through collectible 

data to address safety issues. Therefore, risk analysis methods are no longer limited to 

traditional thinking, and their application in the OGP industry has entered a new era. 

(2) Reliability 

Both academic research and practical applications have achieved significant 

advancements in the structural reliability of pipelines. The term "structural reliability" 

refers to the likelihood that a given structure will provide adequate performance during 

its expected lifespan [26]. Reliability methods can be used not only to estimate the 

remaining useful life of a pipeline but also to guide pipeline operators in the repair and 

maintenance activities. 
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Research on pipeline reliability can be broadly divided into two categories: (1) 

assessment and prediction based on different data types. (2) assessment and prediction 

based on empirical models, which include deterministic models, such as linear 

corrosion rate model [27], and probabilistic models, such as gamma process-based 

corrosion growth model [28].  

(3) Data-driven 

A significant quantity of different types of data is produced in the routine operation 

of a pipeline. For pipeline operators, the concept of “data-driven” indicates identifying 

relevant analytical models based on factual information, data, and their features, then 

informing and guiding the decisions related to risk and reliability management. By 

acquiring quantifiable information via data analysis, data-driven approaches enable 

decision-makers to circumvent preconceived notions and partiality, leading to improved 

identification of potential pipeline risks and more precise reliability analysis outcomes. 

Wen [29] summarized the current data-driven approaches into three categories: 

statistics-based, logic-based, and ML-based. The statistics-based is also the basis of 

other data-driven strategies. They are concerned with the data’s surface features, such 

as statistical parameters or exploratory analysis of distribution. It is often used to 

conduct the initial analysis of OGP’s risk and reliability [30]. Logic-based methods are 

typically founded upon a certain cause-effect logic or a total-division logic, and its 

configuration may be depicted in a logical chart, affording the advantages of clarity and 

comprehensibility. In the area of OGP, the most commonly used logic-based methods 

include FMEA [31, 32], hazard and operability analysis (HAZOP) [33], FTA [34], event 

tree analysis (ETA) [35], bow-tie analysis (BTA) [36-38], Petri net (PN) [39], analytic 

hierarchy process (AHP) [40], Bayesian network (BN) [41], etc. ML-based methods 

use emerging machine learning algorithms to discover potential information and 

patterns through deep data mining. Its specific advantages and disadvantages will be 

explained in detail in this thesis later. 

(4) Uncertainty 

Uncertainty is a concern that cannot be avoided in OGP’s risk and reliability 
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assessments. In contrast to “certainty,” the phrase “uncertainty” is used. Certainty refers 

to the analyst’s ability to precisely and digitally characterize, specify, or forecast system 

behavior and other phenomena [42]. A lack of or incomplete knowledge often generates 

uncertainty, and it may be reduced to some extent as additional information becomes 

available. Many factors impact uncertainty, including the reliability of the quantitative 

data, the volume of data, and how closely the model assumptions match the real-world 

situation [43]. 

The process of achieving the description, characterization, and propagation of 

uncertainty, as well as the analysis of the outcomes, is referred to as uncertainty analysis. 

In risk analysis, there are two forms of uncertainty [44]: (1) variability and randomness 

induced by the system’s stochastic behavior; (2) imprecision caused by measurement 

errors and a lack of information about the system. In OGP systems, the former, also 

known as aleatory uncertainty, arises primarily from the uncertainty inherent in the 

stochastic behavior of many physical processes, such as geological hazards, the 

unpredictability of third-party damage, and reduced reliability due to pipeline 

degradation. Aleatory uncertainty is unavoidable. For example, defects may produce 

different results when tested in the same setting several times, and this form of 

uncertainty can only be mitigated to a certain extent. It cannot be eliminated from the 

system [45]. The latter, often referred to as epistemic uncertainty, is primarily concerned 

with the amount of data and data quality used in risk and reliability evaluation in OGP 

systems. With the accumulation of information and the upgrading of data processing 

tools, this sort of uncertainty may be decreased. 

1.2 Motivation 

Some scholars have applied various data-driven methods to deal with the problems 

related to risk and reliability analysis. However, in the field of OGP, data-driven risk 

and reliability research needs to be further deepened and improved. Through the 

investigations, it is found that the following challenges still exist in the current studies. 

Some quantitative risk analysis studies are based on expert-inspired and fuzzy logic 
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theories. In recent research, related scholars [46, 47] have quantified the evaluation set 

given by decision-makers based on triangular fuzzy numbers or trapezoidal fuzzy 

numbers. Although the fuzzy operators can express the uncertainty of the weight 

calculation process, they appear in the final result as a specific value after 

defuzzification, still losing part of the uncertainty [48]. Moreover, the assignment of 

weights based on constant weight theory, such as AHP, is not scientifically rigorous and 

can easily lead to conclusions that are not consistent with reality.  

On the other hand, due to the lack of data, the probabilities of the basic events 

required for traditional FTA, ETA, and BTA are obtained using expert inspiration, fuzzy 

logic, or by getting data directly from a common dataset [49, 50]. These data are not as 

close to reality as those obtained directly from operating conditions and can only be 

updated periodically for risk. Therefore, using these data not only reduces the accuracy 

of the assessment results but also does not allow for real-time risk analysis. In addition, 

FT and BT models have complex structures with numerous nodes and inconvenient 

operations, leading to inefficiencies.  

In detecting defects in OGP and researching the reliability of pipelines with defects, 

the current approaches only focus on the depth of defects and ignore the defect’s other 

geometry information, such as defect shape or profile, leading to less precise reliability 

analysis results. In addition, when using MFL signals for analysis, some of the existing 

studies only limit themselves to analyzing the single-axis MFL signals or use only the 

axial and radial signals as the basis for analysis. Thus, the model’s accuracy is also not 

guaranteed. Also, most research focuses on processing MFL inspection data to extract 

the geometry of the defect and then utilizing the geometry information to conduct 

reliability assessment. The computation and analysis techniques are time-consuming 

and sophisticated. Consequently, pipeline operators may take significantly longer to 

acquire the final reliability result instead of effectively analyzing the pipeline state and 

executing maintenance steps immediately. 

For different pipeline systems, such as the pipelines where ILI can be conducted 

and cannot be conducted, the gas transmission system, risk and reliability modeling can 
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be targeted based on the characteristics of these systems. Based on the research gaps 

illustrated above, when establishing the risk and reliability models, it is necessary to fill 

the gaps and obtain more accurate results. 

1.3 Thesis Objectives  

To address the above-mentioned challenges, this Ph.D. research focuses on developing 

effective data-driven models for risk and reliability assessment of different pipeline 

systems based on various data sources. Four sub-objectives are listed below. 

(1) Develop a multi-factor coupled OGP risk assessment model and propose a 

novel weighting method for expert judgment, making the evaluation results more 

reasonable. 

(2) Explore the potential risks of pipeline transmission system and develop a 

method to identify accident precursors in real-time through monitoring data. 

(3) Develop a reliability prediction model based on deep learning methods that can 

directly map the MFL inspection data to the pipeline’s reliability. 

(4) Develop a deep learning model to directly reconstruct the 3-D profile based on 

the MFL inspection data. 

1.4 Thesis Outline 

The thesis is prepared following the guidelines from the Faculty of Graduate Studies 

and Research (FGSR) at the University of Alberta. The thesis, with seven chapters, is 

organized as follows. 

Chapter 1 provides the research background of pipeline risk and reliability analysis. 

The research motivation is introduced. A brief statement on the thesis objectives and 

outline are also presented in this chapter. 

Chapter 2 demonstrates a comprehensive analysis and categorization of academic 

publications with regard to risk and reliability assessment of oil and gas pipelines. This 

chapter summarizes the various data sources including monitoring data, ILI data, 



9 

 

historical records, expert judgment, and simulation data; outlines strategies to examine, 

analyze, and predict all major pipeline risks; analyzes the uncertainties inherent in the 

modeling process, and demonstrates the methods employed to address them.  

Chapter 3 proposes a novel method based on cloud-variable weight theory to 

analyze the pipeline’s risk level and critical risk factors by establishing a pipeline risk 

assessment index system. The proposed method fully considers the uncertainty in the 

evaluation process, resolves the contradiction of existing methods to model the fuzzy 

concepts accurately, optimizes the weight distribution, and obtains a more scientific and 

reasonable assessment result. The results of the case study illustrate that the proposed 

method is beneficial for helping pipeline operators determine the pipeline risk status 

and maintenance priority in the pipeline system. 

Chapter 4 proposes a structure mapping method based on FMEA to form the OOBN 

framework for GTS. An accident precursor identification approach is also proposed 

based on the PAA-CUSUM algorithm. The proposed method identifies process 

anomalies through monitoring data and analyzes the events and propagation patterns 

with the highest potential risk. The case study results demonstrate that the proposed 

method is beneficial for assisting station operators in identifying possible hazards and 

providing a foundation for daily risk mitigation. 

Chapter 5 proposes a reliability prediction method based on ResNet that can directly 

map the MFL inspection data to the pipeline’s reliability. Pipeline defect effective area 

model, rather than those based on just depth, is effectively integrated with deep learning 

models. Case studies of FE simulations and industrial applications illustrate that the 

suggested approach is capable of assessing the reliability of corroded pipes in a more 

timely and accurate manner than traditional methods. The proposed method is also 

helpful for pipeline operators to understand the pipeline risk condition and obtain 

suggestions for optimizing costs and re-assessment intervals.  

Chapter 6 proposes a novel hybrid neural network-based 3-D defect reconstruction 

method, which can directly inverse the defect shape. The three-axis MFL signals are 

used as model input. The neural ODE maps the MFL signals to the spatial position of 
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each point on the defective concave surface based on its excellence in parameterizing a 

homeomorphism between two sets. Furthermore, the model incorporates the Fourier 

integration kernel to enhance computational efficiency. Due to the difficulty in 

obtaining sufficient amounts of high-quality experimental data, the proposed model can 

be trained on data from FE simulations and then transferred to the experimental dataset, 

effectively solving the problem. The proposed method can guide pipeline operators to 

perform maintenance management and is helpful to establish the pipeline digital twin 

model. 

Finally, Chapter 7 summarizes the research tasks completed in this thesis. The 

corresponding limitations and future research plans are also discussed in this chapter. 
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Chapter 2: Literature Review 

2.1 Applicable methods for different data types 

2.1.1 Pipeline base data 

The basic pipeline information is shown in Table 2.1, which is a basis for analyzing 

other types of data. In the following sections, we choose the five most common data 

types for detailed analysis. 

Table 2.1 Basic information 

Category Data 

Attribute data Wall thickness 

 Seam type 

 Diameter 

 Manufacturer and manufacturing 

date 

 Materials 

 Buried depth 

 laying method 

2.1.2 Monitoring data 

The primary focus of risk analysis utilizing monitoring data is typically centered on 

failure and consequence analysis, specifically concerning pipeline leakage. The 

widespread utilization of supervisory control and data acquisition (SCADA) systems 

facilitates the accessibility of pressure, flow rate, and temperature data during pipeline 

operation. Pipeline leakage is bound to result in anomalies in the monitoring data [51]. 

Therefore, this has garnered significant attention from scholars. Zuo et al. [52] 

transformed the pressure, flow rate, and temperature into the proper multivariate time 

series then used the trained long short-term memory and auto-encoder (LSTM-AE) to 

extract the data features and used the one-class support vector machine (OCSVM) to 

deal with the features and obtain the leakage threshold. Bhaskaran et al. [53] proposed 
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a method for detecting cracks and blockages through anomalous pressure fluctuations 

based on K-means clustering. Li et al. [54] extracted the actual signals from the pressure, 

flow rate, and temperature data of subsea gas pipelines by eliminating the noise based 

on variational mode decomposition (VMD) and used Hierarchical Bayesian Model 

(HBM) to obtain the failure of the process operations. Priyanka et al. [55] proposed a 

pipeline digital twin model in which abnormal pressure data is used to detect the failure 

precursor. Liu et al. [56] estimated the leakage orifice diameters of gas pipelines using 

BN and pressure and flow rate data. Aljameel et al. [57] compared five widely used ML 

algorithms and concluded that the support vector machine (SVM) is the best for 

analyzing the pressure, flow rate, and temperature data. 

In addition to data from the SCADA system, some scholars proposed utilizing 

specific sensors or devices to monitor the pipeline risk and detect leakage. Lu et al. [58] 

and Yang et al. [59] used acoustic wave sensors to collect the signals and conducted the 

leak diagnosis based on SVM combined with other ML algorithms. Li et al. [60] utilized 

the sparrow search algorithm and convolutional neural network (SSA-CNN) method to 

analyze the negative pressure wave to detect the leakage. Wang et al. [61] collected the 

temperature and vibration data from distributed optical fiber sensors (DOFS) and 

identified the leakage based on the random forest (RF) model. Guerriero et al. [62] 

developed a dynamic BN model to fuse the data monitored from DOFS and improve 

the leakage alarm. 

Due to the advantages of greater sensitivity and higher precision in location, optical 

fiber monitoring technology is increasingly used in a wide range of applications [63]. 

In the research area of risk identification, an optical fiber sensing system is always used 

to discover intrusion events or third-party damage (TPD) [64-66]. This system can 

provide both time-domain and spatial-domain data. Yan et al. [67] used a back-

propagation neural network (BPNN) as the classifier to recognize human activities. 

Zhao et al. [68] introduced a novel approach for identifying spatiotemporal signals 

using artificial intelligence object detection, specifically YOLOv4, which can identify 

manual digging, mechanical excavation, and moving targets well. There are also other 
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types of monitoring data that may be used to identify the TPD events, such as the 

massive location data of mobile devices [69], the polarimetric synthetic aperture radar 

imagery [70], subsidence deformation data [71] etc., which need to be further 

researched.  

2.1.3 ILI data 

The monitoring of defect growth and assessment of pipeline structural integrity are 

commonly carried out through the application of ILI tools, which refers to intelligent 

pipeline integrity gauges (PIG), carrying various kinds of sensors to detect pipeline 

defects. Magnetic principle-based MFL tools are the most commonly utilized among 

the available ILI options [72]. This technology’s challenge is measuring the MFL field, 

distinguishing defects from non-defective signals like welds and tees, accurately 

quantifying the defects from the collected magnetic flux signals, and analyzing the 

pipeline’s reliability using the quantified and reconstructed defect profiles. Over the last 

two decades, significant technological advancements have enabled scholars to 

effectively address the challenges associated with improving the MFL signals’ quality 

and recognizing defects [73-80]. Recent studies have focused on the estimation of 

defect sizes, defect reconstruction, as well as reliability assessment through defect 

parameters obtained from MFL. 

    In the defect quantification and reconstruction research area, Joshi et al. [81] used 

a data set containing 71 samples with different geometries and radial basis function 

neural network (RBFNN) to obtain the defects’ 3-D depth profile. Chen et al. [82] also 

used RBFNN to reconstruct the two different shapes of the defect 3-D profile. Ma et al. 

[83] improved RBFNN by the immune algorithm, which can size the pipeline corrosion. 

Kandroodi et al. [84] constructed a database including 337 simulated defects and 31 

experimental samples and proposed a 2D image processing method to obtain the defect 

width. Mohamed et al. [85] studied different neural network structures for defect length 

and depth estimation, used the Levenberg-Marquardt back-propagation learning 

algorithm to train the data, and found that the neural networks exhibited optimal 
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performance, achieving the accuracy of 86% and 89% for error tolerances of ±10% and 

±15%. Lu et al. [80] established a magnetic dipole model to obtain the data and used a 

visual transformation-convolutional neural network (VT-CNN) to estimate the defect 

size. Layouni et al. [86] proposed an artificial neural networks-based method to 

recognize the defect length and depth. Wang et al. [87] collected 479 defect samples 

and integrated prior knowledge into the neural networks to quantify the defect sizes. 

Yuksel et al. [88] used the MFL signal interpolation method to increase the sample size 

from 100 to 1000, then combined the Swin Transformer Backbone YOLOv5 (SwinYv5) 

algorithm with the cross-residual convolutional neural network (CR-CNN) for defect 

detection and quantification, which is claimed to have a precision of 98.9%.  

    In addition to MFL, advanced ILI technologies include ultrasonic testing (UT), 

eddy current (EC), and electromagnetic acoustic transducer (EMAT) [89-91]. By using 

these techniques, there are also some data-driven methods to estimate the defect size. 

For example, Pyle et al. [92] introduced a Gaussian feature approximation (GFA) 

method to improve the explainability of the neural networks and effectively quantify 

the crack-like defects based on UT. Xiong et al. [93] proposed an improved deep 

extreme learning machine method using eddy current test data to predict the defect size 

accurately. Yan et al. [94] combined CNN with SVM to recognize the girth weld 

cracking using EMAT detection data. 

The reliability analysis using data-driven methods may be conducted based on the 

inspected defect information. Zhang et al. [95] modified the safety factor parameter 

based on the pipeline data mining methods, enabling the SF obtained from various 

factors instead of only the pressure, providing a new reliability analysis perspective. 

Xiang and Zhou [96] developed a dynamic BN to model the corrosion growth and 

finally obtained the failure probability. Zhang and Tian [97] used artificial neural 

networks (ANN) to perform the reliability assessment of pipelines with multiple 

corrosion defects. Anghel [98] proposed a reliability classification procedure using a 

minimax SVM algorithm to obtain more accurate results. Adumene et al. [99] 

considered the interconnections of corrosion factors and failure modes and proposed a 
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novel reliability prediction method based on the defect parameters. Shabarchin et al. 

[100] proposed a Bayesian belief network (BBN) that integrated various corrosion and 

failure pressure models to calculate the failure probability. Woldesellasse and 

Tesfamariam [101] combined the BBN with GIS technology, enabling pipeline 

operators to estimate the failure probabilities of pipelines located in specific areas. 

The resolution of a pipeline MFL detector refers to the smallest size of magnetic 

defects it can detect. For instance, if an MFL detector has a resolution of 1 millimeter, 

it means it can detect magnetic defects with a diameter of 1 millimeter. Higher 

resolution allows the detector to identify smaller and more subtle magnetic anomalies, 

which is crucial for identifying potential issues within the pipeline. Generally, the 

resolution of a pipeline MFL detection system directly impacts its performance in early 

detection of pipeline issues and ensuring pipeline safety. Low resolution in a pipeline 

MFL detector may introduce uncertainties in defect quantification. For example, low 

resolution may prevent the detector from accurately measuring and estimating the size 

of smaller defects within the pipeline, leading to uncertainties in quantifying defect 

sizes. In situations with low resolution, the detector may be more prone to false 

positives, incorrectly labeling some non-defective sections of the pipeline as defective. 

Additionally, inadequate resolution may make it challenging for the detector to capture 

and understand the complex shapes of defects, affecting the accurate quantification of 

defect shapes. The material and hoop stress of pipelines may also impact the 

performance of MFL detectors, particularly in terms of resolution and measurement 

accuracy. For instance, different pipeline materials exhibit varying responses to 

magnetic fields, potentially influencing the detector's ability to identify and locate 

defects. Additionally, the wall thickness and stress of pipelines can affect the 

propagation of MFL signals and the response of MFL tools. Larger wall thickness may 

weaken the magnetic flux leakage signal, while high stress may lead to signal distortion 

[102]. These factors may also introduce some level of uncertainty. As this thesis 

predominantly relies on simulated signals rather than real MFL tool data, the 

uncertainties arising from practice scenarios have not been extensively studied. 
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Investigating uncertainties caused by real MFL data will be a valuable research 

direction in the future, especially with the acquisition of a large volume of real data. 

2.1.4 Historical records 

Historical records typically include all recorded information related to pipeline 

operation, such as historical failure data, experimental data, operational records, and 

data sourced from published literature and well-known databases. For example, Guo et 

al. [103] developed a BN to identify the risk of TPD based on recorded accidents. Wen 

et al. [104] used the historical landslide data and other basic environmental data as input, 

and established a hybrid ML method to propose a risk assessment model for landslides. 

Yin et al. [5] and Shan et al. [105] introduced correction coefficients to modify the 

historical failure probability to obtain more accurate QRA results. Mazumder et al. [106] 

utilized a dataset consisting of 92 instances of documented pipe bursts to establish ML-

based models. The results indicated that XGBoost is the most effective algorithm for 

predicting pipeline failure. Yang et al. [107] collated environmental data from the GIS 

system, which was used as the basis for risk analysis along with the pipeline’s basic 

data, and finally established a Graph Convolutional Network (GCN) and clustering 

algorithm-based accident consequence assessment model. Kumari et al. [108] derived 

nonhomogeneous failure rates from the PHMSA database and used BN and ANN to 

conduct a risk analysis. Alves et al. [109] collected Brazilian historical failure data and 

established a bow-tie model to deal with pipeline theft. Wang and Li [110] proposed an 

unsupervised risk analysis algorithm to evaluate risk levels by utilizing a limited 

amount of historical failure records. Ma et al. [111] collected 314 data pieces from the 

literature and proposed a hybrid method to predict burst pressure. 

    Sometimes, due to the limited sources or amount of historical records, when 

establishing the risk analysis model, scholars often used historical data along with 

expert judgments, simulation data, etc., as input to the model [41, 112]. Examples 

include using historical records and expert judgment as BN’s input [21, 113, 114] and 

ANN’s input [115], using historical experimental data and simulated data to develop a 
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deep neural network (DNN) to predict failure pressure [116].  

2.1.5 Expert judgment  

For OGP operational risk analysis, expert judgment is necessary. For example, Alves 

and Lima [117] invited 180 pipeline experts with different backgrounds and established 

a Brazilian pipeline database based on expert elicitation. In addition, some particular 

situations may arise, such as the presence of a non-piggable pipeline that is buried 

underground. In these circumstances, the pipeline operators may be reluctant to incur 

significant costs associated with excavation to assess the pipeline's risk status. 

Consequently, it becomes essential to engage experienced experts well-versed in the 

pipeline's construction history, daily operation, management, etc., to provide their 

evaluations. Sometimes experts are also needed to give their opinion on consequential 

events, damage to assets, etc. An efficient way to accomplish the evaluation task is by 

developing a linguistic assessment criterion, such as utilizing a series of rubrics 

comprising labels: "very high," "high," "moderate," "low," or "very low," or 

alternatively, a basic numerical value or interval [118]. 

Many scholars have utilized expert judgments as input data for the models of 

OGP's risk assessment, as summarized in Table 2.2. Within the categories of data-driven 

models that are based on expert opinions, a minority of models use machine learning 

techniques, while the majority rely on logic-based approaches. The FTA and AHP-

based indicator system models are prevalent among scholars. These two methods yield 

similar outcomes, and researchers are continually enhancing and refining them with 

technological advancements. The Bow-tie model is a hybrid of FTA and ETA, which 

can be used to start the analysis from the cause of the accident to the consequence more 

clearly and effectively by using logic diagrams. BN was introduced with the growing 

scholarly interest in pipeline dynamic risk assessment. One possible approach is to 

establish a direct correspondence between the configuration of a BN and FTA and Bow-

tie models. The utilization of BN enables the improvement of the original static model 

to a dynamic one, thereby facilitating a more comprehensive depiction of the dynamic 
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changes of risk or the accident evolution process across different periods. 

Table 2.2 Literature summary 

Literature Risk analysis model Expert judgment expressions Results achieved 

[119] Bow-tie Triangular fuzzy numbers 

(TFN) of eleven and five 

linguistic terms  

Obtained the 

failure probability 

of the top event 

and identified the 

critical factors 

 

[46] FTA Trapezoidal fuzzy numbers 

(TZFN) of five linguistic terms  

[120] FTA Same as above 

[121] FTA TZFN of five and seven 

linguistic terms  

[21] Bow-tie, BN TFN of seven linguistic terms  

[122] Petri net Intuitionistic fuzzy evidential 

reasoning method 

[123] Risk matrix, bow-tie TZFN of five linguistic terms 

[124] Bow-tie, DBN TZFN of nine linguistic terms 

[125] FTA, BN Same as above 

[126] Dynamic object-oriented Bayesian 

network (DOOBN) 

TZFN of seven linguistic terms  Derived a 

comprehensive 

evolution path of 

pipeline accident 

and obtained the 

weight ranking of 

the consequences 

[127] Event tree analysis (ETA),  decision-

making trial and evaluation laboratory 

(DEMATEL), BN, Interpretative 

Structural Modeling (ISM) 

Direct influence matrix 

[128] DBN TZFN of seven linguistic terms 

[129] ML algorithms including multilayer 

perceptron (MLP), support vector 

regression (SVR) and random forest 

(RF) 

Fuzzy logic inference model  Recognized the 

critical indexes and 

concluded that the 

RF model had the 

best performance 

[130] Risk assessment index system based 

on analytic hierarchy process (AHP) 

Cloud model Identified key risk 

factors, determined 

the risk level and 

risk priority, 

recognized the 

weaknesses of the 

pipeline 

management, and 

provided risk 

management 

suggestions 

 

[131] Vlsekriterijumska optimizacija i 

kompromisno resenje (VIKOR), 

criteria importance through inter-

criteria correlation (CRITIC) 

Decision matrix  

[132] Failure mode and effects analysis 

(FMEA), VIKOR 

Cloud model 

[133] Improved FMEA, Grey Relations 

Theory (GRT) 

TFN of five linguistic terms 

[134] AHP Cloud model 

[135] AHP, TOPSIS TFN of five linguistic terms 

[39] Petri net Cloud model 
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With regard to the expression of expert opinions, a majority of the literature uses 

linguistic term sets based on TFN or TZFN to convey the inherent ambiguity of expert 

judgments. These term sets may consist of 5, 7, 9, or 11 terms. Furthermore, cloud 

modeling has gained significant popularity over the past ten years. The analysis of 

uncertainty in the expression of expert knowledge is specified in Section 2.2. 

It should also be noted that the challenge of dealing with unreliable or subjectively 

biased expert views is common when we use expert judgments for risk analysis. To 

address this issue, the following strategies can be considered: (1) diverse expert 

selection. By choosing experts from different backgrounds, positions, and experiences, 

such as professors from universities, frontline workers, and managers from pipeline 

companies, diverse professional perspectives can be obtained. Different types of 

experts can provide opinions from unique angles, making the risk assessment more 

comprehensive. (2) Involvement of multiple experts. Increasing the number of experts 

helps reduce the impact of individual expert subjectivity on the overall evaluation. The 

convergence of collective wisdom may be more accurate and objective, as differences 

between various experts can offset each other, enhancing the robustness of the overall 

assessment. (3) Expert training. Providing expert training ensures that they fully 

understand the goals, methods, and standards of risk analysis. Training helps experts 

better comprehend their respective fields, enhancing their professional competence and 

judgment accuracy. It also emphasizes the importance of consistency, promoting 

uniformity among experts during the evaluation process. (4) Utilizing technical means 

such as the Delphi method. The Delphi method involves multiple rounds of anonymous 

expert surveys to achieve consensus. Through iterative cycles of anonymous expert 

discussions and voting, the Delphi method gradually reduces differences of opinion, 

aiming to reach expert consensus. 

The comprehensive application of these strategies helps minimize uncertainty and 

subjective bias in expert opinions, improving the credibility and accuracy of risk 

analysis. By establishing a more diverse and multidisciplinary team of experts, 

combined with technical means like the Delphi method, it becomes possible to better 
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address challenges arising from individual expert differences and incomplete 

information, providing a more reliable foundation for risk assessment. In topic 1 of this 

thesis, three experts from different backgrounds (a professor with high academic 

attainments, an experienced engineer, and a senior manager of the pipeline company) 

provide their comments. They are well pre-trained, and the Delphi method is employed 

in the evaluation process. 

2.1.6 Simulation data 

In numerous instances, field data may not be accessible due to factors such as 

commercial confidentiality, geographical limitations, and exorbitant expenses. 

Consequently, simulated data obtained through diverse methods can substitute for 

actual data, thereby establishing a foundation for the risk and reliability management 

of pipelines. 

    The FE method is an effective tool for simulating data and is often combined with 

the ML model to obtain the results. Chen et al. [136] and Zhang et al. [137] used the FE 

method to establish a model of pipeline corrosion defect and obtain the burst pressure 

data, which is used to train the neural network. Xu et al. [138] simulated the pipeline 

failure caused by third-party excavation and then used ML algorithms to predict failure 

conditions. Peng et al. [139] established a FE model to analyze the pipeline's seismic 

response and finally obtain reliability based on FTA. Jiang and Dong [140] developed 

a nonlinear numerical FE model to simulate the falling objects impacting and conducted 

the probabilistic risk analyses.  

Furthermore, as a simple but helpful tool, Monte Carlo simulation (MCS) is also 

very popular among scholars. Ossai et al. [141] and Timashev et al. [142] estimated the 

pipeline corrosion growth and reliability using MCS methods. Park et al. [143] used 

MCS to calculate the accident probability. As a basic simulation method, some methods 

are compared to MCS and are proven to be effective. The most typical one is subset 

simulation [144-146]. With guaranteed accuracy, the subset simulation is demonstrated 

to be far more efficient than MCS. 
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2.2 Uncertainty Processing Methods 

Uncertainty is an intrinsic characteristic of risk, and quantifying the uncertainty of 

unexpected events is known as quantitative risk analysis [43]. This study concentrates 

on how to deal with uncertainty in data derived from various sources in light of the 

epistemic and aleatory uncertainties expounded upon in subsection 3.1.4. Currently, for 

dealing with the uncertainty related to pipeline risk and reliability analysis data, the 

common theories include probability analysis, interval analysis, fuzzy set theory, cloud 

models, Bayesian networks, etc.  

(1) Probability analysis 

    Probability is a highly effective mathematical technique to describe and define 

uncertainty. This is due to the fact that probability serves as a statistical representation 

of the inherent unpredictability associated with random variation. Frequentists regard 

probability as a characteristic of the physical world, whereas Bayesian statisticians view 

probability as a personal conviction of the assessor, leading to the term “subjective 

probability.” The utilization of frequentist probabilities is the favored approach in 

characterizing the uncertainty of stochastic processes. However, in cases where 

stochastic processes involve cognitive uncertainty, the derivation of frequency 

probabilities is unattainable. As a result, subjective probabilities become a viable 

alternative [42]. The boundary between epistemic uncertainty and aleatory uncertainty 

is not well-defined, so sometimes decision-makers combine both types of uncertainty 

in their assessments due to the inability to discern the proportion of uncertainty 

attributable to each [45]. 

    The probabilistic methodology for characterizing uncertainty is to consider a 

parameter as a stochastic variable, and its probability distribution can be represented by 

various probability density functions [147]. For example, Li et al. [27] used normal 

distributions to describe the uncertainty of parameters related to pipe corrosion failure. 

Fenyvesi et al. [148] and Salama et al. [149] employed normal distribution to measure 

the uncertainty caused by MFL and UT tool errors, respectively. Singh and Markeset 
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[150] combined the probabilistic approach and fuzzy set theory to describe the 

uncertainties of defect parameters obtained from ILI. Wu et al. [151] also combined the 

probability theory and possibility theory to process the parameter uncertainties during 

the reliability analysis. Dann and Maes [152] analyzed the inspection measurement 

error and derived the actual metal loss per ILI based on several probability distributions. 

We can also find from the literature that parameter uncertainties characterized by 

probability density functions can be propagated in the analytical model using Monte 

Carlo simulation to obtain the probability density distribution of the output results. The 

Monte Carlo simulation is popular due to its adaptability, straightforward 

implementation, and capacity to operate independently of model intricacy, 

multidimensionality, and nonlinearity. Additionally, it can take advantage of correlation 

information between variables [97, 136]. 

(2) Interval analysis  

    In cases where an evaluator possesses complete knowledge of a parameter’s upper 

and lower bounds but has limited additional information, the uncertainty can be 

represented by intervals [153]. When interval probabilities are used to characterize 

uncertainty, interval arithmetic can be used to propagate the uncertainty of the input 

parameters in the analytical model to obtain possible bounds on the output results. For 

instance, Yu et al. [154] utilized interval analysis to quantify and propagate uncertainty 

in the pipeline risk analysis model based on AHP. Interval analysis is not only 

distinguished by its compatibility with human cognitive ability but also by its validity 

in handling uncertainty from any source and of any nature. Nevertheless, as the level 

of complexity in interval arithmetic escalates, the intervals tend to expand, and exhibit 

decreased precision in yielding the outcomes [155]. Furthermore, the outcomes are still 

intervals whose distributions exhibit identical levels of confidence and can not provide 

sufficient guidance for making decisions regarding the ultimate management of 

pipeline risk assessment. 

(3) Fuzzy set theory 

    In many cases, expert knowledge is frequently employed as a substitute for 
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objective data in assessing risks, especially due to the challenges associated with 

acquiring precise probability functions. Fuzzy sets serve as a viable approach for 

representing uncertainty in natural language, as evidenced by the literature presented in 

Table 3. The fuzzy mathematical theory proposed by Zadeh [46] offers a potential 

solution to the limitations inherent in traditional probability theory, particularly in its 

ability to represent uncertainty effectively. Fuzzy set theory is a mathematical tool that 

characterizes linguistic terms as fuzzy numbers and employs continuous membership 

functions, such as triangular or trapezoidal fuzzy numbers, to represent uncertainty 

quantitatively. The utilization of fuzzy set theory in addressing uncertainty is 

considered a preferable approach compared to both probability analysis and interval 

analysis. The integration of fuzzy mathematical theory and risk analysis effectively 

mitigates the impact of uncertainty on the outcomes of risk and reliability assessments 

to a certain degree. 

    The relative scholars developed the fuzzy FT model, fuzzy bow-tie model, etc. For 

example, Shahriar et al. [119] developed a bow-tie model and utilized fuzzy logic to 

obtain probability data of basic events in FT and finally obtain the probability of the 

top event. Singh et al. [156] developed a fuzzy FT model and used the weakest t-norm 

calculations to reduce uncertainty accumulation. In addition, the literature presented in 

Table 3 demonstrates the widespread acceptance and utilization of fuzzy set theory. It 

enables analysts to derive informative conclusions about risk prevention and control, 

even when specific objective data is lacking. 

(4) Cloud model 

    The cloud model theory is founded upon the principles of fuzzy mathematics and 

stochastic mathematical algorithms. It enables the integration of qualitative analysis 

and quantitative calculation to establish a corresponding mapping relationship and is an 

emerging uncertainty research method [157]. Wang et al. [158] used cloud model-based 

expert judgment to represent the reliability of the multi-state pipeline system. Liang et 

al. [159] integrated interval scoring and normal cloud model to handle the uncertainty 

in the risk assessment of long-distance pipelines. Similar to the application of fuzzy 



24 

 

numbers, cloud theory in the application of risk analysis is also first formed into a set 

of linguistic assessment criteria consisting of several cloud models, followed by experts 

carrying out the evaluation of ranks and weights. In contrast to fuzzy set theory, clouds 

consist of cloud drops that create a one-to-many mapping image rather than a distinct 

affiliation function fold line. Clouds have the ability to more effectively convey and 

disseminate uncertainty by utilizing their numerical features, including expectation, 

entropy, and hypertrophy, as well as employing more comprehensive operational 

guidelines. 

    (5) Bayesian theory 

Bayesian theory is a probabilistic analysis technique commonly employed in risk 

and reliability analysis to effectively handle situations involving uncertain information 

[160, 161]. Bayesian networks utilize the chain rule to model the causal connections 

between random variables and account for the conditional dependencies among these 

variables. Each node represents each type of variable, the conditional probability table 

(CPT) assigned to each node represents the conditional dependencies, and the arcs 

represent the direct causal relationships between the linked nodes. As the engineering 

system progresses through its life cycle, the initial prior distribution of the system's 

nodes can be revised based on accumulating information. This updating mechanism 

enables deriving a posterior probability distribution that more accurately reflects the 

current state of events. Xiang and Zhou [96] established a dynamic BN which integrated 

corroded pipeline reliability analysis and uncertainty of ILI tools. Li et al. [162] 

developed a copula-Bayesian method to describe the complex connections of the risk 

variables. Qin et al. [163] considered measurement error and imperfect detectability of 

ILI tools using Bayesian Bayesian updating. Pesinis and Tee [164] constructed the 

corrosion growth model based on the hierarchical Bayesian method, which considered 

measurement errors. Heidary and Groth [165] established a hierarchical Bayesian 

model based on a non-homogeneous gamma process and processed the uncertainty of 

ILI data. Numerous studies have shown that Bayesian networks have also become a 

mainstream method for uncertainty handling in the field of risk and reliability 
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assessment. 

2.3 Summary 

This chapter mainly summarizes the applicable methods for different data sources and 

uncertainty processing methods. The motivations of Chapters 3 to 6 are based on this 

chapter. 

For pipelines where ILI cannot be conducted, SCADA systems primarily monitor 

the overall operation of the entire pipeline system but may not provide adequate 

monitoring of localized pipe section anomalies. Therefore, expert judgment is often 

used as the main data source. The primary challenges are the quantification of the expert 

judgment, the language uncertainties, and the weight assignment method of experts’ 

comments. These challenges are addressed in Chapter 3. The cloud-variable weight 

theory is proposed to handle the uncertainty and optimize the weights.  

For GTS, the SCADA system can comprehensively collect data such as pressure, 

flow, etc. It monitors the operation of each critical component in GTS and stores the 

data within a specific time frame. These data serve as a solid foundation for analyzing 

potential risks. Chapter 4 primarily utilizes data from the SCADA system as the primary 

data source. Furthermore, historical data is used to acquire model parameters. The 

proposed method offers a feasible solution to the issue of current research relying on 

expert review and public datasets, which are incapable of conducting real-time risk 

analysis and generating accurate results. For uncertainty analysis, the proposed method 

uses BN and leaky noisy-or gate (LNG) to measure the uncertainty associated with risk 

factors. 

For pipelines where ILI can be conducted, analyzing pipeline reliability based on 

ILI data is very straightforward and effective, and MFL is the most widely used ILI 

method. Due to business confidentiality and data volume limitations, Chapters 5 and 6 

mainly use the simulated MFL data with a small amount of real data for validation. 

Based on Section 2.1.6, it can be found that the simulated data are also widely used in 

the field of pipeline risk and reliability and can be a good alternative to real data for 
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relevant analysis. Based on the information in Section 2.1.3, the existing methods can 

not directly get pipeline reliability from MFL signals, and most of the current methods 

focus on the depth quantification of defects and ignore the 3-D profile of defects. 

Chapter 5 proposes a deep learning method to map the MFL signal directly to the 

pipeline reliability trend. Chapter 6 solves the problem of reconstructing the 3-D profile 

of regular defects under arbitrary rotation angles. 

In addition, it is necessary to note that, for different types of pipelines, we need to 

consider their distinct characteristics and operating environments to identify the most 

suitable risk analysis methods. For instance, when it comes to gas pipelines, urban 

buried gas pipelines and long-distance, large-diameter, high-pressure gas pipelines are 

common types. A risk analysis method based on expert judgment may be more 

appropriate for urban buried gas pipelines. These pipelines typically have smaller 

internal diameters, making conventional internal inspections challenging. Moreover, 

additional constraints, such as the complex urban environment around the pipelines, 

may make data collection relatively difficult. Therefore, relying on the knowledge and 

experience of experts may be a more feasible approach. In contrast, long-distance, 

large-diameter, high-pressure gas pipelines, characterized by larger diameters and 

higher pressures, are better suited for risk and reliability analysis methods based on 

internal inspection data. The operating environment and technical requirements of such 

pipelines make advanced techniques like internal inspections more feasible. These data 

can provide more detailed information about the pipeline's condition, supporting more 

precise assessments. Hence, for different pipeline types, it is essential to use tailored 

data and employ specific risk and reliability analysis methods accordingly. 
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Chapter 3: Risk assessment of buried gas 

pipelines based on improved cloud-variable 

weight theory 

3.1 Introduction 

The severity of the consequences of pipeline accidents and the diversity of causes of 

pipeline failures underscores how important it is to perform risk management of 

pipelines. However, city gas pipelines are located throughout the urban centers. In many 

cases, it is difficult to effectively perform combustible gas monitoring due to the 

pipeline geography and engineering practice limitations. At the same time, most city 

gas pipelines have diameters too small to allow for internal inspection. Therefore, the 

safety of pipelines cannot be effectively guaranteed if relied on these approaches alone. 

Based on various risk factors, an overall assessment of the risk status of the pipeline is 

necessary. Risk assessment is the most critical part of risk management. It is low-cost 

and effective for pipeline operators to ensure safe pipeline operation [116]. In complex 

systems, risk assessment results can provide a basis for whether a component requires 

risk mitigation and identify the priority of risk mitigation. High-risk components may 

cause accidents, and control measures can be prioritized for their risks to prevent 

accidents before they happen [166]. 

    Many studies have been conducted about pipeline risk assessment. Examples 

include risk studies based on bow-tie models [167, 168], risk assessment cluster models 

based on data-driven methods [110], integrated failure probability estimation based on 

structural integrity analysis and failure data [169], and a comprehensive approach to 

risk management including considerations of frequency, gas release rate, welding defect 

analysis, et al. [170]. However, these methods often require precise probability values 

to support the evaluation, and in practical applications, there are often many limitations. 
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As stated by Vairo [171], due to incomplete statistics and knowledge, there will be some 

uncertainties on the likelihood and interdependence of root risk events in Fault Tree 

(FT) and events in Event Tree (ET), which lead to unrealistic results. According to 

Alves et al. [117], the lack of representative data is a major challenge for pipeline 

companies. In the absence of data, it is not possible to adequately estimate the 

probability and consequences of possible pipeline failures, thus adding much 

uncertainty to the risk evaluation of pipeline operations. 

Therefore, to better solve practical problems in case of missing data, many 

researchers used methods based on expert decision-making to obtain more credible risk 

assessment results. However, due to human thinking patterns and cognitive styles, there 

are still uncertainties surrounding even experts making decisions. In addition, when 

multiple factors influence the decision outcome, the way the weight of each factor (i.e., 

the degree to which a factor contributes to the attribute value of its parent factor) is set 

is an issue worth studying. Table 3.1 is a summary of the relevant research in this area.  

Table 3.1 Some relevant studies 

Literature Risk analysis method Uncertainty 

processing methods 

Factor weight processing method 

[159] FT Cloud model (CM) Structure entropy weight method 

[134] Risk assessment index system Cloud model (CM) Hierarchical analysis method (AHP) 

[46] FT Fuzzy set theory - 

[47] Risk assessment index system Fuzzy set theory - 

[172] Risk assessment index system - Decision-Making Trial and 

Evaluation Laboratory  

[154] Risk assessment index system Interval analysis AHP 

[173] Vulnerability indexes system - Machine learning methods 

The following can be found from the research presented above: (1) The index 

system and FT are the most widely used multidimensional risk evaluation methods, 

collecting, assessing, and analyzing different factors to generate comprehensive results. 

Moreover, both CM and fuzzy set theory are good ways to handle uncertainties. (2) In 

some literature, risk index systems are established, and some constant weight theories 

such as AHP are used when calculating each index’s weight. In this process, the weights 

of the indexes remain unchanged regardless of the changes in the attribute values of the 
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evaluated indexes. Therefore, when the attribute value of an index is far different from 

the normal value, but its weight value is very small, its impact on the overall risk 

assessment result will usually be ignored, leading to a less reliable result. (3) When 

expressing the uncertainty in the evaluation process, fuzzy operators such as trapezoidal 

fuzzy numbers are used to convert fuzzy concepts into exact values or intervals, thus 

losing part of the uncertainty in the conversion. It may still lead to unreliable assessment 

results. Therefore, fuzzy set theory is not as precise as the CM in expressing uncertainty. 

However, in some literature, the CM only expresses the results and is not reflected in 

the evaluation process. The authors use exact numbers throughout the evaluation 

process but only replace the numbers with a CM when expressing the results, which 

does not achieve the desired expression of uncertainty. 

In this chapter, a novel cloud-variable weight theory is proposed to conduct 

pipeline risk assessment research. Compared with the constant weight theory 

mentioned above, the variable weight theory (VWT) can highlight the negative effects 

of the index with higher risk, which can obtain more reasonable results. CM is used to 

improve the calculation in VWT, and it is applied throughout the entire risk evaluation 

process. The uncertainty can also be better conveyed through the calculation between 

CMs, making the expression of uncertainty more adequate and accurate. Finally, a 

pipeline located in China is taken as an example. The pipe sections with higher risk 

levels, which should be prioritized for risk control, and the key factors affecting the 

safety of these pipe sections, are derived. Therefore, targeted measures can be taken on 

the identified pipe sections according to the key factors of each pipe section. The results 

are significant to help pipeline operators identify the key pipe sections and risk factors 

in the system and improve the efficiency of risk management. 

3.2 Methodology 

3.2.1 Risk identification 

Identifying and classifying risk factors is an essential procedure in risk assessment, and 
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the Fishbone Diagram (FD) is an excellent way to carry it out. It is a method for 

discovering the root cause of a complex problem, which can also be called “Ishikawa” 

or “cause-and-branches” diagram [174], as shown in Figure 3.1. The process of risk 

analysis using fishbone diagrams is presented as follows. (1) Place the risk issue to be 

analyzed on the right side of the FD (i.e., at the head of the fish), and then draw the 

skeleton. (2) Identify the main categories of causes that generate risks and use them as 

the main branches. (3) Continue the investigation in depth based on the above 

categories, and expand each branch in layers until the underlying causes are analyzed 

[175]. 

 

Figure 3.1 Basic structure of a FD Diagram 

3.2.2 Risk assessment index system 

A risk assessment index system can be established based on identifying risk factors 

[135]. The risk assessment index system is a hierarchical structure [115]. Figure 3.2 

shows the three-layer construction of the index system. In Figure 3.2, the first-level 

index represents the risk status of the pipeline system. The second-level index is the 

main factor leading to system risk. The third-level index is subdivided from the second-

level index, which is the basic cause of system risk. 
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Figure 3.2 Three-layer construction of the index system 

3.2.3 Cloud model theory 

CM can be used to express the ambiguity and uncertainty of membership in a complex 

system, and it can convert a qualitative concept into a quantitative numerical 

representation. Fuzzy theory and probability statistics are the foundation of CM theory. 

However, according to traditional fuzzy theory [176], the membership function of any 

element is uniquely determined. But for CM, every cloud is composed of many cloud 

droplets, which is not a definite function curve. CM can integrate the uncertainty of the 

evaluation process through its numerical characteristics of expectation (Ex), entropy 

(En), and hyper entropy (He) [177]. 

    In CM, Ex is the central value of the qualitative concept in the quantitative domain 

and can best represent the characteristics of a qualitative concept [178]. En is a measure 

of the uncertainty range of a qualitative concept and is determined by the fuzziness and 

randomness of the qualitative concept. It is represented as the opening degree of the 

cloud drop curve in Figure 3.3. He is a measure of uncertainty of En and it is expressed 

as the thickness of the cloud drop curve in Figure 3.3. 

    Forward cloud generator uses Ex, En and He to generate cloud drops. Based on 

the forward cloud generator, input the parameters of cloud characteristics and the 

number of cloud drops N (here, N=1000), and then a visual cloud model can be 

generated. The specific steps are shown as follows: 

(1) Obtain the bounded interval [Cmin, Cmax] according to the actual research 
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problem. The formula for generating Ex [179]: 

( )max min 2Ex C C= +                         (3.1) 

(2) According to the “3 En Principle” of cloud theory [180], its main interval 

distribution is [Ex-3En, Ex+3En] for the qualitative concept C in the quantitative 

domain U. The cloud drops falling outside this interval can be ignored, and the formula 

for generating En can be obtained as: 

( )max min 6En C C= −                         (3.2) 

(3) Define He as a specific constant. To summarize, scholars usually use two 

common approaches to define the value, one of which is to establish a linear 

relationship between He and En (i.e., He = k×En, see [181] for details). The second is 

to specify He as a constant based on expert estimations and practical situations. For 

example, in [179, 182, 183], He = 0.001, 0.005, 0.05, or 0.5. Because of the linear 

relationship, the former approach is strongly influenced by the value of En, and the 

uncertainty degree may not be controllable. Therefore, in order to keep the uncertainty 

present in the risk assessment process within a permissible level, the latter approach is 

adopted. According to the actual conditions, the He value is defined as a constant equal 

to 0.05 in this chapter, considered a low and allowable level of uncertainty. 

(4) Calculate the membership function μC(x) with Eq. (3.3): 

( )

( )

( )

2

2
2

i

i

x Ex

En

C x e

−
−

=                          (3.3) 

    Note that in CM, U is set as a quantitative domain, and C is the qualitative notion 

of U. Assuming the quantitative value x∈U. x is a random realization of the qualitative 

concept C, expressed as μC(x)∈[0,1]. The specific expression is given as follows: 

μC(x): U→[0, 1], Ɐx∈U, x→μC(x).                      (3.4) 
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Figure 3.3 Steps to generate CM 

3.2.4 Variable weight theory 

Variable weight function mainly establishes the linkage between weight vector and state 

vector. It adjusts the weight of each indicator according to the change of the 

corresponding comment value (i,e. value of Ex of a comment cloud) to realize the 

reasonable distribution of weight in the process of risk assessment [184, 185]. In the 

risk assessment index system, sometimes an index has a smaller impact on the risk of 

the entire pipeline system than other indexes, and so when a constant weight is assigned, 

its value will be relatively small. However, indexes with small weights will also have 

great risks so that the comment value will be very low during expert evaluation. 

Because of the small weight, the influence of the index with greater risk on the final 

assessment result cannot be effectively reflected by the constant weight calculation 

method. For example, when the comment value of a second-level index is much smaller 

than the other comment values and its weight is relatively small, it will cause the 

misjudgment that the assessment result still seems promising when it is not that 

acceptable. Therefore, in this way, the actual risk status of the pipeline cannot be 

reflected precisely. 

The steps for applying the VWT to solve a practical problem are shown as follows: 

(1) Use variable weight function to construct the state-variable-weight vector. In 

this chapter, the zoning variable weight function [186] is used. 
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where Si(x) represents the state-variable-weight vector, μ, λ, α and β represent the 

interval thresholds, xi represents the comment value ith index, c1, c2, P and Q are 

constants determined by the actual condition. 

(2) Determine the interval thresholds. The comment for each index needs to be 

normalized in this study. 

(3) Calculate the constant weight of indexes. The cloud-AHP algorithm and virtual 

floating cloud computation are used for this step. 

(4) Calculate the variable weight of indexes by Eq. (3.6) [187]. 

( )

1

i i
i m

i i

i

w x
W x

w x
=

=


                             (3.6) 

where Wi(x) represents the variable weight of the ith index, i=1, 2, 3, …, m, m represents 

the number of the indexes, and wi represents the constant weight of the ith index. 

3.2.5 The proposed method 

The specific steps of the proposed method are shown in Figure 3.4. A risk assessment 

index system is established based on the identified risk factors. The comment cloud 

matrix of the second-level indexes is generated by combining the constant weight cloud 

matrix and comment cloud matrix of third-level indexes. According to the generated 

comments and constant weight cloud matrix of the second-level indexes, the state-

variable-weight vectors are calculated. Finally, the pipeline risk level is obtained. 

According to Figure 3.4, it can be found that the calculation of CM runs through 

the entire evaluation process, including constant weight calculation, risk comment 
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model establishment, Delphi iteration, and variable weight calculation. Some existing 

methods only construct the comment cloud model and ignore the uncertainties in other 

steps [134, 159]. Some use fuzzy operators for evaluation, which can effectively 

express the uncertainty of the weight calculation process, but participate in the final 

result as a specific value after defuzzification, still losing part of the uncertainty [46, 

188]. All these can make the results less reliable. In contrast, this chapter introduces the 

calculation of En and He in the whole process, and can always use En and He to express 

uncertainty. At the same time, the Delphi method can also optimize the expert 

comments and reduce human errors. According to the characteristics of the risk 

comments, the zoning variable weight function is used for calculation. Compared with 

existing methods [189, 190], the feedback optimization of constant weights based on 

the risk comment values is added, making the conclusion more reliable. 

 

Figure 3.4 Schematic diagram of the proposed method 
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3.2.5.1 Comment cloud model 

In this step, comment CMs are established, and experts give comments on the third-

level indexes. The comment CMs transfer expert comments into CMs expressed by (Ex, 

En, He). There are three risk levels identified in the ALARP concept [191]: Level 1, 

Intolerable region; Level 2, ALARP region; Level 3, Tolerable region. Furthermore, to 

better manage the risks at different levels, many scholars divide the risks into five levels 

when conducting risk assessments [135, 192]. Therefore, in this chapter, the assessment 

results are divided into five levels to form a comment set V. Using Eq. (2) and fuzzy set 

theory in [193, 194], the En value can be calculated, with results shown in Table 3.2 

and Figure 3.5.  

Table 3.2 Numerical expression of comment CMs 

Comment on the 

risk level 

Numerical 

expression 
Symbol Explanation 

High (1,0.17,0.05) V1 

Risks must be reduced, measures must be taken 

until the risks are reduced to a tolerable level, and 

the reliability of emergency facilities should be 

ensured. 

Relatively high (2,0.33,0.05) V2 

In addition to enhanced management and 

monitoring, direct measures should be taken to 

perform risk rehabilitation. 

Medium (3,0.17,0.05) V3 

The effectiveness and reliability of monitoring and 

alarm facilities need to be strengthened, and high-

quality management measures need to be taken on 

a cost-benefit basis. 

Relatively low (4,0.33,0.05) V4 
The risks are generally tolerable, and no extra 

measures are needed. 

Low (5,0.17,0.05) V5 
The risks are negligible, and no extra measures are 

needed. 

There are N experts to participate in decision-making. I and J represent two 

different experts respectively. In the decision-making process, if opinions are 

inconsistent, it is necessary to use the Delphi method to carry out iterations, and gather 

all experts’ assessment results to generate the final comment CM matrix, as shown in 

Eqs. (3.7) to (3.9) [190]. 

𝐸𝑥𝑖 =
(𝐸𝑥𝑖)1+(𝐸𝑥𝑖)2+⋯+(𝐸𝑥𝑖)𝑁

𝑁
                        (3.7) 
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𝐻𝑒𝑖 =
(𝐻𝑒𝑖)1+(𝐻𝑒𝑖)2+⋯+(𝐻𝑒𝑖)𝑁

𝑁
                       (3.8) 

𝐸𝑛𝑖 =
1

6
[𝑚𝑎𝑥

𝐼
{(𝐸𝑥𝑖)𝐼 + 3(𝐸𝑛𝑖)𝐼} − 𝑚𝑖𝑛

𝐽
{(𝐸𝑥𝑖)𝐽 − 3(𝐸𝑛𝑖)𝐽}]         (3.9) 

 

Figure 3.5 Image expression of comment CMs 

The comprehensive assessment result can be obtained from the comment matrix 

and the weight matrix, which is calculated by: 
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3.2.5.2 State-variable-weight vectors 

In this section, cloud theory is used to improve the theory of variable weight function 

to make it more accurate and objective while expressing the uncertainty of assessment 

results. 

Through the normalization, the operation rules of cloud [157] and Eq. (3.5), the 

state-variable-weight vectors of Ex, En, and He may be obtained. 
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where C(Bi) represents the cloud model of the second-level index, and C(V5) represents 

the cloud model with a comment level of V5. 

3.2.5.3 Calculation of constant weight based on Cloud-AHP 

In the index system, the index weights of the second and third levels can be derived 

from the experience and knowledge of experts and the calculation of CMs. It is 

necessary to take the error caused by the personal preference of the experts into 

consideration. Therefore, the virtual floating cloud computation is introduced to 

integrate the weight values given by each expert to generate the final weight value. This 

research proposes an improved cloud-AHP algorithm to quantify the relative 

importance of each index.  

(1) The CM is integrated into the traditional AHP and a relative importance scale 

of CM is built. Experts use this scale to measure the weight of each index. Based on 

Eqs. (3.1) and (3.2) and the scale of traditional AHP, the relative importance scales of 

the nine CMs are defined as shown in Table 3.3. 

(2) Establish a judgment matrix for pairwise comparison from each expert: 
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(3.14) 

(3) Perform integration operations using virtual floating cloud computation [134] 

on the above judgment matrix, as shown in Eqs. (3.15) to (3.17). 

( ) ( ) ( )1 21 2ij ij ij N ij N
Ex Ex Ex Ex  = + + +               (3.15) 

( ) ( ) ( )
22 2

1 2

2 2 2 2 2 2 2 2 21 2
1 2 1 2 1 2

N
ij ij ij ij N

N N N

En En En En
 

        
= + + +

+ + + + + + + + +
 (3.16) 
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Table 3.3 Relative importance scales of CM [52] 

Relative importance aij CM scale Description 

1 C1=(1,0,0) i and j are equally important 

3 C3=(3,0.33,0.05) i is slightly more important than j 

5 C5=(5,0.33,0.05) i is obviously more important than j 

7 C7=(7,0.33,0.05) i is strongly more important than j 

9 C9=(9,0.33,0.05) i is absolutely more important than j 

1/3 C1/3=(1/3,0.33/9,0.05/9) j is slightly more important than i 

1/5 C1/5=(1/5,0.33/25,0.05/25) j is obviously more important than i 

1/7 C1/7=(1/7,0.33/49,0.05/49) j is strongly more important than i 

1/9 C1/9=(1/9,0.33/81,0.05/81) j is absolutely more important than i 

( ) ( ) ( )
22 2

1 2

2 2 2 2 2 2 2 2 21 2
1 2 1 2 1 2

N
ij ij ij ij N

N N N

He He He He
 

        
= + + +

+ + + + + + + + +
    (3.17) 

where α=(α1,α2,α3,…,αN) is the weight vector, representing the relative importance of a 

specific expert to all experts. (Here, experts have the same experience, knowledge, and 

education, so α1=α2=α3=1/3.) N represents the number of experts, N=1,2,3… 

(4) According to the traditional AHP and the operation rules of CM, the product 

of each row element of the judgment matrix is calculated as follows: 

𝐸𝑥𝑖 = ∏ 𝐸𝑥𝑖𝑗
𝑛
𝑗=1                         (3.18) 
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(5) Perform normalization calculation, and obtain the index weight as: 
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3.2.5.4 Calculation of the variable weight 

According to Eq. (3.6) and Eqs. (3.11) to (3.13), the variable weight of Ex, En, and 

He can be calculated by Eqs. (3.24) to (3.26). 
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where 𝑤𝐶(𝐵𝑖)

 represents the constant weight of the second-level index. 

3.3 Case Study 

3.3.1 Construction of the Fishbone Diagram 

An industrial case study is presented to illustrate various steps of the proposed 

methodology. A section of a gas pipeline located in Beijing, China, is used as an 

example. On the left side of this pipe section is a subway line, and on the upper right 

side of the pipe section is a highway with many vehicles. According to the records, the 

pipe body is corroded. The basic information has been collected to identify and classify 

the risk factors. According to the procedure of FD, there can be five categories, as 

shown in Figure 3.6.  
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Figure 3.6 FD of the pipe section 

3.3.2 Construction of the index system 

Based on the risk identification and the hierarchical structure, we also added the 

consequence severity index to establish the risk index system, as shown in Figure 3.7. 

The consequence index is also a key factor in determining the priority of risk mitigation. 

C15 is used to measure the accident’s impact on the external environment, including 

natural environment damage and economic loss. C16 mainly includes the population 

density and number of casualties that may result.  
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Figure 3.7 Risk assessment index system 
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3.3.3 Risk analysis based on the proposed method 

3.3.3.1 Constant weight calculation based on weighted average cloud algorithm 

(1) Weight calculation of third-level indexes 

According to the index system established in Figure 3.7, each second-level index 

(i.e., Bi, i=1, 2,..., 6) has several branches of the third-level index (i.e., Cj, j=1,..., 4). 

Therefore, for the convenience of description, each second-level index and its branches 

are defined as Bi-C, and each matrix calculation is performed only for the third-level 

index branches of a second-level index. In this section, calculations are carried out for 

the B1-C matrix, B2-C matrix, B3-C matrix, B4-C matrix, B5-C matrix, and B6-C 

matrix. Taking the B2-C matrix as an example, the calculation process is presented. 

According to Eq. (3.14), the judgment matrix for pairwise comparison given by 

three experienced experts (name them a, b, c) is shown in Tables 3.4 to 3.6. 

Table 3.4 Judgment matrix of B2-C given by expert a 

 C4 C5 C6 C7 

C4 (1,0,0) (1/5,0.33/25,0.05/25) (1/7,0.33/49,0.05/49) (1,0,0) 

C5 (5,0.33,0.05) (1,0,0) (1/3,0.33/9,0.05/9) (5,0.33,0.05) 

C6 (7,0.33,0.05) (3,0.33,0.05) (1,0,0) (7,0.33,0.05) 

C7 (1,0,0) (1/5,0.33/25,0.05/25) (1/7,0.33/49,0.05/49) (1,0,0) 

Table 3.5 Judgment matrix of B2-C given by expert b 

 C4 C5 C6 C7 

C4 (1,0,0) (1/5,0.33/25,0.05/25) (1/5,0.33/25,0.05/25) (3,0.33,0.05) 

C5 (5,0.33,0.05) (1,0,0) (1,0,0) (7,0.33,0.05) 

C6 (5,0.33,0.05) (1,0,0) (1,0,0) (5,0.33,0.05) 

C7 
(1/3,0.33/9, 

0.05/9) 
(1/7,0.33/49,0.05/49) (1/5,0.33/25,0.05/25) (1,0,0) 

Table 3.6 Judgment matrix of B2-C given by expert c 

 C4 C5 C6 C7 

C4 (1,0,0) (1/3,0.33/9,0.05/9) (1/5,0.33/25,0.05/25) (1/3,0.33/9,0.05/9) 

C5 (3,0.33,0.05) (1,0,0) (1/3,0.33/9,0.05/9) (3,0.33,0.05) 

C6 (5,0.33,0.05) (3,0.33,0.05) (1,0,0) (5,0.33,0.05) 

C7 (3,0.33,0.05) (1/3,0.33/9,0.05/9) (1/5,0.33/25,0.05/25) (1,0,0) 
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According to Eqs.(3.15) to (3.17), the final judgment matrix is obtained as shown 

in Table 8. 

Table 3.7 Final judgment matrix of B2-C 

 C4 C5 C6 C7 

C4 (1,0,0) 
(0.2444,0.0137, 

0.0021) 

(0.1810,0.0066, 

0.0010) 

(1.4444,0.1107, 

0.0168) 

C5 
(4.3333,0.1905, 

0.0289) 
(1,0,0) 

(0.5556,0.0173, 

0.0026) 
(5,0.1905,0.0289) 

C6 
(5.6667,0.1905, 

0.0289) 

(2.3333,0.1556, 

0.0236) 
(1,0,0) 

(5.6667,0.1905, 

0.0289) 

C7 
(1.4444,0.1107, 

0.0168) 

(0.2254,0.0131, 

0.0020) 

(0.1810,0.0066, 

0.0010) 
(1,0,0) 

The numerical expressions of the weight cloud model of the third-level indexes 

C4, C5, C6, and C7 are calculated by Eqs. (3.21) to (3.23). 

    Similarly, the numerical expression of the weight CM of other third-level indexes 

can be obtained. The final calculation results are shown in  

Table 3.8. Figure 3.8 shows the relative importance of each index more clearly through 

the expression of images. 

Table 3.8 Numerical expression of the weight CM (third-level indexes) 

Second-level indexes Third-level indexes 

B1 

C1(0.1293, 0.0058, 0.0009) 

C2(0.4622, 0.0314, 0.0048) 

C3(0.4085, 0.0143, 0.0022) 

B2 

C4(0.0867, 0.0049, 0.0010) 

C5(0.3211, 0.0131, 0.0034) 

C6(0.5072, 0.0241, 0.0101) 

C7(0.0849, 0.0048, 0.0010) 

B3 
C8(0.6353, 0.0432, 0.0066) 

C9(0.3647, 0.0150, 0.0023) 

B4 

C10(0.2796, 0.0088, 0.0013) 

C11(0.3602, 0.0231, 0.0035) 

C12(0.3602, 0.0231, 0.0035) 

B5 
C13(0.5887, 0.0231, 0.0035) 

C14(0.4113, 0.0106, 0.0016) 

B6 
C15(0.2856, 0.0058, 0.0009) 

C16(0.7144, 0.0136, 0.0021) 
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Figure 3.8 Image expression of the weight CM (third-level indexes) 

(2) Weight calculation of second-level indexes 

Similar to the calculation method of the B-C matrix, the calculation process of the 

A-B matrix is as follows. According to Eq. (3.14), the judgment matrix for pairwise 
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comparison given by three experienced experts (named as a, b, c) is shown in Tables 

3.9 to 3.11. 

Table 3.9 Judgment matrix of A-B given by expert a 

 B1 B2 B3 B4 B5 B6 

B1 (1,0,0) (1,0,0) (5,0.33,0.05) (7,0.33,0.05) (5,0.33,0.05) (3,0.33,0.05) 

B2 (1,0,0) (1,0,0) (5,0.33,0.05) (5,0.33,0.05) (7,0.33,0.05) (5,0.33,0.05) 

B3 
(1/5,0.33/25,

0.05/25) 

(1/5,0.33/25, 

0.05/25) 
(1,0,0) 

(1/3,0.33/9, 

0.05/9) 
(1,0,0) 

(1/5,0.33/25, 

0.05/25) 

B4 
(1/7,0.33/49,

0.05/49) 

(1/5,0.33/25, 

0.05/25) 
(3,0.33,0.05) (1,0,0) (3,0.33,0.05) 

(1/3,0.33/9, 

0.05/9) 

B5 
(1/5,0.33/25,

0.05/25) 

(1/7,0.33/49, 

0.05/49) 
(1,0,0) 

(1/3,0.33/9,0.05/

9) 
(1,0,0) 

(1/3,0.33/9, 

0.05/9) 

B6 
(1/3,0.33/9, 

0.05/9) 

(1/5,0.33/25, 

0.05/25) 
(5,0.33,0.05) (3,0.33,0.05) (3,0.33,0.05) (1,0,0) 

Table 3.10 Judgment matrix of A-B given by expert b 

 B1 B2 B3 B4 B5 B6 

B1 (1,0,0) (1,0,0) (3,0.33,0.05) (9,0.33,0.05) (5,0.33,0.05) (3,0.33,0.05) 

B2 (1,0,0) (1,0,0) (5,0.33,0.05) (3,0.33,0.05) (7,0.33,0.05) (5,0.33,0.05) 

B3 
(1/3,0.33/9, 

0.05/9) 

(1/5,0.33/25, 

0.05/25) 
(1,0,0) 

(1/3,0.33/9, 

0.05/9) 
(1,0,0) 

(1/3,0.33/9, 

0.05/9) 

B4 
(1/9,0.33/81,

0.05/81) 

(1/3,0.33/9, 

0.05/9) 
(3,0.33,0.05) (1,0,0) (3,0.33,0.05) 

(1/3,0.33/9, 

0.05/9) 

B5 
(1/5,0.33/25,

0.05/25) 

(1/7,0.33/49, 

0.05/49) 
(1,0,0) 

(1/3,0.33/9, 

0.05/9) 
(1,0,0) 

(1/3,0.33/9, 

0.05/9) 

B6 
(1/3,0.33/9, 

0.05/9) 

(1/5,0.33/25, 

0.05/25) 
(3,0.33,0.05) (3,0.33,0.05) (3,0.33,0.05) (1,0,0) 

Table 3.11 Judgment matrix of A-B given by expert c 

 B1 B2 B3 B4 B5 B6 

B1 (1,0,0) (3,0.33,0.05) (5,0.33,0.05) (7,0.33,0.05) (5,0.33,0.05) (3,0.33,0.05) 

B2 
(1/3,0.33/9, 

0.05/9) 
(1,0,0) (3,0.33,0.05) (3,0.33,0.05) (5,0.33,0.05) (5,0.33,0.05) 

B3 
(1/5,0.33/25, 

0.05/25) 

(1/3,0.33/9, 

0.05/9) 
(1,0,0) (1,0,0) (1,0,0) 

(1/5,0.33/25, 

0.05/25) 

B4 
(1/7,0.33/49,

0.05/49) 

(1/3,0.33/9, 

0.05/9) 
(1,0,0) (1,0,0) (3,0.33,0.05) 

(1/3,0.33/9, 

0.05/9) 

B5 
(1/5,0.33/25,

0.05/25) 

(1/5,0.33/25, 

0.05/25) 
(1,0,0) 

(1/3,0.33/9,0.05/

9) 
(1,0,0) 

(1/3,0.33/9, 

0.05/9) 

B6 
(1/3,0.33/9, 

0.05/9) 

(1/5,0.33/25, 

0.05/25) 
(5,0.33,0.05) (3,0.33,0.05) (3,0.33,0.05) (1,0,0) 

According to Eqs. (3.15) to (3.17), the final judgment matrix is obtained as shown 
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in Table 3.12. 

Table 3.12 Final judgment matrix of A-B 

 B1 B2 B3 B4 B5 B6 

B1 (1,0,0) 
(1.6667,0.1100, 

0.0167) 

(4.3333,0.1905, 

0.0289) 

(7.6667,0.1905, 

0.0289) 
(5,0.1905,0.0289) 

(3,0.1905, 

0.0289) 

B2 
(0.7778,0.03

67,0.0056) 
(1,0,0) 

(4.3333,0.1905, 

0.0289) 

(2.2,0.1905,0.0

289) 

(6.3333,0.1905,0.

0289) 

(5,0.1905, 

0.0289) 

B3 
(0.2444,0.01

37,0.0021) 

(0.2444,0.0137, 

0.0021) 
(1,0,0) 

(0.5556,0.0173, 

0.0026) 
(1,0,0) 

(0.2444,0.0137, 

0.0021) 

B4 
(0.1323,0.00

35,0.0005) 

(0.2889,0.0178, 

0.0027) 

(2.3333,0.1556, 

0.0236) 
(1,0,0) (3,0.1905,0.0289) 

(0.3333,0.0212, 

0.0032) 

B5 
(0.2,0.0076,

0.0012) 

(0.1619,0.0054, 

0.0008) 
(1,0,0) 

(0.3333,0.0212, 

0.0032) 
(1,0,0) 

(0.3333,0.0212, 

0.0032) 

B6 
(0.3333,0.02

12,0.0032) 

(0.2,0.0076, 

0.0012) 

(4.3333,0.1905, 

0.0289) 

(3,0.1905,0.028

9) 
(3,0.1905,0.0289) (1,0,0) 

The numerical expressions of the weight CM of the second-level indexes (Table 

3.13) are calculated by Eqs. (3.21) to (3.23). Figure 3.9 shows the relative importance 

of each index more clearly through the expression of images. 

Table 3.13 Numerical expression of the weight CM (second-level indexes) 

Second-level indexes Numerical expressions Rank 

B1 (0.3725, 0.0192, 0.0040) 1 

B2 (0.3018, 0.0163, 0.0033) 2 

B3 (0.0545, 0.0026, 0.0008) 5 

B4 (0.0812, 0.0047, 0.0009) 4 

B5 (0.0476, 0.0023, 0.0013) 6 

B6 (0.1425, 0.0080, 0.0040) 3 

 

Figure 3.9 Image expression of the weight CM (second-level indexes) 
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3.3.3.2 Comment calculation of third-level indexes 

Take the B2-C matrix as an example. Several experts' comments on C4, C5, C6, and 

C7 are shown in Tables 3.14 to 3.16 below. 

Table 3.14 Comments on B2-C from expert a 

C4 C5 C6 C7 

V4(4,0.33,0.05) V1(1,0.17,0.05) V2(2,0.33,0.05) V2(2,0.33,0.05) 

        Table 3.15 Comments on B2-C from expert b 

C4 C5 C6 C7 

V4(4,0.33,0.05) V2(2,0.33,0.05) V3(3,0.17,0.05) V4(4,0.33,0.05) 

Table 3.16 Comments on B2-C from expert c 

C4 C5 C6 C7 

V5(5,0.17,0.05) V3(3,0.17,0.05) V2(2,0.33,0.05) V5(5,0.17,0.05) 

The assessment results of all experts are gathered using Eqs.(3.7) to (3.9) as shown 

in Table 3.17. 

Table 3.17 Final comments on B2-C 

C4 C5 C6 C7 

(4.33,0.42,0.05) (2,0.50,0.05) (2.33,0.42,0.05) (3.67,0.75,0.05) 

The comparison reveals a disagreement in the experts’ opinion in the evaluations 

for C5 and C7. Therefore, the Delphi method is used to carry out iterative feedback to 

collect further information related to C5 and C7. The re-evaluations should continue 

until the evaluation consistency meets the requirements. The comments after iterative 

feedback are shown in Tables 3.18 to 3.21. In Figures 3.10 and 3.11, it is clear that the 

aggregation and consistency of the experts’ comments are higher after completing 

iterative feedback using the Delphi method. 
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(a) 

 
(b) 

Figure 3.10 Comparison of C5 before and after iterative feedback 

 

(a) 

 

(b) 

Figure 3.11 Comparison of C7 before and after iterative feedback 

Table 3.18 Comments from expert a on B2-C after iterative feedback 

C4 C5 C6 C7 

V4(4,0.33,0.05) V2(2,0.33,0.05) V2(2,0.33,0.05) V4(4,0.33,0.05) 

Table 3.19 Comments from expert b on B2-C after iterative feedback 

C4 C5 C6 C7 

V4(4,0.33,0.05) V2(2,0.33,0.05) V3(3,0.17,0.05) V4(4,0.33,0.05) 

Table 3.20 Comments from expert c on B2-C after iterative feedback 

C4 C5 C6 C7 

V5(5,0.17,0.05) V3(3,0.17,0.05) V2(2,0.33,0.05) V5(5,0.17,0.05) 
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Table 3.21 Final comments on B2-C after iterative feedback 

C4 C5 C6 C7 

(4.33,0.42,0.05) (2.33,0.42,0.05) (2.33,0.42,0.05) (4.33,0.42,0.05) 

According to Eq. (3.10), the numerical expression of the cloud model for the final 

comment of B2 can be obtained as C(B2)=(2.673, 0.2667, 0.0399). Similarly, the final 

comments on the other second-level indexes are shown in Table 3.22. 

Table 3.22 Numerical expression of the comment cloud model (second-level indexes) 

Second-level indexes Numerical expressions 

B1 (1.4445, 0.2660,0 .0327) 

B2 (2.6730, 0.2667, 0.0399) 

B3 (3.0594, 0.3302, 0.0410) 

B4 (3.1612, 0.2555, 0.0352) 

B5 (3.9415, 0.3167, 0.0388) 

B6 (1.1914, 0.1715, 0.0386) 

3.3.3.3 Variable weight calculation of the second-level indexes 

According to Eq. (3.11) and Table 3.2, the value of the constants is obtained after 

normalization calculation. The state-variable-weight vector of Ex is constructed as 

shown in Eq. (3.27). 
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Figure 3.12 Image expression of the variable weight function 
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As shown in Figure 3.12, the function is continuous. When 0< xi ≤ 0.6, the function 

image shows a downward trend, which tends to “punish” the risk level. When 

0.6< xi ≤ 0.8, the function’s slope is zero, indicating that there is neither punishment nor 

incentive on this interval. When 0.8< xi ≤ 1, the function image shows an upward trend, 

which tends to “reward” the risk level. Besides, when 0< xi ≤ 0.2, the function slope is 

much higher, indicating that the heaviest penalty should be imposed by increasing the 

index’s weight due to the high pipeline risk. When 0.8< xi ≤ 1, The rapid rise of the 

function indicates that it is necessary to increase the index’s weight to give reasonable 

rewards to the pipeline with very low risk. 

The state-variable-weight vectors of Ex, En, He and the variable weight of Ex, En, 

He are calculated by Eqs. (3.24) to (3.26), as shown in Table 3.23.  

Table 3.23 The state-variable-weight vectors and the variable weight 

Second-level 

indexes 

State-variable-weight 

vectors 
Variable weight Rank 

B1 (0.3111, 0.0561, 0.0074) (0.5288, 0.1152, 0.0167) 1 

B2 (0.1107, 0.0256, 0.0044) (0.1524, 0.0400, 0.0068) 3 

B3 (0.1000, 0.0280, 0.0041) (0.0249, 0.0076, 0.0012) 5 

B4 (0.1000, 0.0220, 0.0037) (0.0370, 0.0094, 0.0016) 4 

B5 (0.1000, 0.0245, 0.0039) (0.0217, 0.0059, 0.0011) 6 

B6 (0.3617, 0.0434, 0.0095) (0.2352, 0.0406, 0.0100) 2 

After substituting the variable weight and the comments of the second-level index 

into Eq. (3.10), the final assessment result is obtained as (1.7301,0.2583,0.0392) as 

shown in Figure 3.13.  

 

Figure 3.13 Final assessment result 
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3.4 Discussions 

3.4.1 Assessment of overall risk 

This chapter establishes a risk assessment index system for gas pipelines. It optimizes 

the importance of each second-level index for the risk of gas pipelines by using cloud-

variable weight theory. In order to verify the correctness of the method proposed in this 

chapter, we use a risk assessment method based on triangular fuzzy numbers [46] to 

evaluate the research object in this chapter. The result is 1.8383, similar to the Ex value 

of the result calculated by the proposed method, which is defined as “relatively high 

risk.” Therefore, the proposed method in this chapter is feasible and applicable. In 

addition, the proposed method calculates the result as a cloud instead of an exact 

number, thus enriching the dimensionality of the result expression, which better 

expresses the uncertainty inherent to the entire evaluation process based on the 

characteristics of the cloud model.  

3.4.2 Sensitivity Analysis 

Sensitivity analysis is used to assess the impact of different sub-indexes on the overall 

risk. The resulting ranking of index sensitivities will make a valuable contribution to 

decisions on risk prevention and control. A given index’s sensitivity is determined by 

the difference in the final risk assessment result as its level gradually changes from V1 

to V5 [154]. In this process, take index C1 as an example. C1 is considered one of the 

five levels, while the other indexes’ levels are randomly generated from level V1 to 

level V5. To guarantee the robustness of the outcomes, 1000 simulations are performed 

for each level of the specified index C1. The final result R is calculated by the average 

of the outcomes of the 1000 simulations. The sensitivity of the third-level indexes can 

be calculated by Eq. (28). As shown in Figure 3.14, the Ex value of the final assessment 

result increases, i.e. the risk decreases, as the level of indexes increases from level V1 

to level V5. To ensure clarity, only 10 out of 16 third-level indexes are shown in Figure 
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3.14. The other six indexes’ sensitivities are very low and are not presented here. The 

sensitivities of third-level indexes are ranked in Table 3.24. The sensitivities of second-

level indexes are calculated using the following equation, and ranked in Table 3.13 and 

Table 3.23.  

S(Ci)=RV5 - RV1                                (3.28) 

where S(Ci) denotes the sensitivity of index Ci, RV1 denotes the final result after 1000 

simulations when the risk level of the specified index is V1, RV1 denotes the final result 

after 1000 simulations when the risk level of the specified index is V5. 

Table 3.24 Ranking of third-level indexes’ sensitivities 

 Third-level indexes 

Constant 

weight 
C2>C6>C3>C16>C5>C15>C1>C8>C12>C11>C13>C4>C7>C10>C9>C14 

Variable 

weight 
C2>C3>C16>C6>C15>C1>C5>C8>C12>C11>C4>C7>C13>C10>C9>C14 

 

(a) Constant weight (b) Variable weight 

Figure 3.14 Sensitivity analysis of the third-level indexes 

In Figure 3.14, according to the rules of sensitivity calculation, the greater the 

slope of each dash, the more significant the sensitivity of its corresponding third-level 

index. Thus, we find that after the optimization of the variable weight function, the 

sensitivities of indicators C2, C3, C16 are significantly increased compared with the 

values calculated by the constant weights, indicating that the variable weight function 

model better highlights the key risk factors in the system.  
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According to Table 3.13 and Table 3.23, the rank of the weights of second-level 

indexes for the constant weight method is: B1(corrosion) > B2(third-party damage) > 

B6(consequences) > B4(safety management) > B3(design and manufacturing) >B5 

(operation and management); for the variable weight method, the rank of the weights 

of second-level indexes is: B1 > B6 > B2 > B4 > B3 >B5. Among them, corrosion, 

third-party damage, and consequences account for a relatively large proportion of 

pipeline risk. Because the pipeline is near a subway line, stray currents from the rail 

transit traction system leads to severe corrosion of the pipeline. In the constant weight 

ranking, B2 > B6 is because third-party damage index has a greater impact on pipeline 

system risk than consequence index. However, this ranking is reversed in the variable 

weight calculation because the consequences index has a smaller risk comment value, 

implying a higher risk. Therefore, the weight of B6 increased after applying the variable 

weighting function. According to Table 25, the ranking order of the third-level indexes 

also changed. C3 and C16 are highlighted, while C6 and C5 are considered to be less 

important.  

The actual pipeline is situated under the side of a busy highway in Beijing, so 

while there is less risk of third-party damage, dense population and high social 

sensitivity increase the risk of serious consequences. Therefore, the results obtained 

using VWT are more consistent with the actual environmental realities surrounding the 

pipeline. When applying the constant weight method, some comprehensive assessment 

results may remain relatively safe or acceptable even when some indexes reach the 

dangerous boundary. However, when applying variable weight theory, if there is an 

index with a small weight but significant risk, the weight of this index can be increased, 

thereby reducing the system's risk comment value reasonably and making the 

assessment result relatively dangerous. This is very helpful for pipeline operators to 

identify the key factors affecting system safety and can provide guidance for gas 

pipeline risk management and decision making. 
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3.4.3 Risk management based on the assessment result 

One of the purposes of risk assessment is to rank the relative risks of the pipe sections 

of a pipeline. The pipeline operators can identify high, medium, and low-risk pipe 

sections based on the ranking and then determine whether pipe sections require further 

risk control or risk rehabilitation measures. Thus the mitigation and maintenance 

activities may be prioritized and will become more cost effective. 

We selected the pipeline to which the pipe section studied in this chapter belongs 

and divided it into 19 pipe sections. Risk assessment and classification are performed 

for each pipe section, as shown in Table 3.25. Pareto’s Law [195] can be used for better 

statistical purposes. We assign scores to the risk levels. According to Table 3.2, V1 

corresponds to the highest risk level, and so a score of 3 is assigned as the highest risk 

score. Similarly, V2 is assigned a score of 2 and V3 a score of 1. The risks of V4 and V5 

are acceptable and tolerable, and therefore, both of them are assigned a score of 0.  

Table 3.25 Risk assessment results of the pipe sections 

Pipe Section No. Risk Level Risk Score Pipe Section No. Risk Level Risk Score 

0010101 V2 2 0010111 V4 0 

0010102 V1 3 0010112 V5 0 

0010103 V4 0 0010113 V4 0 

0010104 V3 1 0010114 V3 1 

0010105 V2 2 0010115 V5 0 

0010106 V5 0 0010116 V1 3 

0010107 V4 0 0010117 V4 0 

0010108 V5 0 0010118 V4 0 

0010109 V2 2 0010119 V5 0 

0010110 V4 0 Sum of risk score 14 

As shown in Table 3.25, there are five pipe sections (No. 0010101, No. 0010102, 

No. 0010105, No. 0010109, No. 0010116) with higher risk, which is 26.32% of all pipe 

sections, accounting for 85.71% of the total risk score. In other words, most of the risks 

in this pipeline concentrate on the five pipe sections. Suppose the pipeline operators 

pay attention to 26.32% of pipe sections. In such a case, 85.71% risk can effectively be 

controlled, which would significantly optimize the risk mitigation resources and 

increase the economic efficiency of the pipeline. In the meantime, the ranking of pipe 
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sections’ risk levels can be considered a prioritization when performing risk 

rehabilitation on this pipeline. Higher risk pipe sections should be prioritized for 

targeted control measures, depending on the key risk factors identified during the 

evaluation process. When two pipe sections have the same Ex value, the value of En 

should be evaluated. The larger the value of En, the greater the uncertainty and the 

higher the risk. 

For some high-risk pipe sections where risk mitigation is very difficult, it is 

impossible to carry out risk mitigation immediately after completing the risk 

assessment. Therefore, pipeline operators need to make emergency plans based on the 

actual situation of the pipeline. This will minimize the damage even if the worst 

outcome occurs. 

3.5 Conclusions 

This research aims to develop a new risk assessment method for gas pipelines. This 

chapter adopts a multi-factor coupled risk analysis method that comprehensively 

considers 16 factors affecting the pipeline’s safe operation. These factors are divided 

into a three-level risk assessment index system, ensuring that the assessment results are 

more reliable through level-by-level calculation. 

This chapter proposes a novel cloud-variable weight theory and applies cloud 

theory throughout the entire risk evaluation process, effectively expressing the 

uncertainty in the process. The CM is used to express constant weights, variable weights, 

and expert comments, eliminating the error in the existing methods for single numerical 

modeling of fuzzy concepts. At the same time, the constant weight calculation method 

based on cloud-AHP and virtual floating cloud computation can express uncertainty 

while increasing the data aggregation, thereby making the assessment results more 

reasonable. 

In this chapter, cloud theory and variable weight theory are well integrated and 

improve each other. As a result, the weights of the second-level index are optimized, 

thus highlighting the negative effects of the index with higher risk, reducing the wrong 
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judgment caused by the constant weight method, and providing a more scientific and 

reasonable method for pipeline risk assessment. 

After calculating the industrial case, we found that 26.32% of all pipe sections 

account for 85.71% of the pipeline’s total risk. Therefore, the proposed method can help 

pipeline operators make optimal risk decisions with limited resources. Furthermore, for 

the pipe sections specifically analyzed in Section 3, among all the indexes, the corrosion 

index accounts for the largest proportion of pipe section risk, which should be focused 

on during the risk control process. Thus the pipeline operators can determine the 

prioritization when performing risk rehabilitation and the weak links to implement 

targeted risk management strategies. 

The proposed method is a promising approach to risk analysis of the buried gas 

pipeline. However, some limitations are summarized as follows: (1) the established risk 

assessment index system is only applicable to buried gas pipelines, but not to other 

types such as submarine pipelines or long-distance oil pipelines; (2) the proposed 

method is a static approach that only analyzes risk based on the current state of the 

pipeline and cannot dynamically track the development of risk. Therefore, future 

research should focus on these problems to better ensure safe and smooth operation of 

pipelines. 
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Chapter 4: Discovery of potential risks for 

the gas transmission station using 

monitoring data and the OOBN method  

4.1 Introduction 

For the urban consumers along the long-distance pipeline, gas transmission stations 

(GTS) are essential elements that filter and separate impurities, regulate flow and 

pressure, and distribute gas [196, 197]. Due to the complexity of the GTS process and 

the high flammability and explosibility of the transported media, some risk factors, such 

as corrosion, misoperation, etc., may lead to equipment failure or even accidents [198]. 

For example, on January 20, 2006, an explosive accident at the Fuga gas station in 

China killed 10 people and injured 50 [199]. On June 23, 2012, ignition and fire 

occurred in British Columbia, Canada. The number of injuries reported was 2 [200]. 

Between 1994 and 2013, there were 745 significant gas distribution accidents in the 

United States, resulting in 278 deaths and 1059 injuries, as well as $110,658,083 in 

property damage [201].  

    The severity of an accident’s consequences emphasizes the need for risk 

management for GTS. In the case of an accident, the gas transmission facilities are 

located in urban or residential areas, making it harder to evacuate people and take 

emergency steps to safeguard property [202, 203]. Identifying accident precursors and 

preventing accidents before they happen is thus the least costly and most effective risk 

management strategy for GTS operators. In existing engineering practice, the most 

common method for early warning is combustible gas detectors. However, this method 

can only provide early warning for indoor leaks while significantly less capable of 

detecting outdoor leaks and non-leakage faults such as blocking. Therefore, it is 

necessary to further improve the ability of the GTS system to discover potential risks 
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in real-time. 

    The combination of accident precursor analysis and quantitative risk analysis has 

been investigated in [204], in which accessible information from accident precursors is 

utilized as input to the QRA technique to determine potential consequences. The 

definition of an accident precursor is “an abnormality that suggests the possibility for 

more severe effects that may occur in the future, due to factors observable from its 

existence today” [205]. Identifying system abnormalities, therefore, aids in the 

detection of accident precursors. Furthermore, equipment failure leading to pressure 

anomalies has been demonstrated in [206-208]. GTS’s supervisory control and data 

acquisition (SCADA) system can quickly acquire pressure and flow data, which is the 

monitoring data we used in this study. The operators can then decipher the pattern of 

data changes to identify accident precursors and achieve real-time risk management 

through modeling. Currently, no real-time potential risk analysis methods for GTS 

systems have been proposed to the authors’ knowledge. Moreover, since the GTS 

system is complicated, with some duplicated structures, limited data sources, and some 

missing records in practice, existing real-time risk analysis methods [209-211] in other 

fields are not applicable to the GTS system. 

    Table 4.1 summarizes the existing risk studies for GTS and other energy 

transmission and distribution facilities similar to GTS. We can conclude from these 

works that (1) BN is the most commonly used risk analysis approach, and most studies 

[49, 199, 212-215] directly map the established BTA, FTA, or ETA models to BN, 

including structure mapping and CPT parameter mapping. The model’s complexity and 

the massive number of nodes make manipulation and analysis difficult. The OOBN 

model presented in [126], on the other hand, has significant advantages in terms of 

flexibility and adaptability. Regarding parameter mapping, just the absolute logic of 

“and” and “or” gates is considered, disregarding any uncertainty. In addition, the 

multilevel BN method proposed in [25] is based on the perspective of multi-flow 

intersection, and the Stochastic Petri nets method is used in [26] to analyze GTS’s 

leakage emergency disposal process. Both propose innovative perspectives in GTS’s 
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risk research. (2) Since risk changes over time, some studies have employed BN’s 

updating mechanism to conduct a dynamic risk analysis [49, 126, 213, 214]. However, 

because the data required for these updates are difficult to obtain in a short period, only 

periodic updates of risks, rather than real-time updates to sensitively identify accident 

precursors, can be undertaken. (3) In terms of posterior analysis of risk factors, most 

existing methods conduct backward analysis assuming that an accident has occurred. 

Therefore, there must be an available data source to support this assumption. Expert 

knowledge acquisition used in [49, 126, 199] and numerical simulations in [216] 

generally need a significant amount of time and human resources. In contrast, data from 

databases and literature [199, 213, 214] are generic and not very targeted and precise 

due to the complexity of the process. And [217] classifies monitoring data into intervals, 

losing some of its accuracies. 

Table 4.1 Some relevant studies 

Literature Risk analysis method Data acquisition method 

[199] Bow-tie analysis (BTA), Bayesian 

network (BN) 

General database and expert knowledge 

[212] Fault tree analysis (FTA), BN Calculate failure probability by mean 

time to failure (MTTF) in historical data 

[49] Failure mode and effect analysis 

(FMEA), BTA, BN 

Expert knowledge 

[213] FTA, event tree analysis (ETA), BN General database 

[214] FTA, event sequence diagram, BN Reliability database, literature, and 

cumulative abnormal event data 

[215] BN, Layer of Protection Analysis 

(LOPA) 

Plant-specific failure data 

[126] OOBN Expert knowledge 

[216] Grid-based method, BN Numerical simulation using DNV 

PHAST 

[217] Fuzzy expert system Translate monitoring and detection data 

into linguistic terms and fuzzy functions 

[218] Multi-flow intersecting theory, 

multilevel BN 

Expert knowledge 

[219] Stochastic Petri nets Expert knowledge 

    For the GTS systems’ actual situation and the limitations of the methods 

mentioned above, a method for potential risk discovery in GTS systems is proposed in 

this research. In comparison to previous research, the contributions are summarized as 
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follows. (1) A structure mapping method based on FMEA is proposed. (2) An OOBN 

framework is developed based on the overall system’s process flow, making the model 

more simplified and flexible. For example, compared to the BN framework, this will 

reduce the number of nodes by over 50% and the number of conditional probability 

tables (CPTs) by over 60% in the examples investigated in the paper. The operators can 

call up the built model for duplicate structures in the system instead of re-modeling it. 

(3) Both leaky noisy-or gate (LNG) and expectation maximum (EM) algorithm are 

incorporated into BN’s parameter learning, efficiently dealing with imperfect historical 

records and limited sample data while reflecting the uncertainty of risk factors. (4) An 

accident precursor identification approach based on PAA-CUSUM is presented to 

identify possible vulnerabilities in the system in real-time by finding abnormalities 

using monitoring data. This allows backward analysis when anomalies are detected, 

which is more consistent with actual conditions than assumption-based analyses. 

The rest of this work is structured as follows. Section 2 introduces some basic 

concepts and the proposed method; Section 3 describes modeling the GTS system; 

Section 4 selects some cases to illustrate and validate the proposed method; Section 5 

provides a more in-depth discussion of the proposed method; Section 6 presents the 

conclusion. 

4.2 Methodology 

4.2.1 Bayesian network 

Bayesian network (BN) is the result of combining graph theory and probability theory, 

and their benefits in dealing with uncertainty have landed them a spot in a variety of 

risk analysis methodologies [220, 221]. BN is defined as G = ((N, A), P), where (N, A) 

represents a graph, N is a node, A is a directed arc, and P represents the conditional 

probability table (CPT) associated with each node. The joint probability is represented 

by the interrelationship of the parent nodes and the conditional probability, as shown in 

Eq. (4.1) [222].  
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𝑃(𝑋1,⋯ , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))
𝑛
𝑖=1                   (4.1) 

where X={X1,…Xi,…, Xn}represents the variable set, Pa(Xi) is the parent node of Xi, if 

Pa(Xi) is an empty set, then Xi is the root node, P(Xi | Pa(Xi))=P(Xi) represents its prior 

probability. 

4.2.2 Object-oriented Bayesian network 

There is a large variety of process flow in complex systems, such as GTS systems, since 

they involve various pipes, valves, and other equipment and devices. On the other hand, 

some subsystems have close or even identical structures. As a result, integrating object-

oriented concepts into Bayesian networks can minimize the complexity of traditional 

Bayesian network modeling while also increasing the reusability of model pieces [223-

225]. The idea of classes is introduced in OOBN. Each object is an instantiated 

representation of a class, which defines a group of objects with the same structure and 

behavior [226]. Objects 1 and 5 are instantiated based on class A, 3 and 6 are 

instantiated based on class B, and object 2 is instantiated based on class C, as indicated 

in Figure 4.1. In conclusion, the OOBN model for complex systems comprises BN 

pieces representing each subsystem. These BN pieces communicate with the outside 

environment through input and output nodes. The input data contain pre-processed 

historical data, sensor data, and expert experience and knowledge. After an algorithmic 

model analysis, the system’s risk and functional condition can be output. Internal nodes 

only have parents and children in their related BN fragments, not in other BN fragments, 

due to the encapsulated nature of the class. 

    OOBN provides the following benefits over traditional BNs [227]. After the 

overall network has been validated, OOBN provides a top-down modeling approach. 

Each Bayesian network fragment may be enhanced step by step. OOBN builds 

complicated models from small, easy-to-understand model fragments, making expert 

knowledge acquisition and communication between modelers and experts easier. The 

OOBN method altogether includes encapsulation and hierarchical properties, and it has 

a faster convergence time and efficiency than the traditional Bayesian network 



62 

 

inference technique [228]. 
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Figure 4.1 OOBN-based modeling methodology 

4.2.3 Proposed method 

4.2.3.1 Overview of the proposed method 

The specific steps of the proposed method are shown in Figure 4.2. Firstly, the complex 

system is divided into subsystems defined as objects. Then BN structure of the objects 

is developed, and the parameters of the CPTs are determined to form an OOBN model 

of the whole system. Based on the PAA-CUSUM algorithm, the change degrees of 

indicator readings are calculated, and the objects with potential risks are identified and 

ranked according to the change degree magnitude. Finally, the components' accident 

precursors and potential risk ranking are identified according to the calculation of the 

posterior and prior probabilities.  

    In this study, OOBN can model complex systems by dividing them into 

subsystems based on the process flow, and repetitive systems only need to be modeled 

once in the study and then called up when needed. Compared with existing methods in 

Table 4.1 Some relevant studies, the proposed approach is more flexible and 

straightforward. It considers the nature of various subsystems in complex systems, so 

that specific high-risk subsystems and components can be accurately located. Moreover, 

the trend of the data after PAA-CUSUM processing is used as input to the model, rather 

than just a classification of sensor data by numerical magnitude, which can result in a 
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more effective discovery of the potential risks. In addition, compared to existing 

methods such as principal component analysis (PCA) [229], the data processing results 

of PAA-CUSUM are interpretable and, therefore, more easily accepted and understood 

by users.  
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the complex system

Divide the complex systems into 

subsystems (objects)

Conduct failure mode and effect 

analysis
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Obtain BN structure of each object  
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Figure 4.2 Schematic diagram of the proposed method 

4.2.3.2 BN structure development 

Expert knowledge, machine learning techniques, or a combination of the two 

approaches are the most common ways to structural modeling of BNs [230]. Large 

systems typically have complicated structures and various failure modes, and structural 

modeling using machine learning may generate conclusions that violate engineering 

conventions. FMEA procedures, on the other hand, help detect potential failure modes 

and effects in complex systems [231-233]. Compared to existing mapping methods 

based on BTA [199] and FTA [213], FMEA-based mapping is more user-friendly for 

GTS users because it can reduce the number of nodes while serving the same function 

of cause-and-effect analysis. As a result, using FMEA mapping, this chapter proposes 

an expert knowledge-based technique for determining the structure of subsystem 

Bayesian networks. The mapping approach combines FMEA’s layer-by-layer 
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characteristic with Bayesian networks’ cause-and-effect framework, allowing complex 

system administrators to examine problems more systematically and logically. 

    The root node of BN corresponds to the cause of failure determined by FMEA. 

The first-level intermediate node shows whether the component’s operational state is 

normal or not, as illustrated in Figure 4.3.  
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Figure 4.3 Mapping rules from FMEA to BN 

    As shown in Figure 4.3, the failure mode identification of FMEA can determine 

the failure type of each component represented by the second-level intermediate node, 

and the leaf nodes can reflect the impact of different failure types. 

4.2.3.3 BN parameter determination 

In order to better solve the problems of missing records, small sample data size, and 

uncertainty of risk factors in engineering practice, this study combines two methods, 

EM algorithm and LNG, together to determine the parameters of BN. The Noisy-or gate 

(NG) is a common paradigm for describing the relationship between causes and their 

associated co-influence [234]. The essential premise of this gate is that any causative 

factor, even in the absence of other causes, can independently influence the common 

result. 2N separate conditional probability parameters must be collected for a child node 

Y1 with N parents (X1, …, XN), yet obtaining all of this information in practice is difficult. 

In contrast, the Noisy-or model only requires 2N conditional probability parameters, 

considerably increasing the efficiency of acquiring probability parameters from 

historical data and expert knowledge. In this case, it is commonly assumed that each 
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parent node’s effect on Y1 is independent, i.e., the nodes in the BN are regarded as 

Noisy-Or nodes, and the value of Y1 is determined by the contribution of each parent 

node to it via the “or” operation in Eq.(4.2) [235]. 

Y1 = ε1 Ⅴ ε2 Ⅴ … Ⅴ εN                      (4.2) 

where Y1 denotes the child node, εi denotes the contribution of parent node Xi to Y1 .  

𝑃(𝜀𝑖 = 1|𝑋𝑖 = 1) = 𝑃(𝑌1 = 1|𝑋1 = 0,⋯ , 𝑋𝑖 = 1,⋯ , 𝑋𝑁 = 0)       (4.3) 

    Then the conditional probability of obtaining Y1 from causes X1, X2, ..., XN is shown 

in Eq.(4.4). 

𝑃(𝑌1|𝑋𝑃) = 1 − ∏ (1 − 𝑝𝑖)𝑋𝑖∈𝑋𝑁
                  (4.4) 

where XP denotes the parent node set, pi denotes the joint probability of Xi. 

    The joint probability pi can be calculated by Eq. (4.5), and the specific derivation 

process is shown in [236]. 

𝑝𝑖 =
𝑃(𝑌1|𝑋𝑖)−𝑃(𝑌1|𝑋𝑖̅̅ ̅)

1−𝑃(𝑌1|𝑋�̅�)
                      (4.5) 

    Some other unknown factors on Y1 may be gathered into a factor XL, which is also 

added to the network as a parent node to construct a Leaky Noisy-or gate (LNG), 

thereby boosting the expression of uncertainty in the model [237]. L denotes the 

subscript of the set of unknown factors, which follows a Gaussian probability 

distribution with a confidence level of 99% [238, 239]. The conditional probability that 

the child node is true is expressed as: 

𝑃(𝑌1 = 1) = 1 − ∏ (1 − 𝑝𝑖𝑋𝑖∈𝑋𝑁
)(1 − 𝑝𝐿)            (4.6) 

where pL denotes the leak probability, 𝑝𝐿 = 𝑃(𝑌1 = 1|𝑋1 = 0,⋯ , 𝑋𝑖 = 0,⋯ , 𝑋𝑁 =

0, 𝑋𝐿 = 1). 

The Expectation-Maximum (EM) algorithm is an iterative approach to solving the 

maximum value issue [240]. Each iteration of the method is broken into two parts, E 

and M. The implied data and model distribution parameters are updated via several 

iterations until convergence is achieved, after which the model parameters are obtained 

[241]. The specific steps are as follows. 
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EM algorithm 

Inputs: Predefined sample data set x=(x(1), x(2),..., x(m)), unobserved implied data set 

z=(z(1), z(2),..., z(m)), maximum number of iterations j. 

Outputs: Model parameters θ. 

Step 1: Randomly initialize the model parameter θ0. 

Step 2: Compute the conditional probability expectation of the joint distribution by 

Eq.(4.7) and Eq.(4.8). 

Step 3: Maximize L(θ,θj) to obtain θj+1: 𝜃𝑗+1 = argmax
𝜃

𝐿(𝜃, 𝜃𝑗) 

Step 4: If θj+1 has converged, the algorithm ends. Otherwise, continue back to step 2 

for iteration. 

𝑄𝑖(𝑧
(𝑖)) = 𝑃(𝑧(𝑖)|𝑥(𝑖), 𝜃𝑗)                      (4.7) 

𝐿(𝜃, 𝜃𝑗) = ∑ ∑ 𝑄𝑖(𝑧
(𝑖))𝑙𝑜𝑔𝑃(𝑥(𝑖), 𝑧(𝑖); 𝜃)𝑧(𝑡)

𝑚
𝑖=1               (4.8) 

where L(θ,θj) denotes the likelihood function, 𝑄𝑖(𝑧
(𝑖)) represents distribution of the 

implied variable z for sample i. 

    Because the data in this study originate from accident reports, there will be some 

imperfect records and limited sample size. Through a quicker convergence rate, the EM 

algorithm can adequately estimate the probability value between nodes under the 

premise of a limited number of samples, which can compensate for this shortcoming 

[242]. As a result, the EM method is chosen as the parameter learning algorithm. 

4.2.3.4 Accident precursor identification 

The piecewise aggregate approximation (PAA) algorithm for time series data 

dimensionality reduction has proven effective. PAA operation is straightforward and 

more appropriate for engineering applications than other dimensionality reduction 

approaches [243]. The main principle behind it is as follows. 

    Let the length of a time series X={x1, x2,…, xn} be n, such as pressure or 

temperature data. Representing it as a vector �̅� of length N, the i-th element is defined 

as: 
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𝑋�̅� =
𝑁

𝑛
∑ 𝑥𝑗

𝑛

𝑁
𝑖

𝑗=
𝑛

𝑁
(𝑖−1)+1

                         (4.9) 

    The PAA method can improve the efficiency of time series anomaly detection and 

reduce the effect of noise by reducing the time series from n-dimensional space to N-

dimensional space. 

    The CUSUM algorithm is an effective method for keeping track of industrial 

irregularities. For example, it can identify possible faults in wind turbine main bearings 

and other circumstances that might produce changes in the signal [244]. The cumulative 

sum is the total amount of deviations, including data from all prior samples. They’re 

great at detecting slight changes in the variable [245]. The CUSUM method is used to 

analyze observations that have been collected over time. These observations might be 

physical measurements, counts, or ratios, and they can be grouped (e.g., in the form of 

manufacturing batches) or individual observations [246]. 

    Based on the characteristics of the signal sequence in the statistics, the CUSUM 

algorithm assesses if the change points exist in the monitoring process. The system 

generates a change point when the cumulative sum is considerably greater or lower than 

the usual operating condition [247]. A signal sequence’s cumulative sum is a variable 

that fluctuates randomly around its initial value until it changes abruptly. If a positive 

shift happens at a change point, CUi continues to increase, indicating positive 

accumulation. Vice versa. It can be determined that a signal mutation has been formed 

when it has accumulated to a certain level (i.e., more than a pre-set threshold). 

The followings are the steps in the approach for change point identification based 

on the PAA-CUSUM algorithm proposed in this chapter, shown in Figure 4.4. 
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Figure 4.4 Fault location process 

    Step 1: Implement the sliding window approach suggested in [248] and set the 

length as w = 24 hours. After the accident precursor has been located, the PAA-CUSUM 

algorithm can be reset for a new cycle. 

    Step 2: Use the PAA algorithm to pre-process the pressure data at the system’s 

outlet. Calculate the lower and upper cumulative sums and boundary values using Eq. 

(4.10)-(4.13) [249]. 

𝐶𝐿𝑖 = min(0, 𝐶𝐿𝑖−1 + 𝑥𝑖 − (𝑇 − 𝑘
𝜎

√𝑚
)                     (4.10) 

𝐶𝑈𝑖 = max(0, 𝐶𝑈𝑖−1 + 𝑥𝑖 − (𝑇 + 𝑘
𝜎

√𝑚
)                    (4.11) 

𝑈𝐶𝐿 =
𝑁ℎ

𝑛
×

𝜎

√𝑚
                               (4.12) 
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𝐿𝐶𝐿 = −
𝑁ℎ

𝑛
×

𝜎

√𝑚
                              (4.13) 

where i denotes the i-th element after pre-processed by PAA algorithm, CLi denotes the 

lower cumulative sum, CUi denotes the upper cumulative sum, UCL and LCL are the 

upper and lower boundary values, respectively. T is the target value, k is the size of the 

shift to be detected, h is the standardized decision interval, σ is the variable in control, 

m is number of subgroups.  

    Step 3: Determine whether there is an abnormality. In order to reduce the rate of 

misjudgment and omission of the system, the criteria for abnormality are (1) when there 

is a downward or upward trend (some consecutive points increase or decrease), and (2) 

when the alert threshold value is set according to ISO standard (ISO 7870-4) is 

exceeded [250]. In this chapter, to be more consistent with the actual situation, we 

choose m=1, k=0.5, and h=3.5. The system is judged to be abnormal if both are satisfied. 

If there is an abnormality, proceed to the fourth step. If there is no abnormality, return 

to step 2. 

    Step 4: Retrieve the monitoring data of each object for 24 hours before the alarm 

time. Sum up the CLi and ULi and plot the PAA-CUSUM chart depending on which 

one is more extreme. 

    Step 5: Find the object with anomaly and calculate the change degree of its 

CUSUM chart based on the Eq. (4.14)-(4.15) adapted from [251]. 

𝑃𝑢({𝑥𝑗}|{𝑥𝑖}) = ∏ 𝑃(𝑋 ≥ 𝑋𝑗|{𝑥𝑖})
𝑙
𝑗=1                    (4.14) 

𝑃𝑑({𝑥𝑗}|{𝑥𝑖}) = ∏ 𝑃(𝑋 ≤ 𝑋𝑗|{𝑥𝑖})
𝑙
𝑗=1                    (4.15) 

where {xi} is the data set before the change point, {xj} is the data set after the change 

point, which both follow the Gaussian distribution. Pu denotes the probability of an 

upward trend in change after the observation of {xi}. Similarly, Pd, is the probability of 

a downward trend. L denotes the number of elements in the set {xj}. To calculate upward 

change u and downward change d more intuitively, the formulas are transformed into 

Eq. (4.16)-(4.17). 

𝑢 = −
1

𝑙
∑ 𝑙𝑜𝑔𝑃(𝑋 ≥ 𝑥𝑗
𝑙
𝑗=1 |{𝑥𝑖})                     (4.16) 
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𝑑 = −
1

𝑙
∑ 𝑙𝑜𝑔𝑃(𝑋 ≤ 𝑥𝑗
𝑙
𝑗=1 |{𝑥𝑖})                     (4.17) 

    Step 6: Find the object with the largest change degree and identify the accident 

precursor. If the chart trend is continuously decreasing, it means that the system may 

have a leak, then in engineering practice, the handheld combustible gas concentration 

detector can be used to assist in diagnosis and improve accuracy. 

4.2.3.5 Potential risk analysis 

The upward trend or downward trend identified in section 2.3.4 is used as the input of 

each object’s BN fragment, which is named as “lower,” “normal,” or “higher.” The 

difference ∆p between the posterior and prior probability of BN is used to measure 

potential risk and provide risk ranking [252, 253]. For GTS operators, this ranking can 

be used to determine the order of risk remediation and improve the efficiency of daily 

maintenance. 

4.3 Case study 

4.3.1 Objects identification 

An industrial case study exemplifies the proposed methodology’s various steps. A gas 

transmission station (GTS) in Shaanxi, China, is used as example. The basic process 

flow diagram of the station is shown in Figure 4.5. According to the experts’ opinion 

and the GTS’s key equipment functions mentioned in [4, 22], this GTS is divided into 

five categories of units: entrance unit, filtration and separation unit (FSU), pressure 

regulating unit (PRU), flow metering unit (FMU), and export unit. Based on the overall 

structure of the gas transmission station, we simplify the process flow into a reliability 

block diagram (RBD), as shown in Figure 4.6. For example, there are two objects with 

identical structures in the FSU. Then, in RBD, they are simplified as object 2 and object 

3. Similarly, the two objects with identical structures in PRU are simplified as object 4 

and object 5; FMU1 in Figure 4.5 is simplified into object 7 and object 8; FMU2 in 
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Figure 4.5 is simplified into object 6. It should be mentioned that this chapter only 

studies the situation when the gas transmission station is in regular operation, so the 

venting pipeline and valves are not reflected in the diagram. Due to the limitation of the 

diagram, we cannot put all the gas lines and drainage lines into the dashed boxes of the 

corresponding units in the diagram. Still, they are taken into account in the actual 

analysis. 
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Figure 4.5 Process flow diagram 
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Figure 4.6 Reliability block diagram 

4.3.2 BN structure modeling of each object 

Take the filtration and separation unit as an example. According to the procedure of 

FMEA, firstly, we draw a functional block diagram, as shown in Figure 4.7. Then we 

conduct FMEA based on the identified functions.  
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Figure 4.7 Functional block diagram 

    Corrosion can cause loss of metal and thus cause leakage. Also, corrosion can lead 

to valve rust, causing valve components to jam. The valves and pipes can easily form 

freeze blockage in a low-temperature environment. And in normal environments, 

foundation settlement can also affect the deformation or failure of components. 

Management factors can also lead to failures, such as insufficient valve lubrication, 

design, and construction defects [199]. According to Table 4.2, we map FMEA to BN, 

as shown in Figure 4.8.  

Table 4.2 FMEA of object 2 

Function Component Failure 

mode 

Effect Causes of failure 

F1 Drain valve 

 

Internal 

leakage 

The valve cannot be closed tightly, 

L1 is lower than normal, and L2 is 

higher than normal. 

Valve flap corrosion; improper 

assembly of components 

External 

leakage 

Drainage leaks, L1 and L2, are 

lower than normal. 

Valve stem corrosion; 

deformation of the valve and 

pipe connection due to 

foundation settlement; low 

temperature causes components 

to freeze and crack. 

Blocking The drainage system cannot 

operate properly, L1 is higher than 

normal, and L2 is lower than 

normal. 

Lubrication failure; actuator 

failure; component rusting; low 

temperature 

F2 Drain pipes Leakage Drainage leaks, L1 and L2, are Corrosion; foundation 
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lower than normal settlement; external damage 

Blocking The drainage system cannot 

operate properly, L1 is higher than 

normal, and L2 is lower than 

normal. 

Low temperature 

F3 Filter 

separator 

Cartridge 

blocking 

The filtration system cannot 

operate properly; L1 is higher than 

normal, P1 is higher than normal, 

and P2 is lower than normal. 

Cartridge aging; excessive 

impurities in natural gas; 

unqualified cartridge; low 

temperature 

Leakage Media leaks, L1, P1, and P2 are 

lower than normal. 

Cylinder with an unqualified 

seal; corrosion; foundation 

settlement 

F4 Left ball 

valve 

Internal 

leakage 

The valve cannot be closed tightly, 

P1 is lower than normal, and P2 is 

higher than normal. 

Valve flap corrosion; improper 

assembly of components 

External 

leakage 

Gas leaks, P1 and P2, are lower 

than normal. 

Valve stem corrosion; 

foundation settlement; low 

temperature 

Blocking The system cannot operate 

properly, P1 is higher than normal, 

and P2 is lower than normal. 

Lubrication failure; actuator 

failure; component rusting 

F5 Right ball 

valve  

Same as F4 

F6 Gas 

transmission 

pipe 

Leakage Gas leaks, P1 and P2, are lower 

than normal 

Corrosion; foundation 

settlement; external damage; 

low temperature 

F7 Gas 

collecting 

pipe 

Leakage Gas leaks, P1 and P2, are lower 

than normal 

Corrosion; foundation 

settlement; external damage; 

low temperature 

    The causes of failure in Table 4.2 are summarized and divided into four categories: 

corrosion control level, foundation settlement, environmental temperature, and 

management level. The “as low as reasonably practicable” (ALARP) concept divides 

the risk into three regions: unacceptable, tolerable, and acceptable. Therefore, for the 

risk of foundation settlement, we simplify the degree into two levels: acceptable and 

unacceptable; for corrosion control, environmental temperature, and management, 

“normal” and “low” would be more suitable. 
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Figure 4.8 BN structure of object 2 

4.3.3 BN parameter calculation 

LNG is used to analyze the relationship between the failure cause node (first layer of 

BN) and the failure node (second layer of BN). The initial CPTs are obtained through 

expert knowledge, as shown in Table 4.3, and the detailed calculation steps are shown 

in the Appendix. The CPTs using LNG calculation in Eq. (4.6) are shown in Table 4.4. 

Other nodes are calculated similarly and therefore omitted. The CPTs between failure 

node and state node are shown in Table 4.5. 

Table 4.3 The initial CPTs 

Parent Corrosion 

control level 

Foundation 

settlement degree 

Environmental 

temperature 

Safety management 

level 

State Normal Acceptable Normal Normal 

Absent 0.7703 0.2098 0.5425 0.6184 

Present 0.2297 0.7902 0.4575 0.3816 

    In Table 4.4, there is still a 1% probability that the DV failure state is absent when 

the risk factors occur. Because in this chapter, we have only used the main risk factors 

for analysis, but there are still other unknown factors that lead to DV failure, which is 

called uncertainty. Using Leaky Noisy-or gate, we gather these unknowns into a factor 

XL. The known risk factors occur, but XL does not, resulting in a 1% probability of DV 

failure to be absent.  
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Table 4.4 CPTs of DV failure 

Corrosion 

control level 

Foundation 

settlement degree 

Environmental 

temperature 

Safety 

management level 

DV failure 

    Absent Present 

Normal Acceptable Normal Normal 0.9686 0.0314 

Normal Acceptable Normal Low 0.9177 0.0823 

Normal Acceptable Low Normal 0.9314 0.0686 

Normal Acceptable Low Low 0.8203 0.1797 

Normal Unacceptable Normal Normal 0.9603 0.0397 

Normal Unacceptable Normal Low 0.8960 0.1040 

Normal Unacceptable Low Normal 0.9132 0.0868 

Normal Unacceptable Low Low 0.7726 0.2274 

Low Acceptable Normal Normal 0.8634 0.1366 

Low Acceptable Normal Low 0.6421 0.3579 

Low Acceptable Low Normal 0.7015 0.2985 

Low Acceptable Low Low 0.2177 0.7823 

Low Unacceptable Normal Normal 0.8272 0.1728 

Low Unacceptable Normal Low 0.5471 0.4529 

Low Unacceptable Low Normal 0.6222 0.3778 

Low Unacceptable Low Low 0.0100 0.9900 

    As shown in Table 4.5, the EM algorithm calculates the CPTs between other nodes. 

The original data is taken mainly from the historical failure records of the GTS. In the 

EM algorithm, the M step: maximum likelihood estimation may be used to overcome 

the problem of incomplete historical data records. 

Table 4.5 CPTs between failure node and state node 

Node State Present 

  DV 

failure 

DP failure FS 

failure 

Left BV 

failure 

Right BV 

failure 

DV state Normal 0 - - - - 

Internal leakage 0.2500 - - - - 

External 

leakage 

0.5033 - - - - 

Blocking 0.2467 - - - - 

DP state Normal - 0 - - - 

Leakage - 0.5842 - - - 

Blocking - 0.4158 - - - 
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FS state Normal - - 0 - - 

Cartridge 

blocking 

- - 0.2801 - - 

Leakage - - 0.7199 - - 

Left BV state Normal - - - 0 - 

Internal leakage - - - 0.2957 - 

External 

leakage 

- - - 0.5524 - 

Blocking - - - 0.1519 - 

Right BV 

state 

Normal - - - - 0 

Internal leakage - - - - 0.1742 

External 

leakage 

- - - - 0.6105 

Blocking - - - - 0.2153 

4.3.4 OOBN modeling of the GTS system 

Similarly, as shown in Figure 4.9 and Figure 4.10, we model the pressure regulating 

unit and the flow metering unit in the same method as in Section 3.2 and 3.3. 

 

Figure 4.9 BN of object 7 

 

Figure 4.10 BN of object 4 
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    Under normal circumstances, the outlet pressure fluctuates up and down within a 

specific range. Still, if there is a continuous drop or rise in pressure, the GTS system 

may have some abnormal situation. Utilizing anomalous monitoring data and 

combustible gas concentration in each object area can be initially determined which 

object is most likely to have potential risk.  

    Usually, the emergency shut-down valves at the inlet and outlet stations are fully 

open. And when the outlet pressure is abnormal, it should be checked for faults in the 

first place. Therefore, we do not consider objects 1, 9 and 10 when diagnosing faults in 

the system. The OOBN model for a GTS system used for diagnosis is shown in Figure 

4.11.  

Object 4 Object 7

Object 8
Object 6

Object 3
Object 5

The monitoring 

data of each object

Combustible gas 

concentration in 

each object area

Object 2

Figure 4.11 OOBN model 

4.4 Discussions 

4.4.1 Model performance analysis 

Historical failure records of the GTS are used to evaluate the performance of the 

proposed model. To better illustrate the ability of the PAA-CUSUM algorithm to detect 

potential system risks with its sensitive detection, we selected data from 0 to 24 hours 

before the failure record to conduct the analysis. The related Bayesian inference of GTS 
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can be divided into three steps. 

    First, the PAA-CUSUM algorithm detects an abnormality in the outlet pressure 

over 24 hours. Then, by calculating the change degree of indicator readings in each 

object area, the object with the highest potential risk can be determined with the most 

significant change degree. 

    Then, determine whether the abnormal indicator reading shows a lower or higher 

reading than usual. For example, if it offers a downward trend, the state of the pressure 

node can be set to “Lower,” and the value of ∆p can be calculated. If a component 

failure node in the obtained object has a ∆p that is significantly higher than the others, 

the component has the highest potential risk. If it is not that significant, according to 

∆p, a ranking list of the suspected objects can also be provided. Finally, the component 

state node is checked, where the state with the most significant ∆p is the possible failure 

state of the component. 

    The data has already been tested in phase I, and no out-of-control occurs, so we 

can directly use the PAA-CUSUM chart to capture a very small shift. 

Case 1: 

    Due to impurities such as water and hydrogen sulfide in the gas, corrosion leakage 

occurs in the pipe located between BV and PRV in object 4. The PAA-CUSUM 

algorithm detected the outlet #1 pressure as a continuous drop, as shown in Figure 4.12, 

indicating somewhere abnormal in the system. Therefore, the relevant monitoring data 

of each object was retrieved for PAA-CUSUM analysis, and the change degrees were 

calculated using Eq. (4.16)-(4.17). Figure 4.13 shows the indicator readings based on 

the PAA-CUSUM algorithm in objects 4 and 7. The other indicator readings are 0 or 

fluctuating around 0 after CUSUM analysis, which illustrates no risks in the object area. 

The calculated change degree of objects 4 and 7 are 2.21 and 1.27, respectively. 

Therefore, object 4 has the highest potential risk.  
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Figure 4.12 CUSUM chart of outlet #1 pressure 

 

(a) Object 4                  (b) Object 7 

Figure 4.13 CUSUM chart of abnormal objects 

    Combustible gas concentration measurement is an additional way to determine the 

risk of leakage in the system. Based on Figure 4.10, the two pressure nodes are set to 

“Lower,” and the combustible gas concentration node is set to “Abnormal.” The 

difference ∆p between the calculated prior probabilities and the posterior probabilities 

is shown in Figure 4.14. 

    According to Figure 4.14, the most likely failure in object 4 is the gas transmission 

pipeline leakage because of its highest ∆p value. The subsequent most likely failure is 

the ball valve with external leakage. The most likely risk factor is corrosion. According 

to the failure records, it is due to corrosion that causes gas pipeline leakage, thus 

indicating the correctness of the proposed method. 
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Figure 4.14 Prior and posterior probabilities 

 

Case 2: 

    Due to the cold winter weather, the flowmeter gauge located in object 6 was frozen 

and blocked. The PAA-CUSUM algorithm detected the outlet #2 pressure as a 

continuous increase, as shown in Figure 4.15, indicating abnormal in the system. 

Therefore, the relevant monitoring data of each object was retrieved for PAA-CUSUM 

analysis. Figure 4.16 shows the indicator readings based on the PAA-CUSUM in object 

6. The other indicator readings are 0 or fluctuating around 0 after CUSUM analysis, 

which illustrates no anomalies in the object area. 

 

Figure 4.15 CUSUM chart of outlet #2 pressure 
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Figure 4.16 CUSUM chart of object 6 

    Based on Figure 4.9, the leaf node about pressure in object 6 is set to “Lower.” 

The difference ∆p between the calculated prior probabilities and the posterior 

probabilities is shown in Figure 4.17. 

 

Figure 4.17 Prior and posterior probabilities 

    According to Figure 4.17, the most likely failure in object 6 is the flowmeter gauge 

blocking because of its highest ∆p value. The subsequent most likely failure is the ball 

valve with external leakage. The most likely cause of failure is low temperature. 

According to the failure records, it is due to low temperature that causes flowmeter 

gauge blocking, thus indicating the correctness of the proposed method. 

Similarly, we identify other precursors, as shown in Table 4.6. 
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Table 4.6 Other cases 

Case 

number 

Object with 

maximum potential 

risk 

Component with maximum 

potential risk 

Actual failure record 

1 Object 2 LBV(internal leakage, ∆p=0.5113) 

RBV(internal leakage, ∆p=0.2626) 

Object 2, RBV, internal 

leakage  

2 Object 7 LBV(blocking, ∆p=0.4462) Object 7, LBV, blocking 

3 Object 3 FS（blocking, ∆p=0.3219） Object 3, FS, blocking 

    The case studies above demonstrate the effectiveness of the proposed method in 

detecting anomalies and identifying accident precursors before formal reporting fails. 

According to case#1 in Table 4.6, the component that fails may not be the one with the 

highest potential risk, but it must have a high ranking of potential risk. Among the 

conclusions drawn from the five cases above, the components with the highest potential 

risk matched 80% of the historical records, and the top two components with potential 

risk matched 100% of the historical records. In practice, GTS operators should check 

the components with a high order of potential risk in objects with accident precursors 

to prevent multiple parts from failing simultaneously. 

4.4.2 Sensitivity analysis 

The volume of information communicated between two or more variables is called 

mutual information. Take two variables as an example; the stronger the correlation 

between the variables, the larger the mutual information. Eq. (4.18) may be used to 

calculate the mutual information between Y and X [254]. 

H(X: Y) = ∑ ∑ P(x, y)log(
P(x,y)

p(x)p(y)x∈Xy∈Y )               (4.18) 

where P(x,y) represents the joint probability distribution of X and Y, p(x) and p(y) 

represent marginal distribution function of X and Y. 

    Take the gas transmission pipe in object 4 as an example; the calculated mutual 

information after normalization is shown in Table 4.7. To verify the correctness of the 

results obtained by mutual information calculation, the sensitivity analysis function of 

GeNIe software is utilized, as shown in Figure 4.18. The gray nodes indicate irrelevance, 

and the darker the red nodes, the higher the sensitivity, which is consistent with the 
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results of mutual information calculation. Therefore, for the gas transmission pipe in 

object 4, the risk factors are as follows: corrosion>safety management>foundation 

settlement>environmental temperature. 

Table 4.7 Mutual information between gas transmission pipe and first layer nodes in 

object 4 

Node Mutual information(%) 

Gas transmission pipe 100 

Corrosion control level 4.09 

Safety management level 1.21 

Foundation settlement degree 0.31 

Environmental temperature 0.19 

 

 

Figure 4.18 Sensitivity analysis of object 4 

    Similarly, the critical risk factors of other components in the GTS system are 

identified and summarized, as shown in Figure 4.19. It can be concluded that corrosion 

is the risk factor that has the most significant impact on this GTS system.  

 

Figure 4.19 Critical risk factors of components in the GTS system 
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4.4.3 Model comparison 

Table 4.8 shows the basic parameters of the different modeling methods. Compared to 

BN, OOBN with LNG reduces the number of nodes by over 50% and the number of 

CPTs by over 60%. Compared to OOBN, OOBN with LNG also reduces the number of 

CPTs by over 20%. Therefore, OOBN with LNG is beneficial in terms of node number 

and CPT input, which can simplify the model and minimize the GTS operators’ 

workload, allowing users to operate more efficiently. 

Table 4.8 Comparison of different methods 

Model parameters BN OOBN OOBN with LNG 

Node number 106 47 47 

CPT number 976 452 348 

Highest ∆p value in case 1 72.35% 72.35% 74.27% 

Highest ∆p value in case 2 44.28% 44.28% 45.70% 

    In case 1 and case 2, the risk rankings calculated using BN and OOBN are the 

same as those calculated using OOBN with LNG, indicating the accuracy of OOBN 

with LNG is guaranteed. The ∆p value measures the difference between the posterior 

and prior probability of BN. A larger ∆p value indicates that the model is more sensitive 

to the inputs and better able to detect potential risk factors. As a result, OOBN with 

LNG modeling is more accurate. 

    To demonstrate the applicability of the proposed PAA-CUSUM method, we 

randomly intercepted 300 minutes of normal outlet pressure data for analysis. As shown 

in Figure 4.20, the red line indicates the alert line. After applying the CUSUM algorithm 

to the phase Ⅱ data, it causes false alarms. But we discover that by reducing the data 

dimensionality, the PAA-CUSUM algorithm may effectively minimize the false alarm 

rate and create a decent denoising impact. 
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(a) CUSUM                      (b) PAA-CUSUM 

Figure 4.20 Model comparison 

4.4.4 Model validation 

The three axioms proposed by Jones et al.[255] are used to perform model validation. 

If the model is robust, the rise or reduction in each parent node’s prior probability 

should result in a proportionate increase or decrease in the child node’s posterior 

probabilities. The evidence set’s impact should always be stronger than the sub-

evidence’s impact. According to the sensitivity analysis, the results satisfy the axioms, 

partially demonstrating the proposed model is rational and valid. 

4.5 Conclusions 

This research aims to present a novel method for risk analysis in GTS systems. This 

chapter establishes a risk analysis model framework based on OOBN according to the 

structure and process flow of the GTS system, which can effectively identify the 

system’s accident precursors. For the components, the analysis result can provide the 

ranking of potential risk from high to low, as well as their possible failure types and 

failure causes, which can guide the GTS operator to perform efficient risk rehabilitation. 

In this chapter, the structure of BN network segments of each object is established 

through the mapping of FMEA. The CPT parameters of each BN segment are 

determined through the combination of LNG and EM algorithms, which increases the 

expression of uncertainty and solves the problems of small data samples and imperfect 
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historical records for the modeling process of engineering practice. This study uses the 

PAA-CUSUM algorithm to analyze the monitoring data and then inputs the results into 

the BN segments of each object for risk analysis. The PAA algorithm performs well in 

terms of data dimensionality reduction and denoising, while the CUSUM algorithm 

performs well in terms of identifying small trend changes in the data. 

The proposed method is a promising approach to risk analysis of the GTS system. 

However, the followings are some limitations. (1) The risk factor classification can be 

more thorough. With comprehensive data, more in-depth analysis may be conducted in 

the future. (2) Only the daily regular operation of the GTS system is considered, but not 

the risks under other operating conditions such as venting. (3) Future studies on more 

complicated systems will require a more precise component separation, such as the 

process piping segregated according to pipe diameter and other factors. As a result, 

future studies should concentrate on these issues to ensure the stable and smooth 

operation of the GTS system. 
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Chapter 5: Reliability analysis of corroded 

pipes using MFL signals and Residual 

Neural Networks  

5.1 Introduction 

Pipelines constructed of carbon steel are used to transport oil and natural gas across 

long distances to serve the world’s energy needs. As most of the pipes are buried 

underground, it is possible for the soil and other environmental factors that influence 

pipelines to induce various types of corrosion [256, 257]. These types of corrosion 

threaten the pipeline’s integrity, considerably increase the hazards associated with 

pipeline operation, and may even lead to accidents [258]. 

According to the PHMSA [259], the majority of ILI detectable leaks are caused by 

corrosion in high-consequence areas (HCA), as shown in Figure 5.1. In addition, 

according to [260], over 60% of reported pipeline failures in southern Mexico may be 

attributed to external corrosion. These statistics illustrate that corrosion is one of the 

most significant threats to pipeline integrity. Therefore, pipeline operators should 

prioritize dealing with pipeline corrosion and analyzing the pipeline’s reliability to 

ensure safe operation. 

 

Figure 5.1 Gas transmission leak cause of HCA in the 2005 - 2022 period 

Pipeline ILI carried out regularly can effectively reduce the likelihood of incidents 

and allow the operators to comprehensively understand the pipeline's corrosion 

58%

1%

12%

29%

Corrosion Stress corrosion Manufacturing Construction



88 

 

conditions and reliability status, thereby taking prompt action to maintain and repair 

the pipeline's defects. For example, Xie and Tian. [261] and Abubakirov et al. [262] 

utilized the ILI results to find the optimal inspection interval. Furthermore, based on 

the ILI data, Amaya-Gómez et al. [263] proposed a dynamic segmentation and 

clustering to analyze the integrity of corroded pipeline; Wang et al. [264] established a 

stochastic defect growth model for corroded pipelines.  

Magnetic flux leakage (MFL) is the most common technique in pipeline ILI [265]. 

Therefore, more and more scholars have studied the MFL signals to obtain defect 

information. Examples include using pattern-adapted wavelets and artificial neural 

networks (ANN) to estimate the length and depth of metal-loss defects [86]; using a 

multiscale Single Shot MultiBox Detector (SSD) network to automatically identify the 

location of girth weld, spiral weld, and defect [266]; using improved particle swarm 

optimization and a RBFNN to recognize the width and depth of defects [267]. 

Based on the obtained defect information, a subsequent reliability analysis can be 

conducted. In-service pipelines experience degradation as a result of various risk factors. 

The degradation process is contingent upon time, leading to the temporal variability of 

the structural reliability of pipelines. Therefore, it is necessary to analyze pipelines' 

reliability and future reliability trends to better conduct integrity management, optimize 

costs, and derive the optimal re-assessment time interval [145, 268]. The related studies 

are shown in Table 5.1.  

The following conclusions may be drawn from the research in Table 5.1: (1) In 

light of the development of “Oil and Gas 4.0,” machine learning and deep learning have 

significant promise in the applications of the pipeline industry [269], particularly in 

terms of data analysis and interpretation. (2) Some research only considers the defect 

depth and length without considering the defect shape or defect’s effective area when 

establishing the algorithm models, leading to less precise reliability analysis results. (3) 

Most research focuses on processing MFL inspection data to obtain the defect’s 

geometry and then using the geometry information to conduct the subsequent analysis, 

including reliability prediction, failure pressure prediction, residual strength prediction, 
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et al. The calculation and analysis procedures are complicated and time-consuming. In 

this way, the pipeline operators may take much longer to obtain the final reliability 

result rather than evaluating the pipeline status efficiently and taking maintenance 

measures promptly. 

Table 5.1 Some relevant studies 

Literature Proposed method Problems solved 

[136] Back propagation neural 

network method 

Predict reliability of corroded 

pipeline under combined loadings 

[270] Multilayer perceptron and 

modified feedforward neural 

network 

Predict residual strength of 

corroded pipelines  

[271] First-order reliability method 

and limit state function 

Analyze the reliability of 

submarine pipeline with corrosion 

defects 

[272] FE-based model Analyze the defect growth and 

predict failure pressure 

[273] Extreme value analysis  Predict the depth of extreme pits 

[137] Back propagation neural 

network 

Predict triple failure pressure of 

corroded pipes 

[274] Subset simulation Analyze the reliability of corroded 

natural gas pipeline 

This chapter proposes an approach for directly obtaining pipelines' reliability and 

provides pipeline operators with risk management suggestions using MFL inspection 

data. Compared to previous research, the contributions are summarized as follows. (1) 

The FE simulation of MFL signals and reliability analysis are combined through deep 

learning methods, allowing the MFL signals to be directly mapped to the pipeline’s 

reliability. The principles of reliability calculation based on the effective area model 

rather than just depth are also effectively integrated into this mapping process, which 

can obtain more accurate results. (2) A novel ResNet-based reliability prediction 

method is proposed, making the analysis process more accurate and efficient. The case 

in this chapter shows that, compared to traditional methods, the proposed model's 

accuracy is more than 20% higher, and the computational efficiency has been increased 

by 200 times. (3) The re-assessment interval optimization method is also integrated into 

the deep learning algorithm, which can automatically generate the optimal time interval 



90 

 

and can effectively help pipeline operators make decisions based on the MFL inspection 

signals. 

The rest of this chapter is structured as follows. Section 2 introduces some basic 

concepts and the proposed method; Section 3 discusses the model performance; Section 

4 provides an industrial application to demonstrate the proposed method; Section 5 

presents the conclusions. 

5.2 Methodology 

5.2.1 ResNet 

A convolutional neural network (CNN) is a feedforward neural network with a deep 

structure and convolutional computation [275]. CNN has been demonstrated to deal 

effectively with audio, time series, and signal data [276, 277]. However, the accuracy 

of the CNN network reaches a saturation point or possibly drops when the number of 

CNN layers comes to a certain level, making it challenging to train the model. He et al. 

[278] introduced a residual learning framework (residual network, ResNet) to solve the 

degradation problem that arose in deep networks and demonstrated that the framework 

could be easily trained even with deep architectures. 

A typical CNN block and a ResNet block are depicted in Figure 5.2(a) and (b), 

respectively. As can be found, the ResNet block differs from the standard CNN block 

in having one additional shortcut connection [279]. Shortcut connections guarantee that 

the gradient may still be propagated backward even after many neural network layers. 

This way, the neural network model's performance and training effectiveness are 

significantly enhanced [280]. 

The residual network is composed of a series of residual blocks. A residual block 

can be expressed as: 

𝐻 = 𝑋 + 𝐹(𝑋)                          (5.1) 

where H denotes the output, X represents the identity mapping and F(X) represents the 

residual mapping. The specific structure is shown in the Figure 5.2. 
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Figure 5.2 Structure comparison of standard CNN block and ResNet block 

5.2.2 The proposed method 

The specific steps of the proposed method are shown in Figure 5.3. First, the three-axial 

MFL inspection data is obtained from the FE simulation. Then, the reliability function 

is established using the limit state function (LSF) and MCS. According to the defect 

depth and effective area model, the LSF is established. After reliability calculations, the 

data set is labeled. In the algorithm model’s architecture constructing stage, the general 

residual blocks are first constructed, and then specific ResNet architectures are 

constructed. In this chapter, the structures of 4th-Runge–Kutta Net (RK4-Net) and 

Euler-Net are integrated into the model establishment. After the training and testing, 

the model can be applied to the industry analysis and provide managerial suggestions 

for the decision-makers. 

This study proposes an approach for quickly determining pipelines’ reliability, 

optimal re-assessment interval, and cost rate (CR) based on MFL inspection data and 

ResNet. The fundamental concept of ResNet is to establish an “identity shortcut 

connection,” which may boost both the performance of the model and the efficiency of 

its training. Compared with the methods used in the existing studies in Table 5.1, 

ResNet’s image processing abilities are superior, allowing it to more effectively extract 

the characteristics of MFL signals, ultimately leading to more satisfying results. In 

establishing the LSF and labeling the dataset, the effective area of the defect is also 
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considered instead of just the defect depth, which leads to more accurate results. In 

developing the structure of the ResNet block, this chapter refers to the idea of the 

ordinary differential equation (ODE) solver. It introduces a structure based on the RK4 

method, improving the model's accuracy. In addition, the FE model is combined with 

ResNet, and the large volume of data obtained from FE simulation in this chapter 

provides good support for ResNet training. Furthermore, the re-assessment interval 

optimization algorithm is also combined with ResNet, allowing pipeline operators to 

obtain the optimal time interval for re-assessment and make optimal cost decisions. 

Establish the finite element model

Obtain the tri-axial detection data of 

MFL

Pre-process the data

Establish reliability function based on 

LSF and MCS

Calculate LSF based on defect depth 

and effective area model

Construct the residual blocks

Initialize the parameters

Train ResNet

Test ResNet

Start

Stage 1

Stage 2

Stage 3

Stage 4

Construct the ResNet architecture 

End

Apply the proposed model to predict 

reliability

Obtain the optimal re-assessment 

interval and CR

Stage 5

Calculate the reliability data and 

construct the label data set

 

Figure 5.3 The specific steps of the proposed method 



93 

 

5.2.2.1 Finite element model 

As shown in Figure 5.4, when performing an MFL inspection, a permanent magnet is 

used to magnetize the ferromagnetic pipe wall almost to the point of saturation. The 

existence of a defect induces an increase in the flux density in the region immediately 

around the defect. This, in turn, causes an increase in reluctance and results in the 

leaking of flux lines into the region around it. Due to this, a magnetic field will begin 

to “leak,” which may be detected using Hall sensors [281, 282]. Figure 5(a) shows a 

defect sample in a rectangular cuboid shape. Figure 5.5(b) shows an MFL tool for the 

pipe with an outer diameter of 323 mm and a wall thickness of 8 mm in the engineering 

application.  

 

Figure 5.4 The diagram of MFL inspection principle 

(a) Defect (b) MFL tool Steel brushes

 Magnets Sensor 

array

Batteries and driving section
Track recording section

Deformation and 

IDOD detection 

section
2mm*0.6mm*6mm

Figure 5.5 The industrial situation 

In this chapter, a three-dimensional solid equivalent simplified model based on the 

MFL inspection principle and the industrial situation is established by the FE method, 

as shown in Figure 5.6, which can study the leakage magnetic field of pipeline defects 

and obtain a sample database for analyzing the reliability of pipe sections. Furthermore, 

this model may be used to determine the three-axial MFL signal at the defect as well as 

the spatial distribution of the leakage magnetic field, both of which can be used as the 
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basis for reliability evaluation. In practical engineering, MFL detection requires 

significant time and financial support to obtain rich data, which is extremely 

challenging to perform. The FE simulation not only substantially reduces the time cycle, 

but it also achieves the desired statistical results by approaching as close to the actual 

condition as possible. 

In Figure 5.6, the coercivity of the magnet is set as 6.6 × 105 A/m, and the 

conductivity of steel is set as 2 × 106 S/m. The pipe material is steel Q235, the outer 

diameter is 323mm, and the wall thickness is 8mm. COMSOL Multiphysics is employed 

to carry out the analysis. The solid model is divided into triangular elements to generate 

the mesh model. Since the model's overall size is much larger than the size of the defects, 

the mesh in the neighboring area of the defects is encrypted to obtain more reasonable 

results while ensuring computational efficiency. The B-H curve of the components is 

shown in Figure 5.7. The lift-off distance is set as 2mm. The distance of the defect along 

the axial direction of the pipe is defined as the defect length; the distance of the defect 

along the circumferential direction of the pipe is defined as the defect width; the 

distance of the defect along the radial direction of the pipe is defined as the defect depth. 

The sample MFL signal is shown in Figure 5.8. 

Yoke

Magnet Brush

Pipe
Defect

 

Figure 5.6 The FE model 

 

(a) B-H curve of the pipe 

 

(b) B-H curve of the yoke 

 

(c) B-H curve of the brush 

Figure 5.7 B-H curve of the components 
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(d) Bx 

 

(e) By 

 

(f) Bz 

Figure 5.8 MFL signal sample 

We modeled the MFL signals when detecting the cuboid and ellipsoidal defects. 

Through the FE simulation, we randomly generated 3750 sets of data, including 1750 

sets of ellipsoidal defect data (diameter in the range of 2mm - 20mm, depth in the range 

of 0.5mm - 6mm) and 2000 sets of cuboid defect data (length and width in the range of 

2mm - 20mm, depth in the range of 0.5mm - 6mm). 

5.2.2.2 Reliability function establishment 

The radial depth and axial length may represent pipe corrosion. According to Eq. (5.2) 

- (5.3), corrosion depth and length are linear factors of time for the corrosion process. 

𝑑(𝑇) = 𝑑0 + 𝑣𝑟𝑇                            (5.2) 

𝐿(𝑇) = 𝐿0 + 𝑣𝑎𝑇                            (5.3) 

where d0 and L0 are the initial corrosion depth and length of the defect, vr is the radial 

corrosion rate, va is the axial corrosion rate, and T is the time elapsed since the last 

internal inspection.  

For an operational pipeline subject to a risk brought on by corrosion, perforation 

leaking and bursting are two potential failure mechanisms [27]. This chapter mainly 

considers the single corrosion defect. The maximum allowable corrosion depth of the 

pipe cannot exceed 80% of the pipe wall thickness [283]. Hence, the difference between 

the maximum allowable corrosion depth and the actual corrosion depth may be used to 

define the LSF of pipe corrosion perforation, as shown in Eq. (5.4). 

𝑔1(𝑇) = 0.8𝑡 − 𝑑(𝑇)                        (5.4) 

where t is the wall thickness of the pipe, d indicates the depth of the corrosion defect. 

According to the pipe burst failure mechanism, for developing corrosion defects, 
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the LSF of burst failure is defined as the difference between the pipe failure pressure pf 

and the actual operating pressure po, as shown in Eq. (5.5). 

𝑔2(𝑇) = 𝑝𝑓(𝑇) − 𝑝0(𝑇)                     (5.5) 

The reliability calculation is shown as follows: 

𝑅(𝑇) = 1 − 𝑃𝑓(𝑇) = 1 − 𝑃[𝑔(𝑇) < 0]              (5.6) 

where Pf (T) is the total failure probability of the two failure types, which can be 

calculated by the MCS method. It has proven to be an effective tool for the reliability 

evaluation of pipe sections with corrosion defects. Its specific process can be referred 

to [284]. Typically, to attain the requisite precision, the number of random variable 

parameters sampled is 106 times. And the detailed probabilistic characteristics of the 

random variables involved in the reliability analysis can be found in [261], the variables 

are assumed to follow normal distributions. The specific data used for case study is 

provided by pipeline operators. The operating pressure is 6.7 MPa with a standard 

deviation of 0.67 MPa, the radial corrosion growth rate is 0.3 mm/year with a standard 

deviation of 0.03 mm, and the axial corrosion growth rate is 8 mm/year with a standard 

deviation of 0.5 mm. 

5.2.2.3 Effective area model 

This chapter uses PRCI RSTRENG (effective area model) [285, 286] to determine the 

failure pressure pf in the LSF, as shown in Eq. (5.7) - (5.9). 

𝑝𝑓 =
𝜎𝑓𝑙𝑜𝑤2𝑡

𝐷
[

1−(𝐴(𝑇) 𝐴0)⁄

1−(𝐴(𝑇) 𝐴0)⁄ 𝑀−1]                           (5.7) 

𝑀 = √1 + 0.6275(
𝐿(𝑇)

√𝐷𝑡
)2 − 0.003375(

𝐿(𝑇)

√𝐷𝑡
)4, if 𝐿(𝑇) ≤ √50𝐷𝑡       (5.8) 

𝑀 = 3.3 + 0.032(
𝐿(𝑇)

√𝐷𝑡
)2, if 𝐿(𝑇) > √50𝐷𝑡                (5.9) 

where σflow is flow stress, D is pipe outer diameter, t is the wall thickness, M is the 

bulging factor, L is the defect length. A0 denotes the original cross-section area, as 

shown in Eq. (5.10), A(T) represents the metal loss area of a complex defect profile in 

the axial plane, which is the “effective area”, the specific calculation formula is shown 

in Eq. (5.11). Figure 5.9 also demonstrates the effective area of a defect. 
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𝐴0(𝑇) = 𝑡𝐿(𝑇)                         (5.10) 

𝐴(𝑇) = 𝛼𝐿(𝑇)𝑑(𝑇)                        (5.11) 

where 𝛼 = 1  for rectangular equivalent shape, 𝛼 = 2/3  for parabolic equivalent 

shape, 𝛼 = 0.85 for mixed equivalent shape [287]. 

A0

A

L

t

 

Figure 5.9 Diagram of the effective area A 

5.2.2.4 ResNet establishment 

ResNet is relatively easy to adapt, and accuracy may be raised while increasing the 

network's depth [288]. The structure of the proposed method includes input and output 

layers, a convolution block, a residual block, and fully connected layers, as illustrated 

in Figure 5.10. The input for this study is 100*100-pixel images of the three-axial signal 

that the MFL tool detected. The output is a one-dimensional matrix representing 

reliability values for each year over the next 30 years, the optimal re-assessment interval, 

and the cost rate (CR). According to Figure 5.11, the CNN block developed for this 

study includes two convolution operations and a max pooling operation. Additionally, 

each residual block has both mainline and shortcut connections, as shown in Figure 

5.12. This chapter uses both Euler-Net and RK4-Net to establish the residual blocks for 

further comparison. 

CNN block

Residual block

FC layer

Input (3, 100*100)

Output

bx

by

bz

 Block 1

 Block 2

 Block 3

 Block n

 

Figure 5.10 The general ResNet structure 
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Conv (3, 64)

ReLU

Max pooling

Conv (64, 128)

ReLU

 

Figure 5.11 The structure of the CNN block 

When establishing the ResNet block structure, in addition to building the 

traditional Euler-Net structure as shown in Figure 5.12(a), this study also draws on the 

idea of ODE solvers [289, 290] and designs the network structure in the form of a 

fourth-order Runge-Kutta (RK4) method [291], as shown in Figure 5.12(b). The 

mathematical expressions are: 

𝑘1 = 𝐹(𝑋𝑖𝑛)                             (5.12) 

𝑘2 = 𝐹(
1

2
𝑘1 + 𝑋𝑖𝑛)                         (5.13) 

𝑘3 = 𝐹(
1

2
𝑘2 + 𝑋𝑖𝑛)                         (5.14) 

𝑘4 = 𝐹(𝑘3 + 𝑋𝑖𝑛)                           (5.15) 

𝑋𝑜𝑢𝑡 = 𝑋𝑖𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)                  (5.16) 

where k represents the computation of each module in the residual block, Xin and Xout 

represents the block’s input and output, respectively. 

Conv (128,  256)

ReLU

Conv (256, 128)

ReLU

k1=F(X)

Conv (128,  256)

ReLUConv (256, 128)

ReLU
k2=F(Out1)

Conv (128,  256)

ReLU

Conv (256, 128)

ReLU

Conv (128,  256)

ReLU

Conv (256, 128)

ReLU

k3=F(Out2)

k4=F(Out3)

Out = X+1/6 (k1+2k2+2k3+k4）

Out1=0.5k1+X

ReLU

Out2=0.5k2+X

Out3=k3+X

Conv (128,  256)

ReLU

Conv (256, 128)

ReLU

k1=F(X)

Conv (128,  256)

ReLUConv (256, 128)

ReLU
k2=F(Out1)

Conv (128,  256)

ReLU

Conv (256, 128)

ReLU

Conv (128,  256)

ReLU

Conv (256, 128)

ReLU

k3=F(Out2)

k4=F(Out3)

Out =Out3+k4

Out1=k1+X

ReLU

Out2=k2+Out1

Out3=k3+Out2

X X

(a) Euler-Net (b) RK4-Net  

Figure 5.12 The structure of the ResNet block 
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The typical ResNet expressions and structure reveal that the ResNet constructs 

complex transformations by assembling a series of transformations to a hidden state. 

Furthermore, many studies have demonstrated that the typical ResNet’s iterative 

updates may be seen as an Euler discretization of a continuous transformation. In the 

limit, we may parameterize the continuous dynamics of hidden units using an ODE 

described by a neural network as we add more layers and make smaller steps. Therefore, 

the standard ResNet’s update formulation can be regarded as the numerical Euler 

solution of the ODE. For a comprehensive description, see [292]. And as for the 

numerical analysis, both Euler and RK4 methods are commonly used to solve ODEs. 

When the step size h is very small, the local truncation error of the RK4 method is on 

the order of h5, whereas the total cumulative error is on the order of h4. However, with 

the Euler method, each step's mistake is proportional to h2, and the overall error is 

proportional to h. As a result, the RK method's accuracy is higher than that of the Euler 

method. In this study, the conventional Euler-Net is improved to RK4-Net, upgrading 

the Euler forwards design scheme to a higher-order design scheme, which can increase 

the model’s robustness and accuracy. 

5.2.2.5 Training and testing of ResNet 

The simulated MFL detection signal data were randomly divided into two sets, the 

training and test sets. 80% of the samples for each defect shape are randomly selected 

for training, and the remaining 20% are used to verify the validity of the training model. 

The training set is used to establish a fitted relationship between the reliability in 30 

years and the MFL signal, and the test set is used to evaluate the accuracy of the 

established fitted relationship. The batch size is set as 32. The epoch is set as 200. The 

learning rate is set as 10-4. We can obtain a data-driven pipeline reliability prediction 

model when the established ResNet algorithm is fully trained. 

5.2.2.6 Re-assessment interval optimization 

Reliability analysis aims to support pipeline operators' risk management and decision-
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making processes. Therefore, on the basis of the reliability and its trend obtained from 

the ResNet model, the pipeline operation and maintenance costs can be optimized and 

recommendations for re-assessment intervals can be provided.  

Each pipe section can be considered a “series system” [261]. Then the failure 

probability of a pipe section with multiple independent corrosion defects can be 

expressed as: 

𝑃𝐹𝑝𝑖𝑝𝑒 = 1 −∏ 𝑅𝑑𝑒𝑓𝑒𝑐𝑡,𝑖
𝑛
𝑖=1                       (5.17) 

where PFpipe is the failure probability of the evaluated pipe section, Rdefect,i represents 

the reliability of the i-th defect, n represents the number of defects. 

To help pipeline operators better understand the consequences intuitively, all of 

the consequential losses that result from an incident are given a monetary value-based 

description, as shown in Eq. (5.18) - Eq. (5.19) [293, 294]. 

𝐶𝑐𝑜𝑛,𝑡 = (𝐶𝑒𝑐𝑜 + 𝐶𝑒𝑛𝑣 + 𝐶ℎ𝑢𝑚)/(1 + 𝑟)𝑡                (5.18) 

𝐶𝑒𝑐𝑜 = 𝐶𝑙𝑝 + 𝐶𝑑𝑝 + 𝐶𝑟𝑒                       (5.19) 

where Ccon,t represents the total cost of the failure consequence changing with time t, 

Ceco is the economical cost, Cenv is the environmental cost, Chum is the cost converted 

from the damage to human. Clp is the cost of lost production, Cdp is the cost of deferred 

production, Cre is the cost of repair, r is the discount rate.  

The net present value of total cost is expressed as shown in Eq. (5.20) [295]. 

𝐶𝑡𝑜𝑡𝑎𝑙,𝑡 = (𝐶𝑖𝑛𝑠𝑝,𝑡 + 𝐶𝑟𝑒𝑝𝑙,𝑡 ∙ 𝑃𝐹𝑝𝑖𝑝𝑒 + 𝐶𝑐𝑜𝑛,𝑡 ∙ 𝑃𝐹𝑝𝑖𝑝𝑒 + 𝐶𝑚𝑎𝑖𝑛,𝑡)/(1 + 𝑟)𝑡      

(5.20) 

where Ctotal,t represents the total cost changing with time t, Cinsp,t is the cost from ILI, 

Crepl,t is the replacement cost, Cmain,t is the maintenance cost.  

The cost rate regarding the failure probability is expressed as: 

𝐶𝑅(𝑃𝐹𝑡ℎ) =
𝐶𝑡𝑜𝑡𝑎𝑙,𝑡(𝑃𝐹𝑡ℎ)

𝑇(𝑃𝐹𝑡ℎ)
                       (5.21) 

𝑇(𝑃𝐹𝑡ℎ) = 𝑖𝑛𝑣(𝕀 − 𝑅)(𝑃𝐹𝑡ℎ; 𝛾)                   (5.22) 

where PFth represents the threshold of failure probability, T is the re-assessment time 

interval, R is the predicted reliability, γ  represents the degradation coefficient, 𝕀 

represents the identity operator. 
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5.3 Results and discussions 

5.3.1 Comparison of different deep learning methods 

This chapter uses mean square error (MSE) as the loss function to estimate the model’s 

accuracy. As shown in Figure 5.13 (a) and (b), after 200 epochs of training, the desired 

accuracy can be obtained. In addition, it can also be seen that with the same number of 

iterations, the CNN fails to converge, indicating that the model performance of the 

ResNet family is much better than the CNN. It should be noted that the CNN model 

used for comparison has the same structure as the proposed model except for the 

shortcut connections.  

 

(a) 

 

(b) 

 

(c) 

Figure 5.13 Iterative process of three structures 

The coefficient of determination (R2) and Root Mean Squared Error (RMSE) are 

also used to describe the model’s performance. The RMSE of CNN, RK4-Net, and 

Euler-Net are 108.8890, 0.0296, and 0.0571, respectively. Moreover, as shown in 

Figure 5.14, the coefficient of determination of Euler-Net and RK4-Net are 0.9997 and 

0.9998, respectively, which is much better than that of CNN, indicating that the ResNet 

family performs better. Besides, in the ResNet family, the accuracy of RK4-Net is 

slightly higher than that of Euler-Net, which may also be explained from the perspective 

of ODE: the RK4 method has a higher order of error than the Euler method, so the 

prediction result of RK4-Net is relatively more accurate. 
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(a) 

 

(b) 

 

(c) 

Figure 5.14 Comparison of the training results of the three models 

Nine defect samples are randomly extracted to observe their reliability prediction 

results using different algorithms, as shown in Figure 5.15. Although the effectiveness 

of CNN has been demonstrated in the case of small sample sizes and simple models, 

when faced with more complex situations and more extensive data volumes, the 

prediction results of CNN are significantly less satisfactory than those of the ResNet 

family. Furthermore, since deep CNN networks suffer from the degradation problem, 

the network accuracy saturates and even decreases when the network depth increases. 

But identity mapping in the ResNet family makes the deep network perform at least as 

well as the shallow network without degradation problems. Therefore, the accuracy of 

the ResNet is at least "guaranteed" and more suitable for dealing with massive amounts 

of MFL inspection data. 

 

Figure 5.15 Reliability prediction results for nine randomly selected defects 
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5.3.2 Comparison of traditional and proposed method 

When calculating the re-assessment time interval by MCS and RK4-Net from 100 

randomly chosen points, we found that the relative error was 0.03%, which is negligible. 

Therefore, from the analysis above, it can be concluded that the ResNet-based 

predictions and the results obtained based on MCS are consistent, the results of the 

proposed method are correct. On this basis, we analyze the time required to obtain the 

results using different methods in the same operating environment, as shown in Table 

5.2. To avoid some extreme cases and for a fair comparison, we did 100 tests for each 

method and averaged. Each method is used to analyze the reliability of the same defect 

and the time consumed for each test. 

Table 5.2 Comparison of the computing time 

Model Time(s) 

RK4-Net 0.0534 ± 0.0072 

Euler-Net 0.0444 ± 0.0041 

MCS 10.8357 ± 0.0332 

According to Table 5.2, Euler-Net takes less time than RK4-Net due to its more 

straightforward network structure. However, either Euler-Net or RK4-Net takes far less 

time than MCS. The ResNet family computes nearly 200 times faster than MCS, 

demonstrating superior efficiency. 

In addition, according to Table 5.2 and Figure 5.14, the accuracy of RK4-Net is 

slightly higher than Euler-Net, but RK4-Net takes marginally longer to obtain the 

results. Therefore, in practice, when the situation is more complex and more accurate 

results are needed, RK4-Net is recommended. On the contrary, if the pipeline operator 

places a greater emphasis on efficiency, Euler-Net is the more appropriate method to 

use in cases where a certain degree of accuracy can be guaranteed. 

In the traditional method, people usually idealize the defect cross-section as a 

rectangle [97, 136, 137, 296-298] or only use defect depth and length to obtain 

reliability [116, 284, 299]. However, this study substitutes the effective area of defects 

instead of the idealized defect depth and length into the LSF’s burst failure calculation, 

which is more accurate than traditional methods. 
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We randomly chose two defects for analysis. Figure 5.16 compares the reliability 

results obtained using the traditional method and the proposed method, showing that 

the results obtained using the traditional method are more conservative. Figure 5.17 

shows the comparison of the CR obtained by the traditional method and the proposed 

method. For defect 1, the proposed method yields a 6% reduction in CR compared to 

the traditional method. For defect 2, the proposed method yields a 30% reduction in CR 

compared to the traditional method. When idealizing defects, a portion of the area that 

is not a defect is also accounted for, thus leading to more conservative results from 

traditional methods. Therefore, the proposed method based on the effective area model 

is not only more realistic but can also help pipeline operators avoid cost wastage caused 

by excessive reliability management.  

 

(a) Defect 1 

 

(b) Defect 2 

Figure 5.16 Reliability comparison of the traditional method and proposed method 

 

(a) Defect 1 

 

(b) Defect 2 

Figure 5.17 CR comparison of the traditional method and proposed method 
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5.3.3 Configuration of RK4-ResNet 

In this part, we explore the effect of various network architectures on the model's 

performance. We mainly focus on the effect of the number of residual blocks. The most 

accurate model, the RK4-ResNet model with one to three residual blocks, is 

investigated in this study, and testing is conducted using the same dataset. RK4-ResNet 

performs steadily better as the number of residual blocks rises, according to the test 

results shown in Table 5.3. However, the RK4-ResNet model with three residual blocks 

does not substantially outperform the RK4-ResNet model with two blocks in terms of 

prediction outcomes. Furthermore, compared to RK4-ResNet with two residual blocks, 

RK4-ResNet with three residual blocks requires greater processing time. Therefore, we 

can use RK4-ResNet with two residual blocks to perform the reliability analysis task. 

In addition, we also analyzed the model performance of Euler-Net with two residual 

blocks and CNN with the same depth as two residual blocks from the MSE perspective, 

and the conclusions reached are consistent with those in Section 5.3.1. 

Table 5.3 Experimental results with different network architectures 

Model Max loss Min loss Avg loss 
Training 

time(s) 

RK4-Net (one block) 1.996e-1 1.387e-5 7.148e-2  6.375e-2 2558.14 

RK4-Net (two blocks) 9.868e-2 2.009e-8 2.957e-3  2.887e-3 4634.20 

RK4-Net (three 

blocks) 

9.574e-2 2.158e-8 2.753e-3  2.176e-3 6734.17 

Euler-Net (two blocks) 1.985e-1 2.008e-8 5.7-9e-2  5.522e-2 4420.28 

CNN 4.356e2 2.116e-3 1.089e2  1.065e2 4188.23 

5.4 Industrial application and model validation 

In order to minimize the interference of non-defective factors, the effect of the 

background magnetic field was eliminated, and the field data was filtered. Take the 

sample defect shown in Figure 5.5 as an example. Figure 5.18 demonstrates the MFL 

signal of the defect, which is consistent with the simulation data, illustrating the 

correctness of the FE model.  
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(a) Bx 

 

(b) By 

 

(c) Bz 

Figure 5.18 The MFL signal of the defect 

To further demonstrate the validity of the model, we compared our simulated 

results with the experimental results obtained in [300]. The parameters in the proposed 

FE model were adjusted to match those specified in the reference. The obtained results 

shown in Figure 5.19 closely align with the results presented in [300] for a lift-off 

distance of 1.10 mm, verifying the correctness of the establishment and calculation of 

the proposed model. Meanwhile, the results obtained from the proposed model are also 

consistent in terms of waveform characteristics when compared with other published 

articles [301-303]. 

 

(a) Bx 

 

(b) By 

Figure 5.19 Simulation results for model verification 

The MFL signal data shown in Figure 5.18 are put into the trained model for 

calculation, and the obtained results are shown in Figure 5.20. It can be found that the 

reliability predicted by the model built based on the ResNet family for the future 30 

years is basically the same as the results obtained by MCS, which also indicates the 

proposed model’s validity. Besides, the performance of the RK4-Net is better than the 

Euler-Net, which is consistent with the simulation data analysis. 
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Figure 5.20 The obtained results from different methods 

In engineering practice, the cost can be evaluated by the related experts. Therefore, 

according to Eq. (20)-(25), the relationship between CR and the pipeline’s failure 

probability and the optimal point that minimizes the cost rate is shown in Figure 5.21. 

The corresponding failure probability at the optimal point is 2.49×10-3. Hence, based 

on the reliability curve over time, we can derive the optimal re-assessment time interval 

of 5.33 years. 

 

Figure 5.21 The relationship between CR and failure probability 

5.5 Conclusions 

This research presents a novel method for the reliability management of the corroded 

pipe. This chapter establishes a complete algorithm framework for mapping MFL 

signals to the pipeline’s reliability, optimal re-assessment time interval, and CR, which 
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can improve the efficiency of risk and reliability analysis while ensuring the model’s 

accuracy. Consequently, the results of the suggested method can be an effective pipeline 

integrity management tool that allows operators to evaluate the risk condition of 

corroded pipes after MFL inspections and promptly undertake the appropriate repair 

steps. 

In this chapter, the defect’s effective area is taken into consideration instead of the 

defect depth in the traditional methods when establishing the algorithm framework, 

leading to more accurate results. The ResNet-based data-driven method demonstrates 

its effectiveness for reliability analysis. The data set is simulated from an FE model, 

and an industrial application also verifies the model’s validity. The three-axial MFL 

signals are used as the data-driven model’s input. Through analysis, the performance of 

the neural networks with different architectures is in order: RK4-Net ≳ Euler-Net ≫ 

CNN. The case study also provides guidance on how to apply the proposed method in 

practice. From the MFL inspection signal, the pipeline operators can directly obtain the 

reliability and their changing trends of the pipeline under inspection, as well as 

suggestions for optimizing costs and re-assessment intervals. The proposed model can 

be used to support the digitization management of pipeline operations. 

The proposed method is a promising approach to reliability prediction of corroded 

pipes. However, the following are some limitations. (1) Only regular defects are 

currently considered, and irregular defects are not studied. (2) Only independent defects 

are considered without analyzing the interaction rules of multiple corrosion effects. (3) 

During the process of cost analysis, only the most significant aspects are taken into 

account, and some fixed expenditures are simply ignored. Therefore, further research 

needs to focus on addressing these concerns and including more actual detection 

samples in the training set to make more improvements. Besides, in this study, the 

methodological framework proposed for mapping MFL signals to reliability values, 

optimal re-assessment interval, and cost rate is generalizable. The specific set of 

parameters, including pipeline attributes and probabilistic inputs in the FE model and 

reliability analysis, are used as an example to illustrate the feasibility of the proposed 
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method. Furthermore, for different engineering application scenarios, these parameters 

can be modified to re-train the ResNet and obtain different results. Also, in future 

research endeavors, on the basis of the proposed model, transfer learning is a potential 

technique to handle more diverse tasks and obtain the desired results more flexibly.  
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Chapter 6: Reconstruction of 3-D pipeline 

defect profile based on MFL signals and 

hybrid neural networks  

6.1 Introduction 

The structural integrity of pipelines gradually deteriorates over time due to various 

loading conditions or environmental variables. This may result in incidents like leaks, 

which can cause personal injuries, significant property damage, and contamination of 

the environment [304, 305]. As a result, it is essential for pipeline operators to monitor 

the pipeline's conditions and carry out periodic inspections of the pipeline using a 

variety of inspection methods in order to diagnose damage and guarantee the pipeline's 

safety. The most commonly used pipeline inspection technique is non-destructive 

testing (NDT), which is also one of the essential steps in preventing pipeline incidents 

[306]. 

NDT techniques, including radiographic testing (RT), UT, and MFL, are widely 

utilized to identify pipeline defects [307]. The MFL procedure, compared to other 

inspection methods, is simple, has deficient requirements for the testing environment, 

and can detect a wide range of faults. It is now the most extensively used pipeline fault 

diagnostic technology [308]. The primary principle behind MFL is to generate a 

detection signal source by magnetizing a target magnetic conductor, such as a pipe, and 

then identify the defects by collecting the leakage flux beyond the pipe wall using Hall 

sensors [309]. When the ILI tool moves over a defect, the Hall sensor can detect an 

abnormal leakage flux. Defect size, shape, and other information can be determined by 

analyzing the characteristics of the MFL signal. 

One of the most critical objectives in processing the MFL information is 

reconstructing the defect's three-dimensional (3-D) profile. The defect geometry may 
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be used to direct industrial maintenance and integrity management. Therefore, 

accurately estimating the defect's 3-D profile is of great significance for the safe and 

efficient operation of pipelines. 

Many scholars have conducted related studies, as summarized in Table 6.1, which 

can be classified into four stages: defect identification, defect parameter estimation, 2-

D defect profile reconstruction, and defect 3-D profile reconstruction. In Table 6.1, [7-

11] focus on simply classifying defects and non-defects using deep learning methods 

but cannot quantify the defects precisely. Moreover, [12-18] use FE methods, machine 

learning methods, and signal processing methods to estimate and recognize the size of 

defects, [19-22] use machine learning and geometric methods for the 2-D and 3-D 

reconstruction of defects. 

The following can be found from the research presented above. (1) Most recent 

research on MFL signals focuses on problems with classification and the quantification 

of defect sizes; relatively few of these studies include 3-D reconstructions of defect 

profiles. The defect size quantification only includes estimating the defect length, width, 

and depth rather than determining defect shapes, such as cuboid, spheroid, etc., thus 

reducing the accuracy and comprehensiveness of the results. (2) Some existing studies 

limit themselves to analyzing the single-axis MFL signals or use only the axial and 

radial signals as the basis for analysis. In fact, the MFL signals in the circumferential 

direction also contain more detailed features that are not sufficiently characterized by 

other directions and should not be neglected. The analysis based on the three-axes MFL 

signal is beneficial for obtaining more comprehensive information about the defect. The 

extraction of only single-axis signals has information deficiencies, which affects the 

accurate estimation of defects. (3) Regarding the data sources, a few studies have used 

magnetic dipole models and retrieved the data via simulations. The model's simplicity 

and ease of calculation are evident benefits, but an obvious limitation is its insufficient 

simulation accuracy, making it difficult to achieve correct reconstruction results. Some 

studies use field data to perform the analysis. The small number of defect samples in 

some actual inspections and the insufficient number of defect samples obtained in the 
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pull test may also lead to inaccurate results during the modeling. (4) The shapes that 

can be reconstructed by the existing defect 3-D profile reconstruction methods are 

limited, mainly consisting of basic shapes such as hemispheres and cylinders, where 

the defects are equal in length and width. Moreover, in actual situations, the defects 

may not align perfectly with either the horizontal or vertical plane, thereby resulting in 

a certain degree of rotational displacement. Currently, there is a lack of techniques 

available for reconstructing defects with rotation angles. 

Table 6.1 Some relevant studies for pipeline defect identification based on MFL 

Literature Proposed method Problems solved 

[310] Modified fuzzy min–max neural 

network 

Classify the normal and abnormal 

conditions in the pipeline 

[311] Sparse self-coding, CNN Classify of girth welds and spiral welds 

[312] CNN with the rectified linear units 

(ReLUs) employed as the activation 

functions 

Classify the response segments into defect, 

cathodic protection or tee 

[266] Multiscale shot multibox detector  

network 

Automatically identify the location of girth 

weld, spiral weld, and defect 

[79] CNN with normalization layer added Identify injurious or noninjurious defect 

[86] Pattern-adapted wavelets and ANN Estimate the length and depth of metal-loss 

defects 

[267] Improved Particle Swarm 

Optimization and RBFNN 

Recognize the width and depth of defect 

[313] Nonlinear 3-D finite-element method  Recognize the depth of defect 

[85] ANN Estimate the depth of defect 

[314] Physics-informed doubly fed cross-

residual network 

Quantification of defect length, width, and 

depth 

[80] Visual Transformation Convolutional 

Neural Network 

Estimate the defect size 

[315] Heterogeneous Multiclass Feature 

Fusion 

Estimate defect length, width, and depth 

[300] Characteristic approximation 

approach 

Recognize the opening profile 

[303] Visual deep transfer learning neural 

network 

Estimate defect size and cross-sectional 

profile 

[301] Geometric parameters based rational 

Bézier curve model 

Fast reconstruction of 3-D defect profile 

[82] Iterative neural network 3-D defect profile inversion 

This chapter suggests an approach for reconstructing the 3-D pipeline defect 

profile using MFL inspection signals. Compared to previous studies, the contributions 
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are summarized as follows: (1) A novel hybrid neural network-based 3-D defect 

reconstruction method is proposed, which can directly inverse the defect shape. 

Compared with the traditional methods, the model's accuracy is significantly improved. 

(2) The three-axis MFL signals are used as model input. The neural ODE maps the MFL 

signals to the spatial position of each point on the defective concave surface based on 

its excellence in parameterizing a homeomorphism between two sets. Furthermore, the 

model incorporates the Fourier integration kernel to enhance computational efficiency. 

(3) Due to the difficulty in obtaining sufficient amounts of high-quality experimental 

data, the proposed model can be trained on data from FE simulations and then 

transferred to the experimental dataset, effectively solving the problem. (4) The 

proposed method can well reconstruct not only the defects but also their rotation angles. 

The rest of this work is structured as follows: Section 2 introduces the principle of 

MFL inspection; Section 3 presents the FE model establishment process, the basic 

concepts, and the proposed method; Section 4 discusses the results, model performance, 

and robustness; Section 5 provides an experimental application to illustrate the 

proposed method further; and Section 6 presents the conclusion. 

6.2 Principle of MFL inspection 

MFL inspection has been widely recognized as a proficient method for inspecting 

pipelines composed of ferromagnetic materials. It enables the identification, 

localization, and quantification of pipeline defects caused by metal loss [316]. The 

principle is based on magnetism. When two magnets with opposing polarities of 

significant strength are put in proximity to the pipe wall, the pipe becomes magnetized. 

This results in magnetic flux lines through the pipe wall, moving from the south pole 

toward the north pole. In the event of a metal loss defect in the pipe wall, a new north 

pole and a new south pole can be observed at the edges of the metal loss area [317]. 

This phenomenon is akin to the behavior of a magnet that has been fractured into two 

separate pieces. This occurrence can be attributed to various factors, such as corrosion. 

Consequently, the magnetic flux lines traverse the pipe wall, passing through the defect-
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created air gap and then again through the pipe wall, as illustrated in Figure 6.1.  

 

Figure 6.1 The diagram of MFL inspection principle 

The magnetic flux density within a given material is contingent upon its magnetic 

permeability, a fundamental physical property. Various materials exhibit varying 

degrees of magnetic permeability. It can be observed that ferromagnetic steel exhibits 

a significantly greater magnetic permeability in comparison to air. Consequently, the 

magnetic flux density in the pipeline's sections without defects is considerably greater 

than in the air gap region resulting from the defect. Therefore, the magnetic flux lines 

will protrude while traversing the air gap due to the limited flux capacity of air per unit 

volume. This phenomenon is called magnetic flux leakage (MFL), which pipeline 

operators commonly use to conduct in-line inspections [302].  

The MFL-ILI system primarily comprises permanent magnets, Hall sensors, steel 

brushes, and a yoke. Through the steel brushes, permanent magnets magnetize the pipe 

wall to the saturation stage. The sensors are positioned uniformly around the pipe's 

circumference and are propelled by the ILI tool in the pipe's axial direction. The sensors 

capture MFL signals, which are subsequently recorded and subjected to analysis for the 

purpose of identifying potential anomalies. Different defect shapes or sizes will 

generate leakage magnetic fields with varying distribution characteristics. Hence, 

defect reconstruction can be achieved by analyzing the recorded MFL signals. 

Furthermore, the yoke serves to enhance the magnetic circuit architecture and diminish 

the ambient magnetic field while conducting inspection.  

It is common practice to use an approximation of the leaking magnetic field around 

the defect for research. Typically, modeling complicated geometric defects using the 

FE simulation may provide more precise results to resolve the magnetic field problem. 
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The region under study is partitioned into numerous discrete segments, enabling the 

computer to calculate Maxwell's equations at each point. 

6.3 Proposed method 

The overall model architecture and specific parameters are shown in Figure 6.2 and 

Table 6.2. The model architecture proposed in this study consists of several modules: 

⚫ The input and output module 

⚫ The feature extraction module utilizing the Dual-scale CNN algorithm 

⚫ The depth prediction module 

⚫ The canvas size prediction module 

The canvas represents the minimal surface area within the X-Z plane capable of 

displaying defects in any orientation, as shown in Figure 6.3. The depth prediction 

module is further divided into the mask and Neural ODE modules. The model’s inputs 

are the MFL signals obtained in three directions, which can be considered 100*100 

pixel images. By integrating the depth of each point within the canvas and the size of 

the canvas, as shown in Figure 6.3, we can finally obtain the defect’s 3-D profile. 

Notably, this approach enables the acquisition of 3-D profiles of defects at arbitrary 

angles rather than solely parallel to a specific direction. 
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Figure 6.2 The architecture of proposed model 
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Table 6.2 The network parameters of proposed model 

Critical layers Type Output shape 

Input layer - 3*100*100 

Feature extraction module Conv2D (kernel size 5*5, 3*3) 64*100*100 

Depth prediction module 

Mask 1*80000 

Neural ODE 1*80000 

Dense 100*100 

Canvas size prediction module 

Mask 1*80000 

Dense 100*100 

Transpose 100*100 

Output layer - 3*100*100 

 

Figure 6.3 Image interpretation of defect reconstruction 

First, based on FEM, we designed four different shapes of defects. Furthermore, 

for each shape, we considered various defect sizes. The MFL signals of each defect in 

three directions are acquired through simulation and utilized as inputs to the model. The 

dual-scale convolution is employed in the feature extraction module to enhance the 

network model's capacity to comprehend complex data features. This is achieved by 

incorporating convolution kernels of varying sizes to capture feature information 

effectively. In contrast with traditional convolutional layers using single-scale 

convolutional kernels, the approach employed in this study provides boosted feature 

representations, thereby yielding accurate results.  

The depth prediction module incorporates a masking mechanism that functions as 

a tensor filter. This mechanism effectively reduces the model's attention to irrelevant 
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data, resulting in a decrease in the number of parameters within the model. 

Consequently, the efficiency and performance of the model are enhanced. The Neural 

ODE algorithm is used to predict the defect depth associated with the points on the 

canvas. As depicted in Figure 6.3, with the exception of blocks and cylinders, the depth 

of each point within the canvas exhibits variation. Therefore, instead of predicting a 

single depth value, it is necessary to indicate the depth of every individual point, i.e., 

the value of each pixel, on the canvas in order to achieve the intended 3-D 

reconstruction.  

Using traditional neural network techniques, including ANN, CNN, and ResNet, 

for defect 3-D reconstruction necessitates the training of a substantial number of 

parameters, which consumes a significant amount of graphics ram resources. However, 

parameter sharing in Neural ODE exhibits notable characteristics that effectively 

address this limitation. Furthermore, according to Maxwell's equations, the solution to 

the electromagnetic field is unique. Consequently, it is achievable to reconstruct the 

defects by establishing the correlation between magnetic field and spatial quantities. 

According to [318, 319], neural ODE is more appropriate for parameterizing a 

homeomorphism between two sets. Therefore, this chapter uses a neural ODE-based 

method for defect reconstruction. Still, the utilization of neural ODE may result in a 

notable reduction in the solution speed as the model complexity increases during the 

training phase. To address this issue, this study incorporates a Fourier integral kernel, 

which effectively enhances the ODE solver's solution time stability. 

6.3.1 FE model establishment 

According to the principle of MFL inspection, the FE model is built as illustrated in 

Figure 6.4. The parameters related to the FE model is the same as in Section 5.2.2.1. 

The size of the defect in the pipe's axial, circumferential, and radial directions is defined 

as the defect's length, width, and depth, respectively. Figure 6.4 shows the 3D schematic 

illustration of the MFL signal of a cuboid defect. In addition, we also simulated defects 

in cylindrical, ellipsoidal, and truncated cone shapes with different orientations. Among 



118 

 

them, some standard shapes are also included. For example, ellipsoids and truncated 

cones has bodies with cross-sections of ellipses and circles, and truncated cones also 

contain cones. Take cylindrical defects as an example. Here, we use heatmap plots to 

visualize the MFL signal characteristics, as shown in Figure 6.5, which demonstrate the 

simulated MFL signals for cylindrical defects in different directions. Meanwhile, we 

mapped the contour projection of the defect in the y-direction on heatmap plots. 

Yoke

Magnet Brush

Pipe
Defect

Figure 6.4 The FE model 

 

(a) Bx 

 

(b) By 

 

(c) Bz 

Figure 6.5 Heatmap plots of MFL signals of cylindrical defect 

A total of 4842 data sets are obtained by using the technique of FE simulation. Of 

the total samples, 90% are assigned at random for training the algorithm, while the 

remaining 10% are set apart for validating the effectiveness of the model.  

6.3.2 Dual-scale CNN module 

Dual-scale refers to extracting features at two different scales, thereby enabling the 

capture of different levels of information within the image [320]. Additionally, the 

network's robustness is enhanced through parameter sharing, thus mitigating the 
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potential for overfitting. 

In this chapter, the images obtained from the FE simulation are initially fed into 

the convolution layers, consisting of convolution kernels of varying sizes. This chapter 

utilizes two convolution kernels, one with a size of 3 × 3 and the other with a size of 5 

× 5. These kernels are employed to extract feature maps, denoted as X and Y, 

respectively. Due to the larger kernel size, feature map Y possesses a greater receptive 

field. Consequently, feature maps X and Y are combined to yield feature map Z, as 

shown in Eq. (6.1). 

𝑍 = 𝑋 ⊕ 𝑌                       (6.1) 

where the symbol ⊕ denotes element-wise summation.  

The dimensionality of feature map Z is equivalent to that of X and Y. However, 

due to the mechanism of dual-scale CNN, each dimension of feature map Z 

encompasses a greater amount of information. 

6.3.3 Mask module 

This section focuses on the mask module. "Mask" is prevalent in various applications, 

including capsule networks and Transformer models [321, 322]. The utilization of a 

"mask" is employed to limit the operations of a model or modify the allocation of 

attention within the model to cater to the specific requirements of a given task. By 

applying an appropriate mask, certain restrictions can be imposed on the model outputs, 

thus affecting their delivery and use in the network. This chapter's data inputs are MFL 

signals of four defect shapes. Hence, the mask mainly serves as a sensor filter. This 

filter selectively masks or retains the original tensor, directing the model's attention 

toward the shape with the highest category affiliation so as to facilitate deeper learning 

of defect depths within the specified category. The "mask" can enhance the network's 

capacity to effectively acquire and analyze crucial data, thereby improving the 

interpretability of the neural network. 
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6.3.4 Neural ODE module 

Neural Ordinary Differential Equation (Neural ODE) is a deep learning method based 

on Ordinary Differential Equation (ODE), combining traditional numerical solution 

techniques and neural network models [323]. ODE is used to describe the relationship 

of an unknown function with the change of variables. Neural ODE establishes a 

connection between neural networks and the initial value problem (IVP) associated with 

ODEs. The input state in Neural ODE is the initial value of the ODE, and the neural 

network can be regarded as the driving function. The depth-solving process can be 

considered a continuous iterative optimization of the driving function, ultimately 

leading to the desired results [324, 325]. 

In this chapter, Neural ODE is used to predict the depth at different points within 

the canvas plane. Due to the prediction's complexity, many parameters are required 

when using traditional methods for prediction, resulting in a heavy computational 

burden. In contrast, Neural ODE has a simple structure with fewer training parameters, 

improving computation efficiency. 

In traditional neural networks, such as ResNet, the underlying units can be 

represented by a generalized formula, as shown in Eq. (6.2) [326]. 

ℎ𝑡+1 = ℎ𝑡 + 𝑓(ℎ𝑡 , 𝜃𝑡)                    (6.2) 

where ht ϵ RD, t denotes the number of the discrete layer, f (∙) is a differentiable function 

and θ means the learnable parameters of f (∙). The basic expression of the Neural ODE 

is obtained by transforming the discretized form into a continuous form, as shown in 

Eq. (6.3) [327]. 

𝑑ℎ(𝑡)

𝑑𝑡
= 𝑓(ℎ(𝑡), 𝑡, 𝜃)                     (6.3) 

with initial value h(t0) = h0, h represents the state, f is the driving function, representing 

trainable layers parameterized by the weight θ, t falls within [ti , tf], representing the 

virtual evolution time. The process of forward propagation for Neural ODEs can be 

viewed as the evolution of ODEs with the initial state over time. 

Furthermore, considering the rapid increase in the number of iterations, the neural 
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network's fitted function will progressively exhibit greater complexity, resulting in an 

increased level of problem stiffness. Consequently, the solution's efficiency will be 

significantly diminished. Hence, this chapter introduces the Fourier integral kernel as a 

means to alleviate the problem's stiffness, thereby stabilizing the solution time. The 

specific expression is as follows: 

ℎ(𝑡𝑓) = ∫ 𝑓(ℎ(𝑡), 𝑡, 𝜃)𝑠𝑖𝑛(2𝜋𝑡)𝑑𝑡
𝑡𝑓
𝑡𝑖

             (6.4) 

6.4 Results and discussions 

6.4.1 Results analysis 

We randomly selected one defect from each shape for error visualization, as shown in 

Figure 6.6. Each grid corresponds to a pixel, with each pixel denoting the absolute value 

of the labeled depth at that point subtracted from the reconstructed depth. The more 

significant the difference in color between the pixel point and the canvas, the higher the 

inaccuracy.  

In Figure 6.6, it is evident that all shapes exhibit slight variations in their overall 

measurements. With the exception of the cylinders, the other profiles demonstrate more 

significant errors in proximity to the edges of the defects. Hence, it is reasonable to 

infer that such errors might be attributed to the rotation angle. 

 

(a) Cuboid 

 

(b) Truncated cone 
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(c) Cylindrical 

 

(d) Ellipsoidal 

Figure 6.6 Error maps of randomly selected defects 

6.4.2 Model performance comparison 

This chapter uses mean absolute error (MAE) to estimate the accuracy of the proposed 

model. As shown in Table 6.3, we compared the proposed method with ResNet. The 

results illustrate that the accuracy of the proposed method is higher than ResNet on 

cuboid defects, cylindrical defects, ellipsoidal defects, truncated cone defects, and all 

the defects with mixed shapes.  

Table 6.3 Comparison of different methods on reconstruction accuracy 

Type Proposed method ResNet 

Cuboid 0.0721±0.0253 0.5575±0.4329 

Cylindrical 0.0293±0.0203 0.7937±0.4867 

Ellipsoidal 0.0735±0.0267 0.2398±0.3015 

Truncated cone 0.1281±0.0528 0.8369±0.5132 

Mixed shape 0.0757±0.0486 0.6070±0.5009 

Similarly, one defect is randomly selected from each of the four shapes for 

visualization purposes. The real profile of the defect, the profile reconstructed using the 

proposed method, and the profile reconstructed using ResNet are depicted in Figure 6.7. 

We can conclude the same as above that the proposed method exhibits a higher level of 

accuracy. Additionally, it can be observed that among the four different defect shapes, 

the reconstruction of cylindrical defects yields the most desirable outcomes. 
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(d) 

 

(h) 

 

(l) 

Figure 6.7 Comparison of different methods. (a), (b), (c) and (d) are the true defect 

profiles. (e), (f), (g) and (h) are the reconstructed defect profiles using proposed 

method. (i), (j), (k) and (l) are the reconstructed defect profiles using ResNet. 
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Furthermore, two methods, one using the Fourier integral kernel (the proposed 

method) and the original neural ODE method, are used for comparison. Based on 12 

GB NVIDIA TITAN XP GPU, we ensure that the neural network is otherwise 

structurally consistent, comparing the time required to iterate between the two methods. 

As shown in Figure 6.8, the Y axis denotes the relative time, which is the ratio of the 

time taken by the original neural ODE to the time taken by the proposed method. It can 

be observed that with an increasing number of iterations, the relative time exhibits a 

progressive rise, indicating a significant decline in the solution efficiency of the original 

method compared to the proposed method. Therefore, the proposed method may 

substantially enhance the stability and efficiency of the solution process.  

 

Figure 6.8 Relative time between original and proposed methods 

6.4.3 Model Robustness Comparison 

In practical applications, it is common for the obtained signals to be affected by noise 

owing to the complex conditions of the pipeline. To assess the robustness of the 

proposed method, we introduce Gaussian white noise with five levels into both the 

training and test samples. These noise levels are as follows: 1% (signal-to-noise ratio 

(SNR) = 20 dB), 3% (SNR = 15.23 dB), 5% (SNR = 13.01 dB), 7% (SNR = 11.55 dB), 

and 9% (SNR = 10.46 dB), respectively. The results obtained are shown in Figure 6.9. 

It can be observed that the proposed method demonstrates greater estimate accuracy 

compared to ResNet across various noise levels. It can also be noticed that the error 
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increases as the percentage of noise increases. However, for the proposed method, even 

when the noise percentage increases to 9%, the MAE is still not exceeding 0.2 mm. 

 

Figure 6.9 Robustness tests 

6.5 Experimental analysis 

In order to provide further validation for the composite neural network model suggested 

in this research, a field study is undertaken. Figure 6.10 displays the structure of the 

MFL tool used during the pull test. Fifty artificial defects with different geometrical 

parameters and shapes are machined on the outer surface of the pipe wall. The pipe's 

outer diameter is 323 mm, while its wall thickness is 8 mm. The dimensions of the 

defects vary between 5 mm and 25 mm in length and width and between 1 mm and 5 

mm in depth. The detailed parameters of length, width, and depth are shown in Figure 

6.11. The MFL tool is used to conduct a pull test and record the three-axis MFL signal 

produced by the manufactured defects. To reduce the influence of non-defective factors, 

the impact of the background magnetic field is filtered. 
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Figure 6.10 The experimental situation 
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Figure 6.11 Defect parameters’ distribution 

The trained model derived from the simulated data of FE analysis is regarded as a 

pre-trained model. This pre-trained model is then transferred to the dataset obtained 

from the pull test for practical implementation. Out of the total datasets, 40 are allocated 

for training, while the remaining 10 are designated for testing. Given that the pre-trained 

model has already acquired a general feature representation of the defect profile, the 

quantity of data needed for fine-tuning the pull test dataset is often lower compared to 

training the model from the beginning. This phenomenon is especially advantageous in 

the context of industries characterized by limited availability of data. 

The errors acquired by the suggested method and ResNet are compared, as 

demonstrated in Figure 6.12. The average defect reconstruction error of the proposed 

method is 0.1018 mm, indicating a lesser value compared to that of ResNet. These 

results align with the conclusions drawn in the previous section. Figure 6.13 depicts the 

actual image of the defect, the actual contour of the defect, and the reconstructed profile 

of the defect. It can be found that the reconstructed defect profile can accurately 

characterize the real defect profile. Therefore, both simulation and experimental studies 

show that the proposed method can accurately reconstruct 3-D defect profiles from 

three-axis MFL data. 
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Figure 6.12 Accuracy comparison of the proposed method and ResNet 

 

Figure 6.13 Comparison of defect profiles. (a) The actual image of the defect. (b) The 

actual profile of the defect (c) The reconstructed profile of the defect using the 

proposed method. 

6.6 Conclusions 

This study proposes an innovative approach for reconstructing the defect profile of oil 

and gas pipelines by using MFL data. It presents a novel hybrid neural network 

architecture for accurately and efficiently mapping three-axial MFL signals to the 3-D 

profile of defects. The proposed method is compared with existing methods to 

demonstrate its superior performance. As a consequence, the outcomes of the proposed 

method may serve as an effective tool for intelligent integrity management in pipeline 

systems. This tool enables the visualization of defects in underground pipes via the 

analysis of MFL signals, hence facilitating operators in undertaking subsequent 

maintenance measures. 

In this chapter, we design four different shapes of defects with various sizes using 
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FE simulation and obtain the MFL signals of each defect in three directions as inputs 

to the model. In the construction of several modules for the hybrid neural network, we 

use a two-scale convolution module, a masking mechanism, and a neural ODE with a 

Fourier integral kernel. The final 3-D profile of the defect is created by integrating the 

predicted canvas size and the depth measurements of every point on the canvas. Each 

module has specific advantages and contributes to the feature extraction process, 

enhancing the model's computational efficiency, conserving graphics ram resources, 

and introducing novel ideas for defect reconstruction. The model trained on FE 

simulation data is successfully transferred to the pull test dataset with desirable 

outcomes. The simulation results indicate that the proposed method is able to 

reconstruct defect profiles with an average error of 0.0757 mm, while the pull test 

results show that the defect reconstruction average is around 0.1mm. Furthermore, the 

proposed model does not impose any limitations on the orientation of the reconstructed 

defects, allowing for the reconstruction in any possible direction. The proposed model 

can be used to support the digitization management of pipeline operations. 

The hybrid neural network suggested in this study has great potential for 

reconstructing defects' three-dimensional profiles. However, there are limitations to 

consider. (1) Presently, the focus of research is primarily on regular defects of a certain 

shape, whereas irregular defects remain unexplored. (2) The analysis just focuses on 

individual defects without considering the interaction rules of numerous corrosion 

effects. Hence, it is essential for future studies to prioritize solving these challenges in 

order to promote further advancements. 
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Chapter 7: Conclusions and future work 

7.1 Conclusions 

The primary aim of conducting reliability analysis and risk analysis for OGP is to assure 

the long-term functionality of the OGP systems and enhance safety measures while also 

reducing possible risks and associated losses. This is also key to protecting the 

environment, maintaining equipment, reducing costs, and increasing public trust. This 

Ph.D. thesis provides an in-depth discussion on the reliability and risk of different 

pipeline systems to address the challenges currently in the pipeline risk field, including 

the inappropriateness of the existing models with some OGP systems, complex model 

structures, low computational efficiency, and inaccurate analysis results. This thesis 

adopts systematic research approaches, integrates multiple data sources and technical 

tools, combines deep learning algorithms and traditional risk analysis methods, 

proposes risk and reliability analysis models for the characteristics of different pipeline 

systems from a data-driven point of view, and validates them with actual cases. This 

thesis not only proposes new OGP risk and reliability analysis frameworks but also 

extends the traditional analysis theory. The new theoretical models fill the gaps in 

existing research and provide novel ideas and paradigms for the reliability and risk 

research field of OGP. The research results of the paper contribute to the progress of 

scientific theories and provide guidance and decision support for practical engineering 

applications. The results can help pipeline operators to ensure the safe and smooth 

operation of OGP systems, discover the potential risks of the system in time, reduce the 

probability of accidents, optimize the cost and resource allocation, and establish the 

foundation for the digital and intelligent management of OGP. 

In this thesis, different types of data related to OGP operations are used to build 

more reasonable risk and reliability analysis models for different pipeline systems: 

pipelines where ILI can be conducted, pipelines where ILI can not be conducted, and 
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transmission station. 

The main contributions of each topic are summarized as follows: 

Topic 1: Risk assessment of buried gas pipelines based on improved cloud-variable 

weight theory 

 A novel cloud-variable weight model is proposed to conduct pipeline risk 

assessment research. Compared with the constant weight theory mentioned above, 

the variable weight theory (VWT) can highlight the negative effects of the index 

with higher risk, which can obtain more reasonable results.  

 CM is used to improve the calculation in VWT, and it is applied throughout the 

entire risk evaluation process. The uncertainty can also be better conveyed through 

the calculation between CMs, making the expression of uncertainty more adequate 

and accurate.  

 The results are significant to help pipeline operators identify the key pipe sections 

and risk factors in the system, optimize the resource allocation and improve the 

efficiency of risk management. 

Topic 2: Discovery of potential risks for the gas transmission station using 

monitoring data and the OOBN method 

 A structure mapping method based on FMEA is proposed. An OOBN framework 

is developed based on the overall system’s process flow, making the model more 

simplified and flexible.  

 Both leaky noisy-or gate (LNG) and expectation maximum (EM) algorithm are 

incorporated into BN’s parameter learning, efficiently dealing with imperfect 

historical records and limited sample data while reflecting the uncertainty of risk 

factors.  

 An accident precursor identification approach based on PAA-CUSUM is presented 

to identify possible vulnerabilities in the system in real-time by finding 

abnormalities using monitoring data. This allows backward analysis when 

anomalies are detected, which is more consistent with actual conditions than 

assumption-based analyses. 
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Topic 3: Reliability analysis of corroded pipes using MFL signals and Residual 

Neural Networks 

 The FE simulation of MFL signals and reliability analysis are combined through 

deep learning methods, allowing the MFL signals to be directly mapped to the 

pipeline’s reliability. The principles of reliability calculation based on the effective 

area model rather than just depth are also effectively integrated into this mapping 

process, which can obtain more accurate results.  

 A novel ResNet-based reliability prediction method is proposed, making the 

analysis process more accurate and efficient. The case in this thesis shows that, 

compared to traditional methods, the proposed model's accuracy is more than 20% 

higher, and the computational efficiency has been increased by 200 times.  

 The re-assessment interval optimization method is also integrated into the deep 

learning algorithm, which can automatically generate the optimal time interval and 

can effectively help pipeline operators make decisions based on the MFL 

inspection signals. 

Topic 4: Reconstruction of 3-D pipeline defect profile based on MFL signals and 

hybrid neural networks 

 A novel hybrid neural network-based 3-D defect reconstruction method is proposed, 

which can directly inverse the defect shape. Compared with the traditional methods, 

the model's accuracy is significantly improved.  

 The three-axis MFL signals are used as model input. The neural ODE maps the 

MFL signals to the spatial position of each point on the defective concave surface 

based on its excellence in parameterizing a homeomorphism between two sets. 

Furthermore, the model incorporates the Fourier integration kernel to enhance 

computational efficiency.  

 Due to the difficulty in obtaining sufficient amounts of high-quality experimental 

data, the proposed model can be trained on data from FE simulations and then 

transferred to the experimental dataset, effectively solving the problem. Besides, 

The proposed method can well reconstruct not only the defects but also their 
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rotation angles. 

Regarding practical applications, the model from topic 1 is a valuable tool for 

assessing risks in urban underground gas pipeline systems. By establishing a 

comprehensive evaluation framework that connects various risk factors, regular 

consultations with experienced experts can provide periodic insights into pipeline risk 

status and maintenance recommendations. This approach can be extended to systems 

lacking precise data, such as defect information, to reflect the system's risk status. The 

results of the proposed model, which are the ranking of pipe sections’ risk levels can 

be considered a prioritization when performing risk rehabilitation on this pipeline. 

Higher risk pipe sections should be prioritized for targeted control measures, depending 

on the key risk factors identified during the evaluation process. When two pipe sections 

have the same Ex value, the value of En should be evaluated.  

The model proposed in topic 2 is well-suited for the GTS. By installing sensors to 

monitor parameters like flow and pressure, it can promptly identify anomalies that 

might lead to accidents, such as leaks or blockages. This model's adaptability extends 

to other complex systems with multiple components capable of obtaining monitoring 

data. The analysis results can provide the component’s ranking of potential risk from 

high to low, as well as their possible failure types and failure causes, which can guide 

the GTS operator to perform efficient risk rehabilitation based on the failure types and 

causes of the components. 

The deep learning models developed in topic 3 and topic 4 are suitable for oil and 

gas pipelines where ILI can be conducted. Collecting foundational data like pipeline 

wall thickness should be started first, and then MFL signals are derived through MFL 

tools. Using these trained deep learning models, operators can ascertain the pipeline's 

reliability, determine the optimal re-assessment period, and reconstruct 3-D profiles of 

defects. The advantage of deep learning models lies in their user-friendly nature, 

requiring nothing more than data input to yield insightful results. The obtained 3-D 

defect profiles can assist pipeline operators in gaining a more comprehensive 
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understanding of the internal conditions of the pipeline, enabling the formulation of 

more precise maintenance plans and providing support for establishing a digital twin 

system. 

7.2 Limitations and future work 

Despite the achievement of its goal, the research presented is confronted by particular 

limitations and can be addressed in future work: 

 For the research of topic 1, the established risk assessment index system is only 

applicable to buried gas pipelines, but not to other types such as submarine 

pipelines or long-distance oil pipelines. Also, the proposed method is a static 

approach that only analyzes risk based on the current state of the pipeline and 

cannot dynamically track the development of risk.  

 For research in topic 2, the risk factor classification can be more thorough. With 

comprehensive data, more in-depth analysis may be conducted in the future. 

Moreover, only the daily regular operation of the GTS system is considered, but 

not the risks under other operating conditions such as venting. Future studies on 

more complicated systems will require a more precise component separation, such 

as the process piping segregated according to pipe diameter and other factors. As a 

result, future studies should concentrate on these issues to ensure the stable and 

smooth operation of the GTS system. 

 For research in topic 3 and topic 4, only regular defects are currently considered, 

and irregular defects are not studied, and only independent defects are considered 

without analyzing the interaction rules of multiple corrosion effects. In the future, 

more varieties of defects should be investigated. Besides, in topic 3, the 

methodological framework proposed for mapping MFL signals to reliability values, 

optimal re-assessment interval, and cost rate is generalizable. The specific set of 

parameters, including pipeline attributes and probabilistic inputs in the FE model 

and reliability analysis, are used as an example to illustrate the feasibility of the 

proposed method. Furthermore, for different engineering application scenarios, 
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these parameters can be modified to re-train the ResNet and obtain different results. 

In future research endeavors, on the basis of the proposed model, transfer learning 

is a potential technique to handle more diverse tasks and obtain the desired results 

more flexibly. For the 3-D reconstruction mentioned in topic 4, future efforts could 

explore the application of physics-informed neural networks. This involves 

incorporating the relevant physics laws into neural network models, allowing the 

neural network to learn the system's physical principles. The neural network 

structure is employed to approximate unknown physical scenarios, and the loss 

function considers constraints from the physics equations. By combining the 

flexibility of deep learning with the prior knowledge of physical equations, this 

approach aims to better address the challenges of complex defect reconstruction. 

Additionally, further investigation into alternative AI technologies is warranted. 

For instance, point cloud data generated from laser scans or other sensors can be 

utilized to detect surface defects in pipelines and related equipment. Deep learning 

models can then analyze and process the point cloud data to reconstruct the three-

dimensional shape of objects. Moreover, exploring the potential of well-trained 

large-scale AI models designed for image processing and applying transfer learning 

methods may offer opportunities for defect 3-D reconstruction. 
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